WO2020149312A1 - 自動車の側部構造及び自動車 - Google Patents

自動車の側部構造及び自動車 Download PDF

Info

Publication number
WO2020149312A1
WO2020149312A1 PCT/JP2020/001100 JP2020001100W WO2020149312A1 WO 2020149312 A1 WO2020149312 A1 WO 2020149312A1 JP 2020001100 W JP2020001100 W JP 2020001100W WO 2020149312 A1 WO2020149312 A1 WO 2020149312A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
shock absorbing
door
impact
vehicle
Prior art date
Application number
PCT/JP2020/001100
Other languages
English (en)
French (fr)
Inventor
鈴木 利哉
嘉明 中澤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020566434A priority Critical patent/JP7088319B2/ja
Publication of WO2020149312A1 publication Critical patent/WO2020149312A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors

Definitions

  • the present invention relates to a side structure of an automobile and an automobile.
  • the present application claims priority based on Japanese Patent Application No. 2019-004035 filed in Japan on January 15, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 regarding a mounting structure of a door impact bar, it is described that a collision load input to the door impact bar is applied to an inner panel via a bracket.
  • a shock absorbing member such as a door impact bar (door impact beam) is provided inside the car door.
  • These shock absorbing members are installed so as to traverse the door as described in Patent Document 1.
  • the end of the shock absorbing member is fixed, and the shock absorbing member bends to absorb the shock.
  • the fixing of the end portion of the shock absorbing member is easily broken, the performance of the shock absorbing member cannot be fully exhibited.
  • the bracket has a hat shape formed by bending a plate material, and a portion corresponding to the hat-shaped top plate portion is configured to receive a collision load from the door impact bar.
  • the present inventors have found that in such a configuration, if the hat-shaped vertical wall portion that is continuous from the top plate portion is bent by receiving a load, there is a problem that load-bearing performance is significantly deteriorated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved automobile side structure and a vehicle having high shock absorption performance.
  • a side structure of an automobile includes a first impact absorbing member that traverses the interior of an automobile door, a second impact absorbing member that is disposed inside the automobile door, and a door inner panel. And a vehicle frame member, the second shock absorbing member is disposed between the first shock absorbing member and the door inner panel, and the first shock absorbing member and the second shock absorbing member are provided.
  • the member, the door inner panel, and the vehicle frame member are on a straight line in the vehicle width direction, and the second shock absorbing member and the door inner panel have a tubular shape whose axial direction is the vehicle width direction.
  • the second shock absorbing member includes a first ridge line extending in the vehicle width direction, and the first shock absorbing member is on an extension line of the first ridge line in the vehicle width direction. Is characterized by.
  • the second impact absorbing member includes two second ridgelines extending in the vehicle width direction, and the second ridgeline extends between the second ridgelines. It may have a first ridge.
  • the first ridge line may be a ridge line protruding inward of the tubular shape.
  • the second impact absorbing member includes a first wall and a second wall, and Wall and the second wall are a part of the tubular shape, the first wall and the second wall are respectively adjacent to the door inner panel, and the first wall and the second wall The wall may be flat, and the first surface extending the first wall and the second surface extending the second wall may intersect inside the automobile door.
  • the second impact absorbing member and the door inner panel may provide a plan view perpendicular to the vehicle width direction. The maximum width of the configured closed cross section in the vehicle length direction may be larger than the width of the first impact absorbing member in the vehicle length direction.
  • An automobile according to an aspect of the present invention includes the side part structure of the automobile described in any one of (1) to (5) above.
  • FIG. 3 is a schematic diagram showing a cross section taken along the alternate long and short dash line I-I′ shown in FIG. 2 when the door according to the present embodiment is closed with respect to the chassis.
  • FIG. 3 is a schematic diagram which shows the example which provided the 2nd impact absorption member corresponding to one 1st impact absorption member in the structure of the door which concerns on this embodiment.
  • FIG. 5A It is a schematic diagram which shows the structure except the 1st impact absorption member from FIG. 5A. It is a schematic diagram which shows the state which looked at the 2nd impact absorption member from the arrow A2 direction of FIG. 5B. It is a schematic diagram which shows the structure of the site
  • FIG. 7 is a characteristic diagram showing the relationship between the deformation amount (stroke) of the exterior panel and the load when a load is applied to the exterior panel of the door for the configurations of Inventive Examples 1 to 3 and Comparative Example 1.
  • FIG. 1 is a perspective view showing the structure of an automobile 1000 according to an embodiment of the present invention.
  • an automobile 1000 includes components such as a body 500, a door 600 (front door and/or rear door), a hood 700, a fender 800, a trunk lid 900, and the like.
  • the structure of the automobile 1000, particularly in the vicinity of the door 600 will be described.
  • INDUSTRIAL APPLICABILITY The present invention can be applied to a slide type door as well as a door attached to a vehicle body via a hinge.
  • the door 600 and the body 500 are connected to each other via a door hinge provided on the A pillar 510 of the body 500 (or a door hinge provided on the B pillar 530) so that the door 600 can rotate with respect to the body 500. Has been done.
  • FIG. 2 is a schematic diagram showing an example of the structure of the door 600, and shows a state in which the door 600 is viewed from the outside of the automobile 1000. Note that, for convenience of description, in FIG. 2, only the impact absorbing member 120 of the exterior panel 100, which will be described later, is illustrated, and the exterior material 110 is not illustrated.
  • FIG. 3 is a schematic diagram showing a cross section taken along the alternate long and short dash line I-I′ shown in FIG. 2 when the door 600 is closed with respect to the body 500. The position of the alternate long and short dash line I-I' shown in FIG. 2 corresponds to the position of the alternate long and short dash line I-I' shown in FIG.
  • the lower end 610 of the door 600 is adjacent to the side sill 520 of the body 500 via the side panel when the door is closed with respect to the body 500.
  • the rear end 620 of the door 600 of the vehicle is adjacent to the B pillar 530 of the body 500 via the side panel.
  • the door 600 has an exterior panel 100.
  • the exterior panel 100 is a panel whose front side is exposed to the outside of the automobile 1000.
  • the front surface of the exterior panel 100 is painted according to the color of the automobile 1000.
  • Exterior panel 100 is composed of exterior material 110 and shock absorbing member 120.
  • the exterior material 110 is made of, for example, a steel plate having a thickness of about 0.4 to 0.7 mm.
  • the exterior material 110 is curved so that the front side is convex. That is, the exterior material 110 is curved in a cross section perpendicular to the vehicle length direction.
  • the shock absorbing member 120 includes a first shock absorbing member 122 arranged in the vehicle height direction and a third shock absorbing member 124 arranged in the vehicle length direction.
  • the first shock absorbing member 122 and the third shock absorbing member 124 intersect each other.
  • the fact that the first impact absorbing member 122 is arranged in the vehicle height direction means that the longitudinal direction of the first impact absorbing member 122 is arranged so as to intersect the vehicle length direction.
  • the fact that the third impact absorbing member 124 is arranged in the vehicle length direction means that the third impact absorbing member 124 is arranged so as to intersect with the vehicle height direction.
  • first shock absorbing member 122 be curved according to the shape of the exterior material 110.
  • the third shock absorbing member 124 extends substantially linearly. However, when the exterior material 110 is curved in a cross section perpendicular to the vehicle height direction, it is desirable that the third shock absorbing member 124 has a shape that follows the curved shape of the exterior material 110.
  • the first shock absorbing member 122 and the third shock absorbing member 124 can be in close contact with the exterior material 110 as long as they have a shape that follows the exterior material 110, and are preferably joined (bonded) to the exterior material 110.
  • the exterior material 110 is not deformed when the first shock absorbing member 122 or the third shock absorbing member 124 is deformed. resist. That is, it is more preferable because the exterior material 110 can contribute to shock absorption.
  • a door inner panel 200 is provided inside the exterior panel 100.
  • the door inner panel 200 is made of a steel plate.
  • the inner side of the door inner panel 200 faces the vehicle interior, and is usually provided with an interior material made of leather or a resin material.
  • the first shock absorbing member 122 extends near the lower end of the door 600.
  • the door inner panel 200 also extends to the vicinity of the lower end of the door 600.
  • the first impact absorbing member 122 is interposed between the exterior panel 100 and the side sill 520 at a portion where the lower end 610 of the door 600 and the side sill 520 are adjacent to each other.
  • the second impact absorbing member 126 is interposed between the exterior panel 100 and the side sill 520. .. More specifically, in this part, the second shock absorbing member 126 is interposed between the first shock absorbing member 122 and the side sill 520, and each of the plurality of second shock absorbing members 126 is plural. It is provided corresponding to the position of the first impact absorbing member 122.
  • All of the four first shock absorbing members 122 shown in FIG. 2 extend to the vicinity of the lower end of the door 600, so that the exterior panel is provided at the portion where the lower end 610 of the door 600 and the side sill 520 are adjacent to each other.
  • the four first shock absorbing members 122 are interposed between the 100 and the side sill 520.
  • the four second impact absorbing members 126 are interposed between the first impact absorbing member 122 and the side sill 520.
  • the first impact absorbing member 122, the second impact absorbing member 126, the door inner panel 200, and the side sill 520 extending in the vehicle height direction are arranged in this order in the vehicle width direction (FIG. 3). These are arranged on the straight line L) shown in FIG.
  • the impact absorption performance when the side surface of the automobile 1000 collides with another structure can be significantly improved.
  • the end portion of the first impact absorbing member 122 is supported by the side sill 520.
  • the part supporting the first shock absorbing member 122 (that is, the side sill 520) is a frame member of the automobile 1000 and is not easily deformed. Therefore, when a shock is applied to the door 600, the first shock absorbing member 122 receives the first shock.
  • the absorbing member 122 can receive the load. That is, the shock absorbing performance of the shock absorbing member 120 can be utilized.
  • the shock absorbing member 120 at a position as far as possible from the passenger. That is, it is preferable to install the shock absorbing member 120 on the exterior material 110 side of the door 600. In this respect, by making the door 600 thicker, the shock absorbing member 120 can be arranged closer to the exterior material 110 side. However, when the thickness of the door 600 is increased to form the thick door 600, when the shock absorbing member 120 is arranged on the exterior material 110 side, the end of the first shock absorbing member 122 is separated from the side sill 520. In this case, it is assumed that the first shock absorbing member 122 is separated from the side sill 520 and the shock absorbing performance of the first shock absorbing member 122 cannot be utilized.
  • the first shock absorbing member 122, the second shock absorbing member 126, the door inner panel 200, and the side sill 520 are arranged in this order on the same line in the vehicle width direction. ..
  • the first shock absorbing member 122 is a shock absorbing member extending in the vehicle height direction
  • the second shock absorbing member 126 is a shock arranged between the first shock absorbing member 122 and the door inner panel 200. It is an absorbing member.
  • the first shock absorbing member 122 and the door inner panel 200 sandwich the second shock absorbing member 126.
  • the first shock absorbing member 122 receives the load and the load is applied from the first shock absorbing member 122 to the second shock. It is transmitted to the side sill 520 via the absorbing member 126. That is, the side sill 520 can support the first shock absorbing member 122 and receive the load. As a result, the door 600 including the first shock absorbing member 122 can be prevented from entering the vehicle compartment side by the first shock absorbing member 122, the second shock absorbing member 126, and the side sill 520.
  • the second shock absorbing member 126 is sandwiched between the first shock absorbing member 122 and the side sill 520 via the door inner panel 200 to efficiently receive the load. Furthermore, the second shock absorbing member 126 can also absorb the load by deforming itself.
  • the first shock absorbing member 122 has a circular or rectangular cross section on the same line as described above. This is because if the first shock absorbing member 122 is a flat plate, it may break without transmitting a load. That is, when the cross section of the first shock absorbing member 122 is annular or rectangular, the shock absorbing function can be more effectively exhibited when a load due to a collision is applied.
  • the first shock absorbing member 122 may be manufactured by bending a plate material so that the cross section has a rectangular shape.
  • the first shock absorbing member 122 may be manufactured by a hollow tubular member or a solid rod-shaped member. Further, the shock absorbing member 120 may have a hollow or solid trapezoidal cross section.
  • the long side may be about 6 to 20 mm and the short side may be about 6 to 16 mm.
  • the plate thickness of the plate material forming the first impact absorbing member 122 may be, for example, about 0.6 to 1.2 mm.
  • a steel plate can be used as the plate material.
  • the ends may be in close contact with each other. Further, the ends may be joined to each other by welding, adhesion or the like.
  • the cross section of the shock absorbing member 120 does not need to be a continuous rectangular shape, a ring shape, or a trapezoidal shape, and may have a discontinuous shape due to the existence of a gap.
  • the ends may be in close contact with each other, or the ends may be joined by welding, bonding, or the like.
  • the basic structure of the first shock absorbing member 122 and the third shock absorbing member 124 can be the same.
  • the tensile strength of the first shock absorbing member 122 and the third shock absorbing member 124 is preferably 980 MPa or more, more preferably 1470 MPa or more.
  • first impact absorbing member 122 and the third impact absorbing member 124 are formed from a steel plate by press forming, cold forming may be used, or hot stamping may be adopted depending on the strength of the steel plate.
  • the load (impact energy) due to impact is absorbed as follows.
  • a collision load is applied to the impact absorbing member 120 at the center of the door 600 in the vehicle height direction (step 1).
  • the end of the first impact absorbing member 122 is deformed or moved to the vehicle width direction vehicle compartment side together with the second impact absorbing member 126 and the door inner panel 200 (step 2). ).
  • the first shock absorbing member 122 enters the vehicle width direction vehicle outer side of the second shock absorbing member 126, and the first shock absorbing member 122 passes through the second shock absorbing member 126 and the door inner panel 200.
  • the first shock absorbing member 122 is deformed by being supported by the side sill 520 to absorb the shock energy (step 3).
  • the second shock absorbing member 126 is deformed to further absorb the shock energy (step 4).
  • step 3 the first shock absorbing member 122 and the second shock absorbing member 126 approach the vehicle outside in the vehicle width direction of the side sill 520 with the door inner panel 200 interposed therebetween. If the first shock absorbing member 122, the second shock absorbing member 126 and the side sill 520 are not on the same line in the vehicle width direction, the above step 3 does not occur. If the second impact absorbing member 126 is not provided, the impact energy in Step 3 is not sufficiently absorbed, and the impact energy in Step 4 is not absorbed. As described above, according to the configuration of the present embodiment, it is possible to reliably absorb the load due to the impact. Further, on the same line, by making the cross section of the first shock absorbing member 122 annular or rectangular, the first shock absorbing member 122 can sufficiently exhibit the shock absorbing function, and the effect of the above step 3 is further improved. It can be fully demonstrated.
  • a side panel is generally interposed between the door inner panel 200 and the side sill 520. However, since the side panel has a small contribution to impact absorption, the description of the side panel is omitted in the above description.
  • the example in which the second impact absorbing member 126 is arranged between the first impact absorbing member 122 and the door inner panel 200 in the portion adjacent to the side sill 520 has been described, but the A pillar 510,
  • the same structure can be applied to a portion adjacent to the skeleton member such as the B pillar 530.
  • the side sill 520 shown in FIG. 3 can be replaced with the A pillar 510, the B pillar 530, or the like
  • the first shock absorbing member 122 is a member arranged in the vehicle length direction (for example, the third shock). It can be replaced by an absorbing member 124).
  • the first shock absorbing member 122 causes the second shock absorbing member 122 to move to the second shock absorbing member 122. It is supported by the A pillar 510 or the B pillar 530, which is a frame member of the automobile 1000, through the shock absorbing member 126 and the door inner panel 200. Therefore, the impact energy can be absorbed as in the case of the side sill 520.
  • FIG. 4 is a schematic view showing an example in which the second shock absorbing member 126 is provided so as to correspond to one first shock absorbing member 122.
  • the first impact absorbing member 122 may be a door impact bar as described in Patent Document 1 described above, and the second impact absorbing member according to the present embodiment may be provided at the end of the door impact bar. 126 may be provided.
  • the first shock absorbing member 122 and the third shock absorbing member 124 intersect at the intersection, and the third shock absorbing member 124 is positioned outside the vehicle in the outer direction (exterior) of the first shock absorbing member 122. It may be located on the material 110 side).
  • a recess may be provided in each of the first shock absorbing member 122 and the third shock absorbing member 124, and these members may intersect in this recess.
  • the first shock absorbing member 122 and the third shock absorbing member 124 are arranged in the same plane.
  • the third impact absorbing member 124 is located in the outer side direction (exterior material 110 side) of the vehicle with respect to the first impact absorbing member 122, other structures are provided on the exterior panel 100 of the door 600.
  • the load is transmitted from the exterior material 110 to the third shock absorbing member 124.
  • the third impact absorbing member 124 is arranged in the vehicle length direction, the load is applied from the intersection of the first impact absorbing member 122 and the third impact absorbing member 124 to the plurality of first impact absorbing members 124. It is transmitted to 122.
  • the side sill 520 is a part of the body 500 that is a skeletal member of the automobile 1000, and has extremely high strength. As a result, the load due to the collision can be received by the body 500, and the load is dispersed in the body 500, so that the shock can be reliably absorbed.
  • Two or more, three or more, or four or more first impact absorbing members 122 may be provided for one exterior panel 100 or one door inner panel 200. ..
  • three or more first shock absorbing members 122 are provided in order to reliably receive the load regardless of which part of the door 600 in the vehicle length direction collides.
  • the number of the first shock absorbing members 122 is preferably 6 or less in order to prevent an increase in weight due to excessive installation of the first shock absorbing members 122. More preferably, the number of the first shock absorbing members 122 is four or five.
  • third shock absorbing members 124 may be provided for one exterior panel 100 or one door inner panel 200, and three or more, or four or more may be provided. ..
  • the number of the third impact absorbing member 124 is preferably two or more, and the third impact absorbing member 124 is also preferable.
  • the number of the third shock absorbing members 124 is preferably 5 or less. More preferably, the number of the third shock absorbing members 124 is three or four.
  • the length of one side of the region divided by the shock absorbing member 122 and the third shock absorbing member 124 is preferably 300 mm or less, and more preferably, the first shock absorbing member 122 and the third shock absorbing member.
  • the length of one side of the region divided by 124 is 200 mm or less.
  • FIG. 5A is a schematic diagram showing a configuration of a portion where the first shock absorbing member 122 and the second shock absorbing member 126 are adjacent to each other in the lower end portion 610 of the door 600, which is surrounded by a two-dot chain line in FIG. 2.
  • the detailed structure of the sub-area A1 is shown.
  • FIG. 5A shows a state in which the first shock absorbing member 122, the second shock absorbing member 126, and the door inner panel 200 are viewed from the outside of the vehicle (exterior material 110 side), and illustration of the outer material 110 is omitted. doing.
  • the lower end of the door inner panel 200 is bent toward the outside of the vehicle (side of the exterior material 110) to form a hem portion 200a for hemming the exterior material 110 and the door inner panel 200. Has been done.
  • the second impact absorbing member 126 is disposed between the first impact absorbing member 122 and the door inner panel 200, and is closer to the door inner panel 200 than the first impact absorbing member 122. It is located in.
  • the second impact absorbing member 126 is made of sheet metal so that the shape of the cross section perpendicular to the vehicle width direction is an M shape with a flange.
  • the sheet metal forming the second impact absorbing member 126 extends in the vehicle width direction.
  • the second shock absorbing member 126 can also be made of, for example, a steel plate.
  • the second shock absorbing member 126 is formed of a sheet metal in an M shape with a flange, and the extending direction of the sheet metal is the vehicle width direction.
  • the first shock absorbing member 122 attempts to enter the second shock absorbing member 126 when the side surface of the door 600 receives a shock from the outside
  • the second shock absorbing member 126 Since the sheet metal of 126 extends in the vehicle width direction, first, the lower end of the first impact absorbing member 122 in the vehicle height direction connects the second impact absorbing member 126 and the door inner panel 200. Supported by the side sill 520. Therefore, the first impact absorbing member can be deformed to absorb the load.
  • the second shock absorbing member 126 is buckled and deformed to absorb the load.
  • the cross-sectional shape of the second shock absorbing member 126 is not limited to the M shape, and other shapes can be adopted.
  • the second shock absorbing member 126 is joined to the bottom portion 200b of the door inner panel 200 at the joining portion 126a. That is, the second shock absorbing member 126 and the bottom portion 200b of the door inner panel 200 form a tubular shape (closed cross-sectional shape) whose axis is in the vehicle width direction. Since the tubular shape is axially crushed, the shock absorbing performance is higher than that of the second shock absorbing member 126 having an open cross section alone.
  • the second shock absorbing member 126 is arranged side by side with the side sill 520 in the vehicle width direction with the door inner panel 200 interposed therebetween.
  • the second sill absorbing member 126 can be axially crushed by being supported by the side sill 520 even in the axial direction having a high withstand load.
  • the second shock absorbing member 126 and the door inner panel 200 are preferably joined by welding, but may be joined by a technique such as bonding.
  • the tube shape having the vehicle width direction as an axis means a shape that forms a closed cross section in a cross-sectional view perpendicular to the vehicle width direction.
  • the cross-sectional shape does not necessarily need to be continuous in all cross-sectional views of the tube shape, and a part of the tube shape does not have to form a closed cross section.
  • the first shock absorbing member 122 is fixed to the door inner panel 200 at the end.
  • the end of the first impact absorbing member 122 is joined to the bottom portion 200b of the door inner panel 200 at the joining portion 122b.
  • the joining is preferably performed by welding, but the joining may be performed by a method such as adhesion using a structural adhesive or the like.
  • the configuration illustrated in FIG. 5A is merely an example, and the first impact absorbing member 122 may be joined to the hem portion 200 a of the door inner panel 200. Further, in the example shown in FIG.
  • the end of the first shock absorbing member 122 and the door inner panel 200 are directly fixed, but the end of the first shock absorbing member 122 is connected to the door through another component such as a bracket. It may be fixed to the inner panel 200. This is because the number of parts is increased by using other parts such as a bracket, but there is an advantage that the shape of the end of the first shock absorbing member 122 can be simplified.
  • the exterior material 110 is further joined to the hem portion 200a of the door inner panel 200 by hemming.
  • the exterior material 110 and the door inner panel 200 may be joined by bonding or the like in addition to the hemming process.
  • the end of the first shock absorbing member 122 When a load is applied to the first shock absorbing member 122 that is convexly curved toward the vehicle outer side in the vehicle width direction, the end of the first shock absorbing member 122 is directed toward the vehicle height direction outer side of the door 600 (when facing downward). A force to move is generated.
  • the end of the first shock absorbing member 122 may be arranged at the lower end of the door 600 in the vehicle height direction.
  • the end of the first shock absorbing member 122 interferes with the bottom portion 200b of the door inner panel 200, and as a result, the end of the first shock absorbing member 122 may move toward the outside of the door 600 in the vehicle height direction. Can be suppressed. From these, the load can be received while keeping the state where the first shock absorbing member 122 is convexly curved for a longer time, so the shock absorbing performance is improved.
  • a slight amount of clearance is provided between the first shock absorbing member 122 and the second shock absorbing member 126 for the purpose of avoiding interference due to dimensional error within the tolerance that occurs during manufacturing of each member. Preferably.
  • FIG. 5B is a schematic diagram showing a configuration in which the first shock absorbing member 122 is removed from FIG. 5A.
  • 5C is a schematic diagram showing a state where the second shock absorbing member 126 is viewed from the direction of arrow A2 (vehicle height direction) of FIG. 5B, and the first shock absorbing member 122 and the second shock absorbing member 126 are shown. It is a figure which shows typically the mode that the members 126 overlap (state which overlaps).
  • the configuration example shown in FIGS. 5A to 5C is referred to as Invention Example 1.
  • the second shock absorbing member 126 has three ridge lines 126b, 126c, 126d.
  • the ridge lines 126b and 126d are ridge lines that are convex on the outside of the closed cross section, and the ridge lines 126c are ridge lines that are convex on the inside of the closed cross section.
  • the plurality of ridge lines 126b, 126c, 126d and the first impact absorbing member 122 are It is arranged to overlap.
  • the central ridge 126 c is arranged so as to overlap the first shock absorbing member 122. In this way, by arranging the ridge lines 126b, 126c, 126d and the first impact absorbing member 122 so as to overlap each other, the portions of the ridge lines 126b, 126c, 126d when the door 600 is impacted from the outside of the vehicle.
  • the withstand load of the second shock absorbing member 126 increases. That is, the load due to the impact can be reliably received, and the load bearing performance can be improved.
  • two or more ridge lines are provided, and the ridge lines at both ends are arranged so as to sandwich the first shock absorbing member 122, thereby receiving the first shock absorbing member 122. It is possible to prevent the ridgeline (ridgeline 126c) from falling down, and it is possible to further improve the load bearing performance.
  • FIGS. 6A and 7A show a detailed configuration of a region A1 surrounded by a chain double-dashed line in FIG. However, the illustration of the first shock absorbing member 122 is omitted in FIGS. 6A and 7A.
  • FIG. 6B is a schematic diagram showing a state where the second shock absorbing member 126 is viewed from the direction of arrow A2 in FIG. 6A, and the first shock absorbing member 122 and the second shock absorbing member 126 overlap each other. It is a figure which shows typically.
  • FIG. 7B is a schematic diagram showing a state where the second shock absorbing member 126 is viewed from the direction of arrow A2 in FIG. 7A, and the first shock absorbing member 122 and the second shock absorbing member 126 overlap each other. It is a figure which shows a mode typically.
  • the configuration example shown in FIGS. 6A and 6B is referred to as Invention Example 2
  • the configuration example shown in FIGS. 7A and 7B is referred to as Invention Example 3.
  • the second impact absorbing member 126 and the bottom portion 200b of the door inner panel 200 form a triangular closed cross section when viewed from the direction of arrow A2.
  • the second shock absorbing member 126 has a ridge line 126e that is convex outside the closed cross section.
  • the ridgeline 126e and the first impact absorbing member 122 are arranged so as to overlap each other when viewed from the direction in which the load due to the impact is applied (the direction of the arrow A2).
  • the load bearing capacity increases at the ridge line 126e, so that when a shock is applied to the door 600 from the outside of the vehicle, The load due to the impact can be reliably received, and the load bearing performance can be improved.
  • the cross-sectional shape composed of the second shock absorbing member 126 and the bottom portion 200b of the door inner panel 200 a triangular closed cross-sectional shape, compared with the case where the cross-sectional shape is a quadrangle or a shape close to a quadrangle, It is possible to prevent the cross-sectional shape from collapsing when a load is applied to the second shock absorbing member 126. As a result, the load can be received longer at the ridge 126e, so that the load bearing performance can be further improved.
  • the second shock absorbing member 126 has an M-shape when viewed from the direction of arrow A2, as in FIGS. 5A to 5C. Similar to FIG. 5B, the second shock absorbing member 126 has three ridge lines 126b, 126c, 126d. In addition, the ridge lines 126b and 126d are ridge lines that are convex on the outside of the closed cross section that is configured by the second impact absorbing member 126 and the bottom portion 200b of the door inner panel 200, and the ridge line 126c is the ridge line that is convex on the inside of this closed cross section. Is. In the example shown in FIG.
  • the side walls 126f and 126g (first wall, second wall) of the second shock absorbing member 126 are substantially parallel, but in the example shown in FIG. 7B, the side walls 126f and 126g are respectively formed.
  • the surfaces extended toward the upper side of the vehicle are configured to intersect.
  • the extended surfaces of the side walls 126f and 126g are configured to intersect inside the door 600.
  • the side walls 126f and 126g (first wall, second wall) are flat (have flat portions) and are adjacent to the door inner panel 200, respectively.
  • the plurality of ridge lines 126b, 126c, 126d and the first shock absorbing member 122 are arranged so as to overlap each other when viewed from the direction in which a load due to shock is applied (direction of arrow A2). In this way, by arranging the ridgelines 126b, 126c, 126d so as to overlap the first impact absorbing member 122, the withstand load increases at the ridgelines 126b, 126c, 126d, so that the door 600 is impacted from the outside of the vehicle. When the load is applied, the load due to the impact can be more reliably received, and the load bearing performance can be improved.
  • the surfaces extending from the side walls 126f and 126g are configured to intersect with each other, and thus the second impact absorbing member 126 and the bottom portion 200b of the door inner panel 200 are configured.
  • the cross-sectional shape is close to a triangle. Therefore, it is possible to prevent the cross-sectional shape from collapsing when a load is applied to the second shock absorbing member 126, and it is possible to receive the load for a longer period at the ridge lines 126b, 126c, 126d. Therefore, the load bearing performance can be further enhanced.
  • the first shock absorbing member 122 is located on an extension of the first ridgeline of the second shock absorbing member 126 in the vehicle width direction. Further, it is more preferable that the first impact absorbing member 126 has a portion where the cross section of the first impact absorbing member 122 is formed in an annular or rectangular shape on an extension line extending in the vehicle width direction of the first ridgeline.
  • the ridge line means a location where the maximum value of the radius of curvature is equal to or less than twice the width of the first impact absorbing member 122 in the vehicle length direction in a cross section perpendicular to the vehicle width direction.
  • the ridge line 126c corresponds to the first ridge line
  • the ridge line 126b or 126d corresponds to the second ridge line.
  • the second impact absorption member when viewed along the vehicle width direction (in a plan view perpendicular to the vehicle width direction), is an area where the first impact absorption member 122 and the second impact absorption member 126 overlap. It is more preferable that the maximum width in the vehicle length direction of the closed cross section composed of 126 and the door inner panel 200 is larger than the width of the first impact absorbing member 122 in the vehicle length direction. As a result, there is an effect that the first shock absorbing member 122 can be prevented from falling down in the vehicle length direction when a load due to a shock is applied.
  • FIG. 8A shows a detailed configuration of a region A1 surrounded by an alternate long and two short dashes line in FIG.
  • the illustration of the first shock absorbing member 122 is omitted.
  • FIG. 8B is a schematic diagram showing a state in which the second shock absorbing member 126 is viewed from the direction of arrow A2 in FIG. 8A, and the first shock absorbing member 122 and the second shock absorbing member 126 overlap each other. It is a figure which shows typically.
  • the second shock absorbing member 126 and the bottom portion 200b of the door inner panel 200 form a rectangular (rectangular) closed cross section when viewed from the direction of arrow A2.
  • the second shock absorbing member 126 has convex ridge lines 126h and 126i outside the closed cross section.
  • the ridgelines 126h and 126i and the first impact absorbing member 122 do not overlap when viewed from the direction in which a load due to impact is applied (the direction of arrow A2).
  • the second shock absorbing member 122 receives the second shock.
  • the absorbing member 126 is deformed relatively easily, and the load due to the impact cannot be effectively received.
  • the sectional shape of the second shock absorbing member 126 and the bottom portion 200b of the door inner panel 200 is a rectangle (quadrangle), the cross section when a load is applied to the second shock absorbing member 126. The shape is likely to collapse and cannot effectively receive the load.
  • FIG. 9 shows the strokes of the indenter when the center of the exterior panel 100 of the door 600 is pushed by a cylindrical indenter having a radius of 300 mm as an axis in the vehicle height direction with respect to the configurations of the invention examples 1 to 3 and the comparative example.
  • FIG. 10 is a characteristic diagram in which the relationship between the load received by the indenter from the door 600 is obtained by simulation.
  • the load characteristics are improved in Invention Example 1 and Invention Example 2 than in Comparative Example, and the difference is remarkable when the stroke is 35 mm or more.
  • Inventive example 3 has improved load characteristics and higher impact absorption performance than inventive examples 1 and 2. Therefore, the structure of the present embodiment can significantly improve the shock absorbing performance.
  • each member such as the first shock absorbing member 122, the second shock absorbing member 126, the third shock absorbing member 124, and the door inner panel 200 is made of a steel plate
  • These members may be made of other materials such as aluminum, aluminum alloy, CFRP (carbon fiber reinforced plastic).
  • the first impact absorbing member 122, the second impact absorbing member 126, the door inner panel 200, and the side sill 520 that extend in the vehicle height direction are arranged in this order. Since they are arranged on the same line in the width direction, it is possible to significantly improve the shock absorbing performance when the side surface of the automobile 1000 collides with another structure.
  • first shock absorbing member 122 and the second shock absorbing member 126 are viewed from the direction in which the load is applied by providing a ridge line on the second shock absorbing member 126, the first shock absorbing member 122 and the second shock absorbing member 122 Since the ridges of the impact absorbing member 126 are arranged so as to overlap with each other, it is possible to significantly improve the load bearing performance against impact.
  • the side structure of a vehicle includes a vehicle door and structural members such as side sills and pillars.
  • the present invention can be applied to front doors and rear doors of automobiles. Further, the present invention can be applied not only to the door arranged on the side of the automobile but also to the door arranged on the rear of the automobile.
  • a door also referred to as a tailgate
  • the inner panel of such a door intersects with the vehicle length direction of the vehicle, and thus the vehicle described in the above embodiment is used.
  • the long direction may be read as the vehicle width direction and the vehicle width direction may be read as the vehicle length direction.
  • the present invention has a high industrial applicability because it can provide an automobile side structure and an automobile having high shock absorption performance.
  • Second Impact Absorbing Member 200 Door Inner Panel 520 Side Sill 600 Door 1000 Automotive

Abstract

自動車ドア内を横断する第1の衝撃吸収部材(122)と、自動車ドア内に配置された第2の衝撃吸収部材(126)と、ドアインナーパネル(200)と、車両骨格部材と、を備え、第2の衝撃吸収部材(126)は、第1の衝撃吸収部材(122)とドアインナーパネル(200)の間に配置され、第1の衝撃吸収部材(122)、第2の衝撃吸収部材(126)、及びドアインナーパネル(200)と、車両骨格部材と、が車幅方向の直線上にあり、第2の衝撃吸収部材(126)とドアインナーパネル(200)は、軸方向が車幅方向の管形状を構成し、第2の衝撃吸収部材(126)は車幅方向の稜線を備え、稜線の車幅方向の延長線上に第1の衝撃吸収部材(122)がある、自動車の側部構造、並びに自動車が提供される。

Description

自動車の側部構造及び自動車
 本発明は、自動車の側部構造及び自動車に関する。
 本願は、2019年1月15日に日本に出願された特願2019-004035号に基づき優先権を主張し、その内容をここに援用する。
 従来、例えば下記の特許文献1には、ドアインパクトバーの取り付け構造に関し、ドアインパクトバーに入力された衝突荷重を、ブラケットを介してインナパネルに加えることが記載されている。
日本国特開2016-88203号公報
 自動車の側面に衝突した場合の衝突安全性を確保するため、ドアインパクトバー(ドアインパクトビーム)などの衝撃吸収部材が自動車のドア内部に設けられている。これらの衝撃吸収部材は、特許文献1に記載されているように、ドアを横断するように設置される。衝撃吸収部材の端部は固定されており、衝撃吸収部材は折れ曲がることで衝撃を吸収する。しかし、衝撃吸収部材の端部の固定が容易に破損してしまうと、衝撃吸収部材の性能を十分に発揮することができない。
 上記特許文献1に記載された技術では、ブラケットが板材を折り曲げたハット形状を成し、ハット形状の天板部に相当する部位でドアインパクトバーからの衝突荷重を受けるように構成されている。このような構成では、天板部から連なるハット形状の縦壁部が荷重を受けて折れ曲がってしまうと、耐荷重性能が著しく低下する問題があることを本発明者らは見出した。
 このように、ドアインパクトバーの端部を特許文献1のブラケットのような支持部材で支持する場合に、支持部材の強度が弱いと、ドアへの側面衝突の際にドアインパクトバーの性能が発揮されることなく、ドアインパクトバーがドアインナーパネルに押し付けられてしまう。これにより、衝撃荷重を十分に吸収することができず、ドアインパクトバーやドアインナーパネルなどの部材が車室側に侵入することも想定される。
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、衝撃吸収性能の高い、新規かつ改良された自動車の側部構造及び自動車を提供することにある。
(1)本発明の一態様に係る自動車の側部構造は、自動車ドア内を横断する第1の衝撃吸収部材と、自動車ドア内に配置された第2の衝撃吸収部材と、ドアインナーパネルと、車両骨格部材と、を備え、前記第2の衝撃吸収部材は、前記第1の衝撃吸収部材と前記ドアインナーパネルの間に配置され、前記第1の衝撃吸収部材、前記第2の衝撃吸収部材、及び前記ドアインナーパネルと、前記車両骨格部材と、が車幅方向の直線上にあり、前記第2の衝撃吸収部材と前記ドアインナーパネルは、軸方向が前記車幅方向となる管形状を構成し、前記第2の衝撃吸収部材は前記車幅方向に沿った第1の稜線を備え、前記第1の稜線の前記車幅方向の延長線上に前記第1の衝撃吸収部材があることを特徴とする。
(2)上記(1)に記載の自動車の側部構造において、前記第2の衝撃吸収部材は前記車幅方向に沿った第2の稜線を2本備え、前記第2の稜線の間に前記第1の稜線があるものであっても良い。
(3)上記(2)に記載の自動車の側部構造において、前記第1の稜線は前記管形状の内側に突出する稜線であっても良い。
(4)上記(1)から(3)のいずれか一項に記載の自動車の側部構造において、前記第2の衝撃吸収部材は、第1の壁と第2の壁を備え、前記第1の壁と前記第2の壁は、前記管形状の一部であり、前記第1の壁と前記第2の壁は、それぞれ前記ドアインナーパネルに隣接し、前記第1の壁と前記第2の壁は平坦であり、前記第1の壁を延長した第1の面と前記第2の壁を延長した第2の面は、前記自動車ドア内側で交差するものであっても良い。
(5)上記(1)から(4)のいずれか一項に記載の自動車の側部構造において、前記車幅方向に垂直な平面視で、前記第2の衝撃吸収部材と前記ドアインナーパネルにより構成される閉断面の車長方向における最大の幅が、前記第1の衝撃吸収部材の前記車長方向における幅よりも大きいものであっても良い。
(6)本発明の一態様に係る自動車は、上記(1)~(5)のいずれか一項に記載の自動車の側部構造を備える。
 本発明によれば、衝撃吸収性能の高い自動車の側部構造及び自動車を提供することができる。
本発明の一実施形態に係る自動車の構造を示す斜視図である。 本実施形態に係るドアの構造を示す模式図である。 本実施形態に係るドアがシャーシに対して閉じた状態で、図2に示す一点鎖線I-I’に沿った断面を示す模式図である。 本実施形態に係るドアの構造において、1つの第1の衝撃吸収部材と対応するように第2の衝撃吸収部材を設けた例を示す模式図である。 本実施形態に係るドアの下端部において、第1の衝撃吸収部材と第2の衝撃吸収部材が隣接する部位の構成を示す模式図である。 図5Aから第1の衝撃吸収部材を除いた構成を示す模式図である。 図5Bの矢印A2方向から第2の衝撃吸収部材を見た状態を示す模式図である。 本実施形態に係るドア600の下端部において、第1の衝撃吸収部材と第2の衝撃吸収部材126が隣接する部位の構成を示す模式図である。 図6Aの矢印A2方向から第2の衝撃吸収部材を見た状態を示す模式図である。 本実施形態に係るドア600の下端部において、第1の衝撃吸収部材と第2の衝撃吸収部材が隣接する部位の構成を示す模式図である。 図7Aの矢印A2方向から第2の衝撃吸収部材を見た状態を示す模式図である。 ドアの下端部において、第1の衝撃吸収部材と第2の衝撃吸収部材が隣接する部位の構成を示す模式図である。 図8Aの矢印A2方向から第2の衝撃吸収部材を見た状態を示す模式図である。 発明例1~3の構成と比較例1の構成について、ドアの外装パネルに荷重が加わった場合に、外装パネルの変形量(ストローク)と荷重との関係を示す特性図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1は、本発明の一実施形態に係る自動車1000の構造を示す斜視図である。図1に示すように、自動車1000は、ボデー500、ドア600(フロントドア及び/又はリアドア)、ボンネット700、フェンダー800、トランクリッド900などの構成要素を備える。本実施形態では、自動車1000について、特にドア600の近辺の構造について説明する。本発明は、ヒンジを介して車体に取り付けられるドアの他に、スライド式のドアにも適用できる。
 通常、ドア600とボデー500とは、ボデー500のAピラー510に設けられたドアヒンジ(又はBピラー530に設けられたドアヒンジ)を介して、ボデー500に対してドア600が回動できるように連結されている。
 図2は、ドア600の構造の一例を示す模式図であって、ドア600を自動車1000の外側から見た状態を示している。なお、説明の便宜上、図2では、後述する外装パネル100の衝撃吸収部材120のみを図示し、外装材110の図示は省略している。また、図3は、ドア600がボデー500に対して閉じた状態で、図2に示す一点鎖線I-I’に沿った断面を示す模式図である。なお、図2に示す一点鎖線I-I’の位置は、図1に示す一点鎖線I-I’の位置に対応している。
 ドア600が自動車前席側のドア(フロントドア)である場合、ボデー500に対して閉じた状態では、その下端部610がボデー500のサイドシル520とサイドパネルを介して隣接し、自動車前席側のドア600の後側の端部620はボデー500のBピラー530とサイドパネルを介して隣接する。
 図3に示すように、ドア600は外装パネル100を備えている。外装パネル100は、表側が自動車1000の外側に露出するパネルである。外装パネル100の表側の表面には、自動車1000の色に応じた塗装が施されている。
 外装パネル100は、外装材110と衝撃吸収部材120とから構成される。外装材110は、一例として厚さが0.4~0.7mm程度の鋼板から構成される。一例として、外装材110は表側が凸面となるように湾曲している。すなわち、外装材110は車長方向に垂直な断面において湾曲している。
 図2に示すように、衝撃吸収部材120は、車高方向に配置された第1の衝撃吸収部材122と、車長方向に配置された第3の衝撃吸収部材124とを含む。図2の例では、第1の衝撃吸収部材122と第3の衝撃吸収部材124は互いに交差している。ここで、第1の衝撃吸収部材122が車高方向に配置されるとは、第1の衝撃吸収部材122の長手方向が車長方向と交差するように配置されることを意味する。また、第3の衝撃吸収部材124が車長方向に配置されるとは、第3の衝撃吸収部材124が車高方向と交差するように配置されることを意味する。
 第1の衝撃吸収部材122は、外装材110の形状に倣って湾曲していることが望ましい。第3の衝撃吸収部材124は、ほぼ直線状に延在している。但し、外装材110が車高方向に垂直な断面において湾曲している場合は、第3の衝撃吸収部材124は外装材110の湾曲した形状に倣った形状であることが望ましい。第1の衝撃吸収部材122と第3の衝撃吸収部材124は、外装材110に倣った形状であれば、外装材110に密着することができ、好ましくは外装材110に接合(接着)することができるからである。第1の衝撃吸収部材122または第3の衝撃吸収部材124と外装材110とを接合すると、第1の衝撃吸収部材122または第3の衝撃吸収部材124が変形する際に外装材110が変形に抵抗する。すなわち、外装材110を衝撃吸収に寄与させることができるため、より好ましい。
 図2及び図3に示すように、外装パネル100の内側には、ドアインナーパネル200が設けられている。一例として、ドアインナーパネル200は鋼板から構成される。ドアインナーパネル200の更に内側は、車室に面しており、通常、皮革や樹脂材料からなる内装材が設けられている。
 次に、ドア600の下端部610とサイドシル520とが隣接する部位の構造について説明する。図3に示すように、第1の衝撃吸収部材122は、ドア600の下端の近傍まで延在している。同様に、ドアインナーパネル200も、ドア600の下端の近傍まで延在している。このため、ドア600の下端部610とサイドシル520とが隣接する部位では、外装パネル100とサイドシル520との間に第1の衝撃吸収部材122が介在している。
 また、図2及び図3に示すように、ドア600の下端部610とサイドシル520とが隣接する部位では、外装パネル100とサイドシル520との間に第2の衝撃吸収部材126が介在している。より詳細には、この部位において、第1の衝撃吸収部材122とサイドシル520との間に第2の衝撃吸収部材126が介在しており、複数の第2の衝撃吸収部材126のそれぞれが、複数の第1の衝撃吸収部材122の位置に対応して設けられている。
 図2に示す4本の第1の衝撃吸収部材122は、いずれもドア600の下端の近傍まで延在しているため、ドア600の下端部610とサイドシル520とが隣接する部位では、外装パネル100とサイドシル520との間に4本の第1の衝撃吸収部材122が介在していることになる。また、ドア600の下端部610とサイドシル520とが隣接する部位では、第1の衝撃吸収部材122とサイドシル520との間に4つの第2の衝撃吸収部材126が介在していることになる。換言すれば、ドア600の下部において、車高方向に延びる第1の衝撃吸収部材122、第2の衝撃吸収部材126、ドアインナーパネル200、サイドシル520の順に、車幅方向の同一線(図3に示す直線L)上にこれらが配置されている。このような構造によれば、自動車1000の側面が他の構造物(車両、建物、電柱など)と衝突した場合の衝撃吸収性能を大幅に高めることができる。
 外装パネル100とサイドシル520との間に第1の衝撃吸収部材122が介在している構成とすることで、第1の衝撃吸収部材122の端部がサイドシル520によって支持される。第1の衝撃吸収部材122を支持する部位(すなわち、サイドシル520)は、自動車1000の骨格部材であり、容易に変形することがないため、ドア600に衝撃が加わった際に、第1の衝撃吸収部材122が荷重を受け止めることができる。すなわち、衝撃吸収部材120の衝撃吸収性能を活かすことができる。
 ここで、乗員保護の観点からは、衝撃吸収部材120を乗員からできるだけ離れた位置に設置することが望ましい。すなわち、衝撃吸収部材120をドア600の外装材110側に設置することが好適である。この点では、ドア600の厚みをより厚くすることで、衝撃吸収部材120をより外装材110側に配置することができる。しかし、ドア600の厚みをより厚くして分厚いドア600を構成した場合、衝撃吸収部材120を外装材110側に配置すると、第1の衝撃吸収部材122の端部がサイドシル520と離れてしまう。この場合、第1の衝撃吸収部材122がサイドシル520から離れてしまい、第1の衝撃吸収部材122の衝撃吸収性能を活かすことができないことが想定される。
 そこで、本実施形態では、上述のように、第1の衝撃吸収部材122、第2の衝撃吸収部材126、ドアインナーパネル200、サイドシル520の順に、車幅方向の同一線上にこれらが配置される。ここで、第1の衝撃吸収部材122は車高方向に延びる衝撃吸収部材であり、第2の衝撃吸収部材126は第1の衝撃吸収部材122とドアインナーパネル200との間に配置される衝撃吸収部材である。換言すると、第1の衝撃吸収部材122とドアインナーパネル200が、第2の衝撃吸収部材126をサンドイッチする構造とされている。このような構成によれば、自動車1000の側面からの衝突でドア600が変形した際、第1の衝撃吸収部材122は荷重を受け止めるとともに、荷重が第1の衝撃吸収部材122から第2の衝撃吸収部材126を介してサイドシル520に伝わる。すなわち、サイドシル520で第1の衝撃吸収部材122を支えて荷重を受け止めることができる。これにより、第1の衝撃吸収部材122を備えるドア600が車室側に侵入することを、第1の衝撃吸収部材122、第2の衝撃吸収部材126及びサイドシル520で抑止することができる。
 第2の衝撃吸収部材126は、第1の衝撃吸収部材122と、ドアインナーパネル200を介して、サイドシル520に挟まれて、効率よく荷重を受け止める。更に、第2の衝撃吸収部材126は、自身が変形することで荷重を吸収することもできる。
 荷重を効率よく伝達するためには、上述した同一線上において、第1の衝撃吸収部材122の断面が環状あるいは矩形状であることが望ましい。第1の衝撃吸収部材122が扁平な板であれば、荷重を殆ど伝えることなく折損する可能性があるためである。つまり、第1の衝撃吸収部材122の断面が環状あるいは矩形状であると、衝突による荷重が加わった場合に衝撃吸収機能をより効果的に発揮することができる。なお、第1の衝撃吸収部材122は、断面が矩形状となるように、板材を折り曲げて製造されても良い。また、第1の衝撃吸収部材122は中空の管状部材や中実の棒状部材で製造されても良い。また、衝撃吸収部材120は、中空や中実の台形断面を有していてもよい。第1の衝撃吸収部材122が矩形状の断面形状である場合、例えば、長辺が6~20mm程度、短辺が6~16mm程度であっても良い。また、第1の衝撃吸収部材122を構成する板材の板厚は、一例として0.6~1.2mm程度であってもよい。板材としては、鋼板を用いることができる。また、板材を折り曲げて第1の衝撃吸収部材122を構成した場合、折り曲げられた板材の端部同士の間には所定の隙間が設けられていても良い。一方、端部同士が密着していても良い。また、端部同士が溶接や接着等により接合されても良い。衝撃吸収部材120の断面は、連続した矩形状、環状あるいは台形状である必要はなく、隙間が存在することで、不連続な形状であってもよい。また、衝撃吸収部材120の断面において端部が存在する場合、この端部同士が密着していてもよく、端部同士が溶接や接着等により接合されても良い。
 第1の衝撃吸収部材122と第3の衝撃吸収部材124の基本的な構成は、同一とすることができる。なお、第1の衝撃吸収部材122と第3の衝撃吸収部材124の引張強度は、980MPa以上が好ましく、より好ましくは1470MPa以上である。また、鋼板から第1の衝撃吸収部材122と第3の衝撃吸収部材124をプレス成形によって成形する場合、冷間成形を用いても良く、鋼板の強度によってはホットスタンピングを採用してもよい。
 具体的には、衝撃による荷重(衝撃エネルギー)の吸収は次のように行われる。先ず、ドア600の車高方向中央部の衝撃吸収部材120に衝突の荷重が加えられる(ステップ1)。次に、ドア600の車高方向下部において、第1の衝撃吸収部材122の端部が車幅方向車室側に第2の衝撃吸収部材126及びドアインナーパネル200とともに変形または移動する(ステップ2)。そして、第2の衝撃吸収部材126の車幅方向車外側に第1の衝撃吸収部材122が侵入し、第1の衝撃吸収部材122は第2の衝撃吸収部材126とドアインナーパネル200を介してサイドシル520に支えられて、第1の衝撃吸収部材122が変形して、衝撃エネルギーを吸収する(ステップ3)。次に、第2の衝撃吸収部材126が変形して衝撃エネルギーを更に吸収する(ステップ4)。
 より詳細には、ステップ3では、サイドシル520の車幅方向車外側に第1の衝撃吸収部材122及び第2の衝撃吸収部材126がドアインナーパネル200を挟んで接近する。第1の衝撃吸収部材122、第2の衝撃吸収部材126及びサイドシル520が車幅方向の同一線上になければ、上記のステップ3が起こらない。また、第2の衝撃吸収部材126を設けていない場合、上記のステップ3の衝撃エネルギーの吸収が十分には起こらないとともに、上記のステップ4の衝撃エネルギーの吸収が起こらない。このように、本実施形態の構成によれば、衝撃による荷重を確実に吸収することが可能である。また、該同一線上において、第1の衝撃吸収部材122の断面を環状あるいは矩形状とすることで、第1の衝撃吸収部材122が衝撃吸収機能を十分に発揮でき、上記ステップ3の効果を更に十分に発揮できる。
 なお、一般的にドアインナーパネル200とサイドシル520の間にはサイドパネルが介在するが、サイドパネルの衝撃吸収への寄与は小さいため、上述の説明においてはサイドパネルに関する説明を省略している。
 また、上述した例では、サイドシル520と隣接する部位において、第1の衝撃吸収部材122とドアインナーパネル200の間に第2の衝撃吸収部材126を配置した例を示したが、Aピラー510、Bピラー530等の骨格部材と隣接する部位においても同様の構造とすることができる。換言すれば、図3に示したサイドシル520は、Aピラー510またはBピラー530等と置き換えることができ、第1の衝撃吸収部材122は車長方向に配置される部材(例えば、第3の衝撃吸収部材124)に置き換えることができる。この場合においても、ドア600が衝突した場合に、ドア600にかかる荷重が第1の衝撃吸収部材122から第2の衝撃吸収部材126に伝わると、第1の衝撃吸収部材122は、第2の衝撃吸収部材126とドアインナーパネル200を介して、自動車1000の骨格部材であるAピラー510、またはBピラー530で支持される。従って、サイドシル520の場合と同様に、衝撃エネルギーを吸収することができる。
 また、上述した例では、第1の衝撃吸収部材122を複数設け、複数の第1の衝撃吸収部材122と対応する複数の第2の衝撃吸収部材126を設けた例を示したが、1つの第1の衝撃吸収部材122のみが設けられ、1つの第1の衝撃吸収部材122と対応するように第2の衝撃吸収部材126が設けられていても良い。図4は、1つの第1の衝撃吸収部材122と対応するように第2の衝撃吸収部材126が設けられた例を示す模式図である。なお、第1の衝撃吸収部材122は、前述した特許文献1に記載されているようなドアインパクトバーであっても良く、ドアインパクトバーの端部に本実施形態に係る第2の衝撃吸収部材126を設けても良い。
 なお、第1の衝撃吸収部材122と第3の衝撃吸収部材124とは、交差部において交差し、第3の衝撃吸収部材124が第1の衝撃吸収部材122に対して車両の外側方向(外装材110側)に位置していても良い。また、第1の衝撃吸収部材122と第3の衝撃吸収部材124のそれぞれに凹部を設け、この凹部においてこれらの部材を交差させても良い。これにより、第1の衝撃吸収部材122と第3の衝撃吸収部材124が同一面内に配置される。また、第3の衝撃吸収部材124が第1の衝撃吸収部材122に対して車両の外側方向(外装材110側)に位置していることで、ドア600の外装パネル100に他の構造物が衝突した場合に、荷重は外装材110から第3の衝撃吸収部材124に伝わる。そして、第3の衝撃吸収部材124は車長方向に配置されているため、荷重は第1の衝撃吸収部材122と第3の衝撃吸収部材124との交差部から複数の第1の衝撃吸収部材122に伝わる。そして、複数の第1の衝撃吸収部材122は、車高方向に配置され、ドア600の下端部610において第2の衝撃吸収部材126を挟んでサイドシル520と重なっているため、荷重はサイドシル520に分散される。サイドシル520は、自動車1000の骨格部材であるボデー500の一部であり、非常に強度が高い。これにより、衝突による荷重をボデー500で受け止めることができ、荷重がボデー500に分散されるため、衝撃を確実に吸収することが可能となる。
 なお、第1の衝撃吸収部材122は、一つの外装パネル100又は一つのドアインナーパネル200に対して2つ以上設けられていてもよく、3つ以上、あるいは4つ以上設けられていてもよい。例えば、電柱のような構造物との衝突を想定した場合、ドア600の車長方向のどの部位に衝突しても荷重を確実に受け止めるために、第1の衝撃吸収部材122は3つ以上が好ましく、また第1の衝撃吸収部材122の過剰な設置による重量の増加を防ぐために、第1の衝撃吸収部材122は6つ以下が好ましい。より好ましくは、第1の衝撃吸収部材122の数は、4つまたは5つである。
 また、第3の衝撃吸収部材124は、一つの外装パネル100又は一つのドアインナーパネル200に対して2つ以上設けられていてもよく、3つ以上、あるいは4つ以上設けられていてもよい。衝突による荷重を第1の衝撃吸収部材122の車高方向上下の広い範囲に伝えて荷重を分散するために、第3の衝撃吸収部材124は2つ以上が好ましく、また第3の衝撃吸収部材124の過剰な設置による重量の増加を防ぐために、第3の衝撃吸収部材124は5つ以下が好ましい。より好ましくは、第3の衝撃吸収部材124の数は、3つまたは4つである。
 第1の衝撃吸収部材122と第3の衝撃吸収部材124が外装材110に密着していることにより、外装材110の張り剛性を改善する効果も得ることができる。外装材110の厚さが例えば0.4mmと薄い場合でも良好な張り剛性を得ることができるように、ドアがボデーに対して閉じた状態で車幅方向に沿って見た場合、第1の衝撃吸収部材122と第3の衝撃吸収部材124とによって分割される領域の一辺の長さが300mm以下であることが好ましく、より好ましくは、第1の衝撃吸収部材122と第3の衝撃吸収部材124とによって分割される領域の一辺の長さは、200mm以下である。
 図5Aは、ドア600の下端部610において、第1の衝撃吸収部材122と第2の衝撃吸収部材126が隣接する部位の構成を示す模式図であって、図2中に二点鎖線で囲んだ領域A1の詳細な構成を示している。図5Aは、第1の衝撃吸収部材122、第2の衝撃吸収部材126、ドアインナーパネル200を車両の外側(外装材110側)から見た状態を示しており、外装材110の図示は省略している。図5Aに示すように、ドアインナーパネル200の下端は車両の外側(外装材110側)に向かって折り曲げられることで、外装材110とドアインナーパネル200をヘミング加工するためのヘム部200aが構成されている。
 図5Aに示すように、第2の衝撃吸収部材126は、第1の衝撃吸収部材122とドアインナーパネル200の間に配置されており、第1の衝撃吸収部材122よりもドアインナーパネル200側に配置されている。第2の衝撃吸収部材126は、図5Aに示す例では、車幅方向に垂直な断面の形状がフランジ付きのM字形となるように板金により構成されている。また、第2の衝撃吸収部材126を構成する板金は、車幅方向に延在している。第2の衝撃吸収部材126も、例えば鋼板から構成することができる。
 図5Aに示すように、第2の衝撃吸収部材126をフランジ付きのM字形に板金により構成し、板金の延在する方向を車幅方向とする。このような構成とすることで、ドア600の側面が外部から衝撃を受けた際に、第1の衝撃吸収部材122が第2の衝撃吸収部材126に侵入しようとすると、第2の衝撃吸収部材126の板金の延在する方向が車幅方向になっているので、最初に第1の衝撃吸収部材122の車高方向の下側端部が第2の衝撃吸収部材126とドアインナーパネル200を介してサイドシル520によって支持される。このため、第1の衝撃吸収部材が変形して荷重を吸収することができる。さらに、第1の衝撃吸収部材122が第2の衝撃吸収部材126に侵入することで、第2の衝撃吸収部材126が座屈変形し、荷重を吸収することができる。なお、後述するように、第2の衝撃吸収部材126の断面形状はM字形に限定されるものではなく、他の形状を採用することもできる。
 また、図5Aに示すように、第2の衝撃吸収部材126は、接合部126aにおいて、ドアインナーパネル200の底部200bに接合されている。すなわち、第2の衝撃吸収部材126とドアインナーパネル200の底部200bとによって、車幅方向を軸とする管形状(閉断面形状)を構成している。管形状が軸圧潰するため、第2の衝撃吸収部材126が単独で開断面であるのに比べ、衝撃吸収性能が高い。第2の衝撃吸収部材126は、ドアインナーパネル200を挟んでサイドシル520と車幅方向に並んで配置されている。このため、耐荷重の高い軸方向でもサイドシル520が支持することにより、第2の衝撃吸収部材126は軸圧潰することができる。なお、第2の衝撃吸収部材126とドアインナーパネル200との接合は、好適には溶接によって行われるが、接着等の手法で接合を行っても良い。ここで、車幅方向を軸とする管形状とは、車幅方向に垂直な断面視で、閉断面を構成する形状を意味する。ここで、断面形状は、管形状の全ての断面視において必ずしも連続していなくともよく、管形状の一部において閉断面を構成していなくともよい。
 また、図5Aに示す例では、第1の衝撃吸収部材122は、末端においてドアインナーパネル200に固定されている。図5Aに示す例では、第1の衝撃吸収部材122の末端が、接合部122bにおいて、ドアインナーパネル200の底部200bに接合されている。接合は、好適には溶接によって行われるが、構造用接着剤などを用いた接着等の手法で接合を行っても良い。なお、図5Aに示す構成はあくまでも一例であって、第1の衝撃吸収部材122は、ドアインナーパネル200のヘム部200aに接合されていても良い。また、図5Aに示す例では、第1の衝撃吸収部材122の末端とドアインナーパネル200は直接固定されているが、第1の衝撃吸収部材122の末端をブラケット等の他部品を介してドアインナーパネル200に固定しても良い。ブラケット等の他部品を用いることで部品点数は増加するものの、第1の衝撃吸収部材122の末端の形状を簡略化できるメリットがあるためである。
 図5Aのように第1の衝撃吸収部材122がドアインナーパネル200に接合された状態で、ドアインナーパネル200のヘム部200aには、更に外装材110がヘミング加工により接合される。外装材110とドアインナーパネル200の接合は、ヘミング加工に加えて、接着等を行って接合しても良い。
 車幅方向車外側に向かって凸に湾曲する第1の衝撃吸収部材122に荷重が加えられると、第1の衝撃吸収部材122の末端がドア600の車高方向外側に向かって(下方に向かって)移動する力が生ずる。第1の衝撃吸収部材122をドアインナーパネル200に接合することで、第1の衝撃吸収部材122の末端がドア600の車高方向外側に向かって移動することを抑止できる。また、第1の衝撃吸収部材122の末端をドア600の車高方向下端に配置してもよい。そうすると、第1の衝撃吸収部材122の末端がドアインナーパネル200の底部200bと干渉し、その結果、第1の衝撃吸収部材122の末端がドア600の車高方向外側に向かって移動することを抑制できる。これらより、第1の衝撃吸収部材122が凸に湾曲した状態をより長く保ちながら荷重を受けることができるので、衝撃吸収性能が高くなる。
 なお、第1の衝撃吸収部材122と第2の衝撃吸収部材126との間は、各部材の製造時に生じる公差内の寸法誤差に伴う干渉を回避するという理由から、若干量の隙間が設けられていることが好ましい。
 図5Bは、図5Aから第1の衝撃吸収部材122を除いた構成を示す模式図である。また、図5Cは、図5Bの矢印A2方向(車高方向)から第2の衝撃吸収部材126を見た状態を示す模式図であって、第1の衝撃吸収部材122と第2の衝撃吸収部材126が重なる様子(オーバーラップする状態)を模式的に示す図である。なお、図5A~図5Cに示す構成例を発明例1と称する。図5B及び図5Cに示すように、第2の衝撃吸収部材126は、3つの稜線126b,126c,126dを有している。稜線126b,126dは閉断面の外側に凸の稜線であり、稜線126cは閉断面の内側に凸の稜線である。
 そして、図5Cに示すように、衝撃による荷重が加わる方向(図5B中の矢印A2方向)から見た場合に、これらの複数の稜線126b,126c,126dと第1の衝撃吸収部材122とが重なるように配置されている。特に、図5B及び図5Cに示す例では、中央の稜線126cが第1の衝撃吸収部材122と重なるように配置されている。このように、稜線126b,126c,126dと第1の衝撃吸収部材122とが重なるように配置することで、車外側からドア600に衝撃が加えられた場合に、稜線126b,126c,126dの部分が柱のように第1の衝撃吸収部材122からの荷重を受け止める。その結果、第2の衝撃吸収部材126の耐荷重が増加する。すなわち、衝撃による荷重を確実に受け止めることができ、耐荷重性能を高くすることができる。特に、図5B及び図5Cに示したように、2本以上の稜線を設け、両端の稜線が第1の衝撃吸収部材122を挟むように配置することで、第1の衝撃吸収部材122を受け止める稜線(稜線126c)が倒れるのを抑制することができ、更に耐荷重性能を高めることができる。
 以下では、第2の衝撃吸収部材126の形状のバリエーションについて説明する。図6A、図7Aは、図5Aと同様に、図2中に二点鎖線で囲んだ領域A1の詳細な構成を示している。但し、図6A、図7Aでは、第1の衝撃吸収部材122の図示は省略している。
 また、図6Bは、図6Aの矢印A2方向から第2の衝撃吸収部材126を見た状態を示す模式図であって、第1の衝撃吸収部材122と第2の衝撃吸収部材126が重なる様子を模式的に示す図である。同様に、図7Bは、図7Aの矢印A2方向から第2の衝撃吸収部材126を見た状態を示す模式図であって、第1の衝撃吸収部材122と第2の衝撃吸収部材126が重なる様子を模式的に示す図である。なお、図6A及び図6Bに示す構成例を発明例2と称し、図7A及び図7Bに示す構成例を発明例3と称する。
 図6A及び図6Bに示す発明例2では、矢印A2方向から見た場合に、第2の衝撃吸収部材126とドアインナーパネル200の底部200bが三角形の閉断面を構成している。図6Bに示すように、第2の衝撃吸収部材126は、この閉断面の外側に凸となる稜線126eを有している。そして、衝撃による荷重が加わる方向(矢印A2方向)から見た場合に、稜線126eと第1の衝撃吸収部材122とが重なるように配置されている。このように、稜線126eと第1の衝撃吸収部材122とが重なるように配置することで、稜線126eの部分で耐荷重が増加するため、車外側からドア600に衝撃が加えられた場合に、衝撃による荷重を確実に受け止めることができ、耐荷重性能を高くすることができる。また、第2の衝撃吸収部材126とドアインナーパネル200の底部200bから構成される断面形状を三角形の閉断面形状とすることで、四角形または四角形に近い断面形状とする場合と比較して、第2の衝撃吸収部材126に荷重が加えられた場合に断面形状が崩れることを抑制できる。これにより、稜線126eの部分でより長く荷重を受け止めることができるため、耐荷重性能をより高くすることができる。
 図7A及び図7Bに示す発明例3では、矢印A2方向から見た場合に、図5A~図5Cと同様に、第2の衝撃吸収部材126がM字形状とされている。図5Bと同様、第2の衝撃吸収部材126は、3つの稜線126b,126c,126dを有している。また、稜線126b,126dは、第2の衝撃吸収部材126とドアインナーパネル200の底部200bから構成される閉断面の外側に凸の稜線であり、稜線126cはこの閉断面の内側に凸の稜線である。図5Cに示す例では、第2の衝撃吸収部材126の側壁126f,126g(第1の壁、第2の壁)は略平行であるが、図7Bに示す例では、側壁126f,126gをそれぞれ自動車上部側へ向けて延長した面が交差するように構成されている。また、側壁126f,126gのそれぞれを延長した面は、ドア600の内部で交差するように構成されている。側壁126f、126g(第1の壁、第2の壁)は、平坦であり(平面部を有し)かつ、それぞれドアインナーパネル200に隣接している。
 そして、衝撃による荷重が加わる方向(矢印A2方向)から見た場合に、これらの複数の稜線126b,126c,126dと第1の衝撃吸収部材122とが重なるように配置されている。このように、稜線126b,126c,126dと第1の衝撃吸収部材122が重なるように配置することで、稜線126b,126c,126dの部分で耐荷重が増加するため、車外側からドア600に衝撃が加えられた場合に、衝撃による荷重をより確実に受け止めることができ、耐荷重性能を高くすることができる。
 また、図7A及び図7Bに示す例では、側壁126f,126gを延長した面が交差するように構成されているため、第2の衝撃吸収部材126とドアインナーパネル200の底部200bから構成される断面形状が三角形に近くなる。このため、第2の衝撃吸収部材126に荷重が加えられた場合に断面形状が崩れることを抑制でき、稜線126b,126c,126dの部分でより長く荷重を受け止めることができる。従って、耐荷重性能をより高めることができる。
 第2の衝撃吸収部材126の第1の稜線の車幅方向の延長線上に第1の衝撃吸収部材122がある。また、第2の衝撃吸収部材126の第1の稜線を車幅方向に延長した延長線上に第1の衝撃吸収部材122の断面が環状あるいは矩形状に形成された箇所があることがより好ましい。稜線とは、車幅方向に垂直な断面において、その曲率半径の最大値が、第1の衝撃吸収部材122の車長方向における幅の2倍以下の箇所を意味する。なお、本実施形態の説明では、稜線126cが第1の稜線に相当し、稜線126b又は126dが第2の稜線に相当する。
 また、車幅方向に沿って見た場合(車幅方向に垂直な平面視で)、第1の衝撃吸収部材122と第2の衝撃吸収部材126とが重なる領域で、第2の衝撃吸収部材126とドアインナーパネル200から構成される閉断面の車長方向における最大の幅が、第1の衝撃吸収部材122の車長方向における幅よりも大きいことがより好ましい。これにより、衝撃による荷重が加わるときに第1の衝撃吸収部材122が車長方向へ倒れこむことを抑制できるという効果がある。
 また、衝撃による荷重が加わるときに第1の衝撃吸収部材122が車長方向へ倒れこむことを抑制するという観点からは、車幅方向に沿って見た場合、第1の衝撃吸収部材122と第2の衝撃吸収部材126とが重なる領域で、車長方向において、第2の衝撃吸収部材126とドアインナーパネル200から構成される閉断面内に第1の衝撃吸収部材122が全て含まれる箇所を有することがより好ましい。
 次に、図8A、図8Bに基づいて、上記実施形態で説明した発明例1~3に対する比較例の構成について説明する。図8Aは、図5Aと同様に、図2中に二点鎖線で囲んだ領域A1の詳細な構成を示している。但し、図8Aでは、第1の衝撃吸収部材122の図示は省略している。
 また、図8Bは、図8Aの矢印A2方向から第2の衝撃吸収部材126を見た状態を示す模式図であって、第1の衝撃吸収部材122と第2の衝撃吸収部材126が重なる様子を模式的に示す図である。
 図8A及び図8Bに示す比較例では、矢印A2方向から見た場合に、第2の衝撃吸収部材126とドアインナーパネル200の底部200bが矩形(長方形)の閉断面を構成している。図8Bに示すように、第2の衝撃吸収部材126は、この閉断面の外側に凸の稜線126h,126iを有している。しかし、比較例の構成では、衝撃による荷重が加わる方向(矢印A2方向)から見た場合に、稜線126h,126iと第1の衝撃吸収部材122とは重なっていない。このように、第2の衝撃吸収部材126に設けられた稜線126h,126iと第1の衝撃吸収部材122が重ならない場合、車外側からドア600に衝撃が加えられた場合に、第2の衝撃吸収部材126が比較的容易に変形してしまい、衝撃による荷重を効果的に受け止めることができない。また、第2の衝撃吸収部材126とドアインナーパネル200の底部200bから構成される断面形状が長方形(四角形)であることからも、第2の衝撃吸収部材126に荷重が加えられた場合に断面形状が崩れやすく、荷重を効果的に受け止めることができない。
 図9は、発明例1~3の構成と比較例の構成について、ドア600の外装パネル100の中央を半径300mmの車高方向を軸に持つ円柱状の圧子で押した場合に、圧子のストロークと圧子がドア600から受ける荷重の関係をシミュレーションにより求めた特性図である。図9に示すように、同じストロークの場合、比較例よりも発明例1、発明例2の方が、荷重特性が向上しており、その差はストロークが35mm以上で顕著に表れている。また、発明例3は、発明例1,2に対して更に荷重特性が向上しており、衝撃吸収性能が高くなっている。従って、本実施形態の構成により、衝撃吸収性能を大幅に高めることが可能である。
 なお、上述した説明では、第1の衝撃吸収部材122、第2の衝撃吸収部材126、第3の衝撃吸収部材124、ドアインナーパネル200などの各部材を鋼板から構成した場合を例示したが、これらの部材は、アルミニウム、アルミニウム合金、CFRP(炭素繊維強化プラスチック)などの他の素材から構成しても良い。
 以上説明したように本実施形態によれば、ドア600の下部において、車高方向に延びる第1の衝撃吸収部材122、第2の衝撃吸収部材126、ドアインナーパネル200、サイドシル520の順に、車幅方向の同一線上にこれらを配置したため、自動車1000の側面が他の構造物と衝突した場合の衝撃吸収性能を大幅に高めることができる。
 また、第2の衝撃吸収部材126に稜線を設け、荷重の加わる方向から第1の衝撃吸収部材122と第2の衝撃吸収部材126を見た場合に、第1の衝撃吸収部材122と第2の衝撃吸収部材126の稜線が重なるように配置したため、衝撃に対する耐荷重性能を大幅に高めることが可能となる。
 これにより、ドアインパクトバーのような衝撃吸収部材を第2の衝撃吸収部材126で支持する場合においても、ドアインパクトバーを介して衝突荷重が付加された際に、第2の衝撃吸収部材126が容易に変形することがなく、車幅方向内側に配置されている車両骨格部材に荷重を伝えることが可能となる。これにより、ドアインパクトバーの衝撃吸収性能を十分に発揮させることが可能となる。なお、本発明において、自動車の側部構造とは、自動車のドアと、サイドシル、ピラーなどの構造部材を含むものである。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、自動車のフロントドアやリアドアに適用することができる。また、本発明は、自動車の側部に配されるドアのみならず、自動車の後部に配されるドアにも適用することができる。自動車の後部に配されるドア(テールゲートとも称される。)に本発明を適用する場合、このようなドアのインナーパネルは自動車の車長方向と交差するため、上記実施形態で説明した車長方向を車幅方向と読み替え、車幅方向を車長方向と読み替えてもよい。
 本発明は、衝撃吸収性能の高い自動車の側部構造及び自動車を提供することができるため、産業上の利用可能性が高い。
 122  第1の衝撃吸収部材
 124  第3の衝撃吸収部材
 126  第2の衝撃吸収部材
 200  ドアインナーパネル
 520  サイドシル
 600  ドア
 1000 自動車

Claims (6)

  1.  自動車ドア内を横断する第1の衝撃吸収部材と、
     自動車ドア内に配置された第2の衝撃吸収部材と、
     ドアインナーパネルと、
     車両骨格部材と、を備え、
     前記第2の衝撃吸収部材は、前記第1の衝撃吸収部材と前記ドアインナーパネルの間に配置され、
     前記第1の衝撃吸収部材、前記第2の衝撃吸収部材、及び前記ドアインナーパネルと、前記車両骨格部材と、が車幅方向の直線上にあり、
     前記第2の衝撃吸収部材と前記ドアインナーパネルは、軸方向が前記車幅方向となる管形状を構成し、
     前記第2の衝撃吸収部材は前記車幅方向に沿った第1の稜線を備え、
     前記第1の稜線の前記車幅方向の延長線上に前記第1の衝撃吸収部材がある
    ことを特徴とする自動車の側部構造。
  2.  前記第2の衝撃吸収部材は前記車幅方向に沿った第2の稜線を2本備え、
     前記第2の稜線の間に前記第1の稜線がある
    ことを特徴とする請求項1に記載の自動車の側部構造。
  3.  前記第1の稜線は前記管形状の内側に突出する稜線である
    ことを特徴とする請求項2に記載の自動車の側部構造。
  4.  前記第2の衝撃吸収部材は、第1の壁と第2の壁を備え、
     前記第1の壁と前記第2の壁は、前記管形状の一部であり、
     前記第1の壁と前記第2の壁は、それぞれ前記ドアインナーパネルに隣接し、
     前記第1の壁と前記第2の壁は平坦であり、
     前記第1の壁を延長した第1の面と前記第2の壁を延長した第2の面は、前記自動車ドア内側で交差する
    ことを特徴とする請求項1~3のいずれか一項に記載の自動車の側部構造。
  5.  前記車幅方向に垂直な平面視で、
     前記第2の衝撃吸収部材と前記ドアインナーパネルにより構成される閉断面の車長方向における最大の幅が、前記第1の衝撃吸収部材の前記車長方向における幅よりも大きい
    ことを特徴とする請求項1~4のいずれか一項に記載の自動車の側部構造。
  6.  請求項1~5のいずれか一項に記載の自動車の側部構造を備える自動車。
PCT/JP2020/001100 2019-01-15 2020-01-15 自動車の側部構造及び自動車 WO2020149312A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020566434A JP7088319B2 (ja) 2019-01-15 2020-01-15 自動車の側部構造及び自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004035 2019-01-15
JP2019-004035 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149312A1 true WO2020149312A1 (ja) 2020-07-23

Family

ID=71613660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001100 WO2020149312A1 (ja) 2019-01-15 2020-01-15 自動車の側部構造及び自動車

Country Status (2)

Country Link
JP (1) JP7088319B2 (ja)
WO (1) WO2020149312A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106600A (ja) * 2002-09-13 2004-04-08 Kasai Kogyo Co Ltd 自動車用内装部品及びその製造方法
WO2006059724A1 (ja) * 2004-12-02 2006-06-08 Kabushiki Kaisha Kobe Seiko Sho 車体パネル構造体
CN204432328U (zh) * 2015-03-02 2015-07-01 立峰集团有限公司 一种车的车门板加固结构
JP2018199450A (ja) * 2017-05-29 2018-12-20 アイシン精機株式会社 車両用骨格部材の構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106600A (ja) * 2002-09-13 2004-04-08 Kasai Kogyo Co Ltd 自動車用内装部品及びその製造方法
WO2006059724A1 (ja) * 2004-12-02 2006-06-08 Kabushiki Kaisha Kobe Seiko Sho 車体パネル構造体
CN204432328U (zh) * 2015-03-02 2015-07-01 立峰集团有限公司 一种车的车门板加固结构
JP2018199450A (ja) * 2017-05-29 2018-12-20 アイシン精機株式会社 車両用骨格部材の構造

Also Published As

Publication number Publication date
JP7088319B2 (ja) 2022-06-21
JPWO2020149312A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
KR101097018B1 (ko) 측면 충돌 성능을 강화시킨 자동차용 도어
JP4416807B2 (ja) 側面衝突性能を強化させた自動車用ドア
EP3966086B1 (en) Side sill part for an automotive vehicle
JP2017056881A (ja) 自動車の側部車体構造
WO2020149305A1 (ja) 自動車ドア
JP6032629B2 (ja) 自動車のセンターピラー構造
JP5328057B2 (ja) 車両用エネルギ吸収ビーム及び車両用ドア構造
JP4834353B2 (ja) 車両用エネルギ吸収ビーム及び車両用ドア構造
JP5686586B2 (ja) 自動車用車体骨格における補強構造
WO2020149308A1 (ja) 自動車の側部構造及び自動車
WO2020149312A1 (ja) 自動車の側部構造及び自動車
JP6016246B2 (ja) 自動車の車体構造
WO2020149296A1 (ja) 自動車ドア
JP4431161B2 (ja) 側面衝突性能を強化させた自動車用ドア
JP5918092B2 (ja) 車両用バンパビーム
CN209795609U (zh) B柱结构及汽车
JP6119119B2 (ja) フロントピラー
KR20130033843A (ko) 차량의 사이드 실 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741978

Country of ref document: EP

Kind code of ref document: A1