WO2020147759A1 - 空调室外机及空调 - Google Patents

空调室外机及空调 Download PDF

Info

Publication number
WO2020147759A1
WO2020147759A1 PCT/CN2020/072309 CN2020072309W WO2020147759A1 WO 2020147759 A1 WO2020147759 A1 WO 2020147759A1 CN 2020072309 W CN2020072309 W CN 2020072309W WO 2020147759 A1 WO2020147759 A1 WO 2020147759A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
outdoor unit
air conditioner
line
Prior art date
Application number
PCT/CN2020/072309
Other languages
English (en)
French (fr)
Inventor
张健能
曹永平
李锡东
吴安民
韦小勤
陈记华
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Priority to CN202080000202.XA priority Critical patent/CN111656104B/zh
Priority to AU2020209621A priority patent/AU2020209621B2/en
Publication of WO2020147759A1 publication Critical patent/WO2020147759A1/zh
Priority to US17/364,309 priority patent/US11971180B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving

Definitions

  • This application relates to the field of control, in particular to the power supply controller of the outdoor unit of the air conditioner, the outdoor unit of the air conditioner and the air conditioner.
  • the air conditioner is usually composed of indoor unit side (also called air conditioner indoor unit or indoor unit for short) and outdoor unit side (also called air conditioner outdoor unit or simply called outdoor unit for short), and the indoor unit and outdoor unit Opportunities are independently powered and controlled by different power sources. Since the user of the air conditioner usually controls the air conditioner indoors (that is, the indoor unit side), the power supply control of the indoor unit and the outdoor unit is usually implemented on the indoor unit side. In order to meet the requirements of the corresponding certification standards for standby power consumption, currently the main relay K installed in the indoor unit is usually used to control the power supply of the power supply line to the outdoor unit, so as to stop powering the outdoor unit during the standby process of the air conditioner to reduce standby power consumption .
  • indoor unit side also called air conditioner indoor unit or indoor unit for short
  • outdoor unit side also called air conditioner outdoor unit or simply called outdoor unit for short
  • the indoor unit and outdoor unit Opportunities are independently powered and controlled by different power sources. Since the user of the air conditioner usually controls the air conditioner indoors (that is, the indoor unit side), the power
  • the standby power of the air conditioner can be reduced, but because the main relay K is installed in the indoor unit, the current generated by the outdoor power supply circuit needs to flow through the indoor unit through the 1 (L) cable, and the main relay When K is closed, it can pass through L-IN and L-OUT, and then it can flow to the outdoor unit through the cable between 0 (L). Since the outdoor unit has a relatively large operating current, that is, the current flowing through the cable will be relatively large, there will be relatively high requirements on the wire diameter of the cable.
  • This application provides an outdoor unit of an air conditioner, an outdoor unit of an air conditioner, and an air conditioner, which are used to reduce the requirement on the wire diameter of the cable between the indoor unit and the outdoor unit while reducing the standby power consumption of the outdoor unit.
  • this application provides an outdoor unit of an air conditioner, including: an outdoor unit main control circuit, a power supply, a power supply control circuit, and an outdoor unit communication circuit.
  • the outdoor unit communication circuit is used to communicate with the indoor unit through a signal line connected between the indoor unit and the outdoor unit communication circuit;
  • the power supply control circuit is arranged on a circuit where the power supply line supplies power, It is used to control the power supply line to supply power to the power supply after receiving the control signal sent by the indoor unit via the signal line;
  • the power supply is used to provide the main control circuit of the outdoor unit and the outdoor unit after receiving power from the power supply line Machine communication circuit power supply.
  • the power supply control circuit controls the power supply line to supply power to the power supply according to the control signal in the signal line, the current generated by the outdoor power supply loop does not need to flow through the indoor unit through the cable, which can reduce the power supply control process of the outdoor unit to the cable.
  • the outdoor unit main control circuit is used to send a disconnection control signal to the power control circuit after power-on; the power control circuit is also used to disconnect the pass signal after receiving the disconnection control signal
  • the line is a power supply loop of the power supply control circuit, and is connected to a second loop that supplies power to the power supply line.
  • the power supply control circuit includes a switch-type relay and a normally closed conversion relay, wherein the switch-type relay is powered by a signal line, and the conversion-type relay is arranged in a circuit where the signal line supplies power to the switch-type relay
  • the switch-type relay is used to close after the indoor unit sends a predetermined level signal through the signal line, and connects the power supply line to the first loop of the power supply;
  • the conversion relay is used to receive the main control circuit of the outdoor unit After the disconnection control signal is sent, the moving contact is switched from being connected to the normally closed contact to being connected to the normally open contact, thereby disconnecting the signal line to supply the circuit of the switch-type relay, and connecting the power supply line to the power supply The second loop.
  • the switch-type relay is specifically configured to close after receiving a signal of a predetermined level sent by the indoor unit through a signal line, and connect the power supply line to the first circuit for supplying power to the power supply.
  • one end of the normally open contact of the switch-type relay is connected to the neutral line of the power supply line through the PTC, the other end is connected to the neutral end of the outdoor unit, one end of the coil is connected to the signal line, and the other end is connected to the neutral line of the outdoor unit.
  • the normally closed contact of the conversion relay is connected; the moving contact of the conversion relay is connected to the neutral line of the power supply, the normally open contact is connected to the neutral end of the outdoor unit, and the power supply for the coil is The main control circuit of the outdoor unit is controlled.
  • the power supply control circuit further includes a level signal providing circuit; the level signal providing circuit is used to connect to supply power to the switch-type relay after receiving a predetermined level signal sent by the indoor unit through the signal line The circuit; the switch-type relay is specifically used to close after the circuit that supplies power to the switch-type relay is connected, so as to connect the power supply line to the first circuit of the power supply.
  • the level providing circuit includes a comparator circuit and a triode circuit; for the comparator circuit, the positive input terminal is used to receive the predetermined voltage provided by the voltage divider circuit, and the negative input terminal is used to receive the signal transmitted by the indoor unit through the signal line.
  • a signal of a predetermined level is connected to the base of the triode circuit, and is used to output a high level at the output terminal after receiving a signal of a predetermined level from the indoor unit through the signal line at the negative input terminal; the triode circuit ,
  • the emitter is connected to the output terminal of the coil of the switching relay, and the collector is connected to the normally closed contact of the conversion relay, which is used after the base receives the high level output from the output terminal of the comparator circuit , The emitter and the collector are turned on, so as to connect the circuit for supplying power to the switch-type relay.
  • one end of the normally open contact of the switch relay is connected to the power supply neutral line of the power supply line through the PTC, the other end is connected to the neutral end of the outdoor unit, and one end of the coil of the switch relay is connected to the signal
  • the other end is connected to the normally closed contact of the conversion relay; the moving contact of the conversion relay is connected to the neutral line of the power supply, and the normally open contact is connected to the neutral end of the outdoor unit,
  • the power supply of the coil of the conversion relay is controlled by the main control chip.
  • the power supply includes a resistance-capacitance step-down half-wave rectifier circuit and a voltage stabilization circuit, the input end of the resistance-capacitance step-down half-wave rectifier circuit is connected to the power supply line, and the output end is connected to the input end of the voltage stabilization circuit, The output terminal of the voltage stabilizing circuit is connected with the communication circuit of the outdoor unit.
  • the voltage stabilizing circuit includes a voltage regulator tube and an electrolytic capacitor connected in parallel, the cathode of the voltage regulator tube is connected between the anode of the electrolytic capacitor and the cathode of the diode, and the anode is connected between the cathode of the electrolytic capacitor and the power supply neutral line .
  • the transmitting circuit of the outdoor unit communication circuit is a first optical coupler
  • the receiving circuit is a second optical coupler
  • the anode of the first optical coupler is connected to an external DC power supply
  • the cathode is connected to the main control chip
  • the collector of the first optical coupler is connected to the output terminal of the power supply, the emitter of the first optical coupler is connected to the anode of the second optical coupler; the cathode of the second optical coupler is connected to the signal line, the second The collector of the optical coupler is connected with an external DC power supply, and the emitter of the second optical coupler is connected with the main control chip.
  • the switch-type relay further includes a first filter circuit arranged between the emitter of the second optical coupler and the main control chip.
  • the outdoor unit main control circuit is also used to stop sending the disconnection control signal after the outdoor unit communication circuit receives the shutdown signal sent by the indoor unit communication circuit;
  • the conversion relay is also used to After the main control circuit of the outdoor unit stops the disconnection control signal sent, it switches the moving contact from being connected to the normally open contact to being connected to the normally closed contact, and the connection signal line is the circuit for supplying power to the switch-type relay , And disconnect the second path between the live wire and the neutral wire.
  • the present application also provides an outdoor unit of an air conditioner, including an indoor unit and the outdoor unit described in the aforementioned second aspect.
  • the power supply neutral line of the indoor unit is connected to the power supply neutral line of the outdoor unit
  • the power supply line of the indoor unit is connected to the power supply line of the outdoor unit
  • the indoor unit communication circuit of the air conditioner indoor unit The communication circuit of the outdoor unit of the air conditioner outdoor unit is connected through the signal line, and the power control circuit in the outdoor unit of the air conditioner is connected via the signal line.
  • the indoor unit communication circuit of the indoor unit is connected to the outdoor unit through the signal line.
  • the outdoor unit communication circuit performs communication.
  • the air conditioner indoor unit is configured to send a power supply control signal to the power control circuit of the air conditioner outdoor unit through the signal line.
  • the power supply of the outdoor unit of the air conditioner can be started or stopped through the level signal of the signal line.
  • the working current of the outdoor unit of the air conditioner does not need to flow through the indoor unit, thus greatly reducing the cable requirements.
  • Figure 1 is an online circuit diagram of an indoor unit and an outdoor unit in the prior art
  • Figure 2 is an online circuit diagram of the indoor unit and outdoor unit in this application.
  • FIG. 3 is a schematic structural diagram of an embodiment of an air conditioner according to this application.
  • FIG. 4 is a schematic diagram of the circuit structure of an embodiment of the power control device of the application.
  • FIG. 5 is a schematic diagram of the circuit structure of another embodiment of the power control device of this application.
  • FIG. 6 is a schematic diagram of the circuit structure of another embodiment of the power control device of this application.
  • FIG. 7 is a schematic diagram of a circuit structure of an embodiment of an indoor unit of the application.
  • FIG. 8 is a schematic diagram of a circuit structure of an embodiment of an outdoor unit of this application.
  • Fig. 9 is a logical schematic diagram of the working sequence of the circuit during the startup of the air conditioner in an embodiment of the application.
  • FIG. 10 is a logical schematic diagram of the working sequence of the circuit during the shutdown process of the air conditioner in an embodiment of the application;
  • FIG. 11 is a schematic diagram of a circuit structure of another embodiment of an indoor unit of the application.
  • FIG. 12 is a schematic diagram of the circuit structure of another embodiment of an outdoor unit according to this application.
  • FIG. 13 is a logical schematic diagram of the working sequence of the circuit during the startup of the air conditioner in another embodiment of the application;
  • FIG. 14 is a logical schematic diagram of the working sequence of the circuit during the shutdown process of the air conditioner in another embodiment of the application.
  • the present invention is shown in FIG. 2, and the wiring principle of the outdoor unit power supply controller of the present invention and the indoor connection is shown in FIG. 2.
  • connection terminal SI1 of the communication circuit of the outdoor unit is connected to the connection terminal SI2 of the communication circuit of the indoor unit through a signal (Singnal, SI) wire;
  • the live wire connection terminal L1 of the outdoor unit is connected to the live wire terminal L2 (L-IN) of the indoor unit, two They are connected to the live line of the power supply line,
  • the neutral terminal N1 of the outdoor unit is connected to the neutral terminal N2 (N-IN) of the indoor unit, and the two are connected to the neutral line of the power supply line, that is, the outdoor unit and the indoor unit It can be powered by the same power supply line, which can provide city power for the air conditioner.
  • the outdoor unit of the air conditioner may include: an outdoor unit main control circuit (also called an outdoor main control board or an outdoor main control electric circuit), a power supply, a power control circuit, and an outdoor unit communication circuit.
  • the outdoor unit main control circuit is used to control the operation of each module of the outdoor unit in the room and the communication between the outdoor unit and the indoor unit.
  • the main control circuit of the outdoor unit may be a control chip or a circuit containing a control chip; the power supply, Used to convert the voltage provided by the power supply line (usually 220v AC mains, AC grounding) into the voltage required by each module of the outdoor unit such as the outdoor unit main control circuit and outdoor unit communication circuit (for example, 3.3v DC voltage);
  • the communication circuit of the outdoor unit is connected to the communication circuit of the indoor unit through a signal line to realize the communication between the indoor unit and the outdoor unit, so that the instructions received by the indoor unit can be sent to the outdoor unit, or the operating status of the outdoor unit can be sent to the indoor
  • the power supply control circuit is used to control whether the power supply supplies power to each module of the outdoor unit.
  • the power control circuit may be a part of the main control circuit of the outdoor unit, or may be independent of the main control circuit of the outdoor unit.
  • the outdoor unit communication circuit can also be a part of the outdoor unit main control circuit, or independent of the outdoor unit main control circuit. The following embodiments of the application only take the power control circuit and the outdoor communication circuit independent of the main control circuit of the outdoor unit as an example for description.
  • the outdoor unit communication circuit is used to communicate with the indoor unit communication circuit through a signal line connected to the outdoor unit communication circuit;
  • the power control circuit is set on the power supply line as a power source On the power supply loop, it is used to control the power supply line to supply power to the power supply by turning on and off the control loop;
  • the power supply is used to supply power to the outdoor unit main control circuit and the outdoor unit communication circuit after receiving power from the power supply line
  • the main control circuit of the outdoor unit in addition to controlling the outdoor unit and various parts of the outdoor unit, in each embodiment of the present application, it can also be used to send a disconnection control signal to the power control circuit after power-on.
  • the power supply of the indoor unit or the outdoor unit may be a power supply with frequency conversion, voltage transformation, or AC/DC conversion function, and the power supply may be one or multiple.
  • the power supply can provide corresponding DC voltage or AC voltage for different circuit devices at the same time or at different time periods; when there are multiple power supplies, each power supply can be different.
  • the circuit device provides the corresponding DC voltage or AC voltage. It should be noted that this application does not limit the number or type of power supplies of the indoor unit or outdoor unit. According to actual needs, the power supply may also include a direct current source or an alternating current source.
  • the power supply control circuit can be used to connect the power supply line to the first loop of the power supply after receiving the power supply control signal (for example, a predetermined level signal) sent by the indoor unit through the signal line, so that the power supply is each of the outdoor unit Module power supply.
  • the predetermined level signal may be a high level for a predetermined period of time.
  • the power supply control signal is sent by the indoor unit, for example, can be sent by the indoor unit communication circuit, or can be sent by other modules of the indoor unit and transmitted to the signal line through the indoor unit communication circuit, and this application is not limited.
  • the connectivity of the first loop can be maintained by a power supply control signal. For example, when the predetermined level signal is present, the first loop remains connected; and when the predetermined level signal disappears, the first loop is disconnected.
  • the signal line is the communication line between the indoor unit and the outdoor unit, if the power supply control signal is maintained in the signal line to maintain the state of the circuit connection, it will affect the outdoor unit and the indoor unit. Therefore, after the first loop is connected to enable the power supply to be powered on, the power supply control circuit also needs to connect the second loop of the power supply line to supply power to the power supply to replace the first loop. Therefore, the power supply control circuit is also used to connect the second loop after receiving the disconnection control signal, so that after the power supply control signal disappears, that is, after the first loop is disconnected, it can pass through the second loop Power the power supply.
  • the disconnection control signal may be sent by the main control circuit of the outdoor unit, or may be sent by other modules, which is not limited in this application.
  • the power control circuit is also used to disconnect the power supply control signal through the power control circuit receiving circuit after receiving the disconnection control signal, so that the indoor unit The communication signal sent by the communication circuit through the signal line flows to the outdoor unit communication circuit, but does not flow to the power control circuit. Further, the power supply control circuit is further configured to connect the power supply control signal to the receiving circuit of the power supply control circuit after the disconnection control signal disappears, so as to prepare for connecting to the first circuit again.
  • the power control circuit may include two relays (RELAY), such as a switch-type relay K1 and a normally closed conversion relay K2.
  • the switch-type relay K1 is used to send power to the indoor unit through a signal line. After the control signal is closed, the first circuit connecting the power supply line for power supply, that is, the first circuit connecting N and N-OUT; the conversion relay K2, is used to receive the open circuit sent by the main control circuit of the outdoor unit After the control signal, the moving contact is switched from being connected to the normally closed contact to being connected to the normally open contact, thereby disconnecting the signal line to supply power to the switch-type relay, and connecting the power supply line to the second circuit for power supply , Which connects the second loop between N and N-OUT.
  • the working states of the switching relay K1 and the conversion relay K2 can be changed by whether they are powered.
  • the switch-type relay K1 can be powered by a signal line, so that it is closed after the indoor unit sends a power supply control signal through the signal line; or it can be powered by a level signal providing circuit, which can be After receiving the power supply control signal on the communication line, the switching relay K1 is provided with a working level.
  • the switch-type relay can be used to close after receiving the indoor unit to send a power supply control signal through a signal line, and connect the power supply line to the first loop of the power supply.
  • the method shown in Figure 5 can be used.
  • One end of the normally open contact of the switch-type relay K1 is connected to the neutral line of the power supply line through the PTC, and the other end is connected to the neutral end of the outdoor unit.
  • One end of the coil is connected to the signal line, and the other end is connected to the normally closed contact of the conversion relay; the moving contact of the conversion relay K2 is connected to the power supply neutral line, and the normally open contact is connected to the outdoor unit The neutral end of the coil is connected, and the power supply of the coil is controlled by the main control circuit of the outdoor unit.
  • the power control circuit further includes a level signal providing circuit; the level signal providing circuit is configured to connect to the switch after receiving the power supply control signal sent by the indoor unit through the signal line
  • the circuit for supplying power to the switch-type relay; the switch-type relay is specifically used to close after the circuit for supplying power to the switch-type relay is connected, so as to connect the power supply line to the first circuit for power supply.
  • the level providing circuit includes a comparator circuit N1A and a triode circuit V1; the comparator circuit N1A has a positive input for receiving the predetermined voltage provided by the voltage divider circuit.
  • the negative input terminal is used to receive the power supply control signal sent by the indoor unit through the signal line, and the output terminal is connected to the base of the triode circuit V1 for receiving the power supply control signal sent by the indoor unit through the signal line at the negative input terminal,
  • the output terminal outputs a high level; the emitter of the triode circuit V1 is connected to the output terminal of the coil of the switching relay K1, and the collector is connected to the normally closed contact of the conversion relay K2 for the base After receiving the high level output from the output terminal of the comparator circuit N1A, the emitter and the collector are turned on, thereby connecting the circuit for supplying power to the switch-type relay K1.
  • One end of the normally open contact of the switch type relay K1 is connected to the power supply neutral line of the power supply line through the PTC, the other end is connected to the neutral line end of the outdoor unit, and one end of the coil of the switch type relay K1 is connected to the signal line , The other end is connected to the normally closed contact of the conversion relay; the moving contact of the conversion relay is connected to the neutral line of the power supply, and the normally open contact is connected to the neutral end of the outdoor unit, the The power supply of the coil of the conversion relay is controlled by the main control chip.
  • the circuit structure of the indoor unit may be as shown in FIG. 7, and the circuit structure of the outdoor unit may be as shown in FIG. 8.
  • L is the live wire, N neutral wire, and SI is the communication line; optocoupler B3 and optocoupler B4 play the role of signal isolation. Among them, optocoupler B3 is the communication transmitting end (TXD_IDU) of the indoor unit.
  • B4 is the communication receiving end (RXD_IDU) of the indoor unit; diode D4 is a reverse freewheeling diode, used for reverse withstand voltage protection, and diode D5 is a forward diode, used to prevent reverse current flow and reverse resistance Voltage protection, PTC resistor RT3 plays a role in current limiting and short circuit over current protection, varistor RV2 is used to absorb surge voltage, resistor R10, resistor R12 are used to limit current, resistor R11, capacitor C4 form RC Filter circuit. Since the working voltages of different circuit devices of the indoor unit may be different, multiple different power supplies can be set in the indoor unit to supply power to different circuit devices.
  • the 5V power supply required for the operation of the outdoor unit main control circuit (indoor main control board) shown in the figure can be provided by the indoor power supply, which is isolated from the 30V power supply required by the outdoor unit communication circuit, that is, the circuit device needs to work.
  • the 5V voltage and 30V power can be provided by different power sources.
  • the specific implementation of the power supply will not be detailed here. Among them, A represents the anode of the diode, K represents the cathode of the diode, B represents the base of the triode, C represents the collector of the triode, and E represents the emitter of the triode.
  • L is the live line
  • N is the neutral line
  • SI is the communication line
  • PTC resistor RT2 plays a role of current limiting and short-circuit over-current protection
  • varistor RV1 is used for surge voltage absorption
  • diode D2 is Reverse freewheeling diode, used for reverse overvoltage protection
  • resistor R1 is a current limiting resistor
  • diode D1 is a forward diode, used to prevent reverse current flow and reverse withstand voltage protection
  • capacitor C1, capacitor C3 Used for filtering
  • optocoupler B1 and optocoupler B2 are used for signal isolation, where optocoupler B1 is the communication transmitting end of the outdoor unit, and optocoupler B2 is the communication receiving end of the outdoor unit.
  • Resistor R3 and resistor R5 are used to limit current; resistor R4 and capacitor C2 form an RC filter circuit. Similar to the indoor unit, since the working voltages of different circuit components of the outdoor unit may be different, the 3.3V and 12V power supplies shown in the figure can be provided by different outdoor power supplies, and are isolated from the 30V power supply required to complete the indoor unit communication circuit. The specific implementation of the power supply will not be detailed here.
  • the indoor unit side sending optocoupler B3 When the air conditioner is in the standby state, the indoor unit side sending optocoupler B3 is cut off, the outdoor unit side control board is not energized, the relay K1 is disconnected, and the relay K2 is at the normally closed node. In this case, the main control circuit of the outdoor unit cannot be energized, and no standby power consumption is generated, so the power consumption of the air conditioner during standby can be greatly reduced.
  • the indoor main control board also called the indoor main control circuit or the indoor main control circuit located on the indoor side controls the CE of the optocoupler B3 to be turned on through the MCU.
  • the MCU may be The outdoor unit main control circuit itself or a part of the outdoor unit main control circuit.
  • the switch relay K1 is energized and closed.
  • the main control circuit of the outdoor unit passes the PTC resistor RT1 and the switch relay K1 contact to the subsequent rectifier bridge VC1 and
  • the electrolytic capacitor E2 supplies power and enables the power supply of the outdoor unit to work.
  • the main control circuit of the outdoor unit After the power supply of the outdoor unit is energized, the main control circuit of the outdoor unit energizes the coil of the conversion relay K2, so that the switching contact of the conversion relay K2 coil is connected to the Nout line, so that N and Nout are connected to ensure reliable outdoor power supply.
  • the normally closed contact of the conversion relay K2 is disconnected, the coil circuit of the switch relay K1 is disconnected, and the switch relay K1 stops working.
  • the current signal flows to the optocoupler B1 and the optocoupler B2 through the current limiting resistor R1 and the forward diode D1. , Thereby connecting the communication circuit between the indoor unit communication circuit and the outdoor unit communication circuit, so that the indoor and outdoor control panel of the air conditioner enters a normal working state.
  • the working sequence logic of the circuit can be seen in Figure 9.
  • the optocoupler B3 on the indoor unit side stops sending signals, and the outdoor unit MCU stops supplying power to the conversion relay K2 relay.
  • the conversion relay K2 relay disconnects the connection between the N line and Nout and switches to the normally closed contact.
  • the switch-type relay K1 since the optocoupler B3 is cut off and no current flows through the switch-type relay K1, the switch-type relay K1 is also in the off state, and the main control circuit of the outdoor unit is de-energized and stops working, waiting for the next power-on command. In this process, the working sequence logic of the circuit can be seen in Figure 10.
  • the circuit structure of the indoor unit may be as shown in FIG. 11, and the circuit structure of the outdoor unit may be as shown in FIG. 12.
  • N is the neutral line
  • SI is the indoor and outdoor communication line
  • the resistor R9 is the current-limiting resistor
  • the diode D2 plays the role of reverse withstand voltage protection
  • the capacitor C3 plays the role of filtering
  • optocoupler B3 and optocoupler B4 For signal isolation, the photocoupler B3 is the communication transmitting end of the indoor unit, and the photocoupler B4 is the communication receiving end of the indoor unit; the resistors R10 and R12 are used for current limiting, and the resistors R11 and C4 form the RC filter circuit .
  • L is the live wire
  • N is the neutral wire
  • SI is the communication wire
  • capacitor C1, resistor R1, and diode D1 form a RC step-down half-wave rectifier circuit
  • voltage stabilizer diode Z1 and voltage stabilizer capacitor E1 constitute a voltage stabilizer
  • the circuit uses the N line as a reference ground to generate a 15V regulated power supply
  • the optocoupler B1 and B2 act as signal isolation, where the optocoupler B1 is the communication transmitter of the outdoor unit, and the optocoupler B2 is the communication receiver of the outdoor unit
  • Resistor R2 is used for voltage dividing
  • resistor R3 and resistor R5 are used for current limiting
  • resistor R4 and capacitor C2 form an RC filter circuit
  • the positive input of comparator N1A is composed of resistor R7 and resistor R8.
  • the negative input terminal of comparator N1A receives the signal sent on SI
  • resistor R6 is the pull-up resistor at the output terminal of comparator N1A
  • the output terminal of comparator N1A controls the base of NPN transistor V1 ( B pole)
  • the transistor V1 can control the on and off of the switching relay K1
  • the PTC resistor RT1 is used to limit the inrush current when the outdoor unit is energized
  • the control coil of the conversion relay K2 is not energized, the contact is connected to the N line and the transistor
  • the collector (E pole) of V1 the contact of the control coil of the conversion relay K2 is closed when it is working, and connects the N line to the N output terminal of the outdoor unit main control circuit to provide power to the outdoor unit main control circuit.
  • the outdoor unit side control panel When the air conditioner is in the standby state, the outdoor unit side control panel is not powered on, the optocoupler B1 has no power signal, and the CE terminal of the optocoupler B1 is cut off. At this time, the optocoupler B3 has not received the power-on command and is also in the cut-off state.
  • the voltage of SI is equal to the output voltage of the Zener diode Z1 15V, and the voltage of the positive input terminal of the comparator N1A is 7.5V, so the negative input terminal of the comparator receives
  • the voltage of SI is 15V higher than the voltage of the positive input terminal, so the comparator outputs a low level, so the CE of the transistor V1 cannot be turned on, the switch relay K1 cannot be operated, and the main control circuit of the outdoor unit cannot be energized, so the main control of the outdoor unit The circuit does not generate standby power consumption.
  • the indoor main control board controls the CE of the optocoupler B3 to be turned on through the MCU.
  • the voltage of the SI becomes 5V (15V*5K/15K), That is, the voltage input to the negative input terminal of the comparator N1A becomes 5V, and the voltage at the positive input terminal of the comparator N1A is still 7.5V.
  • the output terminal of the comparator N1A outputs 15V At high level, the CE of the transistor V1 is turned on, the switch-type relay K1 is closed and the N line is supplied to the main control circuit of the outdoor unit through the PTC resistor RT1. After the main control circuit of the outdoor unit works, the coil of the conversion relay K2 is energized, and the conversion relay K2 disconnects the connection between the E pole of the transistor V1 and the N line, so that the switch relay K1 stops working and connects the main power supply and the outdoor unit at the same time The N line of the main control circuit makes the main control circuit of the outdoor unit of the air conditioner enter the normal working state.
  • the circuit work sequence logic can refer to Figure 13.
  • the optocoupler B3 on the indoor unit side and the optocoupler B1 on the outdoor unit side stop sending signals, the main control circuit MCU of the outdoor unit stops supplying power to the conversion relay K2, and the conversion relay K2 disconnects the N line and
  • the switch-type relay K1 is also in an off state, and the main control circuit of the outdoor unit is powered off and stops working, waiting for the next start command.
  • the circuit work sequence logic can be seen in Figure 14.
  • the power supply controller may include more or more circuit devices, which is not limited in this application.
  • Other circuits or modules may also include more or fewer circuit devices, or are used to implement more or more functions.
  • the outdoor unit main control circuit is also used to stop sending the disconnection control signal after the outdoor unit communication circuit receives the shutdown signal sent by the indoor unit communication circuit; the conversion relay is also used for After the main control circuit of the outdoor unit stops the disconnection control signal sent, it switches the moving contact from being connected to the normally open contact to being connected to the normally closed contact, and the connected signal line is the circuit for supplying power to the switch-type relay, and The second path between the live wire and the neutral wire is disconnected.
  • this application also provides an air conditioner outdoor unit, which includes the power supply controller in the foregoing embodiment.
  • the air conditioner may include the indoor unit and the outdoor unit described in the aforementioned embodiment, and the power supply neutral line of the indoor unit is connected to the The power supply neutral wire of the outdoor unit is connected, the power supply live wire of the indoor unit is connected with the power supply live wire of the outdoor unit, and the communication circuit of the indoor unit is connected with the outdoor unit communication circuit and the power supply controller through the signal line.
  • the specific connection mode can be referred to the foregoing embodiment and the corresponding drawings, which will not be repeated here.
  • the indoor unit and outdoor unit communication line can be used to control the power supply of the outdoor unit, and the power supply to the main control circuit of the outdoor unit is stopped when the air conditioner is in standby, reducing the standby power consumption of outdoor power supply, and the power supply line of the outdoor power supply L is only connected to the live wire L2 of the indoor unit through an online line to supply power to the indoor unit, which requires a small wire diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空调室外机及空调,其中,所述空调室外机包括:室外机主控电路、电源、电源控制电路及室外机通信电路;室外机通信电路,用于通过与室外机通信电路之间连接的信号线连接室内机通信电路;电源控制电路,设置在供电线路为电源供电的回路上,用于控制供电线路为电源供电;室外机主控电路,用于在上电后向电源控制电路发送断路控制信号;电源控制电路包括开关型继电器(K1)及常闭式转换型继电器(K2),开关型继电器(K1)由信号线供电,转换型继电器(K2)设置在信号线为开关型继电器(K1)供电的回路中。该技术方案,可以在降低室外机待机功耗的情况下,降低室内外机之间的线径要求。

Description

空调室外机及空调
本申请要求在2019年1月15日提交中国专利局、申请号为201910036332.8、发明名称为“一种空调室外供电控制电路及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及控制领域,尤其涉及空调室外机供电控制器、空调室外机及空调。
背景技术
随着空调的日益普及,用户开始越来越关注空调的能效比。尤其是空调在待机状态下的功耗,日益成为用户及技术人员所关注的一个重点,有不少国家地区都制定了相应的强制认证标准,例如欧盟就要求空调的待机功率不超过1w。
由于空调通常由室内机侧(又可被称为空调室内机或简称为室内机)和室外机侧(又可被称为空调室外机或简称为室外机)两部分构成,并且室内机与室外机会分别由不同的电源独立进行供电及供电控制。由于空调的用户通常是在室内(也即室内机侧)对空调进行控制,因此对室内机及室外机的供电控制,通常都在室内机侧实现。为达到相应认证标准对待机功耗的要求,目前通常通过设置在室内机的主继电器K来控制供电线路对室外机的供电,从而在空调待机过程中停止为室外机供电,以降低待机功耗。
如图1所示,在采用主继电器K来控制供电线路对室外机的供电时,需要将室外机接线端子板的1(L)通过线缆连接到室内机接线端子板的1(L),并将室外机接线端子板的0(L)通过线缆连接到室内机接线端子板的0(L)。当控制单元中的主继电器K接通时,室外机供电回路接通,供电线路开始对室外机供电;而当主继电器K断开时,室外机供电回路断开,供电线路则停止对室外机供电。
采用该方案,虽然可以降低空调的待机功率,但是由于是主继电器K设置在室内机,因此室外供电回路所产生的电流需要先通过1(L)之间线缆流经室内机,在主继电器K闭合时,才能通过L-IN及L-OUT,然后才能通过0(L)之间的线缆流向室外机。由于室外机运行电流较大,也即流经所述线缆上的电流会比较大,因此对所述线缆的线径会有比较高的要求。
发明内容
本申请提供了空调室外机、空调室外机及空调,用于在降低室外机待机功耗的情况下,降低对室内机与室外机之间线缆线径的要求。
第一方面,本申请提供了一种空调室外机,包括:室外机主控电路、电源、电源控制电路及室外机通信电路。所述室外机通信电路,用于通过连接在室内机与所述室外机通信电路之间的信号线,与室内机进行通信;所述电源控制电路,设置在供电线路为电源供电的回路上,用于在接收到室内机通过所述信号线发送的控制信号后,控制供电线路为所述电源供电;所述电源,用于在接收到供电线路的供电后,为室外机主控电路及室外机通信 电路供电。由于电源控制电路根据信号线中的控制信号,控制控制供电线路为所述电源供电,室外供电回路所产生的电流无需经过线缆流经室内机,因而可以降低室外机供电控制过程对线缆的要求
可选的,所述室外机主控电路,用于在上电后向电源控制电路发送断路控制信号;所述电源控制电路,还用于在接收到所述断路控制信号后,断开通过信号线为所述电源控制电路供电的回路,并连通供电线路为电源供电的第二回路。
可选的,所述电源控制电路包括开关型继电器及常闭式转换型继电器,其中,所述开关型继电器由信号线供电,所述转换型继电器设置在信号线为开关型继电器供电的回路中;所述开关型继电器,用于在室内机通过信号线发送预定电平信号后闭合,连通供电线路为电源供电的第一回路;所述转换型继电器,用于在接收到室外机主控电路发送的断路控制信号后,将动触点从与常闭触点连接切换为与常开触点连接,从而断开信号线为所述开关型继电器供电的回路,并连通供电线路为电源供电的第二回路。
可选的,所述开关型继电器,具体用于在接收到室内机通过信号线发送预定电平信号后闭合,连通供电线路为电源供电的第一回路。
可选的,所述开关型继电器的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;所述转换型继电器的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,线圈的供电电源由所述室外机主控电路控制。
可选的,所述电源控制电路还包括电平信号提供电路;所述电平信号提供电路,用于在接收到室内机通过信号线发送预定电平信号后,连通为所述开关型继电器供电的回路;所述开关型继电器,具体用于在为所述开关型继电器供电的回路连通后闭合,从而连通供电线路为电源供电的第一回路。
可选的,所述电平提供电路包括比较器电路及三极管电路;所述比较器电路,正输入端用于接收分压电路提供的预定电压,负输入端用于接收室内机通过信号线发送预定电平信号,输出端与所述三极管电路的基极连接,用于在在负输入端接收到室内机通过信号线发送预定电平信号后,在输出端输出高电平;所述三极管电路,发射极与所述开关型继电器的线圈输出端连接,集电极与所述转换型继电器的常闭触点连接,用于在基极接收到所述比较器电路输出端输出的高电平后,导通发射极与集电极,从而连通为所述开关型继电器供电的回路。
可选的,所述开关型继电器的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,所述开关型继电器的线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;所述转换型继电器的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,所述转换型继电器的线圈的供电电源由所述主控芯片控制。
可选的,所述电源包括阻容降压半波整流电路和稳压电路,所述阻容降压半波整流电路的输入端与供电线路连接,输出端与稳压电路的输入端相连,所述稳压电路的输出端与所述室外机通信电路相连。
可选的,所述稳压电路包括并联的稳压管和电解电容,稳压管的阴极连接在电解电容的正极和二极管的阴极之间,阳极连接在电解电容的负极和供电零线之间。
可选的,所述室外机通信电路的发射电路为第一光耦合器,接收电路为第二光耦合器;所述第一光耦合器的阳极与外部直流电源相连,阴极与主控芯片相连,第一光耦合器的集电极与所述电源的输出端相连,第一光耦合器的发射极与第二光耦合器的阳极相连;第二光耦合器的阴极与信号线相连,第二光耦合器的集电极与外部直流电源相连,第二光耦合器的发射极与主控芯片相连。
可选的,所述开关型继电器还包括设置在所述第二光耦合器的发射极和主控芯片之间的第一滤波电路。
可选的,所述室外机主控电路,还用于在室外机通信电路接收到室内机通信电路发送的关机信号后,停止发送所述断路控制信号;所述转换型继电器,还用于在所述室外机主控电路停止所发送的所述断路控制信号后,将动触点从与常开触点连接切换为与常闭触点连接,连通信号线为所述开关型继电器供电的回路,并断开所述火线与零线之间的第二通路。
第二方面,本申请还提供了一种空调室外机,包括室内机及前述第二方面所述的室外机。可选的,所述室内机的供电零线与所述室外机的供电零线连接,所述室内机的供电火线与所述室外机的供电火线连接,所述空调室内机的室内机通信电路通过所述信号线与所述空调室外机的室外机通信电路,并通过所述信号线与空调室外机中的电源控制电路连接,所述室内机中的室内机通信电路通过所述信号线与所述室外机通信电路进行通信。
可选的,所述空调室内机,用于通过所述信号线向所述空调室外机的电源控制电路发送供电控制信号。
采用本申请所提供的空调室外机,通过信号线的电平信号,就可以启动或停止空调室外机供电,空调室外机的工作电流无需流经室内机,因此可以大大减低对线缆的要求。
附图说明
图1为现有技术中室内机和室外机的联机线路图;
图2为本申请中室内机和室外机的联机线路图;
图3为本申请空调一个实施例的结构示意图;
图4为本申请电源控制装置一个实施例的电路结构示意图;
图5为本申请电源控制装置另一个实施例的电路结构示意图;
图6为本申请电源控制装置又一个实施例的电路结构示意图;
图7为本申请室内机一个实施例的电路结构示意图;
图8为本申请室外机一个实施例的电路结构示意图;
图9为本申请一个实施例中空调开机过程中电路的工作时序逻辑示意图;
图10为本申请一个实施例中空调关机过程中电路的工作时序逻辑示意图;
图11为本申请室内机另一个实施例的电路结构示意图;
图12为本申请室外机另一个实施例的电路结构示意图;
图13为本申请另一个实施例中空调开机过程中电路的工作时序逻辑示意图;
图14为本申请另一个实施例中空调关机过程中电路的工作时序逻辑示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的 附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明如图2所示,本发明室外机供电控制器与室内接的接线原理如图2所示。
室外机通信电路的接线端子SI1,与室内机通信电路的接线端子SI2通过信号(Singnal,SI)线相连;室外机的火线接线端子L1与室内机的火线端子L2(L-IN)连接,二者共同连接至供电线路的火线,室外机的零线接线端子N1与室内机的零线端子N2(N-IN)连接,二者共同连接至供电线路的零线,也即室外机和室内机可以由同一个供电线路供电,该供电线路可以为空调提供市电。
所述空调室外机,可以包括:室外机主控电路(又可被称为室外主控板或室外主控电电路)、电源、电源控制电路及室外机通信电路等模块。所述室外机主控电路,用于控制室室外机各模块的运行,以及室外机与室内机的通信,所述室外机主控电路可以为控制芯片或包含控制芯片的电路;所述电源,用于将供电线路所提供电压(通常为220v交流市电,AC接地)转换为室外机主控电路、室外机通信电路等室外机各个模块所需的电压(例如3.3v直流电压);所述室外机通信电路,通过信号线与室内机通信电路连接,用于实现室内机和室外机的通信,从而可以将室内机接收到的指令发送到室外机,或者将室外机的运行状态发送到室内机;所述电源控制电路,则用于控制电源是否为所述室外机的各个模块供电。
其中,所述电源控制电路,可以为所述室外机主控电路的一部分,也可以独立于室外机主控电路之外。类似的,所述室外机通信电路也可以为所述室外机主控电路的一部分,或独立于室外机主控电路之外。本申请以下实施例仅以电源控制电路及室外通信电路均独立于室外机主控电路之外为例进行说明。
如图3所示,所述室外机通信电路,用于通过与所述室外机通信电路之间连接的信号线,与室内机通信电路进行通信;所述电源控制电路,设置在供电线路为电源供电的回路上,用于通过控制回路的通断来控制供电线路为所述电源供电;所述电源,用于在接收到供电线路的供电后,为室外机主控电路及室外机通信电路供电;所述室外机主控电路,除用于对室外机及室外机各部分的控制之外,在本申请各个实施例中,还可以用于在上电后向电源控制电路发送断路控制信号。在本发明各个实施例中,所述室内机或室外机的电源均可以是具有变频、变压或交直流变换功能的电源,所述电源可以是一个,也可以是多个。当所述电源为为一个时,所述电源可以同时或在不同时段,为不同的电路器件提供相应的直流电压或交流电压;当所述电源为多个时,每一个电源可以分别为不同的电路器件提供相应的直流电压或交流电压。需要说明的是,本申请不对室内机或室外机的电源数量或电源类型进行限定,根据实际需要,所述电源还可以包括直流电流源或交流电流源。
所述电源控制电路,可以用于在接收室内机通过信号线所发送的供电控制信号(例如预定电平信号)后,连通供电线路为电源供电的第一回路,从而使电源为室外机的各个模块供电。其中,所述预定电平信号可以是持续预定时长的高电平。所述供电控制信号由室内机发出,例如可以由室内机通信电路发出,也可以由室内机的其他模块发出并通过室内机通信电路传输至信号线,对此本申请不进行限制。其中,所述第一回路的连通性可以由由供电控制信号维持。例如,存在所述预定电平信号时,所述第一回路保持连通;而当所 述预定电平信号消失后,所述第一回路断开。
由于所述信号线是室内机与室外机之间通信用的线路,如果信号线中一直维持所述供电控制信号,以维持该回路连通的状态的话,那么将会影响到室外机与室内机之间的通信,因此在第一回路连通使得电源上电后,所述电源控制电路还需要连通供电线路为电源供电的第二回路,以替代所述第一回路。因此所述电源控制电路,还用于在接收到断路控制信号后,连通所述第二回路,从而使得所述供电控制信号消失后,即第一回路断开后,能通过所述第二回路为所述电源供电。所述断路控制信号可以由室外机主控电路发送,也可以由其他模块发送,对此本申请不做限定。
为使室外机与室内机能够正常通信,所述电源控制电路,还用于在接收到所述断路控制信号后,断开所述供电控制信号经由所述电源控制电路的接收回路,使得室内机通信电路通过所述信号线所发送的通信信号流向室外机通信电路,而不流向所述电源控制电路。进一步,所述电源控制电路,还用于在所述断路控制信号消失后,连通所述供电控制信号经由所述电源控制电路的接收回路,从而为再次连通所述第一回路做准备。
如图4所示,所述电源控制电路可以包括开关型继电器K1及常闭式转换型继电器K2等两个继电器(RELAY),所述开关型继电器K1,用于在室内机通过信号线发送供电控制信号后闭合,连通供电线路为电源供电的第一回路,即连通N与N-OUT之间的第一回路;所述转换型继电器K2,用于在接收到室外机主控电路发送的断路控制信号后,将动触点从与常闭触点连接切换为与常开触点连接,从而断开信号线为所述开关型继电器供电的回路,并连通供电线路为电源供电的第二回路,即连通N与N-OUT之间的第二回路。其中,开关型继继电器K1与转换型继电器K2的工作状态都可以通过是否为其供电来进行改变。
在具体实现中,所述开关型继电器K1可以由信号线供电,从而在室内机通过信号线发送供电控制信号后闭合;或者也可以由电平信号提供电路供电,所述电平信号提供电路可以在接收到通信线上的供电控制信号后,为所述开关型继电器K1提供工作电平。下面结合附图进行对这两种实现方式进行说明。
在一种实现方式中,所述开关型继电器,可用于在接收到室内机通过信号线发送供电控制信号后闭合,连通供电线路为电源供电的第一回路。具体应用中,可以采用图5所示的方式实现,所述开关型继电器K1的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;所述转换型继电器K2的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,线圈的供电电源由所述室外机主控电路控制。
在另一种实现方式中,所述电源控制电路还包括电平信号提供电路;所述电平信号提供电路,用于在接收到室内机通过信号线发送供电控制信号后,连通为所述开关型继电器供电的回路;所述开关型继电器,具体用于在为所述开关型继电器供电的回路连通后闭合,从而连通供电线路为电源供电的第一回路。具体应用中,可以采用图6所示的方式实现,所述电平提供电路包括比较器电路N1A及三极管电路V1;所述比较器电路N1A,正输入端用于接收分压电路提供的预定电压,负输入端用于接收室内机通过信号线发送供电控制信号,输出端与所述三极管电路V1的基极连接,用于在在负输入端接收到室内机通过信号线发送供电控制信号后,在输出端输出高电平;所述三极管电路V1,发射极与所述开关型继电器K1的线圈输出端连接,集电极与所述转换型继电器K2的常闭触点连接,用于在基 极接收到所述比较器电路N1A输出端输出的高电平后,导通发射极与集电极,从而连通为所述开关型继电器K1供电的回路。所述开关型继电器K1的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,所述开关型继电器K1的线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;所述转换型继电器的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,所述转换型继电器的线圈的供电电源由所述主控芯片控制。
在此需要说明的是,以上只是对电源控制电路的两种示例性说明,其他实现方式就不在实施例中一一列出。
下面结合附图对本申请通过电源控制电路实现电源供电控制的技术方案做进一步说明。
在本申请一个实施例中,室内机的电路结构可以如图7所示,室外机的电路结构则可以如图8所示。
如图7所示,L为火线、N零线,SI为通信线;光耦B3、光耦B4起到信号隔离的作用,其中光耦B3为室内机的通信发送端(TXD_IDU),光耦B4为室内机的通信接收端(RXD_IDU);二极管D4为反向续流二极管,用于起反向耐压保护作用,二极管D5为正向二极管,用于起防止电流反向流动和反向耐压保护作用,PTC电阻RT3起到限流和短路过流保护作用,压敏电阻RV2用于起浪涌电压吸收作用,电阻R10、电阻R12用于起限流作用,电阻R11,电容C4组成RC滤波电路。由于室内机不同的电路器件的工作电压可能不同,因此可以在室内机设置多个不同的电源,分别为不同的电路器件供电。例如,图中示出的室外机主控电路(室内主控板)工作所需5V电源可以由室内的电源提供,与室外机通信电路所需的30V电源相隔离,即电路器件工作所需的5V电压和30V电源可以由不同电源提供。电源供电的具体实现方式在此就不再一一详述。其中,A表示二极管的阳极,K表示二极管的阴极,B表示三极管的基极,C表示三极管的集电极,E表示三极管的发射极。
如图8所示,L为火线、N为零线,SI为通信线,PTC电阻RT2起到限流和短路过流保护作用,压敏电阻RV1用于起浪涌电压吸收作用,二极管D2为反向续流二极管,用于起反向过压保护作用,电阻R1为限流电阻,二极管D1为正向二极管,用于防止电流反向流动和反向耐压保护作用,电容C1、电容C3用于起滤波作用;光耦B1、光耦B2用于起信号隔离作用,其中光耦B1为室外机的通信发送端,光耦B2为室外机的通信接收端。电阻R3、电阻R5用于起限流作用;电阻R4、电容C2组成RC滤波电路。与室内机类似,由于室外机不同的电路器件的工作电压可能不同,图中示出的3.3V和12V电源可以由不同室外电源分别提供,与完成室内机通信电路所需的30V电源相隔离,电源供电的具体实现方式在此就不再一一详述。
当空调处于待机状态时,室内机侧发送光耦B3截止,室外机侧控制板没有通电,继电器K1断开,继电器K2处于常闭节点。在此情况下,室外机主控电路无法通电,也不会产生待机功耗,因此可以大幅降低空调待机时的功耗。
当空调需要开机工作时,位于室内侧的室内主控板(也可以被称为室内侧主控电路或是室内主控电路)通过MCU控制光耦B3的CE导通,所述MCU可以是所述室外机主控电路本身或所述室外机主控电路的一部分。光耦B3的CE导通后,以N线为参考地的30V电压 通过光耦B3,光耦B4、光耦D5、PTC电阻RT3输出到室外,后经过PTC电阻RT2到继电器K1的线圈,然后通过转换型继电器K2的常闭触点回到N线形成电流环路,开关型继电器K1得电闭合,室外机主控电路通过PTC电阻RT1、开关型继电器K1触点给后级整流桥VC1和电解电容E2供电,并使室外机的电源得电工作。
室外机的电源得电工作后,室外机主控电路给转换型继电器K2的线圈通电,使得转换型继电器K2线圈切换触点到Nout线路上,使N和Nout连通,保证室外可靠供电,同时由于转换型继电器K2的常闭触点断开,开关型继电器K1的线圈回路断开,开关型继电器继电器K1停止工作,电流信号通过限流电阻R1及正向二极管D1流向光耦B1,光耦B2,从而连通室内机通信电路与室外机通信电路之间的通信回路,使空调室内外控制板进入正常工作状态。在此过程中,电路的工作时序逻辑可以参见图9。
当空调收到关机命令时,室内机侧的光耦B3停止发送信号,室外机MCU停止给转换型继电器K2继电器供电,转换型继电器K2继电器断开N线与Nout的连接,切换到常闭触点,由于此时光耦B3截止,没有电流流过开关型继电器K1,所以开关型继电器K1也处于断开状态,室外机主控电路断电停止工作,等待下一次开机命令。在此过程中,电路的工作时序逻辑可以参见图10。
在本申请一个实施例中,室内机的电路结构可以如图11所示,室外机的电路结构则可以如图12所示。
如图11所示,N为零线,SI为室内外通信线,电阻R9为限流电阻,二极管D2二极管起反向耐压保护作用,电容C3起滤波作用;光耦B3、光耦B4用于起信号隔离作用,其中光耦B3为室内机的通信发送端,光耦B4为室内机的通信接收端;电阻R10、电阻R12用于起限流作用,电阻R11,电容C4组成RC滤波电路。
如图12所示,L为火线、N为零线,SI为通信线;电容C1、电阻R1、二极管D1构成阻容降压半波整流电路,稳压二极管Z1、稳压电容E1构成稳压电路,以N线为参考地产生15V稳压电源;光耦B1、光耦B2起到信号隔离的作用,其中光耦B1为室外机的通信发送端,光耦B2为室外机的通信接收端;电阻R2用于起分压作用;电阻R3、电阻R5用于起限流作用;电阻R4、电容C2组成RC滤波电路;比较器N1A的正输入端由电阻R7、电阻R8组成的分压电阻产生7.5V固定电平输入,比较器N1A的负输入端接收SI上所发送的信号,电阻R6为比较器N1A输出端的上拉电阻,比较器N1A的输出端控制NPN型三极管V1的基极(B极),三极管V1可控制开关型继电器K1的通断;PTC电阻RT1,用于限制室外机通电时的冲击电流;转换型继电器K2的控制线圈不通电工作时,触点连接N线和三极管V1的集电极(E极),转换型继电器K2的控制线圈工作时触点闭合,连接N线和室外机主控电路的N输出端,提供电源给室外机主控电路。
当空调处于待机状态时,室外机侧控制板没有通电,光耦B1没有电源信号,光耦B1的CE端截止。此时,光耦B3没有收到开机命令,也处于截止状态,此时SI的电压等于稳压二极管Z1的输出电压15V,比较器N1A正输入端的电压为7.5V,因此比较器负输入端接收SI的电压15V高于正输入端电压,因此比较器输出低电平,所以三极管V1的CE不能导通,开关型继电器K1不能吸合工作,室外机主控电路无法通电,因而室外机主控电路不会产生待机功耗。
当空调需要开机工作时,室内主控板通过MCU控制光耦B3的CE导通,此时,由于电 阻R2和电阻R9的分压作用,SI的电压变为5V(15V*5K/15K),即输入到比较器N1A负输入端的电压变为5V,此时比较器N1A正输入端的电压仍然为7.5V,由于N1A正输入端电压高于负输入端电压,因此比较器N1A输出端输出15V的高电平,三极管V1的CE导通,开关型继电器K1闭合接通后N线通过PTC电阻RT1供电给室外机主控电路。室外机主控电路工作后,给转换型继电器K2的线圈通电,转换型继电器K2断开三极管V1的E极与N线的连接,从而使开关型继电器K1停止工作,同时连通主电源与室外机主控电路的N线,使空调室外机主控电路进入正常工作状态。在此过程中,电路工作时序逻辑可以参见图13。
当空调收到关机命令时,室内机侧的光耦B3和室外机侧的光耦B1停止发送信号,室外机主控电路MCU停止给转换型继电器K2供电,转换型继电器K2断开N线与室外机主控电路的连接,由于此时SI到比较器N1A负输入端的电压为15V,所以开关型继电器K1也处于断开状态,室外机主控电路断电停止工作,等待下一次开机命令。在此过程中,电路工作时序逻辑可以参见图14。
在此需要说明的是,以上实施例均是本申请的示例,在实际使用中,供电控制器可以包含更多或更上的电路器件,对此本申请并不进行限定。其他电路或模块也可以包含更多或更少的电路器件,或用于实现更多或的功能。例如,所述室外机主控电路,还用于在室外机通信电路接收到室内机通信电路发送的关机信号后,停止发送所述断路控制信号;所述转换型继电器,还用于在所述室外机主控电路停止所发送的所述断路控制信号后,将动触点从与常开触点连接切换为与常闭触点连接,连通信号线为所述开关型继电器供电的回路,并断开所述火线与零线之间的第二通路。
与本申请供电控制器相对应,本申请还提供一种空调室外机,所述空调室外机包含前述实施例中的供电控制器。
与前述供电控制器及前述空调室外机相对应,本身还提供了一种空调,所述空调可以包括前述实施例中所述的室内机及室外机,所述室内机的供电零线与所述室外机的供电零线连接,所述室内机的供电火线与所述室外机的供电火线连接,所述室内机的通信电路通过所述信号线与所述室外机通信电路及供电控制器连接。具体连接方式可以参见前述实施例及相应附图,在此就不再赘述。
采用本申请所提供的技术方案,可以利用室内机和室外机通信线控制室外机的供电,在空调待机时停止对室外机主控电路供电,降低室外供电待机功耗,室外供电电源的电源火线L仅通过一条联机线与室内机的火线L2相连为室内机供电,对线径要求较小。
最后应说明的是,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种空调室外机,其特征在于,包括:室外机主控电路、电源、电源控制电路及室外机通信电路;
    所述室外机通信电路,用于通过连接在室内机与所述室外机通信电路之间的信号线,与室内机进行通信;
    所述电源控制电路,用于根据室内机通过所述信号线发送的供电控制信号,控制供电线路为所述电源供电;
    所述电源,用于在接收到供电线路的供电后,为室外机主控电路及室外机通信电路供电。
  2. 如权利要求1所述的空调室外机,其特征在于,
    所述室外机主控电路,用于在上电后向电源控制电路发送断路控制信号;
    所述电源控制电路,还用于在接收到所述断路控制信号后,断开通过信号线为所述电源控制电路供电的回路,并连通供电线路为电源供电的第二回路。
  3. 如权利要求1或2所述的空调室外机,其特征在于,
    所述电源控制电路设置在供电线路为电源供电的回路上。
  4. 如权利要求1至3中任一项所述的空调室外机,其特征在于,
    所述电源控制电路包括开关型继电器及常闭式转换型继电器,其中,所述开关型继电器由信号线供电,所述转换型继电器设置在信号线为开关型继电器供电的回路中;
    所述开关型继电器,用于在室内机通过信号线发送预定电平信号后闭合,连通供电线路为电源供电的第一回路;
    所述转换型继电器,用于在接收到室外机主控电路发送的断路控制信号后,将动触点从与常闭触点连接切换为与常开触点连接,从而断开信号线为所述开关型继电器供电的回路,并连通供电线路为电源供电的第二回路。
  5. 如权利要求4所述的空调室外机,其特征在于,
    所述开关型继电器,具体用于在接收到室内机通过信号线发送预定电平信号后闭合,连通供电线路为电源供电的第一回路。
  6. 如权利要求5所述的空调室外机,其特征在于,
    所述开关型继电器的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;
    所述转换型继电器的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,线圈的供电电源由所述室外机主控电路控制。
  7. 如权利要求4所述的空调室外机,其特征在于,
    所述电源控制电路还包括电平信号提供电路;
    所述电平信号提供电路,用于在接收到室内机通过信号线发送预定电平信号后,连通为所述开关型继电器供电的回路;
    所述开关型继电器,具体用于在为所述开关型继电器供电的回路连通后闭合,从而连通供电线路为电源供电的第一回路。
  8. 如权利要求7所述的空调室外机,其特征在于,
    所述电平提供电路包括比较器电路及三极管电路;
    所述比较器电路,正输入端用于接收分压电路提供的预定电压,负输入端用于接收室内机通过信号线发送预定电平信号,输出端与所述三极管电路的基极连接,用于在在负输入端接收到室内机通过信号线发送预定电平信号后,在输出端输出高电平;
    所述三极管电路,发射极与所述开关型继电器的线圈输出端连接,集电极与所述转换型继电器的常闭触点连接,用于在基极接收到所述比较器电路输出端输出的高电平后,导通发射极与集电极,从而连通为所述开关型继电器供电的回路。
  9. 如权利要求8所述的空调室外机,其特征在于,
    所述开关型继电器的常开触点的一端通过PTC与供电线路的供电零线连接,另一端与所述室外机的零线端连接,所述开关型继电器的线圈一端与信号线连接,另一端与所述转换型继电器的常闭触点连接;
    所述转换型继电器的动触点与所述供电零线连接,常开触点与所述室外机的零线端相连,所述转换型继电器的线圈的供电电源由所述主控芯片控制。
  10. 如权利要求1至9中任一项所述的空调室外机,其特征在于,
    所述电源包括阻容降压半波整流电路和稳压电路,所述阻容降压半波整流电路的输入端与供电线路连接,输出端与稳压电路的输入端相连,所述稳压电路的输出端与所述室外机通信电路相连。
  11. 如权利要求10所述的空调室外机,其特征在于,
    所述稳压电路包括并联的稳压管和电解电容,稳压管的阴极连接在电解电容的正极和二极管的阴极之间,阳极连接在电解电容的负极和供电零线之间。
  12. 如权利要求1至11中任一项所述的空调室外机,其特征在于,
    所述室外机通信电路的发射电路为第一光耦合器,接收电路为第二光耦合器;
    所述第一光耦合器的阳极与外部直流电源相连,阴极与主控芯片相连,第一光耦合器的集电极与所述电源的输出端相连,第一光耦合器的发射极与第二光耦合器的阳极相连;
    第二光耦合器的阴极与信号线相连,第二光耦合器的集电极与外部直流电源相连,第二光耦合器的发射极与主控芯片相连。
  13. 如权利要求12所述的空调室外机,其特征在于,
    还包括设置在所述第二光耦合器的发射极和主控芯片之间的第一滤波电路。
  14. 如权利要求4所述的空调室外机,其特征在于,
    所述室外机主控电路,还用于在室外机通信电路接收到室内机通信电路发送的关机信号后,停止发送所述断路控制信号;
    所述转换型继电器,还用于在所述室外机主控电路停止所发送的所述断路控制信号后,将动触点从与常开触点连接切换为与常闭触点连接,连通信号线为所述开关型继电器供电的回路,并断开所述火线与零线之间的第二通路。
  15. 一种空调,其特征在于,包括空调室内机及权利要求1至12中任一项所述的室外机空调室外机,
    所述空调室内机的供电零线与所述空调室外机的供电零线连接;
    所述空调室内机的供电火线与所述空调室外机的供电火线连接;
    所述空调室内机的室内机通信电路通过所述信号线与所述空调室外机的室外机通信电路,并通过所述信号线与空调室外机中的电源控制电路连接;
    所述室内机通信电路通过所述信号线与所述室外机通信电路通信。
  16. 如权利要求15所述的空调,其特征在于,
    所述空调室内机,用于通过所述信号线向所述空调室外机的电源控制电路发送供电控制信号。
PCT/CN2020/072309 2019-01-15 2020-01-15 空调室外机及空调 WO2020147759A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000202.XA CN111656104B (zh) 2019-01-15 2020-01-15 空调室外机及空调
AU2020209621A AU2020209621B2 (en) 2019-01-15 2020-01-15 Outdoor unit of air conditioner, and air conditioner
US17/364,309 US11971180B2 (en) 2019-01-15 2021-06-30 Outdoor unit of air conditioner, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910036332.8A CN109764503B (zh) 2019-01-15 2019-01-15 一种空调室外供电控制电路及空调器
CN201910036332.8 2019-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/364,309 Continuation US11971180B2 (en) 2019-01-15 2021-06-30 Outdoor unit of air conditioner, and air conditioner

Publications (1)

Publication Number Publication Date
WO2020147759A1 true WO2020147759A1 (zh) 2020-07-23

Family

ID=66454038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072309 WO2020147759A1 (zh) 2019-01-15 2020-01-15 空调室外机及空调

Country Status (4)

Country Link
US (1) US11971180B2 (zh)
CN (2) CN109764503B (zh)
AU (1) AU2020209621B2 (zh)
WO (1) WO2020147759A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764503B (zh) 2019-01-15 2021-04-16 海信(广东)空调有限公司 一种空调室外供电控制电路及空调器
CN112393395B (zh) * 2019-08-15 2022-01-21 青岛海尔空调器有限总公司 用于识别低待机功耗室外机的电路和空调
CN111343065B (zh) * 2020-03-03 2021-07-23 广东美的暖通设备有限公司 通信电器和空调器
CN111404796A (zh) * 2020-03-25 2020-07-10 广州华凌制冷设备有限公司 通信装置、通信组件和车载空调器
CN111399424A (zh) * 2020-04-02 2020-07-10 深圳创维-Rgb电子有限公司 智能终端、智能底座设备以及智能控制系统
CN113685999A (zh) * 2020-05-18 2021-11-23 宁波奥克斯电气股份有限公司 一种室外机控制装置及空调器
CN112032981B (zh) * 2020-07-24 2021-10-22 广东积微科技有限公司 空调室内外机通讯电路及空调
CN112524685A (zh) * 2020-11-30 2021-03-19 青岛海尔空调器有限总公司 空调器
CN114576805B (zh) * 2020-11-30 2024-06-18 青岛海尔空调器有限总公司 空调器的控制方法
CN114576702B (zh) * 2020-11-30 2024-02-20 青岛海尔空调器有限总公司 空调器
CN112648693B (zh) * 2020-12-18 2023-08-04 青岛海信日立空调系统有限公司 一种空调及多通道pfc电路控制方法
CN112762525B (zh) * 2020-12-31 2023-09-08 佛山市顺德区美的电子科技有限公司 空调室外机控制电路、电控组件及空调器
CN113669879B (zh) * 2021-08-31 2022-09-09 佛山市顺德区美的电子科技有限公司 多联机空调控制电路、电控装置及空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066385A (zh) * 2015-08-25 2015-11-18 深圳创维空调科技有限公司 一种空调室外机待机功耗控制系统及室外机
CN204787051U (zh) * 2015-06-30 2015-11-18 广东美的制冷设备有限公司 一种空调器及其室外机供电控制电路
CN205299834U (zh) * 2015-11-30 2016-06-08 惠州学院 商用空调无线通信系统
US20160273792A1 (en) * 2013-05-02 2016-09-22 Gree Electric Appliances, Inc. Of Zhuhai Low-power consumption standby circuit device, air conditioner and control method for air conditioner
CN107906697A (zh) * 2017-10-13 2018-04-13 Tcl空调器(中山)有限公司 空调器
CN108488948A (zh) * 2018-06-05 2018-09-04 珠海格力电器股份有限公司 空调、空调控制系统和室外机开关电路
CN109764503A (zh) * 2019-01-15 2019-05-17 海信(广东)空调有限公司 一种空调室外供电控制电路及空调器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399337B2 (ja) 1997-12-29 2003-04-21 ダイキン工業株式会社 空気調和装置における室内外通信装置
JP2010054065A (ja) 2008-08-26 2010-03-11 Fujitsu General Ltd 空気調和機
JP2011144951A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機
CN103163452B (zh) * 2011-12-13 2016-08-24 海洋王照明科技股份有限公司 一种用于测试镇流器中温控开关寿命的电路
JP2013137118A (ja) * 2011-12-28 2013-07-11 Daikin Industries Ltd 空気調和装置
KR101582564B1 (ko) 2014-04-23 2016-01-07 오텍캐리어 주식회사 공기 조화 시스템 및 그의 대기전력 제어 방법
JP2016205687A (ja) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 空気調和機
KR101737364B1 (ko) 2015-08-31 2017-05-18 엘지전자 주식회사 공기조화기
WO2017199276A1 (ja) * 2016-05-16 2017-11-23 東芝キヤリア株式会社 空気調和機
KR101919800B1 (ko) * 2017-03-03 2018-11-19 엘지전자 주식회사 멀티형 공기조화기
CN207281508U (zh) * 2017-06-29 2018-04-27 青岛海尔空调电子有限公司 一种空调器控制电路及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160273792A1 (en) * 2013-05-02 2016-09-22 Gree Electric Appliances, Inc. Of Zhuhai Low-power consumption standby circuit device, air conditioner and control method for air conditioner
CN204787051U (zh) * 2015-06-30 2015-11-18 广东美的制冷设备有限公司 一种空调器及其室外机供电控制电路
CN105066385A (zh) * 2015-08-25 2015-11-18 深圳创维空调科技有限公司 一种空调室外机待机功耗控制系统及室外机
CN205299834U (zh) * 2015-11-30 2016-06-08 惠州学院 商用空调无线通信系统
CN107906697A (zh) * 2017-10-13 2018-04-13 Tcl空调器(中山)有限公司 空调器
CN108488948A (zh) * 2018-06-05 2018-09-04 珠海格力电器股份有限公司 空调、空调控制系统和室外机开关电路
CN109764503A (zh) * 2019-01-15 2019-05-17 海信(广东)空调有限公司 一种空调室外供电控制电路及空调器

Also Published As

Publication number Publication date
AU2020209621B2 (en) 2022-09-29
CN111656104B (zh) 2021-09-17
CN111656104A (zh) 2020-09-11
CN109764503A (zh) 2019-05-17
US11971180B2 (en) 2024-04-30
CN109764503B (zh) 2021-04-16
US20210325055A1 (en) 2021-10-21
AU2020209621A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2020147759A1 (zh) 空调室外机及空调
US6292233B1 (en) Device controller with low power standby mode
WO2014177056A1 (zh) 低功耗待机电路装置和空调器及空调器的控制方法
EP3644519B1 (en) Air conditioner current loop communication circuit and air conditioner
JP2011524732A (ja) 電力入力を備えた回路構成及び電力入力回路を制御する動作方法
CN107906697A (zh) 空调器
CN204389925U (zh) 一种空调器及其低待机功耗电路
CN206755494U (zh) 空调器电流环通信电路及空调器
CN207281508U (zh) 一种空调器控制电路及空调器
CN108488948A (zh) 空调、空调控制系统和室外机开关电路
CN104850023B (zh) 空调器及其室外机的电流环通信与供电控制电路和方法
CN207489241U (zh) 一种电器设备及其零功耗待机电路
CN101257211A (zh) 一种变频空调中防止上电瞬间冲击的电路
CN103199390B (zh) 一种墙面电源插线面板
CN208282283U (zh) 空调、空调控制系统和室外机开关电路
CN209593094U (zh) 一种不同电源系统的自动切换电路
WO2021027199A1 (zh) 用于识别低待机功耗室外机的电路和空调
CN209432956U (zh) 一种空调室外机控制板检测工装
TWM560742U (zh) 待機電路、具有該待機電路的插座、插頭及設備
CN202795223U (zh) 一种消除可红外遥控开关电器电源待机功耗的控制电路
CN114576702B (zh) 空调器
CN108709296A (zh) 空调的室外机的电源控制电路、空调及控制方法
CN213814964U (zh) 中央空调机的暖通系统的控制装置
WO2024113971A1 (zh) 空调系统及其供电控制装置和供电控制方法
CN213122647U (zh) 一种单火线智能开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020209621

Country of ref document: AU

Date of ref document: 20200115

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20741323

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20741323

Country of ref document: EP

Kind code of ref document: A1