WO2020149353A1 - 誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法 - Google Patents

誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法 Download PDF

Info

Publication number
WO2020149353A1
WO2020149353A1 PCT/JP2020/001210 JP2020001210W WO2020149353A1 WO 2020149353 A1 WO2020149353 A1 WO 2020149353A1 JP 2020001210 W JP2020001210 W JP 2020001210W WO 2020149353 A1 WO2020149353 A1 WO 2020149353A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric elastomer
particle size
scattering method
carbon particles
crushed
Prior art date
Application number
PCT/JP2020/001210
Other languages
English (en)
French (fr)
Inventor
正毅 千葉
美紀夫 和氣
紀之 大屋
竹下 誠
貢 上島
Original Assignee
正毅 千葉
日本ゼオン株式会社
美紀夫 和氣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正毅 千葉, 日本ゼオン株式会社, 美紀夫 和氣 filed Critical 正毅 千葉
Priority to EP20741059.8A priority Critical patent/EP3913788A4/en
Priority to CN202080007987.3A priority patent/CN113287256A/zh
Priority to US17/422,749 priority patent/US20220131066A1/en
Publication of WO2020149353A1 publication Critical patent/WO2020149353A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to a dielectric elastomer transducer and a method for manufacturing a dielectric elastomer transducer.
  • a dielectric elastomer transducer having a dielectric elastomer layer and a pair of electrode layers sandwiching the dielectric elastomer layer is expected to be used in various fields such as driving applications, power generation applications, and sensor applications.
  • Patent Document 1 discloses an example of a conventional dielectric elastomer transducer.
  • silver nanowires, carbon nanowires, carbon nanotubes, carbon nanofillers, etc. are exemplified as the constituent material of the electrode layer.
  • ⁇ Dielectric elastomer transducers are generally used on the premise of the remarkable elasticity of the dielectric elastomer layer. Therefore, the electrode layer is also required to have elasticity enough to follow the dielectric elastomer layer. On the other hand, since charge is applied (voltage is applied) to the electrode layer, it is necessary to avoid being in an insulating state due to expansion and contraction.
  • the present invention has been devised under the circumstances described above, and provides a dielectric elastomer transducer capable of achieving both stretchability and conductivity, and a method for manufacturing the dielectric elastomer transducer. Let's take that issue.
  • a dielectric elastomer transducer provided by the first aspect of the present invention comprises a dielectric elastomer layer and a pair of electrode layers sandwiching the dielectric elastomer layer, and the electrode layer includes crushed carbon particles derived from carbon nanotubes. , A dielectric elastomer transducer.
  • the crushed carbon particles have a particle size measured by a dynamic light scattering method of 0.5 ⁇ m or more and 1.5 ⁇ m or less, and a particle size measured by a laser scattering method of 15 ⁇ m or more. It is 70 ⁇ m or less.
  • the crushed carbon particles have a difference of 15 ⁇ m or more between the particle size measured by the dynamic light scattering method and the particle size measured by the laser scattering method.
  • the crushed carbon particles have a ratio of the particle size measured by the laser scattering method to the particle size measured by the dynamic light scattering method of 15 or more.
  • a method for manufacturing a dielectric elastomer transducer provided by the second aspect of the present invention is a method for manufacturing a dielectric elastomer transducer, comprising a dielectric elastomer layer and a pair of electrode layers sandwiching the dielectric elastomer layer, The method includes the steps of crushing carbon nanotubes to generate crushed carbon particles, and arranging the pair of electrode layers formed using the crushed carbon particles on the dielectric elastomer layer.
  • the particle size measured by the dynamic light scattering method is 0.5 ⁇ m or more and 1.5 ⁇ m or less, and the particle size is measured by the laser scattering method.
  • the crushed carbon particles having a particle size of 15 ⁇ m or more are produced.
  • the difference between the particle size measured by the dynamic light scattering method and the particle size measured by the laser scattering method is 15 ⁇ m or more. Generates crushed carbon particles.
  • the ratio of the particle size measured by the laser scattering method to the particle size measured by the dynamic light scattering method is 15 or more. Generates crushed carbon particles.
  • the carbon nanotubes are mixed and dispersed in a solvent to obtain a first dispersion liquid of the carbon nanotubes, and then the solvent is removed to obtain a powder.
  • a pulverization treatment for pulverizing the powdery carbon nanotubes and mixing the pulverized carbon nanotubes with a solvent to obtain a second dispersion liquid of carbon nanotubes, and a second dispersion liquid for the carbon nanotubes. Is left to perform extraction processing for extracting a portion near the liquid surface.
  • both elasticity and conductivity can be achieved.
  • FIG. 1 shows an example of a dielectric elastomer transducer according to the present invention.
  • the dielectric elastomer transducer A1 of this embodiment has a dielectric elastomer layer 11 and a pair of electrode layers 12.
  • the use of the dielectric elastomer transducer A1 is not particularly limited, and is used in various fields such as driving, power generation, and sensors.
  • the electric circuit device 3 applies electric charges (applies voltage) to the pair of electrode layers 12.
  • the voltage at this time is, for example, a high voltage exceeding several hundreds of volts.
  • the dielectric elastomer layer 11 contains any one type or two or more types of elastomers (polymer compounds having rubber-like elasticity).
  • the type of elastomer is not particularly limited, but examples thereof include thermosetting elastomers and thermoplastic elastomers.
  • thermosetting elastomer is not particularly limited, but examples thereof include natural rubber, synthetic rubber, silicone rubber elastomer, urethane rubber elastomer, and fluororubber elastomer.
  • thermoplastic elastomer a copolymer of an aromatic vinyl monomer and a conjugated diene monomer
  • a diblock type block polymer such as a styrene-butadiene block copolymer or a styrene-isoprene block polymer
  • styrene-butadiene-styrene Triblock type block polymers such as block polymers, styrene-isoprene-styrene block polymers (SIS), styrene-butadiene-isoprene block polymers, styrene-isobutylene-styrene block polymers (SIBS); styrene-butadiene-styrene-butadiene block polymers, Multi-block type styrene-containing
  • the dielectric elastomer layer 11 may include any one kind or two or more kinds of other materials together with the above-mentioned elastomer.
  • the other material is, for example, various additives.
  • the shape of the dielectric elastomer layer 11 is not particularly limited, and it has a circular ring shape in plan view or a cylindrical shape when an external force before being formed as a constituent element of the dielectric elastomer transducer A1 is not applied. Examples of such products include those mentioned above.
  • the pair of electrode layers 12 sandwich the dielectric elastomer layer 11.
  • the electrode layer 12 is formed of a material that has conductivity and is elastically deformable to follow the elastic deformation of the dielectric elastomer layer 11. Examples of such a material include a material in which a filler that imparts conductivity is mixed into an elastically deformable main material.
  • the filler includes crushed carbon particles derived from carbon nanotubes.
  • FIG. 2 shows an example of a method for manufacturing the dielectric elastomer transducer A1.
  • the manufacturing method of the present embodiment includes a pulverized carbon particle production step and an electrode placement step.
  • the pulverized carbon particle producing step is a step of producing pulverized carbon particles derived from carbon nanotubes by pulverizing the carbon nanotubes.
  • the electrode placement step is a step of placing electrode layers containing crushed carbon particles on both surfaces of the dielectric elastomer layer.
  • the pulverized carbon particle producing step of the present invention is not limited at all, and various methods capable of producing pulverized carbon particles satisfying the conditions described later can be adopted.
  • a single-walled carbon nanotube (hereinafter, referred to as SWCNT: SG101 manufactured by Nippon Zeon Co., Ltd.) is mixed and dispersed in a solvent such that the content thereof is 0.35 wt %. MEK (methyl ethyl ketone) was used as the solvent at this time.
  • This solution was dispersed using a high pressure homogenizer to obtain a SWCNT dispersion liquid (first dispersion liquid).
  • this SWCNT dispersion liquid was left at a liquid temperature of 20 to 40° C. to remove the solvent. Then, using a glass stirring bar or the like, the mixture was stirred until it became powdery.
  • the powdered SWCNT was crushed by a planetary ball mill. A solvent was added to the crushed SWCNT powder, and the powder was dispersed again using a high pressure homogenizer. CyH (cyclohexane) was used as the solvent at this time. The SWCNT content was 0.07 to 0.15 wt %.
  • the redispersed SWCNT dispersion liquid (second dispersion liquid) was transferred to a glass container or the like, and ultrasonic vibration was applied. Then, it was allowed to stand for 24 hours, and it was confirmed that SWCNT did not separate from the solvent. When separation was observed, ultrasonic vibration was applied again.
  • Comparative Example 1 using CyH as a solvent, a SWCNT dispersion liquid in which unpulverized SWCNTs were dispersed was prepared. As Comparative Examples 2 and 3, general carbon black was prepared. The particle size announced by the carbon black manufacturer was between 15 nm and 55 nm. In Comparative Example 2, a carbon black dispersion liquid in which CyH was used as a solvent was prepared as in the case of the example. In Comparative Example 3, a carbon black dispersion liquid using MEK as a solvent was prepared.
  • Preliminary dilution before particle size measurement (1-1) 2 ml each of the dispersions of Examples and Comparative Examples 1 to 3 were sampled in a glass container, and IPA (isopropyl alcohol: Kanto Kagaku Shika 1st grade) was added thereto to obtain a pre-diluted liquid.
  • IPA isopropyl alcohol: Kanto Kagaku Shika 1st grade
  • ultrasonic treatment was performed. The ultrasonic conditions were a frequency: 39 kHz, an output of 100 W, and an irradiation time of 3 minutes.
  • the following particle size measurements were performed within 10 minutes after ultrasonic treatment.
  • the measurement temperature was set to 25°C.
  • the time from reaching the measurement temperature to the measurement was set to 60 seconds.
  • Cell settings were made on the "glass cuvette”.
  • the detector angle at the time of measurement was 173°.
  • the time devoted to one measurement was set to "Automatic”.
  • the number of repetitions was 3 times.
  • “Measurement Position” is set to “Seek for measurement position” and is automatic.
  • the model for smoothing the particle size distribution is “General Purpose”. (2-13) Z-Average was adopted, and the average of three measurements was used as the measured value.
  • Fig. 3 shows the results of particle size measurement by the dynamic light scattering method and the laser scattering method.
  • the particle size D1 measured by the dynamic light diffusion method was distributed in the range of 0.5 ⁇ m or more and 1.5 ⁇ m or less in the example.
  • Comparative Example 1 was distributed in the range of 1.3 ⁇ m to 5.4 ⁇ m.
  • Comparative Examples 2 and 3 were distributed in the range of 0.1 ⁇ m to 3.3 ⁇ m.
  • the particle size D2 measured by the laser scattering method was 15 ⁇ m or more in the example and further 50 ⁇ m or less.
  • Comparative Example 1 had a thickness of 35 ⁇ m or more.
  • Comparative Examples 2 and 3 were 15 ⁇ m or less.
  • Fig. 4 is a graph in which the results of particle size measurement by the dynamic light scattering method and the laser scattering method are arranged by the following method.
  • the horizontal axis is the difference (D2-D1) between the grain size D2 and the grain size D1.
  • the difference (D2-D1) was 15 ⁇ m or more in the example.
  • Comparative Example 1 had a thickness of 32 ⁇ m or more. Comparative Examples 2 and 3 were distributed in the range of 0.1 ⁇ m to 15 ⁇ m.
  • the vertical axis represents the ratio (D2/D1) between the grain size D2 and the grain size D1. The ratio (D2/D1) was 15 or more in the example. Comparative Example 1 was distributed in the range of 7 to 63. Comparative Examples 2 and 3 were distributed in the range of 0.3 to 48.
  • the particle size D1 measured by the dynamic light scattering method in FIG. 3 is 0.5 ⁇ m or more and 1.5 ⁇ m or less, and the laser scattering method.
  • the particles satisfying the condition that the particle size D2 measured by the method is 15 ⁇ m or more and further 50 ⁇ m or less are Examples, and Comparative Examples 1 to 3 do not satisfy this condition (hereinafter, Condition 1). .. Further, as can be understood from FIG.
  • the difference (D2-D1) between the particle size D1 measured by the dynamic light scattering method and the particle size D2 measured by the laser scattering method is 15 ⁇ m or more (hereinafter, Condition 2), and any one of the conditions (hereinafter, Condition 3) in which the ratio (D2/D1) of the particle size D2 measured by the laser scattering method to the particle size D1 measured by the dynamic light scattering method is 15 or more. It was only the embodiment that satisfied both the conditions 1 and 1.
  • crushed carbon particles derived from carbon nanotubes (Example), uncrushed carbon nanotubes (Comparative Example 1) and general carbon black (Comparative Examples 2 and 3) were used as conditions. It could be clearly distinguished by 1. This is because the crushed carbon particles obtained by crushing carbon black are different from the uncrushed carbon nanotubes (Comparative Example 1) and carbon black (Comparative Examples 2 and 3) in the measurement results according to the type of particle size measurement. Due to the different tendencies of. That is, although the carbon nanotube is originally in the form of an elongated cylinder, the cylinder is destroyed to some extent by pulverization and the size of the carbon nanotube becomes small. However, even after crushing, it is composed of a plurality of fine particles.
  • the particle size D1 is not clear as compared with the comparative examples 2 and 3
  • the particle size D2 is clearly larger than the comparative examples 2 and 3.
  • the particle size D1 tended to be smaller than that in the comparative example 1.
  • the electrode layer using the crushed carbon particles distinguished by the condition 1 has good conductivity derived from the carbon nanotubes, and also has elasticity due to pulverization (the difference in particle size D1 from Comparative Example 2). Is increased. As a result, it is possible to improve elasticity and conductivity of the electrode layer at the same time. By properly combining and distinguishing Condition 2 and Condition 3 in addition to Condition 1, it is possible to more reliably select crushed carbon particles that are suitable for both improving the elasticity of the electrode layer and improving the conductivity.
  • the dielectric elastomer transducer and the method for manufacturing the dielectric elastomer transducer according to the present invention are not limited to the above-described embodiments.
  • the specific configuration of the dielectric elastomer transducer and the method for manufacturing the dielectric elastomer transducer according to the present invention can be variously changed in design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

誘電エラストマートランスデューサーA1は、誘電エラストマー層11と誘電エラストマー層11を挟む一対の電極層12と、を備え、電極層12は、カーボンナノチューブ由来の粉砕炭素粒子を含む。このような構成により、伸縮性および導電性の両立を図ることができる。

Description

誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法
 本発明は、誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法に関する。
 誘電エラストマー層と当該誘電エラストマー層を挟む一対の電極層とを有する誘電エラストマートランスデューサーは、駆動用途、発電用途、センサ用途等の様々な分野での活用が期待されている。特許文献1には、従来の誘電エラストマートランスデューサーの一例が開示されている。同文献では、電極層の構成材料として、銀ナノワイヤ、カーボンナノワイヤ、カーボンナノチューブ、カーボンナノフィラー等が例示されている。
特開2017-34923号公報
 誘電エラストマートランスデューサーは、誘電エラストマー層の顕著な伸縮性を前提として用いられる場合が一般的である。このため、電極層としても、誘電エラストマー層に十分に追従可能な程度の伸縮性を有することが求められる。一方、電極層には、電荷の付与(電圧の印加)がなされるため、伸縮によって絶縁状態となることは避ける必要がある。
 本発明は、上記した事情のもとで考え出されたものであって、伸縮性および導電性の両立を図ることが可能な誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法を提供することをその課題とする。
 本発明の第1の側面によって提供される誘電エラストマートランスデューサーは、誘電エラストマー層と前記誘電エラストマー層を挟む一対の電極層と、を備え、前記電極層は、カーボンナノチューブ由来の粉砕炭素粒子を含む、誘電エラストマートランスデューサーである。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子は、動的光散乱法によって計測された粒度が0.5μm以上1.5μm以下であり、且つレーザー散乱法によって計測された粒度が15μm以上70μm以下である。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子は、動的光散乱法によって計測された粒度とレーザー散乱法によって計測された粒度との差が、15μm以上である。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子は、レーザー散乱法によって計測された粒度と動的光散乱法によって計測された粒度との比が、15以上である。
 本発明の第2の側面によって提供される誘電エラストマートランスデューサーの製造方法は、誘電エラストマー層と前記誘電エラストマー層を挟む一対の電極層と、を備える、誘電エラストマートランスデューサーの製造方法であって、カーボンナノチューブを粉砕することにより粉砕炭素粒子を生成する工程と、前記粉砕炭素粒子を用いて形成された前記一対の電極層を前記誘電エラストマー層上に配置する工程と、を備える。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子を生成する工程においては、動的光散乱法によって計測された粒度が0.5μm以上1.5μm以下であり、且つレーザー散乱法によって計測された粒度が15μm以上である前記粉砕炭素粒子を生成する。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子を生成する工程においては、動的光散乱法によって計測された粒度とレーザー散乱法によって計測された粒度との差が、15μm以上である前記粉砕炭素粒子を生成する。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子を生成する工程においては、レーザー散乱法によって計測された粒度と動的光散乱法によって計測された粒度との比が、15以上である前記粉砕炭素粒子を生成する。
 本発明の好ましい実施の形態においては、前記粉砕炭素粒子を生成する工程においては、カーボンナノチューブを溶媒に混ぜて分散させカーボンナノチューブの第1分散液を得た後に、前記溶媒を除去することにより粉末状のカーボンナノチューブを得る前処理と、前記粉末状のカーボンナノチューブを粉砕し、粉砕したカーボンナノチューブを溶媒に混ぜてカーボンナノチューブの第2分散液を得る粉砕処理と、前記カーボンナノチューブの第2分散液を放置し、液面近くの部位を抽出する抽出処理と、を行う。
 本発明によれば、伸縮性および導電性の両立を図ることができる。
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
本発明に係る誘電エラストマートランスデューサーの一例を示す断面図である。 本発明に係る誘電エラストマートランスデューサーの製造方法の一例を示すフロー図である。 本発明に係る誘電エラストマートランスデューサーの一例の電極層の粉砕炭素粒子の粒度の測定結果を示すグラフである。 本発明に係る誘電エラストマートランスデューサーの一例の電極層の粉砕炭素粒子の粒度の測定結果を示すグラフである。
 以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。
 図1は、本発明に係る誘電エラストマートランスデューサーの一例を示している。本実施形態の誘電エラストマートランスデューサーA1は、誘電エラストマー層11および一対の電極層12を有する。
 誘電エラストマートランスデューサーA1の用途は特に限定されず、たとえば駆動用途、発電用途、センサ用途等の様々な分野で活用される。たとえば、誘電エラストマートランスデューサーA1が駆動用途のアクチュエータとして用いられる場合、一対の電極層12に電荷の付与(電圧の印加)が電気回路装置3によってなされる。この際の電圧は、たとえば数百Vを超える高圧の電圧である。
 誘電エラストマー層11は、エラストマー(ゴム状弾性を有する高分子化合物)のうちのいずれか1種類又は2種類以上を含んでいる。エラストマーの種類は、特に限定されないが、例えば、熱硬化性エラストマー、熱可塑性エラストマー等である。
 熱硬化性エラストマーの種類は、特に限定されないが、例えば、天然ゴム、合成ゴム、シリコーンゴム系エラストマー、ウレタンゴム系エラストマー及びフッ素ゴム系エラストマー等である。
 熱可塑性エラストマーとしては、芳香族ビニル系モノマーと共役ジエン系モノマーとの共重合体が挙げられる。具体的には、例えば芳香族ビニル系モノマーと共役ジエン系モノマーとの共重合体としては、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロックポリマー等のジブロック型ブロックポリマー;スチレン-ブタジエン-スチレンブロックポリマー、スチレン-イソプレン-スチレンブロックポリマー(SIS)、スチレン-ブタジエン-イソプレンブロックポリマー、スチレン-イソブチレン-スチレンブロックポリマー(SIBS)等のトリブロック型ブロックポリマー;スチレン-ブタジエン-スチレン-ブタジエンブロックポリマー、スチレン-イソプレン-スチレン-イソプレンブロックポリマー、スチレン-ブタジエン-イソプレン-スチレンブロックポリマー、スチレン-ブタジエン-スチレン-イソプレンブロックポリマー、スチレン-イソブチレン-ブタジエン-スチレンなどのようなマルチブロック型スチレン含有ブロックポリマーおよびこれらの水素添加物または部分水素添加物などが挙げられる。これらの中でも、SISなどのブロックポリマーがより好ましく用いられる。
 但し、誘電エラストマー層11は、上記したエラストマーと共に、他の材料のうちのいずれか1種類又は2種類以上を含んでいてもよい。この他の材料は、例えば、各種の添加剤等である。
 誘電エラストマー層11の形状は特に限定されず、誘電エラストマートランスデューサーA1の構成要素として形成される前の外力等が加えられていない状態において平面視円環形状であるものや、筒状に巻回されたもの等が適宜挙げられる。
 一対の電極層12は、誘電エラストマー層11を挟んでいる。電極層12は、導電性を有するとともに、誘電エラストマー層11の弾性変形に追従しうる弾性変形が可能な材質によって形成される。このような材質としては、弾性変形可能な主材に導電性を付与するフィラーが混入された材質が挙げられる。本実施形態においては、前記フィラーとして、カーボンナノチューブ由来の粉砕炭素粒子を含む。
 図2は、誘電エラストマートランスデューサーA1の製造方法の一例を示している。本実施形態の製造方法は、粉砕炭素粒子生成工程と、電極配置工程と、を備える。粉砕炭素粒子生成工程は、カーボンナノチューブを粉砕することにより、カーボンナノチューブに由来した粉砕炭素粒子を生成する工程である。電極配置工程は、誘電エラストマー層の両面に粉砕炭素粒子を含む電極層を配置する工程である。
<実施例>
 以下に、粉砕炭素粒子生成工程の実施例について述べる。なお、本発明の粉砕炭素粒子生成工程は、何ら限定されず、後述する条件を満たす粉砕炭素粒子を生成可能な様々な手法を採用できる。
(前処理)
 まず、単層カーボンナノチューブ(以下、SWCNT:たとえば日本ゼオン社製SG101)の含有量が0.35wt%となるように溶媒に混ぜ分散させる。この際の溶媒は、MEK(メチルエチルケトン)を用いた。この溶液を、高圧ホモジナイザーを用いて分散し、SWCNT分散液(第1分散液)を得た。次に、このSWCNT分散液を液温20~40℃で放置し、溶媒を除去した。その後、ガラス攪拌棒等を用いて、粉末状となるまで撹拌した。
(粉砕処理)
 粉末状としたSWCNTを遊星型ボールミルによって、粉砕した。粉砕したSWCNTの粉末に溶媒を加え、再度、高圧ホモジナイザーを用いて分散した。この際の溶媒は、CyH(シクロヘキサン)を用いた。また、SWCNT含有量は、0.07~0.15wt%であった。再分散されたSWCNT分散液(第2分散液)をガラス容器等に移し、超音波振動を加えた。その後、24時間放置し、SWCNTが溶媒と分離しないことを確認した。分離が認められる場合、再度、超音波振動を加えた。
(抽出処理)
 SWCNTと溶媒との分離が認められないことを確認した後に、さらに超音波振動を加えた。その後、30分程度放置し、SWCNT分散液の液面近くの上部をスポイト等によって吸い上げ、別容器に抽出した。
<比較例>
 比較例1は、溶媒としてCyHを用い、未粉砕状態のSWCNTを分散させたSWCNT分散液を用意した。比較例2,3として、一般的なカーボンブラックを用意した。カーボンブラック製造メーカーによって公表された粒子径は、15nm~55nmであった。比較例2は、実施例と同じくCyHを溶媒としたカーボンブラック分散液を用意した。比較例3は、MEKを溶媒としたカーボンブラック分散液を用意した。
(粒度測定前の予備希釈)
(1-1)ガラス容器に実施例および比較例1~3の分散液をそれぞれ2ml採取し、これにIPA(イソプロピルアルコール:関東化学 鹿1級)を加え予備希釈液を得た。
(1-2)前記容器の予備希釈液をマグネットスターラ等で撹拌した後に、超音波処理を行った。超音波条件は、周波数:39kHz、出力100W、照射時間3分であった。
(1-3)超音波処理後、10分以内に以下の粒度測定を行った。
<動的光散乱法>
(2-1)動的光散乱法による測定装置に、マルバーン社製:ゼータサイザーナノシリーズを用いた。当該装置は、粒子径標準粒子(LTX3060A,LTX3200A)にて、たとえば測定誤差が2%以下となる程度に予め適切に校正されていた。
(2-2)前記予備希釈液1mlを、12mm角ガラスセル(PCS1115)に入れ、前記装置にセットした。当該ガラスセルにはキャップを付けた。
(2-3)粒子情報は、屈折率=2.0、虚数部0.850に設定した。
(2-4)溶媒情報は、2-Propanol、屈折率=1.3750、粘度=2.038に設定した。
(2-5)測定温度は、25℃に設定した。
(2-6)測定温度到達から測定までの時間は60秒に設定した。
(2-7)セル設定は、「glass cuvette」にて設定した。
(2-8)測定時のディテクタ角度は、173°とした。
(2-9)1回の測定に充てる時間は、「Automatic」とした。
(2-10)繰り返し回数は、3回とした。
(2-11)「Measurement Position」は、「Seek for measurement position」に設定し、自動とした。
(2-12)粒度分布のスムージングに関するモデルは、「General Purpose」とした。
(2-13)Z-Averageを採用し、測定3回の平均を、測定値とした。
<レーザー散乱法>
(3-1)レーザー散乱法による測定装置に、マルバーン社製:マスターサイザー3000を用いた。
(3-2)粒子情報は、屈折率=2.0、虚数部0.850に設定した。
(3-3)溶媒情報は、エタノール、屈折率=1.3600に設定した。
(3-4)測定に使用する溶媒は、エタノール(関東化学 鹿1級)を用いた。
(3-5)前記エタノールを分散ユニットに規定量充填し、前記装置内を120秒循環させた。
 図3は、動的光散乱法およびレーザー散乱法による粒度測定の結果を示している。図3に示すように、動的光拡散法によって測定された粒度D1は、実施例が、0.5μm以上1.5μm以下の範囲に分布した。比較例1は、1.3μm~5.4μmの範囲に分布した。比較例2,3は、0.1μm~3.3μmの範囲に分布した。一方、レーザー散乱法によって測定された粒度D2は、実施例が15μm以上であり、さらに50μm以下であった。比較例1は、35μm以上であった。比較例2,3は、15μm以下であった。
 図4は、動的光散乱法およびレーザー散乱法による粒度測定の結果を以下の手法で整理したグラフである。横軸は、粒度D2と粒度D1との差(D2-D1)である。差(D2-D1)は、実施例が15μm以上であった。比較例1は32μm以上であった。比較例2、3は0.1μm~15μmの範囲に分布した。縦軸は、粒度D2と粒度D1との比(D2/D1)である。比(D2/D1)は、実施例が15以上であった。比較例1は7~63の範囲に分布した。比較例2,3は、0.3~48の範囲に分布した。
 実施例と比較例1、比較例2および比較例3とを比較すると、図3について、動的光散乱法によって計測された粒度D1が0.5μm以上1.5μm以下であり、且つレーザー散乱法によって計測された粒度D2が15μm以上であって、さらに50μm以下であるという条件を満たすものは、実施例であり、比較例1~3はいずれもこの条件(以下、条件1)を満たしていない。また、図4から理解されるように、動的光散乱法によって計測された粒度D1とレーザー散乱法によって計測された粒度D2との差(D2-D1)が、15μm以上である条件(以下、条件2)、およびレーザー散乱法によって計測された粒度D2と動的光散乱法によって計測された粒度D1との比(D2/D1)が、15以上である条件(以下、条件3)のいずれかと、条件1とを、ともに満たすものは、実施例のみであった。
 次に、誘電エラストマートランスデューサーA1および誘電エラストマートランスデューサーの製造方法の作用について説明する。
 図3および図4に示すように、カーボンナノチューブ由来の粉砕炭素粒子(実施例)と、未粉砕のカーボンナノチューブ(比較例1)や一般的なカーボンブラック(比較例2,3)とが、条件1によって明確に区別することができた。これは、カーボンブラックを粉砕することによって得られた粉砕炭素粒子は、未粉砕のカーボンナノチューブ(比較例1)やカーボンブラック(比較例2,3)とは、粒度測定の種類に応じた測定結果の傾向が異なることに起因する。すなわち、カーボンナノチューブは、本来細長い筒状をなす形態であるものの、粉砕によって筒状がある程度破壊され塊として大きさが小さくなる。しかし、粉砕後であっても、複数の細かい粒子から構成されるものである。このため、実施例は、粒度D1について比較例2,3との大小は不明確であるものの、粒度D2については比較例2,3よりも明確に大きい。また、実施例は、粒度D1について比較例1よりも小さい傾向であった。この関係を、差(D2-D1)や比(D2/D1)で比較すると、さらに優位な区別が可能であった。
 条件1によって区別される粉砕炭素粒子が用いられた電極層は、カーボンナノチューブに由来する良好な導電性を有しつつ、粉砕による小粒化(比較例2との粒度D1の差)によって、伸縮性が高められる。これにより、電極層の伸縮性向上および導電性向上の両立を図ることができる。条件1に加えて、条件2および条件3を適宜組合せて区別することにより、電極層の伸縮性向上および導電性向上の両立に適した粉砕炭素粒子をより確実に選別することができる。
 本発明に係る誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法は、上述した実施形態に限定されるものではない。本発明に係る誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法の具体的な構成は、種々に設計変更自在である。

Claims (9)

  1.  誘電エラストマー層と
     前記誘電エラストマー層を挟む一対の電極層と、
    を備え、
     前記電極層は、カーボンナノチューブ由来の粉砕炭素粒子を含む、誘電エラストマートランスデューサー。
  2.  前記粉砕炭素粒子は、動的光散乱法によって計測された粒度が0.5μm以上1.5μm以下であり、且つレーザー散乱法によって計測された粒度が15μm以上70μm以下である、請求項1に記載の誘電エラストマートランスデューサー。
  3.  前記粉砕炭素粒子は、動的光散乱法によって計測された粒度とレーザー散乱法によって計測された粒度との差が、15μm以上である、請求項2に記載の誘電エラストマートランスデューサー。
  4.  前記粉砕炭素粒子は、レーザー散乱法によって計測された粒度と動的光散乱法によって計測された粒度との比が、15以上である、請求項3に記載の誘電エラストマートランスデューサー。
  5.  誘電エラストマー層と
     前記誘電エラストマー層を挟む一対の電極層と、
    を備える、誘電エラストマートランスデューサーの製造方法であって、
     カーボンナノチューブを粉砕することにより粉砕炭素粒子を生成する工程と、
     前記粉砕炭素粒子を用いて形成された前記一対の電極層を前記誘電エラストマー層上に配置する工程と、を備える、誘電エラストマートランスデューサーの製造方法。
  6.  前記粉砕炭素粒子を生成する工程においては、動的光散乱法によって計測された粒度が0.5μm以上1.5μm以下であり、且つレーザー散乱法によって計測された粒度が15μm以上70μm以下である前記粉砕炭素粒子を生成する、請求項5に記載の誘電エラストマートランスデューサーの製造方法。
  7.  前記粉砕炭素粒子を生成する工程においては、動的光散乱法によって計測された粒度とレーザー散乱法によって計測された粒度との差が、15μm以上である前記粉砕炭素粒子を生成する、請求項6に記載の誘電エラストマートランスデューサーの製造方法。
  8.  前記粉砕炭素粒子を生成する工程においては、レーザー散乱法によって計測された粒度と動的光散乱法によって計測された粒度との比が、15以上である前記粉砕炭素粒子を生成する、請求項7に記載の誘電エラストマートランスデューサーの製造方法。
  9.  前記粉砕炭素粒子を生成する工程においては、
     カーボンナノチューブを溶媒に混ぜて分散させカーボンナノチューブの第1分散液を得た後に、前記溶媒を除去することにより粉末状のカーボンナノチューブを得る前処理と、
     前記粉末状のカーボンナノチューブを粉砕し、粉砕したカーボンナノチューブを溶媒に混ぜてカーボンナノチューブの第2分散液を得る粉砕処理と、
     前記カーボンナノチューブの第2分散液を放置し、液面近くの部位を抽出する抽出処理と、を行う、
    請求項5ないし8のいずれかに記載の誘電エラストマートランスデューサーの製造方法。
PCT/JP2020/001210 2019-01-18 2020-01-16 誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法 WO2020149353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20741059.8A EP3913788A4 (en) 2019-01-18 2020-01-16 DIELECTRIC ELASTOMER CONVERTER AND METHOD OF MAKING A DIELECTRIC ELASTOMER CONVERTER
CN202080007987.3A CN113287256A (zh) 2019-01-18 2020-01-16 介电弹性体换能器和介电弹性体换能器的制造方法
US17/422,749 US20220131066A1 (en) 2019-01-18 2020-01-16 Dielectric elastomer transducer and method for producing dielectric elastomer transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007012 2019-01-18
JP2019007012A JP7272801B2 (ja) 2019-01-18 2019-01-18 誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法

Publications (1)

Publication Number Publication Date
WO2020149353A1 true WO2020149353A1 (ja) 2020-07-23

Family

ID=71613912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001210 WO2020149353A1 (ja) 2019-01-18 2020-01-16 誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法

Country Status (5)

Country Link
US (1) US20220131066A1 (ja)
EP (1) EP3913788A4 (ja)
JP (1) JP7272801B2 (ja)
CN (1) CN113287256A (ja)
WO (1) WO2020149353A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383505B1 (ja) * 2009-05-15 2009-12-16 株式会社Hyper Drive 発電効率及び耐久性が改善された電場応答性高分子
JP4999031B1 (ja) * 2011-12-08 2012-08-15 美紀夫 和氣 変換効率を向上させた誘電性エラストマートランスデューサ
WO2015029656A1 (ja) * 2013-08-29 2015-03-05 住友理工株式会社 柔軟導電材料およびトランスデューサ
JP2015200501A (ja) * 2014-04-03 2015-11-12 国立研究開発法人産業技術総合研究所 歪み計測装置、歪み量及び歪み方向計測方法
JP2016069456A (ja) * 2014-09-29 2016-05-09 住友理工株式会社 柔軟導電材料およびその製造方法、並びに柔軟導電材料を用いたトランスデューサ、導電性テープ部材、フレキシブル配線板、電磁波シールド
JP2017034923A (ja) 2015-08-05 2017-02-09 日立化成株式会社 ポリマアクチュエータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082800A (ko) 2012-03-29 2014-07-02 도카이 고무 고교 가부시키가이샤 도전성 조성물 및 도전막

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383505B1 (ja) * 2009-05-15 2009-12-16 株式会社Hyper Drive 発電効率及び耐久性が改善された電場応答性高分子
JP4999031B1 (ja) * 2011-12-08 2012-08-15 美紀夫 和氣 変換効率を向上させた誘電性エラストマートランスデューサ
WO2015029656A1 (ja) * 2013-08-29 2015-03-05 住友理工株式会社 柔軟導電材料およびトランスデューサ
JP2015200501A (ja) * 2014-04-03 2015-11-12 国立研究開発法人産業技術総合研究所 歪み計測装置、歪み量及び歪み方向計測方法
JP2016069456A (ja) * 2014-09-29 2016-05-09 住友理工株式会社 柔軟導電材料およびその製造方法、並びに柔軟導電材料を用いたトランスデューサ、導電性テープ部材、フレキシブル配線板、電磁波シールド
JP2017034923A (ja) 2015-08-05 2017-02-09 日立化成株式会社 ポリマアクチュエータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913788A4

Also Published As

Publication number Publication date
JP2020120423A (ja) 2020-08-06
EP3913788A8 (en) 2022-12-14
US20220131066A1 (en) 2022-04-28
JP7272801B2 (ja) 2023-05-12
EP3913788A1 (en) 2021-11-24
EP3913788A4 (en) 2022-12-21
CN113287256A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Wan et al. in situ investigations of Li‐MoS2 with planar batteries
Cui et al. Transparent, flexible cellulose nanofibril–phosphorene hybrid paper as triboelectric nanogenerator
Chevigny et al. Tuning the mechanical properties in model nanocomposites: Influence of the polymer‐filler interfacial interactions
Duan et al. The resistivity–strain behavior of conductive polymer composites: stability and sensitivity
Mazaheri et al. A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets
Chattopadhyay et al. Ethyl (hydroxyethyl) cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom
TW200800378A (en) Dispersion method, redispersion method and crush method of dispersoids, and apparatuses therefor
WO2020149353A1 (ja) 誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法
Kiymaz et al. Controlled growth mechanism of poly (3-hexylthiophene) nanowires
Pujari et al. Preparation and characterization of multiwalled carbon nanotube dispersions in polypropylene: melt mixing versus solid‐state shear pulverization
Wu et al. Dielectric response of nano aluminium tri-hydrate filled silicone rubber
Houssat et al. Nanoscale mechanical and electrical characterization of the interphase in polyimide/silicon nitride nanocomposites
WO2021005371A1 (en) Dispersions
Cob et al. Influence of concentration, length and orientation of multiwall carbon nanotubes on the electromechanical response of polymer nanocomposites
Skalsky et al. Terahertz time-domain spectroscopy as a novel metrology tool for liquid-phase exfoliated few-layer graphene
Madhanagopal et al. Enhanced wide‐range monotonic piezoresistivity, reliability of Ketjenblack/deproteinized natural rubber nanocomposite, and its biomedical application
Aguilar-Bolados et al. Influence of the surfactant nature on the occurrence of self-assembly between rubber particles and thermally reduced graphite oxide during the preparation of natural rubber nanocomposites
Luo et al. Examining the contribution of factors affecting the electrical behavior of poly (methyl methacrylate)/graphene nanoplatelets composites
WO2020262129A1 (ja) 誘電エラストマートランスデューサ
Knite et al. A study of electric field-induced conductive aligned network formation in high structure carbon black/silicone oil fluids
Shankar et al. Influence of conductive and dielectric fillers on the relaxation of solid silicone rubber composites
Ghanta et al. Unipolar resistive switching and tunneling oscillations in isolated Si–SiOx core–shell nanostructure
WO2022049791A1 (ja) 導電性接着剤、誘電エラストマートランスデューサーおよび誘電エラストマートランスデューサーの製造方法
Seo et al. Preparation of Highly Monodisperse Electroactive Pollen Biocomposites
WO2022009555A1 (ja) 放熱材および電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741059

Country of ref document: EP

Effective date: 20210818