WO2014177056A1 - 低功耗待机电路装置和空调器及空调器的控制方法 - Google Patents

低功耗待机电路装置和空调器及空调器的控制方法 Download PDF

Info

Publication number
WO2014177056A1
WO2014177056A1 PCT/CN2014/076600 CN2014076600W WO2014177056A1 WO 2014177056 A1 WO2014177056 A1 WO 2014177056A1 CN 2014076600 W CN2014076600 W CN 2014076600W WO 2014177056 A1 WO2014177056 A1 WO 2014177056A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcu
control switch
air conditioner
power
power supply
Prior art date
Application number
PCT/CN2014/076600
Other languages
English (en)
French (fr)
Inventor
习涛
陶梦春
伍衍亮
魏汉钦
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2016510925A priority Critical patent/JP6389512B2/ja
Priority to EP14791783.5A priority patent/EP2993421B1/en
Priority to US14/648,163 priority patent/US9939166B2/en
Priority to KR1020157002991A priority patent/KR101697443B1/ko
Publication of WO2014177056A1 publication Critical patent/WO2014177056A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of electrical and refrigeration, and more particularly to a low power standby circuit device and a method of controlling an air conditioner and an air conditioner.
  • the household appliance controller is usually powered by a power supply scheme.
  • the air conditioner controller is in the standby state, the sweeping motor circuit, the indoor display panel, the main board, and the main chip of the display panel are all powered, and the standby state is
  • the power consumption is up to 3W or more, which wastes power and increases safety risks.
  • the present invention provides a low power standby circuit device and a control method for an air conditioner and an air conditioner, which achieve low power consumption in a standby state by reasonable power distribution, and the present invention achieves the above object
  • the technical solution adopted is:
  • a low power standby circuit device includes a main power source, a sub power source, a first control switch, and a control circuit module; the input end of the main power source is connected to a peripheral power supply through the first control switch, and the output end is connected Peripheral load for powering peripheral loads;
  • the input end of the auxiliary power source is directly connected to the peripheral power supply, and the output end is connected to the control circuit module;
  • the control circuit module includes an MCU module and a signal receiving circuit, and the MCU module controls the pass of the first control switch Broken.
  • the low power standby circuit device further includes a second control switch
  • the MCU module includes a first MCU and a second MCU; the first MCU is connected in series with the second control switch to connect the secondary power source; the second MCU is connected to the secondary power source; the first MCU and the first The two MCUs are all powered by the secondary power source; the first MCU controls the on and off of the first control switch, and the second MCU controls the communication of the second control switch Broken.
  • the low power standby circuit device further includes a voltage stabilizing module
  • the output end of the auxiliary power source is connected to the control circuit module in series with the voltage stabilizing module.
  • the main power source is a multi-output
  • the secondary power source is a single output or a multiple output.
  • control circuit module further includes a reset circuit and a display module; and the reset circuit and the display module are both connected to an output end of the auxiliary power source.
  • an air conditioner including an indoor unit and an outdoor unit, characterized in that:
  • the air conditioner further includes the above-described low power standby circuit device;
  • the low-power standby circuit device is connected to a peripheral power supply to supply power to the indoor unit and the outdoor unit of the air conditioner; the indoor unit and the outdoor unit are connected in series with a third control switch for controlling the power connection between the two.
  • the MCU module is connected to the third control switch for controlling the on and off of the third control switch.
  • an air conditioner including an indoor unit and an outdoor unit, the air conditioner further including the above-described low power standby circuit device;
  • the low-power standby circuit device is connected to a peripheral power supply to supply power to the indoor unit and the outdoor unit of the air conditioner; the indoor unit and the outdoor unit are connected in series with a third control switch for controlling the power connection between the two.
  • the MCU is connected to the third control switch for controlling the on and off of the third control switch.
  • a control method of the above air conditioner comprising a booting step, the booting step comprising the steps of: when an MCU module of a control circuit module of a low power standby circuit device of the air conditioner receives a power-on signal or is re-powered, The MCU module first controls the first control switch to be turned on, and then controls the third control switch of the air conditioner to be turned on, and the main power source, the outdoor unit, and the indoor unit load circuit of the low-power standby circuit device are powered, and the air conditioner The device enters normal operation.
  • a control method of the above air conditioner comprising a standby step, the standby step comprising the following steps: after the air conditioner enters a standby mode, the MCU module first controls the third control switch to be disconnected, and then controls the The first control switch is disconnected, the connection between the indoor unit and the outdoor unit is disconnected, and the connection between the main power source and the peripheral power supply is cut off;
  • the MCU module enters a low power mode.
  • the standby step comprises the following steps: When the MCU module receives the shutdown signal, the MCU module first controls the third control switch to be turned off to power off the outdoor unit, and then controls the first control switch to be off to disable the main power source;
  • a control method for the above air conditioner comprising a booting step, the booting step comprising the steps of: receiving a power-on signal or the second when a second MCU of a control circuit module of the low-power standby circuit device of the air conditioner receives When the MCU is powered back on, the second control switch of the low power standby circuit device is turned on under the control of the second MCU, and the first MCU of the low power standby circuit device is powered;
  • the first MCU first controls the first control switch of the low power standby circuit device to be turned on, and then controls the third control switch of the air conditioner to be turned on, the main power source and the outdoor unit of the low power standby circuit device
  • the indoor unit load circuit is energized and the air conditioner enters normal operation.
  • a control method of the above air conditioner comprising a standby step, the standby step comprising the following steps: after the air conditioner enters a standby mode, the first MCU first controls the third control switch to be turned off, and then controls The first control switch is disconnected, the connection between the indoor unit and the outdoor unit is disconnected, and the connection between the main power source and the peripheral power supply is cut off;
  • the second MCU controls the second control switch to be disconnected, disconnects the first MCU from the second MCU, and the second MCU enters a low power mode.
  • the standby step comprises the following steps:
  • the first MCU When the first MCU receives the shutdown signal sent by the second MCU, and does not receive the signal sent by the second MCU again within the second preset time, the first MCU first controls the The third control switch is turned off to power off the outdoor unit, and then the first control switch is turned off to disable the main power source;
  • the second MCU Determining whether the second MCU receives an operation signal within a third preset time after the first control switch is turned off; if yes, prohibiting entering a low power consumption mode; otherwise, the second MCU controls the The second control switch is turned off, and the second MCU enters a low power mode.
  • the power supply of the low-power standby circuit device is powered by a two-way switching power supply, and is applied to an air conditioner, and the control method of the air conditioner of the present invention is adopted.
  • the air conditioner is in the standby state, the outdoor power supply and the main power supply are disconnected.
  • the power of the main board VCC is also disconnected.
  • the main board is not powered. Only the main board of the display board and the signal receiving circuit are powered by the auxiliary power supply.
  • the load on the main board and the load on the display board reduce the communication interface of the chip compared to the control of the two parts of the main chip, which can eliminate the inter-board connection between the display board and the main board load control, reduce the cost, and improve the production.
  • Efficiency The main chip of the display panel enters a low power mode in the standby state of the air conditioner, that is, when the standby signal is received, the main chip of the display board lowers its frequency.
  • This control method achieves the goal of quasi-W (ie less than 50 mW) standby through reasonable power distribution. It not only reduces the power consumption of the air conditioner in standby state, but also enhances the anti-interference ability of the main chip.
  • FIG. 1 is a schematic diagram of circuit connection of an embodiment of an air conditioner of the present invention
  • FIG. 2 is a flow chart showing the control of the standby step of the circuit of FIG. 1;
  • FIG. 3 is a flow chart showing the control of the booting process of the embodiment of the circuit shown in FIG. detailed description
  • the air conditioner of the present invention includes an indoor unit and an outdoor unit, and the indoor unit and the outdoor unit are connected in series with a third control switch for controlling the power connection between the two; the air conditioner is also provided with low power consumption.
  • Standby circuit device
  • the low power standby circuit device comprises a main power source 13 , a sub power source 1 1 , a first control switch 12 and a control circuit module; the input end of the main power source 13 is connected to the peripheral power supply through the first control switch 12, and the output terminal is Connected to a peripheral load for powering a peripheral load; the low-power standby circuit device is connected to a peripheral power supply to supply power to the indoor unit and the outdoor unit of the air conditioner;
  • the peripheral load includes a first load 3, a second load 4, a sixth load 14, and a DC motor (not shown), wherein the first load 3 is a 14V load, such as an electric heating wire or other additional functional load;
  • the second load 4 includes a 12V stepper motor drive circuit and a buzzer circuit for the display panel (which may also be provided on the main board);
  • the sixth load 14 includes a stepper motor.
  • the input end of the sub power source 11 is directly connected to the peripheral power supply, and the output end is connected to the control circuit module;
  • the control circuit module includes an MCU module and a signal receiving circuit, and the MCU module controls the on and off of the first control switch 12.
  • the MCU module may include one MCU or two MCUs; that is, the MCU module may include one main chip or two main chips.
  • the signal receiving circuit is configured to transmit an operation signal of the air conditioner to the MCU module.
  • the low power standby circuit device further includes a second control switch 8, the MCU
  • the module includes a third load 6, a fourth load 7, and a fifth load 10.
  • the display module 5 can also be disposed in the low power standby circuit device, the display module 5 is connected to the output end of the auxiliary power source 11, and the display module 5 is a display screen or a digital device. tube.
  • the third load 6 includes a second MCU (display panel main chip) and a reset circuit, the second MCU is used to control the load operation of the display panel 1, and the fourth load 7 is another 5V circuit that does not work when the display panel is in standby;
  • the fifth load 10 includes a first MCU (main board main chip) and other circuits that are not in operation on the main board 1 during standby, and the first MCU is used to control the load operation of the main board 1.
  • the signal receiving circuit is connected to the second MCU for transmitting an operation signal of the air conditioner to the second MCU, and the signal receiving circuit is a remote receiving head circuit or/and a button circuit, and may also be disposed in the third load 6.
  • the first MCU is connected in series with the second control switch 8 to be connected to the sub power source 11, and the second MCU is also connected to the sub power source 11, the first MCU and the second MCU are both powered by the sub power source 11; the first MCU controls the on and off of the first control switch 12.
  • the second MCU controls the on and off of the second control switch 8.
  • the first MCU is connected to the third control switch for controlling the opening and closing of the third control switch.
  • the main power supply 13, the auxiliary power supply 11, the first MCU, the first control switch 12 and the third control switch are disposed on the main board 1; the second MCU and the second control switch 8 are disposed on the display panel 2;
  • the first control switch 12 and the third control switch are relays, and the second control switch 8 is a triode or a relay.
  • the output terminal of the auxiliary power source 11 is connected to the first MCU and the second MCU; the voltage regulator module 9 is a 7805 chip or a DC-DC module.
  • the main power source 13 and the sub power source 11 are both switching power supplies, the main power source 13 is a multi-output, the sub-power source 11 is a single output or a multi-output, and the single output refers to an output of only one voltage, and the multi-way refers to a plurality of outputs.
  • a voltage output such as 5V, 12V, 15V, etc.; preferably, the main power supply 13 is three outputs, three output voltages are 12V, 14V and 15V respectively; the secondary power supply 11 is a single output, and the output voltage is 12V.
  • the main power source 13 and the sub power source 11 are all operated, and the three power outputs of the main power source 13 are, wherein 15V supplies power to the DC motor, and 14V supplies power to other functional circuits, such as electric heating wires or other additional functional circuits.
  • 12V supplies power to the buzzer circuit on the display panel 1 (also on the main board 1) and the stepping motor drive circuit for sweeping the left and right, and also supplies power to the stepping motor.
  • the auxiliary power source 11 is a single output, and the output terminal 12V_1 supplies power to the first control switch 12 for controlling the operation of the main power source 13 on the main board 1.
  • the first control switch 12 is also connected to the first MCU, and the first MCU controls the first switch 12.
  • the power supply 11 also supplies power to the voltage regulator module 9 on the display module 5 and the display panel 2.
  • the output of the voltage regulator module 9 is divided into at least two branches, one output + 5V, which is the second MCU, the reset circuit and the signal.
  • VCC another output power supply voltage
  • the VCC line is provided with a second control switch 8
  • the second control switch 8 is connected to the VCC-0N pin on the first MCU
  • the second control switch 8 is controlled to be opened and closed by the second MCU (display panel main chip).
  • the first MCU is in communication with the second MCU, wherein the TXD is a serial port transmission signal 10 port for transmitting data by the second MCU, and the RXD is a serial port transmission signal for the second MCU receiving data 10 ports;
  • the ground GND of the first load 3, the second load 4, and the sixth load 14 is connected to the ground (negative electrode) of the main power source 13; the display module 5, the voltage stabilizing module 9, the third load 6, the fourth load 7, and the fifth load 10
  • the grounding G is connected to the ground (negative electrode) of the sub power source 11.
  • the first MCU is connected to the second load 4, the display module 5, the reset circuit and the receiving head circuit, and controls the working states of the second load 4, the display module 5, the reset circuit and the receiving head circuit.
  • both the main board 1 and the display board 2 are controlled by the MCU, and the air conditioner works include a booting step, and the booting step includes the following steps:
  • the MCU module of the control circuit module of the low-power standby circuit device of the air conditioner When the MCU module of the control circuit module of the low-power standby circuit device of the air conditioner receives the power-on signal or re-powers, the MCU module first controls the first control switch 12 to be turned on, and then controls the third of the air conditioner. The control switch is turned on, and the main power source 13, the outdoor unit, and the indoor unit load circuit of the low-power standby circuit device are powered, and the air conditioner enters a normal running state.
  • the air conditioner operates in a standby step, and the standby step includes the following steps:
  • the MCU module first controls the third control switch to be disconnected, then controls the first control switch 12 to open, disconnects the connection between the indoor unit and the outdoor unit, and cuts off the main The connection of the power source 13 to the peripheral power supply;
  • the MCU module enters a low power mode. That is, the clock frequency of the MCU on the MCU module is lower than the set frequency of its normal operation.
  • the air conditioner When the air conditioner is turned off, the outdoor unit and the indoor unit load circuit of the air conditioner lose power, and the air conditioner enters the standby mode.
  • the MCU module receives the power-on signal, it exits the low power mode.
  • the standby step includes the following steps:
  • the MCU module When the MCU module receives the shutdown signal, the MCU module first controls the third control switch to be turned off to power off the outdoor unit, and then controls the first control switch 12 to turn off the main power supply 13 to be powered off;
  • the MCU module Determining whether the MCU module receives an operation signal within a first preset time after the first control switch 12 is turned off; if yes, Then enter the low power mode; otherwise, the MCU module enters the low power mode.
  • the first preset time is 1 minute.
  • the air conditioner works including a booting step, and the booting step is as shown in FIG. 3;
  • the booting process is: when the second MCU receives the power-on signal or the second MCU is powered back on, the second control switch 8 is turned on under the control of the second MCU, the first MCU is powered, and the first MCU controls the first control.
  • the switch 12 and the third control switch are turned on, and the main power source 13, the outdoor unit and the indoor unit load circuit are powered, and the air conditioner enters a normal running state;
  • the air conditioner works in the standby process step, and the standby step is as shown in FIG. 2;
  • the standby step is: after the air conditioner enters the standby mode, the first MCU first controls the third control switch to be disconnected, and then Controlling that the first control switch 12 is disconnected, disconnecting the power connection between the indoor unit and the outdoor unit, and disconnecting the main power source 12 from the peripheral power supply;
  • the second MCU controls the second control switch 8 to open, disconnects the first MCU from the second MCU, and the second MCU enters a low power mode.
  • the second MCU enters the low power mode, which means that the clock frequency of the second MCU is lower than the set frequency when it is in normal operation; preferably, as an implementable manner, the standby step includes the following steps:
  • the first MCU when the first MCU receives the shutdown signal sent by the second MCU, and does not receive the signal sent by the second MCU again within the second preset time, the first MCU first controls the third control switch to be disconnected to make the outdoor The machine is powered off, and then the first control switch 12 is turned off to turn off the main power source 13;
  • the operation signal is a remote control signal or a key operation signal or a key touch signal.
  • the second preset time is 5 minutes; and the third preset time is 1 minute.
  • the second MCU can be divided by 2, that is, the frequency at which the second MCU enters the low power mode is 1 /2 of the set frequency during normal operation.
  • the second MCU receives the power-on signal, the second MCU exits the low power mode.
  • the two MCUs display board main chip), the reset circuit, and the receiving head circuit are powered.
  • the second MCU When the second MCU receives the remote control valid signal or touches the button signal or powers down and re-powers, the second MCU controls The 5V control circuit is turned on, the first MCU is powered, and after the first MCU is powered, the first control switch 12 and the third control switch are controlled to be closed, and the main control unit 13 and the electric control board on the outdoor unit are powered, and the air conditioner is normally operated.
  • the low-power standby circuit device in the above embodiment is disposed on the air conditioner.
  • the drive circuit is powered by the main power source through a reasonable power distribution, and the display panel is powered by the auxiliary power source. Disconnect the power of the outdoor unit, and then disconnect the main power supply. When using two MCUs, the power of the main board VCC is also disconnected. Only the sub power supply supplies power to the display board. For example, only the sub power supply is the main board of the display board and the remote control receiving head.
  • the circuit (signal receiving device) supplies power to achieve the goal of quasi-zero-power standby (ie, standby power less than 50 mW); solves the technical problem of large standby power of existing air conditioners (especially inverter air conditioners);
  • the two main chips respectively control the load on the main board and the load on the display board.
  • the communication interface of the chip is reduced, and the display board and the main board load control can be omitted.
  • Inter-board connection, P strives for low cost, improves production efficiency; at the same time increases the anti-interference ability of the main chip.
  • standby mode only the second MCU (display board main chip) is powered, which reduces the number of powered components compared to a single MCU module, further reducing standby power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Power Sources (AREA)

Abstract

一种低功耗待机电路装置,包括主电源(13)、副电源(11)、第一控制开关(12)和控制电路模块;主电源(13)的输入端通过第一控制开关(12)连接至外设供电电源,输出端则连接至外设负载,用于给外设负载供电;副电源(11)的输入端直接连接至外设供电电源,输出端连接所述控制电路模块;控制电路模块包括MCU模块和信号接收电路,MCU模块控制第一控制开关的通断。还涉及应用上述低功耗待机电路装置的空调器及空调器的控制方法。通过合理的电源分配,空调器实现了准0W待机的目标,既降低了待机状态下的功耗,又增强了主芯片的抗干扰能力。

Description

低功耗待机电路装置和空调器及空调器的控制方法 相关申请
本专利申请要求 2013年 5月 2 日申请的, 申请号为 201310158665. 0, 名称为 "低功 耗待机电路装置和空调器及空调器的控制方法" 的中国专利申请的优先权, 在此将其全文 引入作为参考。 技术领域
本发明涉及电气和制冷领域, 特别是涉及一种低功耗待机电路装置和空调器及空调器 的控制方法。
背景技术
目前家用电器控制器, 通常都是采用一种电源方案供电, 例如, 空调器控制器即在待 机状态下扫风电机电路、 室内机显示板、 主板、 显示板的主芯片都得电, 待机状态下功耗 高达 3W以上, 这样既浪费了电能, 又增加了安全隐患。
发明内容
为了克服现有技术的不足, 本发明提供一种低功耗待机电路装置和空调器及空调器的 控制方法, 通过合理的电源分配, 其在待机状态下实现低功耗, 本发明实现上述目的所采 用的技术方案是:
一种低功耗待机电路装置, 包括主电源、 副电源、 第一控制开关和控制电路模块; 所述主电源的输入端通过所述第一控制开关连接至外设供电电源, 输出端则连接至外 设负载, 用于给外设负载供电;
所述副电源的输入端直接连接至外设供电电源, 输出端连接所述控制电路模块; 所述控制电路模块包括 MCU模块和信号接收电路, 所述 MCU模块控制所述第一控制开 关的通断。
较优地, 所述低功耗待机电路装置还包括第二控制开关;
所述 MCU模块包括第一 MCU和第二 MCU;所述第一 MCU串联所述第二控制开关连接所述 副电源;所述第二 MCU连接至所述副电源;所述第一 MCU和第二 MCU均由所述副电源供电; 所述第一 MCU控制所述第一控制开关的通断,所述第二 MCU控制所述第二控制开关的通 断。
较优地, 所述低功耗待机电路装置还包括稳压模块;
所述副电源的输出端串联所述稳压模块连接所述控制电路模块。
较优地, 所述主电源为多路输出;
所述副电源为单路输出或多路输出。
较优地, 所述控制电路模块还包括复位电路和显示模块; 所述复位电路和显示模块均 连接所述副电源的输出端。
还涉及一种空调器, 包括室内机和室外机, 其特征在于:
所述空调器还包括上述的低功耗待机电路装置;
所述低功耗待机电路装置连接外设供电电源为所述空调器的室内机和室外机供电; 所述室内机与室外机串联有用于控制两者之间电源连接通断的第三控制开关,所述 MCU 模块连接所述第三控制开关, 用于控制所述第三控制开关的通断。
还涉及一种空调器, 包括室内机和室外机,所述空调器还包括上述的低功耗待机电路装 置;
所述低功耗待机电路装置连接外设供电电源为所述空调器的室内机和室外机供电; 所述室内机与室外机串联有用于控制两者之间电源连接通断的第三控制开关,所述第一
MCU连接所述第三控制开关, 用于控制所述第三控制开关的通断。
还涉及一种上述空调器的控制方法, 包括开机步驟, 所述开机步驟包括如下步驟: 当空调器的低功耗待机电路装置的控制电路模块的 MCU模块接收到开机信号或重新得 电时, 所述 MCU模块先控制所述第一控制开关导通, 再控制空调器的第三控制开关导通, 所述低功耗待机电路装置的主电源、 室外机和室内机负载电路得电, 空调器进入正常运行 状态。
还涉及一种上述空调器的控制方法, 包括待机步骤, 所述待机步驟包括如下步骤: 所述空调器进入待机模式后, 所述 MCU模块先控制所述第三控制开关断开, 再控制所 述第一控制开关断开, 断开室内机与室外机之间的连接, 切断主电源与外设供电电源的连 接;
所述 MCU模块进入低功耗模式。
较优地, 所述待机步骤包括如下步骤: 当所述 MCU模块收到关机信号时, 则所述 MCU模块先控制所述第三控制开关断开使所 述室外机断电, 再控制所述第一控制开关断开使主电源断电;
判断所述 MCU模块在所述第一控制开关断开后的第一预设时间内是否接收到操作信号; 若是, 则禁止进入低功耗模式; 否则, 所述 MCU模块进入低功耗模式。
还涉及一种上述空调器的控制方法, 包括开机步骤, 所述开机步骤包括如下步骤: 当空调器的低功耗待机电路装置的控制电路模块的第二 MCU接收到开机信号或所述第 二 MCU重新得电时, 所述低功耗待机电路装置的第二控制开关在所述第二 MCU的控制下导 通, 所述低功耗待机电路装置的第一 MCU得电;
所述第一 MCU先控制所述低功耗待机电路装置的第一控制开关导通,再控制空调器的第 三控制开关导通, 所述低功耗待机电路装置的主电源、 室外机和室内机负载电路得电, 空 调器进入正常运行状态。
还涉及一种上述空调器的控制方法, 包括待机步骤, 所述待机步骤包括如下步骤: 所述空调器进入待机模式后, 所述第一 MCU先控制所述第三控制开关断开, 再控制所 述第一控制开关断开, 断开室内机与室外机之间的连接, 切断主电源与外设供电电源的连 接;
所述第二 MCU控制所述第二控制开关断开,切断所述第一 MCU与所述第二 MCU的连接, 所述第二 MCU进入低功耗模式。
较优地, 所述待机步骤包括如下步驟:
当所述第一 MCU接收到所述第二 MCU发送的关机信号, 且在第二预设时间内没有再次 收到所述第二 MCU发送的信号时, 则所述第一 MCU先控制所述第三控制开关断开使所述室 外机断电, 再控制所述第一控制开关断开使主电源断电;
判断所述第二 MCU在所述第一控制开关断开后的第三预设时间内是否接收到操作信号; 若是, 则禁止进入低功耗模式; 否则, 所述第二 MCU控制所述第二控制开关断开, 所述第 二 MCU进入低功耗模式。
本发明的有益效果是:
本发明的低功耗待机电路装置和空调器及空调器的控制方法, 低功耗待机电路装置的 电源采用两路开关电源供电, 应用在空调器上, 采用本发明的空调器的控制方法, 空调器 待机状态下断开室外机外电源和主电源, 采用两个 MCU时, 最后还断开主板 VCC的电源, 主板不得电, 只有显示板主芯片及信号接收电路由副电源供电, 采用两个主芯片分别控制 主板上的负载和显示板上的负载, 相比一个主芯片控制两部分负载而言, 减少了芯片的通 信接口, 可以省去显示板和主板负载控制的板间连线, 降低成本, 提高生产效率; 显示板 主芯片在空调器待机状态下进入低功耗模式, 即接收到待机信号时, 显示板主芯片降低其 频率。 此种控制方法, 通过合理的电源分配, 实现了准 W (即小于 50毫瓦)待机的目标。 既降低了空调器待机状态下的功耗, 又增强了主芯片的抗干扰能力。 附图说明
图 1为本发明的空调器一实施例的电路连接示意图;
图 2为图 1所示电路一实施例的待机步骤控制流程图;
图 3为图 1所示电路一实施例的开机步骤控制流程图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白 , 以下结合附图及实施例对本发 明的低功耗待机电路装置和空调器及空调器的控制方法进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定本发明。
如图 1所示,本发明的空调器包括室内机和室外机, 室内机与室外机串联有用于控制两 者之间电源连接通断的第三控制开关; 空调器上还设置有低功耗待机电路装置;
低功耗待机电路装置包括主电源 1 3、 副电源 1 1、 第一控制开关 12和控制电路模块; 主电源 1 3的输入端通过第一控制开关 12连接至外设供电电源,输出端则连接至外设负 载, 用于给外设负载供电; 所述低功耗待机电路装置连接外设供电电源为所述空调器的室 内机和室外机供电;
所述外设负载包括第一负载 3、第二负载 4、第六负载 14和直流电机(未示出),其中, 第一负载 3为 14V负载, 例如电加热丝或其它附加功能负载; 第二负载 4 包括供显示板上 (也可设在主板上)的 12V的步进电机驱动电路和蜂鸣器电路;第六负载 14包括步进电机。
副电源 11的输入端直接连接至所述外设供电电源, 输出端连接控制电路模块; 所述控 制电路模块包括 MCU模块和信号接收电路, MCU模块控制第一控制开关 12的通断。 MCU模 块可包括一个 MCU , 也可包括两个 MCU; 亦即 MCU模块可包括一个主芯片, 也可包括两个主 芯片。 信号接收电路用于向 MCU模块传输空调器的操作信号。
较优地, 作为一种可实施方式, 低功耗待机电路装置还包括第二控制开关 8, 所述 MCU 模块包括第三负载 6、 第四负载 7、 第五负载 10, 低功耗待机电路装置中也可设置显示模块 5, 显示模块 5连接副电源 11的输出端, 显示模块 5为显示屏或数码管。
其中, 第三负载 6包括第二 MCU (显示板主芯片 )和复位电路, 第二 MCU用于控制显 示板 1的负载运行, 第四负载 7为显示板上待机时不工作的其它 5V电路; 第五负载 10包 括第一 MCU (主板主芯片)和主板 1上待机时不工作的其它电路, 第一 MCU用于控制主板 1 的负载运行。 信号接收电路连接第二 MCU, 用于向第二 MCU传输空调器的操作信号, 信号接 收电路为遥控接收头电路或 /和按键电路, 也可设置于第三负载 6中。
第一 MCU串联第二控制开关 8连接副电源 11, 第二 MCU也连接至副电源 11, 第一 MCU 和第二 MCU均由副电源 11供电; 第一 MCU控制第一控制开关 12的通断, 第二 MCU控制第 二控制开关 8的通断。 第一 MCU连接所述第三控制开关, 用于控制所述第三控制开关的通 断。
其中, 主电源 13、 副电源 11、 第一 MCU、 第一控制开关 12和第三控制开关设置在主板 1上; 第二 MCU、 第二控制开关 8设置在显示板 2上;
优选的, 第一控制开关 12和第三控制开关为继电器, 第二控制开关 8为三极管或继电 器。
较优地, 作为一种可实施方式, 副电源 11的输出端串联稳压模块 9连接至第一 MCU和 第二 MCU; 稳压模块 9为 7805芯片或 DC-DC模块。
主电源 13和副电源 11均为开关电源,主电源 13为多路输出,副电源 11为单路输出或 多路输出,单路输出是指只有一种电压的输出,多路是指有多种电压输出,比如 5V 、 12V 、 15V等; 优选的, 主电源 13为三路输出, 三路输出电压分别为 12V、 14V和 15V; 副电源 11 为单路输出, 输出电压为 12V。
空调器正常运行时, 主电源 13和副电源 11都工作, 主电源 13的三路输出中, 其中, 15V向直流电机供电, 14V向其他功能电路供电,例如电加热丝或其它附加功能电路等, 12V 向显示板 1上(也可设在主板 1上) 的蜂鸣器电路和用于左右扫风的步进电机驱动电路供 电, 也向步进电机供电。
副电源 11为单路输出, 输出端 12V_1向供主板 1上控制主电源 13工作与否的第一控 制开关 12供电, 第一控制开关 12还连接第一 MCU, 第一 MCU控制第一开关 12的通断, 副 电源 11还向显示模块 5和显示板 2上的稳压模块 9供电,稳压模块 9输出至少分为两支路, 一路输出 + 5V, 为第二 MCU、 复位电路和信号接收电路供电, 另一路输出电源电压 VCC (也 是 5V ) , 为第一 MCU和主板 1上待机时不工作的其他电路供电, VCC线路上设有第二控制 开关 8 , 第二控制开关 8连接第一 MCU上的 VCC-0N管脚, 第二控制开关 8由第二 MCU (显 示板主芯片)控制开闭。 空调器正常工作时, 第一 MCU控制第二开关 8导通, 电源电压 VCC 与 + 5V接通, 使得 VCC = 5V。
第一 MCU与第二 MCU通信连接, 其中, TXD为第二 MCU发送数据的串口传输信号 10端 口, RXD为第二 MCU接受数据的串口传输信号 10端口;
第一负载 3、 第二负载 4、 第六负载 14的接地 GND连接主电源 13的接地(负极); 显示 模块 5、 稳压模块 9、 第三负载 6、 第四负载 7和第五负载 10的接地 G腸连接副电源 11的 接地(负极)。
第一 MCU连接第二负载 4、 显示模块 5、 复位电路和接收头电路, 控制第二负载 4、 显 示模块 5、 复位电路和接收头电路的工作状态。
MCU模块包括一个 MCU时, 主板 1和显示板 2均由该 MCU控制, 空调器工作过程中包括 开机步骤, 所述开机步骤包括如下步骤:
当空调器的低功耗待机电路装置的控制电路模块的 MCU模块接收到开机信号或重新得 电时,所述 MCU模块先控制所述第一控制开关 12导通,再控制空调器的第三控制开关导通, 所述低功耗待机电路装置的主电源 13、 室外机和室内机负载电路得电, 空调器进入正常运 行状态。
MCU模块包括一个 MCU时, 空调器工作过程中包括待机步驟, 所述待机步骤包括如下步 驟:
所述空调器进入待机模式后, 所述 MCU模块先控制所述第三控制开关断开, 再控制所 述第一控制开关 12断开, 断开室内机与室外机之间的连接, 切断主电源 13与外设供电电 源的连接;
所述 MCU模块进入低功耗模式。 即所述 MCU模块上 MCU的时钟频率低于其正常工作时 的设定频率。 空调器关机时, 空调器的室外机和室内机负载电路失电, 空调器进入待机模 式。 当 MCU模块接收到开机信号时, 即退出低功耗模式。
较优地, 作为一种可实施方式, 所述待机步骤包括如下步骤:
当所述 MCU模块收到关机信号时, 则所述 MCU模块先控制所述第三控制开关断开使室 外机断电, 再控制第一控制开关 12断开使主电源 13断电;
判断 MCU模块在第一控制开关 12断开后的第一预设时间内是否接收到操作信号;若是, 则禁止进入低功耗模式; 否则, 所述 MCU模块进入低功耗模式。 优选的, 第一预设时间为 1 分钟。
MCU模块包括两个 MCU时, 即 MCU模块包括第一 MCU和第二 MCU时, 空调器工作过程中 包括开机步骤, 开机步骤如图 3所示;
开机步骤为: 当第二 MCU接收到开机信号或第二 MCU重新得电时,第二控制开关 8在第 二 MCU的控制下导通, 第一 MCU得电, 第一 MCU先后控制第一控制开关 12和第三控制开关 导通, 主电源 13、 室外机和室内机负载电路得电, 空调器进入正常运行状态;
MCU模块包括两个 MCU时, 空调器工作过程中包括待机机步骤, 待机步骤如图 2所示; 待机步骤为: 空调器进入待机模式后, 第一 MCU先控制第三控制开关断开, 再控制第 一控制开关 12断开, 断开室内机与室外机之间的电源连接, 并切断主电源 12与外设供电 电源的连接;
第二 MCU控制第二控制开关 8断开, 切断第一 MCU与第二 MCU的连接, 第二 MCU进入 低功耗模式。
第二 MCU进入低功耗模式是指第二 MCU的时钟频率低于其正常工作时的设定频率; 较优地, 作为一种可实施方式, 所述待机步骤包括以下步骤:
S1;当第一 MCU接收到第二 MCU发送的关机信号, 且在第二预设时间内没有再次收到第 二 MCU发送的信号时, 则第一 MCU先控制第三控制开关断开使室外机断电, 再控制第一控 制开关 12断开使主电源 13断电;
S2; 判断第二 MCU在第一控制开关 8断开后的第三预设时间内是否接收到操作信号,若 是, 则禁止第二 MCU进入低功耗模式; 否则, 第二 MCU控制第二控制开关 8断开, 第二 MCU 进入低功耗模式。
所述操作信号为遥控信号或按键操作信号或按键触摸信号。优选的,所述第二预设时间 为 5分钟; 所述第三预设时间为 1分钟。
上述实施例中,第二 MCU可采用 2分频, 即第二 MCU进入低功耗模式的频率为其正常工 作时设定频率的 1 /2。 当第二 MCU接收到开机信号时, 第二 MCU退出低功耗模式。
空调器待机时, 低功耗待机电路装置仅由副电源 11提供电源, VCC-0N控制 VCC与 5V 断开, 使得 VCC = 0V,主板处于不得电的状态, 低功耗待机电路装置中仅第二 MCU (显示板主 芯片)、 复位电路和接收头电路得电。
当第二 MCU接收到遥控有效信号或触摸按键信号或掉电重新上电时, 则第二 MCU控制 5V控制电路接通, 第一 MCU得电, 第一 MCU得电后控制第一控制开关 12和第三控制开关闭 合, 主电源 13、 室外机上的电控板得电, 空调器正常运行。
上述实施例中的低功耗待机电路装置设置在空调器上, 在空调器的控制中, 通过合理 的电源分配, 驱动电路由主电源供电, 显示板由副电源供电, 在进入待机时, 先断开室外 机电源, 再断开主电源, 采用两个 MCU时最后还断开主板 VCC的电源, 仅使副电源为显示 板供电, 例如仅使副电源为显示板主芯片和遥控器接收头电路 (信号接收装置)供电, 实 现准 0W低功耗待机的目标 (即待机功率小于 50毫瓦) ; 解决了现有空调器 (特别是变频 空调器) 待机功率大的技术问题; 采用两个主芯片时, 两个主芯片分别控制主板上的负载 和显示板上的负载, 相比一个主芯片控制两部分负载而言, 减少了芯片的通信接口, 可以 省去显示板和主板负载控制的板间连线, P争低成本, 提高生产效率; 同时增加了主芯片的 抗干扰能力。 在待机模式下, 只有第二 MCU (显示板主芯片)得电, 相比单个 MCU模块, 得 电的元器件减少, 进一步降低了待机功率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因 此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若千变形和改进, 这些都属于本发明的保护范 围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权利要求
1、 一种低功耗待机电路装置, 其特征在于:
包括主电源、 副电源、 第一控制开关和控制电路模块;
所述主电源的输入端通过所述第一控制开关连接至外设供电电源, 输出端则连接至外 设负载, 用于给外设负载供电;
所述副电源的输入端直接连接至外设供电电源, 输出端连接所述控制电路模块; 所述控制电路模块包括 MCU模块和信号接收电路, 所述 MCU模块控制所述第一控制开 关的通断。
2、 根据权利要求 1所述的低功耗待机电路装置, 其特征在于:
所述低功耗待机电路装置还包括第二控制开关;
所述 MCU模块包括第一 MCU和第二 MCU;所述第一 MCU串联所述第二控制开关连接所述 副电源;所述第二 MCU连接至所述副电源;所述第一 MCU和第二 MCU均由所述副电源供电; 所述第一 MCU控制所述第一控制开关的通断,所述第二 MCU控制所述第二控制开关的通 断。
3、 根据权利要求 1所述的低功耗待机电路装置, 其特征在于:
还包括稳压模块;
所述副电源的输出端串联所述稳压模块连接所述控制电路模块。
4、 根据权利要求 1所述的低功耗待机电路装置, 其特征在于:
所述主电源为多路输出;
所述副电源为单路输出或多路输出。
5、 根据权利要求 1 -4任一项所述的低功耗待机电路装置, 其特征在于:
所述控制电路模块还包括复位电路和显示模块; 所述复位电路和显示模块均连接所述 副电源的输出端。
6、 一种空调器, 包括室内机和室外机, 其特征在于:
所述空调器还包括权利要求 1或 3或 4所述的低功耗待机电路装置;
所述低功耗待机电路装置连接外设供电电源为所述空调器的室内机和室外机供电; 所述室内机与室外机串联有用于控制两者之间电源连接通断的第三控制开关,所述 MCU 模块连接所述第三控制开关, 用于控制所述第三控制开关的通断。
7、 一种空调器, 包括室内机和室外机, 其特征在于:
所述空调器还包括权利要求 1所述的低功耗待机电路装置;
所述低功耗待机电路装置连接外设供电电源为所述空调器的室内机和室外机供电; 所述室内机与室外机串联有用于控制两者之间电源连接通断的第三控制开关,所述第一 MCU连接所述第三控制开关, 用于控制所述第三控制开关的通断。
8、 一种根据权利要求 6所述的空调器的控制方法, 其特征在于:
包括开机步骤, 所述开机步骤包括如下步骤:
当空调器的低功耗待机电路装置的控制电路模块的 MCU模块接收到开机信号或重新得 电时, 所述 MCU模块先控制所述第一控制开关导通, 再控制空调器的第三控制开关导通, 所述低功耗待机电路装置的主电源、 室外机和室内机负载电路得电, 空调器进入正常运行 状态。
9、 一种根据权利要求 6所述的空调器的控制方法, 其特征在于:
包括待机步骤, 所述待机步骤包括如下步骤:
所述空调器进入待机模式后, 所述 MCU模块先控制所述第三控制开关断开, 再控制所 述第一控制开关断开, 断开室内机与室外机之间的连接, 切断主电源与外设供电电源的连 接;
所述 MCU模块进入低功耗模式。
10、 根据权利要求 9所述的控制方法, 其特征在于:
所述待机步骤包括如下步骤:
当所述 MCU模块收到关机信号时, 则所述 MCU模块先控制所述第三控制开关断开使所 述室外机断电, 再控制所述第一控制开关断开使主电源断电;
判断所述 MCU模块在所述第一控制开关断开后的第一预设时间内是否接收到操作信号; 若是, 则禁止进入低功耗模式; 否则, 所述 MCU模块进入低功耗模式。
11、 一种根据权利要求 7所述的空调器的控制方法, 其特征在于:
包括开机步驟, 所述开机步骤包括如下步骤:
当空调器的低功耗待机电路装置的控制电路模块的第二 MCU接收到开机信号或所述第 二 MCU重新得电时, 所述低功耗待机电路装置的第二控制开关在所述第二 MCU的控制下导 通, 所述低功耗待机电路装置的第一 MCU得电;
所述第一 MCU先控制所述低功耗待机电路装置的第一控制开关导通,再控制空调器的第 三控制开关导通, 所述低功耗待机电路装置的主电源、 室外机和室内机负载电路得电, 空 调器进入正常运行状态。
12、 一种根据权利要求 7所述的空调器的控制方法, 其特征在于:
包括待机步骤, 所述待机步骤包括如下步驟:
所述空调器进入待机模式后, 所述第一 MCU先控制所述第三控制开关断开, 再控制所 述第一控制开关断开, 断开室内机与室外机之间的连接, 切断主电源与外设供电电源的连 接;
所述第二 MCU控制所述第二控制开关断开,切断所述第一 MCU与所述第二 MCU的连接, 所述第二 MCU进入低功耗模式。
13、 根据权利要求 12所述的控制方法, 其特征在于:
所述待机步骤包括如下步骤:
当所述第一 MCU接收到所述第二 MCU发送的关机信号, 且在第二预设时间内没有再次 收到所述第二 MCU发送的信号时, 则所述第一 MCU先控制所述第三控制开关断开使所述室 外机断电, 再控制所述第一控制开关断开使主电源断电;
判断所述第二 MCU在所述第一控制开关断开后的第三预设时间内是否接收到操作信号; 若是, 则禁止进入低功耗模式; 否则, 所述第二 MCU控制所述第二控制开关断开, 所述第 二 MCU进入低功耗模式。
PCT/CN2014/076600 2013-05-02 2014-04-30 低功耗待机电路装置和空调器及空调器的控制方法 WO2014177056A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016510925A JP6389512B2 (ja) 2013-05-02 2014-04-30 低消費電力待機回路デバイス、エアーコンディショナー及びエアーコンディショナーの制御方法
EP14791783.5A EP2993421B1 (en) 2013-05-02 2014-04-30 Low-power consumption standby circuit device, air conditioner and control method for air conditioner
US14/648,163 US9939166B2 (en) 2013-05-02 2014-04-30 Low-power consumption standby circuit device, air conditioner and control method for air conditioner
KR1020157002991A KR101697443B1 (ko) 2013-05-02 2014-04-30 저전력소모 대기 회로장치, 에어컨 및 에어컨의 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310158665.0A CN104132420B (zh) 2013-05-02 2013-05-02 低功耗待机电路装置和空调器及空调器的控制方法
CN201310158665.0 2013-05-02

Publications (1)

Publication Number Publication Date
WO2014177056A1 true WO2014177056A1 (zh) 2014-11-06

Family

ID=51805201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076600 WO2014177056A1 (zh) 2013-05-02 2014-04-30 低功耗待机电路装置和空调器及空调器的控制方法

Country Status (6)

Country Link
US (1) US9939166B2 (zh)
EP (1) EP2993421B1 (zh)
JP (1) JP6389512B2 (zh)
KR (1) KR101697443B1 (zh)
CN (1) CN104132420B (zh)
WO (1) WO2014177056A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813248A (zh) * 2014-12-30 2016-07-27 无锡汉思特电器科技有限公司 一种低功耗待机电路装置
CN106209050A (zh) * 2016-08-19 2016-12-07 德力西电气有限公司 一种低成本低功耗的电子开关电路
CN112083794A (zh) * 2020-09-11 2020-12-15 深圳市当智科技有限公司 电源管理电路、电子产品和控制方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539041B (zh) * 2014-12-09 2017-01-18 广东美的暖通设备有限公司 多联机空调系统及其室内机后备电源装置、控制方法
CN104571028B (zh) * 2014-12-19 2018-12-07 珠海格力电器股份有限公司 节能的电源控制系统和控制方法
CN104864564B (zh) * 2015-05-13 2017-10-31 广东美的制冷设备有限公司 空调器、室外机及其供电通信控制系统
CN105066364B (zh) * 2015-08-27 2017-12-12 广东美的制冷设备有限公司 空调器及其待机控制系统
CN105042809A (zh) * 2015-09-15 2015-11-11 珠海格力电器股份有限公司 一种空调器的控制方法及其控制系统
US10078358B2 (en) 2016-06-02 2018-09-18 Qualcomm Incorporated System and method for reducing power delivery network complexity through local power multiplexers
CN106247537B (zh) * 2016-08-08 2019-03-29 海信(山东)空调有限公司 空调室外机及一拖多空调
CN106383478B (zh) * 2016-11-15 2019-10-11 宁波奥克斯电气股份有限公司 基于rs485总线的低功耗控制方法及电路
CN106921206B (zh) * 2017-04-28 2024-03-01 西安特来电智能充电科技有限公司 一种低待机功耗的充电模块及其控制方法
KR102001934B1 (ko) * 2017-06-20 2019-07-19 엘지전자 주식회사 대기 전력 기능을 가지는 전원 장치 및 이를 포함하는 공기 조화기
CN108168048B (zh) * 2017-11-16 2020-04-24 青岛海尔空调器有限总公司 识别空调电路的方法、装置及空调
CN108119994B (zh) * 2017-12-26 2023-11-17 奥克斯空调股份有限公司 空调器的低功耗控制电路及低功耗控制方法
JP7130426B2 (ja) * 2018-05-11 2022-09-05 三菱重工サーマルシステムズ株式会社 室外機及び空気調和機
CN108901061A (zh) * 2018-05-31 2018-11-27 深圳市文鼎创数据科技有限公司 一种nfc装置
CN109209045A (zh) * 2018-11-07 2019-01-15 天津航鑫科技有限公司 一种通过智能门锁控制房间电源通断的节能系统
CN109764503B (zh) 2019-01-15 2021-04-16 海信(广东)空调有限公司 一种空调室外供电控制电路及空调器
CN111505944B (zh) * 2019-01-30 2021-06-11 珠海格力电器股份有限公司 节能控制策略学习方法、实现空调节能控制的方法及装置
KR102507739B1 (ko) * 2019-02-14 2023-03-07 엘지전자 주식회사 전원공급조절장치 및 이를 구비하는 휴대용 기기
CN110599947A (zh) * 2019-08-15 2019-12-20 珠海格力电器股份有限公司 一种显示屏开关机控制电路、显示屏及控制方法
CN111076370B (zh) * 2019-12-09 2023-11-17 珠海格力电器股份有限公司 一种待机控制装置、空调及其待机控制方法
CN111221400A (zh) * 2019-12-27 2020-06-02 成都锐成芯微科技股份有限公司 一种电源管理系统
CN111365826A (zh) * 2020-04-21 2020-07-03 珠海拓芯科技有限公司 供电系统和空调器
CN111759018A (zh) * 2020-06-30 2020-10-13 上海烟草集团有限责任公司 一种控制电路、气雾产生电路及气雾产生装置
CN112540558A (zh) * 2020-11-09 2021-03-23 蚌埠依爱消防电子有限责任公司 一种降低两线制产品功耗的实现方法
CN112684874B (zh) * 2020-12-30 2024-06-18 联想(北京)有限公司 一种多电源供电的装置及方法
CN113465109B (zh) * 2021-06-29 2023-06-16 青岛海享智科技有限公司 多联机的低能耗待机控制方法及装置、介质
CN113820588B (zh) * 2021-09-02 2024-05-10 格力电器(武汉)有限公司 一种空调控制主板显示、通讯接口一体化的检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324443A (zh) * 1998-10-26 2001-11-28 东芝开利株式会社 空调机的室外机用驱动控制装置
CN201178462Y (zh) * 2008-04-16 2009-01-07 深圳创维-Rgb电子有限公司 一种低功耗待机电源电路
CN201191021Y (zh) * 2008-03-28 2009-02-04 浙江苏泊尔家电制造有限公司 低功耗待机电磁炉
CN202077124U (zh) * 2011-05-31 2011-12-14 深圳创维-Rgb电子有限公司 一种电视机的待机控制电路及电视机
CN202583744U (zh) * 2012-05-15 2012-12-05 珠海格力电器股份有限公司 准零功耗待机控制电路装置
CN203215919U (zh) * 2013-05-02 2013-09-25 珠海格力电器股份有限公司 低功耗待机电路装置和空调器
CN203299563U (zh) * 2013-03-18 2013-11-20 海尔集团公司 低功耗待机电路以及包含该电路的空调器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055439A (ja) * 1998-07-31 2000-02-25 Toshiba Corp 電源装置及びこれを用いた空気調和機
JP2000097484A (ja) * 1998-09-22 2000-04-04 Hitachi Ltd 空気調和機
US6292233B1 (en) * 1998-12-31 2001-09-18 Stmicroelectronics S.R.L. Device controller with low power standby mode
JP2000333365A (ja) * 1999-05-19 2000-11-30 Hitachi Ltd 待機時電力供給システムとこれを用いた空気調和機,冷蔵庫
JP3730808B2 (ja) * 1999-06-03 2006-01-05 株式会社日立製作所 空気調和機
JP2002081712A (ja) * 2000-09-08 2002-03-22 Hitachi Ltd 空気調和機
KR20020023776A (ko) * 2001-12-08 2002-03-29 김진태 짐수레의 받침대
US7015599B2 (en) * 2003-06-27 2006-03-21 Briggs & Stratton Power Products Group, Llc Backup power management system and method of operating the same
JP4529603B2 (ja) * 2004-09-14 2010-08-25 ダイキン工業株式会社 セパレート型空気調和機
JP4918371B2 (ja) * 2007-01-19 2012-04-18 三菱重工業株式会社 室内機ユニット及び空気調和装置
CN201032709Y (zh) * 2007-02-02 2008-03-05 莱芜市三和科技有限公司 车辆空调变频控制装置
CN201173551Y (zh) * 2008-02-20 2008-12-31 珠海格力电器股份有限公司 空调控制器及其空调系统
US8324755B2 (en) * 2009-03-06 2012-12-04 Briggs And Stratton Corporation Power management system and method of operating the same
JP2012222991A (ja) * 2011-04-11 2012-11-12 Funai Electric Co Ltd 電源回路
EP2803918B1 (en) * 2011-12-28 2017-05-10 Daikin Industries, Ltd. Air conditioning device
CN102628610A (zh) * 2012-04-13 2012-08-08 海信科龙电器股份有限公司 一种变频空调的控制系统
KR102302409B1 (ko) * 2013-03-06 2021-09-15 아이피지 포토닉스 코포레이션 불균일하게 구성된 광섬유간 로드 다중모드 증폭기를 가진 초고출력 단일모드 광섬유 레이저 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324443A (zh) * 1998-10-26 2001-11-28 东芝开利株式会社 空调机的室外机用驱动控制装置
CN201191021Y (zh) * 2008-03-28 2009-02-04 浙江苏泊尔家电制造有限公司 低功耗待机电磁炉
CN201178462Y (zh) * 2008-04-16 2009-01-07 深圳创维-Rgb电子有限公司 一种低功耗待机电源电路
CN202077124U (zh) * 2011-05-31 2011-12-14 深圳创维-Rgb电子有限公司 一种电视机的待机控制电路及电视机
CN202583744U (zh) * 2012-05-15 2012-12-05 珠海格力电器股份有限公司 准零功耗待机控制电路装置
CN203299563U (zh) * 2013-03-18 2013-11-20 海尔集团公司 低功耗待机电路以及包含该电路的空调器
CN203215919U (zh) * 2013-05-02 2013-09-25 珠海格力电器股份有限公司 低功耗待机电路装置和空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993421A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813248A (zh) * 2014-12-30 2016-07-27 无锡汉思特电器科技有限公司 一种低功耗待机电路装置
CN106209050A (zh) * 2016-08-19 2016-12-07 德力西电气有限公司 一种低成本低功耗的电子开关电路
CN106209050B (zh) * 2016-08-19 2023-08-04 德力西电气有限公司 一种低成本低功耗的电子开关电路
CN112083794A (zh) * 2020-09-11 2020-12-15 深圳市当智科技有限公司 电源管理电路、电子产品和控制方法
CN112083794B (zh) * 2020-09-11 2022-07-08 深圳市当智科技有限公司 电源管理电路、电子产品和控制方法

Also Published As

Publication number Publication date
JP2016526365A (ja) 2016-09-01
KR20150036380A (ko) 2015-04-07
US20160273792A1 (en) 2016-09-22
JP6389512B2 (ja) 2018-09-12
CN104132420A (zh) 2014-11-05
EP2993421B1 (en) 2020-08-19
US9939166B2 (en) 2018-04-10
EP2993421A4 (en) 2017-05-03
EP2993421A1 (en) 2016-03-09
CN104132420B (zh) 2017-04-12
KR101697443B1 (ko) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2014177056A1 (zh) 低功耗待机电路装置和空调器及空调器的控制方法
KR100836821B1 (ko) 대기전력 절감 공기조화기 시스템 및 그 동작방법
CA2753456C (en) Power supply control device and ventilating device using same
US20230332799A1 (en) Control circuit for air conditioner outdoor unit, electric control component and air conditioner
CN210273593U (zh) 低待机功耗的大功率电源电路及led显示控制系统
CN106773959B (zh) 一种基于两芯线通讯的弱电唤醒系统及方法
TWI498722B (zh) 微功耗待機系統及設備
CN111365826A (zh) 供电系统和空调器
CN109323374B (zh) 一种空调控制器及控制方法
CN203215919U (zh) 低功耗待机电路装置和空调器
CN102495558A (zh) 一种利用射频通讯实现遥控用电设备开/关的系统及其方法
CN108488948A (zh) 空调、空调控制系统和室外机开关电路
CN216751199U (zh) 一种具有软开关机功能的开关单元
CN204361781U (zh) 具有自动重合闸功能的综合保护开关
CN110308686B (zh) 电器设备控制器及其驱动方法、电器设备
KR101533651B1 (ko) 공기 조화 시스템의 전원 제어 장치 및 그 방법
CN103363616A (zh) 空调器及其控制方法、控制终端和控制系统
KR101911273B1 (ko) 대기 전력 기능을 가지는 공기 조화기 및 그 제어 방법
CN212431132U (zh) 一种低功耗待机的空调外机系统及空调器
WO2024113971A1 (zh) 空调系统及其供电控制装置和供电控制方法
CN214850487U (zh) 一种低功耗供电系统及空调器
CN102287889A (zh) 空调待机调节装置
CN108709296A (zh) 空调的室外机的电源控制电路、空调及控制方法
CN112963372B (zh) 风扇控制系统及其方法
CN209344783U (zh) 一种车载逆变器输出与市电供电并存的自动切换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014791783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157002991

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016510925

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14648163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE