WO2020149373A1 - 植物生育調節剤 - Google Patents

植物生育調節剤 Download PDF

Info

Publication number
WO2020149373A1
WO2020149373A1 PCT/JP2020/001350 JP2020001350W WO2020149373A1 WO 2020149373 A1 WO2020149373 A1 WO 2020149373A1 JP 2020001350 W JP2020001350 W JP 2020001350W WO 2020149373 A1 WO2020149373 A1 WO 2020149373A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
hesperidin
plant growth
growth regulator
plants
Prior art date
Application number
PCT/JP2020/001350
Other languages
English (en)
French (fr)
Inventor
栞 石田
康二 稲井
元気 田中
野本 尚
Original Assignee
出光興産株式会社
株式会社エス・ディー・エス バイオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 株式会社エス・ディー・エス バイオテック filed Critical 出光興産株式会社
Priority to EP20741295.8A priority Critical patent/EP3912470A1/en
Priority to JP2020566480A priority patent/JPWO2020149373A1/ja
Priority to CN202080009458.7A priority patent/CN113301803A/zh
Priority to US17/423,301 priority patent/US20220095617A1/en
Publication of WO2020149373A1 publication Critical patent/WO2020149373A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Definitions

  • the present invention relates to a plant growth regulator having an effect of improving resistance of plants to environmental stress.
  • the present invention further relates to a plant growth regulator for promoting plant growth and for antibacterial plant growth.
  • Non-patent Documents 1 and 2 Plant hormones
  • Research is progressing in various fields such as active ingredients of agricultural chemicals.
  • Patent Document 4 a method for improving environmental stress tolerance of a plant by treating the plant with a plant-derived product containing at least one of sanguinarine or a salt thereof has been reported, but the tolerance to the environmental stress of the plant is reported.
  • a treatment amount of several ppm to several tens of ppm is required, and in order to extract its components from plants, solvent extraction treatment, subcritical water extraction treatment and heat extraction treatment are required. Therefore, industrial mass production is not easy. Further, since the preservation stability is low, it is necessary to perform the treatment a plurality of times in order to exert a stable effect.
  • hesperidin is known to have anti-oxidant action, anti-allergic action, anti-inflammatory action and the like (Patent Document 2, Non-Patent Document 4), but these actions are basically to animals and humans.
  • hesperidin is known to exhibit an antibacterial action, and is known to exhibit a controlling effect against diseases of citrus fruits, rice blast, and cucumber anthrax (Patent Document 3).
  • Patent Document 1 although hesperidin is suggested to have a growth promoting effect such as an increase in the above-ground weight and an increase in the amount of crops by being sprayed on the leaves, the data actually used. Moreover, there is no data on the effect of improving resistance to environmental stress.
  • the present invention improves plant resistance to environmental stress by prophylactically treating the plant before it is subjected to environmental stress, and is stable even under environmental stress conditions, and plant growth that allows healthy and healthy plant growth. It is an object of the present invention to provide a regulator and a method for applying it to plants to improve resistance to environmental stress with high efficiency. Another object of the present invention is to provide a plant growth regulator for plant growth promotion or plant antibacterial activity, which improves plant yield or quality by promoting plant growth or controlling plant diseases. ..
  • the inventors of the present invention can solve the above problems by incorporating hesperidin or a hesperidin derivative or flavonoids as a plant growth regulator, a plant growth promoter, or an active ingredient of an antibacterial agent.
  • the inventors have found the present invention and have reached the present invention.
  • a plant growth regulator for improving tolerance to environmental stress of plants which comprises hesperidin or a hesperidin derivative or flavonoids as an active ingredient.
  • the environmental stress is one or more stress selected from the group consisting of high temperature, low temperature, osmotic pressure, dryness, heavy rain, pH, ultraviolet rays and high salt.
  • the plant is a solanaceous plant, aeriaceous plant, a rhododendron plant, an Asteraceae plant, a leguminous plant, a lily family plant, a rose family plant, a Cucurbitaceae plant, a bindweed family plant, a camellia family plant, a cypress family plant.
  • the flavonoids are one or more flavonoids selected from the group consisting of hesperetin, tangeretin, nobiletin and phloretin.
  • [6] The plant growth regulator according to any one of [1] to [5], wherein the flavonoids are one or more flavonoids selected from the group consisting of tangeretin, nobiletin and phloretin.
  • a method for improving environmental stress tolerance of a plant which comprises a step of applying the plant growth regulator according to any one of [1] to [8] to the plant.
  • the present invention it is possible to improve the resistance of plants to environmental stress by prophylactically treating the plants before they are subjected to environmental stress, and a plant growth regulator that is safe and economical for the human body and is applied to plants. It is possible to provide a plant growth regulator that highly efficiently improves resistance to environmental stress. It is also possible to provide a plant growth regulator for promoting the growth of plants or for the antibacterial action of plants.
  • the plant growth regulator of the present invention contains hesperidin, a hesperidin derivative or flavonoids as an active ingredient. Two or more hesperidins or hesperidin derivatives or flavonoids may be used.
  • the hesperidin derivative includes compounds obtained by substituting one or several (for example, 2 to 3) substituents of hesperidin, and specific examples thereof include ⁇ -monoglucosyl hesperidin, hesperidin methylchalcone, neohesperidin and Neohesperidin dihydrochalcone is exemplified.
  • the flavonoids include compounds having a flavan skeleton and precursors thereof, and examples thereof include hesperetin, tangeretin, nobiletin or phloretin.
  • Hesperidin is more preferably used.
  • Hesperidin has the following structure. Wherein R 1 is H; R 2 is a rutinosyl group; R 3 is H; R 4 is OH; R 5 is H; R 6 is H; R 7 is OH; R 8 is OCH 3 ; R 9 is H is there.
  • Hesperidin may be prepared from natural sources or by chemical synthesis. Natural sources include, but are not limited to, citrus fruits such as orange, lemon, tanjirin, citron. Methods for preparing hesperidin from citrus fruits are known.
  • the hesperidin may be a crudely purified product containing hesperidin or a concentrated liquid, but it is more preferable to use the purified product.
  • the plant growth regulator of the present invention comprises, along with hesperidin, neohesperidin (in the above structural formula, R 1 is H; R 2 is neohesperidosyl group; R 3 is H; R 4 is OH; R 5 is H; R; 6 is H; R 7 is OH; R 8 is OCH 3 ; R 9 is H).
  • hesperidin and neohesperidin enhances the ability of plants to improve tolerance to environmental stress due to synergistic effects.
  • the growth regulating function of the plant growth regulator includes an action of improving environmental stress tolerance of the plant, a plant growth promoting action, and a plant antibacterial action.
  • Environmental stress includes stress caused by high temperature, low temperature, dryness, osmotic pressure, heavy rain, pH, ultraviolet rays, high salt and the like.
  • the optimum temperature for plant growth is around 15 to 30° C., and the optimum temperature varies depending on the plant.
  • the optimum temperature for lettuce, cabbage, and carrot is 15 to 20°C, and that for komatsuna is 20 to 25°C.
  • the high temperature stress refers to a state in which the crop is temporarily or permanently exposed to a high temperature of 5° C. or more higher than the optimum temperature in the summer or in the tropical and subtropical regions.
  • the low temperature stress refers to a state of being temporarily or permanently exposed to, for example, a low temperature condition lower than the optimum temperature by 5° C.
  • Drought stress refers to a condition in which a plant cannot retain a sufficient amount of water for growth and life activity, either temporarily or permanently.
  • the osmotic stress includes both high osmotic stress and low osmotic stress
  • the pH stress includes both acidic and alkaline pH stress.
  • the heavy rain stress is, for example, a stress caused by continuous rain for a certain period or more, for example, one week or more
  • the ultraviolet stress includes a stress exposed to ultraviolet rays for a certain period or more.
  • Examples of high salt stress include stress exposed to salt at a concentration that inhibits or attenuates plant growth.
  • the effect of exposing a plant to environmental stress can be evaluated by the following method.
  • Environmental stress against numerical values such as plant germination rate, plant fresh weight, dry weight, degree of elongation, fruit setting rate, flower setting rate when cultivated under conditions suitable for growth (normal cultivation, no environmental stress)
  • Reduction rate (%) ⁇ (Values of each parameter of plant without addition when grown under conditions suitable for growth)-(Values of each parameter of plant without addition when grown under environmental stress conditions) ⁇ /( Numerical value of each parameter of the plant without additives when cultivated under suitable conditions) x 100
  • the improvement of resistance to environmental stress usually means that plants cannot grow in the presence of environmental stress as described above, are suppressed, do not grow, do not stick fruits, do not bloom, and are in an unfavorable state. Where it falls, it means that such a state is improved by applying hesperidin or the like. Cultivation of plants in the presence of environmental stress, plant growth status, germination rate, plant fresh weight/dry weight, degree of elongation, fruit setting rate, flower setting rate, condition or obstacle visually assessed from appearance The improvement in resistance to environmental stress can be confirmed by being in a better condition than the plants in the control group to which hesperidin or the like is not applied in terms of average degree.
  • the effect of improving resistance of plants to environmental stress due to hesperidin or the like can be evaluated by the following method.
  • plant germination rate When cultivated under environmental stress conditions (without addition of hesperidin etc., with environmental stress), plant germination rate, plant fresh weight/dry weight, elongation degree, fruit setting rate, flower setting rate, etc.
  • plant germination rate When cultivated by applying hesperidin or the like under environmental stress conditions (hesperidin application zone, with environmental stress), plant germination rate, plant fresh weight/dry weight, elongation degree, fruit setting rate, Calculate the rate of increase in numerical values such as flowering rate (see the following formula 2) and improve by 10% or more when each parameter numerical value of the plant without additives when cultivated under environmental stress conditions is 100%.
  • hesperidin and the like can be evaluated as having an effect of improving resistance to environmental stress.
  • the target for improving environmental stress tolerance is not limited to the whole plant body, and may be at least one plant organ such as flower, leaf, fruit, stem or root.
  • Rate of increase (%) (Each parameter value of plant group to which hesperidin is applied when cultivated under environmental stress condition)/(each parameter value of plant group without additive when cultivated under environmental stress condition) x 100
  • the plant's growth can be regulated as a result of improving the tolerance of the plant to environmental stress. Regulation of plant growth includes promotion, maintenance, and improvement of growth.
  • the growth/growth of the whole plant is not limited, and may be the growth of at least one plant organ such as a flower, leaf, fruit, stem or root.
  • Plant growth promotion refers to the growth status of plants, germination rate, fresh weight/dry weight of plants, degree of elongation, fruit setting rate, etc. when cultivated under conditions suitable for growth (normal cultivation, without environmental stress). It means that the plant is in a better condition than the plants in the non-addition group to which hesperidin or the like is not applied in the condition visually evaluated from the flowering rate and the appearance.
  • the plant growth promoting effect of hesperidin or the like can be evaluated by the following method. Germination rate, fresh weight, dry weight, and degree of elongation of the plant when it is cultivated without applying hesperidin, etc.
  • the fruiting rate, the flowering rate, etc., the germination rate of the plant, the fresh weight/dry weight of the plant, the degree of elongation, etc. when hesperidin is applied and cultivated (hesperidin application zone, no environmental stress) By calculating the rate of increase or decrease of numerical values such as fruit setting rate and flower setting rate (see the following formula 3), it can be evaluated that hesperidin and the like have a plant growth promoting effect when the rate is increased by 5% or more. ..
  • the target of the growth promoting effect of the plant is not limited to the whole plant body, and may be at least one plant organ such as flower, leaf, fruit, stem or root.
  • Rate of change(%) ⁇ (Parameter values of plant plants to which hesperidin is applied when cultivated under conditions suitable for growth)-(Parameter values of plant plants without addition when cultivated under conditions suitable for growth) ⁇ /(Values of each parameter of the plant without addition when cultivated under conditions suitable for growth) ⁇ 100
  • the plant growth regulator can be used as an antibacterial agent for plants. For example, it has a controlling effect against rice seedling blight, cucumber powdery mildew, and tomato epidemic.
  • the plant species to be protected in the present invention may be either dicotyledonous plants or monocotyledonous plants and is not particularly limited, and examples thereof include tomatoes, eggplants, peppers, capsicum, solanaceous plants such as potatoes, carrots, celery and the like.
  • Liliaceae plants roses such as strawberries, roses, apples, peaches, pears, cucumbers such as watermelons, melons and cucumbers, bindweed plants such as sweet potatoes, camellia plants such as tea and camellias, cedars, cypresses, etc.
  • Cypresses Eucalyptus and other Fusariumaceae plants, olives and other boletaceae plants, unshiu mandarin, lemon and other citrus plants, grapes and other vine plants, perilla, basil, mint, rosemary, sage and other mint plants Plants, rice, wheat, corn, grass, ryegrass, bentgrass and other grasses, komatsuna, bok choy, broccoli, cabbage and other cruciferous plants, bananas and other basil plants, mango and other sumac plants, papayas, Other tropical plants are included.
  • Hesperidin or the like may be applied to the plant alone, or may be used in combination with a carrier or component that can be used as a plant growth regulator.
  • a spreading agent for example, a spreading agent, a surfactant, a water-soluble polymer, a lubricant, an antioxidant, a preservative and the like may be added.
  • other ingredients are included as long as they do not lose effectiveness as hesperidin etc. and do not adversely affect plants. Can be changed as appropriate.
  • the dosage form of the plant growth regulator is not particularly limited, and examples thereof include powders, granules, powder granules, wettable powders, wettable granules, emulsions, liquids, oils, flowables, emulsions, ALs and microcapsules. Can take the form of.
  • the dosage form of the plant growth regulator is liquid, powder or granules, it can be applied directly, or it can be applied by spraying, spraying, irrigating, etc. after diluting it with a solvent such as water to a predetermined concentration.
  • the plant growth regulator is applied to the soil or medium at the root of the plant or to at least one of the organs (flowers, leaves, fruits, stems or roots) of the plant body to be protected. Be seen.
  • the application can be carried out at the time of sowing of the plant, the early stage of growth, the middle stage of growth, the late stage of growth, before harvest, and (after harvest). Specifically, application is carried out by methods such as soil mixing, medium kneading, irrigation, seed spraying, seed spraying, seed soaking, and foliar spraying.
  • the content of hesperidin or the like (the total of them when two or more kinds are used) in the plant growth regulator is usually 0.1 to 20% by weight in the case of using it after diluting it, preferably 0. It is 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less. In the case of being used without dilution, it is 0.00001 to 0.002% by weight, preferably 0.00005% by weight or more, more preferably 0.0001% by weight or more, and preferably 0.0015% by weight. It is less than or equal to wt %, more preferably less than or equal to 0.001 wt %.
  • the concentration of the plant growth regulator when used is such that the concentration of hesperidin or the like (when two or more kinds are used, the sum thereof) is, for example, 0.1 to 1000 ppm, preferably 1 to 100 ppm, more preferably 1 to 10 ppm.
  • the plant growth regulator can be appropriately diluted so that it can be applied by a method such as soil mixing, medium kneading, foliar spraying or irrigation.
  • Each crop species has an optimal treatment concentration range such as hesperidin that improves resistance to environmental stress. Sufficient effects are obtained when treatment is performed in this concentration range, and no phytotoxicity or growth inhibition tendency is observed. ..
  • the application amount is not particularly limited as long as the effect of improving environmental stress resistance is exhibited, and the application may be performed once or plural times.
  • the concentration of hesperidin or the like is, for example, 0. Environment in which environmental stress may be contained by diluting the plant growth regulator as needed to 1 to 10000 ppm, preferably 1 to 1000 ppm, treating the plant seeds one or more times, and sowing the treated seeds. You can cultivate plants.
  • each crop species has an optimal treatment concentration range such as hesperidin that improves resistance to environmental stress, and when treated at a treatment concentration within this concentration range, sufficient effects are obtained, and there is a tendency for phytotoxicity and growth inhibition. Can't be seen.
  • the applied plant keeps the plant body under the environmental stress or receives the environmental stress. Has the effect of recovering rapidly after
  • the plant growth regulator may be applied while the plant to be protected is under environmental stress.
  • plant growth regulator conventional plant growth regulators, that is, fertilizers, chemical pesticides, microbial pesticides (such as Bacillus agents), and other stress tolerance improvers can be used in combination.
  • Example 1 High temperature stress petri dish test (lettuce)> -Purpose Comparison of effects with other natural products-Method Seed 1 was used to prepare a 2% agar medium (solvent: water) prepared so that the final concentration of hesperidin, etc. was 0.1 ppm. Model No.: D-210-16"). Before the high temperature treatment, lettuce (green wave, Takii seedling) was sown on a 2% agar medium, and the lettuce seedlings 2 days after the seeding were transplanted onto the above-mentioned agar medium containing hesperidin and the like. A mark was made on the tip of the root at the time of transplantation.
  • Example 2 High temperature stress petri dish test (lettuce)> -Objectives Evaluation and method of synergistic effect by mixing neohesperidin
  • the final concentration of hesperidin (Fuji Film Wako Pure Chemicals Co., Ltd., reagent special grade) and neohesperidin (Fuji Film Wako Pure Chemicals Co., Ltd., reagent special grade) shown in Table 2 are shown.
  • hesperidin Fluji Film Wako Pure Chemicals Co., Ltd., reagent special grade
  • Table 2 was filled in a square petri dish (“Model No.: D-210-16” manufactured by AS ONE Co., Ltd.) with 2% plain agar medium (solvent: water) prepared so as to have a specified concentration.
  • the effect was improved.
  • the expected root length when 0.1 ppm each of hesperidin and neohesperidin was added was calculated to be 18.6 mm, and the measured value was 19.9 mm. I was seen. Therefore, it was confirmed that hesperidin and the like have a high effect of improving tolerance of plants to high temperature stress.
  • Example 3 High temperature stress petri dish test (lettuce)> ⁇ Objective Evaluation and method of synergistic effect by mixing ⁇ -carotene, which is a natural product containing citrus, Seeds are shown in Table 3 for hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., special grade reagent) and neohesperidin (Fuji Film Wako Pure Chemical Industries, Ltd.) , Special reagent grade) was filled in a Kaku Petri dish (“Model No.: D-210-16” manufactured by AS ONE Co., Ltd.) with 2% plain agar medium (solvent: water) prepared so that the final concentration became the specified concentration.
  • Kaku Petri dish (“Model No.: D-210-16” manufactured by AS ONE Co., Ltd.) with 2% plain agar medium (solvent: water) prepared so that the final concentration became the specified concentration.
  • Example 4 High temperature stress petri dish test (lettuce)> ⁇ Objective effect comparison and method with flavonoids Seeds were prepared in 2% agar medium (solvent: solvent such as hesperidin (Fuji Film Wako Pure Chemicals Co., Ltd. special grade reagent) shown in Table 4 to a final concentration of 0.1 ppm. Water was filled in a square petri dish ("Model number: D-210-16" manufactured by AS ONE Co., Ltd.). Before the high temperature treatment, lettuce (green wave, Takii seedling) was sown on a 2% agar medium, and the lettuce seedlings 2 days after the seeding were transplanted onto the agar medium containing hesperidin or the like.
  • solvent solvent such as hesperidin (Fuji Film Wako Pure Chemicals Co., Ltd. special grade reagent) shown in Table 4 to a final concentration of 0.1 ppm. Water was filled in a square petri dish ("Model number: D-210-16" manufactured
  • Example 5 High temperature stress petri dish test (rice)> -Objective Evaluation and Method of High Temperature Stress Tolerance Improving Effect on Rice Seeds Rice (Koshihikari) seeds were immersed in hot water at 65°C for 10 minutes and subjected to high temperature treatment. After high-temperature treatment, the seeds were cooled with tap water and air-dried, and then diluted with hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., reagent grade) to a final concentration of 1-100 ppm at room temperature (20- It was immersed at 25° C. for 1 hour. Similarly, a section immersed in distilled water was used as a non-addition section.
  • hesperidin Fluji Film Wako Pure Chemical Industries, Ltd., reagent grade
  • Example 6 High temperature stress petri dish test (cabbage)> -Objective Evaluation and Method of High Temperature Tolerance Improvement Effect on Cabbage Seeds
  • Cabbage (Okina, Takii seedlings) seeds were immersed in hot water at 52°C for 25 minutes and subjected to high temperature treatment. After high-temperature treatment, the seeds were cooled with tap water and air-dried, and then diluted with hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., reagent grade) to a final concentration of 100-1000 ppm at room temperature (20- It was immersed at 25° C. for 1 hour. Similarly, a section immersed in distilled water was used as a non-addition section.
  • hesperidin Fluji Film Wako Pure Chemical Industries, Ltd., reagent grade
  • Example 7 High temperature stress petri dish test (carrot)> -Objective Evaluation and method of high temperature resistance improving effect on carrot seeds
  • Seeds of carrots (US spring lacquer ginseng, Yokohama Ueki) were immersed in hot water at 55°C for 20 minutes for high temperature treatment. After high-temperature treatment, the seeds were cooled with tap water and air-dried, and then diluted with hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., reagent grade) to a final concentration of 100-1000 ppm at room temperature (20- It was immersed at 25° C. for 1 hour. Similarly, a section immersed in distilled water was used as a non-addition section.
  • Example 8 High temperature stress pot test (turf)> ⁇ Purpose ⁇ Evaluation/method of the effect of improving high temperature resistance to bentgrass Bentgrass (pen cloth, snow-marked seedlings) filled with seedling cultivation soil (Katakura Corp. Agri Co., Ltd., Kumiai gardening nursery soil Genkikun No. 1) (soil capacity 100 ml) The seeds were sown evenly on the ground, cultivated for 14 to 20 days, and trimmed to a length of about 1 cm above the ground the day before hesperidin application. Hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example 9 High temperature stress pot test (lettuce)> -Objective Evaluation/method of high temperature resistance improvement effect on lettuce Lettuce (green wave, Takii seedling) was sown on a cell tray filled with nursery soil (Nippon Hibi Co., Ltd., "Naebi N100"). Immediately after seeding, 5 ml per well of a diluted solution (solvent: water) prepared so that the final concentration of hesperidin was 100 to 1000 ppm was irrigated. Similarly, distilled water was irrigated in the non-addition group. High temperature treatment was carried out by cultivating in a greenhouse having an average daytime temperature of 35° C.
  • Example 10 High temperature stress pot test (cabbage)> -Objective Evaluation and Method of High Temperature Tolerance Improvement Effect on Cabbage Cabbage (Okina, Takii seedling) was sown on a cell tray filled with seedling cultivation soil (Nippon Heiwa Co., Ltd., "Naebi N100"). Immediately after seeding, 5 ml of a diluted solution (solvent: water) prepared so that the final concentration of hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., reagent grade) was 100 to 1000 ppm was applied per well.
  • solvent solvent
  • Example 11 High temperature stress field test (turf)> ⁇ Purpose Evaluation/method of improving effect of high temperature stress resistance (countermeasures against summer) at field level
  • Turf High temperature stress field test
  • 0.25 to 1.25 g/wet powder containing 1% hesperidin of the formulation shown in Table 11 was prepared.
  • the foliar application treatment was carried out three times every two weeks from July to September at a rate of m 2 (spraying water amount of 250 ml).
  • m 2 spike cutter
  • N 3. The results are shown in Tables 12 and 13.
  • the root length before spraying in this test was 14.3 cm on average, and the root length during cultivation under high temperature treatment conditions (no addition) was 9.9 cm on average, so the reduction rate was 27%, also in the underground part. Since the dry weight (root dry weight) was 0.25 g on average and 0.09 g on average, the reduction rate was 64%, and it was evaluated that there was an effect of high temperature stress. As is clear from Tables 12 and 13, in the group treated with foliar application of hesperidin, the number of buds, root length and dry weight in the basement (dry weight in the root) were reduced in comparison with the additive-free section after cultivation under high temperature. Was significantly eased. Therefore, it was confirmed that hesperidin has a high effect of improving tolerance of plants to high temperature stress.
  • Example 12 Cold stress field test (turf)> ⁇ Objective Evaluation/method of the effect of improving low temperature resistance against turf
  • the optimum temperature for growth of Koryo turf was 24 to 35° C., and it entered dormancy at 10° C. or lower, so it was judged that there was an effect of low temperature stress.
  • Table 14 in the foliar application of hesperidin, the decrease in the number of buds was remarkably reduced as compared to the non-addition group after the cultivation at low temperature and the control group to which the fertilizer containing no hesperidin was applied. It was Therefore, it was confirmed that hesperidin has a high effect of improving tolerance of plants to low temperature stress.
  • Example 13 Salt stress pot test (cucumber)> ⁇ Purpose Evaluation and method of salt tolerance improvement effect on cucumber Cucumber (half-white-shrimp, Takii seedlings) is filled with pots (soil) filled with seedling cultivation soil (Katakura Corp. Agri Co., Ltd., Kumiai gardening seedling cultivation soil Genkikun 1). The seeds were sown in a volume of 100 ml) and cultivated for 21 days. A diluting solution containing 1% hesperidin having the formulation shown in Table 11 was prepared so that the final concentration of hesperidin would be 1 ppm, and 10 ml per leaf was sprayed on the leaves.
  • the results are shown in Table 15.
  • the fresh weight of the aerial part in the normal cultivation of this test (NaCl 0 mM, non-added group) was 4.2 g, and the fresh fresh weight of the aerial part in the cultivation under high salt concentration conditions (NaCl 75 mM, the non-added group) was Since it was 3.1 g, the reduction rate was 26%, and it was evaluated that there was an influence of salt stress.
  • Example 14 Growth promoting effect (dent corn)> -Objective Evaluation and Method of Growth-Promoting Effect on Dent Corn Dent corn (34V52) was sown in a pot (soil volume: 130 ml) filled with seedling-raising soil (Kataai Corp. Agri Co., Ltd., Kumiai gardening nursery soil Genki-kun No. 1). After confirmation of germination, 5 ml of a diluting solution (solvent: water) prepared so that the final concentration of hesperidin was 1 to 10 ppm was irrigated. It was cultivated in a greenhouse (average daytime temperature 25° C.) for 14 days, and the dry weight above ground and dry weight below ground were evaluated.
  • solvent solvent
  • Example 15 Growth promoting effect (wheat)> ⁇ Purpose Evaluation/method of growth promotion effect on wheat Seeds wheat (Sato no Sora) in a pot (soil volume 100 ml) filled with seedling cultivation soil (Kataai Corp. Agri Co., Ltd., Kumiai gardening cultivation soil Genkikun No. 1). did. After confirmation of germination, 5 ml of a diluting solution (water as a solvent) prepared so that the final concentration of hesperidin was 10 to 33 ppm was irrigated. It was cultivated in a greenhouse (average daytime temperature 25° C.) for 14 days, and the dry weight above ground and dry weight below ground were evaluated. The results are shown in Table 17. As is apparent from Table 17, in the hesperidin-irrigated group, a remarkable increase in dry weight above ground and dry weight below ground was observed. Therefore, it was confirmed that hesperidin has a high effect of promoting the growth of plants.
  • Example 16 Growth promoting effect (lettuce)> ⁇ Evaluation of growth promotion effect on target lettuce (irrigation treatment) -Method Lettuce (green wave) was sown in a cell tray filled with seedling cultivation soil ("Naebi N100" manufactured by Nihon Hyoku Co., Ltd.), two true leaves were developed, and then transplanted into a pot (soil volume 100 ml). After confirmation of germination, 5 ml of a diluting solution (solvent: water) prepared so that the final concentration of hesperidin was 1 to 10 ppm was irrigated.
  • solvent water
  • Example 17 Growth promoting effect (lettuce)> ⁇ Evaluation of growth promotion effect on target lettuce (seed treatment) -Method
  • a lettuce green wave, tachyi seedling
  • a diluent solvent: water
  • the spread lettuce seeds were sown on cell trays filled with seedling cultivation soil (Nippon Hibi Co., Ltd., "Naebi N100").
  • Cultivation was carried out in a greenhouse (average daytime temperature 25° C.) for 28 days, and dry weight above ground and dry weight below ground were evaluated. The results are shown in Table 19.
  • Example 18 Growth promoting effect (cabbage)> ⁇ Evaluation/method of growth promoting effect on target cabbage
  • a cabbage (Okina, Takii seedling) is coated with a diluted solution (solvent is water) prepared so that the final concentration of hesperidin is 5% seed weight of 1 to 100 ppm, and seed spray is applied. did.
  • the sprinkled cabbage seeds were sown on a cell tray filled with seedling-raising soil (Nippon Heiwa Co., Ltd., "Naebi N100"). Cultivation was carried out in a greenhouse (average daytime temperature 25° C.) for 28 days, and dry weight above ground and dry weight below ground were evaluated. The results are shown in Table 20.
  • Example 19 Antibacterial action (Pythium)> ⁇ Purpose ⁇ Evaluation of control effect against rice seedling blight ( Pythium graminicora ) ⁇ Method: Pythium graminicora cells ( 7-10 days after culturing in bentgrass seed medium) are mixed well in the culture soil at a ratio of 0.2% soil weight. , Pot (80 ml soil volume) was filled. Rice seeds (Koshihikari) were sown in pots, and 10 ml of a 10 to 100-fold diluted wettable powder containing hesperidin 1% having the formulation shown in Table 11 (water as a solvent) was irrigated to cover the soil. After germination treatment at 28° C.
  • Example 20 Antibacterial action (powdery mildew)> ⁇ Purpose Evaluation and method of control effect against powdery mildew ( Sphaerotheca cucurbitae ). Cut 3 or more true leaves of cucumber (Half-white sectioned, Takii seedling) at the time of 2 true leaves development, and final concentration of hesperidin 10-1000ppm. Diluted solution (solvent: 0.01% tween 20 solution) adjusted so that 15 ml was sprayed on the leaves. After air-drying, cucumber powdery mildew spores (1 ⁇ 10 4 pores/ml, solvent 0.01% tween 20 solution) were sprayed on the leaves.
  • Example 21 Antibacterial action (tomato epidemic)> ⁇ Purpose ⁇ Evaluation/method of control effect against tomato late blight ( Phythophthora infestans ) 7 to 8 true leaves 7 to 8 true leaves of tomato (Regina) in the development stage Cut and adjust the final concentration of hesperidin to 10 to 100 ppm
  • the liquid (solvent was water) was sprayed on the leaves 10 ml each. After air-drying, zoospores of tomato late blight (1 ⁇ 10 4 zoospores/ml) were sprayed on the leaves. After air drying, it was cultivated in a greenhouse for 14 days, and the control effect was evaluated.
  • Table 23 As is clear from Table 23, the control value calculated by the above formula 3 was 92 in the hesperidin-irrigated group. Therefore, it was confirmed that hesperidin has a control effect against Tomato epidemics.
  • Example 22 pH stress Petri dish test (lettuce)> ⁇ Evaluation/method of the effect of improving pH stress tolerance against lettuce
  • a 2% plain agar medium (pH 4, 7, or 9) prepared so that the final concentration of hesperidin is 0, 0.1 ppm, or 1 ppm is a square petri dish (manufactured by As One Co., Ltd. Model No.: D-210-16").
  • Lettuce seeds green wave, Takii seedlings
  • Lettuce seeds green wave, Takii seedlings
  • the lettuce seedlings 2 days after sowing were placed on the agar medium (pH 4, 7, or 9) to which hesperidin was added at the above-mentioned concentrations.
  • Example 23 Metal stress petri dish test (lettuce)> ⁇ Evaluation/method of the effect of improving tolerance to metal stress against lettuce Contain 2% agar medium (100 ⁇ M AlCl 3 (Fuji Film Wako Pure Chemical Industries, Ltd. special grade reagent)) prepared so that the final concentration of hesperidin is 0 or 1 ppm. ) Was filled in a square petri dish ("Model number: D-210-16" manufactured by AS ONE Co., Ltd.). Lettuce seeds (green wave, Takii seedlings) were sown on a 2% bare agar medium, and the lettuce seedlings 2 days after seeding were transplanted onto the agar medium containing AlCl 3 described above.
  • Example 24 Dry stress petri dish test (tomato)> ⁇ Objective Evaluation/method of improving effect of drought stress tolerance on tomato Seeds of tomato (Momotaro Home, Takii Seedling) are sown in 6 seeds on a shallow petri dish lined with qualitative filter paper, and hesperidin (Fuji Film Wako Pure Chemical Industries, Ltd., Reagent grade) Diluting solution (containing polyethylene glycol 6000 (Fuji Film Wako Pure Chemical Industries, Ltd., reagent grade 1)) prepared to have a final concentration of 0, 0.1 ppm or 1 ppm was uniformly dropped on filter paper in an amount of 4 mL per dish. did. The seeded petri dish was cultured at 28° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本発明は、植物の環境ストレス耐性向上用、植物の生育促進用または植物の抗菌用の植物生育調節剤を提供することを課題とし、ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する植物の環境ストレス耐性向上用、植物の生育促進用または植物の抗菌用の植物生育調節剤を提供する。

Description

植物生育調節剤
 本発明は、植物の環境ストレスに対する耐性を向上させる効果を有する植物生育調節剤に関する。本発明は、さらに、植物の生育促進用、および植物の抗菌用の植物生育調節剤に関する。
 世界人口の爆発的な増加により食糧供給量の増加が急務とされている。しかしながら、作物栽培に使用可能な農耕地は限られていることに加えて、地球温暖化や天候不順等の環境要因により作物収量が損失しているといわれている。作物が受ける環境ストレスの影響を緩和し、作物の生育維持・促進による収量増加および品質の向上をもたらす植物生育調節剤の需要が増加している。
 植物に対して環境ストレス耐性を向上させる手法として、育種やストレス耐性関連遺伝子組換え植物の作製、環境ストレスを緩和する植物生育調節剤が挙げられる。育種や組換え作物については作物種が限られる、栽培場所の制限がある、育種や組み換え作物の作製に時間・コストがかかるという欠点がある。
 これらの点から多種多様な植物に対して施用が可能であり、どのような場所でも使用可能な植物生育調節剤の研究が広く行われており、植物ホルモン(非特許文献1、2)や化学農薬の有効成分といった各分野で研究が進められている。
 しかしながら、従来技術による植物生育調節剤は保存安定性や安全性が低く、特にストレスに対する耐性を向上させる効果が不十分であるという問題点が存在する。例えば、サンギナリンまたはその塩の少なくとも1種を含有する植物由来物を植物に処理することで植物の環境ストレス耐性を向上させる方法(特許文献4)が報告されているが、植物の環境ストレスに対する耐性を安定的に向上させるには、数ppm~数十ppmという処理量が必要であり、またその成分を植物から抽出するためには、溶媒抽出処理、亜臨界水抽出処理および熱抽出処理が必要となるため、工業的な大量生産は容易ではない。また、保全安定性が低いため安定的な効果を発揮するためには複数回の処理が必要となる。
 一方、例えば、フラボノイド類であるゲニステイン、ダイゼイン、ヘスペレチンとナリンゲニンは植物に対して葉面散布することで地上部重量の増加や収穫物量の増加等の生育促進効果をもたらすことが示されているが(特許文献1)、環境ストレスに対する耐性を向上させる効果についての示唆はない。また、乾燥ストレス条件下に置かれた場合に植物がストレス応答として体内にフラボノイド類を蓄積することは知られているが、葉面散布等の外生施用による効果については示されていない(非特許文献3)。
 また、ヘスペリジンは、抗酸化作用、抗アレルギー作用、抗炎症作用等が知られている(特許文献2、非特許文献4)が、これら作用については基本的には動物・人間に対する作用である。また、ヘスペリジンは抗菌作用を示すことが知られており、かんきつ類の病害やイネいもち病、キュウリ炭疽病に対して防除効果を示すことが知られている(特許文献3)。また、特許文献1において、ヘスペリジンは植物に対して葉面散布することで地上部重量の増加や収穫物量の増加等の生育促進効果をもたらすことが示唆されているものの、実際に使用されたデータはなく、環境ストレスに対する耐性を向上させる効果についてのデータも示されていない。
国際公開第2014/160826号 特開平4-295428号公報 特公昭63-19484号公報 特許第5544450号公報
Brian, P. W. "Effects of gibberellins on plant growth and development." Biological Reviews34.1 (1959): 37-77. Bottini, Ruben, Fabricio Cassan, and Patricia Piccoli. "Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase." Applied microbiology and biotechnology 65.5 (2004): 497-503. Nakabayashi, Ryo, et al. "Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids." The Plant Journal 77.3 (2014): 367-379. Galati, E. M., et al. "Biological effects of hesperidin, a citrus flavonoid.(Note I): antiinflammatory and analgesic activity." Farmaco (Societa chimica italiana: 1989)40.11 (1994): 709-712.
 本発明は、環境ストレスがかかる前の植物へ予防的に処理することで植物の環境ストレスに対する耐性を向上し、環境ストレス条件下においても安定的、かつ高効率に植物を健全に生育させる植物生育調節剤およびそれを植物に施用して環境ストレスに対する耐性を高効率で向上させる方法を提供することを課題とする。また、植物の生育を促進または植物の病害を防除することで、作物の収量、または品質を向上させる、植物の生育促進用または植物の抗菌用の植物生育調節剤を提供することを課題とする。
 本発明者らは、鋭意検討を重ねた結果、ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を植物生育調節剤、植物生育促進剤、または抗菌剤の有効成分として含有させることにより上記課題を解決可能であることを見いだし、本発明に至った。
 即ち、本発明は以下の通りである。
[1] ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の環境ストレス耐性向上用の植物生育調節剤。
[2] 前記環境ストレスが、高温、低温、浸透圧、乾燥、多雨、pH、紫外線および高塩からなる群から選ばれる1以上のストレスである、[1]に記載の植物生育調節剤。
[3] 前記植物が、ナス科植物、セリ科植物、アカザ科植物、キク科植物、マメ科植物、ユリ科植物、バラ科植物、ウリ科植物、ヒルガオ科植物、ツバキ科植物、ヒノキ科植物、フトモモ科植物、モクセイ科植物、ミカン科植物、ブドウ科植物、シソ科植物、イネ科植物、アブラナ科植物、バショウ科植物、ウルシ科植物およびパパイヤ科植物からなる群から選ばれる1以上の植物である、[1]または[2]に記載の植物生育調節剤。
[4] 前記ヘスペリジン誘導体が、α-モノグルコシルヘスペリジン、ヘスペリジンメチルカルコン、ネオヘスペリジン、およびネオヘスペリジンジヒドロカルコンからなる群から選ばれる1以上のヘスペリジン誘導体である、[1]~[3]のいずれかに記載の植物生育調節剤。
[5] 前記フラボノイド類が、ヘスペレチン、タンゲレチン、ノビレチンおよびフロレチンからなる群から選ばれる1以上のフラボノイド類である、[1]~[4]のいずれかに記載の植物生育調節剤。
[6] 前記フラボノイド類が、タンゲレチン、ノビレチンおよびフロレチンからなる群から選ばれる1以上のフラボノイド類である、[1]~[5]のいずれかに記載の植物生育調節剤。
[7] ヘスペリジンを有効成分として含有する、[1]~[6]のいずれかに記載の植物生育調節剤。
[8] ヘスペリジンおよびネオヘスペリジンを有効成分として含有する、[1]~[7]のいずれかに記載の植物生育調節剤。
[9] [1]~[8]のいずれかに記載の植物生育調節剤を植物に施用する工程を含む、植物の環境ストレス耐性を向上させる方法。
[10] 前記施用が土壌、培地または植物本体への施用である、[9]に記載の方法。
[11] 前記施用が土壌混和、潅注、種子塗沫、種子浸漬および葉面散布からなる群から選ばれる1以上の施用である、[9]または[10]に記載の方法。
[12] ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の生育促進用の植物生育調節剤。
[13] ヘスペリジンを有効成分として含有する、[12]に記載の植物生育調節剤。
[14] ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の抗菌用の植物生育調節剤。
[15] ヘスペリジンを有効成分として含有する、[14]に記載の植物生育調節剤。
[16] ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類の、植物の環境ストレス耐性向上剤の製造のための使用。
[17] ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類の、植物の環境ストレス耐性を向上させるための使用。
 本発明により、環境ストレスがかかる前の植物へ予防的に処理することで植物の環境ストレスに対する耐性を向上することができ、人体にとって安全で経済的な植物生育調節剤およびそれを植物に施用して環境ストレスに対する耐性を高効率で向上させる植物生育調節剤を提供することができる。また、植物の生育促進用または植物の抗菌用の植物生育調節剤を提供することもできる。
植物生育調節剤をベントグラスに施用した結果を示す写真である(図面代用写真)。
 本発明の植物生育調節剤は、ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する。ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類は2種以上を使用してもよい。
 ヘスペリジン誘導体としては、ヘスペリジンの1または数個(例えば2~3個)の置換基を置換して得られる化合物が含まれ、具体的には、α-モノグルコシルヘスペリジン、ヘスペリジンメチルカルコン、ネオヘスペリジンおよびネオヘスペリジンジヒドロカルコンが例示される。
 フラボノイド類としては、フラバン骨格を有する化合物およびその前駆体が含まれ、例えば、ヘスペレチン、タンゲレチン、ノビレチンまたはフロレチンが例示される。
 この中では、ヘスペリジンを使用することがより好ましい。
 ヘスペリジンは下記の構造を持つ。ここで、RがH;Rがルチノシル基;RがH;RがOH;RがH;RがH;RがOH;RがOCH;RがHである。
Figure JPOXMLDOC01-appb-C000001
 ヘスペリジンは、天然供給源から調製されてもよいし、化学合成によって調製されてもよい。天然供給源としては限定されないが、オレンジ、レモン、タンジリン、シトロンなど柑橘類果物が用いられる。柑橘類果物からのヘスペリジンの調製法は公知である。ヘスペリジンはヘスペリジンを含む粗精製物や濃縮液でもよいが、精製物を使用することがより好ましい。
 本発明の植物生育調節剤は、ヘスペリジンとともに、ネオヘスペリジン(上記の構造式においてRがH;Rがネオヘスペリドシル基;RがH;RがOH;RがH;RがH;RがOH;RがOCH;RがH)を有効成分として組み合わせて使用してもよい。ヘスペリジンおよびネオヘスペリジンを含むことで、相乗効果により植物への環境ストレスに対する耐性向上の能力が増強される。
 植物生育調節剤の生育調節機能は、植物の環境ストレス耐性向上作用、植物の生育促進作用および植物の抗菌作用を含む。
 環境ストレスには、高温、低温、乾燥、浸透圧、多雨、pH、紫外線、高塩などによるストレスが含まれる。
 一般に植物の生育至適温度は15~30℃付近であり、至適温度は植物により異なる。例えば、レタスやキャベツ、ニンジンの至適温度は15~20℃、コマツナは20~25℃である。高温ストレスとは、夏期や熱帯・亜熱帯地域などにおいて、例えば、作物の至適温度より5℃以上高い高温状態に一時的もしくは恒常的に曝される状態をいう。低温ストレスとは、冬期や寒冷地域における例えば、至適温度より5℃以上低い低温状態に一時的もしくは恒常的に曝される状態をいう。
 乾燥ストレスとは、生育・生命活動に十分な水分量を植物体内に保持できない状態に一時的もしくは恒常的に曝される状態をいう。
 浸透圧ストレスは、高浸透圧ストレス、低浸透圧ストレスのいずれも含み、pHストレスは、酸性、アルカリ性のいずれ側のpHストレスも含む。
 多雨ストレスは、一定期間以上、例えば、一週間以上、続く雨によるストレスが例示され、紫外線ストレスは、一定期間以上紫外線に曝されるストレスが挙げられる。
 高塩ストレスは、植物の生育が阻害または減弱するような濃度の塩に曝されるストレスが挙げられる。
 通常、上記のような環境ストレス存在下では植物が生育できない、生育が抑制される、成長しない、果実がつかない、花が咲かない、などの好ましくない状態に陥る。本発明では、植物が環境ストレスに曝される影響を以下の方法により評価することができる。生育に適した条件下で栽培する場合(通常栽培、環境ストレスなし)の植物体の発芽率、植物体新鮮重量、乾燥重量、伸長度合、着果率、着花率等の数値に対する、環境ストレス条件下で栽培する場合(ヘスペリジン等を施用しない無添加区、環境ストレスあり)の植物体の発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率等の数値の減少率を算出し(下記式1参照)、10%以上減少している場合に、植物体は環境ストレスによる影響を受けていると評価することができる。
(式1)
減少率(%)
={(生育に適した条件下で栽培する場合の無添加区植物体の各パラメーター数値)-(環境ストレス条件下で栽培する場合の無添加区植物体の各パラメーター数値)}/(生育に適した条件下で栽培する場合の無添加区植物体の各パラメーター数値)×100
 また、環境ストレスに対する耐性の向上とは、通常、上記のような環境ストレス存在下では植物が生育できない、抑制される、成長しない、果実がつかない、花が咲かない、などの好ましくない状態に陥るところ、ヘスペリジン等を施用することによりそのような状態が改善されることをいう。環境ストレス存在下で植物の栽培を行い、植物体の生育状況、発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率、外観から目視で評価される状態または障害程度平均等において、ヘスペリジン等を施用しない対照区の植物と比較して良好な状態にあることにより、環境ストレスに対する耐性の向上が確認できる。本発明では、ヘスペリジン等による植物の環境ストレスに対する耐性を向上させる効果を以下の方法により評価することができる。環境ストレス条件下で栽培する場合(ヘスペリジン等を施用しない無添加区、環境ストレスあり)の植物体の発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率等の数値に対する、環境ストレス条件下でヘスペリジン等を施用して栽培する場合(ヘスペリジン等施用区、環境ストレスあり)の植物体の発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率等の数値の増加率を算出し(下記式2参照)、環境ストレス条件下で栽培する場合の無添加区植物体の各パラメーター数値を100%としたときに10%以上向上している場合に、ヘスペリジン等は環境ストレスに対する耐性を向上させる効果があると評価することができる。なお、環境ストレス耐性向上の対象となるのは、植物体全体に限定されず、花、葉、果実、茎または根等の植物器官の少なくとも1つであってもよい。
(式2)
増加率(%)
=(環境ストレス条件下で栽培する場合のヘスペリジン等施用区植物体の各パラメーター数値)/(環境ストレス条件下で栽培する場合の無添加区植物体の各パラメーター数値)×100
 植物の環境ストレスに対する耐性を向上させた結果、植物の生育を調節することができる。植物の生育を調節するとは、生育の促進、維持、向上を含む。植物体全体の生育・成長に限定されず、花、葉、果実、茎または根等の植物器官の少なくとも1つの成長であってもよい。
 植物の生育促進とは、生育に適した条件下で栽培する場合(通常栽培、環境ストレスなし)の植物体の生育状況、発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率、外観から目視で評価される状態において、ヘスペリジン等を施用しない無添加区の植物と比較して良好な状態にあることをいう。
 本発明では、ヘスペリジン等による植物の生育促進効果を以下の方法により評価することができる。植物の生育に適した条件下で、ヘスペリジン等を施用せず栽培する(ヘスペリジン等を施用しない無添加区、環境ストレスなし)場合の植物体の発芽率、植物体新鮮重量、乾燥重量、伸長度合、着果率、着花率等の数値に対する、ヘスペリジン等を施用して栽培する(ヘスペリジン等施用区、環境ストレスなし)場合の植物体の発芽率、植物体新鮮重量・乾燥重量、伸長度合等、着果率、着花率等の数値の増減率を算出し(下記式3参照)、5%以上増加している場合に、ヘスペリジン等は植物の生育促進効果があると評価することができる。なお、植物の生育促進効果の対象となるのは、植物体全体に限定されず、花、葉、果実、茎または根等の植物器官の少なくとも1つであってもよい。
(式3)
増減率(%)
={(生育に適した条件下で栽培する場合のヘスペリジン等施用区植物体の各パラメーター数値))-(生育に適した条件下で栽培する場合の無添加区植物体の各パラメーター数値)}/(生育に適した条件下で栽培する場合の無添加区植物体の各パラメーター数値)×100
 植物生育調節剤は、植物の抗菌用として用いることができる。例えば、イネ苗立枯病、キュウリうどんこ病、トマト疫病等に対して防除効果を有する。
 本発明で保護すべき植物種としては、双子葉植物または単子葉植物のいずれでもよく、特に限定されないが、例えば、トマト、ナス、ピーマン、トウガラシ、ジャガイモなどのナス科植物、ニンジン、セロリなどのセリ科植物、ビート、ホウレンソウなどのアカザ科植物、シュンギク、レタス、ゴボウ、ガーベラなどのキク科植物、ダイズ、エンドウ、カンゾウ、アルファルファ、スイートピーなどのマメ科植物、ネギ、タマネギ、ニンニク、チューリップなどのユリ科植物、イチゴ、バラ、リンゴ、モモ、ナシなどのバラ科植物、スイカ、メロン、キュウリなどのウリ科植物、サツマイモなどのヒルガオ科植物、チャ、ツバキなどのツバキ科植物、スギ、ヒノキなどのヒノキ科植物、ユーカリなどのフトモモ科植物、オリーブなどのモクセイ科植物、ウンシュウミカン、レモンなどのミカン科植物、ブドウなどのブドウ科植物、シソ、バジル、ミント、ローズマリー、セージなどのシソ科植物、イネ、コムギ、トウモロコシ、シバ、ライグラス、ベントグラス等のイネ科植物、コマツナ、チンゲンサイ、ブロッコリー、キャベツ等のアブラナ科植物、バナナ等のバショウ科植物、マンゴー等のウルシ科植物、パパイヤ科植物、その他の熱帯性植物などが挙げられる。
 ヘスペリジン等は単独で植物に施用してもよいが、植物生育調節剤に使用可能な担体や成分と組み合わせて使用されてもよい。例えば、展着剤、界面活性剤、水溶性高分子、滑沢剤、酸化防止剤、防腐剤等を添加してもよい。市場での取引状況や保存状況や使用状況に応じて、ヘスペリジン等を単体で含有するだけでなく、ヘスペリジン等としての有効性を失わず、植物に対して悪影響を与えない範囲において、他の成分を加えるなど適宜変更を加えることができる。
 植物生育調節剤の剤型は特に限定されないが、例えば粉剤、粒剤、粉粒剤、水和剤、顆粒水和剤、乳剤、液剤、油剤、フロアブル剤、エマルション剤、AL剤、マイクロカプセル剤などの形態をとることができる。
 植物生育調節剤の剤型が液剤、粉体または粒体である場合には直接散布するか、所定濃度に水等の溶媒で希釈したのち散布、噴霧、潅注等によって施用することができる。
 植物生育調節剤の施用は、植物体の根元の土壌や培地に対して行われるか、保護すべき植物本体の器官(花、葉、果実、茎または根など)の少なくとも1つに対して行われる。時期としては植物の播種時、生育初期、生育中期、生育後期、収穫前、(収穫後)の各時期に施用ができる。具体的には、施用は土壌混和、培地練り込み、潅注、種子塗沫、種子散布、種子浸漬、葉面散布などの方法で実施される。
 植物生育調節剤中のヘスペリジン等(2種以上を用いるときはそれらの合計)の含有量は、希釈して使用される態様の場合は、通常0.1~20重量%であり、好ましくは0.5重量%以上、より好ましくは1重量%以上、また、好ましくは15重量%以下、より好ましくは10重量%以下である。希釈せずに使用される様態の場合は、0.00001~0.002重量%であり、好ましくは0.00005重量%以上、より好ましくは0.0001重量%以上、また、好ましくは0.0015重量%以下、より好ましくは0.001重量%以下である。
 植物生育調節剤の使用時の濃度は、ヘスペリジン等の濃度(2種以上を用いるときはそれらの合計)が、例えば、0.1~1000ppm、好ましくは1~100ppm、より好ましくは1~10ppmになるよう植物生育調節剤を適宜希釈し、例えば、土壌混和、培地練り込み、葉面散布または潅注等の方法により、施用することができる。
 各作物種に環境ストレスに対する耐性を向上させるヘスペリジン等の最適処理濃度範囲が存在し、この濃度範囲の処理濃度で処理した場合に十分な効果が得られ、薬害や生育抑制傾向などは見られない。
 施用量は環境ストレス耐性向上効果が発揮される限り特に制限されず、施用は1回でも複数回でもよい。
 なお、種子塗沫、種子散布、種子浸漬のように、植物の種子を植物生育調節剤で処理する場合、ヘスペリジン等の濃度(2種以上を用いるときはそれらの合計)が、例えば、0.1~10000ppm、好ましくは1~1000ppmになるよう植物生育調節剤を必要に応じて希釈し、1または複数回、植物の種子を処理し、処理後の種子を播種して環境ストレスを含みうる環境にて植物を栽培することができる。
 散布処理時と同じく各作物種に環境ストレスに対する耐性を向上させるヘスペリジン等の最適処理濃度範囲が存在し、この濃度範囲の処理濃度で処理した場合に十分な効果が得られ、薬害や生育抑制傾向が見られない。
 保護すべき植物が環境ストレスを受ける前に植物生育調節剤を予防的に施用することにより、施用された植物は、環境ストレスを受けている間に植物体を維持し続け、または環境ストレスを受けた後に急速に回復する効果を有する。このように、植物生育調節剤を前もって植物に施用することで、環境ストレス耐性を向上させることができるため、保護すべき植物、特に農作物や園芸植物などを簡便に環境ストレスから保護することができる。また、植物生育調節剤を施用する時期は、保護すべき植物が環境ストレスを受けている間であってもよい。
 また、植物生育調節剤は、従来の植物生育調節剤、すなわち肥料、化学農薬、微生物農薬(バチルス剤等)、他のストレス耐性向上剤などを併用することができる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1: 高温ストレスシャーレ試験(レタス)>
・目的    他天然物との効果比較
・方法
 種子を、表1に示すヘスペリジン等の終濃度が0.1ppmとなるよう調製した2%素寒天培地(溶媒は水)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。高温処理前に2%の素寒天培地にレタス(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述のヘスペリジン等添加寒天培地上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、42℃に1.5時間おき、高温処理を行った。高温処理後、同じく23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。各区の測定数はN=15である。結果を表1に示す。
 本試験の通常栽培時の根長は平均17.5mm、高温処理条件下での栽培時(無添加区)の根長は平均9.3mmであることから、その減少率は47%であり、高温ストレスによる影響があったと評価した。表1から明らかなように、ヘスペリジン等を添加した区では、高温処理後に無添加区と比較して、根長の伸長抑制が著しく緩和されていた。従ってヘスペリジン等に植物の高温ストレスに対する耐性を向上させる効果があることが認められた。
Figure JPOXMLDOC01-appb-T000002
<実施例2: 高温ストレスシャーレ試験(レタス)>
・目的    ネオヘスペリジン混合による相乗効果の評価
・方法
 種子を、表2に示すヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)およびネオヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)の終濃度が指定濃度となるよう調製した2%素寒天培地(溶媒は水)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。高温処理前に2%の素寒天培地にレタス(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述のヘスペリジン等を添加寒天培地上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、42℃に1.5時間おき、高温処理を行った。高温処理後、同じく23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。また、通常栽培時のヘスペリジンとネオヘスペリジンの混合による効果を評価するため、高温処理を行わず、同じく23℃にて培養し、根長の伸長を評価した。ヘスペリジンとネオヘスペリジンの混合施用による相乗効果を確認するため、コルビーの式(Colby, S.R. "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds, 15, pp. 20-22, 1967)を用いて、混合施用により期待される根長を決定し、実測された根長と比較した。コルビーの式は以下の通りである。
コルビーの式: E=(x+y)-(x・y)/100
E:期待される根長
x:ヘスペリジン単体施用時の根長
y:ネオヘスペリジン単体施用時の根長
各区の測定数はN=15である。結果を表2に示す。
 本試験の通常栽培時の根長は平均17.1mm、高温処理条件下での栽培時(無添加区)の根長は平均4.4mmであることから、その減少率は74%であり、高温ストレスによる影響があったと評価した。表2から明らかなように、ヘスペリジンやネオヘスペリジンを添加した区では、高温処理後に無添加区と比較して、根長の伸長抑制が著しく緩和されていた。ヘスペリジン、ネオヘスペリジンを各0.1ppm、0.03ppm混合添加時の期待される根長をコルビーの式より算出すると15.3mmであり、実測値は18.1mmであることから混合添加による相乗的な効果の向上が見られた。同様に、ヘスペリジン、ネオヘスペリジンを各0.1ppm混合添加時の期待される根長を算出すると18.6mmであり、実測値は19.9mmであることから混合添加による相乗的な効果の向上が見られた。従ってヘスペリジン等に植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。また、ヘスペリジンとネオヘスペリジンを混合することにより単体添加時と比較して、植物の高温ストレスに対する耐性を向上させるより高い相乗的な効果を示すことが認められた(太字で示した添加区)。
Figure JPOXMLDOC01-appb-T000003
<実施例3: 高温ストレスシャーレ試験(レタス)>
・目的    柑橘含有天然物であるβ‐カロテン混合による相乗効果の評価
・方法
 種子を、表3に示すヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)およびネオヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)の終濃度が指定濃度となるよう調製した2%素寒天培地(溶媒は水)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。高温処理前に2%の素寒天培地にレタス(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述のヘスペリジン等を添加寒天培地上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、42℃に1.5時間おき、高温処理を行った。高温処理後、同じく23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。
各区の測定数はN=15である。結果を表3に示す。
 本試験の通常栽培時の根長は平均20.8mm、高温処理条件下での栽培時(無添加区)の根長は平均6.2mmであることから、その減少率は70%であり、高温ストレスによる影響があったと評価した。表3から明らかなように、ヘスペリジンやネオヘスペリジンを添加した区では、高温処理後に無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジン等に植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。一方でヘスペリジンとβ‐カロテンを混合添加した場合に各単体添加時と比較して増加率の低下が見られた。ヘスペリジンと柑橘が含有し、果皮抽出物に含まれると想定されるβ‐カロテンを0.1ppmずつ混合することにより単体施用時と比較して、植物の高温ストレスに対する低下しており、濃度によって効果が拮抗することが認められた。
Figure JPOXMLDOC01-appb-T000004
<実施例4: 高温ストレスシャーレ試験(レタス)>
・目的    フラボノイド類との効果比較
・方法
 種子を、表4に示すヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)等の終濃度が0.1ppmとなるよう調製した2%素寒天培地(溶媒は水)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。高温処理前に2%の素寒天培地にレタス(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述のヘスペリジン等を添加した寒天培地上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、42℃に1.5時間おき、高温処理を行った。高温処理後、同じく23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。各区の測定数はN=15である。結果を表4に示す。
 本試験の通常栽培時の根長は平均21.7mm、高温処理条件下での栽培時(無添加区)の根長は平均6.7mmであることから、その減少率は69%であり、高温ストレスによる影響があったと評価した。表4から明らかなように、ヘスペリジンを添加した区では、高温処理後に無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジン等に植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000005
<実施例5: 高温ストレスシャーレ試験(イネ)>
・目的    イネ種子に対する高温ストレス耐性向上効果の評価
・方法
 イネ(コシヒカリ)の種子を65℃の熱水に10分間浸漬し、高温処理を行った。高温処理後、種子を水道水で冷却、風乾後、ヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が1~100ppmとなるよう調製した希釈液(溶媒は水)に室温(20~25℃)にて1時間浸漬した。また、同じく蒸留水に浸漬した区を無添加区とした。浸漬処理後、風乾させた種子を、定性濾紙を敷いた浅型シャーレに20粒ずつ播種し、蒸留水をシャーレあたり5mLずつ濾紙に均一に滴下した。播種したシャーレは恒温器(EYELA社製「型番:FLI-2010A」)で28℃にて5日間培養し、発芽率を評価した。各区の測定数はN=3である。
 結果を表5に示す。本試験の通常栽培時の発芽率は平均90.2%、高温処理条件下での栽培時(無添加区)の発芽率は平均58.8%であることから、その減少率は35%であり、高温ストレスによる影響があったと評価した。表5から明らかなように、ヘスペリジンに浸漬した区では、通常播種時(熱水浸漬なし)の発芽率と比較して高温処理後に同等の発芽率を示し、また対照剤と比較して発芽率の低下が著しく緩和されていた。従ってヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000006
<実施例6: 高温ストレスシャーレ試験(キャベツ)>
・目的    キャベツ種子に対する高温耐性向上効果の評価
・方法
 キャベツ(おきな、タキイ種苗)の種子を52℃の熱水に25分間浸漬し、高温処理を行った。高温処理後、種子を水道水で冷却、風乾後、ヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が100~1000ppmとなるよう調製した希釈液(溶媒は水)に室温(20~25℃)にて1時間浸漬した。また、同じく蒸留水に浸漬した区を無添加区とした。浸漬処理後、風乾させた種子を、定性濾紙を敷いた浅型シャーレに20粒ずつ播種し、蒸留水をシャーレあたり3mLずつ濾紙に均一に滴下した。播種したシャーレは恒温器(EYELA社製「型番:FLI-2010A」)で23℃にて4日間培養し、発芽率およびランダムに選抜した幼苗の根長を評価した。各区の測定数は、発芽率はN=3、根長はN=15である。
 結果を表6に示す。本試験の通常栽培時の発芽率は平均93.3%、高温処理条件下での栽培時(無添加区)の発芽率は平均52.1%であることから、その減少率は44%であり、同じく各根長は平均53.8mm、平均23.0mmであることから、その減少率は57%であり、高温ストレスによる影響があったと評価した。表6から明らかなように、ヘスペリジンに浸漬した区では、高温処理後に無添加区と比較して発芽率の低下が著しく緩和されていた。また、根長についても通常時(熱水浸漬なし)の根長と比較して同等程度の根長を示し、無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000007
<実施例7: 高温ストレスシャーレ試験(ニンジン)>
・目的    ニンジン種子に対する高温耐性向上効果の評価
・方法
 ニンジン(US春蒔五寸人参、横浜植木)の種子を55℃の熱水に20分間浸漬し、高温処理を行った。高温処理後、種子を水道水で冷却、風乾後、ヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が100~1000ppmとなるよう調製した希釈液(溶媒は水)に室温(20~25℃)にて1時間浸漬した。また、同じく蒸留水に浸漬した区を無添加区とした。浸漬処理後、風乾させた種子を、定性濾紙を敷いた浅型シャーレに20粒ずつ播種し、蒸留水をシャーレあたり3mLずつ濾紙に均一に滴下した。播種したシャーレは恒温器(EYELA社製「型番:FLI-2010A」)で23℃にて7日間培養し、発芽率を評価した。各区の測定数は、N=3である。
 結果を表7に示す。本試験の通常栽培時の発芽率は平均75.0%、高温処理条件下での栽培時(無添加区)の発芽率は平均31.7%であることから、その減少率は58%であり、高温ストレスによる影響があったと評価した。表7から明らかなように、ヘスペリジンに浸漬した区では、高温処理後に無添加区と比較して発芽率の低下が著しく緩和されていた。従ってヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000008
<実施例8: 高温ストレスポット試験(芝)>
・目的    ベントグラスに対する高温耐性向上効果の評価
・方法
 ベントグラス(ペンクロス、雪印種苗)を、育苗培土(片倉コープアグリ株式会社製、くみあい園芸用育苗培土げんきくん1号)を充填したポット(土容量100ml)に均一に播種し、14~20日間栽培し、ヘスペリジン施用前日に地上部約1cmの長さで刈りそろえた。ヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が0.06~0.6ppmとなるよう調整した希釈液を1ポットあたり10mlずつ潅注処理した。無添加区は蒸留水を同じく潅注処理した。ガラス温室内(日中平均気温50℃)で7日間栽培することで高温処理を行ない、地上部新鮮重量を評価した。各区の測定数は、N=3である。
 結果を表8に示す。本試験の通常栽培時の地上部新鮮重量は平均3.7g、高温処理条件下での栽培時(無添加区)の地上部新鮮重量は平均2.2gであることから、その減少率は41%であり、高温ストレスによる影響があったと評価した。表8から明らかなように、ヘスペリジンを潅注処理した区では、高温処理後に無添加区と比較して地上部新鮮重量の減少が著しく緩和されていた。また、図1から明らかなようにヘスペリジンを潅注処理した区では、地上部の枯死は見られなかった。従って、ヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000009
<実施例9: 高温ストレスポット試験(レタス)>
・目的    レタスに対する高温耐性向上効果の評価
・方法
 レタス(グリーンウェーブ、タキイ種苗)を、育苗培土(日本肥糧株式会社製、「苗美人N100」)を充填したセルトレーに播種した。播種直後にヘスペリジン終濃度が100~1000ppmとなるよう調製した希釈液(溶媒は水)を1ウェルあたり5mlずつ潅注処理した。無添加区は蒸留水を同じく潅注処理した。日中平均気温35℃の温室内で20日間栽培することで高温処理を行い、地上部新鮮重量および地下部新鮮重量を評価した。各区の測定数は、N=15~20である。
 結果を表9に示す。本試験の通常栽培時の地上部新鮮重量は平均0.82g、高温処理条件下での栽培時(無添加区)の地上部新鮮重量は平均0.66gであることから、その減少率は20%、同じく地下部新鮮重量は平均0.33g、平均0.24gであることから、その減少率は27%であり、高温ストレスによる影響があったと評価した。表9から明らかなように、ヘスペリジンを潅注処理した区では、高温処理後に顕著な無添加区と比較して地上部新鮮重量、地下部新鮮重量の減少が著しく緩和されていた。従って、ヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000010
<実施例10: 高温ストレスポット試験(キャベツ)>
・目的    キャベツに対する高温耐性向上効果の評価
・方法
 キャベツ(おきな、タキイ種苗)を、育苗培土(日本肥糧株式会社製、「苗美人N100」)を充填したセルトレーに播種した。播種直後にヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が100~1000ppmとなるよう調製した希釈液(溶媒は水)を1ウェルあたり5mlずつ潅注処理した。温室内(日中平均気温35℃)で30日間栽培し、地上部生重量および地下部生重量を評価した。各区の測定数は、N=15~20である。
 結果を表10に示す。本試験の通常栽培時の地上部新鮮重量は平均0.91g、高温処理条件下での栽培時(無添加区)の地上部新鮮重量は平均0.66gであることから、その減少率は27%、同じく地下部新鮮重量は平均0.37g、平均0.24gであることから、その減少率は35%であり、高温ストレスによる影響があったと評価した。表10から明らかなように、ヘスペリジンを潅注処理した区では、高温処理後に無添加区と比較して地上部新鮮重量の減少が著しく緩和されていた。従って、ヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000011
<実施例11: 高温ストレス圃場試験(芝)>
・目的    圃場レベルでの高温ストレス耐性向上効果(夏越し対策)の評価
・方法
 西日本グリーン研究所内圃場にて表11に示す製剤組成のヘスペリジン1%含有水和剤を0.25~1.25g/m(散布水量250ml)の割合で7月~9月にかけて隔週で計3回葉面散布処理した。最終散布から1か月後、ホールカッターで芝を回収し、芽数および根長、根乾燥重量を測定した。各区の測定数は、N=3である。
 結果を表12、13に示す。本試験の散布前の根長は平均14.3cm、高温処理条件下での栽培時(無添加区)の根長は平均9.9cmであることから、その減少率は27%、同じく地下部乾燥重量(根部乾重量)は平均0.25g、平均0.09gであることから、その減少率は64%であり、高温ストレスによる影響があったと評価した。表12、13から明らかなように、ヘスペリジンを葉面散布処理した区では、高温下で栽培後の無添加区と比較して芽数、根長および地下部乾燥重量(根部乾重量)の減少が著しく緩和されていた。従って、ヘスペリジンに植物の高温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
<実施例12: 低温ストレス圃場試験(芝)>
・目的    芝に対する低温耐性向上効果の評価
・方法
 研究所内にて表11に示す製剤組成のヘスペリジン1%含有水和剤を0.15~0.75g/m(散布水量250ml)の割合で2017年10月下旬~12月下旬にかけて隔週で計4回葉面散布処理した。最終散布から3か月後、ホールカッターで芝を回収し、芽数を測定した。各区の測定数は、N=3である。
 結果を表14に示す。2017年11月~2018年3月の最高気温は16.6℃、最低気温は-3.7℃、平均気温は6.0℃であった。高麗芝の生育至適温度が24~35℃であり、10℃以下で休眠に入ることから、低温ストレスによる影響があったと判断した。表14から明らかなように、ヘスペリジンを葉面散布処理した区では、低温下で栽培後に無添加区およびヘスペリジンを含有しない肥料を施用した対照区と比較して芽数の減少が著しく緩和されていた。従って、ヘスペリジンに植物の低温ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000015
<実施例13: 塩ストレスポット試験(キュウリ)>
・目的    キュウリに対する塩耐性向上効果の評価
・方法
 キュウリ(半白節成、タキイ種苗)を、育苗培土(片倉コープアグリ株式会社製、くみあい園芸用育苗培土げんきくん1号)を充填したポット(土容量100ml)に播種し、21日間栽培した。表11に示す製剤組成のヘスペリジン1%含有水和剤をヘスペリジン終濃度が1ppmとなるよう調製した希釈液を1ポットあたり10mlずつ葉面散布した。キュウリをNaCl終濃度が75mMに調整した希釈液中に静置し、底面吸水させた。温室内(20~25℃)で7日間、栽培し、地上部生重量を測定した。各区の測定数は、N=6である。
 結果を表15に示す。本試験の通常栽培時(NaCl 0mM、無添加区)の地上部新鮮重量は4.2gであり、高塩濃度条件下での栽培時(NaCl 75mM、無添加区)の地上部新鮮重量はで3.1gであることから、その減少率は26%であり、塩ストレスによる影響があると評価した。表15から明らかなように、ヘスペリジンを葉面散布処理した区では、塩ストレス処理後に無添加区と比較して地上部新鮮重量の減少が著しく緩和されていた。従って、ヘスペリジンに植物の塩ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000016
<実施例14: 生育促進効果(デントコーン)>
・目的    デントコーンに対する生育促進効果の評価
・方法
 デントコーン(34V52)を、育苗培土(片倉コープアグリ株式会社製、くみあい園芸用育苗培土げんきくん1号)を充填したポット(土容量130ml)に播種した。発芽確認後、ヘスペリジン終濃度1~10ppmとなるよう調製した希釈液(溶媒は水)を5mlずつ潅注処理した。温室内(日中平均気温25℃)で14日間栽培し、地上部乾燥重量および地下部乾燥重量を評価した。
 結果を表16に示す。表16から明らかなように、ヘスペリジンを潅注処理区では、顕著な地上部乾燥重量および地下部乾燥重量の増加が見られた。従って、ヘスペリジンに植物の生育を促進させる高い効果があることが認められた。また、最も高濃度である10ppm潅注処理時は無添加区と比較して地上部・地下部重量の顕著な増加は見られなかった。
Figure JPOXMLDOC01-appb-T000017
<実施例15: 生育促進効果(コムギ)>
・目的    コムギに対する生育促進効果の評価
・方法
 コムギ(さとのそら)を、育苗培土(片倉コープアグリ株式会社製、くみあい園芸用育苗培土げんきくん1号)を充填したポット(土容量100ml)に播種した。発芽確認後、ヘスペリジン終濃度10~33ppmとなるよう調製した希釈液(溶媒は水)を5mlずつ潅注処理した。温室内(日中平均気温25℃)で14日間栽培し、地上部乾燥重量および地下部乾燥重量を評価した。
 結果を表17に示す。表17から明らかなように、ヘスペリジンを潅注処理区では、顕著な地上部乾燥重量および地下部乾燥重量の増加が見られた。従って、ヘスペリジンに植物の生育を促進させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000018
<実施例16: 生育促進効果(レタス)>
・目的    レタスに対する生育促進効果の評価(潅注処理)
・方法
 レタス(グリーンウェーブ)を、育苗培土(日本肥糧株式会社製、「苗美人N100」)を充填したセルトレーに播種し、本葉2葉展開後、ポット(土容量100ml)に移植した。発芽確認後、ヘスペリジン終濃度1~10ppmとなるよう調製した希釈液(溶媒は水)を5mlずつ潅注処理した。温室内(日中平均気温25℃)で14日間栽培し、地上部乾燥重量および地下部乾燥重量を評価した。
 結果を表18に示す。表18から明らかなように、ヘスペリジンを潅注処理区では、顕著な地上部乾燥重量および地下部乾燥重量の増加が見られた。従って、ヘスペリジンに植物の生育を促進させる高い効果があることが認められた。また、添加濃度低下に伴い、地上部・地下部重量の低下傾向が見られており、最も低濃度である1ppm潅注処理時には地上部重量の顕著な増加は見られなかった。
Figure JPOXMLDOC01-appb-T000019
<実施例17: 生育促進効果(レタス)>
・目的    レタスに対する生育促進効果の評価(種子処理)
・方法
 レタス(グリーンウェーブ、タキイ種苗)に5%種子重量のヘスペリジン終濃度1~100ppmとなるよう調製した希釈液(溶媒は水)を塗布し、種子塗沫した。塗沫済レタス種子を、育苗培土(日本肥糧株式会社製、「苗美人N100」)を充填したセルトレーに播種した。温室内(日中平均気温25℃)で28日間栽培し、地上部乾燥重量および地下部乾燥重量を評価した。
 結果を表19に示す。表19から明らかなように、ヘスペリジンを潅注処理区では、顕著な地上部乾燥重量および地下部乾燥重量の増加が見られた。従って、ヘスペリジンに植物の生育を促進させる高い効果があることが認められた。また、添加濃度低下に伴い、地上部・地下部重量の低下傾向が見られており、最も低濃度である1ppm潅注処理時には地上部重量の顕著な増加は見られなかった。
Figure JPOXMLDOC01-appb-T000020
<実施例18: 生育促進効果(キャベツ)>
・目的    キャベツに対する生育促進効果の評価
・方法
 キャベツ(おきな、タキイ種苗)に5%種子重量のヘスペリジン終濃度1~100ppmとなるよう調製した希釈液(溶媒は水)を塗布し、種子塗沫した。塗沫済キャベツ種子を、育苗培土(日本肥糧株式会社製、「苗美人N100」)を充填したセルトレーに播種した。温室内(日中平均気温25℃)で28日間栽培し、地上部乾燥重量および地下部乾燥重量を評価した。
 結果を表20に示す。表20から明らかなように、ヘスペリジンを潅注処理区では、顕著な地上部乾燥重量および地下部乾燥重量の増加が見られた。従って、ヘスペリジンに植物の生育を促進させる高い効果があることが認められた。最も高濃度である100ppm潅注処理時は無添加区と比較して地上部・地下部重量の顕著な増加は見られなかった。キャベツにおける最適添加濃度は100ppmより低濃度であると判断した。
Figure JPOXMLDOC01-appb-T000021
<実施例19: 抗菌作用(ピシウム)>
・目的    イネ苗立枯病(Pythium graminicora)に対する防除効果の評価
・方法
 0.2%土重量の割合で培養土にPythium graminicora菌体(ベントグラス種子培地で培養後7~10日)をよく混和し、ポット(土容量80ml)に充填した。ポットへイネ種子(コシヒカリ)を播種し、表11に示す製剤組成のヘスペリジン1%含有水和剤を10~100倍希釈液(溶媒は水)を10mlずつ潅注処理し、覆土した。恒温器(EYELA社製「型番:FLI-2010A」)で28℃にて3日間催芽処理後、4℃にて3日間静置し、その後、30℃にて3日間栽培した。30℃処理後、ポットは温室内で7日間栽培し、防除効果を評価した。発病程度は、以下の基準に従って評価した。
(発病程度基準)
0・・・健常苗
1・・・地上部・地下部生育がやや抑制されている
2・・・地上部・地下部生育が抑制されている
3・・・地上部・地下部生育が著しく抑制されている
4・・・枯死
 結果を表21に示す。表21から明らかなように、ヘスペリジンを潅注処理区では、無添加区と比較して発病苗率および発病度が抑制された。従って、ヘスペリジンにイネ苗立枯病菌に対する防除効果があることが認められた。
Figure JPOXMLDOC01-appb-T000022
<実施例20: 抗菌作用(うどんこ病)>
・目的    キュウリうどんこ病(Sphaerotheca cucurbitae)に対する防除効果の評価
・方法
 本葉2葉展開期のキュウリ(半白節成、タキイ種苗)の本葉3葉以上をカットし、ヘスペリジン終濃度10~1000ppmとなるよう調整した希釈液(溶媒は0.01%tween20液)を15mlずつ葉面散布した。風乾後、キュウリうどんこ病胞子(1x104 spores/ml、溶媒は0.01%tween20液)を葉面散布した。風乾後、温室内で14日間栽培し、防除効果を評価した。
 結果を表22に示す。表22から明らかなように、ヘスペリジン潅注処理区では、下記式3で算出される防除価が68を示した。
(式3)
  防除価=100-(添加区の被害/無添加区の被害)×100
 従って、ヘスペリジンにキュウリうどんこ病に対する防除効果があることが認められた。
Figure JPOXMLDOC01-appb-T000023
<実施例21: 抗菌作用(トマト疫病)>
・目的    トマト疫病(Phythophthora infestans)に対する防除効果の評価
・方法
 本葉7~8葉展開期のトマト(レジナ)の本葉7葉以上をカットし、ヘスペリジン終濃度10~100ppmとなるよう調整した希釈液(溶媒は水)を10mlずつ葉面散布した。風乾後、トマト疫病遊走子(1x10zoospores/ml)を葉面散布した。風乾後、温室内で14日間栽培し、防除効果を評価した。
 結果を表23に示す。表23から明らかなように、ヘスペリジンを潅注処理区では、上記式3で算出される防除価が92を示した。従って、ヘスペリジンにトマト疫菌に対する防除効果があることが認められた。
Figure JPOXMLDOC01-appb-T000024
<実施例22: pHストレスシャーレ試験(レタス)>
・目的    レタスに対するpHストレス耐性向上効果の評価
・方法
 ヘスペリジンの終濃度が0、0.1ppmまたは1ppmとなるよう調製した2%素寒天培地(pH4、7または9)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。2%素寒天培地(pH7)にレタス種子(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述各濃度でヘスペリジンを添加した寒天培地(pH4、7または9)上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。各区の測定数はN=15である。結果を表24に示す。
 本試験の通常栽培時(pH7)の根長は平均19.37mm、pH4培養条件下での栽培時(無添加区)の根長は平均14.51mmであり、pH9培養条件下での栽培時(無添加区)の根長は平均15.38mmであることから、その減少率はそれぞれ25%、21%であり、酸性又はアルカリ性ストレスによる影響があったと評価した。表24から明らかなように、ヘスペリジンを添加した区では、酸性またはアルカリ性条件で培養後に無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジンに植物のpHストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000025

 
<実施例23: 金属ストレスシャーレ試験(レタス)>
・目的    レタスに対する金属ストレス耐性向上効果の評価
・方法
 ヘスペリジンの終濃度が0または1ppmとなるよう調製した2%素寒天培地(100μMのAlCl(富士フィルム和光純薬株式会社、試薬特級)を含有)を角シャーレ(アズワン社製「型番:D-210-16」)に充填した。2%素寒天培地にレタス種子(グリーンウェーブ、タキイ種苗)を播種し、播種後2日目のレタス幼苗を上述のAlClを含有する寒天培地上に移植した。移植時の根の先端に印をつけた。移植したシャーレを恒温器(EYELA社製「型番:FLI-2010A」)内にて底面に対して45度の角度で静置し、23℃にて2日間培養し、移植時の幼苗の根の先端からの根長の伸長を評価した。各区の測定数はN=15である。結果を表25に示す。
 本試験の通常栽培時の根長は平均26.94mm、AlCl添加条件下での栽培時(無添加区)の根長は平均16.62mmであることから、その減少率は38%であり、金属ストレスによる影響があったと評価した。表25から明らかなように、ヘスペリジンを添加した区では、金属存在下で培養後に無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジンに植物の金属ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000026
<実施例24: 乾燥ストレスシャーレ試験(トマト)>
・目的    トマトに対する乾燥ストレス耐性向上効果の評価
・方法
 トマト(桃太郎ホーム、タキイ種苗)の種子を、定性濾紙を敷いた浅型シャーレに6粒ずつ播種し、ヘスペリジン(富士フィルム和光純薬株式会社、試薬特級)終濃度が0、0.1ppmまたは1ppmとなるよう調製した希釈液(ポリエチレングリコール6000(富士フィルム和光純薬株式会社、試薬1級)を含有)をシャーレあたり4mLずつ濾紙に均一に滴下した。播種したシャーレは恒温器(EYELA社製「型番:FLI-2010A」)で28℃にて12日間培養し、根長を評価した。各区の測定数はN=3である。
 結果を表26に示す。本試験の通常栽培時の根長は平均53.14mm、ポリエチレングリコールによる疑似乾燥条件下での栽培時(無添加区)の根長は平均23.29mmであることから、その減少率は56%であり、乾燥ストレスによる影響があったと評価した。表26から明らかなように、ヘスペリジンを添加した区では、通常播種時(ポリエチレングリコールなし)の根長と比較して乾燥処理後に同等の根長を示した。また、無添加区と比較して根長の伸長抑制が著しく緩和されていた。従ってヘスペリジンに植物の乾燥ストレスに対する耐性を向上させる高い効果があることが認められた。
Figure JPOXMLDOC01-appb-T000027

Claims (17)

  1.  ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の環境ストレス耐性向上用の植物生育調節剤。
  2.  前記環境ストレスが、高温、低温、浸透圧、乾燥、多雨、pH、紫外線および高塩からなる群から選ばれる1以上のストレスである請求項1に記載の植物生育調節剤。
  3.  前記植物が、ナス科植物、セリ科植物、アカザ科植物、キク科植物、マメ科植物、ユリ科植物、バラ科植物、ウリ科植物、ヒルガオ科植物、ツバキ科植物、ヒノキ科植物、フトモモ科植物、モクセイ科植物、ミカン科植物、ブドウ科植物、シソ科植物、イネ科植物、アブラナ科植物、バショウ科植物、ウルシ科植物およびパパイヤ科植物からなる群から選ばれる1以上の植物である、請求項1または2に記載の植物生育調節剤。
  4.  前記ヘスペリジン誘導体がα-モノグルコシルヘスペリジン、ヘスペリジンメチルカルコン、ネオヘスペリジンおよびネオヘスペリジンジヒドロカルコンからなる群から選ばれる1以上のヘスペリジン誘導体である、請求項1~3のいずれか1項に記載の植物生育調節剤。
  5.  前記フラボノイド類がヘスペレチン、タンゲレチン、ノビレチンおよびフロレチンからなる群から選ばれる1以上のフラボノイドである、請求項1~4のいずれか1項に記載の植物生育調節剤。
  6.  前記フラボノイド類がタンゲレチン、ノビレチンおよびフロレチンからなる群から選ばれる1以上のフラボノイドである、請求項1~5のいずれか1項に記載の植物生育調節剤。
  7.  ヘスペリジンを有効成分として含有する、請求項1~6のいずれか1項に記載の植物生育調節剤。
  8.  ヘスペリジンおよびネオヘスペリジンを有効成分として含有する、請求項1~7のいずれか1項に記載の植物生育調節剤。
  9.  請求項1~8のいずれか1項に記載の植物生育調節剤を植物に施用する工程を含む、植物の環境ストレス耐性を向上させる方法。
  10.  前記施用が土壌、培地または植物本体への施用である、請求項9に記載の方法。
  11.  前記施用が土壌混和、潅注、種子塗沫、種子浸漬および葉面散布からなる群から選ばれる1以上の施用である、請求項9または10に記載の方法。
  12.  ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の生育促進用の植物生育調節剤。
  13.  ヘスペリジンを有効成分として含有する、請求項12に記載の植物生育調節剤。
  14.  ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類を有効成分として含有する、植物の抗菌用の植物生育調節剤。
  15.  ヘスペリジンを有効成分として含有する、請求項14に記載の植物生育調節剤。
  16.  ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類の、植物の環境ストレス耐性向上剤の製造のための使用。
  17.  ヘスペリジンもしくはヘスペリジン誘導体またはフラボノイド類の、植物の環境ストレス耐性を向上させるための使用。
PCT/JP2020/001350 2019-01-16 2020-01-16 植物生育調節剤 WO2020149373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20741295.8A EP3912470A1 (en) 2019-01-16 2020-01-16 Plant growth regulating agent
JP2020566480A JPWO2020149373A1 (ja) 2019-01-16 2020-01-16
CN202080009458.7A CN113301803A (zh) 2019-01-16 2020-01-16 植物生长调节剂
US17/423,301 US20220095617A1 (en) 2019-01-16 2020-01-16 Plant growth regulating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005553 2019-01-16
JP2019-005553 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149373A1 true WO2020149373A1 (ja) 2020-07-23

Family

ID=71613595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001350 WO2020149373A1 (ja) 2019-01-16 2020-01-16 植物生育調節剤

Country Status (5)

Country Link
US (1) US20220095617A1 (ja)
EP (1) EP3912470A1 (ja)
JP (1) JPWO2020149373A1 (ja)
CN (1) CN113301803A (ja)
WO (1) WO2020149373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602717A (zh) * 2020-12-15 2021-04-06 华南农业大学 一种防控稻瘟病菌的药物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116439239A (zh) * 2023-04-26 2023-07-18 沈阳农业大学 一种百合种球消毒制剂及其制备方法和使用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101424A (en) * 1978-01-25 1979-08-10 Yamamoto Agricult Chem Plant flower bud growth promoting agent
JPS5544450B2 (ja) 1977-08-30 1980-11-12
JPS6319484B2 (ja) 1983-09-26 1988-04-22 Rikagaku Kenkyusho
JPH04504209A (ja) * 1989-12-04 1992-07-30 ミシガン ステイト ユニバーシティー 胞子形成―アルブスクラー菌根系菌類を刺激する方法および組成物
JPH04295428A (ja) 1991-03-22 1992-10-20 Dai Ichi Seiyaku Co Ltd 抗アレルギー剤
JPH06279211A (ja) * 1993-01-19 1994-10-04 Wakayama Aguri Bio Kenkyu Center:Kk 増収剤および増収方法
JPH09268106A (ja) * 1996-02-02 1997-10-14 Nippon Kayaku Co Ltd 組成物及び用途
JP2009055833A (ja) * 2007-08-31 2009-03-19 Kao Corp 植物ストレス耐性付与方法
WO2014160826A1 (en) 2013-03-27 2014-10-02 Novozymes Bioag A/S Compositions and methods for enhancing plant growth
JP2018145136A (ja) * 2017-03-06 2018-09-20 国立大学法人東北大学 植物のカリウムイオン輸送体の機能制御剤及び植物の育成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544450B2 (ja) 1977-08-30 1980-11-12
JPS54101424A (en) * 1978-01-25 1979-08-10 Yamamoto Agricult Chem Plant flower bud growth promoting agent
JPS6319484B2 (ja) 1983-09-26 1988-04-22 Rikagaku Kenkyusho
JPH04504209A (ja) * 1989-12-04 1992-07-30 ミシガン ステイト ユニバーシティー 胞子形成―アルブスクラー菌根系菌類を刺激する方法および組成物
JPH04295428A (ja) 1991-03-22 1992-10-20 Dai Ichi Seiyaku Co Ltd 抗アレルギー剤
JPH06279211A (ja) * 1993-01-19 1994-10-04 Wakayama Aguri Bio Kenkyu Center:Kk 増収剤および増収方法
JPH09268106A (ja) * 1996-02-02 1997-10-14 Nippon Kayaku Co Ltd 組成物及び用途
JP2009055833A (ja) * 2007-08-31 2009-03-19 Kao Corp 植物ストレス耐性付与方法
WO2014160826A1 (en) 2013-03-27 2014-10-02 Novozymes Bioag A/S Compositions and methods for enhancing plant growth
JP2018145136A (ja) * 2017-03-06 2018-09-20 国立大学法人東北大学 植物のカリウムイオン輸送体の機能制御剤及び植物の育成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOTTINI RUBENFABRICIO CASSANPATRICIA PICCOLI.: "Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 65, no. 5, 2004, pages 497 - 503
BRIAN, P. W.: "Effects of gibberellins on plant growth and development", BIOLOGICAL REVIEWS, vol. 34, no. 1, 1959, pages 37 - 77
COLBY, S. R.: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961
GALATI, E. M. ET AL.: "Biological effects of hesperidin, a citrus flavonoid. (Note I): anti-inflammatory and analgesic activity", FARMACO (SOCIETA CHIMICA ITALIANA, 1989
NAKABAYASHI RYO ET AL.: "Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids", THE PLANT JOURNAL, vol. 77, no. 3, 2014, pages 367 - 379

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602717A (zh) * 2020-12-15 2021-04-06 华南农业大学 一种防控稻瘟病菌的药物

Also Published As

Publication number Publication date
JPWO2020149373A1 (ja) 2020-07-23
EP3912470A1 (en) 2021-11-24
US20220095617A1 (en) 2022-03-31
CN113301803A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
JP6242449B2 (ja) 成長促進剤および抗真菌剤としてアントラキノン誘導体を含む組成物
JP5775539B2 (ja) 除草剤へのストレス耐性を改善するためのプロリンの使用
EA030055B1 (ru) Комбинации активных соединений, содержащие (тио)карбоксамидное производное и фунгицидное соединение
Hashemabadi et al. The effect of cycocel and daminozide on some growth and flowering characteristics of Calendula officinalis L., an ornamental and medicinal plant
WO2020149373A1 (ja) 植物生育調節剤
Abbas Effect of GA3 on growth and some physiological characterizes in carrot plant (Daucus carota L.)
EA013749B1 (ru) Фунгицидные и биорегуляторные смеси
US10058097B2 (en) Methods to increase corn productivity
JP6051799B2 (ja) 農薬用組成物及び植物の生長を促進する方法
AU2017261240A1 (en) Methods of improving growth and stress tolerance in plants
EA013750B1 (ru) Фунгицидные и биорегуляторные смеси
Sewedan et al. Effect of methyl jasmonate and salicylic acid on the production of Gladiolus grandifloras, L
Papadopoulos et al. Response of rockwool-grown greenhouse cucumber, tomato, and pepper to kinetin foliar sprays
JPS6072802A (ja) 植物生長調節剤
US20160050920A1 (en) Methods to improve nodal roots
Zawadzińska et al. Ornamental swiss chard (Beta vulgaris var. cicla) response to daminozide and flurprimidol
Shikoli et al. Effects of bunching onion crude extract and irrigation levels on growth and yield of tomato
WO2021172594A1 (ja) 植物の耐熱性あるいは耐乾燥性向上剤、耐塩性向上剤、活性向上剤
Ashrafunnesa et al. Growth and yield response of bell pepper (Capsicum annuum) to the application of kaolin and 4-CPA under net protected condition
Alwan et al. Influence of tuberous root soaking in Salicylic acid and foliar spray of plants with Benzyladenine on growth, flowering and tuberous root production of Ranunculus asiaticus.
Özbay et al. Prohexadione-calcium affects vegetative growth and yield of pepper.
JPS62161701A (ja) 種子処理剤
JP2024054094A (ja) 地際部処理用植物糸状菌起因病害抑制剤、植物の糸状菌起因病害抑制方法、地際部処理用植物葉部シグナル伝達関連遺伝子発現促進剤、植物の葉部シグナル伝達関連遺伝子発現促進方法、地際部処理用植物主根部シグナル伝達関連遺伝子発現促進剤、及び、植物の主根部シグナル伝達関連遺伝子発現促進方法
NAPHTHALENE et al. AGRICULTURE, LIVESTOCK and FISHERIES
LT6216B (lt) Biologiškai aktyvi sinergetinė kompozicija

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741295

Country of ref document: EP

Effective date: 20210816