WO2020150934A1 - 滤光结构、滤光层以及显示面板 - Google Patents

滤光结构、滤光层以及显示面板 Download PDF

Info

Publication number
WO2020150934A1
WO2020150934A1 PCT/CN2019/072858 CN2019072858W WO2020150934A1 WO 2020150934 A1 WO2020150934 A1 WO 2020150934A1 CN 2019072858 W CN2019072858 W CN 2019072858W WO 2020150934 A1 WO2020150934 A1 WO 2020150934A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
transparent
light
layer
reflective layer
Prior art date
Application number
PCT/CN2019/072858
Other languages
English (en)
French (fr)
Inventor
孟宪芹
王维
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000079.9A priority Critical patent/CN109891278B/zh
Priority to PCT/CN2019/072858 priority patent/WO2020150934A1/zh
Priority to US16/641,711 priority patent/US11378726B2/en
Publication of WO2020150934A1 publication Critical patent/WO2020150934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction

Definitions

  • At least one embodiment of the present disclosure relates to a filter structure, a filter layer and a display panel.
  • the color display field includes traditional liquid crystal displays (LCD), organic light emitting diode (OLED) displays and other display devices that use traditional color film substrates to achieve red, green and blue color displays.
  • LCD liquid crystal displays
  • OLED organic light emitting diode
  • At least one embodiment of the present disclosure provides a filter structure, a filter layer, and a display panel.
  • At least one embodiment of the present disclosure provides a filter structure, including: a first semi-transparent and semi-reflective layer; a second semi-transparent and semi-reflective layer disposed opposite to the first semi-transparent and semi-reflective layer, and the second The refractive index of the transflective layer and the refractive index of the first transflective layer are substantially the same; and a transparent film layer located between the first transflective layer and the second transflective layer And in contact with the surfaces of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer, the refractive index of the transparent film layer is smaller than that of the first semi-transparent and semi-reflective layer and the second The refractive index of the transflective layer, wherein the filter structure is configured to adjust the thickness and refractive index of the transparent film layer, the thickness and refractive index of the first transflective layer, and the At least one of the thickness and refractive index of the second semi-transmissive and semi
  • the refractive index of the first semi-transparent and semi-reflective layer and the refractive index of the second semi-transparent and semi-reflective layer range from approximately 3.5 to 4.5.
  • the thickness of the first semi-transmissive and semi-reflective layer and the thickness of the second semi-transparent and semi-reflective layer range from approximately 200 to 400 angstroms.
  • the extinction coefficient of the first transflective layer and the extinction coefficient of the second transflective layer are not greater than 0.1.
  • the refractive index of the transparent film layer is 1.3-2.0.
  • the thickness of the transparent film layer ranges from approximately 1600-2800 angstroms.
  • the thickness of the first transflective layer is the same as the thickness of the second transflective layer.
  • the material of the first transflective layer is the same as the material of the second transflective layer.
  • the material of the first transflective layer and the material of the second transflective layer include metal or silicon, or the first transflective layer and the second transflective layer
  • the semi-reflective layer includes a multi-layer transparent medium film, the multi-layer transparent medium film includes N first and second optical film layers arranged alternately, where N is an even number, and the refractive index of the first optical film layer Greater than the refractive index of the second optical film layer.
  • the light in the specific wavelength range is monochromatic light
  • the monochromatic light is one of red light, green light, blue light, cyan light, yellow light, and magenta light.
  • At least one embodiment of the present disclosure provides a filter layer including a plurality of filter structures arranged in an array, each of the filter structures is the filter structure according to any one of the above examples, and the plurality of filter structures The arrangement direction of the light structure is parallel to the plane where the transparent film layer is located.
  • At least one embodiment of the present disclosure provides a display panel including the above-mentioned filter layer.
  • the filter layer is configured to emit light in a specific wavelength range of different colors, and the plurality of filter structures included in the filter layer correspond to a plurality of sub-pixels included in the display panel in a one-to-one correspondence. Set up.
  • the display panel includes a red sub-pixel, a green sub-pixel, a blue sub-pixel, a cyan sub-pixel, a yellow sub-pixel, and a magenta sub-pixel
  • the multi-filter layer is configured to emit red and green light.
  • FIG. 1A is a schematic diagram of a filter structure provided by an embodiment of the disclosure.
  • FIG. 1B is a schematic diagram of a filter structure provided by another example of an embodiment of the present disclosure.
  • 2A is a spectrum diagram of monochromatic light in different specific wavelength ranges by adjusting the thickness of a transparent film in an embodiment of the present disclosure
  • 2B is a spectrum diagram of red, green and blue monochromatic light transmitted by adjusting the thickness of the transparent film in an embodiment of the disclosure
  • 3A-3B are spectrograms of monochromatic light in different specific wavelength ranges by adjusting the refractive index of the transparent film in an embodiment of the disclosure
  • 4A is a schematic diagram of the influence of the change of the refractive index of the second semi-transparent and semi-reflective layer on the center wavelength and half-width of the emitted light in a specific wavelength range in an embodiment of the present disclosure
  • 4B is a schematic diagram of the influence of the thickness change of the second semi-transparent and semi-reflective layer on the central wavelength of the emitted light in a specific wavelength range in an embodiment of the present disclosure
  • FIG. 5A is a schematic partial cross-sectional view of a filter layer provided by an embodiment of the disclosure.
  • FIG. 5B is a schematic plan view of the filter layer shown in FIG. 5A;
  • 5C is a schematic partial plan view of a filter layer provided by another example of an embodiment of the present disclosure.
  • 5D is a schematic partial plan view of a filter layer provided by another example of an embodiment of the present disclosure.
  • 6A is a schematic diagram of a partial structure of a display panel provided by an example of an embodiment of the present disclosure.
  • 6B is a schematic diagram of a partial structure of a display panel provided by another example of an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a method for manufacturing a filter layer including a plurality of filter structures according to an embodiment of the present disclosure
  • FIG. 8A is a schematic cross-sectional view of a transparent substrate and a first transflective layer provided by an embodiment of the present disclosure
  • FIG. 8B is a schematic diagram of a partial plane structure of the first transflective layer shown in FIG. 8A;
  • FIG. 9 is a schematic diagram of a mask provided by an embodiment of the disclosure.
  • 10A-10B are schematic diagrams of forming a transparent film layer on the first semi-transparent and semi-reflective layer using the mask shown in FIG. 9.
  • the traditional color film substrate filters the white incident light to achieve the emission of red, green and blue (RGB), so about 2/3 of the white incident light will be emitted. It is absorbed by the color film substrate, resulting in low transmittance.
  • the general reflective or transmissive photonic crystal color film is used as a filter structure to filter white light. Because the reflective or transmissive photonic crystal color film has a lower reflectance or transmittance, it will include the The display device with the filter structure consumes too much power, or the spectrum of the emitted light has too large or too small half-width, interference peaks, etc., so that the color purity of the display device is not high.
  • Embodiments of the present disclosure provide a filter structure, a filter layer, and a display panel.
  • the filter structure includes: a first semi-transmissive and semi-reflective layer; a second semi-transmissive and semi-reflective layer, which is arranged opposite to the first semi-transparent and semi-reflective layer, and the refractive index of the second semi-transparent and semi-reflective layer and the first semi-transparent
  • the refractive index of the reflective layer is basically the same; and the transparent film layer is located between the first semi-transmissive and semi-transparent layer and the second semi-transparent Surface contact, the refractive index of the transparent film layer is smaller than the refractive index of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer, wherein the filter structure is configured to adjust the thickness and refractive index of the transparent film, the first The thickness and refractive index of the transflective layer, and at least one of the thickness and refractive index
  • FIG. 1A is a schematic diagram of the filter structure provided in this embodiment.
  • the filter structure 10 includes: a first transflective layer 100, a second transflective layer 200 and a transparent film layer 300.
  • the second transflective layer 200 is disposed opposite to the first transflective layer 100
  • the transparent film layer 300 is located between the first transflective layer 100 and the second transflective layer 200
  • the transparent film layer 300 It is in contact with the surfaces of the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200.
  • the refractive index of the transparent film layer 300 is smaller than the refractive index of the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200, and the refractive index of the first semi-transparent and semi-reflective layer 100 is greater than
  • the refractive index of 200 is basically the same, for example, the refractive index difference between the two is not more than 2%.
  • the filter structure 10 is configured to adjust the thickness and refractive index of the transparent film layer 300, the thickness and refractive index of the first transflective layer 100, and the thickness of the second transflective layer 200 And at least one of the refractive index, so that the light 500 (for example, monochromatic light 500) in the specific wavelength range of the incident light 400 (for example, white light 400) incident into the filter structure 10 from the first transflective layer 100 It is emitted from the second semi-transparent and semi-reflective layer 200, and by adjusting at least one of the thickness, refractive index, and extinction coefficient of the second semi-transparent and semi-reflective layer 200, the transmittance of the emitted light 500 in a specific wavelength range is not less than 90%.
  • the filter structure provided by the embodiments of the present disclosure can realize the transmission of light in a specific wavelength range, and the light in the specific wavelength range has a transmittance of not less than 90%, and the light in the specific wavelength range can have a narrower frequency
  • the filter structure 10 in the embodiment of the present disclosure satisfies the principle of multi-beam interference to filter out nearly monochromatic light 500 from the white light 400 incident on the filter structure 10.
  • the filter structure 10 provided by the embodiment of the present disclosure is a multilayer film filter.
  • the white light 400 incident from the first transflective layer 100 into the filter structure 10 meets the wavelength of the interference resonance enhancement. It can be emitted from the second semi-transparent and semi-reflective layer 200, that is, monochromatic light 500 in a specific wavelength range.
  • the white light 400 is incident into the filter structure 10 in the direction indicated by the arrow in the Y direction, and the monochromatic light 500 of a specific wavelength range is emitted from the filter structure 10 in the Y direction.
  • the filter structure 10 In the white light 400 incident on the filter structure 10, light of other wavelength bands except the monochromatic light 500 of a specific wavelength range will be emitted from the first transflective layer 100, that is, the light of other wavelength bands will be in the direction opposite to the Y arrow. Emitted from the filter structure 10.
  • the filter structure 10 when used as a color film layer, light 500 of a specific wavelength range in the white light 400 incident on the filter structure 10 can be emitted, and light of other wavelength bands can be reflected back for secondary use. Improve the utilization of light energy.
  • the filter structure 10 when used as the red light filter structure in the color filter layer of the display device, the light 500 of a specific wavelength range emitted from the red light filter structure is red light, and the light that enters the red light filter structure The blue and green light in the white light 400 will be reflected back to the display device for secondary use.
  • n is the refraction of the transparent film layer 300
  • h is the geometric thickness of the transparent film 300 along the Y direction
  • the product of n and h is the optical thickness of the transparent film 300, ⁇ , which is the center wavelength of the light 500 in a specific wavelength range.
  • the center wavelength of the monochromatic light 500 in the specific wavelength range emitted from the filter structure 10 is determined by the optical thickness of the transparent film layer 300, the interference order, and the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer.
  • the reflection phase of 200 is determined. That is, the center wavelength of the monochromatic light 500 in the specific wavelength range is determined by the refractive index and thickness of the first semi-transparent layer 100, the refractive index and thickness of the second semi-transparent layer 200, and the refractive index of the transparent film layer 300. And thickness.
  • the refractive index and thickness of the first transflective layer 100 of the filter structure 10, the refractive index and thickness of the second transflective layer 200, and the refractive index and thickness of the transparent film layer 300 can be adjusted. At least one of the thicknesses so that light 500 of a specific wavelength range among the incident light 400 incident from the first transflective layer 100 into the filter structure 10 is emitted from the second transflective layer 200 to achieve a filtering effect .
  • the half-value width of the filter structure 10 is the passband width measured at 1/2 of the peak transmittance of the light 500 in a specific wavelength range.
  • the first semi-transmissive and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 may be metal layers.
  • the full width half maximum of the emitted light 500 of the filter structure 10 FWHM satisfies the following formula:
  • R1 and R2 are the reflectivity of the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 respectively.
  • the formula satisfied by FWHM shows that: The higher the reflectance of the layer 200 and the higher m (that is, the thicker the optical thickness of the transparent film layer 300), the smaller the half-value width of the light 500 in a specific wavelength range and the better the monochromaticity.
  • m can get a narrower half-width, low-order transmission peaks will also appear on both sides of the main peak of the emitted light. In order to limit the low-order transmission peaks appearing on both sides of the main peak, m usually does not exceed 3.
  • the first semi-transmissive and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 can also be a single-layer dielectric layer (non-metallic layer).
  • the emitted light 500 from the filter structure 10 The full width half maximum (FWHM) satisfies the following formula:
  • T 12 is the transmittance of the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200, where the transmittance of the first semi-transparent and semi-reflective layer 100 and the transmittance of the second semi-transparent and semi-reflective layer 200 Take equal rates as an example. From the formula satisfied by FWHM, it can be known that the lower the transmittance of the first semi-transparent layer 100 and the second semi-transparent layer 200, the smaller the half-value width of the light 500 in a specific wavelength range, and the better the monochromaticity.
  • FIG. 1B is a schematic diagram of a filter structure provided by another example of an embodiment of the disclosure.
  • the filter structure in this example is different from the filter structure shown in FIG. 1A in that the first transflective layer 100 and the second transflective layer 100 and the second transflective layer of the filter structure in this example
  • Layer 200 is a multilayer transparent medium film, which includes N first optical film layers 201 and second optical film layers 202 alternately arranged, where N is an even number, and the refractive index of the first optical film layer 201 It is greater than the refractive index of the second optical film layer 202.
  • the first transflective layer 100 includes N first optical film layers 201 and second optical film layers 202 alternately arranged, and the second transflective layer 200 includes N first optical film layers alternately arranged. 201 and a second optical film layer 202.
  • Figure 1B shows that N is 4.
  • the transmittance T 12 of the first semi-transmissive and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 satisfies the following formula:
  • the effective refractive index of the first transflective layer 100 is equal to the effective refractive index of the second transflective layer 200, and the thickness of the first transflective layer 100 is equal to that of the second transflective layer 200.
  • n H and n L are the refractive indexes of the first optical film layer 201 and the second optical film layer 202, respectively
  • n G is the refractive index of the transparent film layer 300
  • x is the total number of layers of the first optical film layer 201. Therefore, the half-width FWHM of the emitted light 500 of the filter structure 10 satisfies the following formula:
  • the embodiment of the present disclosure may adjust the refractive index, thickness, and extinction coefficient of the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 to achieve a transmittance of the emitted light 500 in a specific wavelength range greater than 90. %.
  • the extinction coefficient of the first semi-transmissive and semi-reflective layer 100 and the extinction coefficient of the second semi-transparent and semi-reflective layer 200 are not greater than 0.1 to achieve a transmittance of the emitted light 500 in a specific wavelength range greater than 90%.
  • the extinction coefficient of the first transflective layer 100 and the extinction coefficient of the second transflective layer 200 in this embodiment are equal.
  • the refractive index of the first semi-transparent and semi-reflective layer 100 and the refractive index of the second semi-transparent and semi-reflective layer 200 are in the range of approximately 3.5-4.5 to realize the emitted light 500 in a specific wavelength range.
  • the transmittance is greater than 90%.
  • the thickness of the first semi-transparent and semi-reflective layer 100 and the thickness of the second semi-transparent and semi-reflective layer 200 range from approximately 200-400 angstroms. Because the thickness of the two semi-transparent and semi-reflective layers is too thick, the transmittance will be affected, and the Fabry-Perot phenomenon is more serious (that is, the emitted light is non-monochromatic light); the thickness of the two semi-transparent and semi-reflective layers is too thin ( For example, 100 angstroms), the transmittance of the entire wavelength band of the incident white light 400 is relatively high, and the color filter effect is not achieved.
  • the thickness of the first semi-transmissive and semi-reflective layer 100 and the thickness of the second semi-transparent and semi-reflective layer 200 are in the range of approximately 200-400 angstroms, which can achieve the transmission of the emitted light 500 in a specific wavelength range.
  • the rate is greater than 90%, and the color filter effect can be achieved.
  • the thickness of the first transflective layer 100 in this embodiment is the same as the thickness of the second transflective layer 200.
  • the first semi-transparent and semi-reflective layer 100 and the second semi-transparent and semi-reflective layer 200 both include multiple transparent dielectric films the thickness of the first semi-transparent and semi-reflective layer 100 and the thickness of the second semi-transparent and semi-reflective layer 200 may be equal.
  • the effective refractive index calculation is relatively simple, and the processing and test verification are relatively simple.
  • the materials of the two are the same so that the refractive indices of the two are the same.
  • the material of the first transflective layer 100 and the material of the second transflective layer 200 may include metal, such as silver or gold.
  • the material of the first transflective layer 100 and the second transflective layer 200 may include metals.
  • the material of the layer 200 may also include silicon or other non-metallic materials with high refractive index.
  • the effective refractive index of the two is the same, which makes the process of designing and preparing the filter structure 10 relatively simple. There is no need to consider the efficient index matching of the two semi-transparent and semi-reflective layers.
  • the materials of the first optical film layer 201 and the second optical film layer 202 in the multilayer transparent medium film may include titanium dioxide and silicon dioxide.
  • the refractive index of the transparent film layer 300 is 1.3-2.0, and the thickness is 1800-2800 angstroms so that the monochromatic light 500 of a specific wavelength range in the incident light 400 incident on the filter structure 10 is reflected from the second semi-transmissive and semi-transparent Layer 200 emerges.
  • the material of the transparent film layer 300 may be a transparent material such as glass or polymethyl methacrylate (PMMA).
  • a transparent material such as glass or polymethyl methacrylate (PMMA).
  • the embodiment of the present disclosure obtains the center wavelength and transmittance of light 500 in a specific wavelength range emitted after the white light 400 enters the filter structure 10 through modeling calculation and optimization based on the finite difference time domain method (FDTD) And the half-width.
  • FDTD finite difference time domain method
  • the basic idea of the finite-difference time-domain method is to replace the first-order partial derivative of the field with respect to time and space with the central difference quotient, and to obtain the field distribution by recursively simulating the wave propagation process in the time domain.
  • the finite-difference time-domain method grids space, calculates step by step in time, obtains wide-band steady-state continuous wave results from time-domain signals, and accurately describes the dispersion of materials in a wide-band based on existing material models Characteristics and electromagnetic field distribution and changes.
  • the thickness of the transparent film layer can be adjusted so that monochromatic light in a specific wavelength range of the white light incident in the filter structure is emitted from the filter structure.
  • 2A is a spectrum diagram of monochromatic light in different specific wavelength ranges by adjusting the thickness of the transparent film layer.
  • the thickness of the first semi-transmissive and semi-reflective layer and the second semi-transparent and semi-reflective layer are both set to 200 angstroms
  • the refractive index is set to 4
  • the refractive index of the transparent film layer is set to 1.4.
  • the thickness of the transparent film layer varies between 1600-2800 angstroms.
  • the optical thickness of the transparent film layer is also changing.
  • white light is incident on different filter structures with different thicknesses of the transparent film, and the center wavelength of the monochromatic light emitted after the micro-cavity effect occurs is also different. Therefore, by adjusting the thickness of the transparent film, it is possible to obtain different Emitted light in a specific wavelength range.
  • the greater the thickness of the transparent film layer the longer the center wavelength of the emitted monochromatic light.
  • FIG. 2B is a spectrum diagram of red, green, and blue monochromatic light transmitted by adjusting the thickness of the transparent film layer.
  • the thickness of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer are both set to 200 angstroms
  • the refractive index is set to 4
  • the refractive index of the transparent film layer is set to 1.4.
  • the thickness of the transparent film layer is 2800 angstroms, 2200 angstroms, and 1800 angstroms respectively
  • the emitted monochromatic light in a specific wavelength range is red light 501, green light 502, and blue light 503, respectively. It can be seen from FIG.
  • the specific parameters such as the wavelength band of the emitted monochromatic light in a specific wavelength range and the specific parameters of the filter structure are shown in Table 1.
  • the thickness of the first transflective layer and the second transflective layer are both set to 200 angstroms
  • the refractive index is set to 4
  • the refractive index of the transparent film layer is set to 1.4. It is also possible to adjust the thickness of the transparent structure so that white light enters different filter structures with different thicknesses of the transparent structure and emits magenta light, yellow light and cyan light respectively.
  • the thickness of the transparent film layer is 2600 angstroms, 2500 angstroms, and 2000 angstroms, respectively, and the emitted monochromatic light in a specific wavelength range is magenta light, yellow light, and cyan light, respectively.
  • the parameters such as the wavelength bands of the emitted magenta light, yellow light and cyan light and the specific parameters of the filter structure are shown in Table 2.
  • the light of a specific wavelength range emitted from a certain filter structure is monochromatic light, and the monochromatic light can be one of red light, green light, blue light, cyan light, yellow light and magenta light.
  • the refractive index of the transparent film layer can be adjusted so that monochromatic light of a specific wavelength range in the white light incident in the filter structure is emitted from the filter structure.
  • 3A and 3B are spectra of monochromatic light in different specific wavelength ranges by adjusting the refractive index of the transparent film layer.
  • the thickness of the first semi-transparent layer and the second semi-transparent layer are both set to 200 angstroms
  • the refractive index is set to 4
  • the thickness of the transparent film layer is set to 1600 angstroms, adjust the refractive index of the transparent film layer to change in the range of 1.3-2.0.
  • the optical thickness of the transparent film is also changing. Therefore, after white light is incident on different filter structures of transparent film layers with different refractive indexes, the center wavelength of the monochromatic light emitted after the micro-cavity effect occurs is also different. Therefore, the refractive index of the transparent film layer can be adjusted. Obtain outgoing light with different specific wavelength ranges.
  • the transmittance of light in each specific wavelength range emitted from the filter structure is about 96%, and the emitted light
  • the half-width of the peak varies with the refractive index of the transparent film.
  • the wavelength range of the emitted light is 420+/-25nm, and the half-width of the emitted light spectrum is about 50nm; when the refractive index of the transparent film layer is 2.0, the wavelength of the emitted light The wavelength range is 550+/-50nm, and the half-width of the emitted light spectrum is about 100nm. Therefore, the smaller the refractive index of the transparent film layer, the narrower the half-width of the emitted light spectrum and the smaller the stray light. The color of the emitted light in the wavelength range is purer.
  • the thickness of the first semi-transmissive and semi-reflective layer and the second semi-transparent and semi-reflective layer are both set to 200 angstroms
  • the refractive index is set to 4
  • the thickness of the transparent film layer The thickness is set to 2000 angstroms, and the refractive index of the transparent film layer is adjusted to change in the range of 1.4-2.0, so the optical thickness of the transparent film layer also changes. The greater the refractive index of the transparent film layer, the longer the center wavelength of the emitted monochromatic light.
  • the thickness and refractive index of the first and second semi-transparent and semi-reflective layers also affect the specific wavelength range.
  • the center wavelength of the emitted light in this embodiment, the thickness and refractive index of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer are equal.
  • FIG. 4A is a schematic diagram of the influence of changes in the refractive index of the first semi-transmissive and semi-reflective layer and the second semi-transparent and semi-reflective layer on the center wavelength and the half-width of the emitted light in a specific wavelength range.
  • the thickness of the transparent film layer in the filter structure is 2000 angstroms
  • the refractive index is 1.40
  • the thickness of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer are 200 angstroms.
  • the transmittance of each wavelength band of the white light incident into the filter structure is greater than 40%.
  • the filter structure does not have the effect of filtering light.
  • the refractive index of the first semi-transmissive and semi-reflective layer and the second semi-transparent and semi-reflective layer vary between 3.5 and 5
  • only the transmittance of light in a specific wavelength range is greater than 90%, while other wavelength bands
  • the light transmittance is less than 25%.
  • the filter structure provided in this embodiment is applied to a display device, considering that the display device requires a purer color purity, the better, and the wider the color gamut, the better.
  • the range of the refractive index of the first semi-transmissive semi-reflective layer and the second semi-transparent semi-reflective layer is about 3.5-4.5, which can realize the output light Over 90% transmittance.
  • FIG. 4B is a schematic diagram of the influence of the thickness changes of the first semi-transmissive and semi-reflective layer and the second semi-transparent and semi-reflective layer on the center wavelength of the emitted light in a specific wavelength range.
  • the thickness of the transparent film layer in the filter structure is 2000 angstroms
  • the refractive index is 1.4
  • the refractive indexes of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer are 4.0.
  • the transmittance of each wavelength band of the white light incident into the filter structure is greater than 35%.
  • the filter structure does not have the effect of filtering light.
  • the thickness of the first semi-transmissive semi-reflective layer and the second semi-transparent semi-reflective layer is greater than 400 angstroms, such as 50 nanometers and 60 nanometers, the center wavelength of the emitted light in the specific wavelength range includes at least two, resulting in a specific wavelength The emitted light of the range is not monochromatic light.
  • the thickness of the first semi-transmissive semi-reflective layer and the second semi-transparent semi-reflective layer are in the range of about 200-400 angstroms, only the transmittance of specific monochromatic light is greater than 90%, and the transmittance of other wavelengths The rate is less than 25%. Therefore, when the thickness of the first semi-transparent and semi-reflective layer and the second semi-transparent and semi-reflective layer are in the range of about 200-400 angstroms, it can be ensured that the emitted light is monochromatic light and the transmittance of the emitted light is relatively large. .
  • the extinction coefficients of the first semi-transparent layer and the second semi-transparent layer in FIGS. 4A and 4B are taken as 0 during modeling, so that the first semi-transparent layer and the second semi-transparent layer
  • the change in refractive index and thickness of the transflective layer has little effect on the transmittance, but the extinction coefficient in the actual material is difficult to be zero, so this embodiment needs to ensure that the first transflective layer and the second transflective layer
  • the extinction coefficient of the reflective layer is as small as possible, for example, less than 0.1, so that the light emitted by the filter structure can reach a transmittance of more than 90%.
  • FIG. 5A is a schematic partial cross-sectional view of a filter layer provided by an embodiment of the present disclosure
  • FIG. 5B is a schematic plan view of the filter layer shown in FIG. 5A.
  • the filter layer 123 includes a plurality of filter structures arranged in an array as described in any of the above embodiments, and the arrangement direction of the plurality of filter structures is parallel to the plane where the transparent film layer is located. That is, the arrangement direction of the multiple filter structures is parallel to the plane where XZ is located.
  • each filter structure in the filter layer 123 is a quadrilateral, and is arranged in an array along the X direction and the Y direction.
  • the filter layer 123 includes a first filter structure 11 for emitting red light, a second filter structure 12 for emitting green light, and a third filter structure 13 for emitting blue light.
  • the refractive index of the transparent film layers in the first filter structure 11, the second filter structure 12 and the third filter structure 13 are the same, but the thickness is different, so that the white light incident on the three filter structures Different specific wavelength ranges are emitted.
  • the thickness of the transparent film layer in the first filter structure 11 is greater than the thickness of the transparent film layer in the second filter structure 12, and the thickness of the transparent film layer in the second filter structure 12 is greater than that of the third filter structure 13 the thickness of the transparent film layer.
  • the thickness of the transparent film in the first filter structure 11, the second filter structure 12, and the third filter structure 13 is the same, but the refractive index is different, so that the white light incident on the three filter structures Different specific wavelength ranges are emitted.
  • the refractive index of the transparent film layer in the first filter structure 11 is greater than the refractive index of the transparent film layer in the second filter structure 12, and the refractive index of the transparent film layer in the second filter structure 12 is greater than that of the third filter structure.
  • the thickness and refractive index of the transparent film layer in the first filter structure 11, the second filter structure 12, and the third filter structure 13 are all different to make the optical thickness different, so that the three filter structures are incident Different specific wavelength ranges of the white light are emitted.
  • FIG. 5C is a schematic partial plan view of a filter layer provided by another example of an embodiment of the present disclosure.
  • the shape of each filter structure in the filter layer 123 is quadrilateral, and is arranged in an array along the X direction and the Y direction.
  • the filter layer 123 includes a first filter structure 11 for emitting red light, a second filter structure 12 for emitting green light, a third filter structure 13 for emitting blue light, and a second filter structure 13 for emitting blue light.
  • the refraction of the transparent film layer in the first filter structure 11, the second filter structure 12, the third filter structure 13, the fourth filter structure 14, the fifth filter structure 15, and the sixth filter structure 16 The thickness is the same but the thickness is the same, or the thickness is the same but the refractive index is different, or both the refractive index and the thickness are different to make the optical thickness different, so that light of different specific wavelength ranges among the white light incident on the six filter structures is emitted.
  • the thickness of the transparent film layers in the six filter structures are arranged in descending order to obtain the following order: first filter structure 11, sixth filter structure 16, fifth filter structure 15, second filter structure Structure 12, fourth filter structure 14, and third filter structure 13.
  • FIG. 5D is a schematic partial plan view of a filter layer provided in another example of this embodiment.
  • the example shown in FIG. 5D is different from the example shown in FIG. 5C in that the shape of each filter structure in the filter layer 123 is triangular, and the first filter structure 11, the sixth filter structure 16, and the The five filter structure 15, the second filter structure 12, the fourth filter structure 14, and the third filter structure 13 form a unit, and the shape of the unit is a hexagon.
  • Using the arrangement shape provided by this example can make the uniformity of the light emitted by the color filter layer better, and improve the color display effect to a certain extent.
  • the color filter layer provided in this embodiment can be applied to color display devices such as liquid crystal displays, organic light emitting diode displays, color separation devices, augmented reality devices, and virtual reality devices.
  • color display devices such as liquid crystal displays, organic light emitting diode displays, color separation devices, augmented reality devices, and virtual reality devices.
  • FIG. 6A is a schematic diagram of a partial structure of a display panel provided by an example of another embodiment of the present disclosure.
  • the display panel is a liquid crystal display panel as an example, but it is not limited to this, and it may also be an organic light emitting diode display panel (WOLED) that requires a color film layer.
  • WOLED organic light emitting diode display panel
  • the display substrate provided by this embodiment includes an array substrate 700, a color filter substrate 600, a liquid crystal layer 900 located between the array substrate 700 and the color filter substrate 600, and a liquid crystal layer 900 located on the array substrate 700 away from the liquid crystal layer 900.
  • the backlight 800 on one side.
  • the light emitted by the backlight 800 is white light.
  • the display panel 20 provided in this embodiment includes a plurality of filter structures shown in FIG. 1, and the plurality of filter structures are arranged in an array to form the filter layer 123 of the display panel 20.
  • the filter layer 123 is schematically arranged on the side of the transparent substrate 602 facing the liquid crystal layer 900.
  • the filter layer 123 including a plurality of filter structures is configured to emit light in a specific wavelength range of different colors, and therefore, the filter layer 123 is a color film layer.
  • the filter layer 123 After the white light emitted by the backlight 800 enters the filter layer 123, light with a specific wavelength range is emitted from the filter layer 123, and light of other wavelengths is reflected back to the side of the filter layer 123 facing the liquid crystal layer 900 for secondary use , Which can provide light energy utilization.
  • the filter layer 123 includes three different filter structures, and a black matrix 601 is arranged between adjacent filter structures.
  • the array substrate 700 is provided with a plurality of sub-pixels, and each filter structure included in the filter layer 123 is provided corresponding to each sub-pixel included in the array substrate 700. That is, the plurality of filter structures included in the filter layer 123 are similar to those included in the display panel. Multiple sub-pixels are arranged in one-to-one correspondence.
  • the filter layer 123 may include a first filter structure 11 for emitting red light 110, a second filter structure 12 for emitting green light 120, and a third filter structure 12 for emitting blue light 130. Filter structure 13.
  • the array substrate 700 includes a red sub-pixel 701, a green sub-pixel 702, and a blue sub-pixel 703, the first filter structure 11 is provided corresponding to the red sub-pixel 701, and the second filter structure 12 is provided corresponding to the green sub-pixel 702 ,
  • the third filter structure 13 is arranged corresponding to the blue sub-pixel 703.
  • the filter layer used in this embodiment can replace the traditional color film layer.
  • the red, green and blue light emitted by the filter layer has a transmittance of not less than 90% and a narrow frequency spectrum, which can reduce the display The power consumption of the panel, and improve the color saturation.
  • FIG. 6B is a schematic diagram of a partial structure of a display panel provided by another example of another embodiment of the present disclosure.
  • the filter layer 123 includes six different filter structures, and a black matrix 601 is arranged between adjacent filter structures.
  • the filter layer 123 may include a first filter structure 11 for emitting red light 110, a second filter structure 12 for emitting green light 120, and a third filter structure 13 for emitting blue light 130 for emitting
  • the array substrate 700 includes a red sub-pixel 701, a green sub-pixel 702, a blue sub-pixel 703, a cyan sub-pixel 704, a yellow sub-pixel 705, and a magenta sub-pixel 706. Then the first filter structure 11 for emitting red light 110 is arranged corresponding to the red sub-pixel 701, and the second filter structure 12 for emitting green light 120 is arranged corresponding to the green sub-pixel 702, and is used for emitting blue light 130.
  • the third filter structure 13 is arranged corresponding to the blue sub-pixel 703, the fourth filter structure 14 for emitting cyan light 140 is arranged correspondingly to the cyan sub-pixel 704, and the fifth filter structure 15 for emitting yellow light 150 is corresponding to The yellow sub-pixel 705 is correspondingly disposed, and the sixth filter structure 16 for emitting magenta light 160 is disposed correspondingly to the magenta sub-pixel 706.
  • the color filter layer of the display panel in this example can transmit light of six colors. Therefore, the display panel has the performance of high color gamut and high color purity, thereby being able to achieve better visual effects.
  • FIG. 7 is a schematic diagram of a method for manufacturing a filter layer including a plurality of filter structures according to another embodiment of the present disclosure. As shown in FIG. 7, the method of manufacturing the filter layer includes the following steps.
  • FIG. 8A is a schematic cross-sectional view of the transparent substrate and the first transflective layer provided in this embodiment
  • FIG. 8B is a schematic partial plan view of the first transflective layer shown in FIG. 8A.
  • the transparent substrate 1010 can be a glass substrate, or a transparent material such as polydimethylsiloxane (PDMS) or polymethylmethacrylate (PMMA), but it is not limited to this, and can be selected according to actual needs.
  • PDMS polydimethylsiloxane
  • PMMA polymethylmethacrylate
  • the first transflective layer 100 includes a plurality of areas, for example, it may include a first area 101, a second area 102, a third area 103, a fourth area 104, a fifth area 105, and a sixth area. 106 to form transparent film layers with six different optical thicknesses.
  • the above-mentioned six types of regions are positions for forming a filter structure that emits light of six different colors. For example, six different colors of light include red light, green light, blue light, cyan light, yellow light, and magenta light.
  • FIG. 8B uses different filling patterns to indicate different areas.
  • FIG. 8B the number, shape, and arrangement of the different regions shown in FIG. 8B are only illustrative.
  • the shapes of the above six regions may all be the same triangle, and the above six regions having a triangular shape A hexagon is formed, that is, another example of this embodiment can also form the filter layer shown in FIG. 5D.
  • the first semi-transparent and semi-reflective layer may also include three regions to form a transparent film with three different optical thicknesses.
  • the above-mentioned three areas are positions used to form a filter structure that emits light of three different colors.
  • the three different colors of light include red light, green light, and blue light, that is, another example of this embodiment can also form the filter layer shown in FIG. 5B. 8B-10A are described by taking the formation of the filter layer shown in FIG. 5C as an example.
  • S302 forming a transparent film layer with a first optical thickness in the first region of the first semi-transparent and semi-reflective layer, where the first region is a position for forming a filter structure for emitting the first color light.
  • FIG. 9 is a schematic diagram of the mask provided in this embodiment
  • FIGS. 10A and 10B are schematic diagrams of forming a transparent film layer on the first semi-transparent and semi-reflective layer using the mask shown in FIG. 9.
  • the mask 1000 includes an opening 1001 and a shielding area 1002.
  • the opening 1001 is configured to expose an area where the transparent film layer is to be formed, and the shielding area 1002 is configured to shield other areas.
  • a mask 1000 having an opening 1001 is used as a mask, and a transparent film layer having a first optical thickness is formed in the first region 101 of the first semitransparent layer exposed by the opening 1001. In the case where the first area 101 is exposed by the opening 1001, other areas are blocked by the blocking area 1002.
  • a transparent film layer with a second optical thickness is formed in the second area of the first semi-transparent and semi-reflective layer.
  • the second area is a position for forming a filter structure for emitting the second color light, wherein the first optical thickness is equal to The second optical thickness is different to form a filter structure for emitting light of different colors.
  • forming a transparent film layer with a second optical thickness includes: moving the mask 1000 in the X direction to expose the second region 102 of the first transflective layer. 102 forms a transparent film layer having a second optical thickness. When the second area 102 is exposed by the opening 1001, other areas are blocked by the blocking area 1002.
  • the optical thickness nh of the transparent film layer is different, which can make the color of the monochromatic light in the specific wavelength range emitted from the filter structure different.
  • the refractive index and/or thickness of the transparent film layer having the first optical thickness is different from the refractive index and/or thickness of the transparent film layer having the second optical thickness, and the first optical thickness and the second optical thickness may be different.
  • the thickness of the transparent film layer with the first optical thickness is the same as the thickness of the transparent film layer with the second optical thickness.
  • the first area and the second area of the first semi-transparent layer can be separated by moving the mask.
  • the transparent film layers of different materials are deposited so that the refractive indexes of the transparent film layers in two different areas are different.
  • the refractive index of the transparent film layer with the first optical thickness is the same as the refractive index of the transparent film layer with the second optical thickness, and the first region and the second region of the first semi-transparent layer can be moved by moving the mask.
  • the regions are respectively deposited with transparent film layers of different thicknesses.
  • This embodiment is not limited to this, and the above-mentioned mask may not be used, and a whole transparent film layer is formed on the first semi-transparent and semi-reflective layer, and the whole transparent film is etched to form different thicknesses in different regions.
  • the parameters of the etching process can be controlled to form a transparent film layer with different thicknesses in different regions.
  • S304 forming a second semi-transparent and semi-reflective layer on the side of the transparent film layer away from the first semi-transparent and semi-reflective layer.
  • the entire second transflective layer can be formed on the side of the transparent film layer away from the first transflective layer, or the second transflective layer can be formed only on the position of the transparent film layer.
  • the filter layer including multiple filter structures formed by the method provided by the embodiments of the present disclosure can not only realize the transmission of light in a specific wavelength range, and the light in the specific wavelength range has a transmittance of not less than 90%, but also can make the Light in a specific wavelength range has a narrow spectrum.
  • the color filter layer of the display panel formed in an example of the present embodiment can transmit light of six colors. Therefore, the display panel has the performance of high color gamut and high color purity, so as to achieve better visual effects. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

一种滤光结构(10)、滤光层(123)以及显示面板(20),滤光结构(10)包括:第一半透半反层(100)、第二半透半反层(200)以及位于第一半透半反层(100)与第二半透半反层(200)之间的透明膜层(300),其中,滤光结构(10)被配置为通过调整透明膜层(300)的厚度和折射率、第一半透半反层(100)的厚度和折射率,以及第二半透半反层(200)的厚度和折射率的至少之一,以使从第一半透半反层(100)入射到滤光结构(10)内的入射光(400)中的特定波长范围的光(500)从第二半透半反层(200)出射,且通过调节第二半透半反层(200)的厚度、折射率以及消光系数的至少之一以使出射的特定波长范围的光(500)的透过率不小于90%。采用滤光结构(10)可以实现特定波长范围光(500)的透射、且特定波长范围光(500)具有不小于90%的透过率。

Description

滤光结构、滤光层以及显示面板 技术领域
本公开至少一个实施例涉及一种滤光结构、滤光层以及显示面板。
背景技术
彩色显示领域包括的传统的液晶显示器(LCD)、有机发光二极管(OLED)显示器等显示装置都采用传统的彩膜基板来实现红绿蓝彩色显示。
发明内容
本公开的至少一实施例提供一种滤光结构、滤光层以及显示面板。
本公开的至少一实施例提供一种滤光结构,包括:第一半透半反层;第二半透半反层,与所述第一半透半反层相对设置,且所述第二半透半反层的折射率和所述第一半透半反层的折射率基本相同;以及透明膜层,位于所述第一半透半反层与所述第二半透半反层之间,且与所述第一半透半反层和所述第二半透半反层的表面接触,所述透明膜层的折射率小于所述第一半透半反层和所述第二半透半反层的折射率,其中,所述滤光结构被配置为通过调整所述透明膜层的厚度和折射率、所述第一半透半反层的厚度和折射率,以及所述第二半透半反层的厚度和折射率的至少之一,以使从所述第一半透半反层入射到所述滤光结构内的入射光中的特定波长范围的光从所述第二半透半反层出射,且通过调节所述第二半透半反层的厚度、折射率以及消光系数的至少之一以使出射的所述特定波长范围的光的透过率不小于90%。
在一些示例中,所述透明膜层的光学厚度和所述特定波长范围的光的中心波长满足如下公式:λ=2nh/m,
Figure PCTCN2019072858-appb-000001
k=0,1,2…,其中,nh为所述透明膜层的光学厚度;n为所述透明膜层的折射率;h为所述透明膜层的厚度;k为干涉级次;
Figure PCTCN2019072858-appb-000002
Figure PCTCN2019072858-appb-000003
分别为所述第一半透半反层和所述第二半透半反层的反射相位;λ为所述特定波长范围的光的中心波长。
在一些示例中,所述第一半透半反层的折射率和所述第二半透半反层的折射率的取值范围大约在3.5-4.5之间。
在一些示例中,所述第一半透半反层的厚度和所述第二半透半反层的厚度的取值范围大约在200-400埃之间。
在一些示例中,所述第一半透半反层的消光系数和所述第二半透半反层的消光系数不大于0.1。
在一些示例中,所述透明膜层的折射率为1.3-2.0。
在一些示例中,所述透明膜层的厚度的取值范围大约在1600-2800埃之间。
在一些示例中,所述第一半透半反层的厚度与所述第二半透半反层的厚度相同。
在一些示例中,所述第一半透半反层的材料与所述第二半透半反层的材料相同。
在一些示例中,所述第一半透半反层的材料与所述第二半透半反层的材料包括金属或硅,或者所述第一半透半反层与所述第二半透半反层包括多层透明介质膜,所述多层透明介质膜包括N个交替设置的第一光学膜层和第二光学膜层,其中N为偶数,所述第一光学膜层的折射率大于所述第二光学膜层的折射率。
在一些示例中,所述特定波长范围的光为单色光,所述单色光为红光、绿光、蓝光、青光、黄光和品红光之一。
本公开的至少一实施例提供一种滤光层,包括多个阵列排布的滤光结构,每个所述滤光结构为根据上述任一示例所述的滤光结构,所述多个滤光结构的排布方向平行于所述透明膜层所在平面。
本公开的至少一实施例提供一种显示面板,包括上述滤光层。
在一些示例中,所述滤光层被配置为出射不同颜色的特定波长范围的光,所述滤光层包括的所述多个滤光结构与所述显示面板包括的多个子像素一一对应设置。
在一些示例中,所述显示面板包括红色子像素、绿色子像素、蓝色子像素、青色子像素、黄色子像素和品红色子像素,所述多滤光层被配置为出射红光、绿光、蓝光、青光、黄光和品红光;或者,所述显示面板包括红色子像素、绿色子像素以及蓝色子像素,所述滤光层被配置为出射红光、绿光以及蓝光。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一实施例提供的滤光结构的示意图;
图1B为本公开一实施例的另一示例提供的滤光结构的示意图;
图2A为本公开一实施例中通过调整透明膜层的厚度以透射不同特定波长范围的单色光的光谱图;
图2B为本公开一实施例中通过调整透明膜层的厚度以透射红色、绿色以及蓝色单色光的光谱图;
图3A-图3B为本公开一实施例中通过调整透明膜层的折射率以透射不同特定波长范围的单色光的光谱图;
图4A为本公开一实施例中的第二半透半反层的折射率的变化对特定波长范围的出射光的中心波长以及半峰宽的影响的示意图;
图4B为本公开一实施例中的第二半透半反层的厚度的变化对特定波长范围的出射光的中心波长的影响的示意图;
图5A为本公开一实施例提供的滤光层的局部截面示意图;
图5B为图5A所示的滤光层的平面示意图;
图5C为本公开一实施例的另一示例提供的滤光层的局部平面示意图;
图5D为本公开一实施例的另一示例提供的滤光层的局部平面示意图;
图6A为本公开一实施例的一示例提供的显示面板的局部结构示意图;
图6B为本公开一实施例的另一示例提供的显示面板的局部结构示意图;
图7为本公开一实施例提供的制作包括多个滤光结构的滤光层的方法示意图;
图8A为本公开一实施例提供的透明基板和第一半透半反层的截面示意图;
图8B为图8A所示的第一半透半反层的局部平面结构示意图;
图9为本公开一实施例提供的掩模板的示意图;
图10A-图10B为采用图9所示的掩模板在第一半透半反层上形成透明膜层的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的 本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
在研究中,本申请的发明人发现:传统的彩膜基板是通过对白色入射光进行过滤来实现红光、绿光和蓝光(RGB)的出射,因此大约有2/3的白色入射光会被彩膜基板吸收,导致透过率低。一般的反射式或透射式光子晶体彩膜作为滤光结构而实现对白光进行滤光的过程中,会因反射式或透射式光子晶体彩膜具有较低的反射率或透射率,导致包括该滤光结构的显示装置功耗过大,或者出射光的光谱存在过大或过小的半峰宽、杂扰峰干扰等现象使得显示装置的色纯度不高。另外,显示领域中的红绿蓝三原色显示已经逐渐不能满足对还原真实色彩的高色域显示的需求。因此,制作具有高色域、高色纯度、低功耗等特性的显示装置是显示领域的重要趋势之一。
本公开的实施例提供一种滤光结构、滤光层以及显示面板。该滤光结构包括:第一半透半反层;第二半透半反层,与第一半透半反层相对设置,且第二半透半反层的折射率和第一半透半反层的折射率基本相同;以及透明膜层,位于第一半透半反层与第二半透半反层之间,且与第一半透半反层和第二半透半反层的表面接触,透明膜层的折射率小于第一半透半反层和第二半透半反层的折射率,其中,滤光结构被配置为通过调整透明膜层的厚度和折射率、第一半透半反层的厚度和折射率,以及第二半透半反层的厚度和折射率的至少之一,以使从第一半透半反层入射到滤光结构内的入射光中的特定波长范围的光从第二半透半反层出射,且通过调节第二半透半反层的厚度、折射率以及消光系数的至少之一以使出射的特定波长范围的光的透过率不小于90%。采用本公开实施例提供的滤光结构既可以实现特定波长范围光的透射、且该特定波长范围光具有不小于90%的透过率,又可以使该特定波长范围光具有较窄的频谱。
下面结合附图对本公开实施例提供的滤光结构、滤光层以及显示面板进行描述。
本公开一实施例提供一种滤光结构,图1A为本实施例提供的滤光结构的示意图。如图1A所示,该滤光结构10包括:第一半透半反层100、第二半透半反层200以及透明膜层300。第二半透半反层200与第一半透半反层100相对设置,透明膜层300位于第一半透半反层100与第二半透半反层200之间,且透明膜层300与第一半透半反层100和第二半透半反层200的表面接触。该透明膜层300的折射率小于第一半透半反层100和第二半透半反层200的折射率,且第一半透半反层100的折射率与第二半透半反层200的折射率基本相同,例如,两者的折射率差异率不大于2%。本公开实施例中,滤光结构10被配置为通过调整透明膜层300的厚度和折射率、第一半透半反层100的厚度和折射率,以及第二半透半反层200的厚度和折射率的至少之一,以使从第一半透半反层100入射到滤光结构10内的入射光400(例如白光400)中的特定波长范围的光500(例如单色光500)从第二半透半反层200出射,且通过调节第二半透半反层200的厚度、折射率以及消光系数的至少之一以使出射的特定波长范围的光500的透过率不小于90%。采用本公开实施例提供的滤光结构既可以实现特定波长范围光的透射、且该特定波长范围光具有不小于90%的透过率,又可以使该特定波长范围光具有较窄的频谱。
例如,如图1A所示,本公开实施例中的滤光结构10满足多光束干涉原理,以从入射到滤光结构10中的白光400中过滤出近单色光500。
例如,本公开实施例提供的滤光结构10是一种多层膜滤光片,从第一半透半反层100入射到滤光结构10内的白光400中满足干涉共振增强的波长的光可以从第二半透半反层200出射,即为特定波长范围的单色光500。白光400沿Y方向的箭头所示的方向入射到滤光结构10内,特定波长范围的单色光500沿Y方向从滤光结构10中出射。而入射到滤光结构10内的白光400中除特定波长范围的单色光500外的其它波段的光会从第一半透半反层100出射,即其它波段的光沿Y箭头相反的方向从滤光结构10中出射。
例如,该滤光结构10作为彩膜层时,可以使入射到滤光结构10内的白光400中的特定波长范围的光500出射,而其他波段的光反射回去以进行二次利用,从而可以提高光能的利用率。
例如,滤光结构10作为显示装置的彩膜层中的红光滤光结构时,从红光滤光结构出射的特定波长范围的光500为红光,而入射到红光滤光结构内的白光400中的蓝光和绿光会反射回显示装置以进行二次利用。
例如,如图1A所示,在多层膜滤光片结构中,透明膜层300的光学厚度与出射光500的中心波长满足:λ=2nh/m,其中的n为透明膜层300的折射率,h为透明膜层300沿Y方向的几何厚度,n与h的乘积即为透明膜层300的光学厚度λ为特定波长范围的光500的中心波长。m满足如下关系:
Figure PCTCN2019072858-appb-000004
k=0,1,2…,k为干涉级次,
Figure PCTCN2019072858-appb-000005
Figure PCTCN2019072858-appb-000006
分别为第一半透半反层100和第二半透半反层200的反射相位。
由m的关系式可知,m由干涉级次k和两个半透半反层的反射相位决定。由此,从滤光结构10出射的特定波长范围的单色光500的中心波长由透明膜层300的光学厚度、干涉级次以及第一半透半反层100和第二半透半反层200的反射相位决定。也就是,特定波长范围的单色光500的中心波长由第一半透半反层100的折射率和厚度、第二半透半反层200的折射率和厚度以及透明膜层300的折射率和厚度决定,因此,可以通过调节滤光结构10的第一半透半反层100的折射率和厚度、第二半透半反层200的折射率和厚度以及透明膜层300的折射率和厚度的至少之一以使从第一半透半反层100入射到滤光结构10内的入射光400中的特定波长范围的光500从第二半透半反层200出射以实现滤光作用。
例如,滤光结构10的半峰宽是在特定波长范围的光500的峰值透过率的1/2处量得的通带宽度。
例如,如图1A所示,第一半透半反层100和第二半透半反层200可以为金属层,此时,滤光结构10的出射光500的半峰宽(full width half maximum,FWHM)满足如下公式:
Figure PCTCN2019072858-appb-000007
其中的R1和R2分别为第一半透半反层100和第二半透半反层200的反射率,由FWHM满足的公式可知:第一半透半反层100和第二半透半反层200的反射率越高,m越高(即透明膜层300的光学厚度越厚),则特定波长范围的光500的半峰宽越小,单色性越好。提高m虽然可以得到较窄的半峰宽,但是出射光的主峰两侧也会出现低级次的透射峰,为了限制主峰两侧出现低级次的透射峰,通常情况下,m不超过3。
例如,如图1A所示第一半透半反层100和第二半透半反层200还可以为单层介质层(非金属层),此时,从滤光结构10出射的出射光500的半峰宽(full width half maximum,FWHM)满足如下公式:
Figure PCTCN2019072858-appb-000008
其中的T 12为第一半透半反层100和第二半透半反层200的透射率,这里以第一半透半反层100的透射率和第二半透半反层200的透射率相等为例。则由FWHM满足的公式可知:第一半透半反层100和第二半透半反层200的透射率越低,特定波长范围的光500的半峰宽越小,单色性越好。
例如,图1B为本公开实施例的另一示例提供的滤光结构的示意图。如图1B所示,本示例中的滤光结构与图1A所示的滤光结构不同之处在于,本示例中的滤光结构的第一半透半反层100和第二半透半反层200均为多层透明介质膜,该多层透明介质膜包括N个交替设置的第一光学膜层201和第二光学膜层202,其中N为偶数,第一光学膜层201的折射率大于第二光学膜层202的折射率。也就是,第一半透半反层100包括N个交替设置的第一光学膜层201和第二光学膜层202,第二半透半反层200包括N个交替设置的第一光学膜层201和第二光学膜层202。图1B以N为4为示意。
在图1B所示的示例中,第一半透半反层100和第二半透半反层200的透射率T 12满足如下公式:
Figure PCTCN2019072858-appb-000009
其中以第一半透半反层100的有效折射率与第二半透半反层200的有效折射率相等,且第一半透半反层100的厚度与第二半透半反层200的厚度相等为例。其中的n H和n L分别为第一光学膜层201和第二光学膜层202的折射率,n G为透明膜层300的折射率;x为第一光学膜层201的总层数。由此,滤光结构10的出射光500的半峰宽FWHM满足如下公式:
Figure PCTCN2019072858-appb-000010
例如,本公开的实施例可以通过调整第一半透半反层100和第二半透半反层200的折射率、厚度以及消光系数以实现特定波长范围的出射光500的透过率大于90%。
例如,本实施例中的第一半透半反层100的消光系数和第二半透半反层200的消光系数不大于0.1以实现特定波长范围的出射光500的透过率大于90%。
例如,本实施例中的第一半透半反层100的消光系数和第二半透半反层 200的消光系数相等。
例如,本实施例中的第一半透半反层100的折射率和第二半透半反层200的折射率的取值范围大约在3.5-4.5之间以实现特定波长范围的出射光500的透过率大于90%。
例如,第一半透半反层100的厚度和第二半透半反层200的厚度的取值范围大约在200-400埃之间。由于两个半透半反层的厚度过厚会影响透过率,且法布里珀罗现象比较严重(即出射光为非单色光);两个半透半反层的厚度过薄(例如100埃),会使入射的白光400的整个波段透过率较高,达不到滤色效果。由此,第一半透半反层100的厚度和第二半透半反层200的厚度的取值范围大约在200-400埃之间,既可以实现特定波长范围的出射光500的透过率大于90%,又可以实现滤色效果。
例如,本实施例中的第一半透半反层100的厚度与第二半透半反层200的厚度相同。在第一半透半反层100与第二半透半反层200均包括多层透明介质膜时,第一半透半反层100的厚度与第二半透半反层200的厚度相等可以使其有效折射率计算相对简单,且加工和测试验证相对简单。
例如,第一半透半反层100与第二半透半反层200为单层膜时,两者的材料相同以使两者的折射率相同。
例如,第一半透半反层100的材料与第二半透半反层200的材料可以包括金属,例如银或金等,第一半透半反层100的材料与第二半透半反层200的材料也可以包括硅或其他高折射率的非金属材料。
例如,在第一半透半反层100与第二半透半反层200均包括多层透明介质膜时,两者的有效折射率相同可以使设计和制备滤光结构10的过程相对简单,无需考虑两个半透半反层有效率折射率匹配的问题。
例如,第一半透半反层100与第二半透半反层200包括多层透明介质膜时,该多层透明介质膜中的第一光学膜层201和第二光学膜层202的材料可以包括二氧化钛和二氧化硅。
例如,透明膜层300的折射率为1.3-2.0,厚度为1800-2800埃以使入射到滤光结构10中的入射光400中的特定波长范围的单色光500从第二半透半反层200出射。
例如,透明膜层300的材料可以为玻璃或者聚甲基丙烯酸甲酯(PMMA)等透明材料。
例如,本公开的实施例通过基于时域有限差分法(FDTD)的建模计算以及优化,从而得到白光400入射到滤光结构10后出射的特定波长范围的光500的中心波长、透过率以及半峰宽。时域有限差分法的基本思想是用中心差商代替场量对时间和空间的一阶偏微商,通过在时域的递推模拟波的传播过程,从而得出场分布。例如,时域有限差分法将空间网格化,时间上一步步计算,从时间域信号中获得宽波段的稳态连续波结果,根据已有的材料模型在宽波段内精确描述出材料的色散特性和电磁场分布和变化。
例如,本实施例的一示例中可以通过调节透明膜层的厚度以使入射到滤光结构内的白光中的特定波长范围的单色光从滤光结构中射出。图2A为通过调整透明膜层的厚度以透射不同特定波长范围的单色光的光谱图。如图2A所示,本实施例中第一半透半反层和第二半透半反层的厚度均设置为200埃,折射率设置为4,透明膜层的折射率设置为1.4,调节透明膜层的厚度在范围为1600-2800埃之间变化。由于透明膜层的折射率不变,但厚度在变化,所以透明膜层的光学厚度也在变化。由此,白光入射到具有不同厚度的透明膜层的不同滤光结构中,发生微共振腔效应后出射的单色光的中心波长也不同,从而,通过调节透明膜层的厚度可以得到具有不同特定波长范围的出射光。
例如,如图2A所示,透明膜层的厚度越大可以使得出射的单色光的中心波长越长。
例如,图2B为通过调整透明膜层的厚度以透射红色、绿色以及蓝色单色光的光谱图。如图2B所示,本实施例中第一半透半反层和第二半透半反层的厚度均设置为200埃,折射率设置为4,透明膜层的折射率设置为1.4。透明膜层的厚度分别为2800埃、2200埃以及1800埃而得到出射的特定波长范围的单色光分别为红光501、绿光502和蓝光503。由图2B中可以看出,红光501、绿光502和蓝光503的透射率均大于90%。出射的特定波长范围的单色光的波段等参数以及滤光结构的具体参数如表1所示。
表1
Figure PCTCN2019072858-appb-000011
例如,本实施例的另一示例中,第一半透半反层和第二半透半反层的厚度 均设置为200埃,折射率设置为4,透明膜层的折射率设置为1.4,还可以通过调节透明结构的厚度以使白光入射到具有不同厚度透明结构的不同滤光结构中后,分别出射品红光、黄光和青光。
例如,透明膜层的厚度分别为2600埃、2500埃以及2000埃而得到出射的特定波长范围的单色光分别为品红光、黄光和青光。出射品红光、黄光和青光的波段等参数以及滤光结构的具体参数如表2所示。
表2
Figure PCTCN2019072858-appb-000012
由此,在多个具有不同厚度透明膜层的滤光结构阵列排布以形成滤光层时,既可以通过调节不同滤光结构包括的透明膜层的厚度仅出射红光、绿光以及蓝光,也可以通过调节不同滤光结构包括的透明膜层的厚度而出射红光、绿光、蓝光、品红光、黄光以及青光。因此,从某一个滤光结构出射的特定波长范围的光为单色光,单色光可以为红光、绿光、蓝光、青光、黄光和品红光之一。
例如,如图2A和2B以及表1和表2所示,透明膜层的厚度越小,出射光的半峰宽越小。
例如,本实施例的另一示例中可以通过调节透明膜层的折射率以使入射到滤光结构内的白光中的特定波长范围的单色光从滤光结构中射出。图3A和图3B为通过调整透明膜层的折射率以透射不同特定波长范围的单色光的光谱图。如图3A所示,本实施例的一示例中,第一半透半反层和第二半透半反层的厚度均设置为200埃,折射率设置为4,透明膜层的厚度设置为1600埃,调节透明膜层的折射率在范围为1.3-2.0之间变化。由于透明膜层的厚度不变,但折射率在变化,所以透明膜层的光学厚度也在变化。由此,白光入射到具有不同折射率的透明膜层的不同滤光结构中后,发生微共振腔效应后出射的单色光的中心波长也不同,从而,通过调节透明膜层的折射率可以得到具有不同特定波长范围的出射光。
例如,如图3A所示,透明膜层的折射率在范围为1.3-2.0之间变化时,从滤光结构出射的各个特定波长范围的光的透过率均为约96%,且出射光的半峰 宽随着透明膜层的折射率而变化。
例如,当透明膜层的折射率为1.4时,出射光的波长范围为420+/-25nm,出射光光谱的半峰宽约为50nm;当透明膜层的折射率为2.0时,出射光的波长范围为550+/-50nm,出射光光谱的半峰宽约为100nm,由此,透明膜层的折射率越小,出射光光谱的半峰宽越窄,杂散光越小,每个特定波长范围的出射光的颜色越纯。
例如,如图3B所示,本实施例的另一示例中,第一半透半反层和第二半透半反层的厚度均设置为200埃,折射率设置为4,透明膜层的厚度设置为2000埃,调节透明膜层的折射率在范围为1.4-2.0之间变化,所以透明膜层的光学厚度也在变化。透明膜层的折射率越大可以使得出射的单色光的中心波长越长。
由图3A和图3B可知,在透明膜层的厚度不变时,仅通过调节透明膜层的折射率可能很难使具有不同特定波长范围的出射光包括红光、绿光、蓝光、品红光、青光和黄光,因此,在调节透明膜层折射率的同时,可以配合调节透明膜层的厚度,从而使具有不同特定波长范围的出射光包括红光、绿光、蓝光、品红光、青光和黄光。
例如,除了透明膜层的厚度和折射率会影响特定波长范围的出射光的中心波长外,第一半透半反层和第二半透半反层的厚度和折射率也会影响特定波长范围出射光的中心波长。本实施例中的第一半透半反层和第二半透半反层的厚度和折射率均相等。
例如,图4A为第一半透半反层和第二半透半反层的折射率的变化对特定波长范围的出射光的中心波长以及半峰宽的影响的示意图。如图4A所示,滤光结构中的透明膜层的厚度为2000埃,折射率为1.40,第一半透半反层和第二半透半反层的厚度为200埃。当第一半透半反层和第二半透半反层的折射率在1-3之间变化时,入射到滤光结构内的白光中各波段光的透过率均大于40%,该滤光结构起不到滤光的效果。当第一半透半反层和第二半透半反层的折射率的取值范围大约在3.5-5之间变化时,仅特定波长范围的光的透过率大于90%,而其他波段光的透过率低于25%。并且,随着折射率的增大,特定波长出射光的中心波长逐渐增大,且半峰宽逐渐减小,即,第一半透半反层和第二半透半反层的折射率越大,半峰宽越窄,杂散光越少。本实施例提供的滤光结构应用于显示器件时,考虑到显示器件要求色纯度越纯越好,色域越宽越好。因此, 考虑到目前材料的折射率很难达到5,由此第一半透半反层和第二半透半反层的折射率的取值范围大约在3.5-4.5之间可以实现出射光具有90%以上的透过率。
例如,图4B为第一半透半反层和第二半透半反层的厚度的变化对特定波长范围的出射光的中心波长的影响的示意图。如图4B所示,滤光结构中的透明膜层的厚度为2000埃,折射率为1.4,第一半透半反层和第二半透半反层的折射率为4.0。当第一半透半反层和第二半透半反层的厚度小于200埃,例如为10纳米时,入射到滤光结构内的白光中各波段光的透过率均大于35%,该滤光结构起不到滤光的效果。当第一半透半反层和第二半透半反层的厚度大于400埃时,例如为50纳米和60纳米时,特定波长范围的出射光的中心波长包括至少两个,从而导致特定波长范围的出射光不是单色光。而在第一半透半反层和第二半透半反层的厚度的取值范围大约在200-400埃时,仅特定单色光的透过率大于90%,其它波段光的透过率小于25%。由此,第一半透半反层和第二半透半反层的厚度的取值范围大约在200-400埃时,可以保证出射光为单色光,且出射光的透过率较大。
需要说明的是,图4A和图4B中第一半透半反层和第二半透半反层的消光系数在建模时取为0,可以使得第一半透半反层和第二半透半反层的折射率和厚度的变化对透过率的影响较小,但实际材料中的消光系数很难为0,所以本实施例需要保证第一半透半反层和第二半透半反层的消光系数尽量小,例如小于0.1,以使滤光结构的出射光能达到90%以上的透过率。
图4A和图4B示出的第一半透半反层和第二半透半反层的折射率和厚度的变化会影响第一半透半反层和第二半透半反层的反射相位,所以第一半透半反层和第二半透半反层的折射率和厚度会对特定波长范围的出射光的中心波长的影响。
例如,图5A为本公开一实施例提供的滤光层的局部截面示意图,图5B为图5A所示的滤光层的平面示意图。如图5A和图5B所示,滤光层123包括上述任一实施例所述的多个阵列排布的滤光结构,且多个滤光结构的排布方向平行于透明膜层所在的平面,即,多个滤光结构的排布方向平行于XZ所在平面。
例如,如图5A和图5B所示,滤光层123中的每个滤光结构的形状为四边形,且沿X方向和Y方向呈阵列排布。滤光层123包括用于出射红光的第 一滤光结构11,用于出射绿光的第二滤光结构12以及用于出射蓝光的第三滤光结构13。
例如,第一滤光结构11、第二滤光结构12以及第三滤光结构13中的透明膜层的折射率相同,但厚度不同,从而使得入射到三种滤光结构中的白光中的不同特定波长范围的光出射。例如,第一滤光结构11中的透明膜层的厚度大于第二滤光结构12中的透明膜层的厚度,且第二滤光结构12中的透明膜层的厚度大于第三滤光结构13中的透明膜层的厚度。
例如,第一滤光结构11、第二滤光结构12以及第三滤光结构13中的透明膜层的厚度相同,但折射率不同,从而使得入射到三种滤光结构中的白光中的不同特定波长范围的光出射。例如,第一滤光结构11中的透明膜层的折射率大于第二滤光结构12中的透明膜层的折射率,且第二滤光结构12中的透明膜层的折射率大于第三滤光结构13中的透明膜层的折射率。
例如,第一滤光结构11、第二滤光结构12以及第三滤光结构13中的透明膜层的厚度和折射率均不同以使光学厚度不同,从而使得入射到三种滤光结构中的白光中的不同特定波长范围的光出射。
例如,图5C为本公开一实施例的另一示例提供的滤光层的局部平面示意图。如图5C所示,滤光层123中的每个滤光结构的形状为四边形,且沿X方向和Y方向呈阵列排布。滤光层123包括用于出射红光的第一滤光结构11,用于出射绿光的第二滤光结构12,用于出射蓝光的第三滤光结构13,用于出射青光的第四滤光结构14,用于出射黄光的第五滤光结构15以及用于出射品红光的第六滤光结构16。
例如,第一滤光结构11、第二滤光结构12、第三滤光结构13、第四滤光结构14、第五滤光结构15以及第六滤光结构16中的透明膜层的折射率相同但厚度不同,或者厚度相同但折射率不同,或者折射率和厚度均不同以使光学厚度不同,从而使得入射到六种滤光结构中的白光中的不同特定波长范围的光出射。例如,将六种滤光结构中的透明膜层的厚度从大到小进行排列得到如下顺序:第一滤光结构11、第六滤光结构16、第五滤光结构15、第二滤光结构12、第四滤光结构14以及第三滤光结构13。
例如,图5D为本实施例的另一示例提供的滤光层的局部平面示意图。图5D所示的示例与图5C所示的示例的不同之处在于滤光层123中的每个滤光结构的形状为三角形,且第一滤光结构11、第六滤光结构16、第五滤光结构15、 第二滤光结构12、第四滤光结构14以及第三滤光结构13组成一个单元,该单元的形状为六边形。采用本示例提供的排列形状,可以使得滤色层出射光的均匀性较好,在一定程度上提高颜色显示效果。
本实施例提供的滤色层可以应用于液晶显示器、有机发光二极管显示器、色彩分离装置、增强现实装置以及虚拟现实装置等彩色显示器件。
例如,图6A为本公开另一实施例的一示例提供的显示面板的局部结构示意图。如图6A所示,本实施例以显示面板为液晶显示面板为例,但不限于此,也可以是需要设置彩膜层的有机发光二极管显示面板(WOLED)。
例如,如图6A所示,本实施例提供的显示基板包括阵列基板700、彩膜基板600、位于阵列基板700与彩膜基板600之间的液晶层900、以及位于阵列基板700远离液晶层900一侧的背光源800。
例如,背光源800出射的光为白光。
例如,如图6A所示,本实施例提供的显示面板20包括多个图1所示的滤光结构,该多个滤光结构阵列排布以构成显示面板20的滤光层123。滤光层123示意性的设置在透明基板602面向液晶层900的一侧。本实施例中,包括多个滤光结构的滤光层123被配置为出射不同颜色的特定波长范围的光,由此,该滤光层123为彩膜层。背光源800出射的白光入射到滤光层123以后,具有特定波长范围的光从滤光层123出射,其他波长的光反射回到滤光层123面向液晶层900的一侧以进行二次利用,从而可以提供光能的利用率。
例如,如图6A所示,滤光层123包括三种不同的滤光结构,相邻的滤光结构之间设置有黑矩阵601。阵列基板700设置有多个子像素,滤光层123包括的每个滤光结构与阵列基板700包括的每个子像素对应设置,即,滤光层123包括的多个滤光结构与显示面板包括的多个子像素一一对应设置。
例如,如图6A所示,滤光层123可以包括用于出射红光110的第一滤光结构11,用于出射绿光120的第二滤光结构12以及用于出射蓝光130的第三滤光结构13。
例如,阵列基板700包括红色子像素701、绿色子像素702以及蓝色子像素703,则第一滤光结构11与红色子像素701对应设置,第二滤光结构12与绿色子像素702对应设置,第三滤光结构13与蓝色子像素703对应设置。本实施例采用的滤光层可以代替传统的彩膜层,该滤光层出射的红光、绿光以及蓝光具有不小于90%的透过率,且具有较窄的频谱,从而可以降低显示面板的 功耗,且提高色饱和度。
例如,图6B为本公开另一实施例的另一示例提供的显示面板的局部结构示意图。如图6B所示,滤光层123包括六种不同的滤光结构,相邻的滤光结构之间设置有黑矩阵601。滤光层123可以包括用于出射红光110的第一滤光结构11,用于出射绿光120的第二滤光结构12,用于出射蓝光130的第三滤光结构13,用于出射青光140的第四滤光结构14,用于出射黄光150的第五滤光结构15以及用于出射品红光160的第六滤光结构16。
例如,阵列基板700包括红色子像素701、绿色子像素702、蓝色子像素703、青色子像素704、黄色子像素705以及品红色子像素706。则用于出射红光110的第一滤光结构11的与红色子像素701对应设置,用于出射绿光120的第二滤光结构12与绿色子像素702对应设置,用于出射蓝光130的第三滤光结构13与蓝色子像素703对应设置,用于出射青光140的第四滤光结构14与青色子像素704对应设置,用于出射黄光150的第五滤光结构15与黄色子像素705对应设置,用于出射品红光160的第六滤光结构16与品红色子像素706对应设置。本示例中的显示面板的滤色层可以透射六种颜色的光,由此,该显示面板具有高色域和高色纯度的性能,从而能够实现更好的视觉效果。
例如,图7为本公开另一实施例提供的制作包括多个滤光结构的滤光层的方法示意图。如图7所示,制作滤光层的方法包括如下步骤。
S301:在透明基板上形成第一半透半反层。
例如,图8A为本实施例提供的透明基板和第一半透半反层的截面示意图,图8B为图8A所示的第一半透半反层的局部平面结构示意图。
例如,透明基板1010可采用玻璃基板,也可以采用聚二甲基硅氧烷(PDMS)或者聚甲基丙烯酸甲酯(PMMA)等透明材料,但也不限于此,可以根据实际需求选用。
例如,本实施例示意性的示出了形成图5C所示的滤色层的方法。如图8B所示,第一半透半反层100包括多个区域,例如可以包括第一区域101、第二区域102、第三区域103、第四区域104、第五区域105以及第六区域106以形成具有六种不同的光学厚度的透明膜层。上述六种区域为用于形成出射六种不同颜色光的滤光结构的位置。例如,六种不同颜色光包括红光、绿光、蓝光、青光、黄光以及品红光。为清楚示意六个不同区域,图8B以不同填充图案表示不同的区域。
需要说明的是,图8B所示的不同区域的数量、形状以及排布仅是示意性的,例如,上述六个区域的形状还可以均为相同的三角形,由上述具有三角形形状的六个区域构成了六边形,即本实施例的另一示例还可以形成图5D所示的滤光层。
本实施例不限于此,例如,第一半透半反层也可以包括三个区域以形成具有三种不同光学厚度的透明膜层。上述三种区域为用于形成出射三种不同颜色光的滤光结构的位置。例如,三种不同颜色光包括红光、绿光以及蓝光,即,本实施例的另一示例还可以形成图5B所示的滤光层。图8B-图10A以形成图5C所示的滤光层为例进行描述。
S302:在第一半透半反层的第一区域形成具有第一光学厚度的透明膜层,第一区域为用于形成出射第一颜色光的滤光结构的位置。
例如,图9为本实施例提供的掩模板的示意图,图10A和图10B为采用图9所示的掩模板在第一半透半反层上形成透明膜层的示意图。如图9所示,掩模板1000包括开口1001以及遮挡区1002,开口1001被配置为暴露待形成透明膜层的区域,遮挡区1002被配置为遮挡其他区域。
例如,如图10A所示,采用具有开口1001的掩模板1000作为掩模,在第一半透半反层的被开口1001暴露的第一区域101形成具有第一光学厚度的透明膜层。在第一区域101被开口1001暴露的情况下,其他区域被遮挡区1002遮挡。
S303:在第一半透半反层的第二区域形成具有第二光学厚度的透明膜层,第二区域为用于形成出射第二颜色光的滤光结构位置,其中,第一光学厚度与第二光学厚度不同,以形成用于出射不同颜色光的滤光结构。
例如,如图10A和图10B所示,形成具有第二光学厚度的透明膜层包括:将掩模板1000向X方向移动以暴露第一半透半反层的第二区域102,在第二区域102形成具有第二光学厚度的透明膜层。在第二区域102被开口1001暴露的情况下,其他区域被遮挡区1002遮挡。
根据透明膜层的光学厚度nh与特定波长λ的关系式:λ=2nh/m可知,透明膜层的光学厚度不同,可以使得从滤光结构出射的特定波长范围的单色光的颜色不同。
例如,具有第一光学厚度的透明膜层的折射率和/或厚度不同于具有第二光学厚度的透明膜层的折射率和/或厚度,可以使第一光学厚度与第二光学厚度不 同。
例如,具有第一光学厚度的透明膜层的厚度与具有第二光学厚度的透明膜层的厚度相同,可以通过移动掩模板以在第一半透半反层的第一区域和第二区域分别沉积不同材料的透明膜层以使位于两个不同区域的透明膜层的折射率不同。
例如,具有第一光学厚度的透明膜层的折射率与具有第二光学厚度的透明膜层的折射率相同,可以通过移动掩模板以在第一半透半反层的第一区域和第二区域分别沉积不同厚度的透明膜层。本实施例不限于此,也可以不采用上述掩模板,在第一半透半反层上形成一整层透明膜层,对该整层透明膜层进行刻蚀以使不同区域形成不同厚度的透明膜层,例如可以通过控制刻蚀工艺的参数以使不同区域形成不同厚度的透明膜层。
例如,继续将掩模板1000向X方向移动,从而依次暴露第一半透半反层的第三区域、第四区域、第五区域以及第六区域以分别形成具有第三光学厚度的透明膜层、具有第四光学厚度的透明膜层、具有第五光学厚度的透明膜层以及具有第六光学厚度的透明膜层,从而形成出射六种不同颜色光的滤光结构。
S304:在透明膜层远离第一半透半反层的一侧形成第二半透半反层。
例如,可以在透明膜层远离第一半透半反层的一侧形成整层的第二半透半反层,也可以仅在透明膜层所在位置上形成第二半透半反层。
采用本公开实施例提供的方法形成的包括多个滤光结构的滤光层既可以实现特定波长范围光的透射、且该特定波长范围光具有不小于90%的透过率,又可以使该特定波长范围光具有较窄的频谱。此外,本实施例的一示例中形成的显示面板的滤色层可以透射六种颜色的光,由此,该显示面板具有高色域和高色纯度的性能,从而能够实现更好的视觉效果。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (15)

  1. 一种滤光结构,包括:
    第一半透半反层;
    第二半透半反层,与所述第一半透半反层相对设置,且所述第二半透半反层的折射率和所述第一半透半反层的折射率基本相同;以及
    透明膜层,位于所述第一半透半反层与所述第二半透半反层之间,且与所述第一半透半反层和所述第二半透半反层的表面接触,所述透明膜层的折射率小于所述第一半透半反层和所述第二半透半反层的折射率,
    其中,所述滤光结构被配置为通过调整所述透明膜层的厚度和折射率、所述第一半透半反层的厚度和折射率,以及所述第二半透半反层的厚度和折射率的至少之一,以使从所述第一半透半反层入射到所述滤光结构内的入射光中的特定波长范围的光从所述第二半透半反层出射,且通过调节所述第二半透半反层的厚度、折射率以及消光系数的至少之一以使出射的所述特定波长范围的光的透过率不小于90%。
  2. 根据权利要求1所述的滤光结构,其中,所述透明膜层的光学厚度和所述特定波长范围的光的中心波长满足如下公式:
    Figure PCTCN2019072858-appb-100001
    其中,n为所述透明膜层的折射率;h为所述透明膜层的厚度;k为干涉级次;
    Figure PCTCN2019072858-appb-100002
    Figure PCTCN2019072858-appb-100003
    分别为所述第一半透半反层和所述第二半透半反层的反射相位;λ为所述特定波长范围的光的中心波长。
  3. 根据权利要求1或2所述的滤光结构,其中,所述第一半透半反层的折射率和所述第二半透半反层的折射率的取值范围大约在3.5到4.5之间。
  4. 根据权利要求1-3任一项所述的滤光结构,其中,所述第一半透半反层的厚度和所述第二半透半反层的厚度的取值范围大约在200-400埃之间。
  5. 根据权利要求1-4任一项所述的滤光结构,其中,所述第一半透半反层的消光系数和所述第二半透半反层的消光系数不大于0.1。
  6. 根据权利要求1-5任一项所述的滤光结构,其中,所述透明膜层的折射率为1.3-2.0。
  7. 根据权利要求6所述的滤光结构,其中,所述透明膜层的厚度的取值范围在1600-2800埃之间。
  8. 根据权利要求4所述的滤光结构,其中,所述第一半透半反层的厚度与所述第二半透半反层的厚度相同。
  9. 根据权利要求3或8所述的滤光结构,其中,所述第一半透半反层的材料与所述第二半透半反层的材料相同。
  10. 根据权利要求9所述的滤光结构,其中,所述第一半透半反层的材料与所述第二半透半反层的材料包括金属或硅;或者所述第一半透半反层与所述第二半透半反层均包括多层透明介质膜,所述多层透明介质膜包括N个交替设置的第一光学膜层和第二光学膜层,其中N为偶数,所述第一光学膜层的折射率大于所述第二光学膜层的折射率。
  11. 根据权利要求1-10任一项所述的滤光结构,其中,所述特定波长范围的光为单色光,所述单色光为红光、绿光、蓝光、青光、黄光和品红光之一。
  12. 一种滤光层,包括多个阵列排布的滤光结构,每个所述滤光结构为根据权利要求1-11任一项所述的滤光结构,所述多个滤光结构的排布方向平行于所述透明膜层所在平面。
  13. 一种显示面板,包括权利要求12所述的滤光层。
  14. 根据权利要求13所述的显示面板,其中,所述滤光层被配置为出射不同颜色的特定波长范围的光,所述滤光层包括的所述多个滤光结构与所述显示面板包括的多个子像素一一对应设置。
  15. 根据权利要求14所述的显示面板,其中,所述显示面板包括红色子像素、绿色子像素、蓝色子像素、青色子像素、黄色子像素和品红色子像素,所述滤光层被配置为出射红光、绿光、蓝光、青光、黄光和品红光;或者,所述显示面板包括红色子像素、绿色子像素以及蓝色子像素,所述滤光层被配置为出射红光、绿光以及蓝光。
PCT/CN2019/072858 2019-01-23 2019-01-23 滤光结构、滤光层以及显示面板 WO2020150934A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000079.9A CN109891278B (zh) 2019-01-23 2019-01-23 滤光结构、滤光层以及显示面板
PCT/CN2019/072858 WO2020150934A1 (zh) 2019-01-23 2019-01-23 滤光结构、滤光层以及显示面板
US16/641,711 US11378726B2 (en) 2019-01-23 2019-01-23 Filter structure, filter layer and display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072858 WO2020150934A1 (zh) 2019-01-23 2019-01-23 滤光结构、滤光层以及显示面板

Publications (1)

Publication Number Publication Date
WO2020150934A1 true WO2020150934A1 (zh) 2020-07-30

Family

ID=66938489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072858 WO2020150934A1 (zh) 2019-01-23 2019-01-23 滤光结构、滤光层以及显示面板

Country Status (3)

Country Link
US (1) US11378726B2 (zh)
CN (1) CN109891278B (zh)
WO (1) WO2020150934A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038425A1 (en) * 2019-08-29 2021-03-04 3M Innovative Properties Company Micro led display
CN110707233B (zh) * 2019-09-16 2021-02-23 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置
CN110649086B (zh) 2019-10-30 2022-05-13 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN111029383A (zh) * 2019-12-13 2020-04-17 京东方科技集团股份有限公司 一种oled显示模组及其制备方法、oled显示装置
CN111477674B (zh) * 2020-05-22 2022-08-30 昆山国显光电有限公司 阵列基板、显示面板及显示装置
CN113253528A (zh) * 2021-05-14 2021-08-13 绵阳惠科光电科技有限公司 阵列基板、反射式显示面板和反射式显示装置
WO2024108553A1 (zh) * 2022-11-25 2024-05-30 京东方科技集团股份有限公司 显示面板以及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200848841A (en) * 2007-06-05 2008-12-16 Wintek Corp Liquid crystal display panel and liquid crystal display
CN101576679A (zh) * 2008-05-09 2009-11-11 群康科技(深圳)有限公司 半透射半反射液晶显示面板及半透射半反射液晶显示器
US20100091225A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters
CN104090411A (zh) * 2014-06-19 2014-10-08 京东方科技集团股份有限公司 液晶显示面板
CN107390418A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 一种滤光结构、显示基板、显示面板及显示装置
CN108258008A (zh) * 2016-12-29 2018-07-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN108319064A (zh) * 2018-02-06 2018-07-24 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN109188775A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 光学基板及显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031653A (en) * 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
JP2001209038A (ja) * 1999-11-17 2001-08-03 Nippon Sheet Glass Co Ltd 液晶表示素子用基板
KR100790981B1 (ko) 2006-02-13 2008-01-02 삼성전자주식회사 칼라필터, 칼라필터 어레이 및 그의 제조방법과 이미지센서
US8208097B2 (en) * 2007-08-08 2012-06-26 Samsung Corning Precision Materials Co., Ltd. Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
WO2011089646A1 (ja) * 2010-01-21 2011-07-28 株式会社 東芝 干渉型フィルタ層付基板及びそれを用いた表示装置
JP6036689B2 (ja) * 2011-06-06 2016-11-30 旭硝子株式会社 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置
JP2013073024A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 干渉フィルタ及び表示装置
CN103472515B (zh) * 2013-09-13 2015-07-15 京东方科技集团股份有限公司 滤光片及其制备方法、显示装置
CN103675978A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 波长选择型彩色滤光片及使用该波长选择型彩色滤光片的显示结构
CN107636522B (zh) * 2015-04-17 2019-01-29 阿梅尔技术公司 半透反射式液晶显示器
KR102420016B1 (ko) * 2015-08-28 2022-07-12 삼성전자주식회사 반사층을 가지는 광변조기
KR102480902B1 (ko) * 2015-09-18 2022-12-22 삼성전자주식회사 표시 장치
CN111093967A (zh) * 2017-10-05 2020-05-01 伟福夫特科技公司 提供双色效应的光学结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200848841A (en) * 2007-06-05 2008-12-16 Wintek Corp Liquid crystal display panel and liquid crystal display
CN101576679A (zh) * 2008-05-09 2009-11-11 群康科技(深圳)有限公司 半透射半反射液晶显示面板及半透射半反射液晶显示器
US20100091225A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters
CN104090411A (zh) * 2014-06-19 2014-10-08 京东方科技集团股份有限公司 液晶显示面板
CN108258008A (zh) * 2016-12-29 2018-07-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN107390418A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 一种滤光结构、显示基板、显示面板及显示装置
CN108319064A (zh) * 2018-02-06 2018-07-24 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN109188775A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 光学基板及显示装置

Also Published As

Publication number Publication date
CN109891278A (zh) 2019-06-14
US20210149096A1 (en) 2021-05-20
US11378726B2 (en) 2022-07-05
CN109891278B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2020150934A1 (zh) 滤光结构、滤光层以及显示面板
CN113791470B (zh) 共振光栅波导结构及近眼显示装置
US11448801B2 (en) Textured glass layers in electronic devices
US9946068B2 (en) Optical waveguide and display device
US8810754B2 (en) Interference filter and display device
CN106019673B (zh) 一种液晶显示面板用基板及液晶显示面板
US10859867B2 (en) Display substrate and method of manufacturing the same, and display panel
JP2005308871A (ja) 干渉カラーフィルター
US20140233126A1 (en) Reflective color filter
WO2019144596A1 (zh) 一种光波导结构及显示装置
WO2019024572A1 (zh) 抗反射结构、显示装置及抗反射结构制作方法
JP2003255336A (ja) 反射透過型液晶表示装置用カラーフィルタ基板及びその製造方法
Lin et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection
CN103460085B (zh) 一种彩色滤光片
CN208156225U (zh) 一种基于金属亚波长光栅的颜色滤波片
CN207502824U (zh) 光波导镜片及显示装置
WO2020253312A1 (zh) 显示装置及制作方法
WO2017198072A1 (zh) 彩膜基板及其制备方法、显示装置
Lin et al. Multilayer structure for highly transmissive angle-tolerant color filter
KR101674562B1 (ko) 유전체 덮개층을 갖는 나노공진기 기반의 전방향 컬러 필터
JP2015191230A (ja) 共振素子
TWI457615B (zh) 彩色濾光片、光柵結構及顯示模組
Xie et al. Designing vibrant and bright transmission colors with multilayer film structures
JP7307978B2 (ja) フィルター、その製造方法、表示装置及び色粉状体
He et al. Transmission Enhancement in Coaxial Hole Array Based Plasmonic Color Filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911684

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19911684

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 17.02.22.

122 Ep: pct application non-entry in european phase

Ref document number: 19911684

Country of ref document: EP

Kind code of ref document: A1