WO2020147339A1 - 电池散热装置和带有电池散热装置的电池包及其应用 - Google Patents
电池散热装置和带有电池散热装置的电池包及其应用 Download PDFInfo
- Publication number
- WO2020147339A1 WO2020147339A1 PCT/CN2019/107544 CN2019107544W WO2020147339A1 WO 2020147339 A1 WO2020147339 A1 WO 2020147339A1 CN 2019107544 W CN2019107544 W CN 2019107544W WO 2020147339 A1 WO2020147339 A1 WO 2020147339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- heat dissipation
- battery module
- inner heat
- module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of batteries, in particular to a battery heat sink, a battery pack with a battery heat sink, and applications thereof.
- Hybrid vehicles use electrical energy as part of the power source, and pure electric vehicles use electrical energy as the entire power source.
- the battery is the core component of new energy vehicles.
- An object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the battery pack can realize rapid heat dissipation.
- An object of the present invention is to provide a battery heat dissipation device and a battery pack with the battery heat dissipation device and applications thereof, wherein the battery pack is a module unit that requires heat dissipation, including but not limited to battery cells and battery modules.
- Another object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the battery cell or battery module can dissipate heat to its various positions to maintain a uniform temperature.
- Another object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the battery pack can quickly dissipate heat during high-power instantaneous discharge.
- Another object of the present invention is to provide a battery heat dissipation device and a battery pack with the battery heat dissipation device and applications thereof, wherein the battery pack can quickly dissipate heat during instantaneous discharge of high power to maintain the temperature consistency of each position of the battery pack.
- Another object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the internal temperature difference of the battery pack can be maintained in a balanced state.
- Another object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the higher temperature position of the battery pack can dissipate heat faster than the lower temperature position.
- Another object of the present invention is to provide a battery heat sink and a battery pack with the battery heat sink and applications thereof, wherein the heat inside the battery pack can be conducted to the outside of the battery pack.
- the present invention provides a battery heat dissipation device applied to a battery module, wherein the battery module includes a plurality of battery cells, including:
- An inner heat sink wherein the outer heat sink is located outside the battery module, and the inner heat sink is located between the battery cells of the battery module.
- the battery module has a battery accommodating cavity and at least two battery compartments, wherein the inner heat dissipation part separates the battery accommodating cavity to form the battery compartment, and the battery unit is accommodated in the battery compartment.
- the battery module includes a partition and has a battery accommodating cavity and at least two battery compartments.
- the partition separates the battery accommodating cavity as the battery compartment, and the battery unit is accommodated in the battery compartment ,
- the inner heat dissipation part forms at least part of the partition part.
- the inner heat dissipation portion is connected to the outer heat dissipation portion by heat conduction.
- the inner heat dissipation portion has at least one heat dissipation channel.
- the heat dissipation capacity of the portion of the inner heat dissipation portion close to the middle position of the battery module is greater than the portion of the inner heat dissipation portion far away from the battery module.
- the inner heat dissipation portion includes a plurality of inner heat dissipation layers, and at least one of the battery cells is located between the two inner heat dissipation layers.
- the inner heat dissipation layer is a liquid cooling plate; or the inner heat dissipation layer is a solid heat conduction plate; or the inner heat dissipation layer includes a liquid cooling part and a heat conduction part.
- the outer heat dissipation portion has at least one heat dissipation channel.
- the battery heat sink is designed through the following steps:
- the structure of the battery heat sink and the expected arrangement position of the battery module are determined.
- the present invention provides a battery pack including:
- a battery heat sink and
- a battery module wherein the battery heat dissipation device is installed in the battery module, wherein the battery heat dissipation device includes:
- An inner heat sink wherein the outer heat sink is located outside the battery module, and the inner heat sink is located between the battery cells of the battery module.
- the present invention provides a vehicle including:
- a vehicle body A vehicle body;
- a battery pack wherein the vehicle body is rechargeably connected to the battery pack, wherein the battery pack includes:
- a battery heat sink and
- a battery module wherein the battery heat dissipation device is installed on the battery module.
- the present invention provides a method for designing a battery heat sink, which includes the following steps:
- the distribution of the battery heat sink outside the battery cell and between the battery cells is selected based on the battery heating power distribution.
- the design method further includes the following steps:
- the layout of the battery heat sink is adjusted according to the heating power distribution of the battery unit until the heating power distribution of the battery unit reaches a preset standard.
- the present invention provides a battery pack assembly method, which includes the following steps:
- the position distribution of the battery heat sink in the battery module is determined based on the heating power distribution of the battery unit.
- the battery pack assembly method further includes the following steps:
- an inner heat dissipation portion is selected based on the heating power distribution of the battery cells, wherein the inner heat dissipation portion separates the battery cells from the inside of the battery module.
- the present invention provides a heat dissipation method for a battery pack, which includes the following steps:
- An inner heat dissipation part transmits the heat inside the battery pack to the outside of the battery pack.
- the internal heat dissipation portion conducts heat between the battery cells of the battery pack to the external heat dissipation portion outside the battery pack.
- Fig. 1 is a schematic diagram of a vehicle according to a preferred embodiment of the present invention.
- Figure 2A is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- Figure 2B is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- Fig. 3 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 4 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 5 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 6 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 7 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 8 is a schematic diagram of an inner heat dissipation portion according to a preferred embodiment of the present invention.
- Fig. 9 is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- Fig. 10 is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- Fig. 11 is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- Fig. 12 is a schematic diagram of a battery pack according to a preferred embodiment of the present invention.
- FIG. 13 is a schematic diagram of a battery pack design according to a preferred embodiment of the present invention.
- Fig. 14 is a schematic diagram of a battery pack design according to a preferred embodiment of the present invention.
- the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element can be one, and in other embodiments, the The number can be more than one, and the term “one” cannot be understood as a limitation on the number.
- FIGS. 1 to 2B a battery pack 1 according to a preferred embodiment of the present invention is illustrated.
- a vehicle 1000 includes the battery pack 1 and a vehicle body 2, wherein the battery pack 1 is disposed on the vehicle body 2.
- the battery pack 1 can realize rapid and uniform heat conduction, avoiding excessive temperature difference and excessive temperature rise at various positions of the entire battery pack 1.
- the battery pack 1 includes at least one battery module 10 and a battery heat dissipating device 20, wherein the battery module 10 can be used to store electrical energy and supply power outward, and the battery module 10 includes at least one battery unit 11, one
- the housing 12 has at least one battery containing cavity 100, wherein the housing 12 surrounds the battery containing cavity 100, the battery unit 11 is contained in the battery containing cavity 100, and the battery heat sink 20 is located in the battery Around unit 11.
- the heat can be dissipated to the outside through the battery heat sink 20 to prevent heat from accumulating on the battery unit 11, thereby affecting the normal operation of the battery unit 11 or for the The service life of the battery unit 11 is affected.
- the battery heat dissipating device 20 can assist the battery unit 11 to quickly dissipate heat, so as to prevent heat from accumulating in a certain position of the battery module 10, especially when the battery unit 11 suddenly becomes relatively weak.
- the battery heat sink 20 can assist the large amount of heat generated by the battery unit 11 to dissipate from the battery module 10 to the outside in a short time.
- the battery heat dissipation device 20 includes an outer heat dissipation portion 21 and an inner heat dissipation portion 22, wherein the outer heat dissipation portion 21 is located outside the battery module 10.
- the external heat dissipation portion 21 can quickly remove heat from the outside of the battery module 10.
- the internal heat dissipation portion 22 is located inside the battery module 10 and between the battery cells 11 of the battery module 10.
- the inner heat dissipation portion 22 can assist in the dissipation of heat inside the battery module 10, so that the heat generated inside the battery module 10 can be dissipated outwards, thereby preventing heat from being accumulated in the battery module 10's interior.
- the battery module 10 has at least one battery compartment 101, wherein the battery accommodating cavity 100 is divided into the battery compartment 101.
- the battery module 10 In order to meet the high-power output requirement of the battery pack 1, the battery module 10 usually provides a plurality of the battery cells 11, and the battery cells 11 are stacked in the battery accommodating cavity 100 to provide sufficient external output power.
- the battery cells 11 are respectively accommodated in the battery compartment 101, and at least part of the adjacent battery cells 11 are separated, thereby reducing heat The internal product of the battery module 10.
- the battery module 10 includes a partition 13, wherein the partition 13 partitions the battery accommodating cavity 100 to form a relatively independent battery compartment 101.
- the outer heat dissipation portion 21 surrounds the battery accommodating cavity 100.
- the inner heat dissipation portion 22 is disposed on at least a part of the partition portion 13.
- the inner heat dissipation portion 22 forms the partition portion 13, and the inner heat dissipation portion 22 separates the battery accommodating cavity 100 into a plurality of battery compartments 101.
- the internal heat dissipation portion 22 is located between the battery cells 11 and has a heat dissipation function for the battery cells 11.
- the inner heat dissipation portion 22 includes a plurality of inner heat dissipation layers 221, and each of the battery compartments 101 is located between adjacent inner heat dissipation layers 221.
- the battery unit 11 is located between the adjacent inner heat dissipation layers 221.
- the inner heat dissipation layer 221 is made of heat dissipation material. When the battery unit 11 is accommodated in the battery compartment 101, the heat of the battery unit 11 can be radiated outward through the inner heat dissipation layer 221 located around the battery unit 11.
- the inner heat dissipation layer 221 is located in the up and down direction of the battery unit 11, in other words, the inner heat dissipation layer 221 is formed by extending in a horizontal direction.
- the heat generated by the battery unit 11 can be dissipated to the outside along the inner heat dissipation layer 221 in the horizontal direction.
- the inner heat dissipation layer 221 may be located in the left-right direction of the battery unit 11, and may also be located in the front-rear direction of the battery unit 11. It can be understood that the aforementioned position of the inner heat dissipation layer 221 relative to the battery unit 11 does not limit the present invention.
- the left side, right side, upper side, lower side, front side, and rear side of the battery unit 11 may be provided with the internal heat dissipation portion 22.
- the inner heat dissipation portion 22 has at least one inner heat dissipation channel 220, wherein the inner heat dissipation channel 220 is formed in the inner heat dissipation layer 221.
- the inner heat dissipation channel 220 may be formed on the surface of the inner heat dissipation layer 221, or may be formed inside the inner heat dissipation layer 221.
- the inner heat dissipation channel 220 When the inner heat dissipation channel 220 is formed on the surface of the inner heat dissipation layer 221, the inner heat dissipation channel 220 is exposed to the outside, and when the inner heat dissipation channel 220 is formed inside the inner heat dissipation layer 221, the inner heat dissipation The channel 220 is difficult to be observed outside the inner heat dissipation layer 221.
- the internal heat dissipation channel 220 can assist in the dissipation of heat.
- the heat from the battery unit 11 can be dissipated outward through the inner heat dissipation channel 220.
- the inner heat dissipation channel 220 passes through the inside of the battery module 10 so that the heat from the inside of the battery module 10 can be dissipated outwards.
- the inner heat dissipation layer 221 extends from one end of the battery module 10 from the other end of the battery module 10, and the inner heat dissipation channel 220 penetrates the battery module 10, so that the The heat inside the battery module 10 can be directly dissipated to the outside of the battery module 10 through the internal heat dissipation channel 220.
- fluid can flow in the inner heat dissipation channel 220 to improve the heat dissipation performance of the inner heat dissipation portion 22.
- antifreeze or other fluids with lower temperature can flow in the inner heat dissipation channel 220 to drive excessive heat.
- the inner heat dissipation layer 221 may be a solid structure, and the inner heat dissipation layer 221 itself is made of a heat-conducting material, which can be derived from the battery unit The heat of 11 is conducted to the outside.
- the heat dissipation efficiency of different inner heat dissipation layers 221 may be different.
- the heat dissipation efficiency of different positions is different.
- the working efficiency of the battery cells 11 in the battery compartment 101 in the same row or in the battery compartment 101 in the same column may be different, so the heat generated by them is also different, in order to better assist the battery
- the module 10 dissipates heat so that the temperature of the battery module 10 is maintained in a relatively balanced state, avoiding local or overall overheating.
- the battery heat sink 20 can be based on the difference in the heating efficiency of the battery module 10 Targeted heat dissipation.
- the heat dissipation efficiency of the inner heat dissipation portion 22 located around the battery cells 11 in the first layer can be designed It is better to facilitate the heat dissipation of the battery cells 11 in the first layer, and prevent the temperature of the battery cells 11 in the first layer from being higher than the temperature in other locations, thereby affecting the service life of the subsequent battery modules 10.
- the inner heat dissipation portions 22 at different positions may be designed to be different to adapt to the heating state of the battery module 10 at different positions. Not only can the different inner heat dissipation layers 221 be designed to be different, but various positions of the inner heat dissipation layer 221 in the same layer can also be designed to have different heat dissipation efficiency.
- the number of the internal heat dissipation channels 220 may be one or more.
- the number of the inner heat dissipation channels 220 of each inner heat dissipation layer 221 may be one or more.
- the shape of the inner heat dissipation channel 220 may be linear, curved, or other geometric structures.
- the cross-sectional shape of the internal heat dissipation channel 220 may be circular, square, or other geometric structures. Those skilled in the art should understand that the internal heat dissipation channel 220 in the drawings The cross-sectional shape does not limit the present invention.
- the inner heat dissipation channel 220 is linear, and the inner heat dissipation channel 220 extends from one end of the inner heat dissipation layer 221 to the other end of the inner heat dissipation layer 221.
- the density distribution of the inner heat dissipation channels 220 in the inner heat dissipation layer 221 is different, and the distribution of the inner heat dissipation channels 220 of the inner heat dissipation layer 221 corresponding to the portion of the battery unit 11 is relatively high.
- the inner heat dissipation channels 220 of the inner heat dissipation layer 221 corresponding to the battery unit 11 are relatively sparsely distributed.
- the entire inner heat dissipation layer 221 can be controlled by controlling the distribution of the inner heat dissipation channels 220 The heat dissipation efficiency of each location.
- the inner heat dissipation channel 220 of the inner heat dissipation portion 22 of the battery unit 11 on the side can be designed to be relatively close to facilitate the fluid in the inner heat dissipation channel 220 to quickly take away heat at this position, corresponding to the first
- the inner heat dissipation channel 220 of the inner heat dissipation portion 22 of the battery cell 11 on the left side of the layer can be designed to be sparse to facilitate the uniform temperature of the battery cells 11 of the first layer.
- the heat dissipation capacity of the middle position of the inner heat dissipation layer 221 of the inner heat dissipation portion 22 may be set to be stronger than the heat dissipation capacity of the peripheral position of the inner heat dissipation layer 221.
- a denser inner heat dissipation channel 220 is provided in the middle of the inner heat dissipation layer 221 to take away heat more quickly.
- the heat dissipation capacity of the entire inner heat dissipation portion 22 can be designed such that the part close to the middle position of the battery module 10 is stronger than the part far away from the peripheral position of the battery module 10.
- the heat dissipation efficiency of the battery heat sink 20 is affected by many factors, such as the material of the battery heat sink 20 and the heat dissipation structure of the battery heat sink 20.
- the heat dissipation efficiency of the inner heat dissipation portion 22 is affected by the heat dissipation material of the inner heat dissipation layer 221, the distribution of the inner heat dissipation channels 220 of the inner heat dissipation layer 221, and the The inner diameter of the heat dissipation channel 220, the thickness of the inner heat dissipation layer 221, the distribution of the inner heat dissipation layer 221 in the battery module 10, the number of the inner heat dissipation layers 221, the fluid material of the inner heat dissipation channel 220, The influence of many factors such as fluid flow rate.
- the inner diameter of the inner heat dissipation channel 220 may be different.
- the inner diameters of the inner heat dissipation channels 220 of the inner heat dissipation layer 221 of the different inner heat dissipation portions 22 may be different, and the inner diameters of the inner heat dissipation channels 220 of the same inner heat dissipation layer 221 may also be different .
- the inner diameters of different positions of the same inner heat dissipation channel 220 of the inner heat dissipation portion 22 are different.
- the inner diameter of the inner heat dissipation channel 220 may be expanded or reduced along the length and width direction of the inner heat dissipation layer 221, and the thickness of the inner heat dissipation layer 221 may remain unchanged.
- the inner diameter of the inner heat dissipation channel 220 may also be expanded or reduced along the height direction of the inner heat dissipation layer 221, at which time the thickness of the inner heat dissipation layer 221 may be changed.
- the shape of the inner heat dissipation channel 220 may be U-shaped, V-shaped, C-shaped, A-shaped, and other shapes.
- the shape of the inner heat dissipation channel 220 may be set according to the corresponding heating efficiency of the battery unit 11. When the heating efficiency of a part of the battery cell 11 is high, the corresponding position of the inner heat dissipation layer 221 may be provided with the inner heat dissipation channel 220. When the heating efficiency of the part of the battery cell 11 is low, The corresponding position of the inner heat dissipation layer 221 may not be provided with the inner heat dissipation channel 220.
- the inner heat dissipation channel 220 can be selectively provided in the inner heat dissipation layer 221 based on the heating efficiency of the battery unit 11, and the specific shape, structure and inner diameter of the inner heat dissipation channel 220 can also be based on the battery unit 11 The heating efficiency of 11 is selected.
- the inner heat dissipation channel 220 is serpentinely formed on the inner heat dissipation layer 221, and the inner heat dissipation channel 220 is a S Type structure.
- the inner heat dissipation portion 22 includes at least one inner heat dissipation pipe 222.
- the inner heat dissipation pipe 222 separates the battery unit 11 and conducts the heat from the battery unit 11 outward. Fluid can flow in the inner heat dissipation pipe 222 to quickly take heat away from the battery unit 11.
- the inner heat dissipation pipe 222 may be a rigid structure, and the battery unit 11 may be supported by the inner heat dissipation pipe 222 so as to be independently held in the battery compartment 101.
- the inner heat dissipation pipe 222 may be a flexible structure, and the inner heat dissipation pipe 222 is disposed around the battery unit 11 and can be wound around the battery unit 11.
- the battery unit 11 may be supported by the partition 13 so as to be independently held in the battery compartment 101.
- the internal heat dissipation portion 22 can support the battery unit 11 and perform a heat dissipation effect inside the battery module 10.
- the internal heat dissipation portion 22 may also not support the battery unit 11 11 plays a supporting role.
- the inner heat dissipation portion 22 includes the inner heat dissipation pipe 222 and the inner heat dissipation layer 221.
- the inner heat dissipation channel 220 is formed in the inner heat dissipation pipe 222. Both the inner heat dissipation pipe 222 and the inner heat dissipation layer 221 can play a role of heat dissipation.
- the inner heat dissipation layer 221 may be a solid heat dissipation plate.
- the inner heat dissipation channel 220 and the inner heat dissipation layer 221 may be distributed at intervals, and the inner heat dissipation channel 220 may be arranged above the inner heat dissipation layer 221, or may be arranged on the inner heat dissipation layer 221.
- the inner heat dissipation channel 220 may also be arranged on the left side of the inner heat dissipation layer 221 or the right side of the inner heat dissipation layer 221.
- fluid can enter the inner heat dissipation channel 220 to enhance the heat dissipation effect of the inner heat dissipation portion 22.
- the internal heat dissipation portion 22 may be located above or below the battery unit 11, and the internal heat dissipation portion 22 may also be located on the left or right side of the battery unit 11.
- the inner heat dissipation portion 22 includes the inner heat dissipation pipe 222 and the inner heat dissipation layer 221.
- the inner heat dissipation channel 220 is formed in the inner heat dissipation pipe 222. Both the inner heat dissipation pipe 222 and the inner heat dissipation layer 221 can play a role of heat dissipation.
- the entire inner heat dissipation portion 22 is a hollow structure, the inner heat dissipation pipes 222 are interlaced with each other, and the inner heat dissipation layer 221 is disposed on the periphery of the inner heat dissipation pipe 222.
- the internal heat dissipation portion 22 extends in the up-down direction of the battery module 10 and the left-right direction of the battery module 10.
- the internal heat dissipation portion 22 includes a first internal heat dissipation portion 223 and a second internal heat dissipation portion 224, wherein the first internal heat dissipation portion 223 and the second internal heat dissipation portion 224 form a clip angle.
- the first inner heat dissipation portion 223 and the second inner heat dissipation portion 224 separate the battery accommodating cavity 100 into a plurality of battery compartments 101.
- the internal heat dissipation portion 22 is located around the battery unit 11, and the heat generated by the battery unit 11 can be used by the battery heat dissipation device 20 quickly taken away.
- the first part inner heat dissipation portion 223 is perpendicular to the second part inner heat dissipation portion 224.
- the first inner heat dissipation portion 223 may be located in a horizontal direction, and the second inner heat dissipation portion 224 may be located in a vertical direction.
- the outer heat dissipation portion 21 is located outside the battery module 10 and quickly removes heat from the surface of the battery module 10.
- both ends of the inner heat dissipation portion 22 are connected to the outer heat dissipation portion 21 respectively.
- the heat from the inside of the battery module 10 is conducted outward through the inner heat dissipation portion 22 and can be transferred to the outer heat dissipation portion 21, and then is quickly taken away under the action of the outer heat dissipation portion 21.
- the outer heat dissipation portion 21 includes at least one outer heat dissipation layer 211, and the outer heat dissipation layer 211 is disposed on the outside of the battery module 10.
- the battery module 10 has a rectangular structure.
- the battery module 10 has a top surface, a bottom surface, a left side surface, a right side surface, a front side surface, and a rear side surface, wherein the top surface and the bottom surface are disposed oppositely, and the left side surface And the right side surface is disposed oppositely, and the front side surface and the rear side surface are disposed oppositely.
- the outer heat dissipation portion 21 may be provided on at least one of the top surface, the bottom surface, the left side surface, the right side surface, the front side surface, and the rear side surface of the battery module 10 One face or multiple faces.
- the outer heat dissipation portion 21 is provided on the left side and the right side of the battery module 10.
- the front and rear sides of the battery module 10 are exposed to the outside.
- the outer heat dissipation portion 21 is respectively provided on the left and right sides of the battery module 10.
- Both ends of the outer heat dissipation layer 211 of the outer heat dissipation portion 21 located on the top surface of the battery module 10 are respectively connected to two locations located on the left and right sides of the battery module 10.
- the two ends of the outer heat dissipation layer 211 of the outer heat dissipation portion 21 located on the bottom surface of the battery module 10 are respectively connected to the two on the left and right sides of the battery module 10
- the outer heat dissipation layer 211 of the outer heat dissipation portion 21 is connected to the two on the left and right sides of the battery module 10
- the inner heat dissipation layer 221 of the inner heat dissipation portion 22 or both ends of the inner heat dissipation pipe are respectively connected to the two outer heat dissipation portions 21 located on the left and right sides of the battery module 10
- the outer heat dissipation layer 211 The inner heat dissipation layer 221.
- the outer heat dissipation portion 21 has at least one outer heat dissipation channel 210, wherein the outer heat dissipation channel 210 may be formed in the outer heat dissipation layer 211, or may be independent of the outer heat dissipation layer 211.
- the outer heat dissipation channel 210 When the outer heat dissipation channel 210 is formed in the outer heat dissipation layer 211, the outer heat dissipation channel 210 may be formed on the surface of the outer heat dissipation layer 211 or formed inside the outer heat dissipation layer 211.
- outer heat dissipation channel 210 When the outer heat dissipation channel 210 is formed inside the outer heat dissipation layer 211, fluid can flow in the outer heat dissipation channel 210, and the flow of the fluid can quickly take away heat.
- the outer heat dissipation layer 211 may be a liquid cooling plate, which can quickly take heat away from the battery module 10 through liquid cooling.
- the inner heat dissipation layer 221 may be a solid heat-conducting plate or a liquid cooling plate, and the heat inside the battery module 10 can be quickly taken away by liquid cooling.
- the fluid in the outer heat dissipation channel 210 of the outer heat dissipation layer 211 can be antifreeze or other liquids, which can be based on the development of the battery unit 11. Thermal efficiency is selected.
- the inner heat dissipation layer 221 is a liquid cooling plate
- the fluid in the inner heat dissipation channel 220 of the inner heat dissipation layer 221 can be antifreeze or other liquids, which can be based on the development of the battery unit 11 Thermal efficiency is selected.
- the heat dissipation efficiency of the battery heat sink 20 is affected by many factors, such as the material of the battery heat sink 20 and the heat dissipation structure of the battery heat sink 20.
- the heat dissipation efficiency of the outer heat dissipation portion 21 is affected by the heat dissipation material of the outer heat dissipation layer 211, the distribution of the outer heat dissipation channels 210 of the outer heat dissipation layer 211, and the The inner diameter of the heat dissipation channel 210, the thickness of the outer heat dissipation layer 211, the distribution of the outer heat dissipation layer 211 outside the battery module 10, the number of the outer heat dissipation layer 211, the fluid material of the outer heat dissipation channel 210, The influence of many factors such as fluid flow rate.
- the inner heat dissipation channel 220 of the inner heat dissipation portion 22 may be connected to the outer heat dissipation channel 210 of the outer heat dissipation portion 21, so that the inner heat dissipation of the inner heat dissipation portion 22
- the channel 220 can form a return flow with the outer heat dissipation channel 210 of the outer heat dissipation part 21, and heat can be directly conducted from the inner heat dissipation channel 220 of the inner heat dissipation part 22 to the outer heat dissipation part 21 Heat dissipation channel 210.
- the outer heat dissipation portion 21 has a plurality of outer heat dissipation channels 210, and the outer The heat dissipation channel 210 is formed inside the outer heat dissipation layer 211.
- the temperature of the surface of the battery module 10 may be different.
- the outer heat dissipation channel 210 of the outer heat dissipation portion 21 can be designed to be tighter to facilitate the dissipation of heat at this position.
- the inner diameter of the outer heat dissipation channel 210 can be designed to be larger to facilitate the removal of heat at that location.
- the flow rate of the fluid at this location can be designed to be faster to facilitate the removal of heat from the location.
- the outer heat dissipation portion 21 is provided on the top surface, the bottom surface, and the bottom surface of the battery module 10. The left side and the right side.
- the battery unit 11 located at the top it can dissipate heat through the outer heat dissipation portion 21 located on the top surface of the battery module 10, and for the battery unit 11 located at the bottom, it can Heat is directly dissipated through the outer heat dissipation portion 21 located on the bottom surface of the battery module 10.
- the portions of the outer heat dissipation portion 21 at the top and the bottom may be parallel to the inner heat dissipation layer 221 of the inner heat dissipation portion 22 respectively.
- FIG. 12 a modified embodiment of the above-mentioned battery pack 1 is shown.
- the external heat dissipation portion 21 is provided on one side of the battery module 10.
- the battery module 10 includes the casing 12, and the outer heat dissipation portion 21 is formed on at least a part of the casing 12.
- the outer heat dissipation portion 21 includes the outer heat dissipation layer 211 and has the outer heat dissipation channel 210, wherein the outer heat dissipation channel 210 is formed on a part of the outer heat dissipation layer 211.
- the outer heat dissipation layer 211 may be made of heat dissipation material.
- the solid part of the outer heat dissipation layer 211 can dissipate heat, and the hollow part of the outer heat dissipation layer 211 can also dissipate heat.
- the types of fluids in different outer heat dissipation channels 210 may be different to achieve To different heat dissipation effects.
- the present invention provides a battery pack heat dissipation method, which includes the following steps:
- the internal heat dissipation part 22 conducts the heat inside the battery module 10 to the external heat dissipation part 21 outside the battery module 10.
- the internal heat dissipation portion 22 located around the battery cell 11 of the battery module 10 conducts the heat inside the battery module 10 to the outside of the battery module 10.
- the solid inner heat dissipation layer 221 conducts heat inside the battery module 10 to the outside of the battery module 10.
- the hollow inner heat dissipation layer 221 conducts the heat inside the battery module 10 to the inside of the battery module 10.
- the heat inside the battery module 10 is transferred to the inner heat dissipation channel 220 of the inner heat dissipation layer 221, and the fluid in the inner heat dissipation channel 220 takes away the heat.
- the inner heat dissipation portion 22 dissipates heat outward in a vertical direction or a horizontal direction.
- the inner heat dissipation portion 22 directly conducts heat to the outer heat dissipation portion 21, and the outer heat dissipation portion 21 is located on the surface of the battery module 10.
- the present invention provides a design method of the battery heat sink 20 for the battery module 10, which includes the following steps:
- the battery heat sink 20 is selected according to the parameters.
- the design method further includes the following steps:
- the inner heat dissipation portion 22 is selected according to the parameters.
- the design method further includes the following steps:
- the external heat dissipation portion 21 is selected according to the parameters.
- the heat generation model of the battery module 10 is established by detecting the heat generation state of the battery unit 11 of the battery pack 1 in different working states, and then the heat generation model of the battery unit 11 The current heating power of the battery module 10 is analyzed to establish the heat dissipation model of the battery module 10.
- the heat dissipation model may include a plurality of the parameters, for example, the battery cell 11 of the battery module 10 Heat dissipation status, heat accumulation rate, etc.
- the inner heat dissipation portion 22 may be confirmed based on the parameters of the heat dissipation model. For example, the distribution of the inner heat dissipation portion 22 in the battery module 10, the shape and structure of the inner heat dissipation layer 221 distributed at various positions in the battery module 10, etc.
- the inner heat dissipation portion 22 of the battery compartment 101 for example, the inner heat dissipation layer 221 of the inner heat dissipation portion 22
- the heat dissipation model may include multiple parameters, and the external heat dissipation portion 21 is confirmed based on the parameters.
- the battery heat sink 20 with stronger heat dissipation capacity can be selected, and in the position where the heating power of the battery module 10 is lower, the heat dissipation capacity may be weaker.
- the battery cooling device 20 If the battery module 10 needs to correspond to the same inner heat dissipation layer 221, the inner heat dissipation layer 221 with higher heat dissipation capability in some locations and lower heat dissipation capability in some locations may be selected.
- the temperature difference between the battery unit 11 located in the middle of the battery module 10 and the battery unit 11 located outside the battery module 10 can be adjusted to a certain range, This is beneficial for the entire battery module 10 to maintain a temperature equilibrium state.
- the heating model of the battery module 10 is established, and then the heating power distribution of the battery module 10 is analyzed.
- the heat dissipation model of the battery module 10 is established according to the heating power distribution of each of the battery cells 11 of the battery module 10, and the heat dissipation model may include multiple parameters.
- the outer heat dissipation portion 21, for example, the flow channel of the liquid cooling plate of the outer heat dissipation portion 21 is dense, the inner diameter, and the flow velocity, so as to increase the heat dissipation performance of the battery module 10 while reducing The temperature difference at each position of each of the battery cells 11.
- the heat dissipation model may include multiple parameters, and the internal heat dissipation portion 22 is confirmed based on the parameters.
- the above steps can be continuously repeated to continuously adjust the battery heat sink 20 so that the entire battery module 10 can achieve a more balanced temperature.
- the heat generation model when the heat generation model is initially established, the heat generation model can be established from a single battery unit 11, and then the battery heat sink 20 around the single battery unit 11 is designed, and then added The number of the battery cells 11 gradually forms the battery module 10. It is also possible to establish the heating model from one battery module 10, and then design the battery heat dissipation device 20 around the battery module 10 as a whole.
- the present invention provides an assembling method of the battery pack 1, wherein the assembling method includes the following steps:
- the battery heat sink 20 and the battery module 10 are fixed.
- the inner heat dissipation portion 22 is selected based on the heating power distribution of the battery unit 11, wherein the inner heat dissipation portion 22 separates the battery unit 11 inside the battery module 10.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
电池散热装置(20)、带有电池散热装置(20)的电池包(1)及其应用,其中所述电池散热装置(20)应用于一电池模组(10),其中所述电池模组(10)包括多个电池单元(11),其中所述电池散热装置(20)包括一外散热部(21)和一内散热部(22),其中所述外散热部(21)位于所述电池模组(10)外侧,所述内散热部(22)位于所述电池单元(11)之间,所述内散热部(22)能够将所述电池模组(10)的热量散失至外界。
Description
本发明涉及到电池领域,尤其涉及到电池散热装置和带有电池散热装置的电池包及其应用。
新能源汽车是目前车辆领域的重点发展方向之一。混合动力车辆使用电能作为部分动力来源,纯电动车辆使用电能作为全部的动力来源。电池是新能源汽车的核心部件。
从用户的驾驶体验出发,新能源车辆在启动或者是加速时,需要提供强劲的动力输出,以获得更好的加速和启动性能,使其驾驶体验不逊于传统的车辆。随之而来的问题在于,车辆在输出强劲动力时,对于电池的输出功率要求很高,而车辆本身对于电池的尺寸和容量有一定的要求,以降低车辆制造成本和节约空间。这导致电池需要使用更小的电量输出更高的输出功率,电池的放电倍率越来越高,导致电池的瞬时发热量急剧增加,导致电池温度急剧上升,容易造成安全事故,缩短电池寿命。
目前的高倍率电池散热多采用液冷板的方式,在电池周边放置液冷板,通过液体流动为电池散热,当电池的瞬间输出功率较高时,远离液冷板部位的电池部分急速升温,整个电池依然有热量堆积的风险。
发明内容
本发明的一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包能够实现快速散热。
本发明的一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包为需要散热的模块单元,包括不限于电芯、电池模组。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电芯或电池模组能够散热至自身各位置保持温度均匀。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包能够在大功率瞬时放电时快速散热。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包能够在大功率瞬时放电时快速散热至保持电池包各位置温度一致性。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包内部温差能够被维持在均衡状态。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包温度较高位置相对于温度较低位置能够更快散热。
本发明的另一目的在于提供一电池散热装置和带有电池散热装置的电池包及其应用,其中所述电池包内部的热量能够被传导至所述电池包外部。
根据本发明的一方面,本发明提供了一电池散热装置,应用于一电池模组,其中该电池模组包括多个电池单元,其包括:
一外散热部;和
一内散热部,其中所述外散热部位于该电池模组外侧,所述内散热部位于该电池模组的该电池单元之间。
根据本发明的一些实施例,该电池模组具有一电池容纳腔和至少二电池仓,其中所述内散热部分隔该电池容纳腔为该电池仓,其中该电池单元被容纳于该电池仓。
根据本发明的一些实施例,该电池模组包括一分隔部并且具有一电池容纳腔和至少二电池仓,该分隔部分隔该电池容纳腔为该电池仓,该电池单元被容纳于该电池仓,所述内散热部形成至少部分该分隔部。
根据本发明的一些实施例,所述内散热部被热量可导通地连接于所述外散热部。
根据本发明的一些实施例,所述内散热部具有至少一散热通道。
根据本发明的一些实施例,所述内散热部靠近该电池模组的中间位置的部分散热能力大于所述内散热部远离该电池模组的部分。
根据本发明的一些实施例,所述内散热部包括多个内散热层,其中至少一该电池单元位于两个所述内散热层之间。
根据本发明的一些实施例,所述内散热层是液冷板;或者是所述内散热层是 实心导热板;或者是所述内散热层包括液冷部分和导热部分。
根据本发明的一些实施例,所述外散热部具有至少一散热通道。
根据本发明的一些实施例,所述电池散热装置通过如下步骤设计而成:
分析该电池模组的该电池单元的发热功率分布;和
基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
根据本发明的另一方面,本发明提供了一电池包,其包括:
一电池散热装置;和
一电池模组,其中所述电池散热装置被安装于所述电池模组,其中所述电池散热装置包括:
一外散热部;和
一内散热部,其中所述外散热部位于该电池模组外侧,所述内散热部位于该电池模组的该电池单元之间。
根据本发明的另一方面,本发明提供了一车辆,其包括:
一车辆主体;和
一电池包,其中所述车辆主体被可充电地连接于所述电池包,其中所述电池包包括:
一电池散热装置;和
一电池模组,其中所述电池散热装置被安装于所述电池模组。
根据本发明的另一方面,本发明提供了一电池散热装置设计方法,其包括如下步骤:
分析电池模组的电池单元的发热功率分布;
基于电池发热功率分布选择电池散热装置在所述电池单元外部和所述电池单元之间的分布。
根据本发明的一些实施例,所述设计方法进一步包括如下步骤:
在安装所述电池散热装置于所述电池单元后,根据所述电池单元发热功率分布调整所述电池散热装置的布局至电池单元发热功率分布达到一预设标准。
根据本发明的另一方面,本发明提供了一电池包组装方法,其包括如下步骤:
分析一电池模组的一电池单元的发热功率分布;
基于所述电池单元发热功率分布选择一电池散热装置;以及
安装所述电池散热装置于所述电池模组。
根据本发明的一些实施例,在上述方法中,基于所述电池单元发热功率分布确定所述电池散热装置在所述电池模组内的位置分布。
根据本发明的一些实施例,所述电池包组装方法进一步包括如下步骤:
在安装所述电池散热装置于所述电池模组后,根据所述电池单元发热功率分布调整所述电池散热装置至发热功率分布达到一预设标准。
根据本发明的一些实施例,在上述方法中,基于所述电池单元发热功率分布选择一内散热部,其中所述内散热部自所述电池模组内部分隔所述电池单元。
根据本发明的另一方面,本发明提供了一电池包散热方法,其包括如下步骤:
藉由一内散热部传输所述电池包内部的热量至所述电池包外部。
根据本发明的一些实施例,在上述方法中,藉由所述内散热部传导所述电池包的各层电池单元之间的热量至所述电池包外部的外散热部。
图1是根据本发明的一较佳实施例的一车辆的示意图。
图2A是根据本发明的一较佳实施例的一电池包的示意图。
图2B是根据本发明的一较佳实施例的一电池包的示意图。
图3是根据本发明的一较佳实施例的一内散热部的示意图。
图4是根据本发明的一较佳实施例的一内散热部的示意图。
图5是根据本发明的一较佳实施例的一内散热部的示意图。
图6是根据本发明的一较佳实施例的一内散热部的示意图。
图7是根据本发明的一较佳实施例的一内散热部的示意图。
图8是根据本发明的一较佳实施例的一内散热部的示意图。
图9是根据本发明的一较佳实施例的一电池包的示意图。
图10是根据本发明的一较佳实施例的一电池包的示意图。
图11是根据本发明的一较佳实施例的一电池包的示意图。
图12是根据本发明的一较佳实施例的一电池包的示意图。
图13是根据本发明的一较佳实施例的一电池包设计的示意图。
图14是根据本发明的一较佳实施例的一电池包设计的示意图。
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考附图1至2B所示,根据本发明的一较佳实施例的一电池包1被阐明。
一车辆1000包括所述电池包1和一车辆本体2,其中所述电池包1被设置于所述车辆本体2。所述电池包1能够实现热量的快速传导和均匀传导,避免整个所述电池包1各位置温差过大,温升过高。
所述电池包1包括至少一电池模组10和一电池散热装置20,其中所述电池模组10能够用于储存电能并且朝外供电,所述电池模组10包括至少一电池单元11、一外壳12和具有至少一电池容纳腔100,其中所述外壳12围绕形成所述电池容纳腔100,所述电池单元11被容纳于所述电池容纳腔100,所述电池散热装置20位于所述电池单元11周围。当所述电池单元11产生热量时,热量能够通过所述电池散热装置20朝外界散热,以避免热量堆积在所述电池单元11,从而影响到所述电池单元11的正常工作或者是对于所述电池单元11的使用寿命造成影响。
值得一提的是,所述电池散热装置20能够协助所述电池单元11快速地散热,以避免热量聚集在所述电池模组10的某一位置,尤其是当所述电池单元11突然以较大功率输出,从而瞬时产生较大热量时,所述电池散热装置20能够在短时间内协助所述电池单元11产生的大量热量自所述电池模组10散失到外界。
具体地说,所述电池散热装置20包括一外散热部21和一内散热部22,其中所述外散热部21位于所述电池模组10外侧。所述外散热部21能够在所述电池模组10外侧快速地带走热量。所述内散热部22位于所述电池模组10的内部,位于所述电池模组10的所述电池单元11之间。所述内散热部22能够在所述电池模组10内部协助热量的散失,以使产生于所述电池模组10内部的热量能够被朝外散失,从而避免热量推积在所述电池模组10的内部。
进一步地,所述电池模组10具有至少一电池仓101,其中所述电池容纳腔100被分隔为所述电池仓101。
为了满足所述电池包1大功率输出的需求,所述电池模组10通常提供多个所述电池单元11,所述电池单元11被堆积在所述电池容纳腔100中以提供足够的对外输出功率。
如果多个所述电池单元11被直接推积在一起,当所述电池单元11产生热量时,热量容易积聚在所述电池单元11之间,不易朝外散发。
在本示例中,当所述电池单元11的数目是多个时,所述电池单元11被分别容纳于所述电池仓101,至少部分相邻的所述电池单元11被分隔,从而减少热量在所述电池模组10内部的推积。
具体地说,所述电池模组10包括一分隔部13,其中所述分隔部13分隔所述电池容纳腔100以形成相对独立的所述电池仓101。所述外散热部21围绕形成所述电池容纳腔100。所述内散热部22被设置于至少部分所述分隔部13。
在本示例中,所述内散热部22形成所述分隔部13,所述内散热部22分隔所述电池容纳腔100为多个所述电池仓101。所述内散热部22位于所述电池单元11之间并且对于所述电池单元11起到了散热的作用。
更加具体地说,所述内散热部22包括多个内散热层221,其中每一个所述电池仓101位于相邻的所述内散热层221之间。所述电池单元11位于相邻的所述内散热层221之间。
所述内散热层221是由散热材料制成的。当所述电池单元11被容纳于所述电池仓101时,所述电池单元11的热量能够通过位于所述电池单元11周围的所述内散热层221被朝外散发。
在本示例中,所述内散热层221位于所述电池单元11的上下方向,或者说,所述内散热层221沿水平方向延伸而成。所述电池单元11产生的热量可以在水 平方向沿着所述内散热层221被散失到外界。
在本发明的另一些示例中,所述内散热层221可以位于所述电池单元11的左右方向,也可以位于所述电池单元11的前后方向。可以理解的是,上述的所述内散热层221相对于所述电池单元11的位置并不对于本发明造成限制。
所述电池单元11的左侧、右侧、上侧、下侧、前侧以及后侧都可以被设置有所述内散热部22。
进一步地,所述内散热部22具有至少一内散热通道220,其中所述内散热通道220形成于所述内散热层221。所述内散热通道220可以形成于所述内散热层221的表面,也可以是形成于所述内散热层221的内部。当所述内散热通道220形成于所述内散热层221的表面,所述内散热通道220被暴露在外,当所述内散热通道220形成于所述内散热层221的内部,所述内散热通道220在所述内散热层221外部较难被观察到。
所述内散热通道220可以辅助热量的散失。来自于所述电池单元11的热量可以通过该所述内散热通道220朝外散失。
所述内散热通道220穿过所述电池模组10内部,以使来自于所述电池模组10内部的热量可以朝外散失。优选地,所述内散热层221自所述电池模组10的一端自所述电池模组10的另一端延伸,所述内散热通道220贯通于所述电池模组10,以使来自于所述电池模组10内部的热量可以通过所述内散热通道220直接散失到所述电池模组10外。
更进一步地,流体可以在所述内散热通道220流动以提高所述内散热部22的散热性能。比如说温度较低的防冻液或者是其他的流体可以在所述内散热通道220内流动,以带动过多的热量。
当然可以理解的是,在本发明的一些实施例中,所述内散热层221可以是一实心结构,所述内散热层221本身就是由导热材料制成的,能够将来自于所述电池单元11的热量传导至外界。
值得注意的是,当所述内散热层221的数目是多个时,不同的所述内散热层221的散热效率可以是不同的。对于所述电池模组10而言,不同位置的散热效率是不同的。位于同一行所述电池仓101或者是位于同一列所述电池仓101的所述电池单元11的工作效率可能是不相同的,那么其产生的热量也不相同,为了更好地协助所述电池模组10散失热量,以使所述电池模组10的温度保持在一个 相对均衡的状态,避免局部或者是整体过热,所述电池散热装置20能够基于所述电池模组10的发热效率的不同针对性地进行散热。
举例说明,当所述电池模组10的第一层所述电池单元11的发热效率较高时,位于第一层所述电池单元11的周围的所述内散热部22的散热效率可以被设计的更好以有利于第一层所述电池单元11的散热,避免第一层所述电池单元11的温度高于其他位置的温度,从而影响到后续所述电池模组10的使用寿命。
对于所述电池散热装置20而言,不同位置的所述内散热部22可以被设计为不同的以适应于所述电池模组10不同位置的发热状态。不仅是不同所述内散热层221可以被设计为不同的,同一层的所述内散热层221的各个位置也可以被设计为不同的散热效率。
所述内散热通道220的数目可以是一条或者是多条。对于每一所述内散热层221而言,每一所述内散热层221的所述内散热通道220的数目可以是一条或者是多条。值得注意的是,所述内散热通道220的形状可以是直线形状的,可以是弯曲的,或者是其他几何结构的。进一步地,所述内散热通道220的截面形状可以是圆形的,可以是方形的,或者是其他几何结构的,本领域技术人员应当理解的是,附图中的所述内散热通道220的截面形状并不对于本发明造成限制。
在本示例中,所述内散热通道220是直线形态的,并且所述内散热通道220自所述内散热层221的一端延伸至所述内散热层221的另一端。
值得注意的是,所述内散热通道220在所述内散热层221的疏密分布是不同的,对应于所述电池单元11的部分所述内散热层221的所述内散热通道220分布较为紧密,对应于所述电池单元11的部分所述内散热层221的所述内散热通道220分布较为稀疏。
当每一所述内散热通道220的内径相同时,并且同一所述内散热通道220的各位位置的内径相同时,可以通过控制所述内散热通道220的分布来控制整个所述内散热层221各个位置的散热效率。
举例说明,当位于第一层的右侧的所述电池单元11的发热效率较高时,同时位于第一层的左侧的所述电池单元11的发热效率较低时,对应第一层右侧的所述电池单元11的所述内散热部22的所述内散热通道220可以被设计的较为紧密以有利于所述内散热通道220的流体在该位置较快地带走热量,对应第一层左侧的所述电池单元11的所述内散热部22的所述内散热通道220可以被设计的较 为稀疏以有利于所述第一层所述电池单元11的温度保持均匀。
参考附图3所示,所述内散热部22的所述内散热层221的中间位置的散热能力可以被设置为强于所述内散热层221周缘位置的散热能力。比如说在所述内散热层221的中间位置设置有较密集的所述内散热通道220以更快速地带走热量。
值得注意的是,整个所述内散热部22的散热能力可以被设计为靠近所述电池模组10的中间位置的部分强于远离所述电池模组10的周缘位置的部分。
所述电池散热装置20的散热效率受到多种因素的影响,比如说所述电池散热装置20的材质,所述电池散热装置20的散热结构。对于所述内散热部22来说,所述内散热部22的散热效率受到了所述内散热层221的散热材料,所述内散热层221的所述内散热通道220的分布,所述内散热通道220内径,所述内散热层221的厚度,所述内散热层221在所述电池模组10内的分布,所述内散热层221的数量,所述内散热通道220的流体材质,流体流速等多种因素的影响。
进一步地,所述内散热通道220的内径可以是不同的。不同的所述内散热部22的所述内散热层221的所述内散热通道220的内径可以是不同的,同一所述内散热层221的所述内散热通道220的内径也可以是不同的。
参考附图4,示出了本发明的所述电池包1的一变形实施例,在本示例中,所述内散热部22的同一所述内散热通道220的不同位置的内径是不同的。所述内散热通道220的内径可以沿着所述内散热层221的长宽方向被扩展或者是被缩小,此时所述内散热层221的厚度可以保持不变。所述内散热通道220的内径也可以沿着所述内散热层221的高度方向被扩展或者是被缩小,此时所述内散热层221的厚度可以被改变。
进一步地,所述内散热通道220的形状可以是U型,V型,C型,A型的等各种形状。所述内散热通道220的形状可以根据对应的所述电池单元11发热效率被设置。当所述电池单元11部分位置的发热效率较高时,所述内散热层221的对应位置可以被设置有所述内散热通道220,当所述电池单元11部分位置的发热效率较低时,所述内散热层221的对应位置可以不被设置所述内散热通道220。所述内散热通道220可以基于所述电池单元11的发热效率被可选择地设置于所述内散热层221,并且所述内散热通道220的具体形状、结构以及内径也可以根据所述电池单元11的发热效率被选择。
参考附图5,示出了根据本发明的所述电池包1的一变形实施例,所述内散 热通道220蜿蜒地形成于所述内散热层221,所述内散热通道220是一S型结构。
参考附图6,示出了根据本发明的所述电池包1的另一较佳实施例,在本示例中,所述内散热部22包括至少一内散热管道222。
所述内散热管道222分隔所述电池单元11,并且将来自于所述电池单元11的热量朝外传导。流体可以在所述内散热管道222内流动,以快速地将热量带离所述电池单元11。
可以理解的是,所述内散热管道222可以是一刚性结构,所述电池单元11可以被所述内散热管道222支撑,从而被独立地保持于所述电池仓101。
所述内散热管道222可以是一柔性结构,所述内散热管道222被设置于所述电池单元11周围并且可以缠绕所述电池单元11。所述电池单元11可以被所述分隔部13支撑,从而被独立地保持于所述电池仓101。
换句话说,所述内散热部22可以对于所述电池单元11起到支撑作用,并且在所述电池模组10内部起到散热作用,所述内散热部22也可以不对于所述电池单元11起到支撑作用。
参考附图7,同时参考附图1至附图2B,示出了根据本发明的所述内散热部22的一变形实施例。在本实例中,所述内散热部22包括所述内散热管道222和所述内散热层221。所述内散热通道220形成于所述内散热管道222。所述内散热管道222和所述内散热层221皆能够起到散热的作用。
所述内散热层221可以是一实心的散热板。所述内散热通道220和所述内散热层221可以间隔地分布,所述内散热通道220可以被设置于所述内散热层221的上方,也可以是被设置于所述内散热层221的下方。所述内散热通道220也可以被设置于所述内散热层221的左侧或者是所述内散热层221的右侧。
当所述电池模组10的发热效率较高时,流体可以进入所述内散热通道220内以增强所述内散热部22的散热作用。
进一步地,所述内散热部22可以位于所述电池单元11的上方或者是下方,所述内散热部22也可以位于所述电池单元11的左侧或者是右侧。
参考附图8,示出了根据本发明的所述内散热部22的一变形实施例,其中所述内散热部22包括所述内散热管道222和所述内散热层221。所述内散热通道220形成于所述内散热管道222。所述内散热管道222和所述内散热层221皆能够起到散热的作用。
整个所述内散热部22是一镂空结构,所述内散热管道222相互交错,所述内散热层221被设置在所述内散热管道222周沿。
参考附图9,示出了根据本发明的所述电池包1的一变形实施例。在本实施例中,所述内散热部22延伸于所述电池模组10的上下方向和所述电池模组10的左右方向。
具体地说,所述内散热部22包括一第一部分内散热部223和一第二部分内散热部224,其中所述第一部分内散热部223和所述第二部分内散热部224呈一夹角。
所述第一部分内散热部223和所述第二部分内散热部224分隔所述电池容纳腔100为多个所述电池仓101。
对于位于所述电池模组10中间的至少一所述电池单元11而言,所述内散热部22位于所述电池单元11的四周,所述电池单元11产生的热量能够被所述电池散热装置20迅速带走。
优选地,所述第一部分内散热部223垂直于所述第二部分内散热部224。所述第一部分内散热部223可以位于一水平方向,所述第二部分内散热部224可以位于一竖直方向。
进一步地,参考附图1至2B所示,所述外散热部21位于所述电池模组10外侧,在所述电池模组10的表面以快速带走热量。优选地,所述内散热部22的两端被分别连接于所述外散热部21。来自于所述电池模组10的内部的热量经过所述内散热部22朝外传导并且能够被传递至所述外散热部21,然后在所述外散热部21的作用下快速被带走。
所述外散热部21包括至少一所述外散热层211,所述外散热层211被设置于所述电池模组10的外侧。
在本示例中,所述电池模组10呈现一矩形结构。所述电池模组10具有一顶面、一底面、一左侧面、一右侧面、一前侧面以及一后侧面,其中所述顶面和所述底面被相对设置,所述左侧面和所述右侧面被相对设置,所述前侧面和所述后侧面被相对设置。
所述外散热部21可以被设置于所述电池模组10的所述顶面、所述底面、所述左侧面、所述右侧面、所述前侧面以及所述后侧面中的至少一个面或者是多个面。
在本示例中,所述外散热部21被设置于所述电池模组10的所述左侧面和所述右侧面。所述电池模组10的前侧和后侧被暴露在外。所述电池模组10的左侧和右侧分别被设置有所述外散热部21。
位于所述电池模组10的所述顶面的所述外散热部21的所述外散热层211的两端被分别连接于位于所述电池模组10的左侧和右侧的两个所述外散热部21的所述外散热层211。
位于所述电池模组10的所述底面的所述外散热部21的所述外散热层211的两端被分别连接于位于所述电池模组10的左侧和右侧的两个所述外散热部21的所述外散热层211。
所述内散热部22的所述内散热层221或者是所述内散热管的两端被分别连接于位于所述电池模组10的左侧和右侧的两个的所述外散热部21的所述外散热层211。
进一步地,所述外散热部21具有至少一外散热通道210,其中所述外散热通道210可以形成于所述外散热层211,也可以独立于所述外散热层211。
当所述外散热通道210形成于所述外散热层211,所述外散热通道210可以形成于所述外散热层211的表面或者是形成于所述外散热层211内部。
当所述外散热通道210形成于所述外散热层211内部,流体可以在所述外散热通道210内流动,并且借助流体的流动来快速地带走热量。
所述外散热层211可以是一液冷板,通过液冷的方式在所述电池模组10外部快速地将热量带走。所述内散热层221可以是一实心的导热板,也可以是一液冷板,通过液冷的方式将所述电池模组10内部的热量快速带走。
当所述外散热层211是一液冷板时,所述外散热层211的所述外散热通道210中的流体可以是防冻液或者是其他的液体,其可以根据所述电池单元11的发热效率进行选择。当所述内散热层221是一液冷板时,所述内散热层221的所述内散热通道220中的流体可以是防冻液或者是其他的液体,其可以根据所述电池单元11的发热效率进行选择。
对于整个所述电池包1而言,所述电池散热装置20的散热效率受到多种因素的影响,比如说所述电池散热装置20的材质,所述电池散热装置20的散热结构。对于所述外散热部21来说,所述外散热部21的散热效率受到了所述外散热层211的散热材料,所述外散热层211的所述外散热通道210的分布,所述外散 热通道210内径,所述外散热层211的厚度,所述外散热层211在所述电池模组10外的分布,所述外散热层211的数量,所述外散热通道210的流体材质,流体流速等多种因素的影响。
值得一提的是,所述内散热部22的所述内散热通道220可以被导通于所述外散热部21的所述外散热通道210,从而所述内散热部22的所述内散热通道220可以和所述外散热部21的所述外散热通道210形成回流,热量能够直接从所述内散热部22的所述内散热通道220被传导至所述外散热部21的所述外散热通道210。
参考附图10所示,示出了基于附图1所示所述电池包1的一变形实施例,在本示例中,所述外散热部21具有多条外散热通道210,并且所述外散热通道210形成于所述外散热层211内部。
对应于所述电池模组10的发热效率,所述电池模组10表面的温度可能是不同的。对应于发热情况较严重的所述电池模组10的位置,所述外散热部21的所述外散热通道210可以被设计的更为紧密,以有利于该位置热量的散失。所述外散热通道210的内径可以被设计的更大,以有利于带走该位置的热量。该位置的流体的流速可以被设计的更快,以有利于带走该位置的热量。
参考附图11所示,示出了上述电池包1的一变形实施例,在本示例中,所述外散热部21被设置于所述电池模组10的所述顶面、所述底面、所述左侧面和所述右侧面。
对于位于顶部的所述电池单元11而言,其可以通过位于所述电池模组10的所述顶面的所述外散热部21散热,对于位于底部的所述电池单元11而言,其可以通过位于所述电池模组10的所述底面的所述外散热部21直接散热。
位于顶部和位于底部的所述外散热部21部分可以分别平行于所述内散热部22的所述内散热层221。
参考附图12所示,示出了上述电池包1的一变形实施例。在本示例中,所述外散热部21被设置于所述电池模组10的一侧。
所述电池模组10包括所述外壳12,所述外散热部21形成于至少部分所述外壳12。
进一步地,所述外散热部21包括所述外散热层211和具有所述外散热通道210,其中所述外散热通道210形成于部分所述外散热层211。
所述外散热层211可以是散热材料制成的。所述外散热层211的实心部位可以进行散热,所述外散热层211的空心部位也可以进行散热。
对于同一所述外散热层211而言,当同一所述外散热层211具有多条所述外散热通道210时,不同的所述外散热通道210内的流体的类型可以是不同的,以起到不同的散热作用。
根据本发明的另一方面,本发明提供一电池包散热方法,其包括如下步骤:
藉由所述内散热部22传导所述电池模组10内部的热量至所述电池模组10外部的所述外散热部21。
根据本发明的一些实施例,藉由位于所述电池模组10的所述电池单元11周围的所述内散热部22传导所述电池模组10内部的热量至所述电池模组10外部。
根据本发明的一些实施例,藉由实心的所述内散热层221传导所述电池模组10内部的热量至所述电池模组10外部。
根据本发明的一些实施例,藉由空心的所述内散热层221传导所述电池模组10内部的热量至所述电池模组10内部。
根据本发明的一些实施例,所述电池模组10内部的热量被传递至所述内散热层221的所述内散热通道220,所述内散热通道220内的流体带走热量。
根据本发明的一些实施例,所述内散热部22在竖直方向或者是水平方向朝外散失热量。
根据本发明的一实施例,所述内散热部22直接传导热量至所述外散热部21,所述外散热部21位于所述电池模组10表面。
根据本发明的另一方面,本发明提供用于所述电池模组10的所述电池散热装置20的一设计方法,其包括如下步骤:
建立所述电池模组10发热模型以分析所述电池单元11的发热功率;
基于所述电池单元11发热功率建立散热模型,其中所述散热模型包括多个参数;以及
根据所述参数选择所述电池散热装置20。
根据本发明的一些实施例,所述设计方法进一步包括如下步骤:
建立所述电池模组10发热模型以分析各所述电池单元11的发热功率;
基于所述电池单元11发热功率建立散热模型,其中所述散热模型包括多个参数;以及
根据所述参数选择所述内散热部22。
根据本发明的一些实施例,所述设计方法进一步包括如下步骤:
建立所述电池模组10发热模型以分析所述电池单元11的发热功率;
基于所述电池单元11发热功率模型建立散热模型,其中所述散热模型包括多个参数;以及
根据所述参数选择所述外散热部21。
具体地说,参考附图13所示,通过检测所述电池包1在不同工作状态下的所述电池单元11的发热状态建立所述电池模组10的发热模型,然后对于所述电池单元11的当前的发热功率进行分析,从而建立所述电池模组10的所述散热模型,所述散热模型可以包括多个所述参数,比如说所述电池模组10的各个所述电池单元11的散热状态,热量推积速率等。
在加工所述内散热部22的过程中可以基于所述散热模型的所述参数确认所述内散热部22。比如说所述内散热部22在所述电池模组10内的分布,分布于所述电池模组10内各个位置的所述内散热层221的形态,结构等。
具体地说,可以根据各个所述电池单元11的发热功率分布,确认形成所述电池仓101的所述内散热部22,比如说所述内散热部22的所述内散热层221的所述内散热通道220的分布,流道的疏密、内径以及流速等。
组装所述内散热部22和所述电池模组10,然后检测所述电池模组10在不同工作状态下的所述电池单元11的发热状态,以建立所述电池模组10的所述发热模型,然后对于所述电池模组10的当前发热功率进行分析,从而建立所述电池模组10的所述散热模型。所述散热模型可以包括多个参数,基于所述参数确认所述外散热部21。
举例说明,在所述电池模组10发热功率较高的位置,可以选择散热能力较强的所述电池散热装置20,在所述电池模组10发热功率较低位置,可以选择散热能力较弱的所述电池散热装置20。如所述电池模组10需要对应于同一所述内散热层221,可以选择部分位置散热能力较高和部分位置散热能力较低的所述内散热层221。
通过这样的方式,位于所述电池模组10中间位置的所述电池单元11和所述位于所述电池模组10外部的所述电池单元11之间的温差能够被调整至一定的范围内,以有利于整个所述电池模组10保持于温度均衡状态。
进一步地,也可以是先确认所述外散热部21,再确认所述内散热部22,比如说参考附图14所示。首先建立所述电池模组10的所述发热模型,然后分析所述电池模组10的发热功率分布。根据所述电池模组10的各个所述电池单元11的发热功率分布,建立所述电池模组10的所述散热模型,所述散热模型可以包括多个参数。
基于所述散热模型确认所述外散热部21,比如说所述外散热部21的所述液冷板的流道疏密、内径以及流速,以增加所述电池模组10的散热性能同时降低各个所述电池单元11各位置的温差。
组装所述外散热部21和所述电池模组10,然后检测所述电池模组10在不同工作状态下的所述电池单元11的发热状态,以建立所述电池模组10的所述发热模型,然后对于所述电池模组10的当前发热功率进行分析,从而建立所述电池模组10的所述散热模型。所述散热模型可以包括多个参数,基于所述参数确认所述内散热部22。
基于所述电池模组10的发热功率,可以不断重复上述步骤,以对于所述电池散热装置20进行不断地调整,以使整个所述电池模组10能够达到温度较为均衡的状态。
可以理解的是,在一开始建立所述发热模型时,可以是从单个所述电池单元11开始建立所述发热模型,然后设计单个所述电池单元11周围的所述电池散热装置20,然后增加所述电池单元11的个数以逐渐形成所述电池模组10。也可以是从一个所述电池模组10开始建立所述发热模型,然后设计整个所述电池模组10周围的所述电池散热装置20。
根据本发明的另一方面,本发明提供所述电池包1的一组装方法,其中所述组装方法包括如下步骤:
建立所述电池模组10发热模型以分析所述电池模组10的所述电池单元11的发热功率分布;
基于所述电池单元11的发热功率分布选择所述电池散热装置20;
在安装所述电池散热装置20于所述电池单元11后,根据所述电池单元11的发热功率分布调整所述电池散热装置20至所述电池单元11的发热功率分布达到一预设标准;以及
固定所述电池散热装置20和所述电池模组10。
根据本发明的一些实施例,基于所述电池单元11发热功率分布选择所述内散热部22,其中所述内散热部22在所述电池模组10内部分隔所述电池单元11。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。
Claims (32)
- 一电池散热装置,应用于一电池模组,其中该电池模组包括多个电池单元,其特征在于,包括:一外散热部;和一内散热部,其中所述外散热部位于该电池模组外侧,所述内散热部位于该电池模组的该电池单元之间。
- 根据权利要求1所述的电池散热装置,其中该电池模组具有一电池容纳腔和至少二电池仓,其中所述内散热部分隔该电池容纳腔为该电池仓,其中该电池单元被容纳于该电池仓。
- 根据权利要求1所述的电池散热装置,其中该电池模组包括一分隔部并且具有一电池容纳腔和至少二电池仓,该分隔部分隔该电池容纳腔为该电池仓,该电池单元被容纳于该电池仓,所述内散热部形成至少部分该分隔部。
- 根据权利要求1所述的电池散热装置,其中所述内散热部被热量可导通地连接于所述外散热部。
- 根据权利要求2所述的电池散热装置,其中所述内散热部被热量可导通地连接于所述外散热部。
- 根据权利要求3所述的电池散热装置,其中所述内散热部被热量可导通地连接于所述外散热部。
- 根据权利要求4所述的电池散热装置,其中所述内散热部具有至少一散热通道。
- 根据权利要求7所述的电池散热装置,其中所述内散热部靠近该电池模组的中间位置的部分散热能力大于所述内散热部远离该电池模组的部分。
- 根据权利要求7所述的电池散热装置,其中所述内散热部包括多个内散热层,其中至少一该电池单元位于两个所述内散热层之间。
- 根据权利要求8所述的电池散热装置,其中所述内散热层是液冷板;或者是所述内散热层是实心导热板;或者是所述内散热层包括液冷部分和导热部分。
- 根据权利要求4所述的电池散热装置,其中所述外散热部具有至少一散热通道。
- 根据权利要求1所述的电池散热装置,其中所述电池散热装置通过如下 步骤设计而成:分析该电池模组的该电池单元的发热功率分布;和基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
- 根据权利要求2所述的电池散热装置,其中所述电池散热装置通过如下步骤设计而成:分析该电池模组的该电池单元的发热功率分布;和基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
- 根据权利要求3所述的电池散热装置,其中所述电池散热装置通过如下步骤设计而成:分析该电池模组的该电池单元的发热功率分布;和基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
- 一带有电池散热装置的电池包,其特征在于,包括:一电池模组,其中所述电池模组包括多个电池单元;和一电池散热装置,其中所述电池散热装置包括一外散热部和一内散热部,其中所述外散热部位于该电池模组外侧,所述内散热部位于该电池模组的该电池单元之间。
- 根据权利要求15所述的电池包,其中该电池模组具有一电池容纳腔和至少二电池仓,其中所述内散热部分隔该电池容纳腔为该电池仓,其中该电池单元被容纳于该电池仓。
- 根据权利要求15所述的电池包,其中该电池模组包括一分隔部并且具有一电池容纳腔和至少二电池仓,该分隔部分隔该电池容纳腔为该电池仓,该电池单元被容纳于该电池仓,所述内散热部形成至少部分该分隔部。
- 根据权利要求15所述的电池包,其中所述内散热部被热量可导通地连接于所述外散热部。
- 根据权利要求15所述的电池包,其中所述电池散热装置通过如下步骤设计而成:分析该电池模组的该电池单元的发热功率分布;和基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
- 一车辆,其特征在于,包括:一车辆主体;和一电池包,其中所述车辆主体被可充电地连接于所述电池包,其中所述电池包包括:一电池模组,其中所述电池模组包括多个电池单元;和一电池散热装置,其中所述电池散热装置包括一外散热部和一内散热部,其中所述外散热部位于该电池模组外侧,所述内散热部位于该电池模组的该电池单元之间。
- 根据权利要求20所述的车辆,其中该电池模组具有一电池容纳腔和至少二电池仓,其中所述内散热部分隔该电池容纳腔为该电池仓,其中该电池单元被容纳于该电池仓。
- 根据权利要求20所述的车辆,其中该电池模组包括一分隔部并且具有一电池容纳腔和至少二电池仓,该分隔部分隔该电池容纳腔为该电池仓,该电池单元被容纳于该电池仓,所述内散热部形成至少部分该分隔部。
- 根据权利要求20所述的车辆,其中所述内散热部被热量可导通地连接于所述外散热部。
- 根据权利要求20所述的车辆,其中所述电池散热装置通过如下步骤设计而成:分析该电池模组的该电池单元的发热功率分布;和基于该电池单元发热功率分布确定所述电池散热装置的结构和在该电池模组的预期布置位置。
- 一电池散热装置设计方法,其特征在于,包括如下步骤:分析电池模组的电池单元的发热功率分布;基于电池发热功率分布选择电池散热装置在所述电池单元外部和所述电池单元之间的分布。
- 根据权利要求25所述的电池散热装置设计方法,进一步包括如下步骤:在安装所述电池散热装置于所述电池单元后,根据所述电池单元发热功率分布调整所述电池散热装置的布局至电池单元发热功率分布达到一预设标准。
- 一电池包组装方法,其特征在于,包括如下步骤:分析一电池模组的一电池单元的发热功率分布;基于所述电池单元发热功率分布选择一电池散热装置;以及安装所述电池散热装置于所述电池模组。
- 根据权利要求27所述的电池包组装方法,其中在上述方法中,基于所述电池单元发热功率分布确定所述电池散热装置在所述电池模组内的位置分布。
- 根据权利要求27所述的电池包组装方法,进一步包括如下步骤:在安装所述电池散热装置于所述电池模组后,根据所述电池单元发热功率分布调整所述电池散热装置至发热功率分布达到一预设标准。
- 根据权利要求27所述的电池包组装方法,其中在上述方法中,基于所述电池单元发热功率分布选择一内散热部,其中所述内散热部自所述电池模组内部分隔所述电池单元。
- 一电池包散热方法,其特征在于,包括如下步骤:藉由一内散热部传输所述电池包内部的热量至所述电池包外部。
- 根据权利要求31所述的散热方法,其中在上述方法中,藉由所述内散热部传导所述电池包的各层电池单元之间的热量至所述电池包外部的外散热部。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910047872.6 | 2019-01-18 | ||
CN201910047872 | 2019-01-18 | ||
CN201910635421.4A CN110364783A (zh) | 2019-01-18 | 2019-07-15 | 电池散热装置和带有电池散热装置的电池包及其应用 |
CN201921106578.XU CN211957838U (zh) | 2019-01-18 | 2019-07-15 | 电池散热装置、带有电池散热装置的电池包以及车辆 |
CN201921106578.X | 2019-07-15 | ||
CN201910635421.4 | 2019-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020147339A1 true WO2020147339A1 (zh) | 2020-07-23 |
Family
ID=71614003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107544 WO2020147339A1 (zh) | 2019-01-18 | 2019-09-24 | 电池散热装置和带有电池散热装置的电池包及其应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020147339A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021120074A1 (de) | 2021-08-03 | 2023-02-09 | Audi Aktiengesellschaft | Kühlanordnung, Batterie und Verfahren zum Temperieren von Batteriezellen |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110052960A1 (en) * | 2009-09-03 | 2011-03-03 | Samsung Electronics Co., Ltd. | Secondary battery module having cooling conduit |
CN203325998U (zh) * | 2013-07-08 | 2013-12-04 | 观致汽车有限公司 | 优化散热的电池及具有该电池的车辆 |
CN103928729A (zh) * | 2014-04-15 | 2014-07-16 | 合肥工业大学 | 一种基于热管的电动汽车动力电池组温控系统 |
CN103943913A (zh) * | 2014-04-17 | 2014-07-23 | 华南理工大学 | 带液体冷却板的纯电动汽车动力电池冷却与加热装置 |
CN106058372A (zh) * | 2016-08-04 | 2016-10-26 | 上海电机学院 | 动力电池热管理系统和方法 |
CN208157582U (zh) * | 2018-04-13 | 2018-11-27 | 成都联腾动力控制技术有限公司 | 一种纯电动汽车动力电池散热结构 |
-
2019
- 2019-09-24 WO PCT/CN2019/107544 patent/WO2020147339A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110052960A1 (en) * | 2009-09-03 | 2011-03-03 | Samsung Electronics Co., Ltd. | Secondary battery module having cooling conduit |
CN203325998U (zh) * | 2013-07-08 | 2013-12-04 | 观致汽车有限公司 | 优化散热的电池及具有该电池的车辆 |
CN103928729A (zh) * | 2014-04-15 | 2014-07-16 | 合肥工业大学 | 一种基于热管的电动汽车动力电池组温控系统 |
CN103943913A (zh) * | 2014-04-17 | 2014-07-23 | 华南理工大学 | 带液体冷却板的纯电动汽车动力电池冷却与加热装置 |
CN106058372A (zh) * | 2016-08-04 | 2016-10-26 | 上海电机学院 | 动力电池热管理系统和方法 |
CN208157582U (zh) * | 2018-04-13 | 2018-11-27 | 成都联腾动力控制技术有限公司 | 一种纯电动汽车动力电池散热结构 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021120074A1 (de) | 2021-08-03 | 2023-02-09 | Audi Aktiengesellschaft | Kühlanordnung, Batterie und Verfahren zum Temperieren von Batteriezellen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180294452A1 (en) | Tray, power battery pack and electric vehicle | |
JP7027641B2 (ja) | 電池セルの表面を冷却するための不均一流路を備えたクーリングジャケット及びそれを含むバッテリーモジュール | |
KR100937903B1 (ko) | 전지팩의 밀폐형 열교환 시스템 | |
JP6374603B2 (ja) | 電池パック | |
US8999548B2 (en) | Liquid-cooled battery module | |
KR100932214B1 (ko) | 열전소자를 이용한 전지팩의 열교환 시스템 | |
KR101560561B1 (ko) | 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩 | |
WO2011092773A1 (ja) | 電池モジュール | |
KR102058688B1 (ko) | 간접 냉각 방식의 배터리 모듈 | |
KR100937902B1 (ko) | 전지팩 냉각 시스템 | |
US10535905B2 (en) | Cooling device and battery module having the same | |
KR20160111457A (ko) | 히트 파이프 열 관리를 갖춘 에너지 저장 시스템 | |
JP2018508931A (ja) | バッテリーセル冷却装置及びこれを含むバッテリーモジュール | |
JP6466049B2 (ja) | 冷却システムを有するバッテリパック | |
KR100667943B1 (ko) | 이차 전지 모듈 | |
US20150050539A1 (en) | Spacer for a battery, battery and motor vehicle | |
JP2006156404A (ja) | 二次電池モジュール | |
WO2020147339A1 (zh) | 电池散热装置和带有电池散热装置的电池包及其应用 | |
CN115966802A (zh) | 一种基于特斯拉阀的电池散热结构 | |
CN211957838U (zh) | 电池散热装置、带有电池散热装置的电池包以及车辆 | |
CN202487724U (zh) | 电池总成、电池模块及其散热座 | |
US20220021049A1 (en) | Cooling structure for hybrid-electric vehicle battery cell assemblies | |
KR20120103610A (ko) | 구조 및 열 관리 부품 | |
CN114361643A (zh) | 电池模组及电池包 | |
CN108808157B (zh) | 电池的冷却系统及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19910798 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19910798 Country of ref document: EP Kind code of ref document: A1 |