WO2019201070A1 - 采用废弃铝材生产氢氧化铝的方法 - Google Patents

采用废弃铝材生产氢氧化铝的方法 Download PDF

Info

Publication number
WO2019201070A1
WO2019201070A1 PCT/CN2019/080034 CN2019080034W WO2019201070A1 WO 2019201070 A1 WO2019201070 A1 WO 2019201070A1 CN 2019080034 W CN2019080034 W CN 2019080034W WO 2019201070 A1 WO2019201070 A1 WO 2019201070A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
waste
aluminum hydroxide
fuel cell
alloy
Prior art date
Application number
PCT/CN2019/080034
Other languages
English (en)
French (fr)
Inventor
王旭
Original Assignee
东深金属燃料动力实验室有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东深金属燃料动力实验室有限责任公司 filed Critical 东深金属燃料动力实验室有限责任公司
Publication of WO2019201070A1 publication Critical patent/WO2019201070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates

Definitions

  • the invention belongs to the field of environmental protection, and particularly relates to a new technology for converting waste aluminum into high-purity aluminum hydroxide with uniform particle size.
  • Aluminum and aluminum alloys are widely used in industrial and daily life due to their low density, high specific strength, good electrical conductivity, good corrosion resistance and oxidation resistance, and easy processing.
  • China's aluminum and aluminum alloy production has advanced by leaps and bounds, and the consumption of aluminum and aluminum alloys has also increased rapidly, which has led to a huge amount of waste aluminum.
  • waste aluminum is difficult to re-smelt into high-quality conductive aluminum and structural aluminum alloy products, the accumulated aluminum waste has not only brought serious environmental pollution, but the inferior aluminum material re-smelted with waste aluminum has also greatly reduced the aluminum material. The application value, this is undoubtedly a serious waste of aluminum resources.
  • the rapid increase in the demand for aluminum products and the continuous exploitation of aluminum resources have led to the abundance of aluminum resources. Vigorously developing high-quality waste aluminum recycling industry is of great significance to the realization of low-carbon economy and the development of a recyclable economy.
  • Aluminum hydroxide has a wide range of applications as an inorganic flame retardant additive. In addition, it can also be used as raw materials for artificial marble and pharmaceutical excipients.
  • industrial manufacturing methods of aluminum hydroxide include: 1) Bayer process. The alumina in the bauxite is dissolved with a sodium hydroxide solution of a certain temperature to obtain a sodium aluminate solution. After the solution is separated from the residue (red mud), the temperature is lowered, and aluminum hydroxide is added as a seed crystal. After a long time of stirring, the sodium aluminate is analyzed to form aluminum hydroxide; 2) the soda lime sintering method.
  • the bauxite, sodium carbonate and lime are mixed and mixed in a certain ratio, and sintered in a rotary kiln into clinker composed of sodium aluminate, sodium ferrite, calcium silicate and sodium titanate.
  • the sodium aluminate in the clinker is then dissolved in a dilute alkali solution. If the dissolution conditions are properly controlled, the calcium silicate does not react with the sodium aluminate solution in a large amount, but forms a red mud discharge with calcium titanate or the like.
  • the sodium aluminate solution dissolved in the clinker is subjected to a special desiliconization process to form a hydrated aluminosilicate (referred to as sodium silicon slag) or a hydrated garnet, and the solution is purified.
  • the carbon dioxide gas is introduced into the refined sodium aluminate solution, and the seed crystal is stirred to obtain aluminum hydroxide; 3) the Bayer-sintering combination method.
  • the aluminum hydroxide produced by the above method tends to have low purity and a very uneven particle size.
  • the above-mentioned aluminum hydroxide manufacturing process not only consumes a large amount of energy but also pollutes the environment.
  • Aluminum fuel cell has the characteristics of high specific energy, large specific power, safety and environmental protection. It is a green high-energy metal fuel cell, which has important applications in mobile power stations, communication base stations and electric vehicles.
  • the aluminum fuel cell is composed of an aluminum alloy negative electrode, an air electrode positive electrode, an electrolyte, a battery cavity, and related accessory components.
  • Aluminum fuel cell discharge the negative electrode loses electrons continuously aluminum Al 3+ is dissolved into the electrolyte, oxygen in the air in the air electrode of the positive electrode at the interface with the electrolyte in the electrolyte in the electronics binding of H + OH - Entering the electrolyte, the battery outputs external electric energy, and Al 3+ in the electrolyte combines with OH - to form Al(OH) 3 precipitate.
  • the aluminum alloy anode material is the aluminum fuel of the aluminum fuel cell.
  • the aluminum fuel cell also converts aluminum fuel into aluminum hydroxide while generating electricity from the outside.
  • the aluminum fuel in the aluminum fuel cell is smelted by high-purity aluminum (purity of 99.99% wt) or industrial grade pure aluminum (purity of 99.5% wt) by smelting with alloying elements.
  • High-purity aluminum (99.99% wt) and industrial grade pure aluminum (99.5% wt) are expensive, resulting in high manufacturing costs for aluminum fuel.
  • the present invention proposes a waste aluminum A method of producing high quality aluminum hydroxide, and the method further produces electrical energy while producing high quality aluminum hydroxide.
  • the invention provides a method for producing high-quality aluminum hydroxide from waste aluminum material, which is a metallurgical method for first smelting waste aluminum into aluminum fuel, and aluminum fuel as a negative electrode in an aluminum fuel cell, using an aluminum fuel cell.
  • the discharge process produces aluminum hydroxide.
  • the specific implementation steps are as follows:
  • Pretreatment of waste aluminum disassembling and removing non-aluminum material attached to the waste aluminum material;
  • the aluminum fuel is used as a negative electrode in an aluminum fuel cell system, and the positive electrode and the negative electrode of the aluminum fuel cell system are connected to an external circuit to start the aluminum fuel cell system to generate electricity, and aluminum hydroxide is formed in the electrolyte of the aluminum fuel cell system. ;
  • the aluminum hydroxide in the electrolyte of the aluminum fuel cell system is separated from the electrolyte by off-line separation or on-line separation;
  • the separated aluminum hydroxide is washed and dried to produce high quality aluminum hydroxide.
  • the non-aluminum materials include building materials, polymer materials, non-aluminum metal materials, oil stains, and coatings.
  • waste aluminum include: industrial pure aluminum, Al-Cu alloy, Al-Mn alloy, Al-Si alloy, Al-Mg alloy, Al-Li alloy, Al-Re alloy, Al-Mg-Si alloy, Al- Cu-Mg alloy, Al-Si-Cu alloy, Al-Mg-Si-Cu alloy, Al-Zn-Mg-Cu alloy, and Al-Si-Mg-Cu-Ni alloy.
  • a coating agent for preventing oxidation may also be added during the smelting process.
  • an inert gas may be introduced to form a protective layer.
  • the temperature in the smelting furnace is controlled in a temperature range of 670 ° C to 850 ° C.
  • the "casting to the mold after the heat preservation" is performed after the heat is kept for 3 to 20 minutes.
  • the press-formed aluminum fuel can also be heat-treated; the heat treatment temperature is controlled in the temperature range of 150 ° C to 450 ° C; the heat preservation time in the heat treatment is controlled in the range of 1 to 24 hours; the higher the heat treatment temperature, the shorter the holding time; the heat treatment process
  • An inert gas can be introduced into the heat treatment furnace to prevent oxidation.
  • the covering agent is a chlorine salt and/or a fluorine salt; the chlorine salt includes NaCl and KCl; and the fluorine salt includes NaF and Na3AlF6.
  • the inert gas added is nitrogen or argon.
  • the on-line separation is that the electrolyte in the battery chamber of the aluminum fuel cell system is pumped into the separation device by the circulation pump, and the separation device separates the aluminum hydroxide in the electrolyte, and the electrolysis after separating the aluminum hydroxide.
  • the liquid then flows back into the battery chamber under the action of the circulation pump; under the action of the circulation pump, the electrolyte continuously circulates between the battery chamber and the separation device, and the aluminum hydroxide fuel system continues to be continuously produced in the battery chamber.
  • the electric energy is outputted externally, and the separating device continuously separates the aluminum hydroxide in the electrolyte; the separating device is a settler or a centrifugal separator.
  • the washing of the aluminum hydroxide is performed by washing with a liquid to remove the electrolyte and impurities remaining in the aluminum hydroxide; the liquid includes distilled water or tap water.
  • the aluminum hydroxide is dried by placing the washed aluminum hydroxide in an oven, holding it in a temperature range of 50 ° C to 500 ° C until the water is removed therefrom, and then cooling to room temperature.
  • the present invention has the advantage of proposing a new technology for producing high quality aluminum hydroxide from waste aluminum.
  • the aluminum hydroxide produced by the technique of the present invention has a uniform particle diameter and high purity, and is a high quality aluminum hydroxide material.
  • the aluminum hydroxide is produced by the technique of the present invention, electric energy is simultaneously outputted.
  • the technology of the invention not only realizes the efficient utilization of waste aluminum material, but also turns waste aluminum into waste, completely solves the environmental pollution of a large amount of waste aluminum material, and realizes the sustainable development of aluminum resources.
  • FIG. 1 is a schematic view showing the structure of a single aluminum fuel cell in a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of an aluminum fuel cell stack composed of a plurality of single aluminum fuel cells in a preferred embodiment of the present invention
  • Figure 3 is a schematic view showing the structure of an aluminum fuel cell system in a preferred embodiment of the present invention
  • Figure 4 is a schematic view showing the structure of an aluminum fuel cell system provided with a separating device in a preferred embodiment of the present invention
  • Figure 5 is a result of particle size analysis of the aluminum hydroxide powder produced by the present invention.
  • Figure 6 is an XRD diffraction spectrum of the aluminum hydroxide powder produced by the present invention
  • the recovered waste aluminum material is sorted and disassembled by means of dismantling, or low-temperature calcination, or chemical immersion, to remove non-aluminum substances attached to the waste aluminum, including building materials, polymer materials, and non-aluminum materials.
  • the surface of the waste aluminum is cleaned and becomes a raw material that can be put into the smelting furnace to smelt the aluminum fuel.
  • Example 2 Classification method of waste aluminum
  • the pretreated waste aluminum is classified according to the chemical composition of the waste aluminum.
  • the classification of waste aluminum includes the following: industrial pure aluminum, Al-Cu alloy, Al-Mn alloy, Al-Si alloy, Al-Mg alloy, Al-Mg-Si alloy, Al-Cu-Mg alloy, Al- Mg-Si-Cu alloy, Al-Si-Cu alloy, Al-Si-Mg-Cu alloy, Al-Si-Mg-Cu-Ni alloy, Al-Zn-Mg-Cu alloy, Al-Li alloy, Al- Re alloy, and so on.
  • Example 3 Monomer aluminum fuel cell, aluminum fuel cell stack and aluminum fuel cell system
  • a single unit aluminum fuel cell 6 is constructed, including a battery chamber 5, an air electrode positive electrode 3 mounted on a shell wall of a single aluminum fuel cell chamber 5, and an electrolysis housed in the electric chamber 5. Liquid 4 and aluminum fuel negative electrode 2.
  • the aluminum fuel cell stack 11 in this example is formed by electrically connecting a plurality of single aluminum fuel cells 6 via wires 1.
  • a larger aluminum fuel cell stack 11 can be formed between a plurality of aluminum fuel cell stacks either electrically connected in series or electrically connected in parallel.
  • the aluminum fuel cell system in this example includes an aluminum fuel cell stack 11, a liquid flow pipe 8, a circulation pump 9, and a liquid storage tank 7, and each battery cavity in the aluminum fuel cell stack 11.
  • the electrolyte solution in 5 flows into the liquid storage tank 7 through the liquid flow conduit 8 by the circulation pump 9, and then the electrolyte flows back into the battery chamber 5 from the liquid storage tank 7.
  • a separation device 10 is provided in the aluminum fuel cell system shown in FIG. 3; the electrolyte in each battery cavity 5 of the aluminum fuel cell stack 11 is hydrolyzed by the circulation pump 9.
  • the flow conduit 8 flows into the liquid storage tank 7, and is then pumped into the separation device 10.
  • the separation device 10 separates the aluminum hydroxide in the electrolyte, and the separated electrolyte flows back to the battery chambers through the liquid flow conduit 8. 5; under the action of the circulation pump, the electrolyte continuously circulates between the battery chamber and the separation device, and the aluminum hydroxide fuel system continuously outputs the aluminum hydroxide continuously, and the aluminum fuel cell system continuously outputs the electric energy continuously, and the separation device continuously separates the electrolyte.
  • the on-line separation of the aluminum hydroxide precipitate in the electrolyte is realized, and the production efficiency of aluminum hydroxide is further improved.
  • Example 4 Method for producing aluminum hydroxide by using waste industrial aluminum smelting aluminum fuel and placing it into aluminum fuel cell system
  • the required amount of waste industrial pure aluminum classified after pretreatment was placed in a smelting furnace, and the temperature was raised to 670 ° C and then kept for 25 minutes to be melted.
  • a mixture of NaCl and KCl was added as a coating agent to the smelting furnace.
  • the amount of the covering agent to be added is such that it can uniformly cover the entire surface of the molten aluminum after it is melted.
  • the alloy composition of Table 1 the required amounts of Mg and Hg were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After further heat preservation for 3 minutes, the slag was discharged, cast, and cast into a mold to obtain an aluminum fuel ingot.
  • the aluminum ingot is taken out from the mold to remove the impure portion of the ingot end, the aluminum ingot is placed on a roller press for multiple rolling, rolled to a plate of a desired thickness, and then cut into aluminum fuel.
  • the aluminum fuel of the desired shape of the battery is cut into aluminum fuel.
  • the above aluminum fuel smelted from waste industrial pure aluminum was used as a negative electrode and placed in the aluminum fuel cell system shown in FIG.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be generated in the electrolyte, and the aluminum fuel cell system simultaneously outputs electric energy.
  • the circulation pump is stopped, the electrolyte circulation is stopped, and the electrolyte in the storage tank is taken out. Add a new electrolyte to the reservoir, start the circulation pump, and circulate the electrolyte.
  • the precipitate in the extracted electrolyte is separated from the electrolyte by the method of offline separation, the precipitate is washed several times with distilled water, and then the precipitate is placed in an oven at 80 ° C for a certain period of time. Drying to obtain aluminum hydroxide powder.
  • Example 5 Method for producing aluminum hydroxide by smelting aluminum fuel with waste Al-Si alloy into aluminum fuel cell
  • the required amount of the discarded Al-Si alloy classified by the pretreatment was placed in a smelting furnace, and the temperature was raised to 780 ° C for 20 minutes to be melted.
  • Argon gas is introduced into the smelting furnace to form a stable inert gas protective layer to reduce burning loss during the smelting process.
  • the required amounts of Ga, Sn, S and Mg were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After further heating for 15 minutes, the slag was discharged, cast, and cast into a mold to obtain an aluminum fuel ingot, and the argon gas was stopped.
  • the aluminum fuel ingot is taken out from the mold, and the impure portion of the ingot end is removed, and then placed on a roll press for rolling a plurality of times, rolled to a plate of a desired thickness, and then cut into an aluminum fuel cell. Aluminium fuel of the desired shape.
  • the above aluminum fuel prepared by smelting with a waste Al-Si alloy was used as a negative electrode in the aluminum fuel cell system shown in Fig. 4.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be formed in the electrolyte.
  • the aluminum fuel cell system simultaneously outputs electric energy, and the separating device separates the hydroxide in the electrolyte online.
  • the precipitate of the separated aluminum hydroxide precipitate was washed with distilled water several times, and then the precipitate was placed in an oven at 50 ° C for a certain period of time to be dried to obtain aluminum hydroxide.
  • FIG. 5 is a graph showing the results of particle size analysis for producing aluminum hydroxide powder. It can be seen that the average particle diameter of the aluminum hydroxide produced by the present invention is 0.9 ⁇ m, and the particle size distribution range is narrow, indicating that the particle diameter is uniform.
  • Fig. 6 is an X-ray diffraction analysis chart for producing aluminum hydroxide powder. It can be seen that the test spectrum agrees well with the powder standard diffraction spectrum of aluminum hydroxide, and there is no obvious peak, indicating that the manufactured aluminum hydroxide powder has high purity.
  • Example 6 Method for producing aluminum hydroxide by smelting aluminum fuel with waste Al-Mg alloy into aluminum fuel cell
  • the required amount of the discarded Al-Mg alloy classified after pretreatment was placed in a smelting furnace, and the temperature was raised to 800 ° C for 20 minutes to be melted.
  • the aluminum melt is protected by adding a mixture of NaCl and NaF as a covering agent to the smelting furnace, and the amount of the covering agent is added to ensure that it uniformly covers the entire surface of the molten aluminum after melting.
  • An appropriate amount of nitrogen gas is introduced into the smelting furnace to form a stable inert gas protective layer to reduce burning loss during the smelting process.
  • the required amounts of Ga, Mn and In were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After further 8 minutes of heat retention, the slag was discharged, cast, and cast into a mold to obtain an aluminum fuel ingot, while stopping the introduction of nitrogen.
  • the aluminum fuel ingot is taken out from the mold, and the impure portion of the ingot end is removed, and then placed on a roll press for multiple rolling, rolling to a plate of a desired thickness, and cutting into a discharge required Shaped aluminum fuel.
  • the formed aluminum fuel was placed in a heat treatment furnace, nitrogen gas was introduced into the furnace, and the temperature was raised to 250 ° C for 10 hours, and then cooled to room temperature with the furnace to stop the nitrogen gas passage.
  • the above aluminum fuel prepared by smelting with a waste Al-Mg alloy was used as a negative electrode and placed in the aluminum fuel cell system shown in Fig. 4.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be formed in the electrolyte.
  • the aluminum fuel cell system simultaneously outputs electric energy, and the separating device separates the hydroxide in the electrolyte online.
  • Aluminum precipitation After the separated aluminum hydroxide precipitate was washed several times with distilled water, the precipitate was placed in an oven at 150 ° C, and dried for a certain period of time to obtain an aluminum hydroxide powder material.
  • Example 7 Method for producing aluminum hydroxide by dissolving aluminum fuel with waste Al-Mg-Si alloy into aluminum fuel cell
  • the required amount of the discarded Al-Mg-Si alloy classified after pretreatment was placed in a smelting furnace, and the temperature was raised to 760 ° C for 15 minutes to be melted.
  • the aluminum melt is protected by adding a mixture of NaCl and NaF as a covering agent, and the amount of the covering agent is added to ensure that it uniformly covers the entire surface of the molten aluminum after melting.
  • the required amounts of Ga, Sn and Hg were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After another 20 minutes of incubation, the slag was discharged, cast, and cast into a mold.
  • the aluminum fuel ingot is taken out from the mold, and the impure portion of the ingot end is removed, and then placed on a roll press for rolling a plurality of times, rolled to a plate of a desired thickness, and then cut into an aluminum fuel cell. Aluminium fuel of the desired shape.
  • the above aluminum fuel prepared by smelting with a waste Al-Mg-Si alloy was used as a negative electrode and placed in the aluminum fuel cell shown in Fig. 4.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be formed in the electrolyte.
  • the aluminum fuel cell system simultaneously outputs electric energy, and the separating device separates the hydroxide in the electrolyte online.
  • Aluminum precipitation After the separated aluminum hydroxide precipitate was washed several times with tap water, the precipitate was placed in an oven at 100 ° C and dried for a certain period of time to obtain an aluminum hydroxide powder material.
  • Example 8 Method for producing aluminum hydroxide by smelting aluminum fuel with waste Al-Mg-Si-Cu alloy into aluminum fuel cell
  • the required amount of the discarded Al-Mg-Si-Cu alloy classified after pretreatment was placed in a smelting furnace, and the temperature was raised to 850 ° C for 15 minutes to be melted.
  • the aluminum melt is protected by adding a mixture of NaCl and KCl as a covering agent, and the amount of the covering agent is added to ensure that it uniformly covers the entire surface of the molten aluminum after melting.
  • An appropriate amount of nitrogen gas is introduced into the smelting furnace to form a stable inert gas protective layer to reduce burning loss during the smelting process.
  • the required amounts of Ga, Sn and S were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After further heating for 15 minutes, the slag was discharged, cast, and cast into a mold to obtain an aluminum fuel ingot. Stop introducing nitrogen.
  • the aluminum fuel ingot is taken out from the mold, and the impure portion of the ingot end is removed, and then placed on a roll press for rolling a plurality of times, rolled to a plate of a desired thickness, and then cut into an aluminum fuel cell. Aluminium fuel of the desired shape.
  • the above aluminum fuel prepared by smelting with a waste Al-Mg-Si-Cu alloy was used as a negative electrode in the aluminum fuel cell system shown in Fig. 4.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be formed in the electrolyte.
  • the aluminum fuel cell system simultaneously outputs electric energy, and the separating device separates the hydroxide in the electrolyte online.
  • Example 9 Method for producing aluminum hydroxide by smelting aluminum fuel with waste Al-Si-Mg-Cu-Ni alloy into aluminum fuel cell
  • the required amount of the discarded Al-Si-Mg-Cu-Ni alloy classified after pretreatment was placed in a smelting furnace, and the temperature was raised to 720 ° C for 10 minutes to be melted.
  • the aluminum melt is protected by adding a mixture of NaCl and KCl as a covering agent to the smelting furnace, and the amount of the covering agent is added to ensure that it uniformly covers the entire surface of the molten aluminum after melting.
  • the alloy composition of Table 6 the required amounts of Ga and Sn were respectively added to the molten aluminum in the smelting furnace, and the mixture was thoroughly stirred and uniformly mixed. After further 10 minutes of heat retention, the slag was discharged, cast, and cast into a mold to obtain an aluminum fuel ingot.
  • the aluminum fuel ingot is taken out from the mold, and the impure portion of the ingot end is removed, and then placed on a roll press for multiple rolling, rolling to a plate of a desired thickness, and cutting into a discharge required Shaped aluminum fuel.
  • the formed aluminum fuel was placed in a heat treatment furnace, heated to 200 ° C for 10 h, and then cooled to room temperature with the furnace.
  • the aluminum fuel smelted from the waste Al-Si-Mg-Cu-Ni alloy was used as a negative electrode and placed in the aluminum fuel cell system shown in Fig. 4.
  • the positive electrode and the negative electrode of the aluminum fuel cell system are connected to the external circuit to start the aluminum fuel cell system, and aluminum hydroxide is started to be formed in the electrolyte.
  • the aluminum fuel cell system simultaneously outputs electric energy, and the separating device separates the hydroxide in the electrolyte online.
  • Aluminum precipitation After the separated aluminum hydroxide precipitate was washed several times with distilled water, the precipitate was placed in an oven at 100 ° C, and dried for a certain period of time to obtain aluminum hydroxide.
  • the technical solution disclosed in the present invention converts waste aluminum into aluminum fuel and puts into aluminum fuel cell to produce aluminum hydroxide powder.
  • the aluminum fuel cell also outputs electric energy to the outside.
  • the technical proposal for producing aluminum hydroxide from waste aluminum proposed by the present invention is to produce aluminum hydroxide from waste aluminum after the aluminum and aluminum alloys have been functionally made into a waste aluminum material as a structural aluminum material or a conductive aluminum material.
  • the technical solution not only realizes the efficient utilization of aluminum resources, but also turns waste aluminum into waste, completely solves the environmental pollution of a large amount of waste aluminum, and the technical solution also reduces the production and operation cost of the aluminum fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Fuel Cell (AREA)

Abstract

一种采用废弃铝材生产氢氧化铝的方法,将附着在废弃铝材上的非铝材料进行拆解去除、分类;将同一分类的废弃铝材放入冶炼炉中,至其熔化;再按所需铝燃料成分,加入相适应的合金元素,充分搅拌混合均匀,保温后浇注到模具中,制成铝燃料铸锭、制成发电所需形状的铝燃料;将所述铝燃料作为负极放入铝燃料电池系统,启动铝燃料电池发电,铝燃料电池系统的电解液中生成氢氧化铝;将铝燃料电池系统电解液中的氢氧化铝进行分离、清洗和干燥,生产出氢氧化铝。将废弃铝材变废为宝,彻底解决了大量废弃铝材对环境的污染,实现铝资源的可持续发展。

Description

采用废弃铝材生产氢氧化铝的方法 技术领域
本发明属于环保领域,特别涉及一种将废弃铝材转变为粒径均匀的高纯度氢氧化铝的新技术。
背景技术
铝及铝合金由于其密度小、比强度高、导电性好、耐腐蚀性和抗氧化性好、易于加工等特点,被广泛应用于工业和日常生活领域。随着中国经济的快速发展,中国铝及铝合金产量突飞猛进,铝及铝合金的消费量也急速增加,随之带来的是数量巨大的废弃铝。由于废弃铝难以再重新冶炼为高质量的导电铝材及结构铝合金产品,日积月累的废弃铝不仅带来了严重的环境污染,用废弃铝重新冶炼而成的劣质铝材也大大降低了铝材的应用价值,这无疑是铝资源的严重浪费。此外,对铝制产品需求量的快速增加以及对铝资源的持续性大量开采,导致铝资源已经趋于贫瘠。大力发展高质量的废弃铝再生产业,对实现低碳经济及可循环经济发展具有重要意义。
氢氧化铝作为无机阻燃添加剂有着广泛的应用。此外,还可用作人造大理石原料以及药用辅料等。目前,氢氧化铝的工业制造方法包括:1)拜耳法。用一定温度的氢氧化钠溶液将铝土矿中的氧化铝溶出,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝;2)碱石灰烧结法。将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠、铁酸钠、硅酸钙和钛酸钠组成的熟料。然后用稀碱溶液将熟料中的铝酸钠溶出。如果溶出条件控制适当,硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙等形成赤泥排出。由熟料中溶出的铝酸钠溶液经过专门的脱硅过程,形成水合铝硅酸钠(称为钠硅渣)或水化石榴石,提纯溶液。把二氧化碳气体通入精制铝酸钠溶液,加入晶种搅拌,得到氢氧化铝;3)拜尔-烧结联合法。上述方法制造的氢氧化铝往往纯度低,而且粒径很不均匀。此外,上述氢氧化铝的制造过程不仅能耗大,还污染环境。
铝燃料电池具有比能量高、比功率大、安全环保的特点,是一种绿色高能的金属燃料电池,在移动电站、通信基站、电动汽车等领域有着重要应用。铝燃料 电池由铝合金负极、空气电极正极、电解液、电池腔体及相关附属部件构成。铝燃料电池放电过程中,负极铝合金不断失去电子溶解为Al 3+进入电解液,空气中的氧气在空气电极正极与电解液的界面处得电子后与电解液中的H +结合为OH -进入电解液,电池对外输出电能的同时,电解液中的Al 3+与OH -结合生成Al(OH) 3沉淀。因此,铝合金负极材料就是铝燃料电池的铝燃料。铝燃料电池对外发电的同时,也将铝燃料转变为氢氧化铝。目前,铝燃料电池中的铝燃料都是通过冶炼的方法,采用高纯铝(纯度99.99%wt)或者工业级纯铝(纯度99.5%wt),通过添加合金元素冶炼而成。高纯铝(99.99%wt)及工业级纯铝(99.5%wt)价格高,造成铝燃料的制造成本也高。
发明内容
为了将废弃铝材变废为宝,为了解决废弃铝材对环境的污染,为了解决现有氢氧化铝生产技术高能耗高污染以及产品质量不高的问题,本发明提出了一种用废弃铝材生产高质量氢氧化铝的方法,且该方法在生产高质量氢氧化铝的同时还对外输送电能。
本发明提出的一种用废弃铝材生产高质量氢氧化铝的方法,是采用冶金的方法先把废弃铝材冶炼成铝燃料,将铝燃料作为负极放入铝燃料电池中,利用铝燃料电池的放电过程生产氢氧化铝。具体实施步骤如下:
对废弃铝材的预处理:将附着在所述废弃铝材上的非铝材料进行拆解去除;
将预处理后的废弃铝材按照铝及铝合金的成分进行分类;
将同一分类的废弃铝材放入冶炼炉中,升温至一定温度后保温使废弃铝材熔化;再按所需铝燃料成分,加入相适应的合金元素,充分搅拌混合均匀,保温一定时间后浇注到模具中,制成铝燃料铸锭;
将所述铝燃料铸锭压制成铝燃料电池系统所需形状的铝燃料;
将所述铝燃料作为负极放入铝燃料电池系统,将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统发电的同时,铝燃料电池系统的电解液中生成氢氧化铝;
采用线下分离或者在线分离的方法将铝燃料电池系统电解液中的氢氧化铝与电解液分离;
将分离出的氢氧化铝进行清洗、干燥,生产出高质量的氢氧化铝。
所述非铝材料包括建筑材料、高分子材料、非铝金属材料、油污和涂料。
废弃铝材的种类包括:工业纯铝、Al-Cu合金、Al-Mn合金、Al-Si合金、Al-Mg合金、Al-Li合金、Al-Re合金、Al-Mg-Si合金、Al-Cu-Mg合金、Al-Si-Cu合金、Al-Mg-Si-Cu合金、Al-Zn-Mg-Cu合金和Al-Si-Mg-Cu-Ni合金。
所述冶炼过程中还可加入防止氧化的覆盖剂。
所述废弃铝材放入冶炼炉中冶炼时,还可通入惰性气体形成保护层。
所述冶炼炉内的温度控制在670℃~850℃的温度范围。
所述“保温后浇注到模具”是保温3至20分钟后进行浇注。
还可将压制成型的铝燃料进行热处理;热处理温度控制在150℃-450℃的温度范围;热处理时的保温时间控制在1-24小时的范围;热处理温度越高,保温时间越短;热处理过程可向热处理炉内通入惰性气体防止氧化。
所述覆盖剂为氯盐和/或氟盐;所述氯盐包括NaCl和KCl;所述氟盐包括NaF和Na3AlF6。
所加入的惰性气体是氮气或者氩气。
所述在线分离,是铝燃料电池系统中的电池腔体内的电解液在循环泵的作用下被泵入分离装置,分离装置将电解液中的氢氧化铝分离出来,分离氢氧化铝后的电解液再在循环泵的作用下流回电池腔体内;在循环泵的作用下,电解液在电池腔体内和分离装置之间持续循环,电池腔体内持续地生产氢氧化铝,铝燃料电池系统持续地对外输出电能,分离装置持续地分离电解液中的氢氧化铝;分离装置为沉降器或者离心分离器。
所述氢氧化铝的清洗,是用液体进行清洗,以去除残留在氢氧化铝中的电解液及杂质;所述液体包括蒸馏水或者自来水。
所述氢氧化铝的干燥,是将清洗后的氢氧化铝放入烘箱中,在50℃-500℃的温度范围内保温至去除其中的水分后,冷却到室温。
与现有技术相比,本发明的优势在于提出了一种用废弃铝材生产高质量氢氧化铝的新技术。与现有技术制造的氢氧化铝相比,采用本发明技术制造的氢氧化铝粒径均匀、纯度高,是高质量的氢氧化铝材料。此外,采用本发明技术制造氢氧化铝的同时,还同时对外输出电能。本发明技术不仅实现了废弃铝材的高效利用,而且将废弃铝材变废为宝,彻底解决了大量废弃铝材对环境的污染,实现铝 资源的可持续发展。
说明附图
图1本发明优选实施例中单体铝燃料电池结构示意图
图2本发明优选实施例中由多个单体铝燃料电池构成铝燃料电池电堆的结构示意图
图3本发明优选实施例中铝燃料电池系统的结构示意图
图4本发明优选实施例中设置有分离装置的铝燃料电池系统结构示意图
图5采用本发明制造氢氧化铝粉体的粒径分析结果
图6本发明制造氢氧化铝粉体的XRD衍射谱图
图中:
1-导线;2-铝燃料负极;3-空气电极正极;4-电解液;5-电池腔体;6-单体铝燃料电池;7-储液槽;8-液流管道;9-循环泵;10‐分离装置;11‐铝燃料电池电堆
具体实施方式
下面结合实施例对本发明作进一步的描述,但本发明的保护范围不限于下述的实施例。
实施例1:废弃铝的预处理
采用拆除的方法,或者低温煅烧的方法,或者化学浸泡的方法,将回收的废弃铝材进行分选和拆解,去除附着在废铝上的非铝物质,包括建筑材料、高分子材料、非铝金属材料、油污和涂料等。将废铝表面清洗干净,成为可以投入到冶炼炉中冶炼铝燃料的原料。
实施例2:废弃铝的分类方法
按照废弃铝的化学成分,将经过预处理的废弃铝材进行分类。废弃铝材的分类包括以下几种:工业纯铝、Al-Cu合金、Al-Mn合金、Al-Si合金、Al-Mg合金、Al-Mg-Si合金、Al-Cu-Mg合金、Al-Mg-Si-Cu合金、Al-Si-Cu合金、Al-Si-Mg-Cu合金、Al-Si-Mg-Cu-Ni合金、Al-Zn-Mg-Cu合金、Al-Li合金、Al-Re合金,等。
实施例3:单体铝燃料电池、铝燃料电池电堆及铝燃料电池系统
如图1所示,构建一个单体铝燃料电池6,包括电池腔体5、安装在单体铝燃料电池腔体5壳壁上的空气电极正极3、容置于电腔体5内的电解液4及铝燃料负极2。
如图2所示,本例中铝燃料电池电堆11由多个单体铝燃料电池6经导线1电串联而成。显然,多个铝燃料电池电堆之间还可以以电串联或者电并联的方式组成更大的铝燃料电池电堆11。
如图3所示,本例中的铝燃料电池系统包括铝燃料电池电堆11、液流管道8、循环泵9和储液槽7;所述铝燃料电池电堆11中的各电池腔体5内的电解液在循环泵9的作用下经液流管道8流入储液槽7,之后电解液再由储液槽7流回入各电池腔体5。
如图4所示,在图3所示的铝燃料电池系统中设置了分离装置10;所述铝燃料电池电堆11中各电池腔体5内的电解液在循环泵9的作用下经液流管道8流入储液槽7内,之后再被泵入分离装置10,分离装置10将电解液中的氢氧化铝分离出来,分离后的电解液经液流管道8再流回各电池腔体5;在循环泵的作用下,电解液在电池腔体内和分离装置之间持续循环,电池腔体内持续地生产氢氧化铝,铝燃料电池系统持续地对外输出电能,分离装置持续地分离电解液中的氢氧化铝,从而实现电解液中氢氧化铝沉淀物的在线分离,进一步提高氢氧化铝的生产效率。
实施例4:用废弃工业纯铝冶炼铝燃料,放入铝燃料电池系统中生产氢氧化铝的方法
将经过预处理后分类得到的所需量的废弃工业纯铝放入冶炼炉中,升温到670℃温度后保温25分钟使其熔化。将NaCl和KCl的混合物作为覆盖剂加入冶炼炉中。所加入覆盖剂的量需保证其熔化后能够均匀覆盖住整个熔融态铝的表面。按照表1的合金成分,分别将所需量的Mg和Hg加入冶炼炉中的熔融态铝中,充分搅拌使其混合均匀。再保温3分钟后扒渣出炉,进行浇铸,将其浇铸到模具中,得到铝燃料铸锭。
表1用废弃工业纯铝冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000001
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将铝锭放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成铝燃料电池所需形状的铝燃料。
将用废弃工业纯铝冶炼的上述铝燃料作为负极,放入图3所示铝燃料电池系统中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能。当电解液中生成的氢氧化铝浓度达到需要浓度时,停止循环泵,停止电解液循环,取出储液槽中的电解液。在储液槽中加入新的电解液,启动循环泵,循环电解液。采用线下分离的方法,将取出的电解液中的氢氧化铝沉淀物与电解液分离后,用蒸馏水多次清洗沉淀物后,将沉淀物放入80℃的烘箱中,保温一定时间将其烘干,得到氢氧化铝粉体。
实施例5:用废弃Al-Si合金冶炼铝燃料放入铝燃料电池中生产氢氧化铝的方法
将经过预处理后分类得到的所需量废弃Al-Si合金放入冶炼炉中,升温到780℃保温20分钟使其熔化。向冶炼炉中通入氩气形成稳定的惰性气体保护层,以减少冶炼过程中的烧损。按照表2的合金成分,分别将所需量的Ga、Sn、S和Mg加入冶炼炉中的熔融态铝中,充分搅拌使其混合均匀。再保温15分钟后扒渣出炉,进行浇铸,将其浇铸到模具中,得到铝燃料铸锭,同时停止通入氩气。
表2用废弃Al-Si合金冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000002
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将其放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成铝燃料电池所需形状的铝燃料。
将用废弃Al-Si合金冶炼后制备的上述铝燃料作为负极,放入图4所示铝燃料电池系统中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池 系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能,分离装置在线分离出电解液中的氢氧化铝沉淀。将分离出的氢氧化铝沉淀物用蒸馏水多次清洗沉淀物后,将沉淀物放入50℃度的烘箱中,保温一定时间将其烘干,得到氢氧化铝。图5为制造氢氧化铝粉体的粒度分析结果。可以看出,采用本发明制造氢氧化铝的平均粒径为0.9微米,粒径分布范围很窄,表明粒径均匀。图6为制造氢氧化铝粉体的X射线衍射分析图谱。可以看出,测试谱图与氢氧化铝的粉末标准衍射谱图吻合得很好,且没有明显的杂峰,表明制造的氢氧化铝粉体纯度高。
实施例6:用废弃Al-Mg合金冶炼铝燃料放入铝燃料电池中生产氢氧化铝的方法
将经过预处理后分类得到的所需量废弃Al-Mg合金放入冶炼炉中,升温到800℃保温20分钟使其熔化。向冶炼炉中加入NaCl和NaF的混合物作为覆盖剂对铝熔体进行保护,加入覆盖剂的量需保证其熔化后能够均匀覆盖住整个熔融铝的表面。向冶炼炉中通入适量的氮气形成稳定的惰性气体保护层,以减少冶炼过程中的烧损。按照表3的合金成分,分别将所需量的Ga、Mn和In加入冶炼炉中的熔融铝中,充分搅拌使其混合均匀。再保温8分钟后扒渣出炉,进行浇铸,将其浇铸到模具中,得到铝燃料铸锭,同时停止通入氮气。
表3用废弃Al-Mg合金冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000003
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将其放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成放电所需形状的铝燃料。将成型后的铝燃料放入热处理炉中,向炉内通入氮气,升温至250℃保温10h,之后随炉冷却到室温,停止氮气通入。
将用废弃Al-Mg合金冶炼后制备的上述铝燃料作为负极,放入图4所示铝燃料电池系统中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能,分离 装置在线分离出电解液中的氢氧化铝沉淀。将分离出的氢氧化铝沉淀物用蒸馏水多次清洗后,将沉淀物放入150℃的烘箱中,保温一定时间将其烘干,得到氢氧化铝粉体材料。
实施例7:用废弃Al-Mg-Si合金冶炼铝燃料放入铝燃料电池中生产氢氧化铝的方法
将经过预处理后分类得到的所需量废弃Al-Mg-Si合金放入冶炼炉中,升温到760℃保温15分钟使其熔化。加入NaCl和NaF的混合物作为覆盖剂对铝熔体进行保护,加入覆盖剂的量需保证其熔化后能够均匀覆盖住整个熔融态铝的表面。按照表4的合金成分,分别将所需量的Ga、Sn和Hg加入冶炼炉中的熔融铝中,充分搅拌使其混合均匀。再保温20分钟后扒渣出炉,进行浇铸,将其浇铸到模具中。
表4用废弃Al-Mg-Si合金冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000004
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将其放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成铝燃料电池所需形状的铝燃料。
将用废弃Al-Mg-Si合金冶炼制备的上述铝燃料作为负极,放入图4所示铝燃料电池中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能,分离装置在线分离出电解液中的氢氧化铝沉淀。将分离出的氢氧化铝沉淀物用自来水多次清洗后,将沉淀物放入100℃的烘箱中,保温一定时间将其烘干,得到氢氧化铝粉体材料。
实施例8:用废弃Al-Mg-Si-Cu合金冶炼铝燃料放入铝燃料电池中生产氢氧化铝的方法
将经过预处理后分类得到的所需量废弃Al-Mg-Si-Cu合金放入冶炼炉中,升温到850℃保温15分钟使其熔化。加入NaCl和KCl的混合物作为覆盖剂对铝熔 体进行保护,加入覆盖剂的量需保证其熔化后能够均匀覆盖住整个熔融态铝的表面。向冶炼炉中通入适量的氮气形成稳定的惰性气体保护层,以减少冶炼过程中的烧损。按照表5的合金成分,分别将所需量的Ga、Sn和S加入冶炼炉中的熔融态铝中,充分搅拌使其混合均匀。再保温15分钟后扒渣出炉,进行浇铸,将其浇铸到模具中,得到铝燃料铸锭。停止通入氮气。
表5用废弃Al-Mg-Si-Cu合金冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000005
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将其放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成铝燃料电池所需形状的铝燃料。
将用废弃Al-Mg-Si-Cu合金冶炼制备的上述铝燃料作为负极,放入图4所示铝燃料电池系统中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能,分离装置在线分离出电解液中的氢氧化铝沉淀。将分离出的氢氧化铝沉淀物用蒸馏水多次清洗后,将沉淀物放入70℃的烘箱中,保温一定时间将其烘干,得到氢氧化铝粉体材料。
实施例9:用废弃Al-Si-Mg-Cu-Ni合金冶炼铝燃料放入铝燃料电池中生产氢氧化铝的方法
将经过预处理后分类得到的所需量废弃Al-Si-Mg-Cu-Ni合金放入冶炼炉中,升温到720℃保温10分钟使其熔化。向冶炼炉中加入NaCl和KCl的混合物作为覆盖剂对铝熔体进行保护,加入覆盖剂的量需保证其熔化后能够均匀覆盖住整个熔融铝的表面。按照表6的合金成分,分别将所需量的Ga和Sn加入冶炼炉中的熔融铝中,充分搅拌使其混合均匀。再保温10分钟后扒渣出炉,进行浇铸,将其浇铸到模具中,得到铝燃料铸锭。
表6用废弃Al-Si-Mg-Cu-Ni合金冶炼铝燃料的合金成分
Figure PCTCN2019080034-appb-000006
Figure PCTCN2019080034-appb-000007
将铝燃料铸锭从模具中取出,去除铸锭端头的不纯部分后,将其放在辊压机上进行多次滚压,滚压至所需厚度的板材后,切割成放电所需形状的铝燃料。将成型后的铝燃料放入热处理炉中,升温至200℃保温10h,之后随炉冷却到室温。
将用废弃Al-Si-Mg-Cu-Ni合金冶炼出的铝燃料作为负极,放入图4所示的铝燃料电池系统中。将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统,电解液中开始生成氢氧化铝,铝燃料电池系统同时对外输出电能,分离装置在线分离出电解液中的氢氧化铝沉淀。将分离出的氢氧化铝沉淀物用蒸馏水多次清洗后,将沉淀物放入100℃的烘箱中,保温一定时间将其烘干,得到氢氧化铝。
本发明公开的技术方案是将废弃铝材转变为铝燃料、放入铝燃料电池中生产氢氧化铝粉体。在生产氢氧化铝粉体的过程中,铝燃料电池还同时对外输出电能。采用本发明提出的用废弃铝生产氢氧化铝的技术方案,是在铝及铝合金完成了作为结构铝材、导电铝材等功能变为废弃铝材之后,用废弃铝材制造氢氧化铝。本技术方案不仅实现了铝资源的高效利用,而且将废弃铝材变废为宝,彻底解决了大量废弃铝对环境的污染,而且本技术方案还降低了铝燃料电池的生产和运行成本。

Claims (15)

  1. 一种采用废弃铝材生产氢氧化铝的方法,包括实施如下步骤:
    对废弃铝材的预处理:将附着在所述废弃铝材上的非铝材料进行拆解去除;
    将预处理后废弃铝材按照铝及铝合金的成分进行分类;
    将同一分类的废弃铝材放入冶炼炉中,升温至废弃铝材完全熔化;再按所需铝燃料成分,加入相适应的合金元素,充分搅拌混合均匀,保温后浇注到模具中,制成铝燃料铸锭;
    将所述铝燃料铸锭压制成铝燃料电池系统所需形状的铝燃料;
    将所述铝燃料作为负极放入铝燃料电池系统,将铝燃料电池系统的正极和负极与外电路接通,启动铝燃料电池系统发电,同时,所述铝燃料电池系统的电解液中生成氢氧化铝;
    将铝燃料电池系统电解液中的氢氧化铝与电解液分离;
    将分离出的氢氧化铝进行清洗和干燥,生产出氢氧化铝。
  2. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述非铝材料包括建筑材料、高分子材料、非铝金属材料、油污和涂料。
  3. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    废弃铝材的种类包括工业纯铝、Al-Cu合金、Al-Mn合金、Al-Si合金、Al-Mg合金、Al-Li合金、Al-Re合金、Al-Mg-Si合金、Al-Cu-Mg合金、Al-Si-Cu合金、Al-Mg-Si-Cu合金、Al-Zn-Mg-Cu合金和Al-Si-Mg-Cu-Ni合金。
  4. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述将废弃铝材放入冶炼炉中冶炼过程中,还加入防止氧化的覆盖剂。
  5. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述将废弃铝材放入冶炼炉中冶炼过程中,还向炉内通入惰性气体形成保护层。
  6. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于: 所述冶炼炉内的温度控制在670℃~850℃的温度范围。
  7. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述“保温后浇注到模具”是保温3至20分钟后进行浇注。
  8. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    还将压制成型的铝燃料进行热处理;所述热处理温度控制在150℃-450℃的温度范围;热处理时的保温时间控制在1-24小时的范围;热处理温度越高,保温时间越短;热处理过程可向热处理炉内通入惰性气体防止氧化。
  9. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    将铝燃料电池系统电解液中的氢氧化铝与电解液分离的方法包括在线分离或线下分离。
  10. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述氢氧化铝的清洗,是用液体进行清洗,以去除残留在氢氧化铝中的电解液及杂质;所述液体包括蒸馏水或者自来水。
  11. 按照权利要求1所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述氢氧化铝的干燥,是将清洗后的氢氧化铝放入烘箱中,在50℃-500℃的温度范围内保温至去除其中的水分后,冷却到室温。
  12. 按照权利要求4所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述覆盖剂为氯盐和/或氟盐;所述氯盐包括NaCl和KCl;所述氟盐包括NaF和Na 3AlF 6
  13. 按照权利要求5或8所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所通入的惰性气体是氮气或者氩气。
  14. 按照权利要求9所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述在线分离,是铝燃料电池系统中的电池腔体(5)内的电解液在循环泵(9)的作用下被泵入分离装置(10),分离装置(10)将电解液中的氢氧化铝分离出来,分离氢氧化铝后的电解液再在循环泵(9)的作用下流回电池腔体(5);在循环泵的作用下,电解液在电池腔体内和分离装置之间持续循环,电池腔体内持续地生产氢氧化铝,铝燃料电池系 统持续地对外输出电能,分离装置持续地分离电解液中的氢氧化铝。
  15. 按照权利要求14所述的采用废弃铝材生产氢氧化铝的方法,其特征在于:
    所述分离装置(10)包括沉降器或离心分离器。
PCT/CN2019/080034 2018-04-20 2019-03-28 采用废弃铝材生产氢氧化铝的方法 WO2019201070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810358591.8 2018-04-20
CN201810358591.8A CN108615960A (zh) 2018-04-20 2018-04-20 采用废弃铝材生产氢氧化铝的方法

Publications (1)

Publication Number Publication Date
WO2019201070A1 true WO2019201070A1 (zh) 2019-10-24

Family

ID=63660611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080034 WO2019201070A1 (zh) 2018-04-20 2019-03-28 采用废弃铝材生产氢氧化铝的方法

Country Status (2)

Country Link
CN (1) CN108615960A (zh)
WO (1) WO2019201070A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615960A (zh) * 2018-04-20 2018-10-02 东深金属燃料动力实验室有限责任公司 采用废弃铝材生产氢氧化铝的方法
CN108588444A (zh) * 2018-04-20 2018-09-28 东深金属燃料动力实验室有限责任公司 将废弃铝材转变为铝燃料用于发电的方法
CN110729500B (zh) * 2019-10-25 2021-02-09 北京机械设备研究所 一种金属燃料电池反应产物分离系统及分离方法
CN111952695A (zh) * 2020-08-20 2020-11-17 黄宗洪 一种偏铝酸盐/氢氧化铝制备设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021349A (zh) * 2010-12-02 2011-04-20 亳州市正和铝业有限公司 再生铝生产工艺
WO2014073410A1 (ja) * 2012-11-06 2014-05-15 シャープ株式会社 金属空気電池
CN105057679A (zh) * 2015-09-14 2015-11-18 太原理工大学 一种铝空气电池铝合金阳极金属板的制备方法
CN105420747A (zh) * 2015-11-25 2016-03-23 德阳东深铝空动力实验室有限责任公司 用铝-空气电池放电过程制造粒径均匀高纯氢氧化铝方法
CN106011513A (zh) * 2016-07-28 2016-10-12 张彦才 一种铝或铝合金熔炼覆盖剂及其制备方法
CN106756665A (zh) * 2016-11-28 2017-05-31 云南冶金集团创能铝空气电池股份有限公司 铝合金、制备方法以及用途
CN108615960A (zh) * 2018-04-20 2018-10-02 东深金属燃料动力实验室有限责任公司 采用废弃铝材生产氢氧化铝的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417637A (ja) * 1990-05-09 1992-01-22 Furukawa Alum Co Ltd アルミニウム合金制振材料およびその製造方法
CN101381814B (zh) * 2008-09-28 2010-07-21 姚仁祥 废铝回收制备稀土铝硅合金的方法及其稀土铝硅合金
CN102121073A (zh) * 2011-01-11 2011-07-13 中南大学 一种稀土铝合金电极材料的制备方法
CN102140579B (zh) * 2011-01-27 2012-07-04 袁晓东 再生铝低温浸没式熔化工艺方法
CN103146924B (zh) * 2013-03-18 2014-05-28 天津立中合金集团有限公司 一种再生铝生产过程中多级除杂精炼方法
CN103614561A (zh) * 2013-12-05 2014-03-05 安徽省金盈铝业有限公司 一种废铝冶炼直接加以利用的节能降耗工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021349A (zh) * 2010-12-02 2011-04-20 亳州市正和铝业有限公司 再生铝生产工艺
WO2014073410A1 (ja) * 2012-11-06 2014-05-15 シャープ株式会社 金属空気電池
CN105057679A (zh) * 2015-09-14 2015-11-18 太原理工大学 一种铝空气电池铝合金阳极金属板的制备方法
CN105420747A (zh) * 2015-11-25 2016-03-23 德阳东深铝空动力实验室有限责任公司 用铝-空气电池放电过程制造粒径均匀高纯氢氧化铝方法
CN106011513A (zh) * 2016-07-28 2016-10-12 张彦才 一种铝或铝合金熔炼覆盖剂及其制备方法
CN106756665A (zh) * 2016-11-28 2017-05-31 云南冶金集团创能铝空气电池股份有限公司 铝合金、制备方法以及用途
CN108615960A (zh) * 2018-04-20 2018-10-02 东深金属燃料动力实验室有限责任公司 采用废弃铝材生产氢氧化铝的方法

Also Published As

Publication number Publication date
CN108615960A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2019201070A1 (zh) 采用废弃铝材生产氢氧化铝的方法
Li et al. Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products
CN108493508B (zh) 铝空气电池电解液中铝的回收方法及系统
WO2017031798A1 (zh) 一种处理及回收铝电解固体废料的装置
CN111187924B (zh) 一种含锂物料连续炼锂装置及方法
US20230114074A1 (en) System and method for recovering metal resources in coal ash by molten salt electrolysis
CN104451215A (zh) 一种熔盐电脱氧-铸锭冶金制备铝合金的方法
CN116323998A (zh) 锂的回收方法及碳酸锂的制造方法
CN113699560B (zh) 一种氟氯混合熔盐体系可溶阳极电解制备金属钛的方法
WO2020147464A1 (zh) 一种低温制备含钛复合阳极的方法
CN111876610B (zh) 铅减渣剂及其制备方法
CN111455407A (zh) 一种铝电解槽大修渣中氰化物的处理方法
CN218174668U (zh) 一种利用废杂铝制氢的系统
WO2019201071A1 (zh) 将废弃铝材转变为铝燃料用于发电的方法
CN117185319A (zh) 一种硫酸盐空气焙烧回收磷酸铁锂电池的方法
CN109477232B (zh) 利用电解沉积法的还原铁制备方法及由此制备的还原铁
CN111663042A (zh) 一种废旧锂离子电池中有价金属的回收方法
CN113054889B (zh) 一种利用弃风弃光发电制氢的系统
KR20200040064A (ko) 알루미늄 드로스로부터 금속 알루미늄 회수 방법
CN211897068U (zh) 一种含锂物料连续炼锂装置
Zheng et al. Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis
CN111187916A (zh) 一种利用工业钛渣制备高纯钛的方法
CN111411277A (zh) 一种提高镁抗氧化能力的方法及镁钙合金
CN110846689A (zh) 一种以铝/铝合金为原料制备铝粉的方法
CN115092885B (zh) 一种利用废杂铝制氢的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788726

Country of ref document: EP

Kind code of ref document: A1