CN105978515A - 宽调整范围高集成度变压器耦合射频功率放大器 - Google Patents

宽调整范围高集成度变压器耦合射频功率放大器 Download PDF

Info

Publication number
CN105978515A
CN105978515A CN201610289633.8A CN201610289633A CN105978515A CN 105978515 A CN105978515 A CN 105978515A CN 201610289633 A CN201610289633 A CN 201610289633A CN 105978515 A CN105978515 A CN 105978515A
Authority
CN
China
Prior art keywords
power amplifier
electric capacity
negative pole
transformator
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610289633.8A
Other languages
English (en)
Other versions
CN105978515B (zh
Inventor
吴海岗
李斌
吴朝晖
赵明剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610289633.8A priority Critical patent/CN105978515B/zh
Publication of CN105978515A publication Critical patent/CN105978515A/zh
Application granted granted Critical
Publication of CN105978515B publication Critical patent/CN105978515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/09A balun, i.e. balanced to or from unbalanced converter, being present at the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/216A coil being added in the input circuit, e.g. base, gate, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/225Indexing scheme relating to amplifiers the input circuit of an amplifying stage comprising an LC-network

Abstract

本发明公开了一种宽调整范围高集成度变压器耦合射频功率放大器包括单转差电路、驱动功率放大器电路、级间匹配网络电路、功率放大器电路阵列和非等分串联功率耦合变压器单元,所述单转差电路的差分输出端依次通过驱动功率放大器电路、级间匹配网络电路和功率放大器电路阵列进而与非等分串联功率耦合变压器单元的差分输入端连接。本发明通过调整功率放大器电路阵列的工作方式,在保证系统高效率的同时实现发射功率的宽调整范围,具有工作频带宽、匹配电路简单、集成度高等特点。本发明能广泛应用于射频技术领域中。

Description

宽调整范围高集成度变压器耦合射频功率放大器
技术领域
本发明涉及智能移动终端的射频前端技术领域,尤其涉及一种宽调整范围高集成度变压器耦合射频功率放大器。
背景技术
智能移动终端领域的快速发展,促进射频前端集成电路朝着低成本、高度集成化、高速率和高兼容性等方向演进。
射频前端产业需要新的技术、架构来满足高线性度、高效率和高功率密度的应用。实现硅基工艺射频前端的全集成,对促进产品小型化、提高兼容性、降低成本方面非常有利。而功率放大器作为射频前端芯片中最重要的部分,承担了最后一级的功率信号的放大,其面积和功耗比例最大,成为限制实现性能、体积和成本方面最主要的因素。另一方面,智能移动终端功能需求的增多促使多种无线通信标准的产生,射频功率放大器将承担的多标准、多频段和宽功率发射范围的信号发射工作。因此,实现适用于多种标准的、宽调整范围的单片化射频功率放大器在智能移动终端领域具有非常重要的意义。
现今,在基于标准CMOS工艺技术实现有源器件时,器件的击穿电压较低,射频输出功率偏低。这些特征难以适应当前对芯片单片化和高效率的需求。
为了解决上述问题,美国专利US9214901和US7889009,以及期刊“FullyIntegrated CMOS Power Amplifier With Efficiency Enhancement at PowerBack-Off”均采用等分方式的串联拓扑变压器结构进行能量耦合,但其实现的发射功率调整范围有限,难以满足日益增长的需求。
发明内容
为了解决上述技术问题,本发明的目的是提供一种能提高发射功率调整范围的一种宽调整范围高集成度变压器耦合射频功率放大器。
本发明所采取的技术方案是:
宽调整范围高集成度变压器耦合射频功率放大器,包括单转差电路、驱动功率放大器电路、级间匹配网络电路、功率放大器电路阵列和非等分串联功率耦合变压器单元,所述单转差电路的差分输出端依次通过驱动功率放大器电路、级间匹配网络电路和功率放大器电路阵列进而与非等分串联功率耦合变压器单元的差分输入端连接。
作为本发明的进一步改进,所述单转差电路包括第一电容、第二电容和巴伦,所述第一电容的正极端与巴伦的正极输入端连接,所述第一电容的负极端与巴伦的负极输入端连接,所述巴伦的差分输出端的中间抽头连接至第一偏置电压端,所述巴伦的正极差分输出端与第二电容的正极端连接,所述巴伦的负极差分输出端与第二电容的负极端连接,所述巴伦的正极差分输出端和负极差分输出端均连接至驱动功率放大器电路的差分输入端。
作为本发明的进一步改进,所述级间匹配网络电路包括第三电容、第四电容、第五电容、第一电阻、第二电阻和差分电感,所述驱动功率放大器电路的正极差分输出端连接至第三电容的正极端,所述驱动功率放大器电路的负极差分输出端连接至第三电容的负极端,所述第三电容的正极端通过差分电感连接至第三电容的负极端,所述第三电容的正极端连接至第四电容的正极端,所述第三电容的负极端连接至第五电容的正极端,所述第四电容的负极端连接至第一电阻的第一端,所述第一电阻的第二端通过第二电阻进而连接至第五电容的负极端,所述差分电感的中间抽头连接至电源电压端,所述第一电阻的第二端连接至第二偏置电压端,所述第四电容的负极端和第五电容的负极端均连接至功率放大器电路阵列。
作为本发明的进一步改进,所述功率放大器电路阵列包括N个功率放大器和N个与各功率放大器一一对应的调谐电容,其中,N≥2,所述第四电容的负极端分别连接至各功率放大器的第一输入端,所述第五电容的负极端分别连接至各功率放大器的第二输入端,各所述功率放大器的正极输出端连接至与其对应的调谐电容的正极端,各所述功率放大器的负极输出端连接至与其对应的调谐电容的负极端,各所述功率放大器的正极输出端和负极输出端分别连接至非等分串联功率耦合变压器单元的各差分输入端。
作为本发明的进一步改进,各所述功率放大器均连接有一工作状态控制接口。
作为本发明的进一步改进,各所述功率放大器的输出功率依次呈倍数m关系递增,其中,m>1。
作为本发明的进一步改进,所述非等分串联功率耦合变压器单元包括N个与各功率放大器一一对应的变压器,各所述功率放大器的正极输出端分别连接至与其对应的变压器的初级线圈的正极端,各所述功率放大器的负极输出端分别连接至与其对应的变压器的初级线圈的负极端,各所述变压器的初级线圈的中间抽头均连接至电源电压端,各所述变压器的次级线圈依次相连接。
作为本发明的进一步改进,从第1个变压器到第N个变压器的初次级线圈匝数比依次呈倍数m关系递减,即n1:n2:……:nN=m(N-1):m(N-2):……:1,其中,n1,n2,……,nN分别表示第1个变压器到第N个变压器的初次级线圈匝数比,且m>1。
作为本发明的进一步改进,从第1个变压器到第N个变压器的次级线圈的自感感值依次呈倍数m关系递增,即Ls1:Ls2:……:LsN=1:m:……:m(N-1),其中Ls1,Ls2:……,LsN分别表示第1个变压器到第N个变压器的次级线圈的自感感值,且m>1。
本发明的有益效果是:
本发明宽调整范围高集成度变压器耦合射频功率放大器通过在非等分变压器耦合变压器单元中采用非等分变压器结构的功率合成技术,实现了一种高度集成且具有宽发射功率调整范围的射频功率放大器芯片,从而能在更低的发射功率实现功率放大器的高效率工作。而且本发明在功率放大器电路阵列中采用伪差分的功率放大器结构,从而能提高输出电压摆幅,降低对封装寄生效应的灵敏度,提高了整个功放系统的输出电压摆幅,进而能较大程度地提高发射功率。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明宽调整范围高集成度变压器耦合射频功率放大器的结构示意图;
图2是本发明的简化结构示意图;
图3是本发明的实施例一的结构示意图;
图4是本发明实施例一的简化结构示意图;
图5是本发明实施例一实现的输出功率与效率性能图。
具体实施方式
参考图1和图2,本发明宽调整范围高集成度变压器耦合射频功率放大器,包括单转差电路3、驱动功率放大器电路5、级间匹配网络电路8、功率放大器电路阵列11和非等分串联功率耦合变压器单元12,所述单转差电路3的差分输出端依次通过驱动功率放大器电路5、级间匹配网络电路8和功率放大器电路阵列11进而与非等分串联功率耦合变压器单元12的差分输入端连接。
优选的,所述单转差电路3,用于宽频段范围内实现信号的单端转差分,提供差分信号给后一级驱动功率放大电路;所述驱动功率放大器电路5用于负责将差分功率信号进行第一次放大,用于提供给功率放大器电路阵列11;所述级间匹配网络电路8用于负责完成驱动功率放大器和功率放大器电路阵列11之间的信号阻抗匹配;所述功率放大器电路阵列11用于对功率信号进行第二次放大,阵列中每一个差分功率放大器单元的放大管面积各不相同,且呈一定倍数增加,每个差分功放单元都可以通过外部使能端控制,来实现正常工作和关闭的状态切换,从而使发射功率的控制范围更宽;所述非等分串联功率耦合变压器单元12用于完成每一个差分功率放大器单元的输出阻抗匹配和最后的功率耦合,非等分串联功率耦合变压器采用串联的拓扑结构,其匝数比和次级自感与功率放大器电路阵列11每个功放单元的放大管面积比例有关,分别以一定的倍数依次递减和递增。本发明方案的所有器件和电路均在片上实现,不采用外部匹配元件,能极大地提高了功率发射系统的集成度。
进一步作为优选的实施方式,所述单转差电路3包括第一电容C1、第二电容C2和巴伦,所述第一电容C1的正极端与巴伦的正极输入端连接,所述第一电容C1的负极端与巴伦的负极输入端连接,所述巴伦的差分输出端的中间抽头连接至第一偏置电压端,所述巴伦的正极差分输出端与第二电容C2的正极端连接,所述巴伦的负极差分输出端与第二电容C2的负极端连接,所述巴伦的正极差分输出端和负极差分输出端均连接至驱动功率放大器电路5的差分输入端。
进一步作为优选的实施方式,所述级间匹配网络电路8包括第三电容C3、第四电容C4、第五电容C5、第一电阻R1、第二电阻R2和差分电感L1,所述驱动功率放大器电路5的正极差分输出端连接至第三电容C3的正极端,所述驱动功率放大器电路5的负极差分输出端连接至第三电容C3的负极端,所述第三电容C3的正极端通过差分电感L1连接至第三电容C3的负极端,所述第三电容C3的正极端连接至第四电容C4的正极端,所述第三电容C3的负极端连接至第五电容C5的正极端,所述第四电容C4的负极端连接至第一电阻R1的第一端,所述第一电阻R1的第二端通过第二电阻R2进而连接至第五电容C5的负极端,所述差分电感L1的中间抽头连接至电源电压端,所述第一电阻R1的第二端连接至第二偏置电压端,所述第四电容C4的负极端和第五电容C5的负极端均连接至功率放大器电路阵列11。
进一步作为优选的实施方式,所述功率放大器电路阵列11包括N个功率放大器和N个与各功率放大器一一对应的调谐电容,其中,N≥2,所述第四电容C4的负极端分别连接至各功率放大器的第一输入端,所述第五电容C5的负极端分别连接至各功率放大器的第二输入端,各所述功率放大器的正极输出端连接至与其对应的调谐电容的正极端,各所述功率放大器的负极输出端连接至与其对应的调谐电容的负极端,各所述功率放大器的正极输出端和负极输出端分别连接至非等分串联功率耦合变压器单元12的各差分输入端。
进一步作为优选的实施方式,各所述功率放大器均连接有一工作状态控制接口,所述工作状态控制接口能有效实现发射功率的多状态调整,
进一步作为优选的实施方式,各所述功率放大器的输出功率依次呈倍数m关系递增,其中,m>1。
进一步作为优选的实施方式,所述非等分串联功率耦合变压器单元12包括N个与各功率放大器一一对应的变压器,各所述功率放大器的正极输出端分别连接至与其对应的变压器的初级线圈的正极端,各所述功率放大器的负极输出端分别连接至与其对应的变压器的初级线圈的负极端,各所述变压器的初级线圈的中间抽头均连接至电源电压端,各所述变压器的次级线圈依次相连接。
进一步作为优选的实施方式,从第1个变压器到第N个变压器的初次级线圈匝数比依次呈倍数m关系递减,即n1:n2:……:nN=m(N-1):m(N-2):……:1,其中,n1,n2,……,nN分别表示第1个变压器到第N个变压器的初次级线圈匝数比,且m>1。
进一步作为优选的实施方式,从第1个变压器到第N个变压器的次级线圈的自感感值依次呈倍数m关系递增,即Ls1:Ls2:……:LsN=1:m:……:m(N-1),其中Ls1,Ls2:……,LsN分别表示第1个变压器到第N个变压器的次级线圈的自感感值,且m>1。
本发明实施例中,射频信号RF_IN通过绑定线1与单转差电路3的输入信号端连接,单转差电路3的信号输入地通过绑定线2与外部信号地GND连接,所述单转差电路3的差分输出分别与驱动功率放大器电路5的差分输入连接,驱动功率放大器电路5的差分输出分别于级间匹配网络电路8的差分输入连接,驱动功率放大器电路5的使能端与绑定线6的一端连接,绑定线6的另一端与EN连接,级间匹配网络电路8的差分输出分别于功率放大器电路阵列11所有对应的差分输入连接,功率放大器电路阵列11所有的差分输出与非等分串联功率耦合变压器单元12所有对应的差分输入连接,非等分串联功率耦合变压器单元12的输出信号端与绑定线13连接,绑定线13的另外一端与RF_OUT连接,非等分串联功率耦合变压器单元12的输出信号地与绑定线14连接,绑定线14的另外一端与GND连接。
图1中的功率放大器电路阵列11的功率放大单元个数为N(N≥2),包括功率放大器PAP1、功率放大器PAP2、……、功率放大器PAPN,各功率放大器单元的输出功率按标号顺序依次呈倍数m(m>1)关系递增,如公式(1):
POUT_PAP1:POUT_PAP2:······:POUT_PAPN=1:m:······:mN-1 (1)
本实施例中,所述工作状态控制接口为电压使能端,所述功率放大器电路阵列11的每一个功率放大器单元都通过绑定线外接一个单独电压使能端,分别为EN_1、EN_2、……、EN_N,功率放大器电路阵列11的每一个功率放大器单元都通过绑定线外接GND,功率放大器电路阵列11的每一个功率放大器单元的两个差分输出端口分别与调谐电容的两个端口连接,如PAP1的差分输出与调谐电容TC1的两个端口连接,PAP2的差分输出与调谐电容TC2的两个端口连接、……、PAPN的差分输出与调谐电容TCN的两个端口连接。
图1中的非等分串联功率耦合变压器单元12包括变压器1、变压器2、……、变压器N,非等分串联功率耦合变压器单元12的每一个变压器单元(变压器1、变压器2、……、变压器N)的初次级匝数比依次呈倍数m关系递减,如公式(2):
n1:n2:······:nN=mN-1:mN-2:······:1 (2)
所述非等分串联功率耦合变压器单元12中每一个变压器初级电感的中间抽头分别通过绑定线与电源电压端VDD连接,非等分串联功率耦合变压器单元12中每一个变压器次级电感的自感感值依次呈倍数m关系递增,如公式(3):
Ls1:Ls2:······:LsN=1:m:······:mN-1 (3)
如图1所示的射频功率放大器的单转差电路3中,第一电容C1和第二电容C2均可以更换为可调电容,用来调整巴伦的最佳工作频段,功率放大器电路阵列11的各个功放单元的地信号相互连接,绑定线的数目可以不限制,只要保证每个功放单元的地端口都与接地绑定线连接即可,同样地,非等分串联功率耦合变压器单元12的每个变压器单元次级线圈的中间抽头也可以相互连接,只需保证每个抽头端口都与接电源电压端VDD绑定线连接即可。
如图2所示为图1的简化结构示意图,图2中将除了功率放大器电路阵列11、非等分串联功率耦合变压器单元12之外的其它部分等效为一个信号源15,等效元件15的输出电压是VIN,功率放大器电路阵列11和非等分串联功率耦合变压器单元12的所有绑定线都省略,其它部分维持不变,为了便于分析,非等分串联功率耦合变压器单元12的输出信号端施加一个负载电阻RL
考虑当功率放大器电路阵列11全部处于满额输出功率状态,所有功放单元的输出电压摆幅都最大时,VOUT,MAX=VDD,系统效率最高,定为系统最大发射功率,此时等效元件15的输出电压为最大值VIN,MAX,每一个功放单元的输出电压摆幅都相等且大小如公式(4)所示:
V O U T , M A X = g m α 2 · ( m - 1 ) · m 2 ( N - 1 ) m N - 1 · R L · V I N , M A X - - - ( 4 )
最大输出功率如公式(5)所示:
P O U T , M A X = ( m N - 1 ) 2 α 2 · ( m - 1 ) 2 · m 2 ( N - 1 ) · V O U T , M A X 2 2 R L · - - - ( 5 )
其中α为匝数比调整系数,理论上0<α<+∞,比如时,变压器1的初次级杂数比为变压器N的初次级杂数比为nNp:nNs=α:1=1:2,匝数比调整系数会影响输出电压摆幅和输出功率的大小。
考虑当功率放大器电路阵列11中其它功放单元都关闭只有功放管面积最小的功放单元工作且保持满额功率输出状态时,定为系统最小发射功率,且它的输出电压摆幅最大使效率最高时,等效元件15的输出电压VIN为最小值VIN,MIN,由理论推算可知,当VIN,MIN如以下公式(6)所示时:
V I N , M I N = m - 1 m N - 1 · V I N , M A X - - - ( 6 )
最小功放管面积功放单元输出电压摆幅如公式(7)所示:
V O U T = g m · α 2 · m 2 ( N - 1 ) · R L · V I N , M I N = g m · α 2 · ( m - 1 ) · m 2 ( N - 1 ) m N - 1 · R L · V I N , M A X = V O U T , M A X - - - ( 7 )
最小发射功率如公式(8)
P O U T , M I N = 1 α 2 m 2 ( N - 1 ) · V O U T , M A X 2 2 R L - - - ( 8 )
考虑到本发明射频功率放大器为阵列形式,每个功放单元都有一个工作状态控制开关,因此,除了全部关断状态外,总共有2N-1个工作状态,上述公式(2)和(5)已经推算出最大和最小发射功率,因此该射频功率放大器在最大和最小发射功率之间还有2N-3个工作状态,即这2N-3个工作状态下,系统效率也会保持在最高点。
如图3和图4所示分别为本发明射频功率放大器实施例一的结构示意图和实施例一的简化结构示意图,本发明实施例一中:m=2,N=4,根据上述推算公式可知,该实施例一的最大发射功率如公式(9)所示:
P O U T , M A X = 225 32 · V O U T , M A X 2 R L - - - ( 9 )
该实施例一最小发射功率如公式(10)所示:
P O U T , M A X = 1 32 · V O U T , M A X 2 R L - - - ( 10 )
而系统在最大和最小发射功率区间,另外还有13个效率最高的点。结合仿真可以更加明确地分析这个问题。
如图5所示,为该实施例一的发射功率调整范围内取得的系统效率曲线图,,发射功率最大值为最小值的225倍,即可提供的发射功率调整范围约为23.5dB,该实施例一与传统B类功率放大器相比,在23.5dB的功率回退值下,可以保持系统的工作效率最高。
同样地,依照本发明原始推导公式,改变任意比例的功率放大器电路阵列11、非等分串联功率耦合变压器单元12,均可以得到类似的结论。
从上述内容可知,本发明宽调整范围高集成度变压器耦合射频功率放大器通过在非等分变压器耦合变压器单元中采用非等分变压器耦合的功率合成技术,实现了一种高度集成且具有宽动态发射功率调整范围的射频功率放大器芯片,从而能在更高的功率回退值实现功率放大器的高效率工作。而且本发明在功率放大器电路阵列11中采用伪差分的功率放大器结构,从而能提高输出电压摆幅,降低对封装寄生效应的灵敏度,提高了整个功放系统的输出电压摆幅,进而能较大程度地提高发射功率。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

1.宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:包括单转差电路、驱动功率放大器电路、级间匹配网络电路、功率放大器电路阵列和非等分串联功率耦合变压器单元,所述单转差电路的差分输出端依次通过驱动功率放大器电路、级间匹配网络电路和功率放大器电路阵列进而与非等分串联功率耦合变压器单元的差分输入端连接。
2.根据权利要求1所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:所述单转差电路包括第一电容、第二电容和巴伦,所述第一电容的正极端与巴伦的正极输入端连接,所述第一电容的负极端与巴伦的负极输入端连接,所述巴伦的差分输出端的中间抽头连接至第一偏置电压端,所述巴伦的正极差分输出端与第二电容的正极端连接,所述巴伦的负极差分输出端与第二电容的负极端连接,所述巴伦的正极差分输出端和负极差分输出端均连接至驱动功率放大器电路的差分输入端。
3.根据权利要求1所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:所述级间匹配网络电路包括第三电容、第四电容、第五电容、第一电阻、第二电阻和差分电感,所述驱动功率放大器电路的正极差分输出端连接至第三电容的正极端,所述驱动功率放大器电路的负极差分输出端连接至第三电容的负极端,所述第三电容的正极端通过差分电感连接至第三电容的负极端,所述第三电容的正极端连接至第四电容的正极端,所述第三电容的负极端连接至第五电容的正极端,所述第四电容的负极端连接至第一电阻的第一端,所述第一电阻的第二端通过第二电阻进而连接至第五电容的负极端,所述差分电感的中间抽头连接至电源电压端,所述第一电阻的第二端连接至第二偏置电压端,所述第四电容的负极端和第五电容的负极端均连接至功率放大器电路阵列。
4.根据权利要求3所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:所述功率放大器电路阵列包括N个功率放大器和N个与各功率放大器一一对应的调谐电容,其中,N≥2,所述第四电容的负极端分别连接至各功率放大器的第一输入端,所述第五电容的负极端分别连接至各功率放大器的第二输入端,各所述功率放大器的正极输出端连接至与其对应的调谐电容的正极端,各所述功率放大器的负极输出端连接至与其对应的调谐电容的负极端,各所述功率放大器的正极输出端和负极输出端分别连接至非等分串联功率耦合变压器单元的各差分输入端。
5.根据权利要求4所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:各所述功率放大器均连接有一工作状态控制接口。
6.根据权利要求4所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:各所述功率放大器的输出功率依次呈倍数m关系递增,其中,m>1。
7.根据权利要求4所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:所述非等分串联功率耦合变压器单元包括N个与各功率放大器一一对应的变压器,各所述功率放大器的正极输出端分别连接至与其对应的变压器的初级线圈的正极端,各所述功率放大器的负极输出端分别连接至与其对应的变压器的初级线圈的负极端,各所述变压器的初级线圈的中间抽头均连接至电源电压端,各所述变压器的次级线圈依次相连接。
8.根据权利要求7所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:从第1个变压器到第N个变压器的初次级线圈匝数比依次呈倍数m关系递减,即n1: n2:……:nN=m (N-1): m(N-2):……: 1,其中,n1,n2,……,nN分别表示第1个变压器到第N个变压器的初次级线圈匝数比,且m>1。
9.根据权利要求7所述的宽调整范围高集成度变压器耦合射频功率放大器,其特征在于:从第1个变压器到第N个变压器的次级线圈的自感感值依次呈倍数m关系递增,即Ls1: Ls2: ……: LsN=1: m:……: m(N-1),其中Ls1,Ls2:……,LsN分别表示第1个变压器到第N个变压器的次级线圈的自感感值,且m>1。
CN201610289633.8A 2016-05-03 2016-05-03 宽调整范围高集成度变压器耦合射频功率放大器 Active CN105978515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610289633.8A CN105978515B (zh) 2016-05-03 2016-05-03 宽调整范围高集成度变压器耦合射频功率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610289633.8A CN105978515B (zh) 2016-05-03 2016-05-03 宽调整范围高集成度变压器耦合射频功率放大器

Publications (2)

Publication Number Publication Date
CN105978515A true CN105978515A (zh) 2016-09-28
CN105978515B CN105978515B (zh) 2018-10-19

Family

ID=56993700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610289633.8A Active CN105978515B (zh) 2016-05-03 2016-05-03 宽调整范围高集成度变压器耦合射频功率放大器

Country Status (1)

Country Link
CN (1) CN105978515B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592085A (zh) * 2017-09-18 2018-01-16 深圳锐越微技术有限公司 功率放大器和电子设备
CN109889163A (zh) * 2019-02-27 2019-06-14 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951160A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN110324015A (zh) * 2019-07-26 2019-10-11 成都理工大学 一种高功率分布型有源变压合成功率放大器
CN110324008A (zh) * 2019-06-13 2019-10-11 上海华虹宏力半导体制造有限公司 基于变压器的非平衡Doherty功率放大器及其设计方法
CN110350877A (zh) * 2019-07-26 2019-10-18 成都理工大学 一种高增益分布式变压器合成的功率放大器
CN111293994A (zh) * 2020-01-24 2020-06-16 复旦大学 单元复用变压器合成功率放大器
WO2020151082A1 (zh) * 2019-01-23 2020-07-30 曹秀妹 一种输出匹配电路和由其构成的功率放大器
CN111903119A (zh) * 2018-03-12 2020-11-06 华为技术有限公司 一种全频带接收机和电视调谐器
WO2022166655A1 (zh) * 2021-02-08 2022-08-11 锐石创芯(深圳)科技股份有限公司 一种推挽功率放大器
CN115913152A (zh) * 2021-09-30 2023-04-04 锐石创芯(深圳)科技股份有限公司 推挽功率放大电路及射频前端模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090273397A1 (en) * 2008-05-05 2009-11-05 Bockelman David E Controlling power with an output network
CN203406835U (zh) * 2013-09-02 2014-01-22 武汉芯泰科技有限公司 一种功率放大装置
CN104124932A (zh) * 2014-08-12 2014-10-29 豪芯微电子科技(上海)有限公司 射频功率放大模块
CN204156825U (zh) * 2014-08-12 2015-02-11 豪芯微电子科技(上海)有限公司 射频功率放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090273397A1 (en) * 2008-05-05 2009-11-05 Bockelman David E Controlling power with an output network
CN203406835U (zh) * 2013-09-02 2014-01-22 武汉芯泰科技有限公司 一种功率放大装置
CN104124932A (zh) * 2014-08-12 2014-10-29 豪芯微电子科技(上海)有限公司 射频功率放大模块
CN204156825U (zh) * 2014-08-12 2015-02-11 豪芯微电子科技(上海)有限公司 射频功率放大器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057008B2 (en) 2017-09-18 2021-07-06 Radiawave Technologies Co., Ltd. Power amplifier and electronic device
WO2019052566A1 (zh) * 2017-09-18 2019-03-21 深圳锐越微技术有限公司 功率放大器和电子设备
CN107592085A (zh) * 2017-09-18 2018-01-16 深圳锐越微技术有限公司 功率放大器和电子设备
CN111903119B (zh) * 2018-03-12 2022-05-24 华为技术有限公司 一种全频带接收机和电视调谐器
CN111903119A (zh) * 2018-03-12 2020-11-06 华为技术有限公司 一种全频带接收机和电视调谐器
WO2020151082A1 (zh) * 2019-01-23 2020-07-30 曹秀妹 一种输出匹配电路和由其构成的功率放大器
CN109889163A (zh) * 2019-02-27 2019-06-14 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951160A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951160B (zh) * 2019-02-27 2023-07-04 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN110324008A (zh) * 2019-06-13 2019-10-11 上海华虹宏力半导体制造有限公司 基于变压器的非平衡Doherty功率放大器及其设计方法
CN110324015A (zh) * 2019-07-26 2019-10-11 成都理工大学 一种高功率分布型有源变压合成功率放大器
CN110350877A (zh) * 2019-07-26 2019-10-18 成都理工大学 一种高增益分布式变压器合成的功率放大器
CN111293994A (zh) * 2020-01-24 2020-06-16 复旦大学 单元复用变压器合成功率放大器
CN111293994B (zh) * 2020-01-24 2023-04-07 复旦大学 单元复用变压器合成功率放大器
WO2022166655A1 (zh) * 2021-02-08 2022-08-11 锐石创芯(深圳)科技股份有限公司 一种推挽功率放大器
CN115913152A (zh) * 2021-09-30 2023-04-04 锐石创芯(深圳)科技股份有限公司 推挽功率放大电路及射频前端模组
CN115913152B (zh) * 2021-09-30 2023-12-01 锐石创芯(深圳)科技股份有限公司 推挽功率放大电路及射频前端模组

Also Published As

Publication number Publication date
CN105978515B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN105978515A (zh) 宽调整范围高集成度变压器耦合射频功率放大器
CN103595359B (zh) 一种0.1~5GHz超宽带CMOS功率放大器
CN103117711B (zh) 一种单片集成的射频高增益低噪声放大器
CN102142819B (zh) 基于变压器的射频功率放大器
CN103746665B (zh) 一种0.1~3GHz CMOS增益可调驱动功率放大器
CN109167575A (zh) 一种宽带高增益平坦度的功率放大器
CN101888210A (zh) 可变增益低噪声放大器
CN110138350A (zh) 一种带谐波抑制电路的功率放大器
CN110719074A (zh) 一种可调谐的宽带低噪声放大器
CN101431316A (zh) 双频段电感复用的射频cmos低噪声放大器
CN101938256B (zh) 全集成双频带可配置射频功率放大器
CN101908881B (zh) 定向耦合器及包含该定向耦合器的射频功率放大器
CN103124162B (zh) 一种高线性高效率射频功率放大器
CN102263572A (zh) 无线通信收发机
CN104124932B (zh) 射频功率放大模块
CN110932687A (zh) 一种交流堆叠功率放大器
CN204697010U (zh) 宽带低噪声放大器
CN105915189B (zh) 一种射频功率放大电路
CN208353299U (zh) 一种基于晶体管堆叠技术的高效率连续f类功率放大器
CN107959478A (zh) 一种功率易调的高效射频功率放大器
CN104158502A (zh) 宽带功率放大模块
CN103973261A (zh) 一种高频宽衰减范围有源可变衰减器电路
CN210724702U (zh) 一种分布式有源变压高功率放大器
CN104104340A (zh) 一种射频功率放大器
US8866555B2 (en) Power amplifier with variable output impedance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant