WO2020151082A1 - 一种输出匹配电路和由其构成的功率放大器 - Google Patents

一种输出匹配电路和由其构成的功率放大器 Download PDF

Info

Publication number
WO2020151082A1
WO2020151082A1 PCT/CN2019/080126 CN2019080126W WO2020151082A1 WO 2020151082 A1 WO2020151082 A1 WO 2020151082A1 CN 2019080126 W CN2019080126 W CN 2019080126W WO 2020151082 A1 WO2020151082 A1 WO 2020151082A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
matching circuit
matching
circuit
component
Prior art date
Application number
PCT/CN2019/080126
Other languages
English (en)
French (fr)
Inventor
曹秀妹
Original Assignee
曹秀妹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曹秀妹 filed Critical 曹秀妹
Priority to US17/425,319 priority Critical patent/US12074574B2/en
Publication of WO2020151082A1 publication Critical patent/WO2020151082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/318A matching circuit being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H2007/386Multiple band impedance matching

Definitions

  • the invention relates to an output matching circuit and a power amplifier composed of the output matching circuit.
  • radio equipment For the diversified services provided by radio communications, radio equipment is required to operate in multiple frequency bands. For example, take the mobile phone cellular data radio frequency front end as an example, its power amplifier system currently needs to support high frequency bands, medium frequency bands, and low frequency bands. As technology evolves, more frequency bands need to be supported.
  • the current solution is that the high frequency/intermediate frequency/low frequency respectively correspond to a set of power amplifiers and their output matching circuits, resulting in high cost, large number of components, integration difficulties, and design difficulties.
  • the wideband characteristics of the output matching circuit become very important.
  • the purpose of the present invention is to provide a wide-band reconfigurable output stage matching circuit capable of switching operating frequency bands.
  • the output matching circuit includes:
  • Impedance conversion components used for impedance conversion
  • the first matching component is connected to the input end of the impedance conversion component to establish matching, and includes an impedance element and a controllable switching element that is turned on/off controlled by an external control signal to form different impedances.
  • the output matching circuit provided by the present invention further includes a second matching circuit that is connected to the power input end of the impedance conversion component to establish a match to form different impedances.
  • the output matching circuit provided by the present invention further includes a third matching circuit that is connected to the output end of the impedance conversion component to establish matching to form different impedances.
  • the output matching circuit provided by the present invention further includes a subdivided frequency band selection component connected to the output end of the impedance conversion component, and the subdivided frequency band selection component includes at least two independent turn-on/cut-off controlled by external signals. Each controllable switching element constitutes an output.
  • the output matching circuit provided by the present invention further includes a subdivided frequency band selection component connected to the output terminal of the third matching component, and the subdivided frequency band selection component includes at least two independent external signal controlled conduction/ For cut-off controllable switching elements, each controllable switching element constitutes an output.
  • Another object of the present invention here is to provide a signal amplification capable of switching operating frequencies and supporting a wider frequency band, which can solve the number of components caused by the need to amplify different frequency bands in the prior art due to the provision of multiple sets of power amplifiers.
  • the power amplifier includes an input circuit and an output matching circuit.
  • the output matching circuit is the output matching circuit provided by the present invention.
  • the input circuit includes at least two preamplifier circuits, a matching circuit for matching the output signal of each preamplifier circuit, an input transformer T1 including at least two output taps, and an output tap of the input transformer T1
  • An equal number of output stage amplifying circuits, switches S1 and S2, the circuit power supply VCC1 is loaded on the input terminal of the input transformer T1 via the switch S1 and the switch S2 respectively; the working frequencies of the matching circuits are different.
  • the matching circuit is composed of capacitive elements, or composed of capacitive elements and inductive elements.
  • the input circuit further includes an input matching circuit for input matching the signal loaded on the input terminal of each pre-amplifier circuit.
  • one or more of the functional components in the input circuit and the output matching circuit are integrated on one chip, and the remaining functional components are integrated on another chip or arranged independently.
  • the output matching circuit provided by the present invention controls the on/off of the controllable switching elements in the first matching circuit, the second matching circuit, and the third matching circuit through a control signal, thereby realizing the reconstruction of the output stage matching circuit and realizing Switching of the output working frequency band;
  • the output matching circuit can be used for high frequency/intermediate frequency/low frequency, which reduces the cost, has a small number of components, is easy to integrate and reduces the design difficulty;
  • the output matching circuit can be used for multi-band multiplexing power amplifiers, Realize broadband amplifier, reduce component quantity and material cost, increase power amplifier system integration.
  • the output matching circuit provided by the present invention cooperates with the subdivided frequency band selection component to realize one or multiple outputs, which further improves the output controllability of the output matching circuit provided by the present invention.
  • the power amplifier provided by the present invention uses the output matching circuit provided by the present invention to realize a reconfigurable output stage matching circuit, thereby realizing switching of operating frequencies in the same amplifier, supporting signal amplification in a wider frequency band, and solving
  • the problems of large number of components, difficulty in integration, and difficulty in design due to the need to amplify power in different frequency bands and multiple sets of power amplifiers are provided.
  • Figure 1 is a structural diagram of an output matching circuit provided by the present invention
  • Figure 2 is an example of the first matching component recorded in the present invention
  • Fig. 3 is a second example of the first matching component recorded in the present invention.
  • FIG. 4 is a third example of the first matching component recorded in the present invention.
  • Fig. 5 is a fourth example of the first matching component recorded in the present invention.
  • Figure 6 is a fifth example of the first matching component recorded in the present invention.
  • FIG. 7 is an example of the second matching component recorded in the present invention.
  • FIG. 8 is a second example of the second matching component recorded in the present invention.
  • Fig. 9 is a third example of the second matching component recorded in the present invention.
  • FIG. 10 is an example of the third matching component recorded in the present invention.
  • Fig. 11 is a second example of the third matching component recorded in the present invention.
  • Figure 12 is a third example of the third matching component recorded in the present invention.
  • FIG. 13 is a fourth example of the third matching component recorded in the present invention.
  • FIG. 15 is an example of the matching circuit recorded in the present invention.
  • Fig. 16 is a second example of the matching circuit recorded in the present invention.
  • FIG. 17 is a third example of the matching circuit recorded in the present invention.
  • FIG. 18 is an example of the bias circuit described in the present invention.
  • 1-impedance conversion component 2-first matching component, 3-second matching component, 4-third matching component, 5-division frequency band selection component, 6-preamplifier circuit, 7-matching circuit, 8-output stage amplifier circuit, 9-bias circuit, 10-input matching circuit.
  • Figure 1 illustrates the output matching circuit of the present invention, including:
  • Impedance conversion component 1 used for impedance conversion
  • the first matching component 2 is connected to the input end of the impedance conversion component to establish matching to form different impedances so that low frequency/medium frequency/high frequency can pass.
  • the first matching component 2 can adopt any existing matching circuit, which includes an impedance element and a controllable switching element that is turned on/off controlled by an external control signal.
  • the specific structure can adopt one of the following:
  • the first matching component 2 includes a capacitor C5, a capacitor C6, and a controllable switch S8.
  • the capacitor C5 and the controllable switch S8 are connected in series between the two signal input ends of the impedance conversion component.
  • C6 is connected in parallel to both ends of the series capacitor C5 and the controllable switch S8.
  • the first matching component 2 includes a capacitor C7, a capacitor C8, a capacitor C9, a capacitor C10, and controllable switches S9 and S10; the capacitor C8 and the controllable switch S9 are connected in series to the impedance conversion component 1 Between the signal input terminal of one channel and the ground, the signal input terminal of this channel is also grounded through the capacitor C7; the capacitor C10 and the controllable switch S10 are connected in series between the other signal input terminal of the impedance conversion component 1 and the ground, and this signal input terminal is also Ground through the capacitor C9.
  • the first matching component 2 includes a capacitor C11, a capacitor C12, a capacitor C13, and a controllable switch S11.
  • the capacitor C11 and the controllable switch S11 are connected in series with the two signal input terminals of the impedance conversion component 1.
  • a capacitor C12 is connected in series between a signal input terminal of the impedance conversion component 1 and the ground, and a capacitor C13 is connected in series between another signal input terminal of the impedance conversion component 1 and the ground.
  • the first matching component 2 includes a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a capacitor C18, a capacitor C19, and a controllable switch S12, a controllable switch S13 and a controllable switch S14,
  • the capacitor C14 and the controllable switch S12 are connected in series between the two signal input ends of the impedance conversion component 1, and the capacitor C15 is connected in parallel to the two ends of the series capacitor C14 and the controllable switch S12; the capacitor C16 and the controllable switch S13 are connected in series to the impedance conversion component Between the signal input terminal of 1 and the ground, the signal input terminal of this channel is also grounded through the capacitor C17; the capacitor C18 and the controllable switch S14 are connected in series between the other signal input terminal of the impedance conversion component 1 and the ground, this signal input The terminal is also grounded via capacitor C19.
  • the first matching component 2 includes a capacitive element capacitor C20, a capacitor C21, a capacitor C22, a capacitor C23, and a switching element controllable switch S15.
  • the capacitor C20 and the controllable switch S15 are connected in series for impedance conversion.
  • the capacitor C21 is connected in parallel to the series capacitor C20 and the two ends of the controllable switch S15;
  • the capacitor C22 is connected between the signal input end of the impedance conversion component 1 and the ground, and the capacitor C23 is connected to the impedance Between the other signal input terminal of the conversion component 1 and the ground.
  • the output matching circuit provided by the present invention further includes a second matching circuit 3 that is connected to the power input end of the impedance conversion component 1 to establish a match.
  • the second matching component 3 is composed of an impedance element or an impedance Components and controllable switching components that are turned on/off controlled by external control signals.
  • the specific structure can adopt one of the following:
  • the second matching component 3 includes a capacitor C24, which is connected between the power input terminal of the impedance conversion component 1 and the ground.
  • the second matching component 3 includes a capacitor C25, a capacitor C26, and a controllable switch S16.
  • the capacitor C25 and the controllable switch S16 are connected in series between the power input terminal of the impedance conversion component 1 and the ground.
  • C26 is independently connected between the power input terminal of the impedance conversion component 1 and the ground.
  • the second matching component 3 includes a capacitor C27, a capacitor C28, a capacitor C29, and a controllable switch S17, a controllable switch S18, a capacitor C27 and a controllable switch S17, and a capacitor C28 and a controllable switch S18 is connected in series between the power input terminal of the impedance conversion component 1 and the ground, and the capacitor C29 is connected between the power input terminal of the impedance conversion component 1 and the ground; when this structure is adopted, the capacitor C27 and the controllable switch S17 need to be connected in series
  • the inductive element L1 is connected in series on the branch.
  • the output matching circuit provided by the present invention further includes a third matching circuit 4 that is connected to the output end of the impedance conversion component 1 to establish a match.
  • the third matching component can use any existing impedance conversion component.
  • a matching circuit consisting of a resistive element and a controllable switching element that is turned on/off controlled by an external control signal can adopt one of the following structures:
  • the third matching component 4 includes a capacitor C30 and a capacitor C31.
  • the capacitor C30 is connected to the signal output terminal of the impedance conversion component 1
  • the capacitor C31 is connected to the signal output terminal of the impedance conversion component 1 and the ground. between.
  • the third matching component 4 includes a capacitor C32, a capacitor C33, a capacitor C34, and a controllable switch S19.
  • the capacitor C32 is connected to the signal output terminal of the impedance conversion component 1, and the capacitor C33 and the controllable switch S19
  • the switch S19 is connected in series and parallel to both ends of the capacitor C32; the capacitor C34 is connected between the signal output terminal of the impedance conversion component 1 and the ground.
  • the third matching component 4 includes a capacitor C35, a capacitor C36, a capacitor C37, a controllable switch S20, a controllable switch S21, and the capacitor C35 is connected to the signal output terminal of the impedance conversion component 1.
  • C36 and the controllable switch S20, as well as the capacitor C37 and the controllable switch S21 are respectively connected in series between the signal output terminal of the impedance conversion component 1 and the ground; when this structure is adopted, it is necessary to connect the capacitor C36 and the controllable switch S20 in series on the branch , And the inductive elements L2 and L3 are respectively connected in series on the branch where the capacitor C37 and the controllable switch S21 are connected in series.
  • the third matching component 4 includes a capacitor C38, a capacitor C39, a capacitor C40, a capacitor C41, a capacitor C42, and a controllable switch S22, a controllable switch S23, a controllable switch S24, and a capacitor C38 connected
  • the capacitor C39 and the controllable switch S22 are connected in series and parallel to both ends of the capacitor C38, and the capacitor C40 is connected between the signal output terminal of the impedance conversion component 1 and the ground;
  • the capacitor C42 and the controllable switch S24 are respectively connected in series between the signal output terminal of the impedance conversion component 1 and the ground; when this structure is adopted, it is necessary to connect the capacitor C41 and the controllable switch S23 in series on the branch, as well as the capacitor C24 and the
  • the inductive elements L4 and L5 are respectively connected in series on the branches of the control switch S24 in series.
  • a capacitor is used as an example of a resistive element.
  • an inductor can also be used. Impedance components such as, resistance, etc. replace capacitors to form a matching circuit.
  • the output matching circuit provided by the present invention further includes a subdivided frequency band selection component 5, which serves as an output path.
  • a subdivided frequency band selection component 5 which serves as an output path.
  • the subdivided frequency band selection component 5 can adopt any existing circuit structure, where at least two independent switching elements are used, such as 2, 4, 5, 6, 8, or other numbers of independent switches.
  • Switch element composition; each switch element constitutes an output, as shown in Figure 1, is composed of 5 independent controllable switches S3 ⁇ S7, each controllable switch constitutes an output, which can control one or one according to the load connection relationship The above controllable switch is closed to realize output path selection.
  • the impedance conversion component 1 described in the present invention can use any existing transformer capable of impedance conversion to connect the front and rear two-stage circuits.
  • a balun is used.
  • the controllable switch in the output matching circuit provided by the present invention is a radio frequency switch, which is controlled by an external signal to turn on and off, so as to realize the matching circuit (first matching circuit, second matching circuit, and third matching circuit) in the output matching circuit. Reconstruction to form different impedances to achieve switching of the output operating frequency band.
  • the output matching circuit provided by the present invention can be used in any circuit. Here, it is applied to a power amplifier as a specific application example.
  • FIG. 14 illustrates a power amplifier composed of the output matching circuit provided by the present invention, which includes the input A circuit and an output matching circuit.
  • the output matching circuit is any output matching circuit provided by the present invention.
  • the impedance conversion component 1 in the output matching circuit uses any existing transformer as the output transformer T2.
  • the input circuit includes at least two preamplifier circuits 6, a matching circuit 7 that matches the output signal of each preamplifier circuit, an input transformer T1 that includes at least two output taps, and an output tap equal to the number of input transformer T1.
  • each output stage amplifying circuit 8 is connected to an input tap of the output transformer T2;
  • the matching circuit 7 is connected between the output terminal of the previous stage amplifying circuit 6 and the ground, and performs processing on the signal output by the previous stage amplifying circuit 6 Power matching;
  • the circuit power supply VCC1 is respectively loaded on the input terminal of the input transformer T1 through the switch S1 and the switch S2;
  • the working frequency of each matching circuit 7 is different, according to the different frequency of the signal received by the pre-amplifier circuit 6
  • a stage amplifying circuit and an output stage amplifying circuit are controlled by an external control signal to turn on the switch S1 or the switch S2.
  • the described pre-amplifier circuit 6 can use any existing circuit or component that can amplify signals, and it is composed of a triode.
  • two pre-amplifier circuits are set as an example for description. It is composed of a power amplifier tube Q1 and a power amplifier tube Q2 respectively.
  • the corresponding input transformer T1 includes two output taps, and each tap is connected with an output stage amplifying circuit 8.
  • the described output stage amplifying circuit 8 can use any of the existing circuits or components that can amplify the signal. Here, it is composed of a transistor and a capacitor.
  • One output stage amplifying circuit includes a capacitor C3 and a power amplifier Q3. , The first plate of the capacitor C3 is connected to an output tap of the input transformer T1, the second plate is connected to the control end of the power amplifier tube Q3, and the positive power end of the power amplifier tube Q3 is connected as the output end to one of the output transformer T2 Input the tap, and the negative power terminal is grounded.
  • the other output stage amplifier circuit includes a capacitor C4 and a power amplifier tube Q4.
  • the first plate of the capacitor C4 is connected to the other output tap of the input transformer T1, and the second plate is connected to the control end of the power amplifier tube Q4.
  • the power amplifier tube The positive power terminal of Q4 is connected to the other input tap of the output transformer T2 as the output terminal, and the negative power terminal is grounded.
  • the power amplifier tube Q1, the power amplifier tube Q2, the power amplifier tube Q3, and the power amplifier tube Q4 described in the present invention may be field effect tubes or transistors.
  • the turn-on and cut-off of the power amplifier tube Q1, power amplifier tube Q2, power amplifier tube Q3, and power amplifier tube Q4 are controlled by a control signal, which can be generated by any circuit.
  • a bias circuit is used to control the power amplifier tube Q1.
  • the power amplifier tube Q2, the power amplifier tube Q3 and the power amplifier tube Q4 are turned on and off; the bias circuit can use any existing bias circuit.
  • the circuit principle of the bias circuit 9 used here is shown in Figure 18.
  • each bias branch includes an output end, and the output control signal is loaded on the control ends of the power amplifier tubes Q1 to Q4.
  • Each bias branch includes a switch tube T, a resistor R1, a resistor R2, a resistor R3, a capacitor C43, a diode D1 and a diode D2.
  • the power terminal of the switch tube T is connected to an external control signal (such as a power supply) via a resistor R1, and a resistor R2 Connected to the output terminal of the switch tube T; the control terminal of the switch tube T is grounded through the capacitor C43, the control terminal of the switch tube T is also connected to the anode of the diode D1, the cathode of the diode D1 is connected to the anode of the diode D2, and the cathode of the diode D2 is grounded ;
  • the control end of the switch tube T is also connected to an external control signal via a resistor R3.
  • the switch tube T can be a transistor or a field effect tube.
  • the output stage amplifying circuit described in the present invention is all on in different modes, and only one front stage amplifying circuit is selected to be turned on according to the signal frequency received by the front stage amplifying circuit, and then switch S1 or switch S2 is turned on to achieve The maximum output of the operating frequency.
  • the two sets of pre-amplifiers are used to amplify signals of different frequency bands. When the power amplifier tube Q1 is working, the switch S1 is turned off and the switch S2 is turned on; when the power amplifier tube Q2 is working, the switch S2 is turned off and the switch S1 is turned on.
  • the power amplifier further includes an input matching circuit 10 for filtering the signal to be amplified, and the input matching circuit 10 is connected to the input terminal of the pre-amplifier circuit 6.
  • Any one of the existing capacitor filter circuit, inductance filter circuit, RC filter circuit and LC filter circuit can be used.
  • an input matching circuit 10 composed of a capacitor C44, a capacitor C45, and an inductance L6 connected to the input of a pre-amplifier circuit composed of a power amplifier tube Q1 and an input matching circuit 10 composed of a capacitor C46, a capacitor C47 and an inductance L7 are used.
  • the input matching circuit 10 connected to the input of the pre-amplifier circuit formed by Q4 is shown in FIGS. 19 and 20, respectively.
  • the first plate of the capacitor C44 and the first plate of the capacitor C46 are used as input terminals for loading signals.
  • the second plate of the capacitor C44 and the second plate of the capacitor C46 are respectively connected to the capacitor C45 and the capacitor C47.
  • the control end of the power amplifier tube Q1 and the control end of the power amplifier tube Q2, the second plate of the capacitor C44 are also grounded through the inductor L6, and the second plate of the capacitor C46 is also grounded through the inductor L7.
  • the matching circuit 7 described in the present invention may be composed of a capacitive element, or a capacitive element and an inductive element, and any one of the following circuits is used here:
  • capacitor C49 and the inductor L8 are included.
  • the capacitor C49 and the inductor L8 are connected in series between the output terminal of the preamplifier circuit 6 and the ground.
  • FIG. 17 As shown in Figure 17, it includes a capacitor C50, a capacitor C51 and an inductor L9.
  • the capacitor C51 is connected between the output terminal of the preamplifier circuit 8 and the ground, and the capacitor C50 and the inductor L9 are connected in series between the output terminal of the preamplifier circuit and the ground. between.
  • one end of the switch S1 and/or switch S2 connected to the circuit power supply VCC1 is also grounded through the capacitor C1/capacitor C2, and the capacitor C1 and the capacitor C2 are set on the circuit power supply VCC1 Therefore, its function is decoupling, which is called decoupling capacitor, which can not only provide a stable power supply, but also reduce the noise of the components coupled to the input terminal of the input transformer T1, and reduce the influence of other components on the input transformer’s noise.
  • decoupling capacitor which can not only provide a stable power supply, but also reduce the noise of the components coupled to the input terminal of the input transformer T1, and reduce the influence of other components on the input transformer’s noise.
  • the distribution mode of the output stage amplifying circuit 8, the switch S1, the switch S2, the input matching circuit 10, and the bias circuit 9 can be one of the following ways or other ways:
  • Pre-amplification circuit 6, matching circuit 7, input transformer T1, output stage amplifying circuit 8, input matching circuit 10 and bias circuit 9 can be integrated into one chip through HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe and other processes
  • the power amplifier chip is formed;
  • the first matching component 2, the second matching component 3, the third matching component 4 and the frequency band selection component 5 are integrated on one chip through HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe processes to form Separate switch chip A;
  • switch S1 and switch S2 are integrated on one chip through HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe and other processes to form a separate switch chip B;
  • impedance conversion component 1 has an independent layout and can be made independent by IPD technology Chips, or integrated on the substrate; the chips are connected by wires.
  • the first matching component 2, the second matching component 3, the preamplifier circuit 6, the matching circuit 7, the input transformer T1, the output stage amplifier circuit 8, the input matching circuit 10, the bias circuit 9, the switch S1 and the switch S2 can be Integrate on a chip through HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe and other processes to form a power amplifier chip; third matching component 4 and frequency band selection component 5 are integrated through HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe and other processes A separate switch chip is formed on one chip; the impedance conversion component 1 is laid out independently, and can be made into an independent chip by using the IPD process or integrated on a substrate; each chip is connected by wires.
  • the first matching component 2, the second matching component 3, the third matching component 4, and the input matching circuit 10 in the above distribution mode 1 and distribution mode 2 can be used as independent components and are not integrated in the chip.
  • the input transformer T1 and the output transformer T2 described in the present invention can adopt any existing transformers, and here is a balun.
  • a balanced-unbalanced converter (Balun) is used and connected according to the connection mode described in the present invention to form a push-pull power amplifier.
  • the controllable switch in the power amplifier provided by the present invention is a radio frequency switch, which is controlled by an external signal to be turned on and off, thereby realizing the reconstruction of each matching network in the input circuit and the output matching circuit, thereby realizing the switching of operating frequencies in the same amplifier , Supports signal amplification of a wider frequency band, and solves the problems of large number of components, difficulty in integration, and difficulty in design due to the need for power amplification in different frequency bands and multiple sets of power amplifiers in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

一种输出匹配电路和由其构成的功率放大器,该输出匹配电路包括阻抗转换部件(1)和被接入所述阻抗转换部件(1)的输入端建立匹配的第一匹配部件(2),该第一匹配部件(2)包括阻抗性元件和受外部控制信号控制导通/截止的可控开关元件,形成不同阻抗。所述输出匹配电路实现了输出级匹配电路的重构,实现了输出工作频段的切换,可用于高频/中频/低频,降低了成本,元件数量少,易于集成且降低了设计难度;所述输出匹配电路可用于多频段复用的功率放大器,实现宽频带放大器,缩减元件数量和物料成本,增加功率放大器系统集成度。

Description

一种输出匹配电路和由其构成的功率放大器 技术领域
本发明涉及一种输出匹配电路和由其构成的功率放大器。
背景技术
对于由无线电通信提供的多样化的业务,无线电设备被要求工作在多个频带。例如,以手机蜂窝数据射频前端为例,其功率放大器系统目前需要支持高频段,中频段,低频段,随着技术演进还需要支持更多频段。目前的解决方案是高频/中频/低频分别对应一组功率放大器及其输出匹配电路,导致成本高,元件数量多,集成困难,设计难度大。尤其,为了保证传输到天线50ohm端的信号功率和带宽,输出匹配电路的宽频带特性变得非常重要。
发明内容
本发明在此的目的在于提供一种能够切换工作频段的宽频带可重构输出级匹配电路。
为实现本发明的目的,在此所提供的输出匹配电路包括:
阻抗转换部件;用于阻抗转换;
第一匹配部件,被接入所述阻抗转换部件的输入端建立匹配,包括阻抗性元件和受外部控制信号控制导通/截止的可控开关元件,形成不同阻抗。
进一步的,本发明所提供的输出匹配电路还包括被接入所述阻抗转换部件的电源输入端建立匹配的第二匹配电路,形成不同阻抗。
进一步的,本发明所提供的输出匹配电路还包括被接入所述阻抗转换部件的输出端建立匹配的第三匹配电路,形成不同阻抗。
进一步的,本发明所提供的输出匹配电路还包括被接入所述阻抗转换部件输出端的细分频段选择部件,所述细分频段选择部件包括至少两个独立的受外部信号控制导通/截止的可控开关元件,每个可控开关元件构成一路输出。
进一步的,本发明所提供的输出匹配电路还包括被接入所述第三匹配部件输出端的细分频段选择部件,所述细分频段选择部件包括至少两个独立的受外部信号控制导通/截止的可控开关元件,每个可控开关元件构成一路输出。
本发明在此的另一个目的在于提供一种可实现工作频率切换,支持更宽频段的信号放大,能够解决现有技术中因需要对不同频段进行功率放大而设置多组功率放大器而导 致元件数量多,集成困难及设计难度大的问题的功率放大器,该功率放大器包括输入电路和输出匹配电路,所述输出匹配电路为本发明所提供的输出匹配电路。
进一步的,所述输入电路包括至少两路前级放大电路、对每路前级放大电路输出信号进行匹配的匹配电路、至少包括两个输出抽头的输入变压器T1、与所述输入变压器T1输出抽头数量相等的输出级放大电路、开关S1和开关S2,电路电源VCC1分别经所述开关S1和所述开关S2分别加载于所述输入变压器T1的输入端;所述匹配电路的工作频率不同。
进一步的,所述匹配电路由电容性元件构成,或由电容性元件和电感性元件构成。
进一步的,所述输入电路还包括对加载于每路前级放大电路输入端的信号进行输入匹配的输入匹配电路。
进一步的,所述输入电路、以及所述输出匹配电路中各功能部件中的一个或多个集成在一个芯片上,剩余功能部件集成于另一个芯片上或独立分布排列。
本发明的有益效果包括:
1.本发明提供的输出匹配电路通过控制信号控制第一匹配电路、第二匹配电路和第三匹配电路中可控开关元件的导通/截止,实现了输出级匹配电路的重构,实现了输出工作频段的切换;该输出匹配电路可用于高频/中频/低频,降低了成本,元件数量少,易于集成且降低了设计难度;该输出匹配电路,可用于多频段复用的功率放大器,实现宽频带放大器,缩减元件数量和物料成本,增加功率放大器系统集成度。
2.本发明提供的输出匹配电路配合细分频段选择部件,实现了一路或多路输出,更进一步地提高了本发明所提供的输出匹配电路的输出可控性。
3.本发明提供的功率放大器利用本发明所提供的输出匹配电路构成,实现了可重构的输出级匹配电路,从而在同一放大器中实现了工作频率切换,支持更宽频段的信号放大,解决了现有技术中因需要对不同频段进行功率放大而设置多组功率放大器而导致元件数量多,集成困难及设计难度大的问题。
4.将输入电路、以及输出匹配电路各功能部件中的一个或多个集成在一个芯片上,剩余功能部件集成于另一个芯片上或独立分布排列,易于实现。
附图说明
图1为本发明所提供的输出匹配电路的结构图;
图2为本发明所记载的第一匹配部件的一个示例;
图3为本发明所记载的第一匹配部件的第二个示例;
图4为本发明所记载的第一匹配部件的第三个示例;
图5为本发明所记载的第一匹配部件的第四个示例;
图6为本发明所记载的第一匹配部件的第五个示例;
图7为本发明所记载的第二匹配部件的一个示例;
图8为本发明所记载的第二匹配部件的第二个示例;
图9为本发明所记载的第二匹配部件的第三个示例;
图10为本发明所记载的第三匹配部件的一个示例;
图11为本发明所记载的第三匹配部件的第二个示例;
图12为本发明所记载的第三匹配部件的第三个示例;
图13为本发明所记载的第三匹配部件的第四个示例;
图14为本发明所记载的功率放大器的结构示意图;
图15为本发明所记载的匹配电路的一个示例;
图16为本发明所记载的匹配电路的第二个示例;
图17为本发明所记载的匹配电路的第三个示例;
图18为本发明所记载的偏置电路的一个示例;
图19为本发明所记载的输入匹配电路的电路原理图之一;
图20为本发明所记载的输入匹配电路的电路原理图之二;
图中:1-阻抗转换部件,2-第一匹配部件,3-第二匹配部件,4-第三匹配部件,5-细分频段选择部件,6-前级放大电路,7-匹配电路,8-输出级放大电路,9-偏置电路,10-输入匹配电路。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例和附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
图1图解了本发明的输出匹配电路,包括了:
阻抗转换部件1;用于阻抗转换;
第一匹配部件2,被接入阻抗转换部件的输入端建立匹配,形成不同阻抗,以便低频/中频/高频通过。
其中,第一匹配部件2可以采用现有的任何一种匹配电路,在此包括阻抗性元件和受外部控制信号控制导通/截止的可控开关元件,具体结构可以采用以下中的一种:
1、如图2所示,该第一匹配部件2包括了电容C5、电容C6,以及可控开关S8,电容C5和可控开关S8串联于阻抗转换部件的两路信号输入端之间,电容C6并联于串联的电容C5、可控开关S8两端。
2、如图3所示,该第一匹配部件2包括了电容C7、电容C8、电容C9、电容C10,以及可控开关S9、S10;电容C8和可控开关S9串联于阻抗转换部件1的一路信号输入端和地之间,此路信号输入端还经电容C7接地;电容C10和可控开关S10串联于阻抗转换部件1的另一路信号输入端和地之间,此路信号输入端还经电容C9接地。
3、如图4所示,该第一匹配部件2包括了电容C11、电容C12、电容C13,以及可控开关S11,电容C11和可控开关S11串联于阻抗转换部件1的两路信号输入端之间,电容C12串联于阻抗转换部件1的一路信号输入端和地之间,电容C13串联于阻抗转换部件1的另一路信号输入端和地之间。
4、如图5所示,该第一匹配部件2包括了电容C14、电容C15、电容C16、电容C17、电容C18、电容C19,以及可控开关S12、可控开关S13和可控开关S14,电容C14和可控开关S12串联于阻抗转换部件1的两路信号输入端之间,电容C15并联于串联的电容C14、可控开关S12两端;电容C16和可控开关S13串联于阻抗转换部件1的一路信号输入端与地之间,此路信号输入端还经电容C17接地;电容C18和可控开关S14串联于阻抗转换部件1的另一路信号输入端与地之间,此路信号输入端还经电容C19接地。
5、如图6所示,该第一匹配部件2包括电容性元件电容C20、电容C21、电容C22、电容C23,以及开关性元件可控开关S15,电容C20和可控开关S15串联于阻抗转换电路1的两路信号输入端之间,电容C21并联于串联的电容C20、可控开关S15两端;电容C22连接于阻抗转换部件1的一路信号输入端与地之间,电容C23连接于阻抗转换部件1的另一路信号输入端与地之间。
在一些实施方式中,本发明所提供的输出匹配电路还包括被接入阻抗转换部件1的电源输入端建立匹配的第二匹配电路3,该第二匹配部件3由阻抗性元件,或者阻抗性元件和受外部控制信号控制导通/截止的可控开关元件构成,具体结构可以采用以下中的一种:
1、如图7所示,该第二匹配部件3包括电容C24,电容C24连接于阻抗转换部件1的电源输入端和地之间。
2、如图8所示,该第二匹配部件3包括电容C25、电容C26,以及可控开关S16,电容C25和可控开关S16串联于阻抗转换部件1的电源输入端和地之间,电容C26独立 连接于阻抗转换部件1的电源输入端和地之间。
3、如图9所示,该第二匹配部件3包括电容C27、电容C28、电容C29,以及可控开关S17、可控开关S18,电容C27和可控开关S17、以及电容C28和可控开关S18分别串联于阻抗转换部件1的电源输入端和地之间,电容C29连接于阻抗转换部件1的电源输入端和地之间;采用此种结构时,需在电容C27和可控开关S17串联的支路上串联电感性元件L1。
在一些实施方式中,本发明所提供的输出匹配电路还包括被接入阻抗转换部件1的输出端建立匹配的第三匹配电路4,该第三匹配部件可以采用现有的任何一种由阻抗性元件,或者阻抗性元件和受外部控制信号控制导通/截止的可控开关元件构成的匹配电路,可以采用以下结构中的一种:
1、如图10所示,该第三匹配部件4包括了电容C30、电容C31,电容C30连接于阻抗转换部件1的信号输出端中,电容C31连接于阻抗转换部件1的信号输出端和地之间。
2、如图11所示,该第三匹配部件4包括了电容C32、电容C33、电容C34,以及可控开关S19,电容C32连接于阻抗转换部件1的信号输出端中,电容C33和可控开关S19串联并并联于电容C32两端;电容C34连接于阻抗转换部件1的信号输出端和地之间。
3、如图12所示,该第三匹配部件4包括了电容C35、电容C36、电容C37,以及可控开关S20、可控开关S21,电容C35连接于阻抗转换部件1的信号输出端,电容C36和可控开关S20,以及电容C37和可控开关S21分别串联于阻抗转换部件1的信号输出端和地之间;采用此种结构时,需在电容C36和可控开关S20串联的支路上,以及电容C37和可控开关S21串联的支路上分别串联电感性元件L2和L3。
4、如图13所示,该第三匹配部件4包括了电容C38、电容C39、电容C40、电容C41、电容C42,以及可控开关S22、可控开关S23、可控开关S24,电容C38连接于阻抗转换部件1的信号输出端,电容C39和可控开关S22串联并并联于电容C38两端,电容C40连接于阻抗转换部件1的信号输出端和地之间;电容C41和可控开关S23,以及电容C42和可控开关S24分别串联于阻抗转换部件1的信号输出端和地之间;采用此种结构时,需在电容C41和可控开关S23串联的支路上,以及电容C24和可控开关S24串联的支路上分别串联电感性元件L4和L5。
在此,本发明所记载的第一匹配部件2、第二匹配电路3和第三匹配电路4的电路结构中,以电容作为阻抗性元件为例进行说明,在实际使用过程中,也可用电感、电阻等 阻抗元件替代电容构成匹配电路。
在一些实施例中,本发明所提供的输出匹配电路还包括细分频段选择部件5,该细分频段选择部件5作为输出路径,当本发明提供的输出匹配电路不包括第三匹配电路4时,被接入阻抗转换部件1的输出端;当本发明提供的输出匹配电路包括第三匹配电路4时,被接入第三匹配电路4的输出端。
该细分频段选择部件5可以采用现有的任何一种电路结构,在此采用至少两个独立的开关元件构成,如2个、4个、5个、6个、8个或其它数量的独立开关元件构成;每个开关元件构成一路输出,如图1中所示,由5个独立的可控开关S3~S7构成,每个可控开关构成一路输出,可根据负载连接关系控制一个或一个以上可控开关闭合实现输出路径选择。
本发明所记载的阻抗转换部件1可以采用现有的任何一种能够实现阻抗转换的变压器,用于连接前后两级电路,在此采用平衡-不平衡变换器(Balun)。
本发明提供的输出匹配电路中的可控开关为射频开关,受外部信号控制通、断,从而实现输出匹配电路中各匹配电路(第一匹配电路、第二匹配电路、第三匹配电路)的重构,形成不同阻抗,以实现输出工作频段的切换。
本发明所提供的输出匹配电路可以用于任何电路,在此以应用于功率放大器中作为一具体应用示例,图14图解了利用本发明所提供的输出匹配电路构成的功率放大器,其包括了输入电路和输出匹配电路,该输出匹配电路即为本发明所提供的任何一种输出匹配电路,该输出匹配电路中阻抗转换部件1采用现有的任何一种变压器作为输出变压器T2。
其中,输入电路包括至少两路前级放大电路6、对每路前级放大电路输出信号进行匹配的匹配电路7、至少包括两个输出抽头的输入变压器T1、与输入变压器T1输出抽头数量相等的输出级放大电路8、开关S1和开关S2。
其中,每路输出级放大电路8的输出端连接至输出变压器T2的一个输入抽头;匹配电路7连接于前级放大电路6的输出端和地之间,对前级放大电路6输出的信号进行功率匹配;电路电源VCC1分别经开关S1和开关S2分别加载于输入变压器T1的输入端;每个匹配电路7的工作频率不同,根据前级放大电路6接收到的信号频率不同选择导通一路前级放大电路和一路输出级放大电路,并由外部控制信号控制开关S1或开关S2导通。
所记载的前级放大电路6可以采用现有的任何一种能够对信号进行放大的电路或元器件,在此采用的由三极管构成,在此以设置两路前级放大电路为例进行说明,则分别 由功率放大管Q1和功率放大管Q2构成。与此对应的输入变压器T1包括两个输出抽头,每个抽头连接有输出级放大电路8。
所记载的输出级放大电路8可以采用现有的任何一种能够对信号进行放大的电路或元器件,在此采用的由三极管和电容构成,一路输出级放大电路包括电容C3和功率放大管Q3,电容C3的第一极板与输入变压器T1的一个输出抽头连接,第二极板与功率放大管Q3的控制端连接,功率放大管Q3的正电源端作为输出端连接至输出变压器T2的一个输入抽头,负电源端接地。另一路输出级放大电路包括电容C4和功率放大管Q4,电容C4的第一极板与输入变压器T1的另一个输出抽头连接,第二极板与功率放大管Q4的控制端连接,功率放大管Q4的正电源端作为输出端连接至输出变压器T2的另一个输入抽头,负电源端接地。
本发明所记载的功率放大管Q1、功率放大管Q2、功率放大管Q3和功率放大管Q4可以是场效应管,或者晶体三极管。功率放大管Q1、功率放大管Q2、功率放大管Q3和功率放大管Q4的导通、截止由控制信号控制,该控制信号可以由任何电路产生,在此采用偏置电路控制功率放大管Q1、功率放大管Q2、功率放大管Q3和功率放大管Q4的导通、截止;该偏置电路可以采用现有的任何一种偏置电路,在此采用的偏置电路9电路原理如图18所示,包括了与功率放大管数量相等的偏置支路,每路偏置支路包括一个输出端,输出的控制信号加载于功率放大管Q1~Q4的控制端上。每路偏置支路均包括开关管T、电阻R1、电阻R2、电阻R3、电容C43、二极管D1和二极管D2,开关管T的电源端经电阻R1接外部控制信号(如电源),电阻R2接在开关管T的输出端;开关管T的控制端经电容C43接地,开关管T的控制端还连接至二极管D1的阳极,二极管D1的阴极接二极管D2的阳极连接,二极管D2的阴极接地;开关管T的控制端还经电阻R3接外部控制信号。其中,开关管T可以采用晶体三极管或场效应管。
本发明中所记载的输出级放大电路在不同模式下均为导通,仅根据前级放大电路接收到的信号频率不同选择一路前级放大电路导通,再导通开关S1或开关S2,实现了工作频率的最大输出。两组前级放大器分别用来放大不同频段的信号,功率放大管Q1工作时,开关S1关断,开关S2导通;功率放大管Q2工作时,开关S2关断,开关S1导通。
为了保证加载于前级放大电路1信号稳定性,该功率放大器还包括对待放大信号进行滤波的输入匹配电路10,该输入匹配电路10与前级放大电路6的输入端连接。可以采用现有的电容滤波电路,电感滤波电路,RC滤波电路和LC滤波电路中的任何一种。在此采用由电容C44、电容C45和电感L6构成的与由功率放大管Q1构成的前级放大电 路输入连接的输入匹配电路10和由电容C46、电容C47和电感L7构成的与由功率放大管Q4构成的前级放大电路输入连接的输入匹配电路10,分别如图19和图20所示。其中,电容C44的第一极板和电容C46的第一极板作为输入端,用于加载信号,电容C44的第二极板和电容C46的第二极板分别经电容C45、电容C47连接至功率放大管Q1的控制端、功率放大管Q2的控制端,电容C44的第二极板还通过电感L6接地,电容C46的第二极板还通过电感L7接地。
本发明所记载的匹配电路7可以由电容性元件构成,或由电容性元件和电感性元件构成,在此采用以下电路中任何一种:
1)如图15所示,由独立的一个电容C48构成,该电容C48连接于前级放大电路6输出端与地之间。
2)如图16所示,包括电容C49和电感L8,电容C49和电感L8串联于前级放大电路6输出端与地之间。
3)如图17所示,包括电容C50、电容C51和电感L9,电容C51连接于前级放大电路8输出端与地之间,电容C50和电感L9串联于前级放大电路输出端与地之间。
为了使电路电源VCC1能够稳定的加载于输入变压器T1的输入端上,开关S1和/或开关S2接电路电源VCC1的一端还经电容C1/电容C2接地,电容C1和电容C2设置于电路电源VCC1旁,故其作用为去耦,称为去耦电容,既可以提供稳定的电源,又可以降低元件耦合到输入变压器T1输入端上的噪声,减少了其它元件受输入变压器的噪声影响,保证了电路的稳定性。
本申请提供的功率放大器中的阻抗转换部件1、第一匹配部件2、第二匹配部件3、第三匹配部件4、频段选择部件5、前级放大电路6、匹配电路7、输入变压器T1、输出级放大电路8、开关S1、开关S2、输入匹配电路10和偏置电路9的分布方式可以为以下几种方式中的一种或其它方式:
1、前级放大电路6、匹配电路7、输入变压器T1、输出级放大电路8、输入匹配电路10和偏置电路9可以通过HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe等工艺集成于一个芯片上,形成功率放大器芯片;第一匹配部件2、第二匹配部件3、第三匹配部件4和频段选择部件5通过HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe等工艺集成于一个芯片上,形成单独开关芯片A;开关S1和开关S2通过HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe等工艺集成于一个芯片上,形成单独开关芯片B;阻抗转换部件1独立布局,可以采用IPD工艺做成独立芯片,或集成在基板上;各芯片之间通过导线连通。
2、第一匹配部件2、第二匹配部件3、前级放大电路6、匹配电路7、输入变压器T1、输出级放大电路8、输入匹配电路10、偏置电路9、开关S1和开关S2可以通过HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe等工艺集成于一个芯片上,形成功率放大器芯片;第三匹配部件4和频段选择部件5通过HBT/SOI/CMOS/PHEMT/BIHEMT/SiGe等工艺集成于一个芯片上,形成单独开关芯片;阻抗转换部件1独立布局,可以采用IPD工艺做成独立芯片,或集成在基板上;各芯片之间通过导线连通。
以上分布方式1和分布方式2中的第一匹配部件2、第二匹配部件3、第三匹配部件4、输入匹配电路10可以作为独立元件,不集成在芯片内。
本发明所记载的输入变压器T1、输出变压器T2可以采用现有的任何一种变压器,在此采用的是平衡-不平衡变换器(Balun)。采用平衡-不平衡变换器(Balun)并按照本发明所记载的连接方式进行连接,构成了推挽功率放大器。
本发明所提供的功率放大器中的可控开关为射频开关,受外部信号控制通、断,从而实现输入电路、输出匹配电路中各匹配网络的重构,从而在同一放大器中实现了工作频率切换,支持更宽频段的信号放大,解决了现有技术中因需要对不同频段进行功率放大而设置多组功率放大器而导致元件数量多,集成困难及设计难度大的问题。
以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的修改或等同替换,只要不脱离本发明的技术方案的精神和范围,均涵盖在本发明的权利要求范围内。

Claims (12)

  1. 一种输出匹配电路,其特征在于,包括:
    阻抗转换部件;用于阻抗转换;
    第一匹配部件,被接入所述阻抗转换部件的输入端建立匹配,包括阻抗性元件和受外部控制信号控制导通/截止的可控开关元件,形成不同阻抗。
  2. 根据权利要求1所述的输出匹配电路,其特征在于:还包括被接入所述阻抗转换部件的电源输入端建立匹配的第二匹配电路,形成不同阻抗。
  3. 根据权利要求2所述的输出匹配电路,其特征在于:所述第二匹配部件由阻抗性元件,或者阻抗性元件和受外部控制信号控制导通/截止的可控开关元件构成。
  4. 根据权利要求1或2或3所述的输出匹配电路,其特征在于:还包括被接入所述阻抗转换部件的输出端建立匹配的第三匹配电路,形成不同阻抗。
  5. 根据权利要求4所述的输出匹配电路,其特征在于:所述第三匹配部件由阻抗性元件,或者阻抗性元件和受外部控制信号控制导通/截止的可控开关元件构成。
  6. 根据权利要求1或2或3所述的输出匹配电路,其特征在于:还包括被接入所述阻抗转换部件输出端的细分频段选择部件,所述细分频段选择部件包括至少两个独立的受外部信号控制导通/截止的可控开关元件,每个可控开关元件构成一路输出。
  7. 根据权利要求4或5所述的输出匹配电路,其特征在于:还包括被接入所述第三匹配部件输出端的细分频段选择部件,所述细分频段选择部件包括至少两个独立的受外部信号控制导通/截止的可控开关元件,每个可控开关元件构成一路输出。
  8. 一种功率放大器,其特征在于:包括输入电路和输出匹配电路,所述输出匹配电路为权利要求1-7任意一项所述的输出匹配电路。
  9. 根据权利要求8所述的功率放大器,其特征在于:所述输入电路包括至少两路前级放大电路、对每路前级放大电路输出信号进行匹配的匹配电路、至少包括两个输出抽头的输入变压器T1、与所述输入变压器T1输出抽头数量相等的输出级放大电路、开关S1和开关S2,电路电源VCC1分别经所述开关S1和所述开关S2分别加载于所述输入变压器T1的输入端;所述匹配电路的工作频率不同。
  10. 根据权利要求9所述的功率放大器,其特征在于:所述匹配电路由电容性元件构成,或由电容性元件和电感性元件构成。
  11. 根据权利要求8或9或10所述的功率放大器,其特征在于:所述输入电路还包括对 加载于每路前级放大电路输入端的信号进行输入匹配的输入匹配电路。
  12. 根据权利要求8或9或10或11所述的功率放大器,其特征在于:所述输入电路、以及所述输出匹配电路中各功能部件中的一个或多个集成在一个芯片上,剩余功能部件集成于另一个芯片上或独立分布排列。
PCT/CN2019/080126 2019-01-23 2019-03-28 一种输出匹配电路和由其构成的功率放大器 WO2020151082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/425,319 US12074574B2 (en) 2019-01-23 2019-03-28 Output matching circuit and power amplifier comprised thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910060857.5A CN109787570B (zh) 2019-01-23 2019-01-23 一种输出匹配电路和由其构成的功率放大器
CN201910060857.5 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020151082A1 true WO2020151082A1 (zh) 2020-07-30

Family

ID=66501974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080126 WO2020151082A1 (zh) 2019-01-23 2019-03-28 一种输出匹配电路和由其构成的功率放大器

Country Status (3)

Country Link
US (1) US12074574B2 (zh)
CN (1) CN109787570B (zh)
WO (1) WO2020151082A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165349B (zh) * 2019-05-30 2021-03-12 成都中亚通茂科技股份有限公司 一种低频段高性能阻抗变换器
CN111371416B (zh) * 2020-03-18 2024-04-30 锐石创芯(深圳)科技股份有限公司 一种可切换输出阻抗的偏置网络、控制方法及功率放大器系统
CN112787605A (zh) * 2020-12-31 2021-05-11 四川天巡半导体科技有限责任公司 一种基于一体化内匹配电路的功率器件及其加工方法
CN113271070A (zh) * 2021-05-10 2021-08-17 杭州电子科技大学富阳电子信息研究院有限公司 一种基于pin开关的可重构功率放大器及其设计方法
US11705633B1 (en) * 2021-12-15 2023-07-18 Qorvo Us, Inc. Reactance cancelling radio frequency circuit array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882479A (zh) * 2012-10-16 2013-01-16 清华大学 功率合成型功率放大器及其应用
CN105978515A (zh) * 2016-05-03 2016-09-28 华南理工大学 宽调整范围高集成度变压器耦合射频功率放大器
US20170279419A1 (en) * 2016-03-23 2017-09-28 Infineon Technologies Ag LC Network for a Power Amplifier with Selectable Impedance
CN107453719A (zh) * 2017-09-08 2017-12-08 广州慧智微电子有限公司 一种输出匹配网络可切换的功率放大器
CN109150119A (zh) * 2018-10-15 2019-01-04 深圳飞骧科技有限公司 阻抗可调节功率分配器及射频功率放大器
CN109787571A (zh) * 2019-01-23 2019-05-21 曹秀妹 一种可切换工作频率的双模式功率放大器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2514548Y (zh) * 2001-12-14 2002-10-02 深圳市中兴通讯股份有限公司上海第二研究所 一种宽带大功率线性功率放大装置
US7733187B2 (en) * 2006-10-13 2010-06-08 Panasonic Corporation High frequency power amplifier
CN102570885A (zh) * 2006-12-20 2012-07-11 普利莫宗产品公司 操作臭氧产生设备的方法
US8344801B2 (en) * 2010-04-02 2013-01-01 Mks Instruments, Inc. Variable class characteristic amplifier
JP5719259B2 (ja) * 2011-09-06 2015-05-13 ルネサスエレクトロニクス株式会社 高周波電力増幅装置
US8653889B1 (en) * 2012-09-06 2014-02-18 Alcatel Lucent Doherty amplifier having compact output matching and combining networks
US9240811B2 (en) * 2012-10-23 2016-01-19 Intel Deutschland Gmbh Switched duplexer front end
CN103986428A (zh) * 2014-05-30 2014-08-13 无锡中普微电子有限公司 超频宽放大器及其设计方法
US20160308495A1 (en) * 2015-04-17 2016-10-20 Infineon Technologies Ag Wideband doherty amplifier circuit with integrated transformer line balun
CN106803747B (zh) * 2015-12-01 2020-03-03 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器模组、芯片及通信终端
CN106656069B (zh) * 2016-09-13 2022-07-08 锐迪科微电子(上海)有限公司 一种应用于gsm射频功率放大器的多频输出匹配网络
CN107769739A (zh) * 2017-10-16 2018-03-06 广州慧智微电子有限公司 射频功率放大电路
CN108268695B (zh) * 2017-12-13 2021-06-29 杨娇丽 一种放大电路的设计方法及放大电路
CN108336976B (zh) * 2018-02-07 2023-08-01 广州慧智微电子股份有限公司 一种多频段低噪声放大器及放大方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882479A (zh) * 2012-10-16 2013-01-16 清华大学 功率合成型功率放大器及其应用
US20170279419A1 (en) * 2016-03-23 2017-09-28 Infineon Technologies Ag LC Network for a Power Amplifier with Selectable Impedance
CN105978515A (zh) * 2016-05-03 2016-09-28 华南理工大学 宽调整范围高集成度变压器耦合射频功率放大器
CN107453719A (zh) * 2017-09-08 2017-12-08 广州慧智微电子有限公司 一种输出匹配网络可切换的功率放大器
CN109150119A (zh) * 2018-10-15 2019-01-04 深圳飞骧科技有限公司 阻抗可调节功率分配器及射频功率放大器
CN109787571A (zh) * 2019-01-23 2019-05-21 曹秀妹 一种可切换工作频率的双模式功率放大器

Also Published As

Publication number Publication date
CN109787570B (zh) 2020-10-13
US20220085776A1 (en) 2022-03-17
CN109787570A (zh) 2019-05-21
US12074574B2 (en) 2024-08-27

Similar Documents

Publication Publication Date Title
WO2020151082A1 (zh) 一种输出匹配电路和由其构成的功率放大器
CN101282110B (zh) 一种低功耗单端输入差分输出低噪声放大器
CN110311630A (zh) 用于旁路低噪声放大器的系统和方法
CN111510089B (zh) 一种带旁路功能的低噪声放大模块及控制方法
CN101895265A (zh) 一种全差分cmos多模低噪声放大器
CN107248850B (zh) 一种无电感低功耗高增益高线性度宽带低噪声放大器
CN107592081A (zh) 一种超宽带单片微波集成低噪声放大器
WO2023045542A1 (zh) 应用于5g通信系统的射频功率放大器及射频前端架构
WO2020113865A1 (zh) 可切换负载线的匹配电路、负载线切换方法及功率放大器
CN207869070U (zh) 有源偏置达林顿结构放大器
WO2023040474A1 (zh) 一种射频功率放大器
WO2020113866A1 (zh) 一种可切换工作功率的双模式功率放大器及模式切换方法
WO2020134418A1 (zh) 一种基于GaAs pHEMT工艺的中频放大器
WO2019233217A1 (zh) 一种可重构的低功耗低成本支持多频多模的接收机前端
WO2023065843A1 (zh) 基于变压器匹配的三路功率合成的射频功率放大器
WO2020151081A1 (zh) 一种可切换工作频率的双模式功率放大器
CN109194291A (zh) 一种高增益高线性带旁路功能的单片式低噪声放大器
CN109067372A (zh) 一种高输出功率宽带功率放大器
CN209375585U (zh) 一种超宽带低噪声放大器
CN115208329A (zh) 一种无源跨导增强差分放大电路
US6326849B1 (en) Isolation circuit for use in RF amplifier bias circuit
WO2024099059A1 (zh) 射频接收模组旁路模式下的无源电路及射频接收模组
US7023279B2 (en) Linear pre-amplifier for radio-frequency power amplifier
CN109474243A (zh) 一种超宽带低噪声放大器
CN113572437B (zh) 一种带有直通选择结构的GaAs自偏置低噪声放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19912117

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19912117

Country of ref document: EP

Kind code of ref document: A1