WO2020147464A1 - 一种低温制备含钛复合阳极的方法 - Google Patents

一种低温制备含钛复合阳极的方法 Download PDF

Info

Publication number
WO2020147464A1
WO2020147464A1 PCT/CN2019/124487 CN2019124487W WO2020147464A1 WO 2020147464 A1 WO2020147464 A1 WO 2020147464A1 CN 2019124487 W CN2019124487 W CN 2019124487W WO 2020147464 A1 WO2020147464 A1 WO 2020147464A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
containing composite
composite anode
preparing
low temperature
Prior art date
Application number
PCT/CN2019/124487
Other languages
English (en)
French (fr)
Inventor
陈海贤
曹佳培
Original Assignee
浙江海虹控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江海虹控股集团有限公司 filed Critical 浙江海虹控股集团有限公司
Publication of WO2020147464A1 publication Critical patent/WO2020147464A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the invention belongs to the field of non-ferrous metal smelting, and particularly relates to a low-temperature sintering molding method of a composite anode used for molten salt electrolysis to extract metal titanium.
  • the existing industrial production method of titanium metal is the Kroll process.
  • the process involves chlorinating TiO 2 ore in the presence of carbon and reacting the resulting TiCl 4 with magnesium to produce sponge titanium.
  • Kroll process complexity the process of purification of TiCl 4, TiCl 4 and reducing high-temperature separation of metallic titanium MgCl 2 purification technique is time consuming, energy intensive.
  • the patent US2722509 described the electrolysis of anode molten salt prepared from TiO and carbon to precipitate metallic titanium on the cathode.
  • the American MER company reacts with a mixture of titanium oxide and carbon at 1100°C to 1300°C to obtain a composite of TiO and TiC, which is used as an electrolytic anode to extract metallic titanium (CN104831318B).
  • the patent CN100415940C uses the composite raw material of TiO and TiC as the anode electrolysis to prepare metallic titanium.
  • CN102925930B prepares metallic titanium by electrolyzing an anode of a composite of titanium-containing material and carbon by a two-step method.
  • this kind of molten salt electrolysis method for extracting metal titanium uses a titanium-containing composite anode as a dissolution anode.
  • the sintered composite anode is electrolyzed in the molten salt, and the low-priced titanium in the anode is dissolved in the molten salt to form Ti 2+ , Ti 3+ titanium ions, titanium ions are precipitated at the cathode to obtain metallic titanium.
  • This type of method cannot directly use titanium-containing powder materials for electrolysis, but needs to be sintered at high temperature before use.
  • CN1867702B directly mixes TiO 2 and carbon to form an unsintered electrode, and heats it to 1000-2200°C without air for 0.1-100 hours to form a titanium low-valent oxide/carbon composite anode.
  • this method prepares a composite anode in one step, it requires high-purity TiO 2 as a raw material, otherwise impurities will contaminate molten salt and metal titanium products.
  • Patent CN106315584A uses titanium-containing minerals or slag as raw materials, and hydrogen and methane as reducing agents and carbonizing agents. The prepared titanium oxycarbide is crushed, finely ground and iron-removed to obtain titanium oxycarbide powder. Similarly, the patent CN106744960A uses carbon powder as the carbonizing agent to prepare titanium oxycarbide powder.
  • Titanium oxycarbide powder cannot be directly used for molten salt electrolysis, and it can be used for molten salt electrolysis to extract metal titanium after forming a block anode prepared by high temperature sintering.
  • the applicant of the present invention has discovered through research that if the titanium oxycarbide or titanium oxycarbonitride powder is directly sintered at high temperature, the temperature needs to be about 1600 to 1800°C, and the temperature requirement is high, resulting in high energy consumption.
  • Patent CN105220180B sinters the anode at low temperature by adding carbon powder and pitch binder at the same time
  • Patent CN101949038B directly prepares titanium carbide (TiC x O y ) at the cathode by electrolysis, where 0 ⁇ x ⁇ 1 , 1 ⁇ y ⁇ 2), and then electrolyze titanium carbon oxide to obtain metallic titanium.
  • Patent CN104831318B adds phenolic resin adhesive to bond raw materials. The inventors of the present invention have discovered through research that the carbon element carried by organic binders such as organic binder pitch and phenolic resin can contaminate the molten salt electrolyte and the extracted metallic titanium, and reduce the quality of metallic titanium products.
  • the inventor of the present invention has discovered through research that there are currently two process routes for preparing sintered and formed titanium-containing composite anodes.
  • the existing composite anode forming and sintering method for extracting titanium metal by molten salt electrolysis has the following shortcomings:
  • Method 1 Use high-purity TiO 2 , TiO, TiC powder as raw materials to react and sinter to form a titanium-containing composite anode of titanium oxycarbide or titanium oxynitride.
  • this method requires high-purity TiO 2 , TiO, and TiC powder to prepare titanium oxycarbide or titanium oxynitride powder, and the high-purity TiO 2 , TiO, and TiC powder has a high raw material cost.
  • a qualified titanium-containing composite anode can be obtained only at a sintering temperature of 1600 to 2000°C, and the sintering temperature is required to be high, resulting in high energy costs.
  • Method 2 and its shortcomings.
  • These titanium-containing powders need to be sintered and molded before being used for molten salt electrolysis.
  • the sintering temperature needs to be about 1600-2000°C without the addition of a binder, and the sintering temperature is required to be high, resulting in high energy costs; in the case of adding organic binders , Adding organic binders such as pitch and phenolic resin to titanium oxycarbide or titanium oxynitride powder can reduce the sintering temperature.
  • organic binders such as pitch and phenolic resin
  • the carbon element brought in by organic binders such as pitch and phenolic resin will pollute the molten salt electrolyte and The extracted metal titanium reduces product quality.
  • the present invention proposes a method for preparing a titanium-containing composite anode at a low temperature.
  • the present invention provides a method for preparing a titanium-containing composite anode at a lower temperature.
  • titanium oxycarbide or titanium oxynitride powder prepared from titanium-containing minerals such as ilmenite and rutile contains a small amount of impurities such as silica, alumina, and titanium dioxide. These impurities are difficult to dissolve into the molten salt, and are finally taken out of the molten salt electrolytic cell in the form of anode residue. Therefore, these impurities will not contaminate molten salt and metal titanium products.
  • an inorganic binder composed of one or more of silica sol, aluminum sol, sodium silicate aqueous solution, and titanium dioxide sol can effectively reduce the sintering temperature of the titanium-containing anode.
  • the silica, alumina, sodium silicate, and titanium dioxide contained in these inorganic binders will not dissolve into the molten salt during the molten salt electrolysis process, and can be taken out of the molten salt electrolytic cell in the form of anode residue, which can satisfy Quality requirements for molten salt electrolysis. Therefore, the following technical solutions are proposed.
  • a method for preparing a titanium-containing composite anode includes the following steps:
  • Step S2 compression molding, sending the mixed and stirred slurry into the molding die of the molding press for compression molding;
  • the titanium-containing powder and the inorganic binder are stirred in a high-speed mixer for 20-40 minutes, and can be pressed into a square or cylindrical mold.
  • Step S3 drying, the molded blank is dried at a temperature of 30-150°C for 1 to 48 hours;
  • the molded blank is dried at a temperature of 80-120°C for 2 to 4 hours; more preferably, the blank is dried using drying flue gas at 80-120°C.
  • Step S4 sintering and molding, the dried molding material is sintered and molded under the protection of vacuum, nitrogen or inert gas, and the sintering temperature is 850-1250°C;
  • the dried molding material is sintered and molded in a tunnel kiln under the protection of nitrogen.
  • step S5 the surface is mechanically processed and trimmed into a titanium-containing composite anode product.
  • step S1 the average particle size of the titanium-containing powder is 80-900 mesh.
  • the average particle size of the titanium-containing powder is 300-600 mesh.
  • step S1 the average diameter of colloidal silica particles in the silica sol is 5-300 nm, and the mass percentage is 25%-40%.
  • the average diameter of colloidal silica particles in the silica sol is 10-100 nm.
  • the average diameter of colloidal silica particles in the silica sol is 10-30 nm.
  • step S1 the average diameter of the alumina colloidal particles of the aluminum sol is 5-200 nm, and the mass percentage is 15%-30%.
  • the average diameter of the alumina colloidal particles of the aluminum sol is 10-50 nm.
  • step S1 the mass percentage of sodium silicate in the sodium silicate aqueous solution is 20% to 35%.
  • step S1 the colloidal particles of the titanium dioxide sol have an average diameter of 5-500 nm, and a mass percentage of 15%-30%.
  • the average diameter of the colloidal particles of the titanium dioxide sol is 10-30 nm.
  • step S2 the pressure applied by the molding press is 5 to 200 MPa.
  • the pressure applied by the molding press is 100-200 MPa.
  • the pressure applied by the molding press is 150-200 MPa.
  • step S4 the heating rate and cooling rate during the sintering process are 5-10° C./min, and the sintering time is 0.5-6 hours.
  • the present invention can use titanium oxycarbonate or titanium carbon oxynitride powder prepared from low-grade titanium-containing materials such as ilmenite, high-titanium slag, artificial rutile, natural rutile, vanadium-titanium magnetite, etc., as raw materials. low;
  • the inorganic binder composed of silica sol, alumina sol, sodium silicate aqueous solution, and titanium dioxide sol reduces the sintering temperature to 850-1250°C, saving energy consumption.
  • titanium-containing composite powder used in the example of the present invention was prepared by the following method. Titanium dioxide (99% TiO 2 , average particle size 0.4 microns) and graphite powder (99.8% carbon content, average particle size 50 microns) are ground and mixed in a ball mill at a mass ratio of 8:2 for 3 hours to obtain a mixture In a steel mold under a pressure of 60 MPa, it is pressed into pellets with a diameter of 10 mm and a height of 12 mm.
  • the particles are prepared in the range of 1000-1500°C in argon or nitrogen and argon atmosphere for 2-18 hours, and then the titanium-containing composite material is obtained.
  • the titanium-containing composite material is ground in a ball mill to obtain titanium oxycarbide and titanium oxynitride powders of different particle sizes.
  • the titanium-containing composite powder has a particle size of 300 mesh; the average diameter of silica gel particles in the silica sol is 20nm, the mass percentage is 25%, and the pH is neutral; the average diameter of the silica gel particles in the aluminum sol is 20nm, and the mass The percentage content is 20%.
  • the mixed and stirred slurry is sent to the molding die of the molding press for compression molding at a pressure of 150 MPa to obtain a billet of 200 ⁇ 100 ⁇ 50 mm.
  • the billet was dried in an oven at 110°C for 4 hours.
  • the dried billet is sintered into a muffle furnace under the protection of argon gas. During the sintering process, the heating rate and cooling rate are 5°C/min, the temperature is 1050°C, and the sintering time is 4 hours.
  • the shape of the titanium-containing composite anode is trimmed by a cutting machine to obtain a shaped titanium-containing composite anode.
  • a mixture of 90%wt of titanium-containing composite powder TiC 0.5 O 0.5 with a total mass of 5kg and 10%wt of silica sol was stirred in a high-speed mixer for 40 minutes.
  • the titanium-containing composite powder has a particle size of 600 meshes; the average diameter of the silica gel particles in the silica sol is 15 nm, the mass percentage is 30%, and the pH is alkaline.
  • the mixed and stirred slurry is sent to the molding die of the molding press for compression molding at a pressure of 100 MPa to obtain a billet of 200 ⁇ 100 ⁇ 50 mm.
  • the billet was dried in an oven at 60°C for 10 hours.
  • the dried molding material is sintered and molded in a high-temperature graphite furnace under the protection of nitrogen. During the sintering process, the heating rate and cooling rate are 10°C/min, the temperature is 1100°C, and the sintering time is 3 hours.
  • the shape of the titanium-containing composite anode is trimmed by a cutting machine to obtain a shaped titanium-containing composite anode.
  • Example 2 Without using the inorganic binder listed in the present invention, the silica sol in Example 2 was replaced with deionized water, and the remaining experimental conditions were the same as Example 2. After sintering, the blank was loose and could not be sintered to form a titanium-containing composite anode.
  • the comparative example demonstrates the effect of the inorganic binder in reducing the sintering temperature.
  • Example 1 Without using the inorganic binders listed in the present invention, the silica sol in Example 1 was replaced with deionized water, the sintering temperature was 1750°C, and the rest of the experimental conditions were the same as in Example 2, and a shaped titanium-containing composite anode was prepared.
  • composition of the slurry and the sintering temperature in the following table were used to prepare the titanium-containing composite anode, and the remaining conditions were the same as in Example 1, and the titanium-containing composite anodes 3-12 were prepared respectively.
  • the chemical composition of titanium oxycarbonate titanium-containing composite powder is TiC 0.33 O 0.67 and the particle size is 500 mesh;
  • the chemical composition of titanium carbon oxynitride titanium-containing composite powder is TiC 0.3 O 0.5 N 0.2 and the particle size is 600 mesh;
  • the average diameter of silica gel particles in silica sol is 20nm, the mass percentage is 35%, and the pH is alkaline;
  • the average diameter of silica gel particles in aluminum sol is 30nm, and the mass percentage is 20%;
  • the mass percentage of sodium silicate is 35%;
  • the average diameter of colloidal particles in the titanium dioxide sol is 50nm, and the mass percentage is 15%.
  • the titanium-containing composite anode prepared in the above embodiment was subjected to a molten salt electrolytic extraction of metal titanium experiment.
  • the experimental conditions are as follows: a metal titanium plate with a thickness of 2 mm is used as a cathode, LiCl-NaCl-KCl-TiCl 2 molten salt is used as an electrolyte, and a titanium ion content is 4%wt.
  • the inside of the electrolytic cell is protected by argon, and electrolysis is carried out at 550°C.
  • the electrolytic cell voltage is 4.1V
  • the anode current density is 0.1A/cm 2
  • the cathode current density is 0.2A/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种低温制备含钛复合阳极的方法,将80-97%wt的碳氧化钛或者碳氧氮化钛中的一种或者多种组合的含钛粉体、3-20%wt的二氧化硅溶胶、铝溶胶、硅酸钠水溶液、二氧化钛溶胶中的一种或者多种组合的无机粘合剂混合均匀制备浆料,将浆料模压成型,再将坯料烘干,然后在真空、氮气或者惰性气体保护下在850-1250℃温度下烧结成型。最后,通过表面修整成型得到含钛复合阳极。制备的含钛复合阳极用于熔盐电解提取金属钛。利用廉价的含钛材料制备的碳氧化钛或者碳氧氮化钛粉体为原料,并且大大降低了烧结温度,节约能耗。

Description

一种低温制备含钛复合阳极的方法 技术领域
本发明属于有色金属冶炼领域,具体涉及一种用于熔盐电解提取金属钛的复合阳极的低温烧结成型方法。
背景技术
现有的金属钛工业化生产方法是Kroll工艺。该工艺包括在碳存在下氯化TiO 2矿石,并使得到的TiCl 4与镁反应以生产海绵钛。Kroll工艺复杂,该工艺中的TiCl 4的提纯、TiCl 4还原和金属钛的高温分离MgCl 2提纯是耗时、高能耗的技术。
1950年代,专利US2722509描述了将TiO和碳制备的阳极熔盐电解在阴极析出金属钛。美国的MER公司以钛氧化物和碳的混合物在1100℃~1300℃条件下反应得到TiO和TiC的的复合物,并作为电解阳极提取金属钛(CN104831318B)。专利CN100415940C使用TiO和TiC的复合物原料作为阳极电解制备金属钛。CN103451682B以含钛物料和碳在含氮气氛下反应制备碳氧氮化钛(TiC xO yN z,0<x≤y≤1,0<z<1,x+y+z=1)作为熔盐电解阳极。CN102925930B通过两步法电解含钛物料和碳的复合物的阳极制备金属钛。
综述所述,这类熔盐电解提取金属钛的方法都使用含钛复合阳极作为溶解阳极,将烧结成型的复合阳极在熔盐内电解,阳极内的低价的钛溶解在熔盐内形成Ti 2+、Ti 3+钛离子,钛离子在阴极析出得到金属钛。该类方法不能直接使用含钛粉体材料电解,而需要通过高温烧结成型后再使用。
CN1867702B通过直接混合TiO 2和碳形成未烧结电极,并在没有空气条件下加热至1000~2200℃,持续0.1-100小时,来形成钛低价氧化物/碳复合阳极。该方法虽然一步制备了复合阳极,但要求高纯的TiO 2作为原料,否则杂质会污染熔盐和金属钛产品。
专利CN106315584A以含钛矿物或炉渣为原料,氢气、甲烷作为还原剂和碳化剂,制备的碳氧化钛经过破碎、细磨并除铁后得到碳氧化钛粉体。类似地,专利CN106744960A用碳粉为碳化剂制备得到碳氧化钛粉体。
而碳氧化钛粉体不能直接用于熔盐电解,需要通过高温烧结制备成型的块状阳极后才可以用于熔盐电解提取金属钛。本发明申请人研究发现,如果直接高温烧结碳氧化钛或者碳氧氮化钛粉体的话,温度需要1600~1800℃左右,温度要求高,导致能耗很高。
其他的阳极烧结成型方法包括以下方法:专利CN105220180B通过同时加入碳粉和沥青粘结剂低温烧结阳极;专利CN101949038B以电解法在阴极直接制备碳氧化钛(TiC xO y,其中0<x≤1,1≤y<2),之后再电解碳氧化钛得到金属钛。专利CN104831318B通过添加酚醛树脂粘合剂来粘结原料。本发明的发明人研究发现,有机粘合剂沥青、酚醛树脂等有机粘合剂带入的碳元素会污染熔盐电解质和提取的金属钛,降低金属钛产品品质。
现有的方法的不足之处:
本发明的发明人研究发现,目前有两种工艺路线制备烧结成型的含钛复合阳极。现有的用于熔盐电解提取金属钛的复合阳极成型烧结方法存在以下不足:
方法1及其不足之处。使用高纯度的TiO 2、TiO、TiC粉体为原料一步反应、烧结成型碳氧化钛或者碳氧氮化钛的含钛复合阳极。但该方法的需要高纯度的TiO 2、TiO、TiC粉体制备碳氧化钛或者碳氧氮化钛粉体,高纯度的TiO 2、TiO、TiC粉体原料成本高。并且,研究发现,烧结温度为1600~2000℃才能得到合格的含钛复合阳极,烧结温度要求高,导致能耗成本高。
方法2及其不足之处。首先使用低品位的钛铁矿、高钛渣、人造金红石等含钛物料在1100~1300℃温度范围内制备碳氧化钛或者碳氧氮化钛,除去还原铁、硅酸盐等杂志后,得到的是碳氧化钛或者碳氧氮化钛含钛粉体,这些含钛粉体需要烧结成型后再用于熔盐电解。现有的一步烧结成型含钛复合阳极在不添加粘合剂的情况下,烧结成型温度需要1600~2000℃左右,烧结温度要求高,导致能耗成本高昂;在添加有机粘合剂的情况下,将碳氧化钛或者碳氧氮化钛粉体添加沥青、酚醛树脂等有机粘合剂后可以降低烧结温度,但沥青、酚醛树脂等有机粘合剂带入的碳元素会污染熔盐电解质和提取的金属钛,降低产品品质。
因此,为了降低复合阳极成型烧结的温度和能耗,并且保证制备的复合阳极的质量的要求下,在方法2的工艺基础上,本发明提出一种低温制备含钛复合阳极的方法。
发明内容
本发明针对上述问题,提供了一种在较低温度下制备含钛复合阳极的方法。
本发明发明人研究发现,以钛铁矿、金红石等含钛矿物制备的碳氧化 钛或者碳氧氮化钛粉体本身含有少量二氧化硅、氧化铝、二氧化钛等杂质,在熔盐电解过程中,这些杂质难以溶解进入熔盐,最终以阳极残渣的形式被取出熔盐电解槽。因此,这些杂质不会污染熔盐和金属钛产品。
另外,实验研究发现,由二氧化硅溶胶、铝溶胶、硅酸钠水溶液、二氧化钛溶胶中的一种或者多种组合的无机粘结剂,能有效降低含钛阳极的烧结温度。并且,这些无机粘结剂内含有的二氧化硅、氧化铝、硅酸钠、二氧化钛在熔盐电解过程中不会溶解进入熔盐,可以以阳极残渣的形式被取出熔盐电解槽,能满足熔盐电解的质量要求。因此,提出以下技术方案。
本发明解决上述问题所采用的技术方案是:
一种制备含钛复合阳极的方法,包括以下步骤:
步骤S1,制备浆料,将80~97%wt的含钛粉体,3~20%wt的无机粘结剂混合均匀制备浆料,其中,含钛粉体为碳氧化钛(TiC xO y,0<x≤y≤1,x+y=1)或者碳氧氮化钛(TiC xO yN z,0<x≤y≤1,0<z<1,x+y+z=1)中的一种或者多种的组合;无机粘结剂为二氧化硅溶胶、铝溶胶、硅酸钠水溶液、二氧化钛溶胶中的一种或者多种的组合;
步骤S2,模压成型,将混合搅拌后的浆料送入模压机的成型模具中压制成型;
优选地,含钛粉体和无机粘结剂在高速混合机内搅拌20~40min,在方形或者圆柱形模具能压制成型。
步骤S3,干燥,模压成型后的坯料在30-150℃温度下烘干,时间1~48小时;
优选地,模压成型后的坯料在80-120℃温度下烘干,时间2~4小时;更为优选地,使用80-120℃的干燥烟气对坯料进行干燥。
步骤S4,烧结成型,烘干后的成型料在真空、氮气或者惰性气体保护下烧结成型,烧结温度850-1250℃;
优选地,烘干后的成型料在氮气保护下,在隧道窑内烧结成型。
步骤S5,表面机械加工修整为含钛复合阳极成品。
含钛复合阳极烧结成型过程中,会引起部分结构变形,需要通过切割机等磨削设备对含钛复合阳极修整外形,以利于下一步的电解。
步骤S1中,所述的含钛粉体平均粒径为80~900目。
优选地,所述的含钛粉体平均粒径为300~600目。
步骤S1中,所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为5-300nm,质量百分含量为25%~40%。
优选地,所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为10-100nm。
更为优选地,所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为10-30nm。
步骤S1中,所述的铝溶胶的氧化铝胶体粒子平均直径为5-200nm,质量百分含量为15%~30%。
优选地,所述的铝溶胶的氧化铝胶体粒子平均直径为10-50nm。
步骤S1中,所述的硅酸钠水溶液中的硅酸钠质量百分含量为20%~35%。
步骤S1中,所述的二氧化钛溶胶的胶体粒子平均直径为5-500nm,质量百分含量为15%~30%。
优选地,所述的二氧化钛溶胶的胶体粒子平均直径为10-30nm。
步骤S2中,所述的模压机所加的压力为5~200MPa。
优选地,所述的模压机所加的压力为100~200MPa。
更为优选地,所述的模压机所加的压力为150~200MPa。
步骤S4中,所述的烧结过程中升温速率和降温速率为5~10℃/分钟,烧结时间为0.5-6小时。
本发明的有益效果是:
1.本发明可以使用以钛铁矿、高钛渣、人造金红石、天然金红石、钒钛磁铁矿等低品位含钛材料制备的碳氧化钛或者碳氧氮化钛粉体为原料,原料成本低;
2.由二氧化硅溶胶、铝溶胶、硅酸钠水溶液、二氧化钛溶胶组合而成的无机粘结剂将烧结温度降低到850-1250℃,节约能耗。
具体实施方式
以下对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
首先,实施例制备碳氧化钛、碳氧氮化钛粉体。含钛复合粉体现有多种方法制备,如专利CN106315584A、CN106744960A。本发明实例使用的含钛复合粉体通过以下方法制备。钛白粉(99%TiO 2,平均粒径0.4微米)和石墨粉(99.8%含碳量,平均粒径50微米)以质量比8∶2的比例在球磨机内 研磨混合3小时,得到的混合物料在钢模具内60MPa压力下压制成直径10mm高度12毫米的颗粒。将颗粒在1000-1500℃范围里,以氩气气氛、或者氮气和氩气的气氛中制备2-18小时后,得到含钛复合材料,化学组成为TiC xO y(0<x≤y≤1,x+y=1),或TiC xO yN z(0<x≤y≤1,0<z<1,x+y+z=1);化学组成通过XRD分析确定。最后,将含钛复合材料球磨机内研磨得到不同粒度的碳氧化钛、碳氧氮化钛粉体。
实施例1
将总质量5kg的45%wt含钛复合粉体TiC 0.3O 0.7,45%wt含钛复合粉体TiC 0.3O 0.5N 0.2,二氧化硅溶胶5%wt,铝溶胶5%wt混合物在高速搅拌机内搅拌30min。含钛复合粉体为粒径均为300目;二氧化硅溶胶中硅胶体粒子平均直径为20nm,质量百分含量为25%,pH中性;铝溶胶中硅胶体粒子平均直径为20nm,质量百分含量为20%。
将混合搅拌后的浆料送入模压机的成型模具中压制成型,压力150MPa,得到200×100×50mm的坯料。将坯料在110℃烘箱内干燥4小时。烘干后的坯料在氩气保护下,在马弗炉内烧结成型。烧结过程中升温速率和降温速率为5℃/分钟,温度1050℃,烧结时间为4小时。最后,通过切割机对含钛复合阳极修整外形,得到成型的含钛复合阳极。
实施例2
将总质量5kg的90%wt含钛复合粉体TiC 0.5O 0.5,二氧化硅溶胶10%wt的混合物在高速搅拌机内搅拌40min。含钛复合粉体为粒径均为600目;二氧化硅溶胶中硅胶体粒子平均直径为15nm,质量百分含量为30%,pH 碱性。
将混合搅拌后的浆料送入模压机的成型模具中压制成型,压力100MPa,得到200×100×50mm的坯料。将坯料在60℃烘箱内干燥10小时。烘干后的成型料在氮气保护下,在高温石墨炉内烧结成型。烧结过程中升温速率和降温速率为10℃/分钟,温度1100℃,烧结时间为3小时。最后,通过切割机对含钛复合阳极修整外形,得到成型的含钛复合阳极。
对比实施例2-1
不使用本发明所列的无机粘合剂,用去离子水替代实施例2中的二氧化硅溶胶,其余实验条件与实施例2相同,烧结后坯料松散,不能烧结成型含钛复合阳极。对比实施例证明了无机粘合剂降低烧结温度的效果。
对比实施例2-2
不使用本发明所列的无机粘合剂,用去离子水替代实施例1中的二氧化硅溶胶,烧结温度1750℃,其余实验条件与实施例2相同,制备得到成型的含钛复合阳极。
实施例3~12
以下表中的浆料组分和烧结温度制备含钛复合阳极,其余条件与实施例1相同,分别制备得到含钛复合阳极3~12。
其中,碳氧化钛含钛复合粉体化学组成为TiC 0.33O 0.67,粒径为500目;碳氧氮化钛含钛复合粉体化学组成为TiC 0.3O 0.5N 0.2,粒径为600目;二氧化硅溶胶中硅胶体粒子平均直径为20nm,质量百分含量为35%,pH碱性;铝溶胶中硅胶体粒子平均直径为30nm,质量百分含量为20%;硅酸钠水 溶液中的硅酸钠质量百分含量为35%;二氧化钛溶胶中胶体粒子平均直径为50nm,质量百分含量为15%。
Figure PCTCN2019124487-appb-000001
实施例13
将以上实施例制备的含钛复合阳极进行熔盐电解提取金属钛实验。实验条件为,2mm厚度的金属钛板为阴极,以LiCl-NaCl-KCl-TiCl 2熔盐为电解质,钛离子含量4%wt。电解槽内以氩气保护,在550℃条件下进行电解。电解槽电压为4.1V,阳极电流密度0.1A/cm 2,阴电流密度为0.2A/cm 2。电解10小时后,在氩气保护下,冷却阴极到100℃以下,取出阴极后刮取阴极表面沉积的金属钛,使用去离子水清洗。最后,在真空条件下干燥,得到制备好的金属钛。对金属钛进行氧含量元素分析,根据法拉第原理计算 得到阴极电流效率。实验结果如下。
实施例 氧元素含量ppm 阴极电流效率%
1 420 89.2
2 350 88.3
3 620 93
4 340 97.3
5 730 93.5
6 220 86.8
7 320 92.3
8 480 96.7
9 870 87.7
10 640 83
11 400 91.7
12 510 93
对比实施例2-2 550 86.2
由上表可以看出,实施例1-12制备的含钛复合阳极的熔盐电解制备金属钛的实验结果与现有高温烧结制备的含钛复合阳极的实验结果接近,而本发明的含钛复合阳极的烧结温度大大低于现有方法。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低温制备含钛复合阳极的方法,其特征在于,包括以下步骤:
    步骤S1,制备浆料,将80~97%wt的含钛粉体,3~20%wt的无机粘结剂混合均匀制备浆料,其中,含钛粉体为碳氧化钛(TiC xO y,0<x≤y≤1,x+y=1)或者碳氧氮化钛(TiC xO yN z,0<x≤y≤1,0<z<1,x+y+z=1)中的一种或者多种的组合;无机粘结剂为二氧化硅溶胶、铝溶胶、硅酸钠水溶液、二氧化钛溶胶中的一种或者多的种组合;
    步骤S2,模压成型,将混合搅拌后的浆料送入模压机的成型模具中压制成型;
    步骤S3,干燥,模压成型后的坯料在30-150℃温度下烘干,时间1~48小时;
    步骤S4,烧结成型,烘干后的成型料在真空或者惰性气体保护下烧结成型,烧结温度850-1250℃;
    步骤S5,表面机械加工修整为含钛复合阳极成品。
  2. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中,所述的含钛粉体平均粒径为80~900目,优选300-600目。
  3. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中,所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为5-300nm,质量百分含量为25%~40%。
  4. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中,所述的铝溶胶的氧化铝胶体粒子平均直径为5-200nm,质量百分含量为15%~30%,优选10-50nm。
  5. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中,所述的硅酸钠水溶液中的硅酸钠质量百分含量为20%~35%。
  6. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中,所述的二氧化钛溶胶的胶体粒子平均直径为5-500nm,质量百分含量为15%~30%。
  7. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S2中,所述的模压机所加的压力为5~200MPa,优选100-200Mpa,更优选150-200Mpa。
  8. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S3中模压成型后的坯料在80-120℃温度下烘干,时间2~4小时;优选地,使用80-120℃的干燥烟气对坯料进行干燥。
  9. 根据权利要求3所述的低温制备含钛复合阳极的方法,其特征在于,步骤S1中所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为10-100nm;优选的,所述的二氧化硅溶胶中的二氧化硅胶体粒子平均直径为10-30nm。
  10. 根据权利要求1所述的低温制备含钛复合阳极的方法,其特征在于,步骤S4中,所述的烧结过程中升温速率和降温速率为5~10℃/分钟,烧结时间为0.5-6小时。
PCT/CN2019/124487 2019-01-14 2019-12-11 一种低温制备含钛复合阳极的方法 WO2020147464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910030250.2 2019-01-14
CN201910030250.2A CN109650893A (zh) 2019-01-14 2019-01-14 一种低温制备含钛复合阳极的方法

Publications (1)

Publication Number Publication Date
WO2020147464A1 true WO2020147464A1 (zh) 2020-07-23

Family

ID=66119862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124487 WO2020147464A1 (zh) 2019-01-14 2019-12-11 一种低温制备含钛复合阳极的方法

Country Status (2)

Country Link
CN (1) CN109650893A (zh)
WO (1) WO2020147464A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650893A (zh) * 2019-01-14 2019-04-19 浙江海虹控股集团有限公司 一种低温制备含钛复合阳极的方法
CN110592399B (zh) * 2019-08-30 2021-03-30 浙江海虹控股集团有限公司 一种节能型提取金属钛的系统和方法
CN115947614B (zh) * 2022-06-09 2024-05-03 松山湖材料实验室 亚氧化钛陶瓷电极及其制备方法、应用和电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949038A (zh) * 2010-09-21 2011-01-19 攀钢集团钢铁钒钛股份有限公司 一种电解法制备碳氧钛复合阳极的方法
CN102634820A (zh) * 2012-04-23 2012-08-15 上海大学 由含钛复合矿直接电解氯化除铁去杂提取钛及钛合金的方法及其电解槽装置
EP2462251B1 (en) * 2009-08-06 2015-11-25 Chinuka Limited Treatment of titanium ores
CN106315584A (zh) * 2016-08-29 2017-01-11 重庆大学 利用含钛矿物或炉渣制备碳氧化钛或/和碳化钛的方法
CN106744960A (zh) * 2016-11-15 2017-05-31 重庆大学 一种配碳氢气还原制备碳氧化钛或/和碳化钛的方法
CN109650893A (zh) * 2019-01-14 2019-04-19 浙江海虹控股集团有限公司 一种低温制备含钛复合阳极的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412620A (zh) * 2008-11-14 2009-04-22 西安交通大学 溶胶作为助剂制备多孔氧化铝陶瓷支撑体的方法
CN103305875A (zh) * 2013-06-27 2013-09-18 中国铝业股份有限公司 一种熔盐电解制备金属钛的阳极的制备方法
CN103451682B (zh) * 2013-09-16 2017-06-06 北京科技大学 一种含钛可溶阳极熔盐电解提取金属钛的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462251B1 (en) * 2009-08-06 2015-11-25 Chinuka Limited Treatment of titanium ores
CN101949038A (zh) * 2010-09-21 2011-01-19 攀钢集团钢铁钒钛股份有限公司 一种电解法制备碳氧钛复合阳极的方法
CN102634820A (zh) * 2012-04-23 2012-08-15 上海大学 由含钛复合矿直接电解氯化除铁去杂提取钛及钛合金的方法及其电解槽装置
CN106315584A (zh) * 2016-08-29 2017-01-11 重庆大学 利用含钛矿物或炉渣制备碳氧化钛或/和碳化钛的方法
CN106744960A (zh) * 2016-11-15 2017-05-31 重庆大学 一种配碳氢气还原制备碳氧化钛或/和碳化钛的方法
CN109650893A (zh) * 2019-01-14 2019-04-19 浙江海虹控股集团有限公司 一种低温制备含钛复合阳极的方法

Also Published As

Publication number Publication date
CN109650893A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US10519556B2 (en) Process for recycling waste carbide
US20060037867A1 (en) Method of manufacturing titanium and titanium alloy products
WO2020147464A1 (zh) 一种低温制备含钛复合阳极的方法
US9963796B2 (en) Method of producing titanium metal with titanium-containing material
US11821096B2 (en) Device and method for preparing high-purity titanium powder by continuous electrolysis
US20200165703A1 (en) Method of producing titanium and titanium alloy nanopowder from titanium-containing slag through shortened process
WO2019104809A1 (zh) 电解废弃硬质合金直接制备钨基合金粉末的方法
CN106591892A (zh) 亚氧化钛系可溶电极制备方法及其在电解制备高纯钛中的应用
WO2019201070A1 (zh) 采用废弃铝材生产氢氧化铝的方法
CN113106496A (zh) 一种钒碳氧固溶体阳极熔盐电解高纯金属钒方法
CN113699560B (zh) 一种氟氯混合熔盐体系可溶阳极电解制备金属钛的方法
CN109811370B (zh) 一种电解-钛碳硫阳极-制备金属钛的方法
Zhao et al. Formation of Ti or TiC nanopowder from TiO 2 and carbon powders by electrolysis in molten NaCl–KCl
US20220347746A1 (en) Method for refining large-particle-size pure copper or copper alloy particles by high-energy ball milling
CN101509139A (zh) 一种由钛铁矿制备钛铁合金的方法
CN104233372A (zh) 从铅冰铜中回收铜的方法
CN109487087B (zh) 一种利用废弃镁碳砖提取金属镁的方法及装置
KR101704351B1 (ko) 전해채취법을 이용한 환원철 제조방법 및 이에 따라 제조된 환원철
US2538992A (en) Electrolytically deposited iron products
Meifeng et al. Effect of electrolysis voltage on electrochemical reduction of titanium oxide to titanium in molten calcium chloride
CN110079833B (zh) 一种高碳粗杂钒精炼高纯金属钒方法
CN112961985B (zh) 一种使用靶材回收料再造精铟靶材的火法回收精铟工艺
CN113445080B (zh) 一种基于液态阴极-可溶性含钛阳极直接电解制备钛合金的方法
CN103725912A (zh) 废硬质合金混合料回收和处理的方法
US2778725A (en) Method for making powdered vanadium metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910533

Country of ref document: EP

Kind code of ref document: A1