WO2020148604A1 - 表示装置および電子機器 - Google Patents

表示装置および電子機器 Download PDF

Info

Publication number
WO2020148604A1
WO2020148604A1 PCT/IB2020/050102 IB2020050102W WO2020148604A1 WO 2020148604 A1 WO2020148604 A1 WO 2020148604A1 IB 2020050102 W IB2020050102 W IB 2020050102W WO 2020148604 A1 WO2020148604 A1 WO 2020148604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
transistor
emitting device
Prior art date
Application number
PCT/IB2020/050102
Other languages
English (en)
French (fr)
Inventor
山崎舜平
楠紘慈
久保田大介
鎌田太介
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202080008466.XA priority Critical patent/CN113348387A/zh
Priority to KR1020217024055A priority patent/KR20210114960A/ko
Priority to US17/420,496 priority patent/US20220102430A1/en
Priority to JP2020566350A priority patent/JPWO2020148604A1/ja
Publication of WO2020148604A1 publication Critical patent/WO2020148604A1/ja
Priority to JP2023207921A priority patent/JP2024050530A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • One embodiment of the present invention relates to a display device.
  • the technical field of one embodiment of the present invention includes a semiconductor device, a display device, a light-emitting device, a power storage device, a storage device, an electronic device, a lighting device, an input device (such as a touch sensor), and an input/output device (such as a touch panel). ), their driving method, or their manufacturing method can be mentioned as an example.
  • a semiconductor device generally means a device that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are one mode of a semiconductor device.
  • the memory device, the display device, the imaging device, and the electronic device may include a semiconductor device.
  • display devices have been applied to various purposes. For example, as a large-sized display device, a home-use television device, a digital signage, a PID (Public Information Display), and the like can be given.
  • a PID Public Information Display
  • examples of applications of the small and medium-sized display devices include mobile information terminals such as smartphones and tablet terminals.
  • Patent Document 1 discloses a light emitting device having flexibility.
  • the display device is used in various devices, it is desired to have high functionality. For example, by providing a user interface function, an imaging function, and the like, a more convenient electronic device can be realized.
  • One embodiment of the present invention is a display device including a light emitting device and a light receiving device in a display portion.
  • One embodiment of the present invention is a display device including a first pixel, a second pixel, and a third pixel, wherein the first pixel has a first light-emitting device and a second light-emitting device.
  • the third light emitting device has a second light emitting device, the third pixel has a light receiving device, the first light emitting device has a function of emitting visible light, and the second light emitting device has a near red light emitting device.
  • the light receiving device has a function of emitting external light, the light receiving device has a function of detecting near-infrared light, and the second pixel generates a third potential based on the first potential and the second potential.
  • the display device has a function and a function of causing the second light-emitting device to emit light in accordance with a third potential.
  • the first light emitting device can have a function of emitting light of any one of red, green, blue or white.
  • the light receiving device has a photoelectric conversion layer, and the photoelectric conversion layer has an organic compound.
  • the first light emitting device, the second light emitting device and the light receiving device have a diode configuration, and the cathode of the first light emitting device, the cathode of the second light emitting device and the anode of the light receiving device are electrically connected. You can Alternatively, the cathode of the first light emitting device, the cathode of the second light emitting device and the cathode of the light receiving device can be electrically connected.
  • a visible light cut filter is preferably provided at a position overlapping the light receiving device.
  • the first to third pixels each include a transistor, the transistor includes a metal oxide in a channel formation region, and the metal oxide includes In, Zn, and M (M is Al, Ti, Ga, Ge, or Sn). , Y, Zr, La, Ce, Nd or Hf).
  • a display device having an input function can be provided.
  • a display device having a light detection function can be provided.
  • a multifunctional display device can be provided.
  • a new display device can be provided.
  • a novel semiconductor device or the like can be provided.
  • FIG. 1 is a diagram illustrating a display device.
  • 2A to 2D and FIGS. 2E1 to 2E3 are diagrams illustrating a pixel structure.
  • 2F and 2G are diagrams for explaining the arrangement of pixels.
  • 2H and 2I are diagrams illustrating the configuration of the sub-pixel.
  • FIG. 3A is a diagram illustrating a display device.
  • 3B and 3C are diagrams for explaining the arrangement of pixels.
  • FIG. 4 is a cross-sectional view illustrating a display device.
  • 5A to 5C are cross-sectional views illustrating a display device.
  • 6A and 6B are cross-sectional views illustrating a display device.
  • 7A and 7B are cross-sectional views illustrating a display device.
  • FIG. 8A and 8B are cross-sectional views illustrating a display device.
  • FIG. 9 is a perspective view illustrating a display device.
  • FIG. 10 is a cross-sectional view illustrating a display device.
  • 11A and 11B are cross-sectional views illustrating a display device.
  • 12A and 12B are cross-sectional views illustrating a display device.
  • FIG. 13 is a cross-sectional view illustrating a display device.
  • 14A to 14D are diagrams illustrating a pixel circuit.
  • FIG. 15 is a diagram illustrating a pixel circuit.
  • FIG. 16 is a diagram illustrating a pixel circuit.
  • 17A and 17B are diagrams illustrating electronic devices.
  • 18A to 18D are diagrams illustrating electronic devices.
  • 19A to 19F are diagrams illustrating electronic devices.
  • the element may be composed of a plurality of elements.
  • a plurality of transistors which operate as switches may be connected in series or in parallel.
  • the capacitor may be divided and placed at a plurality of positions.
  • one conductor may have a plurality of functions such as wiring, an electrode, and a terminal in some cases, and in this specification, a plurality of names may be used for the same element. Further, even if the elements are illustrated as directly connected on the circuit diagram, the elements may actually be connected via one or more conductors, In this specification, such a configuration is also included in the category of direct connection.
  • One embodiment of the present invention is a display device that can perform input operation without contact.
  • the display device has a first light emitting device, a second light emitting device, and a light receiving device.
  • the first light emitting device has a function of displaying
  • the second light emitting device has a function of emitting light for illuminating an object.
  • the light receiving device has a function of detecting the light emitted from the second light emitting device and reflected by the object.
  • the near touch sensor is a sensor that realizes the same function as the touch sensor in a non-contact manner.
  • a booster circuit for causing the second light emitting device to emit light with high brightness is provided in the pixel having the second light emitting device.
  • FIG. 1 is a diagram illustrating a display device of one embodiment of the present invention.
  • the display device includes a pixel array 14, a circuit 15, a circuit 16, a circuit 17, a circuit 18, and a circuit 19.
  • the pixel array 14 has pixels 10 arranged in columns and rows.
  • the pixel 10 can have sub-pixels 11, 12, and 13.
  • the sub-pixel 11 has a function of emitting light for display.
  • the sub-pixel 12 has a function of emitting light that illuminates an object.
  • the sub-pixel 13 has a function of detecting light emitted from the sub-pixel 12 and reflected by an object.
  • the minimum unit in which an independent operation is performed in one "pixel” is defined as a "subpixel” for convenience of description, but the "pixel” is replaced with a “region”.
  • the “sub-pixel” may be replaced with the “pixel”.
  • the sub-pixel 11 has a first light emitting device that emits visible light.
  • the sub-pixel 12 also has a second light emitting device that emits near infrared light.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • a light-emitting substance included in an EL element a substance that emits fluorescence (a fluorescent material), a substance that emits phosphorescence (a phosphorescent material), a substance that exhibits thermally activated delayed fluorescence (a thermally activated delayed fluorescence: TADF) material ), inorganic compounds (quantum dot materials, etc.), and the like.
  • an LED such as a micro LED (Light Emitting Diode) can be used as the light emitting device.
  • the sub-pixel 13 has a light receiving device sensitive to near infrared light.
  • a photoelectric conversion element that detects incident light and generates an electric charge can be used as the light receiving device.
  • the amount of electric charge generated is determined based on the amount of incident light.
  • a pn type or pin type photodiode can be used as the light receiving device.
  • an organic photodiode having an organic compound in the photoelectric conversion layer As the light receiving device, it is preferable to use an organic photodiode having an organic compound in the photoelectric conversion layer.
  • the organic photodiode is easy to be thin, lightweight and large in area. Further, since the degree of freedom in shape and design is high, it can be applied to various display devices.
  • a photodiode including crystalline silicon single crystal silicon, polycrystalline silicon, microcrystalline silicon, or the like
  • crystalline silicon single crystal silicon, polycrystalline silicon, microcrystalline silicon, or the like
  • an organic EL element is used as a light emitting device and an organic photodiode is used as a light receiving device.
  • the organic photodiode has many layers that can be configured in common with the organic EL element. Therefore, the light receiving device can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • the photoelectric conversion layer of the light receiving device and the light emitting layer of the light emitting device may be separately formed, and the other layers may have the same configuration for the light emitting device and the light receiving device.
  • the circuits 15 and 16 are driver circuits for driving the subpixels 11 and 12.
  • the circuit 15 can function as a source driver, and the circuit 16 can function as a gate driver.
  • a shift register circuit or the like can be used for the circuit 15 and the circuit 16.
  • the drive circuits of the sub-pixels 11 and 12 may be separated. Since the main function of the sub-pixels 12 is to irradiate an object with light, all the sub-pixels 12 in the pixel array 14 may emit light of the same brightness. Therefore, a simplified circuit may be used instead of using a highly functional sequential circuit as a circuit corresponding to the source driver and the gate driver.
  • the circuits 17 and 18 are driver circuits for driving the sub-pixel 13.
  • the circuit 17 can have a function as a column driver, and the circuit 18 can have a function as a row driver.
  • the circuit 19 is a circuit for reading the data output by the sub-pixel 13.
  • the circuit 19 includes, for example, an A/D conversion circuit and has a function of converting analog data output from the subpixel 13 into digital data. Further, the circuit 19 may include a CDS circuit that performs correlated double sampling processing on output data.
  • the sub-pixel 12 and the sub-pixel 13 can have a function as an input interface. Near-infrared light can be emitted from the sub-pixel 12, and reflected light from an object close to the display device can be received by the sub-pixel 13. Therefore, by setting a threshold value of the amount of received near-infrared light detected by the sub-pixel 13, it can function as a switch. With these, a function equivalent to that of the touch sensor can be realized without contact. Further, the operation of the pointer or the like can be performed by contact or non-contact.
  • imaging data such as a fingerprint, a palm print, or an iris using the light receiving device. That is, a biometric authentication function can be added to the display device. Note that the image data may be acquired by bringing the object into contact with the display device.
  • the light receiving device can be used to acquire imaging data such as a user's facial expression, eye movement, or change in pupil diameter.
  • imaging data such as a user's facial expression, eye movement, or change in pupil diameter.
  • the physical and mental information of the user can be acquired. Based on the information, it is possible to perform an operation according to the physical and mental condition of the user, such as changing one or both of the display and the sound output from the display device.
  • These operations are effective for, for example, a VR (Virtual Reality) device, an AR (Augmented Reality) device, or an MR (Mixed Reality) device.
  • FIGS. 2A to 2D and FIGS. 2E1 to 2E3 are diagrams illustrating an example of a layout of sub-pixels in the pixel 10.
  • the sub-pixels may be arranged in the horizontal direction (the direction in which the gate lines extend).
  • FIG. 1, FIG. 2C, and FIG. 2D they may be arranged in the horizontal direction and the vertical direction (direction in which the source line extends).
  • one pixel 10 may not have the sub-pixel 13 or the sub-pixel 12.
  • the pixels 10 shown in FIG. 2E1 and the pixels 10 shown in FIG. 2E2 can be arranged alternately.
  • the pixel 10 configured by only the sub-pixel 11 shown in FIG. 2E3 may be used.
  • a plurality of pixels 10 shown in FIG. 2E3 may be provided between the pixel 10 shown in FIG. 2E1 and the pixel 10 shown in FIG. 2E2.
  • the total number of sub-pixels 11 and 13 can be larger than the total number of sub-pixels 12 and 13, so that the display quality can be improved.
  • the configuration and arrangement of the sub-pixels may be considered depending on the purpose.
  • the number of pixels 10 in FIG. 2E1 and the number of pixels 10 in FIG. 2E2 do not have to be the same.
  • the sub-pixel 11 is configured to emit monochromatic light, and may be a set of sub-pixels that emit different colors as shown in FIGS. 2H and 2I.
  • FIG. 2H is a diagram illustrating an example in which the sub-pixel 11 includes a sub-pixel 11R having a light-emitting device that emits red, a sub-pixel 11G having a light-emitting device that emits green, and a sub-pixel 11B having a light-emitting device that emits blue. Is. Color display can be performed by using the sub-pixel 11 having the above structure.
  • a subpixel 11W having a light emitting device that emits white light may be provided. Since the sub-pixel 11W can emit white light by itself, the emission brightness of the sub-pixels of other colors can be suppressed in displaying white or a color close to it. Therefore, display can be performed with low power consumption.
  • the display device may be configured with the sub-pixel 11 and the sub-pixel 13 as the basic configuration of the pixel 10.
  • the light source 20 for illuminating the object is arranged outside the pixel array 14 (display unit).
  • the light source 20 an LED or the like that emits near-infrared light with high brightness can be used. Since the light source 20 is provided outside the pixel array 14, it can be turned on by a control different from that of the display device.
  • the sub-pixels 12 are not necessary and the number of sub-pixels 13 can be increased, so that the sensitivity of object detection can be improved.
  • the arrangement position and the number of the light sources 20 shown in FIG. 3A are examples, and the present invention is not limited to this.
  • the light source 20 can be an element of a device including the display device of one embodiment of the present invention. Alternatively, the device may be different from the device including the display device of one embodiment of the present invention.
  • pixel and sub-pixel configurations are not limited to the above, and various arrangement modes can be employed.
  • FIG. 4 shows a schematic cross-sectional view of a display device 50A according to one embodiment of the present invention.
  • the display device 50A includes a light receiving device 110, a light emitting device 190, and a light emitting device 180.
  • the light receiving device 110 corresponds to an organic photodiode included in the sub-pixel 13.
  • the light emitting device 190 corresponds to an organic EL element (which emits near infrared light) included in the sub-pixel 12.
  • the light emitting device 180 corresponds to the organic EL element (emits visible light) included in the sub-pixel 11.
  • the organic EL elements included in the sub-pixel 11 and the sub-pixel 12 and the configurations around the organic EL elements can have the same configuration except the light emitting layer. Therefore, the details of the light emitting device 190 will be described here, and the description of the light emitting device 180 will be omitted.
  • the light receiving device 110 has a pixel electrode 111, a common layer 112, a photoelectric conversion layer 113, a common layer 114, and a common electrode 115.
  • the light emitting device 190 has a pixel electrode 191, a common layer 112, a light emitting layer 193, a common layer 114, and a common electrode 115.
  • the light emitting device 180 has a light emitting layer 183 different from the light emitting layer 193.
  • the pixel electrode 111, the pixel electrode 191, the common layer 112, the photoelectric conversion layer 113, the light emitting layer 193, the common layer 114, and the common electrode 115 may each have a single-layer structure or a stacked structure.
  • the pixel electrode 111 and the pixel electrode 191 are located on the insulating layer 214.
  • the pixel electrode 111 and the pixel electrode 191 can be formed using the same material and the same process.
  • the common layer 112 is located on the pixel electrode 111 and the pixel electrode 191.
  • the common layer 112 is a layer commonly used by the light receiving device 110 and the light emitting device 190.
  • the photoelectric conversion layer 113 has a region overlapping with the pixel electrode 111 with the common layer 112 interposed therebetween.
  • the light emitting layer 193 has a region overlapping with the pixel electrode 191 with the common layer 112 interposed therebetween.
  • the photoelectric conversion layer 113 has a first organic compound.
  • the light emitting layer 193 has a second organic compound different from the first organic compound.
  • the common layer 114 is located on the common layer 112, the photoelectric conversion layer 113, and the light emitting layer 193.
  • the common layer 114 is a layer commonly used by the light receiving device 110 and the light emitting device 190.
  • the common electrode 115 has a region overlapping with the pixel electrode 111 with the common layer 112, the photoelectric conversion layer 113, and the common layer 114 interposed therebetween. Further, the common electrode 115 has a region overlapping with the pixel electrode 191 with the common layer 112, the light emitting layer 193, and the common layer 114 interposed therebetween.
  • the common electrode 115 is a layer commonly used by the light receiving device 110 and the light emitting device 190.
  • an organic compound is used for the photoelectric conversion layer 113 of the light receiving device 110.
  • layers other than the photoelectric conversion layer 113 can have the same configuration as the light emitting device 190 (organic EL element). Therefore, the light receiving device 110 can be formed in parallel with the formation of the light emitting device 190, only by adding the step of forming the photoelectric conversion layer 113 to the manufacturing process of the light emitting device 190. Further, the light emitting device 190 and the light receiving device 110 can be formed on the same substrate. Therefore, the light receiving device 110 can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • the light receiving device 110 and the light emitting device 190 can have a common configuration except that the photoelectric conversion layer 113 of the light receiving device 110 and the light emitting layer 193 of the light emitting device 190 are separately formed.
  • the configurations of the light receiving device 110 and the light emitting device 190 are not limited to this.
  • the light-receiving device 110 and the light-emitting device 190 may have layers that are separately formed in addition to the photoelectric conversion layer 113 and the light-emitting layer 193 (see display devices 50C, 50D, and 50E described below).
  • the light receiving device 110 and the light emitting device 190 preferably have one or more layers commonly used (common layer). Accordingly, the light receiving device 110 can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • the display device 50A includes a light receiving device 110, a light emitting device 190, a transistor 41, a transistor 42, and the like between a pair of substrates (the substrate 151 and the substrate 152).
  • the common layer 112, the photoelectric conversion layer 113, and the common layer 114, which are located between the pixel electrode 111 and the common electrode 115, respectively, can be referred to as an organic layer (layer containing an organic compound).
  • the pixel electrode 111 preferably has a function of reflecting near infrared light.
  • the common electrode 115 has a function of transmitting visible light and near infrared light.
  • the light receiving device 110 has a function of detecting light. Specifically, the light receiving device 110 is a photoelectric conversion element that converts the incident light 22 into an electric signal.
  • a light shielding layer 148 is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light shielding layer 148 has openings at positions overlapping the light receiving device 110 and the light emitting device 190. By providing the light shielding layer 148, the range in which the light receiving device 110 detects light can be controlled.
  • the light blocking layer 148 a material that blocks light emitted from the light emitting device 190 can be used.
  • the light shielding layer 148 preferably absorbs visible light and near infrared light.
  • the light-blocking layer 148 can be formed using, for example, a metal material, a resin material containing a pigment (such as carbon black) or a dye, or the like.
  • the light shielding layer 148 may have a laminated structure of a red color filter, a green color filter, and a blue color filter.
  • a filter 149 that cuts light having a shorter wavelength than the wavelength of light emitted from the light emitting device 190 (near infrared light) is provided in the opening provided in the light shielding layer 148 at a position overlapping with the light receiving device 110.
  • the filter 149 for example, a long-pass filter that cuts light on the shorter wavelength side than near-infrared light, a band-pass filter that cuts at least a wavelength in the visible light region, or the like can be used.
  • a semiconductor film such as an amorphous silicon thin film can be used in addition to a resin film containing a dye.
  • the filter 149 may be provided so as to be laminated with the light receiving device 110, as shown in FIG. 5A.
  • the filter 149 may have a lens type shape.
  • the lens-type filter 149 is a convex lens having a convex surface on the substrate 151 side. Note that the substrate 152 side may be arranged so as to have a convex surface.
  • FIG. 5B shows an example in which the lens-type filter 149 is formed first, the light shielding layer 148 may be formed first. In FIG. 5B, the end portion of the lens type filter 149 is covered with the light shielding layer 148.
  • the configuration shown in FIG. 5B is a configuration in which the light 22 is incident on the light receiving device 110 via the lens type filter 149.
  • the filter 149 By making the filter 149 a lens type, the image pickup range of the light receiving device 110 can be narrowed, and it is possible to prevent the image pickup range of the adjacent light receiving device 110 from overlapping. This makes it possible to capture a clear image with little blur.
  • the filter 149 by forming the filter 149 into a lens shape, the opening of the light shielding layer 148 on the light receiving device 110 can be enlarged. Therefore, the amount of light incident on the light receiving device 110 can be increased, and the light detection sensitivity can be increased.
  • the lens type filter 149 can be formed directly on the substrate 152 or on the light receiving device 110. Alternatively, a separately manufactured microlens array or the like may be attached to the substrate 152.
  • the filter 149 may not be provided.
  • the filter 149 can be omitted.
  • a lens having the same shape as the lens type filter 149 shown in FIG. 5B may be provided so as to overlap the light receiving device 110.
  • the lens may be made of a material that transmits visible light.
  • the light receiving device 110 can detect the light 22 reflected by the object 60 such as a finger among the lights 21 emitted by the light emitting device 190 as shown in FIG. 4. However, part of the light emitted by the light emitting device 190 may be reflected in the display device 50 ⁇ /b>A and enter the light receiving device 110 without passing through the object 60.
  • the light shielding layer 148 can suppress the influence of such stray light. For example, when the light shielding layer 148 is not provided, the light 23a emitted by the light emitting device 190 may be reflected by the substrate 152 and the like, and the reflected light 23b may enter the light receiving device 110. By providing the light shielding layer 148, it is possible to suppress the reflected light 23b from entering the light receiving device 110. Thereby, noise can be reduced and the light detection accuracy of the light receiving device 110 can be improved.
  • the common layer 112, the light emitting layer 193, and the common layer 114 located between the pixel electrode 191 and the common electrode 115 can also be referred to as EL layers.
  • the pixel electrode 191 preferably has a function of reflecting at least near infrared light.
  • the light emitting device 190 has a function of emitting near infrared light. Specifically, the light emitting device 190 is an electroluminescent device that emits light 21 toward the substrate 152 side by applying a voltage between the pixel electrode 191 and the common electrode 115.
  • the pixel electrode 111 is electrically connected to a source or a drain included in the transistor 41 through an opening provided in the insulating layer 214.
  • the end portion of the pixel electrode 111 is covered with the partition wall 216.
  • the pixel electrode 191 is electrically connected to a source or a drain included in the transistor 42 through an opening provided in the insulating layer 214.
  • the end of the pixel electrode 191 is covered with a partition 216.
  • the transistor 42 has a function of controlling driving of the light emitting device 190.
  • the transistor 41 and the transistor 42 are in contact with each other on the same layer (the substrate 151 in FIG. 4).
  • At least a part of the circuit electrically connected to the light receiving device 110 is preferably formed of the same material and the same process as the circuit electrically connected to the light emitting device 190. Accordingly, the thickness of the display device can be reduced and the manufacturing process can be simplified as compared with the case where two circuits are formed separately.
  • the light receiving device 110 and the light emitting device 190 are preferably covered with a protective layer 195.
  • FIG. 4 shows an example in which the protective layer 195 is provided in contact with the common electrode 115.
  • the protective layer 195 impurities such as water are prevented from entering the light receiving device 110 and the light emitting device 190, and the reliability of the light receiving device 110 and the light emitting device 190 can be improved.
  • the protective layer 195 and the substrate 152 are attached to each other by the adhesive layer 142.
  • the protective layer 195 may not be provided on the light receiving device 110 and the light emitting device 190.
  • the common electrode 115 and the substrate 152 are attached to each other by the adhesive layer 142.
  • the light shielding layer 148 may not be provided. As a result, the amount of light emitted from the light emitting device 190 and the amount of light received by the light receiving device 110 can be increased, so that the detection sensitivity can be increased.
  • the display device of one embodiment of the present invention may have the structure of the display device 50B illustrated in FIG. 7A.
  • the display device 50B is different from the display device 50A in that the display device 50B does not have the substrate 151, the substrate 152, and the partition wall 216, but has the substrate 153, the substrate 154, the adhesive layer 155, the insulating layer 212, and the partition wall 217.
  • the substrate 153 and the insulating layer 212 are attached to each other with an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are attached to each other with the adhesive layer 142.
  • the display device 50B has a structure manufactured by transferring the insulating layer 212, the transistor 41, the transistor 42, the light-receiving device 110, the light-emitting device 190, and the like formed over the manufacturing substrate onto the substrate 153.
  • the substrates 153 and 154 preferably have flexibility. Thereby, flexibility can be given to the display device 50B. For example, it is preferable to use resin for the substrates 153 and 154.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethylmethacrylate resin, polycarbonate (PC) resin, polyethersulfone ( PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) ) Resin, ABS resin, cellulose nanofiber, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • a film having high optical isotropy may be used for the substrate included in the display device of this embodiment.
  • the film having high optical isotropy include a triacetyl cellulose (TAC, also called cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the partition 217 is preferably capable of absorbing light emitted by the light emitting device 190.
  • the partition wall 217 can be formed using, for example, a resin material containing a pigment or a dye.
  • Part of the light 23c emitted by the light emitting device 190 is reflected by the substrate 152 and the partition wall 217.
  • the reflected light 23d may enter the light receiving device 110.
  • the light 23c may pass through the partition wall 217 and be reflected by the transistor, the wiring, or the like, so that the reflected light may enter the light receiving device 110.
  • the light 23c is absorbed by the partition wall 217, so that the reflected light 23d can be suppressed from entering the light receiving device 110. Thereby, noise can be reduced and the light detection accuracy of the light receiving device 110 can be improved.
  • the partition wall 217 preferably absorbs at least light having a wavelength that can be detected by the light receiving device 110.
  • the light receiving device 110 detects near infrared light emitted from the light emitting device 190
  • FIG. 7B shows a schematic sectional view of the display device 50C.
  • the display device 50C is different from the display device 50A in that the display device 50C does not have the common layer 114 but has the buffer layer 184 and the buffer layer 194.
  • the buffer layer 184 and the buffer layer 194 may have a single-layer structure or a stacked structure.
  • the light receiving device 110 has a pixel electrode 111, a common layer 112, a photoelectric conversion layer 113, a buffer layer 184, and a common electrode 115.
  • the light emitting device 190 includes the pixel electrode 191, the common layer 112, the light emitting layer 193, the buffer layer 194, and the common electrode 115.
  • the buffer layer 184 between the common electrode 115 and the photoelectric conversion layer 113 and the buffer layer 194 between the common electrode 115 and the light emitting layer 193 are separately formed.
  • the buffer layer 184 and the buffer layer 194 can be, for example, one or both of an electron injection layer and an electron transport layer.
  • FIG. 8A shows a schematic sectional view of the display device 50D.
  • the display device 50D is different from the display device 50A in that it does not have the common layer 112 but has the buffer layer 182 and the buffer layer 192.
  • the buffer layer 182 and the buffer layer 192 may have a single-layer structure or a stacked structure.
  • the light receiving device 110 has a pixel electrode 111, a buffer layer 182, a photoelectric conversion layer 113, a common layer 114, and a common electrode 115.
  • the light emitting device 190 has the pixel electrode 191, the buffer layer 192, the light emitting layer 193, the common layer 114, and the common electrode 115.
  • the display device 50D shows an example in which the buffer layer 182 between the pixel electrode 111 and the photoelectric conversion layer 113 and the buffer layer 192 between the pixel electrode 191 and the light emitting layer 193 are separately formed.
  • the buffer layer 182 and the buffer layer 192 can be, for example, one or both of a hole injection layer and a hole transport layer.
  • FIG. 8B shows a schematic sectional view of the display device 50E.
  • the display device 50E is different from the display device 50A in that it does not have the common layer 112 and the common layer 114 but has the buffer layer 182, the buffer layer 184, the buffer layer 192, and the buffer layer 194.
  • the light receiving device 110 has a pixel electrode 111, a buffer layer 182, a photoelectric conversion layer 113, a buffer layer 184, and a common electrode 115.
  • the light emitting device 190 includes the pixel electrode 191, the buffer layer 192, the light emitting layer 193, the buffer layer 194, and the common electrode 115.
  • the photoelectric conversion layer 113 and the light-emitting layer 193 can be separately manufactured.
  • the light receiving device 110 and the light emitting device 190 do not have a common layer between the pair of electrodes (the pixel electrode 111 or the pixel electrode 191 and the common electrode 115).
  • the pixel electrode 111 and the pixel electrode 191 are formed on the insulating layer 214 by using the same material and the same process.
  • the buffer layer 182, the photoelectric conversion layer 113, and the buffer layer 184 are formed over the pixel electrode 111
  • the buffer layer 192, the light-emitting layer 193, and the buffer layer 194 are formed over the pixel electrode 191, and the buffer layer 184 and the buffer layer 194 are formed.
  • the common electrode 115 is formed so as to cover the above.
  • the manufacturing order of the stacked structure of the buffer layer 182, the photoelectric conversion layer 113, and the buffer layer 184 and the stacked structure of the buffer layer 192, the light emitting layer 193, and the buffer layer 194 is not particularly limited.
  • the buffer layer 192, the light emitting layer 193, and the buffer layer 194 may be formed.
  • the buffer layer 192, the light emitting layer 193, and the buffer layer 194 may be formed before forming the buffer layer 182, the photoelectric conversion layer 113, and the buffer layer 184.
  • the buffer layer 182, the buffer layer 192, the photoelectric conversion layer 113, the light emitting layer 193, and the like may be alternately formed in this order.
  • FIG. 9 shows a perspective view of the display device 100A.
  • the display device 100A has a configuration in which a substrate 151 and a substrate 152 are attached to each other.
  • the substrate 152 is shown by a broken line.
  • the display device 100A includes a display portion 162, a circuit 164a, a circuit 164b, a wiring 165a, a wiring 165b, and the like.
  • FIG. 9 illustrates an example in which an IC (integrated circuit) 173a, an FPC 172a, an IC 173b, and an FPC 172b are mounted on the display device 100A. Therefore, the configuration shown in FIG. 9 can be regarded as a display module including the display device 100A, the IC, and the FPC.
  • a gate driver for performing display can be used as the circuit 164a.
  • a low driver for performing imaging (light detection) can be used.
  • the wiring 165a has a function of supplying signals and power to the subpixels 11 and 12 and the circuit 164a.
  • the signal and the power are input from the outside via the FPC 172a or from the IC 173a to the wiring 165a.
  • the wiring 165b has a function of supplying a signal and power to the subpixel 13 and the circuit 164b.
  • the signal and the power are input from the outside via the FPC 172b or from the IC 173b to the wiring 165b.
  • FIG. 9 shows an example in which the ICs 173a and 173b are provided on the substrate 151 by the COG (Chip On Glass) method, the TCP (Tape Carrier Package) method or the COF (Chip On Film) method may be used.
  • the IC 173a for example, an IC having a function of a source driver connected to the subpixels 11 and 12 can be used.
  • the IC 173b for example, an IC having a function of a signal processing circuit such as a column driver connected to the subpixel 13 and an A/D converter can be used.
  • the driver circuit may be provided over the substrate 151 in the same manner as a transistor or the like included in a pixel circuit.
  • FIG. 10 is a cross-sectional view of part of a region including the FPC 172a, part of a region including the circuit 164a, part of a region including the display portion 162, and part of a region including an end portion in the display device 100A illustrated in FIG. An example is shown.
  • a display device 100A illustrated in FIG. 10 includes a transistor 201, a transistor 205, a transistor 206, a light emitting device 190, a light receiving device 110, and the like between a substrate 151 and a substrate 152.
  • the substrate 152 and the insulating layer 214 are adhered to each other via the adhesive layer 142.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting device 190 and the light receiving device 110.
  • a space 143 surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 is filled with an inert gas (nitrogen, argon, etc.), and a hollow sealing structure is applied.
  • the adhesive layer 142 may be provided so as to overlap with the light emitting device 190. Further, the region surrounded by the substrate 152, the adhesive layer 142, and the insulating layer 214 may be filled with a resin different from that of the adhesive layer 142.
  • the light emitting device 190 has a laminated structure in which the pixel electrode 191, the common layer 112, the light emitting layer 193, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 191 is connected to the conductive layer 222b included in the transistor 206 through an opening provided in the insulating layer 214.
  • the transistor 206 has a function of controlling driving of the light emitting device 190.
  • the end of the pixel electrode 191 is covered with a partition 216.
  • the light receiving device 110 has a laminated structure in which the pixel electrode 111, the common layer 112, the photoelectric conversion layer 113, the common layer 114, and the common electrode 115 are laminated in this order from the insulating layer 214 side.
  • the pixel electrode 111 is electrically connected to the conductive layer 222b included in the transistor 205 through an opening provided in the insulating layer 214.
  • the end portion of the pixel electrode 111 is covered with the partition wall 216.
  • the light emitted from the light emitting device 190 is emitted to the substrate 152 side. Further, light is incident on the light receiving device 110 through the substrate 152 and the space 143.
  • the substrate 152 it is preferable to use a material having high transparency to visible light and near infrared light.
  • the pixel electrode 111 and the pixel electrode 191 can be manufactured using the same material and the same process.
  • the common layer 112, the common layer 114, and the common electrode 115 are used for both the light receiving device 110 and the light emitting device 190.
  • the light receiving device 110 and the light emitting device 190 may have a common configuration except that the configurations of the photoelectric conversion layer 113 and the light emitting layer 193 are different. Accordingly, the light receiving device 110 can be built in the display device 100A without significantly increasing the number of manufacturing steps.
  • a light shielding layer 148 is provided on the surface of the substrate 152 on the substrate 151 side.
  • the light shielding layer 148 has openings at positions overlapping the light receiving device 110 and light emitting device 190.
  • a filter 149 that cuts visible light is provided at a position overlapping the light receiving device 110. Note that the filter 149 may not be provided.
  • the transistor 201, the transistor 205, and the transistor 206 are all formed over the substrate 151. These transistors can be manufactured using the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided in this order over the substrate 151.
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering the transistor are not limited, and each may be a single layer or two or more layers.
  • a material in which impurities such as water and hydrogen do not easily diffuse for at least one insulating layer that covers the transistor. This allows the insulating layer to function as a barrier layer. With such a structure, diffusion of impurities into the transistor from the outside can be effectively suppressed, and reliability of the display device can be improved.
  • an inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, or an aluminum nitride film can be used.
  • a hafnium oxide film, a yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, or a neodymium oxide film may be used.
  • two or more of the above-mentioned insulating films may be laminated and used.
  • An organic insulating film is suitable for the insulating layer 214 which functions as a planarization layer.
  • Materials that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • the organic insulating film often has a lower barrier property against impurities than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 100A. This can prevent impurities from diffusing from the end of the display device 100A through the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is located inside the end portion of the display device 100A so that the organic insulating film is not exposed at the end portion of the display device 100A.
  • an opening is formed in the insulating layer 214. Accordingly, even when an organic insulating film is used for the insulating layer 214, it is possible to prevent impurities from diffusing from the outside to the display portion 162 through the insulating layer 214. Therefore, the reliability of the display device 100A can be improved.
  • the transistor 201, the transistor 205, and the transistor 206 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as a source and a drain, a semiconductor layer 231, and a gate insulating layer.
  • the insulating layer 213 that functions as a gate and the conductive layer 223 that functions as a gate are included.
  • the same hatching pattern is given to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • either a top-gate or bottom-gate transistor structure may be used.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistor 201, the transistor 205, and the transistor 206.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • one of the two gates may be supplied with a potential for controlling the threshold voltage of the transistor and the other may be supplied with a potential for driving.
  • the crystallinity of a semiconductor material used for a transistor is not particularly limited, and an amorphous semiconductor, a single crystal semiconductor, or a semiconductor having crystallinity other than single crystal (a microcrystalline semiconductor, a polycrystalline semiconductor, or a part of which has a crystalline region). Any of the above semiconductors) may be used. It is preferable to use a single crystal semiconductor or a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably contains a metal oxide (also referred to as an oxide semiconductor).
  • the semiconductor layer of the transistor may include silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layer is, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, It is preferable to have zinc and one or more kinds selected from hafnium, tantalum, tungsten, and magnesium).
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) is preferably used for the semiconductor layer.
  • the atomic ratio of In in the sputtering target is preferably greater than or equal to the atomic ratio of M.
  • the atomic ratio of the semiconductor layer to be formed includes a fluctuation of ⁇ 40% in the atomic ratio of the metal element contained in the sputtering target.
  • the atomic ratio of Ga is larger than 0.1. It is 2 or less and includes the case where the atomic ratio of Zn is 5 or more and 7 or less.
  • the transistor included in the circuit 164a and the transistor included in the display portion 162 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit 164a may be all the same or may be two or more.
  • the structures of the plurality of transistors included in the display portion 162 may be all the same or may be two or more.
  • connection portion 204 is provided in a region of the substrate 151 where the substrates 152 do not overlap.
  • the wiring 165 is electrically connected to the FPC 172a via the conductive layer 166 and the connection layer 242.
  • the conductive layer 166 obtained by processing the same conductive film as the pixel electrode 191 is exposed. Accordingly, the connection portion 204 and the FPC 172a can be electrically connected via the connection layer 242.
  • optical members can be arranged outside the substrate 152.
  • the optical member include a polarizing plate, a retardation plate, a light diffusing layer (such as a diffusing film), an antireflection layer, and a light collecting film.
  • a polarizing plate a retardation plate
  • a light diffusing layer such as a diffusing film
  • an antireflection layer e.g., a light collecting film.
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the generation of scratches during use
  • a shock absorbing layer arranged. May be.
  • the substrate 151 and the substrate 152 glass, quartz, ceramic, sapphire, resin, or the like can be used.
  • various curable adhesives such as a photo-curable adhesive such as an ultraviolet curable adhesive, a reaction curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, and the like.
  • a material having low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the light emitting device 190 may be a top emission type, a bottom emission type, a dual emission type, or the like. In one embodiment of the present invention, a top emission type is preferable, but another structure can be applied by making the light emitting surface of the light emitting device 190 and the light incident surface of the light receiving device 110 have the same direction. Can also
  • the light emitting device 190 has at least a light emitting layer 193.
  • a substance having a high hole injecting property a substance having a high hole transporting property, a hole blocking material, a substance having a high electron transporting property, a substance having a high electron injecting property or a bipolar property.
  • It may further have a layer containing a substance (a substance having a high electron transporting property and a high hole transporting property) or the like.
  • the common layer 112 preferably has one or both of a hole injection layer and a hole transport layer.
  • the common layer 114 preferably has one or both of an electron transport layer and an electron injection layer.
  • the common layer 112, the light emitting layer 193, and the common layer 114 either a low molecular compound or a high molecular compound can be used, and an inorganic compound may be contained.
  • the layers forming the common layer 112, the light emitting layer 193, and the common layer 114 can be formed by a method such as an evaporation method (including a vacuum evaporation method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the light emitting layer 193 may have an inorganic compound such as a quantum dot as a light emitting material.
  • the photoelectric conversion layer 113 of the light receiving device 110 includes a semiconductor.
  • the semiconductor an inorganic semiconductor such as silicon or an organic semiconductor containing an organic compound can be used.
  • an organic semiconductor as a semiconductor included in the photoelectric conversion layer 113 is described.
  • the light emitting layer 193 of the light emitting device 190 and the photoelectric conversion layer 113 of the light receiving device 110 can be formed by the same method (for example, a vacuum evaporation method), and the manufacturing apparatus can be shared. preferable.
  • Examples of the n-type semiconductor material included in the photoelectric conversion layer 113 include electron-accepting organic semiconductor materials such as fullerenes (for example, C 60 , C 70, etc.) and their derivatives.
  • examples of a p-type semiconductor material included in the photoelectric conversion layer 113 include copper(II) phthalocyanine (Copper(II) phthalocyanine; CuPc), tetraphenyldibenzoperifuranthene (DBP), and zinc phthalocyanine (Zinc Phanthalkane).
  • CuPc copper(II) phthalocyanine
  • DBP tetraphenyldibenzoperifuranthene
  • Zinc Phanthalkane zinc phthalocyanine
  • the photoelectric conversion layer 113 can be formed by co-evaporating an n-type semiconductor and a p-type semiconductor.
  • Materials that can be used for conductive layers such as gates, sources, and drains of transistors as well as various wirings and electrodes that configure a display device include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, and Examples thereof include metals such as tantalum and tungsten, and alloys containing the metals as main components. A film containing any of these materials can be used as a single-layer structure or a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide containing gallium, or graphene
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or an alloy material containing the metal material
  • a nitride of the metal material for example, titanium nitride
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a stacked film of an alloy of silver and magnesium and indium tin oxide is preferably used because conductivity can be increased.
  • These can also be used for various wirings forming a display device, a conductive layer such as an electrode, and a conductive layer included in a display element (a conductive layer functioning as a pixel electrode or a common electrode).
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • FIG. 11A shows a sectional view of the display device 100B.
  • the display device 100B mainly differs from the display device 100A in that it has a protective layer 195.
  • the protective layer 195 that covers the light receiving device 110 and the light emitting device 190, it is possible to suppress the diffusion of impurities such as water into the light receiving device 110 and the light emitting device 190, and improve the reliability of the light receiving device 110 and the light emitting device 190. You can
  • the insulating layer 215 and the protective layer 195 are preferably in contact with each other through the opening in the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 195 are preferably in contact with each other. This can prevent impurities from diffusing from the outside into the display unit 162 through the organic insulating film. Therefore, the reliability of the display device 100B can be improved.
  • FIG. 11B shows an example in which the protective layer 195 has a three-layer structure.
  • the protective layer 195 includes an inorganic insulating layer 195a on the common electrode 115, an organic insulating layer 195b on the inorganic insulating layer 195a, and an inorganic insulating layer 195c on the organic insulating layer 195b.
  • the end portion of the inorganic insulating layer 195a and the end portion of the inorganic insulating layer 195c extend outside the end portion of the organic insulating layer 195b and are in contact with each other. Then, the inorganic insulating layer 195a is in contact with the insulating layer 215 (inorganic insulating layer) through the opening of the insulating layer 214 (organic insulating layer). Accordingly, since the light receiving device 110 and the light emitting device 190 can be surrounded by the insulating layer 215 and the protective layer 195, the reliability of the light receiving device 110 and the light emitting device 190 can be improved.
  • the protective layer 195 may have a laminated structure of an organic insulating film and an inorganic insulating film. At this time, it is preferable to extend the end portion of the inorganic insulating film outside the end portion of the organic insulating film.
  • the protective layer 195 and the substrate 152 are attached to each other with the adhesive layer 142.
  • the adhesive layer 142 is provided so as to overlap the light receiving device 110 and the light emitting device 190, respectively, and a solid sealing structure is applied to the display device 100B.
  • FIG. 12A shows a sectional view of the display device 100C.
  • the display device 100C mainly differs from the display device 100B in that the structure of the transistor is different and that the light shielding layer 148 is not provided.
  • the display device 100C includes the transistor 208, the transistor 209, and the transistor 210 over the substrate 151.
  • the transistor 208, the transistor 209, and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer having a channel formation region 231i and a pair of low resistance regions 231n, and a pair of low resistance layers.
  • An insulating layer 215 which covers the layer 223 is included.
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel formation region 231i.
  • the conductive layers 222a and 222b are connected to the low resistance region 231n through the openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the pixel electrode 191 of the light emitting device 190 is electrically connected to one of the pair of low resistance regions 231n of the transistor 208 through the conductive layer 222b.
  • the pixel electrode 111 of the light receiving device 110 is electrically connected to the other of the pair of low resistance regions 231n of the transistor 209 via the conductive layer 222b.
  • FIG. 12A shows an example in which the insulating layer 225 covers the top surface and the side surface of the semiconductor layer.
  • FIG. 12B shows an example in which the insulating layer 225 overlaps the channel formation region 231i of the semiconductor layer 231 and does not overlap the low resistance region 231n.
  • the structure shown in FIG. 12B can be manufactured by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n through the openings of the insulating layer 215, respectively.
  • an insulating layer 218 which covers the transistor may be provided.
  • FIG. 13 shows a cross-sectional view of the display device 100D.
  • the display device 100D mainly differs from the display device 100C in that the configuration of the substrate is different.
  • the display device 100D does not include the substrate 151 and the substrate 152, but includes the substrate 153, the substrate 154, the adhesive layer 155, and the insulating layer 212.
  • the substrate 153 and the insulating layer 212 are attached to each other with an adhesive layer 155.
  • the substrate 154 and the protective layer 195 are attached to each other with the adhesive layer 142.
  • the display device 100D has a structure in which the insulating layer 212, the transistor 208, the transistor 209, the light-receiving device 110, the light-emitting device 190, and the like formed over the manufacturing substrate are transferred to the substrate 153.
  • the substrates 153 and 154 preferably have flexibility. Thereby, flexibility can be provided to the display device 100D.
  • the insulating layer 212 an inorganic insulating film which can be used for the insulating layer 211, the insulating layer 213, and the insulating layer 215 can be used.
  • the insulating layer 212 may be a stacked film of an organic insulating film and an inorganic insulating film.
  • the film on the transistor 209 side is preferably an inorganic insulating film.
  • the display device of this embodiment has a light receiving device and a light emitting device in a display portion, and the display portion has both a function of displaying an image and a function of detecting light. This makes it possible to reduce the size and weight of the electronic device as compared with the case where the sensor is provided outside the display unit or outside the display device. Further, a multifunctional electronic device can be realized by combining with a sensor provided outside the display portion or outside the display device.
  • At least one layer other than the photoelectric conversion layer of the light receiving device can be configured in common with the light emitting device (EL element). Further, in the light receiving device, all layers other than the photoelectric conversion layer may have the same configuration as the light emitting device (EL element). For example, the light emitting device and the light receiving device can be formed on the same substrate only by adding a step of forming a photoelectric conversion layer to the manufacturing process of the light emitting device. Further, in the light receiving device and the light emitting device, the pixel electrode and the common electrode can be formed by using the same material and the same process.
  • the manufacturing process of the display device can be simplified. In this way, a light-emitting device can be built in and a highly convenient display device can be manufactured without complicated steps.
  • the metal oxide applicable to the semiconductor layer of the transistor will be described below.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides. Further, the metal oxide containing nitrogen may be referred to as a metal oxynitride. For example, a metal oxide containing nitrogen such as zinc oxynitride (ZnON) may be used for the semiconductor layer.
  • ZnON zinc oxynitride
  • CAAC c-axis aligned aligned crystal
  • CAC Cloud-Aligned composite
  • CAC Cloud-Aligned Composite
  • OS Oxide Semiconductor
  • the CAC-OS or the CAC-metal oxide has a conductive function in a part of the material and an insulating function in a part of the material, and the whole material has a function as a semiconductor.
  • a conductive function is a function of flowing electrons (or holes) serving as carriers
  • an insulating function is an electron serving as carriers. It is a function that does not flow.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-mentioned conductive function
  • the insulating region has the above-mentioned insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material.
  • the conductive region may be observed by blurring the periphery and connecting in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material in a size of 0.5 nm or more and 10 nm or less, preferably 0.5 nm or more and 3 nm or less. There is.
  • the CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide is composed of a component having a wide gap due to the insulating region and a component having a narrow gap due to the conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having the narrow gap acts complementarily to the component having the wide gap, and the carrier also flows in the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or CAC-metal oxide is used in the channel formation region of the transistor, a high current driving force, that is, a high on-current and a high field-effect mobility can be obtained in the on state of the transistor.
  • the CAC-OS or the CAC-metal oxide can also be referred to as a matrix composite material or a metal matrix composite material.
  • the oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor other than the single crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal line oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystal oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide).
  • OS amorphous-like oxide semiconductor), and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and has a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have distortion.
  • the strain refers to a portion in which the orientation of the lattice arrangement is changed between a region where the lattice arrangement is uniform and another region where the lattice arrangement is uniform in the region where the plurality of nanocrystals are connected.
  • the nanocrystal is basically a hexagon, but is not limited to a regular hexagon, and may be a non-regular hexagon.
  • the strain may have a lattice arrangement such as a pentagon and a heptagon.
  • a lattice arrangement such as a pentagon and a heptagon.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing elements M, zinc, and oxygen (hereinafter, a (M,Zn) layer) are stacked. It tends to have a structure (also called a layered structure). Note that indium and the element M can be replaced with each other, and when the element M of the (M,Zn) layer is replaced with indium, it can be expressed as an (In,M,Zn) layer. When the indium in the In layer is replaced with the element M, it can be expressed as an (In,M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • CAAC-OS since it is difficult to confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary does not easily occur.
  • CAAC-OS impurities and defects oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said to be an oxide. Therefore, the metal oxide having CAAC-OS has stable physical properties. Therefore, the metal oxide containing CAAC-OS is highly heat resistant and highly reliable.
  • the nc-OS has a periodic atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less). Moreover, in the nc-OS, no regularity is found in the crystal orientation between different nanocrystals. Therefore, no orientation is seen in the entire film. Therefore, the nc-OS may be indistinguishable from the a-like OS or the amorphous oxide semiconductor depending on the analysis method.
  • IGZO indium-gallium-zinc oxide
  • IGZO indium-gallium-zinc oxide
  • IGZO may have a stable structure by using the above-described nanocrystal.
  • IGZO tends to have difficulty in crystal growth in the atmosphere, and thus a smaller crystal (for example, the above-mentioned nanocrystal) is used than a large crystal (here, a crystal of several mm or a crystal of several cm).
  • a large crystal here, a crystal of several mm or a crystal of several cm.
  • it may be structurally stable.
  • the a-like OS is a metal oxide having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the crystallinity of the a-like OS is lower than that of the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and have different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the metal oxide film functioning as a semiconductor layer can be formed by a sputtering method using one or both of an inert gas and an oxygen gas.
  • an inert gas oxygen gas
  • oxygen flow rate ratio oxygen partial pressure
  • the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% to 30%, preferably 5% to 30%. Is more preferable and 7% or more and 15% or less is still more preferable.
  • the energy gap of the metal oxide is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more.
  • the transistor including the above metal oxide can exhibit extremely low off-state current of several yA/ ⁇ m (current value per 1 ⁇ m of channel width).
  • a transistor including a metal oxide has characteristics different from those of a transistor including Si in that impact ionization, avalanche breakdown, short channel effect, and the like do not occur, and a highly reliable circuit can be formed. ..
  • variation in electrical characteristics due to nonuniform crystallinity, which is a problem in a transistor including Si is less likely to occur in a transistor including a metal oxide.
  • the substrate temperature during the formation of the metal oxide film is preferably 350° C. or lower, more preferably room temperature or higher and 200° C. or lower, still more preferably room temperature or higher and 130° C. or lower.
  • productivity can be improved, which is preferable.
  • the metal oxide film can be formed by a sputtering method, a PLD method, a PECVD method, a thermal CVD method, a MOCVD method, an ALD method, a vacuum evaporation method, or the like.
  • a pixel of the display device of one embodiment of the present invention includes subpixels 11, 12, and 13.
  • the pixel circuit PIX1 of the sub-pixel 11 has a light emitting device that emits visible light.
  • the pixel circuit PIX2 of the sub-pixel 12 has a light emitting device that emits near infrared light.
  • the pixel circuit PIX3 of the sub-pixel 13 has a light receiving device.
  • FIG. 14A shows an example of the pixel circuit PIX1 of the sub-pixel 11.
  • the pixel circuit PIX1 has a light emitting device EL1, a transistor M1, a transistor M2, a transistor M3, and a capacitor C1.
  • a light emitting diode is used as the light emitting device EL1
  • An organic EL element that emits visible light is preferably used for the light emitting device EL1.
  • a gate is electrically connected to the wiring G1
  • one of a source and a drain is electrically connected to the wiring S1
  • the other of the source and the drain is electrically connected to one electrode of the capacitor C1 and a gate of the transistor M2.
  • One of a source and a drain of the transistor M2 is electrically connected to the wiring V2, and the other is electrically connected to an anode of the light emitting device EL1 and one of a source and a drain of the transistor M3.
  • a gate of the transistor M3 is electrically connected to the wiring G2, and the other of the source and the drain is electrically connected to the wiring V0.
  • the cathode of the light emitting device EL1 is electrically connected to the wiring V1.
  • a constant potential is supplied to each of the wiring V1 and the wiring V2.
  • Light emission can be performed by setting the anode side of the light emitting device EL1 to a high potential and the cathode side to a low potential.
  • the transistor M1 is controlled by a signal supplied to the wiring G1 and functions as a selection transistor for controlling the selection state of the pixel circuit PIX1.
  • the transistor M2 also functions as a drive transistor that controls the current flowing through the light emitting device EL1 according to the potential supplied to the gate.
  • the potential supplied to the wiring S1 is supplied to the gate of the transistor M2, and the emission brightness of the light emitting device EL1 can be controlled according to the potential.
  • the transistor M3 is controlled by the signal supplied to the wiring G2. Accordingly, the potential between the transistor M3 and the light-emitting device EL1 can be reset to a constant potential supplied from the wiring V0, and the potential to the gate of the transistor M2 can be maintained in a state where the source potential of the transistor M2 is stabilized. Can write.
  • FIG. 14B shows an example of the pixel circuit PIX2 of the subpixel 12.
  • the pixel circuit PIX2 has a boosting function.
  • the pixel circuit PIX2 has a light emitting device EL2, a transistor M4, a transistor M5, a transistor M6, a transistor M7, a capacitor C2 and a capacitor C3.
  • a light emitting diode As the light emitting device EL2 is shown.
  • the pixel circuit PIX2 has a boosting function for emitting near infrared light with high brightness.
  • a gate is electrically connected to the wiring G1, one of a source and a drain is electrically connected to the wiring S4, and the other of the source and the drain is one electrode of the capacitor C2 and one electrode of the capacitor C3. And electrically connected to the gate of the transistor M6.
  • the gate is electrically connected to the wiring G3, one of the source and the drain is electrically connected to the wiring S5, and the other of the source and the drain is electrically connected to the other electrode of the capacitor C3.
  • One of a source and a drain of the transistor M6 is electrically connected to the wiring V2, and the other is electrically connected to an anode of the light emitting device EL2 and one of a source and a drain of the transistor M7.
  • a gate of the transistor M7 is electrically connected to the wiring G2, and the other of the source and the drain is electrically connected to the wiring V0.
  • the cathode of the light emitting device EL2 is electrically connected to the wiring V1.
  • the transistor M4 is controlled by the signal supplied to the wiring G1, and the transistor M5 is controlled by the signal supplied to the wiring G3.
  • the transistor M6 functions as a drive transistor that controls the current flowing through the light emitting device EL2 according to the potential supplied to the gate.
  • the emission brightness of the light emitting device EL2 can be controlled according to the potential supplied to the gate of the transistor M6.
  • the transistor M7 is controlled by the signal supplied to the wiring G2.
  • the potential between the transistor M6 and the light emitting device EL2 can be reset to a constant potential supplied from the wiring V0, and the potential is written to the gate of the transistor M6 with the source potential of the transistor M6 being stabilized. be able to. Further, by setting the potential supplied from the wiring V0 to the same potential as the wiring V1 or lower than that of the wiring V1, light emission of the light emitting device EL2 can be suppressed.
  • the pixel circuit PIX2 in order to increase the light emission intensity of the light emitting device EL2, it is preferable to supply a high voltage to the gate of the transistor M6.
  • the boosting function of the pixel circuit PIX2 will be described below.
  • the potential “D1” of the wiring S4 is supplied to the gate of the transistor M6 via the transistor M4, and the reference potential “V ref ” is supplied to the other electrode of the capacitor C3 via the transistor M5 at the timing overlapping with this. At this time, "D1-V ref "is held in the capacitor C3.
  • the gate of the transistor M6 is made floating, and the potential “D2” of the wiring S5 is supplied to the other electrode of the capacitor C3 through the transistor M5.
  • the potential “D2” is a potential for addition.
  • the potential of the gate of the transistor M6 is D1+(C 3 /(C 3 +C 2 +C M6 )) ⁇ (D2-V ref )).
  • the circuit is appropriately designed, it is possible to supply the potential of about twice the potential that can be input from the wiring S4 or S5 to the gate of the transistor M6.
  • the light emitting device EL2 can emit light with high brightness.
  • the pixel circuit PIX2 may have the configuration shown in FIG. 14C.
  • the pixel circuit PIX2 shown in FIG. 14C is different from the pixel circuit PIX2 shown in FIG. 14B in that it has a transistor M8.
  • the gate of the transistor M8 is electrically connected to the wiring G1
  • one of the source and the drain is electrically connected to the other of the source and the drain of the transistor M5 and the other electrode of the capacitor C3, and the other of the source and the drain is the wiring V0. Electrically connected to.
  • one of a source and a drain of the transistor M5 is connected to the wiring S4.
  • the operation of supplying the reference potential and the addition potential to the other electrode of the capacitor C3 via the transistor M5 is performed as described above.
  • two wirings S4 and S5 are required, and it is necessary to alternately rewrite the reference potential and the addition potential in the wiring S5.
  • the number of transistors M8 is increased, but since a dedicated path for supplying the reference potential is provided, the wiring S5 can be reduced.
  • the gate of the transistor M8 can be connected to the wiring G1 and the wiring V0 can be used as a wiring for supplying the reference potential, the number of wirings connected to the transistor M8 does not increase. Further, since the reference potential and the addition potential are not alternately rewritten with one wiring, low power consumption and high speed operation are possible.
  • an inverted potential “D1B” of “D1” may be used as the reference potential “V ref ”.
  • a potential that is about three times the potential that can be input from the wiring S4 or S5 can be supplied to the gate of the transistor M6.
  • the reversal potential means a potential that has the same (or approximately the same) absolute value of the difference from a certain reference potential and is different from the original potential.
  • the original potential is “D1”
  • the inversion potential is “D1B”
  • the reference potential is V 0
  • the sub-pixel 12 may have a configuration in which the light emitting device EL2 is caused to emit light by the circuit of the pixel circuit PIX1.
  • an image may be displayed by causing the light emitting device to emit light in a pulse shape.
  • the organic EL element is suitable because it has excellent frequency characteristics.
  • the frequency can be, for example, 1 kHz or more and 100 MHz or less.
  • FIG. 14D shows an example of the pixel circuit PIX3 of the sub-pixel 13. It has a pixel circuit PIX3, a light receiving device PD, a transistor M9, a transistor M10, a transistor M11, a transistor M12 and a capacitor C4.
  • a photodiode is used as the light receiving device PD is shown.
  • the light receiving device PD has an anode electrically connected to the wiring V1 and a cathode electrically connected to one of a source and a drain of the transistor M9.
  • the gate of the transistor M9 is electrically connected to the wiring G4, and the other of the source and the drain is electrically connected to one electrode of the capacitor C4, one of the source and the drain of the transistor M10, and the gate of the transistor M11.
  • a gate of the transistor M10 is electrically connected to the wiring G5, and the other of the source and the drain is electrically connected to the wiring V2.
  • One of a source and a drain of the transistor M11 is electrically connected to the wiring V3, and the other of the source and the drain is electrically connected to one of a source and a drain of the transistor M12.
  • a gate of the transistor M12 is electrically connected to the wiring G6, and the other of the source and the drain is electrically connected to the wiring OUT.
  • a constant potential is supplied to each of the wiring V1, the wiring V2, and the wiring V3.
  • the transistor M10 is controlled by a signal supplied to the wiring G5 and has a function of resetting the potential of the node connected to the gate of the transistor M11 to the potential supplied to the wiring V2.
  • the transistor M9 is controlled by a signal supplied to the wiring G4 and has a function of controlling the timing when the potential of the node changes in accordance with the current flowing in the light-receiving device PD.
  • the transistor M11 functions as an amplification transistor that outputs according to the potential of the node.
  • the transistor M12 is controlled by a signal supplied to the wiring G6 and functions as a selection transistor for reading an output corresponding to the potential of the above node by an external circuit connected to the wiring OUT.
  • transistors M1 to M12 included in the pixel circuits PIX1 to PIX3 transistors each including a metal oxide (oxide semiconductor) in a semiconductor layer in which a channel is formed are preferably used.
  • a transistor including a metal oxide having a wider bandgap and a smaller carrier density than silicon can realize an extremely small off-state current. Therefore, due to the small off-state current, the charge accumulated in the capacitor connected in series with the transistor can be held for a long time.
  • an oxide semiconductor is particularly included in the transistor M1, the transistor M4, the transistor M5, the transistor M8, the transistor M9, and the transistor M10 whose source or drain is connected to the capacitor C1, the capacitor C2, the capacitor C3, or the capacitor C4. It is preferable to use the applied transistor.
  • a transistor to which an oxide semiconductor is applied for the sub-pixel 13 a global shutter method in which charge accumulation operation is simultaneously performed in all pixels can be applied without complicating a circuit structure or an operation method.
  • the manufacturing cost can be reduced by using a transistor to which an oxide semiconductor is applied for the other transistors.
  • transistors M1 to M12 transistors in which silicon is used as a semiconductor in which a channel is formed can be used.
  • silicon having high crystallinity such as single crystal silicon or polycrystalline silicon because high field-effect mobility can be realized and higher speed operation can be performed.
  • one of more of the transistors M1 to M12 may be a transistor to which an oxide semiconductor is applied, and another transistor to which silicon is applied may be used.
  • FIGS. 14A to 14D illustrate examples using n-channel transistors, p-channel transistors can also be used.
  • the transistor included in the pixel circuit PIX1, the transistor included in the pixel circuit PIX2, and the transistor included in the pixel circuit PIX3 are formed side by side on the same substrate. Further, among the wirings connected to the pixel circuits PIX1 to PIX3, the wirings denoted by common reference numerals in FIGS. 14A to 14D may be common wirings.
  • each pixel circuit can be provided, and a high-definition light receiving portion or display portion can be realized.
  • FIG. 15 is an example of a circuit diagram of the sub-pixel 11 (sub-pixel 11R, sub-pixel 11G, sub-pixel 11B), sub-pixel 12 and sub-pixel 13 included in the pixel 10.
  • the wirings G1 to G3 can be electrically connected to a gate driver (FIG. 1, circuit 16). Further, the wirings G4 to G6 can be electrically connected to the row driver (FIG. 1, circuit 18).
  • the wirings S1 to S4 can be electrically connected to the source driver (FIG. 1, circuit 15).
  • the wiring OUT can be electrically connected to the column driver (FIG. 1, circuit 17) and the reading circuit (FIG. 1, circuit 19).
  • a power supply circuit that supplies a constant potential can be electrically connected to the wirings V0 to V3, a low potential can be supplied to the wirings V0 and V1, and a high potential can be supplied to the wirings V2 and V3.
  • the wiring S4 may be electrically connected to a circuit which supplies a constant potential instead of the source driver.
  • the wiring V2 and the wiring V3 may be common.
  • the cathode of the light receiving device PD of the subpixel 13 may be electrically connected to the wiring V1, and the other of the source and the drain of the transistor M10 may be electrically connected to the wiring V4.
  • the wiring V4 can supply a lower potential than the potential supplied to the wiring V1.
  • the subpixel 11, the subpixel 12, and the subpixel 13 can share a power supply line or the like.
  • the electronic device in this embodiment includes the display device of one embodiment of the present invention.
  • the display device of one embodiment of the present invention can be applied to a display portion of an electronic device. Since the display device of one embodiment of the present invention has a function of detecting light, input operation can be performed regardless of contact or non-contact.
  • biometric authentication can be performed by using the imaging function of the display unit. As a result, the functionality and convenience of the electronic device can be improved.
  • Examples of electronic devices include television devices, desktop or notebook personal computers, monitors for computers, digital signage, electronic devices with relatively large screens such as large game machines such as pachinko machines, and digital devices. Examples thereof include a camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a personal digital assistant, and a sound reproducing device.
  • the electronic device includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage. , The function of measuring electric power, radiation, flow rate, humidity, gradient, vibration, odor or infrared light).
  • the electronic device of this embodiment can have various functions. For example, a function of displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of executing various software (programs), wireless communication It can have a function, a function of reading a program or data recorded in a recording medium, and the like.
  • An electronic device 6500 illustrated in FIG. 17A is a personal digital assistant that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502.
  • FIG. 17B is a schematic sectional view including an end portion of the housing 6501 on the microphone 6506 side.
  • a protective member 6510 having a light-transmitting property is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, a print are provided in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown). Note that the display device of one embodiment of the present invention can be applied to the display panel 6511. When only the sensor function of the display device is used, the touch sensor panel 6513 may be omitted.
  • part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded portion.
  • An IC 6516 is mounted on the FPC 6515.
  • the FPC 6515 is connected to a terminal provided on the printed board 6517.
  • the flexible display device of one embodiment of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display panel 6511 is extremely thin, a large-capacity battery 6518 can be mounted while suppressing the thickness of the electronic device. Further, a part of the display panel 6511 is folded back and a connection portion with the FPC 6515 is provided on the back side of the pixel portion, whereby an electronic device with a narrow frame can be realized.
  • FIG. 18A shows an example of a television device.
  • a display portion 7000 is incorporated in a housing 7101 of the television device 7100.
  • a structure is shown in which the housing 7101 is supported by a stand 7103.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the television device 7100 illustrated in FIG. 18A can be operated with an operation switch included in the housing 7101 or a separate remote controller 7111.
  • the television device 7100 may be operated by causing a touch sensor or a near touch sensor included in the display portion 7000 to function and touching or bringing a finger or the like into or near the display portion 7000.
  • the remote controller 7111 may have a display portion for displaying information output from the remote controller 7111.
  • a channel and a volume can be operated with an operation key of the remote controller 7111 or a touch panel, and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • unidirectional (sender to receiver) or bidirectional (between sender and receiver, or between receivers) information communication is performed. It is also possible.
  • FIG. 18B shows an example of a laptop personal computer.
  • the laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display portion 7000 is incorporated in the housing 7211.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • 18C and 18D show an example of digital signage.
  • a digital signage 7300 illustrated in FIG. 18C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Further, an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • FIG. 18D is a digital signage 7400 attached to a column 7401 having a cylindrical shape.
  • the digital signage 7400 includes a display portion 7000 provided along the curved surface of the pillar 7401.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the display unit 7000 As the display unit 7000 is wider, the amount of information that can be provided at one time can be increased. Further, the wider the display unit 7000 is, the more noticeable it is to a person, and, for example, the advertising effect of an advertisement can be enhanced.
  • the digital signage 7300 or the digital signage 7400 can cooperate with the information terminal device 7311 or the information terminal device 7411 such as a smartphone owned by the user by wireless communication.
  • the advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, by operating the information terminal device 7311 or the information terminal device 7411, the display of the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can be caused to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation unit (controller). This allows an unspecified number of users to simultaneously participate in the game and enjoy it.
  • the electronic devices illustrated in FIGS. 19A to 19F include a housing 9000, a display portion 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared Including a function to perform), a microphone 9008, and the like.
  • the electronic devices illustrated in FIGS. 19A to 19F have various functions. For example, a function of displaying various information (still image, moving image, text image, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of controlling processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded in a recording medium, and the like. Note that the functions of the electronic device are not limited to these and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is provided with a camera or the like and has a function of shooting a still image or a moving image and storing it in a recording medium (external or built in the camera), a function of displaying the taken image on the display unit, or the like. Good.
  • FIGS. 19A to 19F The details of the electronic devices shown in FIGS. 19A to 19F will be described below.
  • input operation can be performed without contact.
  • FIG. 19A is a perspective view showing the portable information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display characters and image information on its plurality of surfaces.
  • FIG. 19A shows an example in which three icons 9050 are displayed.
  • the information 9051 indicated by a dashed rectangle can be displayed on another surface of the display portion 9001.
  • Examples of the information 9051 include notification of an incoming call such as e-mail, SNS, and telephone, title of e-mail, SNS, etc., sender's name, date and time, time, battery level, antenna reception strength, and the like.
  • the icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 19B is a perspective view showing the portable information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display portion 9001.
  • the information 9052, the information 9053, and the information 9054 are displayed on different surfaces is shown.
  • the user can check the information 9053 displayed at a position where it can be observed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of clothes. The user can confirm the display without taking out the portable information terminal 9102 from the pocket, and can judge whether to receive the call, for example.
  • FIG. 19C is a perspective view showing a wristwatch type portable information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch. Further, the display portion 9001 is provided with a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make a hands-free call by, for example, mutual communication with a headset capable of wireless communication.
  • the portable information terminal 9200 can also perform data transmission with another information terminal or charge by using the connection terminal 9006. Note that the charging operation may be performed by wireless power feeding.
  • 19D, 19E, and 19F are perspective views showing a foldable portable information terminal 9201.
  • 19D is a perspective view showing a state where the mobile information terminal 9201 is unfolded
  • FIG. 19F is a state where it is folded
  • FIG. 19E is a perspective view showing a state in which the portable information terminal 9201 is changing from one of FIG. 19D and FIG.
  • the portable information terminal 9201 is excellent in portability in a folded state and excellent in displayability due to a wide display area without a joint in an expanded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by a hinge 9055.
  • the display portion 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

非接触の入力機能を有する表示装置を提供する。 表示を行う第1の発光デバイスと、検知用の光を発する第2の発光デバイスと、受光デバイスを有し、受光デバイスは、第2の発光デバイスが発し、対象物で反射された光を検出する機能を有する。第2の発光デバイスが発する光には視感度のない近赤外光を用いる。したがって、当該光を表示部から高輝度で発しても表示の視認に影響を与えない。また、当該光を高輝度で発することで表示装置から離れた位置にある対象物を感度良く検出することができる。

Description

表示装置および電子機器
本発明の一態様は、表示装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
近年、表示装置は様々な用途に応用されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置、デジタルサイネージ、PID(Public Information Display)等が挙げられる。また、中小型の表示装置の用途としては、スマートフォンやタブレット端末などの携帯情報端末が挙げられる。
表示装置としては、例えば、発光デバイスを有する発光装置が開発されている。エレクトロルミネッセンス(以下ELと記す)現象を利用した発光デバイスは、薄型軽量、高速応答、低電圧駆動が可能などの特徴を有する。例えば、特許文献1には、可撓性を有する発光装置が開示されている。
特開2014−197522号公報
上述したように、表示装置は様々な機器に用いられるため、高機能化が望まれる。例えば、ユーザインターフェース機能、撮像機能などを備えることで、より利便性の高い電子機器を実現することができる。
したがって、本発明の一態様は、入力機能を有する表示装置を提供することを目的の一つとする。または、光検出機能を有する表示装置を提供することを目的の一つとする。または、多機能の表示装置を提供することを目的の一つとする。または、新規な表示装置を提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、表示部に発光デバイスおよび受光デバイスを有する表示装置である。
本発明の一態様は、第1の画素と、第2の画素と、第3の画素と、を有する表示装置であって、第1の画素は、第1の発光デバイスを有し、第2の画素は、第2の発光デバイスを有し、第3の画素は、受光デバイスを有し、第1の発光デバイスは、可視光を発する機能を有し、第2の発光デバイスは、近赤外光を発する機能を有し、受光デバイスは、近赤外光を検出する機能を有し、第2の画素は、第1の電位および第2の電位に基づいて第3の電位を生成する機能、ならびに第3の電位に応じて第2の発光デバイスの発光を行う機能を有する表示装置である。
第1の発光デバイスは、赤色、緑色、青色または白色のいずれかの光を発する機能を有することができる。
受光デバイスは光電変換層を有し、光電変換層に有機化合物を有することが好ましい。
第1の発光デバイス、第2の発光デバイスおよび受光デバイスは、ダイオードの構成を有し、第1の発光デバイスのカソード、第2の発光デバイスのカソードおよび受光デバイスのアノードは電気的に接続することができる。または、第1の発光デバイスのカソード、第2の発光デバイスのカソードおよび受光デバイスのカソードは電気的に接続することができる。
受光デバイスと重なる位置に可視光カットフィルタが設けられていることが好ましい。
第1乃至第3の画素はトランジスタを有し、トランジスタはチャネル形成領域に金属酸化物を有し、金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有することが好ましい。
本発明の一態様により、入力機能を有する表示装置を提供することができる。または、光検出機能を有する表示装置を提供することができる。または、多機能の表示装置を提供することができる。または、新規な表示装置を提供することができる。または、新規な半導体装置などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1は、表示装置を説明する図である。
図2A乃至図2Dおよび図2E1乃至図2E3は、画素の構成を説明する図である。図2F、図2Gは、画素の配置を説明する図である。図2H、図2Iは、副画素の構成を説明する図である。
図3Aは、表示装置を説明する図である。図3B、図3Cは、画素の配置を説明する図である。
図4は、表示装置を説明する断面図である。
図5A乃至図5Cは、表示装置を説明する断面図である。
図6A、図6Bは、表示装置を説明する断面図である。
図7A、図7Bは、表示装置を説明する断面図である。
図8A、図8Bは、表示装置を説明する断面図である。
図9は、表示装置を説明する斜視図である。
図10は、表示装置を説明する断面図である。
図11A、図11Bは、表示装置を説明する断面図である。
図12A、図12Bは、表示装置を説明する断面図である。
図13は、表示装置を説明する断面図である。
図14A乃至図14Dは、画素の回路を説明する図である。
図15は、画素の回路を説明する図である。
図16は、画素の回路を説明する図である。
図17A、図17Bは、電子機器を説明する図である。
図18A乃至図18Dは、電子機器を説明する図である。
図19A乃至図19Fは、電子機器を説明する図である。
実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、回路図上では単一の要素として図示されている場合であっても、機能的に不都合がなければ、当該要素が複数で構成されてもよい。例えば、スイッチとして動作するトランジスタは、複数が直列または並列に接続されてもよい場合がある。また、キャパシタを分割して複数の位置に配置する場合もある。
また、一つの導電体が、配線、電極および端子などの複数の機能を併せ持っている場合があり、本明細書においては、同一の要素に対して複数の呼称を用いる場合がある。また、回路図上で要素間が直接接続されているように図示されている場合であっても、実際には当該要素間が一つ以上の導電体を介して接続されている場合があり、本明細書ではこのような構成でも直接接続の範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について説明する。
本発明の一態様は、非接触でも入力動作が行える表示装置である。表示装置は、第1の発光デバイスと、第2の発光デバイスと、受光デバイスを有する。第1の発光デバイスは表示を行う機能を有し、第2の発光デバイスは対象物を照射する光を発する機能を有する。また、受光デバイスは、第2の発光デバイスが発し、対象物で反射された光を検出する機能を有する。
第2の発光デバイスが発する光には、実質的に視感度のない近赤外光を用いる。したがって、当該光を表示部から高輝度で発しても表示の視認に影響を与えない。また、当該光を高輝度で発することで表示装置から離れた位置にある対象物を感度良く検出することができる。当該機能により、ニアタッチセンサを実現することができる。ニアタッチセンサは、タッチセンサと同様の機能を非接触で実現するセンサである。
また、第2の発光デバイスを有する画素には、第2の発光デバイスを高輝度で発光させるための昇圧回路が設けられる。
図1は、本発明の一態様の表示装置を説明する図である。表示装置は、画素アレイ14と、回路15と、回路16と、回路17と、回路18と、回路19を有する。画素アレイ14は、列方向および行方向に配置された画素10を有する。
画素10は、副画素11、12、13を有することができる。例えば、副画素11は、表示用の光を発する機能を有する。副画素12は、対象物を照射する光を発する機能を有する。副画素13は、副画素12が発し、対象物で反射された光を検出する機能を有する。
なお、本明細書では、一つの「画素」の中で独立した動作が行われる最小単位を便宜的に「副画素」と定義して説明を行うが、「画素」を「領域」と置き換え、「副画素」を「画素」と置き換えてもよい。
副画素11は、可視光を発する第1の発光デバイスを有する。また、副画素12は、近赤外光を発する第2の発光デバイスを有する。
発光デバイスとしては、OLED(Organic Light Emitting Diode)やQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)、無機化合物(量子ドット材料など)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
副画素13は、近赤外光に感度を有する受光デバイスを有する。受光デバイスには、入射する光を検出し電荷を発生させる光電変換素子を用いることができる。受光デバイスでは、入射する光量に基づき、発生する電荷量が決まる。受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。
受光デバイスとしては、有機化合物を光電変換層に有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化および大面積化が容易である。また、形状およびデザインの自由度が高いため、様々な表示装置に適用できる。または、結晶性のシリコン(単結晶シリコン、多結晶シリコン、微結晶シリコンなど)を用いたフォトダイオードを受光デバイスに用いることもできる。
本発明の一態様では、発光デバイスとして有機EL素子を用い、受光デバイスとして有機フォトダイオードを用いる。有機フォトダイオードは、有機EL素子と共通の構成にできる層が多い。そのため、作製工程を大幅に増やすことなく、表示装置に受光デバイスを内蔵することができる。例えば、受光デバイスの光電変換層と発光デバイスの発光層とを作り分け、それ以外の層は、発光デバイスと受光デバイスとで同一の構成にしてもよい。
回路15および回路16は、副画素11、12を駆動するためのドライバ回路である。回路15はソースドライバ、回路16はゲートドライバとしての機能を有することができる。回路15および回路16には、例えば、シフトレジスタ回路などを用いることができる。
なお、副画素11、12の駆動回路を分けてもよい。副画素12の機能は、対象物に光を照射することが主であるため、画素アレイ14内の全ての副画素12で同じ輝度の光を発してもよい。したがって、ソースドライバおよびゲートドライバに相当する回路に高機能の順序回路などを用いず、簡略化した回路を用いてもよい。
回路17および回路18は、副画素13を駆動するためのドライバ回路である。回路17はカラムドライバ、回路18はロードライバとしての機能を有することができる。回路17および回路18には、例えば、シフトレジスタ回路またはデコーダ回路などを用いることができる。
回路19は、副画素13が出力するデータの読み出し回路である。回路19は、例えば、A/D変換回路を有し、副画素13から出力されたアナログデータをデジタルデータに変換する機能を有する。また、回路19に、出力データに対して相関二重サンプリング処理を行うCDS回路が含まれていてもよい。
副画素12および副画素13は、入力インターフェイスとしての機能を有することができる。副画素12から近赤外光を発し、表示装置に近接する対象物からの反射光を副画素13で受光することができる。したがって、副画素13で検出した近赤外光の受光量のしきい値を設定することで、スイッチとして機能させることができる。これらにより、タッチセンサと同等の機能を非接触で実現することができる。また、ポインタなどの動作を接触または非接触で行うことができる。
また、受光デバイスを用いて、指紋、掌紋、または虹彩などの撮像データを取得することができる。つまり、表示装置に生体認証機能を付加させることができる。なお、対象物を表示装置に接触させて撮像データの取得を行ってもよい。
また、受光デバイスを用いて、ユーザーの表情、目の動き、または瞳孔径の変化などの撮像データを取得することができる。当該画像データを解析することで、ユーザーの心身の情報を取得することができる。当該情報をもとに表示装置が出力する表示および音声の一方または双方を変化させるなど、ユーザーの心身の状態に合わせた動作を行うことができる。これらの動作は、例えば、VR(Virtual Reality)向け機器、AR(Augmented Reality)向け機器、またはMR(Mixed Reality)向け機器に有効である。
図2A乃至図2D、図2E1乃至図2E3は、画素10内における副画素のレイアウトの例を説明する図である。図2A、図2Bに示すように各副画素を水平方向(ゲート線が延在する方向)に並べる構成とすることができる。または、図1および図2C、図2Dに示すように、水平方向および垂直方向(ソース線が延在する方向)に並べる構成としてもよい。
または、図2E1、図2E2に示すように、一つの画素10が副画素13または副画素12を有さない構成としてもよい。この場合は、例えば、図2Fに示すように、図2E1に示す画素10と図2E2に示す画素10を交互に並べることができる。さらに、図2E3に示す副画素11のみで構成した画素10を用いてもよい。この場合は、図2Gに示すように、図2E1に示す画素10と図2E2に示す画素10との間に図2E3に示す画素10を複数有する構成としてもよい。図2Fまたは図2Gに示す配置では、副画素12および副画素13の総数よりも副画素11の総数を多くできるため、表示品位を高めることができる。
一方で、図2E1乃至図2E3に示す画素10を用いた場合は、対象物照射用の光源および受光デバイスが少なくなるため、対象物を検出する感度が低下する。したがって、副画素の構成および配置は、目的に応じて考慮すればよい。なお、図2Fまたは図2Gに示す配置において、図2E1の画素10および図2E2の画素10の数は同数でなくてもよい。
副画素11は、単色光を発する構成であるほか、図2H、図2Iに示すように、異なる色を発する副画素の集合であってもよい。図2Hは、副画素11が、赤色を発する発光デバイスを有する副画素11R、緑色を発する発光デバイスを有する副画素11G、および青色を発する発光デバイスを有する副画素11Bで構成される例を示す図である。当該構成の副画素11を用いることで、カラー表示を行うことができる。
さらに、図2Iに示すように、白色を発する発光デバイスを有する副画素11Wが設けられていてもよい。副画素11Wは単独で白色光を発することができるため、白色またはそれに近い色の表示では、その他の色の副画素の発光輝度を抑えることができる。したがって、省電力で表示を行うことができる。
また、図3Aに示すように、副画素11および副画素13を画素10の基本構成として表示装置を構成してもよい。この場合は、対象物照射用の光源20を画素アレイ14(表示部)の外側に配置する。光源20としては、高輝度の近赤外光を発するLEDなどを用いることができる。光源20は、画素アレイ14の外側に設けられるため、表示装置とは別の制御で点灯することもできる。また、図3B、図3Cに示す配置例のとおり、副画素12が不要となり、副画素13の数を増やすことができるため、対象物検出の感度を向上させることができる。
なお、図3Aに示す光源20の配置位置および数は一例であり、これに限定されない。光源20は、本発明の一態様の表示装置を有する機器の一要素とすることができる。または、本発明の一態様の表示装置を有する機器とは別の機器であってもよい。
なお、画素および副画素の構成は上記に限られず、様々な配置形態を採用することができる。
次に、本発明の一態様の表示装置のより具体的な例について説明する。
図4に、本発明の一態様の表示装置50Aの断面概略図を示す。表示装置50Aは、受光デバイス110、発光デバイス190および発光デバイス180を有する。受光デバイス110は、副画素13が有する有機フォトダイオードに相当する。発光デバイス190は、副画素12が有する有機EL素子(近赤外光を発光)に相当する。発光デバイス180は、副画素11が有する有機EL素子(可視光を発光)に相当する。
副画素11および副画素12が有する有機EL素子、およびその周辺の構成において、発光層以外の構成は同じにすることができる。したがって、ここでは発光デバイス190の詳細を説明し、発光デバイス180の説明は省略する。
受光デバイス110は、画素電極111、共通層112、光電変換層113、共通層114、および共通電極115を有する。発光デバイス190は、画素電極191、共通層112、発光層193、共通層114および共通電極115を有する。なお、発光デバイス180は、発光層193とは異なる発光層183を有する。
画素電極111、画素電極191、共通層112、光電変換層113、発光層193、共通層114および共通電極115は、それぞれ、単層構造であってもよく、積層構造であってもよい。
画素電極111および画素電極191は、絶縁層214上に位置する。画素電極111および画素電極191は、同一の材料および同一の工程で形成することができる。
共通層112は、画素電極111上および画素電極191上に位置する。共通層112は、受光デバイス110および発光デバイス190に共通で用いられる層である。
光電変換層113は、共通層112を介して画素電極111と重なる領域を有する。発光層193は、共通層112を介して画素電極191と重なる領域を有する。光電変換層113は、第1の有機化合物を有する。発光層193は、第1の有機化合物とは異なる第2の有機化合物を有する。
共通層114は、共通層112上、光電変換層113上および発光層193上に位置する。共通層114は、受光デバイス110および発光デバイス190に共通で用いられる層である。
共通電極115は、共通層112、光電変換層113および共通層114を介して、画素電極111と重なる領域を有する。また、共通電極115は、共通層112、発光層193および共通層114を介して画素電極191と重なる領域を有する。共通電極115は、受光デバイス110および発光デバイス190に共通で用いられる層である。
本実施の形態の表示装置では、受光デバイス110の光電変換層113に有機化合物を用いる。受光デバイス110は、光電変換層113以外の層を発光デバイス190(有機EL素子)と共通の構成にすることができる。そのため、発光デバイス190の作製工程に、光電変換層113を成膜する工程を追加するのみで、発光デバイス190の形成と並行して受光デバイス110を形成することができる。また、発光デバイス190と受光デバイス110とを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示装置に受光デバイス110を内蔵することができる。
表示装置50Aでは、受光デバイス110の光電変換層113と、発光デバイス190の発光層193と、を作り分ける以外は、受光デバイス110と発光デバイス190は共通の構成とすることができる。ただし、受光デバイス110と発光デバイス190の構成はこれに限定されない。受光デバイス110と発光デバイス190は、光電変換層113と発光層193のほかにも、互いに作り分ける層を有していてもよい(後述の表示装置50C、50D、50E参照)。受光デバイス110と発光デバイス190は、共通で用いられる層(共通層)を1層以上有することが好ましい。これにより、作製工程を大幅に増やすことなく、表示装置に受光デバイス110を内蔵することができる。
表示装置50Aは、一対の基板(基板151および基板152)間に、受光デバイス110、発光デバイス190、トランジスタ41、およびトランジスタ42等を有する。
受光デバイス110において、それぞれ画素電極111および共通電極115の間に位置する共通層112、光電変換層113および共通層114は、有機層(有機化合物を含む層)ということもできる。画素電極111は、近赤外光を反射する機能を有することが好ましい。共通電極115は、可視光および近赤外光を透過する機能を有する。
受光デバイス110は、光を検出する機能を有する。具体的には、受光デバイス110は、入射される光22を電気信号に変換する光電変換素子である。
基板152の基板151側の面には、遮光層148が設けられている。遮光層148は、受光デバイス110と重なる位置および発光デバイス190と重なる位置に開口部を有する。遮光層148を設けることで、受光デバイス110が光を検出する範囲を制御することができる。
遮光層148としては、発光デバイス190が発する光を遮る材料を用いることができる。遮光層148は、可視光および近赤外光を吸収することが好ましい。遮光層148として、例えば、金属材料、または、顔料(カーボンブラックなど)もしくは染料を含む樹脂材料等を用いて形成することができる。遮光層148は、赤色のカラーフィルタ、緑色のカラーフィルタおよび青色のカラーフィルタの積層構造であってもよい。
また、遮光層148の受光デバイス110と重なる位置に設けられる開口部には、発光デバイス190が発する光の波長(近赤外光)よりも短波長側の光をカットするフィルタ149が設けられることが好ましい。フィルタ149としては、例えば、近赤外光よりも短波長側の光をカットするロングパスフィルタ、少なくとも可視光領域の波長をカットするバンドパスフィルタなどを用いることができる。可視光をカットするフィルタとしては、色素を含む樹脂膜などのほか、非晶質シリコン薄膜などの半導体膜を用いることができる。フィルタ149を設けることで、受光デバイス110への可視光の入射を抑えることができ、低ノイズで近赤外光を検出することができる。
なお、フィルタ149は、図5Aに示すように、受光デバイス110と積層されて設けられていてもよい。
または、図5Bに示すように、フィルタ149はレンズ型の形状であってもよい。レンズ型のフィルタ149は、基板151側に凸面を有する凸レンズである。なお、基板152側が凸面となるように配置してもよい。
基板152の同一面上に遮光層148とレンズ型のフィルタ149との双方を形成する場合、形成順は問わない。図5Bでは、レンズ型のフィルタ149を先に形成する例を示すが、遮光層148を先に形成してもよい。図5Bでは、レンズ型のフィルタ149の端部が遮光層148によって覆われている。
図5Bに示す構成は、光22がレンズ型のフィルタ149を介して受光デバイス110に入射する構成である。フィルタ149をレンズ型にすることにより、受光デバイス110の撮像範囲を狭くすることができ、隣接する受光デバイス110と撮像範囲が重なることを抑制できる。これにより、ぼやけの少ない、鮮明な画像を撮像できる。また、フィルタ149をレンズ型にすることにより、受光デバイス110上の遮光層148の開口を大きくすることができる。したがって、受光デバイス110に入射する光量を増やすことができ、光の検出感度を高めることができる。
レンズ型のフィルタ149は、基板152上または受光デバイス110上に直接形成することができる。または、別途作製されたマイクロレンズアレイなどを基板152に貼り合わせてもよい。
また、図5Cに示すように、フィルタ149を設けない構成としてもよい。受光デバイス110の特性において、可視光に感度がない、または、可視光よりも近赤外光の感度が十分に高い場合はフィルタ149を省くことができる。この場合、図5Bに示したレンズ型のフィルタ149と同様の形状のレンズを受光デバイス110と重ねて設けてもよい。当該レンズは、可視光が透過する材料で形成されていてもよい。
ここで、受光デバイス110は、図4に示すように発光デバイス190が発した光21のうち、指などの対象物60によって反射された光22を検出することができる。しかし、発光デバイス190が発した光の一部が、表示装置50A内で反射され、対象物60を介さずに受光デバイス110に入射されてしまう場合がある。
遮光層148は、このような迷光の影響を抑制することができる。例えば、遮光層148が設けられていない場合、発光デバイス190が発した光23aは、基板152等で反射され、反射光23bが受光デバイス110に入射することがある。遮光層148を設けることで、反射光23bが受光デバイス110に入射することを抑制できる。これにより、ノイズを低減し、受光デバイス110の光検出精度を高めることができる。
発光デバイス190において、画素電極191および共通電極115の間に位置する共通層112、発光層193および共通層114は、EL層ということもできる。画素電極191は、少なくとも近赤外光を反射する機能を有することが好ましい。
発光デバイス190は、近赤外光を発する機能を有する。具体的には、発光デバイス190は、画素電極191と共通電極115との間に電圧を印加することで、基板152側に光21を射出する電界発光デバイスである。
画素電極111は、絶縁層214に設けられた開口を介してトランジスタ41が有するソースまたはドレインと電気的に接続される。画素電極111の端部は、隔壁216によって覆われている。
画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ42が有するソースまたはドレインと電気的に接続される。画素電極191の端部は、隔壁216によって覆われている。トランジスタ42は、発光デバイス190の駆動を制御する機能を有する。
トランジスタ41とトランジスタ42とは、同一の層(図4では基板151)上に接している。
受光デバイス110と電気的に接続される回路の少なくとも一部は、発光デバイス190と電気的に接続される回路と同一の材料および同一の工程で形成されることが好ましい。これにより、2つの回路を別々に形成する場合に比べて、表示装置の厚さを薄くすることができ、また、作製工程を簡略化できる。
受光デバイス110および発光デバイス190は、保護層195に覆われていることが好ましい。図4では、保護層195が共通電極115上に接して設けられている例を示している。保護層195を設けることで、受光デバイス110および発光デバイス190に水などの不純物が入り込むことが抑制され、受光デバイス110および発光デバイス190の信頼性を高めることができる。また、接着層142によって、保護層195と基板152とが貼り合わされている。
また、図6Aに示すように、受光デバイス110上および発光デバイス190上に保護層195を設けない構成としてもよい。この場合は、接着層142によって、共通電極115と基板152とが貼り合わされる。
また、図6Bに示すように、遮光層148を設けない構成としてもよい。これにより、発光デバイス190が外部に射出する光の量、および受光デバイス110の受光量を増やすことができるため、検出感度を高めることができる。
また、本発明の一態様の表示装置は、図7Aに示す表示装置50Bの構成であってもよい。表示装置50Bは、基板151、基板152および隔壁216を有さず、基板153、基板154、接着層155、絶縁層212および隔壁217を有する点で、表示装置50Aと異なる。
基板153と絶縁層212とは、接着層155によって貼り合わされている。基板154と保護層195とは、接着層142によって貼り合わされている。
表示装置50Bは、作製基板上に形成された絶縁層212、トランジスタ41、トランジスタ42、受光デバイス110および発光デバイス190等を基板153上に転置することで作製される構成である。基板153および基板154は、可撓性を有することが好ましい。これにより、表示装置50Bに可撓性を付与することができる。例えば、基板153および基板154には、樹脂を用いることが好ましい。
基板153および基板154としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板153および基板154の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
本実施の形態の表示装置が有する基板には、光学等方性が高いフィルムを用いてもよい。光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、およびアクリルフィルム等が挙げられる。
隔壁217は、発光デバイス190が発した光を吸収できることが好ましい。隔壁217には、例えば、顔料もしくは染料を含む樹脂材料等を用いて形成することができる。
発光デバイス190が発した光23cの一部は、基板152および隔壁217で反射される。その反射光23dは、受光デバイス110に入射することがある。また、光23cが隔壁217を透過し、トランジスタまたは配線等で反射されることで、反射光が受光デバイス110に入射することがある。隔壁217によって光23cが吸収されることで、反射光23dが受光デバイス110に入射することを抑制できる。これにより、ノイズを低減し、受光デバイス110の光検出精度を高めることができる。
隔壁217は、少なくとも、受光デバイス110が検出することができる波長の光を吸収することが好ましい。例えば、発光デバイス190が発する近赤外光を受光デバイス110が検出する場合、隔壁217は、少なくとも近赤外光が吸収でき、さらに可視光も吸収できることが好ましい。
上記では、発光デバイスと受光デバイスが、2つの共通層を有する例を示したが、これに限られない。以下では、共通層の構成が異なる例について説明する。
図7Bに、表示装置50Cの断面概略図を示す。表示装置50Cは共通層114を有さず、バッファ層184およびバッファ層194を有する点で表示装置50Aと異なる。バッファ層184およびバッファ層194は、単層構造であってもよく、積層構造であってもよい。
表示装置50Cにおいて、受光デバイス110は、画素電極111、共通層112、光電変換層113、バッファ層184および共通電極115を有する。また、表示装置50Cにおいて、発光デバイス190は、画素電極191、共通層112、発光層193、バッファ層194および共通電極115を有する。
表示装置50Cでは、共通電極115と光電変換層113との間のバッファ層184と、共通電極115と発光層193との間のバッファ層194とを作り分ける例を示している。バッファ層184およびバッファ層194は、例えば、電子注入層および電子輸送層の一方または双方とすることができる。
図8Aに、表示装置50Dの断面概略図を示す。表示装置50Dは、共通層112を有さず、バッファ層182およびバッファ層192を有する点で、表示装置50Aと異なる。バッファ層182およびバッファ層192は、単層構造であってもよく、積層構造であってもよい。
表示装置50Dにおいて、受光デバイス110は、画素電極111、バッファ層182、光電変換層113、共通層114および共通電極115を有する。また、表示装置50Dにおいて、発光デバイス190は、画素電極191、バッファ層192、発光層193、共通層114および共通電極115を有する。
表示装置50Dでは、画素電極111と光電変換層113との間のバッファ層182と、画素電極191と発光層193との間のバッファ層192とを作り分ける例を示している。バッファ層182およびバッファ層192は、例えば、正孔注入層および正孔輸送層の一方または双方とすることができる。
図8Bに、表示装置50Eの断面概略図を示す。表示装置50Eは、共通層112および共通層114を有さず、バッファ層182、バッファ層184、バッファ層192、およびバッファ層194を有する点で、表示装置50Aと異なる。
表示装置50Eにおいて、受光デバイス110は、画素電極111、バッファ層182、光電変換層113、バッファ層184および共通電極115を有する。また、表示装置50Eにおいて、発光デバイス190は、画素電極191、バッファ層192、発光層193、バッファ層194および共通電極115を有する。
受光デバイス110と発光デバイス190の作製工程において、光電変換層113と発光層193を作り分けるだけでなく、他の層も作り分けることができる。
表示装置50Eでは、受光デバイス110と発光デバイス190とで、一対の電極(画素電極111または画素電極191と共通電極115)間に、共通の層を有さない例を示している。表示装置50Eが有する受光デバイス110および発光デバイス190の作製工程では、まず、絶縁層214上に画素電極111と画素電極191とを同一の材料および同一の工程で形成する。そして、画素電極111上にバッファ層182、光電変換層113およびバッファ層184を形成し、画素電極191上にバッファ層192、発光層193およびバッファ層194を形成し、バッファ層184およびバッファ層194等を覆うように共通電極115を形成する。
なお、バッファ層182、光電変換層113およびバッファ層184の積層構造と、バッファ層192、発光層193およびバッファ層194の積層構造の作製順は、特に限定されない。例えば、バッファ層182、光電変換層113およびバッファ層184を成膜した後に、バッファ層192、発光層193およびバッファ層194を作製してもよい。逆に、バッファ層182、光電変換層113およびバッファ層184を成膜する前に、バッファ層192、発光層193およびバッファ層194を作製してもよい。また、バッファ層182、バッファ層192、光電変換層113、発光層193、などの順に交互に成膜してもよい。
以下では、本発明の一態様の表示装置のより具体的な構成例について説明する。
図9に、表示装置100Aの斜視図を示す。表示装置100Aは、基板151と基板152とが貼り合された構成を有する。図9では、基板152を破線で示している。
表示装置100Aは、表示部162、回路164a、回路164b、配線165a、配線165b等を有する。また、図9では、表示装置100AにIC(集積回路)173a、FPC172a、IC173bおよびFPC172bが実装されている例を示している。したがって、図9に示す構成は、表示装置100A、IC、およびFPCを有する表示モジュールということもできる。
回路164aとしては、表示を行うためのゲートドライバを用いることができる。回路164bとしては、撮像(光検出)を行うためのロードライバを用いることができる。
配線165aは、副画素11、12および回路164aに信号および電力を供給する機能を有する。当該信号および電力は、FPC172aを介して外部から入力されるか、またはIC173aから配線165aに入力される。
また、配線165bは、副画素13および回路164bに信号および電力を供給する機能を有する。当該信号および電力は、FPC172bを介して外部から入力されるか、またはIC173bから配線165bに入力される。
図9では、COG(Chip On Glass)方式で基板151にIC173a、173bが設けられている例を示しているが、TCP(Tape Carrier Package)方式またはCOF(Chip On Film)方式などを用いてもよい。IC173aには、例えば、副画素11、12と接続するソースドライバの機能を有するICを用いることができる。また、IC173bには、例えば、副画素13と接続するカラムドライバおよびA/Dコンバータなどの信号処理回路の機能を有するICを用いることができる。
なお、上記ドライバ回路は、画素の回路を構成するトランジスタ等と同様に基板151上に設けてもよい。
図10に図9で示した表示装置100AにおけるFPC172aを含む領域の一部、回路164aを含む領域の一部、表示部162を含む領域の一部および端部を含む領域の一部の断面の一例を示す。
図10に示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、トランジスタ206、発光デバイス190および受光デバイス110等を有する。
基板152と絶縁層214は、接着層142を介して接着されている。発光デバイス190および受光デバイス110の封止には、固体封止構造または中空封止構造などが適用できる。基板152、接着層142および絶縁層214に囲まれた空間143には不活性ガス(窒素やアルゴンなど)が充填されており、中空封止構造が適用されている。接着層142は、発光デバイス190と重ねて設けられていてもよい。また、基板152、接着層142および絶縁層214に囲まれた領域を接着層142とは異なる樹脂で充填してもよい。
発光デバイス190は、絶縁層214側から画素電極191、共通層112、発光層193、共通層114および共通電極115の順に積層された積層構造を有する。画素電極191は、絶縁層214に設けられた開口を介して、トランジスタ206が有する導電層222bと接続されている。トランジスタ206は、発光デバイス190の駆動を制御する機能を有する。画素電極191の端部は、隔壁216によって覆われている。
受光デバイス110は、絶縁層214側から画素電極111、共通層112、光電変換層113、共通層114および共通電極115の順に積層された積層構造を有する。画素電極111は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと電気的に接続されている。画素電極111の端部は、隔壁216によって覆われている。
発光デバイス190が発する光は、基板152側に射出される。また、受光デバイス110には、基板152および空間143を介して光が入射する。基板152には、可視光および近赤外光に対する透過性が高い材料を用いることが好ましい。
画素電極111および画素電極191は、同一の材料および同一の工程で作製することができる。共通層112、共通層114および共通電極115は、受光デバイス110と発光デバイス190との双方に用いられる。受光デバイス110と発光デバイス190とは、光電変換層113と発光層193の構成が異なる以外は全て共通の構成とすることができる。これにより、作製工程を大幅に増やすことなく、表示装置100Aに受光デバイス110を内蔵することができる。
基板152の基板151側の面には、遮光層148が設けられている。遮光層148は、受光デバイス110と重なる位置および発光デバイス190と重なる位置に開口を有する。また、受光デバイス110と重なる位置には、可視光をカットするフィルタ149が設けられている。なお、フィルタ149を設けない構成とすることもできる。
トランジスタ201、トランジスタ205、およびトランジスタ206は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料および同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、および絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数およびトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213および絶縁層215としては、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜または窒化アルミニウム膜を用いることができる。または、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜または酸化ネオジム膜を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等が挙げられる。
ここで、有機絶縁膜は、無機絶縁膜に比べて不純物に対するバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が拡散することを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側に位置するように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
図10に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が拡散することを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
トランジスタ201、トランジスタ205、およびトランジスタ206は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソースおよびドレインとして機能する導電層222aおよび導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、ならびにゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201、トランジスタ205およびトランジスタ206には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方にトランジスタのしきい値電圧を制御するための電位を与え、他方に駆動のための電位を与えてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、およびマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、およびスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、および亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
In−M−Zn酸化物をスパッタリング法で成膜する場合、スパッタリングターゲットにおけるInの原子数比は、Mの原子数比以上であることが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
スパッタリングターゲットとしては、多結晶の酸化物を含むターゲットを用いると、結晶性を有する半導体層を形成しやすくなるため好ましい。なお、成膜される半導体層の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、半導体層に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される半導体層の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
なお、原子数比がIn:Ga:Zn=4:2:3またはその近傍と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍であると記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍であると記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
回路164aが有するトランジスタおよび表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164aが有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
基板151上で基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166および接続層242を介してFPC172aと電気的に接続されている。接続部204の上面は、画素電極191と同一の導電膜を加工して得られた導電層166が露出している。これにより、接続部204とFPC172aとを接続層242を介して電気的に接続することができる。
基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、および集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
基板151および基板152には、ガラス、石英、セラミック、サファイア、樹脂などを用いることができる。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
発光デバイス190は、トップエミッション型、ボトムエミッション型、デュアルエミッション型などがある。本発明の一態様では、トップエミッション型とすることが好ましいが、発光デバイス190の光の射出面と、受光デバイス110の光の入射面を同じ向きにすることで、他の構成を適用することもできる。
発光デバイス190は、少なくとも発光層193を有する。発光デバイス190は、発光層193以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)等を含む層をさらに有していてもよい。例えば、共通層112は、正孔注入層および正孔輸送層の一方または双方を有することが好ましい。例えば、共通層114は、電子輸送層および電子注入層の一方または双方を有することが好ましい。
共通層112、発光層193および共通層114には低分子系化合物および高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。共通層112、発光層193および共通層114を構成する層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
発光層193は、発光材料として、量子ドットなどの無機化合物を有していてもよい。
受光デバイス110の光電変換層113は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、または有機化合物を含む有機半導体を用いることができる。本実施の形態では、光電変換層113が有する半導体として有機半導体を用いる例を示す。有機半導体を用いることで、発光デバイス190の発光層193と、受光デバイス110の光電変換層113と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
光電変換層113が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)またはその誘導体等の電子受容性の有機半導体材料が挙げられる。また、光電変換層113が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II) phthalocyanine;CuPc)やテトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)等の電子供与性の有機半導体材料が挙げられる。
例えば、光電変換層113は、n型半導体とp型半導体とを共蒸着して形成することができる。
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、およびタングステンなどの金属、ならびに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層構造または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウムおよびチタンなどの金属材料、ならびに、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線、電極などの導電層、および表示素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
図11Aに表示装置100Bの断面図を示す。表示装置100Bは、保護層195を有する点で主に表示装置100Aと相違している。
受光デバイス110および発光デバイス190を覆う保護層195を設けることで、受光デバイス110および発光デバイス190に水などの不純物が拡散することを抑制し、受光デバイス110および発光デバイス190の信頼性を高めることができる。
表示装置100Bの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層195とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層195が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が拡散することを抑制することができる。したがって、表示装置100Bの信頼性を高めることができる。
図11Bに、保護層195が3層構造である例を示す。保護層195は、共通電極115上の無機絶縁層195aと、無機絶縁層195a上の有機絶縁層195bと、有機絶縁層195b上の無機絶縁層195cを有する。
無機絶縁層195aの端部および無機絶縁層195cの端部は、有機絶縁層195bの端部よりも外側に延在し、互いに接している。そして、無機絶縁層195aは、絶縁層214(有機絶縁層)の開口を介して、絶縁層215(無機絶縁層)と接する。これにより、絶縁層215と保護層195とで、受光デバイス110および発光デバイス190を囲うことができるため、受光デバイス110および発光デバイス190の信頼性を高めることができる。
このように、保護層195は、有機絶縁膜と無機絶縁膜との積層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
また、表示装置100Bでは、保護層195と基板152とが接着層142によって貼り合わされている。接着層142は、受光デバイス110および発光デバイス190とそれぞれ重ねて設けられており、表示装置100Bには、固体封止構造が適用されている。
図12Aに表示装置100Cの断面図を示す。表示装置100Cは、トランジスタの構造が異なる点および遮光層148を有さない点で主に表示装置100Bと相違している。
表示装置100Cは、基板151上に、トランジスタ208、トランジスタ209およびトランジスタ210を有する。
トランジスタ208、トランジスタ209およびトランジスタ210は、ゲートとして機能する導電層221と、ゲート絶縁層として機能する絶縁層211と、チャネル形成領域231iおよび一対の低抵抗領域231nを有する半導体層と、一対の低抵抗領域231nの一方と接続する導電層222aと、一対の低抵抗領域231nの他方と接続する導電層222bと、ゲート絶縁層として機能する絶縁層225と、ゲートとして機能する導電層223と、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
導電層222aおよび導電層222bは、それぞれ、絶縁層225および絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222aおよび導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
発光デバイス190の画素電極191は、導電層222bを介してトランジスタ208の一対の低抵抗領域231nの一方と電気的に接続される。
受光デバイス110の画素電極111は、導電層222bを介してトランジスタ209の一対の低抵抗領域231nの他方と電気的に接続される。
図12Aには、絶縁層225が半導体層の上面および側面を覆う例を示している。図12Bには、絶縁層225が半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない例を示している。例えば、導電層223をマスクとして用いて絶縁層225を加工することで、図12Bに示す構造を作製できる。図12Bでは、絶縁層225および導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222aおよび導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタを覆う絶縁層218を設けてもよい。
図13に表示装置100Dの断面図を示す。表示装置100Dは、基板の構成が異なる点で表示装置100Cと主に相違している。
表示装置100Dは、基板151および基板152を有さず、基板153、基板154、接着層155および絶縁層212を有する。
基板153と絶縁層212とは、接着層155によって貼り合わされている。基板154と保護層195とは、接着層142によって貼り合わされている。
表示装置100Dは、作製基板上で形成された絶縁層212、トランジスタ208、トランジスタ209、受光デバイス110および発光デバイス190等を基板153上に転置することで作製される構成である。基板153および基板154は、可撓性を有することが好ましい。これにより、表示装置100Dに可撓性を付与することができる。
絶縁層212には、絶縁層211、絶縁層213および絶縁層215に用いることができる無機絶縁膜を用いることができる。または、絶縁層212として、有機絶縁膜と無機絶縁膜の積層膜としてもよい。このとき、トランジスタ209側の膜を無機絶縁膜とすることが好ましい。
以上が、表示装置の構成例についての説明である。
本実施の形態の表示装置は、表示部に受光デバイスと発光デバイスとを有し、表示部は画像を表示する機能と光を検出する機能との双方を有する。これにより、表示部の外部または表示装置の外部にセンサを設ける場合に比べて、電子機器の小型化および軽量化を図ることができる。また、表示部の外部または表示装置の外部に設けるセンサと組み合わせて、より多機能の電子機器を実現することもできる。
受光デバイスは、光電変換層以外の少なくとも一層を、発光デバイス(EL素子)と共通の構成にすることができる。さらには、受光デバイスは、光電変換層以外の全ての層を発光デバイス(EL素子)と共通の構成にしてもよい。例えば、発光デバイスの作製工程に光電変換層を成膜する工程を追加するのみで、発光デバイスと受光デバイスとを同一基板上に形成することができる。また、受光デバイスおよび発光デバイスは、画素電極および共通電極を同一の材料および同一の工程で形成することができる。また、受光デバイスと電気的に接続される回路と発光デバイスと電気的に接続される回路を同一の材料および同一の工程で作製することで、表示装置の作製工程を簡略化できる。このように、複雑な工程を有さなくとも、受光デバイスを内蔵し、利便性の高い表示装置を作製することができる。
以下では、トランジスタの半導体層に適用可能な金属酸化物について説明する。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。例えば、亜鉛酸窒化物(ZnON)などの窒素を有する金属酸化物を、半導体層に用いてもよい。
なお、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。CAACは結晶構造の一例を表し、CACは機能または材料の構成の一例を表す。
例えば、半導体層には、CAC(Cloud−Aligned Composite)−OS(Oxide Semiconductor)を用いることができる。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。
CAAC−OSはc軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
半導体層として機能する金属酸化物膜は、不活性ガスおよび酸素ガスのいずれか一方または双方を用いたスパッタリング法で成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
金属酸化物は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
上記金属酸化物を用いたトランジスタは、数yA/μm(チャネル幅1μmあたりの電流値)という極めて低いオフ電流特性を示すことができる。また、金属酸化物を用いたトランジスタは、インパクトイオン化、アバランシェ降伏、および短チャネル効果などが生じないなどSiを用いたトランジスタとは異なる特徴を有し、信頼性の高い回路を形成することができる。また、Siを用いたトランジスタでは問題となる結晶性の不均一性に起因する電気特性のばらつきも金属酸化物を用いたトランジスタでは生じにくい。
金属酸化物膜の成膜時の基板温度は、350℃以下が好ましく、室温以上200℃以下がより好ましく、室温以上130℃以下がさらに好ましい。金属酸化物膜の成膜時の基板温度が室温であると、生産性を高めることができ、好ましい。
金属酸化物膜は、スパッタリング法、PLD法、PECVD法、熱CVD法、MOCVD法、ALD法、真空蒸着法などにより形成することができる。
以上が、金属酸化物についての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置が有する画素の回路について説明する。
本発明の一態様の表示装置の画素は、副画素11、12、13を有する。副画素11の画素回路PIX1は、可視光を発する発光デバイスを有する。副画素12の画素回路PIX2は、近赤外光を発する発光デバイスを有する。副画素13の画素回路PIX3は、受光デバイスを有する。
図14Aに副画素11の画素回路PIX1の一例を示す。画素回路PIX1は、発光デバイスEL1、トランジスタM1、トランジスタM2、トランジスタM3およびキャパシタC1を有する。ここでは、発光デバイスEL1として、発光ダイオードを用いた例を示している。発光デバイスEL1には、可視光を発する有機EL素子を用いることが好ましい。
トランジスタM1は、ゲートが配線G1と電気的に接続し、ソースまたはドレインの一方が配線S1と電気的に接続し、ソースまたはドレインの他方が、キャパシタC1の一方の電極およびトランジスタM2のゲートと電気的に接続する。トランジスタM2のソースまたはドレインの一方は配線V2と電気的に接続し、他方は発光デバイスEL1のアノードおよびトランジスタM3のソースまたはドレインの一方と電気的に接続する。トランジスタM3は、ゲートが配線G2と電気的に接続し、ソースまたはドレインの他方が配線V0と電気的に接続する。発光デバイスEL1のカソードは、配線V1と電気的に接続する。
配線V1および配線V2には、それぞれ定電位が供給される。発光デバイスEL1のアノード側を高電位、カソード側を低電位にすることで発光を行うことができる。トランジスタM1は、配線G1に供給される信号により制御され、画素回路PIX1の選択状態を制御するための選択トランジスタとして機能する。また、トランジスタM2は、ゲートに供給される電位に応じて発光デバイスEL1に流れる電流を制御する駆動トランジスタとして機能する。
トランジスタM1が導通状態のとき、配線S1に供給される電位がトランジスタM2のゲートに供給され、その電位に応じて発光デバイスEL1の発光輝度を制御することができる。トランジスタM3は、配線G2に供給される信号により制御される。これにより、トランジスタM3と発光デバイスEL1との間の電位を配線V0から供給される一定の電位にリセットすることができ、トランジスタM2のソース電位を安定化させた状態でトランジスタM2のゲートへの電位書き込みを行うことができる。
図14Bに副画素12の画素回路PIX2の一例を示す。画素回路PIX2は昇圧機能を有する。画素回路PIX2は、発光デバイスEL2、トランジスタM4、トランジスタM5、トランジスタM6、トランジスタM7、キャパシタC2およびキャパシタC3を有する。ここでは、発光デバイスEL2として、発光ダイオードを用いた例を示している。発光デバイスEL2には、近赤外光を発する有機EL素子を用いることが好ましい。画素回路PIX2は、近赤外光を高輝度で発するための昇圧機能を有する。
トランジスタM4は、ゲートが配線G1と電気的に接続し、ソースまたはドレインの一方が配線S4と電気的に接続し、ソースまたはドレインの他方が、キャパシタC2の一方の電極、キャパシタC3の一方の電極およびトランジスタM6のゲートと電気的に接続する。トランジスタM5は、ゲートが配線G3と電気的に接続し、ソースまたはドレインの一方が配線S5と電気的に接続し、ソースまたはドレインの他方が、キャパシタC3の他方の電極と電気的に接続する。
トランジスタM6のソースまたはドレインの一方は配線V2と電気的に接続し、他方は、発光デバイスEL2のアノードおよびトランジスタM7のソースまたはドレインの一方と電気的に接続する。トランジスタM7は、ゲートが配線G2と電気的に接続し、ソースまたはドレインの他方が配線V0と電気的に接続する。発光デバイスEL2のカソードは、配線V1と電気的に接続する。
トランジスタM4は、配線G1に供給される信号により制御され、トランジスタM5は配線G3に供給される信号により制御される。トランジスタM6は、ゲートに供給される電位に応じて発光デバイスEL2に流れる電流を制御する駆動トランジスタとして機能する。
トランジスタM6のゲートに供給された電位に応じて発光デバイスEL2の発光輝度を制御することができる。トランジスタM7は、配線G2に供給される信号により制御される。トランジスタM6と発光デバイスEL2との間の電位を配線V0から供給される一定の電位にリセットすることができ、トランジスタM6のソース電位を安定化させた状態でトランジスタM6のゲートへの電位書き込みを行うことができる。また、配線V0から供給される電位を配線V1と同じ電位、または配線V1よりも低い電位とすることで発光デバイスEL2の発光を抑えることができる。
画素回路PIX2では、発光デバイスEL2の発光強度を高めるため、トランジスタM6のゲートに高い電圧を供給することが好ましい。以下に、画素回路PIX2が有する昇圧機能を説明する。
まず、トランジスタM6のゲートにトランジスタM4を介して配線S4の電位“D1”を供給し、これと重なるタイミングでキャパシタC3の他方の電極にトランジスタM5を介して基準電位“Vref”を供給する。このとき、キャパシタC3には“D1−Vref”が保持される。次に、トランジスタM6のゲートをフローティングとし、トランジスタM5を介してキャパシタC3の他方の電極に配線S5の電位“D2”を供給する。ここで、電位“D2”は加算用の電位である。
このとき、キャパシタC3の容量値をC、キャパシタC2の容量値をC、トランジスタM6のゲートの容量値をCM6とすると、トランジスタM6のゲートの電位は、D1+(C/(C+C+CM6))×(D2−Vref))となる。ここで、Cの値がC+CM6の値より十分に大きい場合を想定すると、C/(C+C+CM6)は1に近似する。したがって、トランジスタM6のゲートの電位は“D1+(D2−Vref)”に近似するといえる。そして、D1=D2であって、Vref=0であれば、“D1+(D2−Vref))”=“2D1”となる。
つまり、回路を適切に設計すれば、配線S4またはS5から入力できる電位の約2倍の電位をトランジスタM6のゲートに供給できることになる。
当該作用により、汎用のドライバICを用いても高い電圧を生成することができる。したがって、発光デバイスEL2を高輝度で発光させることができる。
また、画素回路PIX2は、図14Cに示す構成であってもよい。図14Cに示す画素回路PIX2は、トランジスタM8を有する点が図14Bに示す画素回路PIX2と異なる。トランジスタM8のゲートは配線G1と電気的に接続され、ソースまたはドレインの一方はトランジスタM5のソースまたはドレインの他方およびキャパシタC3の他方の電極と電気的に接続され、ソースまたはドレインの他方は配線V0と電気的に接続される。また、トランジスタM5のソースまたはドレインの一方は、配線S4と接続される。
図14Bに示す画素回路PIX2では、上述したようにトランジスタM5を介して基準電位および加算用の電位をキャパシタC3の他方の電極に供給する動作が行われる。この場合、配線S4、S5の2本が必要であり、配線S5では基準電位と加算用の電位を交互に書き換える必要がある。
図14Cに示す画素回路PIX2では、トランジスタM8は増えるが、基準電位を供給する専用の経路が設けられるため、配線S5を削減することができる。また、トランジスタM8のゲートは配線G1と接続することができ、基準電位を供給する配線には配線V0を用いることができるため、トランジスタM8と接続する配線は増加しない。また、一つの配線で基準電位と加算用の電位を交互に書き換えることがないため、低消費電力で高速動作が可能である。
なお、図14B、図14Cでは、基準電位“Vref”として“D1”の反転電位“D1B”を用いてもよい。この場合は、配線S4またはS5から入力できる電位の約3倍の電位をトランジスタM6のゲートに供給できることになる。なお、反転電位とは、ある基準電位との差の絶対値が同じ(または概略同じ)であって、元の電位とは異なる電位を意味する。元の電位を“D1”、反転電位を“D1B”、基準電位をVとするとき、V=(D1+D1B)/2の関係であればよい。
なお、画素回路PIX1の回路で発光デバイスEL2を発光させる構成を副画素12に用いることもできる。
本実施の形態の表示装置では、発光デバイスをパルス状に発光させることで、画像を表示してもよい。発光デバイスの駆動時間を短縮することで、表示装置の消費電力の低減、および発熱の抑制を図ることができる。特に、有機EL素子は周波数特性が優れているため、好適である。周波数は、例えば、1kHz以上100MHz以下とすることができる。
図14Dに、副画素13の画素回路PIX3の一例を示す。画素回路PIX3、受光デバイスPD、トランジスタM9、トランジスタM10、トランジスタM11、トランジスタM12およびキャパシタC4を有する。ここでは、受光デバイスPDとして、フォトダイオードを用いた例を示している。
受光デバイスPDは、アノードが配線V1と電気的に接続し、カソードがトランジスタM9のソースまたはドレインの一方と電気的に接続する。トランジスタM9は、ゲートが配線G4と電気的に接続し、ソースまたはドレインの他方がキャパシタC4の一方の電極、トランジスタM10のソースまたはドレインの一方およびトランジスタM11のゲートと電気的に接続する。トランジスタM10は、ゲートが配線G5と電気的に接続し、ソースまたはドレインの他方が配線V2と電気的に接続する。トランジスタM11は、ソースまたはドレインの一方が配線V3と電気的に接続し、ソースまたはドレインの他方がトランジスタM12のソースまたはドレインの一方と電気的に接続する。トランジスタM12は、ゲートが配線G6と電気的に接続し、ソースまたはドレインの他方が配線OUTと電気的に接続する。
配線V1、配線V2および配線V3には、それぞれ定電位が供給される。受光デバイスPDを逆バイアスで駆動させる場合には、配線V2に、配線V1の電位よりも高い電位を供給する。トランジスタM10は、配線G5に供給される信号により制御され、トランジスタM11のゲートに接続するノードの電位を配線V2に供給される電位にリセットする機能を有する。トランジスタM9は、配線G4に供給される信号により制御され、受光デバイスPDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM11は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM12は、配線G6に供給される信号により制御され、上記ノードの電位に応じた出力を配線OUTに接続する外部回路で読み出すための選択トランジスタとして機能する。
ここで、画素回路PIX1乃至PIX3が有するトランジスタM1乃至M12には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタを適用することが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続されたキャパシタに蓄積した電荷を長期間に亘って保持することが可能である。
そのため、特にキャパシタC1、キャパシタC2、キャパシタC3またはキャパシタC4にソースまたはドレインの一方または他方が接続されるトランジスタM1、トランジスタM4、トランジスタM5、トランジスタM8、トランジスタM9およびトランジスタM10には、酸化物半導体が適用されたトランジスタを用いることが好ましい。副画素13に酸化物半導体が適用されたトランジスタを用いることで、回路構成や動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。
また、これ以外のトランジスタも同様に酸化物半導体を適用したトランジスタを用いることで、作製コストを低減することができる。
また、トランジスタM1乃至M12に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコンや多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
また、トランジスタM1乃至M12のうち、一つ以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
なお、図14A乃至図14Dにおいては、nチャネル型のトランジスタを用いた例を図示しているが、pチャネル型のトランジスタを用いることもできる。
画素回路PIX1が有するトランジスタ、画素回路PIX2が有するトランジスタおよび画素回路PIX3が有するトランジスタは、同一基板上に並べて形成されることが好ましい。また、画素回路PIX1乃至PIX3に接続される配線のうち、図14A乃至図14Dにおいて共通の符号で示されている配線は、共通配線としてもよい。
また、受光デバイスPD、発光デバイスEL1または発光デバイスEL2と重なる位置に、トランジスタおよびキャパシタの一方または双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な受光部または表示部を実現できる。
図15は、画素10に含まれる副画素11(副画素11R、副画素11G、副画素11B)、副画素12、副画素13の回路図の例である。配線G1乃至G3は、ゲートドライバ(図1、回路16)と電気的に接続することができる。また、配線G4乃至G6は、ロードライバ(図1、回路18)と電気的に接続することができる。配線S1乃至S4は、ソースドライバ(図1、回路15)と電気的に接続することができる。配線OUTは、カラムドライバ(図1、回路17)および読み出し回路(図1、回路19)と電気的に接続することができる。
配線V0乃至V3には定電位を供給する電源回路を電気的に接続することができ、配線V0、V1には低電位、配線V2、V3には高電位を供給することができる。なお、配線S4は、ソースドライバではなく、定電位を供給する回路と電気的に接続されていてもよい。また、配線V2および配線V3は共通であってもよい。
また、図16に示すように、副画素13の受光デバイスPDのカソードを配線V1に電気的に接続し、トランジスタM10のソースまたはドレインの他方を配線V4に電気的に接続する構成としてもよい。このとき、配線V4は、配線V1に供給される電位よりも低い電位を供給することができる。
本発明の一態様では、副画素11、副画素12、副画素13で電源線などを共有することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、本発明の一態様の電子機器について説明する。
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。例えば、電子機器の表示部に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、光を検出する機能を有するため、接触、非接触を問わず入力動作を行うことができる。また、表示部の撮像機能を利用して生体認証を行うことができる。これにより、電子機器の機能性や利便性などを高めることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図17Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、および光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図17Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、およびタッチセンサパネル6513が接着層(図示しない)により固定されている。なお、表示パネル6511には本発明の一態様の表示装置を適用することができ、当該表示装置のセンサ機能のみを用いる場合は、タッチセンサパネル6513を省いてもよい。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様の可撓性を有する表示装置を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図18Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図18Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000に備えたタッチセンサまたはニアタッチセンサを機能させ、指等を表示部7000に触れる、または近づけることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネルおよび音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機およびモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図18Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図18C、図18Dに、デジタルサイネージの一例を示す。
図18Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、およびスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図18Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図18C、図18Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000に備えられたタッチセンサ、ニアタッチセンサを機能させることで、表示部7000に画像または動画を表示するだけでなく、ユーザーの直感的な操作が可能となる。また、路線情報もしくは交通情報などの情報を取得するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図18C、図18Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザーが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザーが同時にゲームに参加し、楽しむことができる。
図19A乃至図19Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図19A乃至図19Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図19A乃至図19Fに示す電子機器の詳細について、以下説明を行う。図19A乃至図19Fに示す電子機器に本発明の一態様の表示装置を用いることで、非接触でも入力動作が可能となる。
図19Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図19Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図19Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えばユーザーは、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。ユーザーは、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図19Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図19D、図19E、図19Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図19Dは携帯情報端末9201を展開した状態、図19Fは折り畳んだ状態、図19Eは図19Dと図19Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
10:画素、11:副画素、11B:副画素、11G:副画素、11R:副画素、12:副画素、13:副画素、14:画素アレイ、15:回路、16:回路、17:回路、18:回路、19:回路、20:光源、21:光、22:光、23a:光、23b:反射光、23c:光、23d:反射光、41:トランジスタ、42:トランジスタ、50A:表示装置、50B:表示装置、50C:表示装置、50D:表示装置、50E:表示装置、60:対象物、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、110:受光デバイス、111:画素電極、112:共通層、113:光電変換層、114:共通層、115:共通電極、142:接着層、143:空間、148:遮光層、149:フィルタ、151:基板、152:基板、153:基板、154:基板、155:接着層、162:表示部、164a:回路、164b:回路、165:配線、165a:配線、165b:配線、166:導電層、172a:FPC、172b:FPC、173a:IC、173b:IC、180:発光デバイス、182:バッファ層、183:発光層、184:バッファ層、190:発光デバイス、191:画素電極、192:バッファ層、193:発光層、194:バッファ層、195:保護層、195a:無機絶縁層、195b:有機絶縁層、195c:無機絶縁層、201:トランジスタ、204:接続部、205:トランジスタ、206:トランジスタ、208:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、216:隔壁、217:隔壁、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (8)

  1.  第1の画素と、第2の画素と、第3の画素と、を有する表示装置であって、
     前記第1の画素は、第1の発光デバイスを有し、
     前記第2の画素は、第2の発光デバイスを有し、
     前記第3の画素は、受光デバイスを有し、
     前記第1の発光デバイスは、可視光を発する機能を有し、
     前記第2の発光デバイスは、近赤外光を発する機能を有し、
     前記受光デバイスは、前記近赤外光を検出する機能を有し、
     前記第2の画素は、第1の電位および第2の電位に基づいて第3の電位を生成する機能、ならびに前記第3の電位に応じて前記第2の発光デバイスの発光を行う機能を有する表示装置。
  2.  請求項1において、
     前記第1の発光デバイスは、赤色、緑色、青色または白色のいずれかの光を発する機能を有する表示装置。
  3.  請求項1または2において、
     前記受光デバイスは光電変換層を有し、前記光電変換層に有機化合物を有する表示装置。
  4.  請求項1乃至3のいずれか一項において、
     前記第1の発光デバイス、前記第2の発光デバイスおよび前記受光デバイスは、ダイオードの構成を有し、前記第1の発光デバイスのカソード、前記第2の発光デバイスのカソードおよび前記受光デバイスのアノードは電気的に接続されている表示装置。
  5.  請求項1乃至3のいずれか一項において、
     前記第1の発光デバイス、前記第2の発光デバイスおよび前記受光デバイスは、ダイオードの構成を有し、前記第1の発光デバイスのカソード、前記第2の発光デバイスのカソードおよび前記受光デバイスのカソードは電気的に接続されている表示装置。
  6.  請求項1乃至5のいずれか一項において、
     前記受光デバイスと重なる位置に可視光カットフィルタが設けられている表示装置。
  7.  請求項1乃至6のいずれか一項において、
     前記第1乃至第3の画素はトランジスタを有し、前記トランジスタはチャネル形成領域に金属酸化物を有し、前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有する表示装置。
  8.  請求項1乃至7のいずれか一項に記載の表示装置と、カメラと、を有する電子機器。
PCT/IB2020/050102 2019-01-18 2020-01-08 表示装置および電子機器 WO2020148604A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080008466.XA CN113348387A (zh) 2019-01-18 2020-01-08 显示装置及电子设备
KR1020217024055A KR20210114960A (ko) 2019-01-18 2020-01-08 표시 장치 및 전자 기기
US17/420,496 US20220102430A1 (en) 2019-01-18 2020-01-08 Display device and electronic device
JP2020566350A JPWO2020148604A1 (ja) 2019-01-18 2020-01-08
JP2023207921A JP2024050530A (ja) 2019-01-18 2023-12-08 表示装置及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006696 2019-01-18
JP2019-006696 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020148604A1 true WO2020148604A1 (ja) 2020-07-23

Family

ID=71614458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/050102 WO2020148604A1 (ja) 2019-01-18 2020-01-08 表示装置および電子機器

Country Status (5)

Country Link
US (1) US20220102430A1 (ja)
JP (2) JPWO2020148604A1 (ja)
KR (1) KR20210114960A (ja)
CN (1) CN113348387A (ja)
WO (1) WO2020148604A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112925444A (zh) * 2021-03-04 2021-06-08 业成科技(成都)有限公司 触控显示器
WO2022189881A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
KR20240045234A (ko) 2021-08-11 2024-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024070A1 (ja) 2019-08-02 2021-02-11 株式会社半導体エネルギー研究所 機能パネル、表示装置、入出力装置、情報処理装置
CN111312788B (zh) * 2020-02-28 2023-04-18 京东方科技集团股份有限公司 显示面板和显示装置
KR20220129146A (ko) * 2021-03-15 2022-09-23 삼성디스플레이 주식회사 디스플레이 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301864A (ja) * 2005-04-19 2006-11-02 Sony Corp 画像表示装置および物体の検出方法
JP2008241807A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 液晶装置及び電子機器
JP2009080367A (ja) * 2007-09-27 2009-04-16 Sony Corp 表示装置及びその駆動方法と電子機器
JP2010040042A (ja) * 2008-07-10 2010-02-18 Semiconductor Energy Lab Co Ltd 半導体装置
JP2010060816A (ja) * 2008-09-03 2010-03-18 Canon Inc 画素回路、発光表示装置及びそれらの駆動方法
WO2011104929A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 光センサ付き表示装置
JP2012145940A (ja) * 2011-01-10 2012-08-02 Samsung Electronics Co Ltd 光検出機能を備えるoledディスプレイ装置
WO2013118214A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 情報表示装置
US20150170569A1 (en) * 2013-12-13 2015-06-18 Lg Display Co., Ltd. Organic light emitting display device having compensation pixel structure
US20150364107A1 (en) * 2014-06-17 2015-12-17 LuxVue Technology Corporation Interactive display panel with ir diodes
EP3425670A1 (en) * 2017-07-04 2019-01-09 Samsung Electronics Co., Ltd. Near-infrared light organic sensors, embedded organic light emitting diode panels, and display devices including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558446B2 (ja) * 2011-09-26 2014-07-23 株式会社東芝 光電変換装置及びその製造方法
KR102079188B1 (ko) 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
US9836165B2 (en) * 2014-05-16 2017-12-05 Apple Inc. Integrated silicon-OLED display and touch sensor panel
CN104009067A (zh) * 2014-06-16 2014-08-27 信利(惠州)智能显示有限公司 集成触控功能的有机发光二极管显示装置及其制作方法
JP6792960B2 (ja) * 2016-05-16 2020-12-02 株式会社ジャパンディスプレイ 表示装置
CN107275374B (zh) * 2017-05-31 2019-06-11 北京小米移动软件有限公司 Oled面板、模组、指纹识别方法、装置及存储介质
CN108646949B (zh) * 2018-06-04 2024-03-19 京东方科技集团股份有限公司 光电检测电路及方法、阵列基板、显示面板、指纹识别法
KR102642305B1 (ko) * 2018-09-12 2024-02-28 삼성전자주식회사 Oled 패널 및 이를 포함하는 표시 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301864A (ja) * 2005-04-19 2006-11-02 Sony Corp 画像表示装置および物体の検出方法
JP2008241807A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 液晶装置及び電子機器
JP2009080367A (ja) * 2007-09-27 2009-04-16 Sony Corp 表示装置及びその駆動方法と電子機器
JP2010040042A (ja) * 2008-07-10 2010-02-18 Semiconductor Energy Lab Co Ltd 半導体装置
JP2010060816A (ja) * 2008-09-03 2010-03-18 Canon Inc 画素回路、発光表示装置及びそれらの駆動方法
WO2011104929A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 光センサ付き表示装置
JP2012145940A (ja) * 2011-01-10 2012-08-02 Samsung Electronics Co Ltd 光検出機能を備えるoledディスプレイ装置
WO2013118214A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 情報表示装置
US20150170569A1 (en) * 2013-12-13 2015-06-18 Lg Display Co., Ltd. Organic light emitting display device having compensation pixel structure
US20150364107A1 (en) * 2014-06-17 2015-12-17 LuxVue Technology Corporation Interactive display panel with ir diodes
EP3425670A1 (en) * 2017-07-04 2019-01-09 Samsung Electronics Co., Ltd. Near-infrared light organic sensors, embedded organic light emitting diode panels, and display devices including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112925444A (zh) * 2021-03-04 2021-06-08 业成科技(成都)有限公司 触控显示器
WO2022189881A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
KR20240045234A (ko) 2021-08-11 2024-04-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Also Published As

Publication number Publication date
US20220102430A1 (en) 2022-03-31
JP2024050530A (ja) 2024-04-10
CN113348387A (zh) 2021-09-03
KR20210114960A (ko) 2021-09-24
JPWO2020148604A1 (ja) 2020-07-23

Similar Documents

Publication Publication Date Title
JP7478097B2 (ja) 表示装置
WO2020148604A1 (ja) 表示装置および電子機器
US11789568B2 (en) Display device
US20220320064A1 (en) Semiconductor device and manufacturing method thereof
WO2021130581A1 (ja) 表示装置
US20220384526A1 (en) Display Device, Display Module, and Electronic Device
JP7495847B2 (ja) 表示装置
US12080095B2 (en) Imaging device and driving method thereof
WO2021260493A1 (ja) 表示装置および電子機器
WO2021255571A1 (ja) 電子機器
US20230165055A1 (en) Display device, display module, and electronic device
CN112771840A (zh) 图像处理方法、程序及摄像装置
US20240144879A1 (en) Semiconductor device, display apparatus, and electronic device
US12099686B2 (en) Display device
WO2021064509A1 (ja) 表示装置
US12108165B2 (en) Imaging device including pixels each having a light-receiving device and a light-emitting device
US20220294981A1 (en) Imaging device, imaging module, electronic device, and imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024055

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20741008

Country of ref document: EP

Kind code of ref document: A1