WO2020144861A1 - Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support - Google Patents

Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support Download PDF

Info

Publication number
WO2020144861A1
WO2020144861A1 PCT/JP2019/000741 JP2019000741W WO2020144861A1 WO 2020144861 A1 WO2020144861 A1 WO 2020144861A1 JP 2019000741 W JP2019000741 W JP 2019000741W WO 2020144861 A1 WO2020144861 A1 WO 2020144861A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
clad laminate
cured product
prepreg
thermosetting resin
Prior art date
Application number
PCT/JP2019/000741
Other languages
French (fr)
Japanese (ja)
Inventor
貴代 北嶋
昌久 尾瀬
広明 藤田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201980088653.0A priority Critical patent/CN113272131A/en
Priority to KR1020217021651A priority patent/KR20210113229A/en
Priority to JP2020565556A priority patent/JP7351315B2/en
Priority to PCT/JP2019/000741 priority patent/WO2020144861A1/en
Publication of WO2020144861A1 publication Critical patent/WO2020144861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0016Abrading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a method for manufacturing a metal-clad laminate, a metal-clad laminate, a printed wiring board and a semiconductor package, a support for coreless substrate formation and a support for semiconductor rewiring layer formation.
  • the plate thickness accuracy of the metal-clad laminate tends to depend on the fluidity of the resin composition, and as shown in FIG. 7, a metal-clad laminate obtained by laminate molding such as press molding (before being cut to a predetermined size In general, the resin composition layer at the end of the so-called press panel) becomes thin, and from the viewpoint of plate thickness accuracy, the portion where the resin composition layer became thin had to be discarded.
  • an object of the present invention is to provide a metal-clad laminate excellent in plate thickness accuracy and a manufacturing method thereof.
  • a further object of the present invention is to provide a printed wiring board having a circuit formed on the metal-clad laminate, a semiconductor package having a semiconductor element mounted on the printed wiring board, and a coreless substrate containing the metal-clad laminate. It is to provide a support for formation and a support for forming a semiconductor redistribution layer.
  • the inventors of the present invention have at least one of a cured product of prepreg obtained by a method such as etching and removing a metal foil of a metal-clad laminate obtained by press molding.
  • the inventors have found that the above problems can be solved by polishing the surface of the above, and have completed the present invention.
  • the present invention has been completed based on such findings.
  • the present invention relates to the following [1] to [15].
  • [1] A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate, (2-1) A step of laminating a metal foil on the surface polished in the step (1) to form a metal-clad laminate, And a method for producing a metal-clad laminate.
  • [2] A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate, (2-2) A metal foil and a thermosetting resin film or a thermosetting resin film with a metal foil is provided on the surface polished in the step (1), and the thermosetting resin film is on the polished surface side.
  • the size of the largest surface area of the cured product of the prepreg is 200 mm to 1,300 mm in length ⁇ 200 mm to 1,300 mm in width, and within 70 mm from the end of the cured product of the prepreg.
  • step (1) (i) CMP (Chemical mechanical polishing) method, (ii) mechanical polishing such as fly-cutting, grinding, sandblasting, belt polishing, and scrubbing, (iii) persulfate, peroxide
  • CMP Chemical mechanical polishing
  • mechanical polishing such as fly-cutting, grinding, sandblasting, belt polishing, and scrubbing
  • persulfate peroxide
  • a metal-clad laminate excellent in plate thickness accuracy it is possible to provide a metal-clad laminate excellent in plate thickness accuracy and a method for manufacturing the same. Further, a printed wiring board formed by forming a circuit on the metal-clad laminate, a semiconductor package in which a semiconductor element is mounted on the printed wiring board, and a support for coreless substrate formation containing the metal-clad laminate, A support for forming a semiconductor redistribution layer can be provided. According to the method of the present invention, a metal-clad laminate having excellent plate thickness accuracy can be obtained without highly filling with an inorganic filler, so that the metal-clad laminate with good workability can be obtained.
  • FIG. 3 is a digital microscope image of a cross section of the copper clad laminate A obtained in Example 1. It is a conceptual diagram which shows a mode that the thickness of the edge part of a resin composition layer becomes thin, when press-molding and manufacturing a metal-clad laminated board (press panel).
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value and the upper limit value of the other numerical range.
  • each component and material exemplified in the present specification may be used alone or in combination of two or more unless otherwise specified.
  • the present invention also includes embodiments in which the items described in this specification are arbitrarily combined.
  • One aspect of the method for producing a metal-clad laminate of the present invention (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate [hereinafter, sometimes referred to as step (1)], (2-1) A step of laminating a metal foil on the surface polished in the step (1) to form a metal-clad laminate [hereinafter, sometimes referred to as step (2-1)], And a method for producing a metal-clad laminate.
  • Another aspect of the method for producing a metal-clad laminate of the present invention is, (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate, (2-2) A metal foil and a thermosetting resin film or a thermosetting resin film with a metal foil is provided on the surface polished in the step (1), and the thermosetting resin film is on the polished surface side.
  • the step (1) will be described in detail with reference to FIG. 1 or FIG. 2 as necessary.
  • the step (1) is a step of polishing at least one surface of the cured product 1 of the prepreg containing the thermosetting resin composition 6 and the base material 7.
  • the cured product of the prepreg means a state in which the thermosetting resin composition contained in the prepreg is C-staged, and the state in which the thermosetting resin composition is B-staged.
  • at least one surface of the cured product 1 of the prepreg means at least one of the two surfaces having the largest area in the cured product 1 of the prepreg, and the surface in the thickness direction (lateral surface). Is not included.
  • the hardened material 1 of the prepreg used in the step (1) can be obtained by etching away the metal foil of the metal-clad laminate in which the surface of the inner hardened material is not polished.
  • the metal-clad laminate obtained by arranging the metal foil on one side or both sides of one or more prepregs and performing laminate molding such as press molding has surface waviness, and the plate thickness accuracy is not sufficient.
  • the surface waviness is eliminated, which leads to the formation of a metal-clad laminate having high plate thickness accuracy.
  • the surface waviness is undulations repeated at intervals larger than the surface roughness.
  • the surface roughness is 1.0 ⁇ m or less in the entire surface area of the cured product of the prepreg. And is preferably 0.9 ⁇ m or less, more preferably 0.8 ⁇ m or less.
  • the method for etching away the metal foil of the metal-clad laminate in which the surface of the cured product inside is not polished and a general etching removal method for the metal foil of the metal-clad laminate used in the production of printed wiring boards.
  • the metal foil can be removed by etching using ferric chloride solution, ammonium persulfate, or the like.
  • a commercially available metal-clad laminate can be used as the metal-clad laminate whose surface of the cured product inside is not polished, or can be produced by a known method.
  • thermosetting resin composition As a method for producing, for example, a prepreg containing a thermosetting resin composition and a base material, or a plurality of (for example, 2 to 20) prepregs are stacked, and a metal foil is arranged on one side or both sides of the prepreg.
  • a cured product obtained by laminating and molding can also be used.
  • the thermosetting resin composition and the base material will be described later.
  • the lamination molding conditions are not particularly limited, but for example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., a temperature of 100 to 250° C., a pressure of 0.2 to 10 MPa, The heating time may be 0.1 to 5 hours.
  • Examples of the metal foil of the metal-clad laminate in which the surface of the cured product inside is not polished include copper foil, nickel foil, aluminum foil and the like, and among these, copper foil is preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 0.5 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, further preferably 5 to 50 ⁇ m, particularly preferably 5 to 30 ⁇ m, and most preferably 7 to 18 ⁇ m.
  • the surface 2 to be polished may be at least one surface of the cured product, but it is preferable to polish both surfaces of the cured product from the viewpoint of sufficiently eliminating the surface waviness and enhancing the plate thickness accuracy.
  • at least one surface of the cured product means at least one of the two surfaces having the largest area in the cured product, and does not include the surface in the thickness direction (lateral surface).
  • the both surfaces of the cured product means the two surfaces having the largest area in the cured product, and does not include the surface in the thickness direction (horizontal surface).
  • polishing the surface in the thickness direction (lateral surface) is not denied.
  • the size of the cured product 1 of the prepreg is not particularly limited, but as the size of the metal-clad laminate (that is, a so-called press panel before being cut into a predetermined size) obtained by press molding, the surface having the largest area can be used. More preferably, the size is 200 mm to 1,300 mm in length ⁇ 200 mm to 1,300 mm in width.
  • the thickness of the cured product of the prepreg within the range of 70 mm from the end (or within the range of 50 mm from the end) is the thickness of the central part 3 of the cured product. It can be used even if there is a thin portion 4 as compared with.
  • the "range within 70 mm from the end of the cured product of the prepreg” means when measured from any end of the cured product of the prepreg toward the inside of the cured product and perpendicularly to the end. It means within a range of 70 mm.
  • the method for polishing the surface of the cured product is not particularly limited, but (i) CMP (Chemical mechanical polishing) method, (ii) mechanical polishing such as fly-cut, grind, sandblast, belt polishing, scrub polishing, etc., (iii) excess polishing Polishing is preferably carried out by a method selected from the group consisting of sulfates, hydrogen peroxide-sulfuric acid mixtures, chemical polishing using inorganic acids, organic acids and the like. Among these, polishing by the CMP method, fly cutting and grinding is more preferable. As the polishing method, one type may be used alone, or two or more types may be used in combination.
  • the surface waviness of the surface of the polished cured product is reduced, and the surface roughness (Ra) of the surface is preferably 1.0 ⁇ m or less, more preferably 0.9 ⁇ m or less, and further preferably 0.8 ⁇ m or less.
  • the surface roughness (Ra) can be measured using a stylus-type surface profile measuring instrument (trade name “DektakXT” manufactured by Bruker Corporation).
  • the CMP method is mechanical polishing with a chemical etching action by an alkaline polishing solution.
  • the CMP method is not particularly limited, but for example, “Maro Ohta, two others, “Optical end point monitor for oxide film CMP”, [online], Ebara Jikkan, No. 207. (2005-4), [June 12, 2018 search], Internet, ⁇ URL:https://www.ebara.co.jp/about/technologies/abstract/detail/__icsFiles/afieldfile/2017/04/ 25/207_P25.pdf>” can be used.
  • fly cutting is not particularly limited, but a grinding device with a diamond bite, for example, an automatic surface planer for a 300 mm wafer (manufactured by DISCO Corporation, product name “DAS8930”), This is a method of physically grinding (polishing) using a grinder (trade name “DFG8540” and “DFG8560” manufactured by DISCO Corporation).
  • the surface waviness of the cured product of the prepreg can be eliminated and the plate thickness accuracy can be improved. It can be said that the cured product has a substantially uniform thickness.
  • the term “approximately uniformized” includes not only a mode in which the thickness is completely uniformed, but also a mode in which the thickness is uniformed to such an extent that the surface waviness falls within the above range even if it is not completely uniform. Further, as shown in FIGS. 1 and 2, it is preferable that in the polishing, the entire surface is polished until the thickness of the thinnest portion 5 in the cured product of the prepreg is adjusted.
  • the thickness of the entire prepreg is substantially uniform.
  • the thickness of the entire cured product is made substantially uniform, and it is not necessary to discard the portion where the cured product is thin.
  • the base material in the prepreg is polished, there is no particular problem, but the base material may be polished while being adjusted so as not to polish the base material.
  • thermosetting resin composition The thermosetting resin composition contained in the prepreg is not particularly limited as long as it contains a thermosetting resin.
  • a thermosetting resin for example, epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, modified Examples include silicone resins, triazine resins, melamine resins, urea resins, furan resins and the like.
  • known thermosetting resins can be used without particular limitation. These may be used alone or in combination of two or more. Among these, epoxy resin, unsaturated imide resin, and modified silicone resin are preferable.
  • the epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin or other bisphenol type epoxy resin; alicyclic epoxy resin; aliphatic chain Epoxy resin; novolac type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin; phenol aralkyl type epoxy resin; stilbene type epoxy resin; dicyclopentadiene Type epoxy resin; naphthalene skeleton-containing epoxy resin such as naphthol novolac type epoxy resin and naphthol aralkyl type epoxy resin; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin; dihydroanthracene type epoxy resin. From these, a naphthalene skeleton-containing epoxy resin may be selected, or a naphthol aralkyl epoxy resin may be selected.
  • the unsaturated imide resin examples include a maleimide resin, an addition reaction product of a maleimide resin and a monoamine compound, a reaction product of a maleimide resin, a monoamine compound and a diamine compound, and the like.
  • the maleimide compound is not particularly limited, and examples thereof include bis(4-maleimidophenyl)methane, polyphenylmethanemaleimide, bis(4-maleimidophenyl)ether, 3,3′-dimethyl-5,5.
  • the above-mentioned monoamine compound is preferably a monoamine compound having an acidic substituent (eg, hydroxyl group, carboxy group, etc.), specifically, o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid. , M-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, etc. Can be mentioned.
  • an acidic substituent eg, hydroxyl group, carboxy group, etc.
  • diamine compound a diamine compound having at least two benzene rings is preferable, and a diamine compound having at least two benzene rings in a straight chain between two amino groups is more preferable, and 4,4′-diamino is preferred.
  • Diphenylmethane 4,4'-diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone , 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl ketone and the like.
  • the unsaturated imide resin for example, a maleimide compound described in JP-A-2018-165340 can be used.
  • the thermosetting resin composition may include, in addition to the thermosetting resin, a curing agent, a curing accelerator, an inorganic filler, an organic filler, a coupling agent, a leveling agent, an antioxidant, and a flame retardant, if necessary.
  • An embodiment containing at least one selected from a flame retardant aid, a thixotropic agent, a thickening agent, a thixotropic agent, a flexible material, a surfactant, a photopolymerization initiator and the like is preferable.
  • the plate thickness accuracy can be improved without high filling, so that the content of the inorganic filler can be, for example, 10 to 60% by volume, and 20 to It may be 60% by volume or 30 to 60% by volume, and the upper limit value in the numerical range may be 57% by volume or 55% by volume.
  • the content of the inorganic filler exceeds 60% by volume, for example, the upper limit of the numerical range of the content.
  • the value may be 70% by volume or 80% by volume.
  • modified silicone compound modified silicone resin
  • other thermosetting resin curing agent, curing accelerator, inorganic filler, heat Thermosetting containing at least one selected from the group consisting of a plastic resin, an elastomer, an organic filler, a flame retardant, an ultraviolet absorber, an antioxidant, a photopolymerization initiator, an optical brightener and an adhesion improver.
  • Resin compositions and the like can also be used.
  • the modified silicone compound is preferably a silicone compound modified at both ends with amino groups.
  • a maleimide compound having a group (C) a both-terminal amino-modified silicone compound obtained by reacting an amine compound having an acidic substituent represented by the following general formula (2), and the details are described in International Publication No. 2012/099133. On the street.
  • a plurality of R 1 's each independently represent an alkyl group, a phenyl group or a substituted phenyl group, and may be the same or different
  • a plurality of R 2 's each independently represent an alkyl group, a phenyl group.
  • Group or a substituted phenyl group which may be the same or different from each other
  • R 3 and R 4 each independently represent an alkyl group, a phenyl group or a substituted phenyl group
  • R 5 and R 6 each independently represent a divalent group.
  • n represents an integer of 2 to 50.
  • x is an integer of 1 to 5
  • Base material As the base material contained in the prepreg, a sheet-shaped reinforcing base material is used, and well-known materials used for various laminated plates for electrical insulating materials can be used.
  • the material of the base material include natural fibers such as paper and cotton linters; inorganic fibers such as glass fibers and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene and acrylic; and mixtures thereof.
  • glass fibers are preferable from the viewpoint of flame retardancy.
  • the glass fiber base material examples include a woven fabric using E glass, C glass, D glass, S glass, or the like, or a glass woven fabric obtained by adhering short fibers with an organic binder; and a mixture of glass fiber and cellulose fiber. To be More preferably, it is a glass woven fabric using E glass.
  • These base materials have, for example, a woven cloth, a non-woven cloth, a robink, a chopped strand mat, a surfacing mat, or the like.
  • the material and shape are selected depending on the intended use and performance of the molded product, and one kind may be used alone, or two or more kinds of material and shape may be combined if necessary.
  • the thickness of the base material may be, for example, 0.01 to 0.5 mm, preferably 0.015 to 0.2 mm, and 0.02 to 0 mm from the viewpoint of enabling moldability and high-density wiring. 0.15 mm is more preferable. From the viewpoint of heat resistance, moisture resistance, processability, etc., these base materials are preferably surface-treated with a silane coupling agent or the like, or mechanically opened.
  • Prepreg After impregnating the base material with the thermosetting resin composition, a heat treatment is performed to obtain a prepreg in which the thermosetting resin composition is B-staged. From the viewpoint of handleability and tackiness of the prepreg, the prepreg is preferably subjected to a cooling step of cooling the prepreg. Cooling of the prepreg may be performed by natural cooling, or may be performed using a cooling device such as an air blower or a cooling roll. The temperature of the prepreg after cooling is usually 5 to 80°C, preferably 8 to 50°C, more preferably 10 to 30°C, and further preferably room temperature.
  • the content of the thermosetting resin composition in terms of solid content in the prepreg is not particularly limited, but is preferably 20 to 90% by mass, more preferably 30 to 85% by mass, and 50 to 80% by mass. % Is more preferable.
  • the thickness of the prepreg is not particularly limited, but is preferably 20 to 150 ⁇ m, more preferably 60 to 120 ⁇ m, for example.
  • the step (2-1) is a step of laminating the metal foil 9 on the surface polished in the step (1) to form a metal-clad laminate.
  • the metal foil 9 and the thermosetting resin film 10 or the thermosetting resin film 11 with the metal foil is attached to the surface 8 polished in the step (1) by the thermosetting resin.
  • This is a step of forming the metal-clad laminate 12 by laminating the film 10 so as to be on the polished surface 8 side.
  • the thermosetting resin film 11 with the metal foil is formed by disposing the thermosetting resin film 10 on the metal foil 9.
  • step (1) either step (2-1) or step (2-2) may be selected, but a thermosetting resin layer having a depth obtained by polishing the cured product of the prepreg is provided. It is preferable to select the step (2-2) capable of By selecting the step (2-2), it is possible to return the thickness of the prepreg to the thickness before polishing, regardless of the amount of polishing in the step (1), and to adjust it to an arbitrary thickness. It is also possible.
  • the metal of the metal foil 9 (including the metal foil of the thermosetting resin film 11 with a metal foil) is not particularly limited as long as it is used for an electric insulating material, and from the viewpoint of conductivity, copper, Gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, or an alloy containing at least one of these metal elements is preferable, copper and aluminum are more preferable, and copper is further preferable. ..
  • the material of the thermosetting resin film used in the step (2-2) is preferably the same as the thermosetting resin composition contained in the prepreg used in the step (1).
  • the present invention also provides a metal-clad laminate obtained by the above manufacturing method. Since the thickness of the cured product inside is substantially uniform, the metal-clad laminate of the present invention is also substantially uniform in thickness. Specifically, the difference between the maximum value and the minimum value of the thickness is 20 ⁇ m or less. It is obtained, and it excels in plate thickness accuracy. The difference between the maximum value and the minimum value of the thickness is 10 ⁇ m or less for the more excellent one and 5 ⁇ m or less for the more excellent one.
  • the difference between the maximum value and the minimum value of the thickness and the difference between them are the values measured by the following method, and more specifically, the values measured by the method described in Examples.
  • a 550 mm square metal-clad laminate is cut into a size of 50 mm square and cut into 81 pieces in total. Samples at 17 points including the end and the center are selected, and the thickness at arbitrary 4 points is measured by a micrometer. From the data of 68 points in total, the maximum value, the minimum value, and the difference between them are calculated.
  • the metal-clad laminate obtained by the production method of the present invention can have a thickness standard deviation ( ⁇ ) of 10 ⁇ m or less, and is excellent in plate thickness accuracy.
  • the more excellent standard deviation ( ⁇ ) is 5 ⁇ m or less, and the more excellent one is 3 ⁇ m or less.
  • the standard deviation ( ⁇ ) of the thickness is, for example, T 1 , T 2 ,..., T n when the thicknesses at arbitrary n positions of the metal-clad laminate are measured, and When the average thickness of the laminated plate is T, the standard deviation at n points can be calculated from the following formula.
  • the metal-clad laminate obtained by the production method of the present invention, (a) a cured product of a prepreg containing a thermosetting resin composition and a substrate, wherein at least one of the cured products A metal-clad laminate containing a cured product whose surface is polished, (b) a thermosetting resin composition layer containing no base material, and (c) a metal foil.
  • the metal-clad laminate can be manufactured through the steps (1) and (2-2) in the manufacturing method.
  • the above-mentioned (a) is not particularly limited, but a mode in which both surfaces of the cured product are polished is preferable.
  • the preferred embodiment of the polishing method is as described above.
  • the present invention also provides a printed wiring board containing the metal-clad laminate. More specifically, the printed wiring board of the present invention can be manufactured by subjecting the metal foil of the metal-clad laminate to circuit processing. Circuit processing, for example, after forming a resist pattern on the metal foil surface, remove the unnecessary portion of the metal foil by etching, after peeling the resist pattern, to form a necessary through hole by a drill, after forming the resist pattern again, It can be performed by performing plating for electrical connection to the through hole and finally peeling off the resist pattern.
  • the above-mentioned metal-clad laminate is further laminated on the surface of the printed wiring board thus obtained under the same conditions as described above, and the circuit is processed in the same manner as described above to form a multilayer printed wiring board. You can In this case, it is not always necessary to form a through hole, a via hole may be formed, and both can be formed. The required number of layers is provided in this way.
  • the printed wiring board of the present invention thus obtained is also excellent in plate thickness accuracy.
  • the semiconductor package of the present invention is obtained by mounting a semiconductor on the printed wiring board of the present invention.
  • the present invention also provides a support for forming a coreless substrate, which comprises the metal-clad laminate of the present invention.
  • a support for coreless substrate formation core substrate
  • an insulating resin composition layer having a circuit pattern is sequentially laminated to form a build-up layer, and then the support is separated to prepare a coreless substrate. It is possible. Since the coreless substrate forming support of the present invention has good plate thickness accuracy, it is possible to reduce the warp and surface waviness of the coreless substrate thus obtained, and thus it is suitable for improving the plate thickness accuracy of the coreless substrate.
  • the method for forming the buildup layer is not particularly limited, and a known method can be adopted. Explaining with reference to FIG.
  • the buildup layer can be formed by the following method.
  • the prepreg 14 is arranged on the coreless substrate forming support (core substrate) 13 of the present invention.
  • an adhesive layer may be arranged on the coreless substrate forming support (core substrate) 13 and then the prepreg 14 may be arranged.
  • the prepreg 14 is heated and cured to form an insulating layer.
  • the via hole 15 is formed by a drill cutting method, a laser processing method using a YAG laser, a CO 2 laser, or the like, surface roughening treatment and desmear treatment are performed if necessary.
  • the circuit pattern 16 is formed by a subtractive method, a full additive method, a semi-additive method (SAP: Semi-Additive Process), a modified semi-additive method (m-SAP: modified Semi-Additive Process).
  • the build-up layer 17 is formed by repeating the above process.
  • a coreless substrate 18 is obtained by separating the formed buildup layer 17 from the coreless substrate forming support (core substrate) 13.
  • the buildup layer 17 may be formed on one side of the support (core substrate) 13 or on both sides.
  • the present invention also provides a support for forming a semiconductor redistribution layer, which comprises the metal-clad laminate of the present invention.
  • the semiconductor redistribution layer is an insulating layer provided with copper wiring connected to the solder balls, and is usually an insulating layer provided between the semiconductor chip and the solder balls.
  • a semiconductor redistribution layer forming resin film is preferably used.
  • the semiconductor redistribution layer forming support of the present invention has good plate thickness accuracy, It effectively functions as a support for the rewiring layer forming resin film.
  • a prepreg was produced according to the following procedure.
  • a modified silicone compound-containing solution was obtained by reacting 100 parts by mass of an amino-modified silicone compound at both ends, 222 parts by mass of bis(4-maleimidophenyl)methane and 8.5 parts by mass of p-aminophenol.
  • 16 parts by mass of the modified silicone compound-containing solution in terms of solid content 16 parts by mass of naphthol aralkyl type epoxy resin, 69 parts by mass of fused silica [average particle diameter: 0.5 ⁇ m], 0.15 parts by mass of isocyanate mask imidazole.
  • An E glass cloth having a thickness of 0.1 mm was impregnated and coated with the obtained varnish and dried by heating to obtain a prepreg (fused silica filling rate: 50% by volume).
  • Eight prepregs thus obtained were laminated, and low-pro type copper foils (thickness 12 ⁇ m, maximum height roughness (Rz) about 4.0 ⁇ m, manufactured by Mitsui Mining & Smelting Co., Ltd.) were laminated on both surfaces, and the pressure was 0.5 MPa.
  • By heat-press molding at a temperature of 200 to 230° C. for about 2 hours, a laminate having copper foils on both sides (hereinafter referred to as copper-clad laminate a) was obtained.
  • the copper foil was removed by etching to obtain a laminate.
  • the surface roughness (Ra) of the surface of the laminate was measured under the following measurement conditions using a high-precision three-dimensional surface roughness measuring system (Veeco Instruments, Wyko NT9100). The result is shown in FIG.
  • a grinding device automated surface planer for 300 mm wafer, manufactured by DISCO, trade name "DAS8930" with a diamond bite on both front and back surfaces (that is, two surfaces having the largest area) of this laminate, Both sides were polished and flattened.
  • the surface roughness (Ra) of the surface after polishing was measured under the following measurement conditions using a highly accurate three-dimensional surface shape roughness measuring system (Veeco Instruments, Wyko NT9100). The result is shown in FIG. It was confirmed that the surface waviness was smaller in FIG. 5 than in FIG. Further, a thermosetting resin film (thickness: 10 ⁇ m) having the same components as the prepreg “GEA-705G” is arranged on both surfaces of the flattened laminate, and a copper foil (thickness: 12 ⁇ m) is arranged on the outer side thereof. A 550 mm square copper-clad laminate A capable of forming a circuit in the outermost layer was obtained by heating and pressing with a hot press.
  • the copper clad laminate obtained by the above method was evaluated according to the following evaluation methods. The results are shown in Table 1.
  • ⁇ Evaluation method> (1. Maximum and minimum thicknesses of copper clad laminates and their differences)
  • the copper-clad laminate obtained in each example was cut into a size of 50 mm square with a wet diamond cutter and cut into 81 pieces in total. Samples at 17 locations including the edge and the center were selected, and the thickness at arbitrary 4 points was measured with a micrometer. From the data of 68 points in total, the maximum value and the minimum value of the plate thickness and their difference were calculated.
  • ULF coated drill “MCW Z699MWU” ( ⁇ 0.15 mm (small diameter) ⁇ 3.5 mm (large diameter), manufactured by Union Tool Co., Ltd., trade name) is used as a drill, and the rotation speed is 200,000 rpm and the feed speed is 2.0 m. /Min, chip load: 10.0 ⁇ m/rev. Evaluation was performed with 10,000 hits, and the number of hits until breakage occurred (broken life) was obtained, and this was used as an index of drill workability.
  • Example 1 In Example 1, the surface of the laminate in the copper-clad laminate a was not polished, and the copper-clad laminate a was used as it was, and each evaluation was performed according to the methods described above. The results are shown in Table 1.
  • a copper-clad laminate b was produced in the same manner as in the production of the copper-clad laminate a of Example 1 except that the filling rate of the inorganic filler in the prepreg was increased to 58% by volume.
  • the drill workability of the copper clad laminate b was evaluated according to the method described above. The results are shown in Table 1.
  • the copper clad laminate A obtained in Example 1 has extremely high plate thickness accuracy and good workability (drill workability).
  • the copper clad laminate a of the comparative example resulted in inferior plate thickness accuracy as compared with the copper clad laminate A obtained in Example 1.
  • the workability (drill workability) was lowered.
  • the metal-clad laminate obtained by the manufacturing method of the present invention has excellent thickness accuracy, it is useful for printed wiring boards and semiconductor packages for electronic devices.

Abstract

Provided are a metal-clad layered plate having excellent plate thickness accuracy and a production method therefor. In addition, provided are a printed circuit board yielded by forming a circuit on the metal-clad layered plate, and a semiconductor package yielded by mounting a semiconductor element on the printed circuit board. In addition, provided are a coreless baseboard forming support including the metal-clad layered plate, and a semiconductor re-wiring layer forming support. The metal-clad layered plate production method specifically comprises: (1) a step of grinding at least one of the surfaces of a cured product from a prepreg containing a thermosetting resin composition and a base material; and (2-1) a step of layering, on the surface that has been ground in the step (1), a metallic foil to form a metal-clad layered plate, or (2-2) a step of layering, on the surface that has been ground in the step (1), a metallic foil and a thermosetting resin film or a metallic foil-attached thermosetting resin film, in such a manner that the thermosetting resin film is on the ground surface side, to form the metal-clad layered plate.

Description

金属張り積層板の製造方法、金属張り積層板、プリント配線板及び半導体パッケージ、並びにコアレス基板形成用支持体及び半導体再配線層形成用支持体Method for manufacturing metal-clad laminate, metal-clad laminate, printed wiring board and semiconductor package, support for coreless substrate formation, and support for semiconductor rewiring layer formation
 本発明は、金属張り積層板の製造方法、金属張り積層板、プリント配線板及び半導体パッケージ、並びにコアレス基板形成用支持体及び半導体再配線層形成用支持体に関する。 The present invention relates to a method for manufacturing a metal-clad laminate, a metal-clad laminate, a printed wiring board and a semiconductor package, a support for coreless substrate formation and a support for semiconductor rewiring layer formation.
 近年、電子機器の高密度化に伴い、小型化、軽量化及び多機能化が一段と進み、これに伴い、プリント配線板、及びLSI(Large Scale Integration)を実装する半導体パッケージにおいても高密度化及び高い信頼性が要求されている。それに起因して、金属張り積層板の板厚精度の向上の要求が厳しくなりつつある。
 複数枚のプリプレグを金属箔で挟み込んでプレス成形等によって積層成形して得られる金属張り積層板はプリント配線板のコア基板として用いられる(例えば特許文献1の段落[0057]参照)が、プリプレグ内に存在するガラスクロス等の基材の影響等によって、プレス成型後に表面うねりが発生する。従来はこの程度の表面うねりは許容範囲であったが、さらなる高密度化及び高信頼性確保のため、金属張り積層板の板厚精度をより高い水準で達成することが求められる傾向にあり、当該表面うねりによる板厚精度の低下の問題を解消する必要性が出てきた。
 また、板厚精度は樹脂組成物の流動性にも依存する傾向にあり、図7に示すように、プレス成形等の積層成形をして得られる金属張り積層板(所定サイズにカットされる前の、いわゆるプレスパネル)の端部における樹脂組成物層は薄くなるのが通常であり、板厚精度の観点からは、樹脂組成物層が薄くなった部位は破棄せざるを得なかった。一方で、樹脂組成物の流動性を低減するために無機充填材を高充填する方法等が知られているが、板厚精度の改善効果には限界があり、且つ、無機充填材の高充填が必須の場合にはドリル加工性等の加工性の大幅な低下を免れないという問題がある。
2. Description of the Related Art In recent years, as electronic devices have become higher in density, miniaturization, weight reduction, and multi-functionalization have been further advanced. As a result, the density of printed circuit boards and semiconductor packages on which LSI (Large Scale Integration) is mounted have also been increased. High reliability is required. Due to this, the demand for improving the plate thickness accuracy of metal-clad laminates is becoming stricter.
A metal-clad laminate obtained by sandwiching a plurality of prepregs with a metal foil and laminate-forming by press forming or the like is used as a core substrate of a printed wiring board (for example, see paragraph [0057] of Patent Document 1). Surface undulation occurs after press molding due to the influence of the base material such as glass cloth existing in the above. In the past, this degree of surface waviness was within the allowable range, but there is a tendency for the plate thickness accuracy of the metal-clad laminate to be achieved at a higher level in order to achieve higher density and higher reliability. It has become necessary to solve the problem of reduction in plate thickness accuracy due to the surface waviness.
In addition, the plate thickness accuracy tends to depend on the fluidity of the resin composition, and as shown in FIG. 7, a metal-clad laminate obtained by laminate molding such as press molding (before being cut to a predetermined size In general, the resin composition layer at the end of the so-called press panel) becomes thin, and from the viewpoint of plate thickness accuracy, the portion where the resin composition layer became thin had to be discarded. On the other hand, a method of highly filling an inorganic filler in order to reduce the fluidity of the resin composition is known, but there is a limit to the effect of improving the plate thickness accuracy, and the inorganic filler is highly filled. When is essential, there is a problem that workability such as drill workability is unavoidably deteriorated.
特開2016-056371号公報Japanese Patent Laid-Open No. 2016-056371
 そこで、本発明の課題は、板厚精度に優れた金属張り積層板及びその製造方法を提供することにある。さらに本発明の課題は、前記金属張り積層板に回路形成してなるプリント配線板及び該プリント配線板に半導体素子を搭載してなる半導体パッケージ、並びに前記金属張り積層板を含有してなるコアレス基板形成用支持体及び半導体再配線層形成用支持体を提供することにある。 Therefore, an object of the present invention is to provide a metal-clad laminate excellent in plate thickness accuracy and a manufacturing method thereof. A further object of the present invention is to provide a printed wiring board having a circuit formed on the metal-clad laminate, a semiconductor package having a semiconductor element mounted on the printed wiring board, and a coreless substrate containing the metal-clad laminate. It is to provide a support for formation and a support for forming a semiconductor redistribution layer.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、プレス成型して得られた金属張り積層板の金属箔をエッチング除去する等の方法によって得られるプリプレグの硬化物について、少なくとも一方の面を研磨することによって上記課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。 As a result of intensive research to solve the above problems, the inventors of the present invention have at least one of a cured product of prepreg obtained by a method such as etching and removing a metal foil of a metal-clad laminate obtained by press molding. The inventors have found that the above problems can be solved by polishing the surface of the above, and have completed the present invention. The present invention has been completed based on such findings.
 本発明は、下記[1]~[15]に関する。
[1](1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程、
 (2-1)前記工程(1)で研磨された面に金属箔を積層して金属張り積層板を形成する工程、
を有する、金属張り積層板の製造方法。
[2](1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程、
 (2-2)前記工程(1)で研磨された面に、金属箔及び熱硬化性樹脂フィルムを又は金属箔付き熱硬化性樹脂フィルムを、熱硬化性樹脂フィルムが前記研磨された面側となるように積層して金属張り積層板を形成する工程、
を有する、金属張り積層板の製造方法。
[3]前記工程(1)において、前記プリプレグの硬化物の両面を研磨する、上記[1]又は[2]に記載の金属張り積層板の製造方法。
[4]前記工程(1)における研磨により、前記プリプレグの硬化物の厚みを略均一化する、上記[1]~[3]のいずれかに記載の金属張り積層板の製造方法。
[5]前記プリプレグの硬化物が、内部の硬化物の表面が研磨されていない金属張り積層板の金属箔をエッチング除去して得られたものである、上記[1]~[4]のいずれかに記載の金属張り積層板の製造方法。
[6]前記プリプレグの硬化物の最も面積の大きい面のサイズが、縦200mm~1,300mm×横200mm~1,300mmであり、且つ、前記プリプレグの硬化物の端部から70mm以内の範囲における少なくとも一部の厚みが硬化物の中央部の厚みに比べて薄い、上記[1]~[5]のいずれかに記載の金属張り積層板の製造方法。
[7]前記工程(1)において、前記プリプレグの硬化物の最も薄い部分の厚みに揃うまで面全体を研磨する、上記[1]~[6]のいずれかに記載の金属張り積層板の製造方法。
[8]前記工程(1)において、(i)CMP(Chemical mechanical polishing)法、(ii)フライカット、グラインド、サンドブラスト、ベルト研磨、スクラブ研磨等の機械研磨、(iii)過硫酸塩、過酸化水素-硫酸混合物、無機酸、有機酸等を使用する化学研磨、からなる群から選択される方法によって研磨する、上記[1]~[7]のいずれかに記載の金属張り積層板の製造方法。
[9]得られる金属張り積層板の厚みの最大値と最小値の差が20μm以下である、上記[1]~[8]のいずれかに記載の金属張り積層板の製造方法。
[10]上記[1]~[9]のいずれかに記載の製造方法により得られる金属張り積層板。
[11](a)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物であって、該硬化物の少なくとも一方の面が研磨された硬化物、(b)基材を含まない熱硬化性樹脂組成物層、及び(c)金属箔、を含有する金属張り積層板。
[12]上記[10]又は[11]に記載の金属張り積層板を含有してなるプリント配線板。
[13]上記[12]に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
[14]上記[10]又は[11]に記載の金属張り積層板を含有してなる、コアレス基板形成用支持体。
[15]上記[10]又は[11]に記載の金属張り積層板を含有してなる、半導体再配線層形成用支持体。
The present invention relates to the following [1] to [15].
[1] (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate,
(2-1) A step of laminating a metal foil on the surface polished in the step (1) to form a metal-clad laminate,
And a method for producing a metal-clad laminate.
[2] (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate,
(2-2) A metal foil and a thermosetting resin film or a thermosetting resin film with a metal foil is provided on the surface polished in the step (1), and the thermosetting resin film is on the polished surface side. Laminating to form a metal-clad laminate,
And a method for producing a metal-clad laminate.
[3] The method for producing a metal-clad laminate according to the above [1] or [2], wherein both surfaces of the cured product of the prepreg are polished in the step (1).
[4] The method for producing a metal-clad laminate according to any one of the above [1] to [3], wherein the thickness of the cured product of the prepreg is made substantially uniform by the polishing in the step (1).
[5] Any of [1] to [4] above, wherein the cured product of the prepreg is obtained by etching away the metal foil of the metal-clad laminate in which the surface of the cured product inside is not polished. A method for producing a metal-clad laminate as described in 1.
[6] The size of the largest surface area of the cured product of the prepreg is 200 mm to 1,300 mm in length×200 mm to 1,300 mm in width, and within 70 mm from the end of the cured product of the prepreg. The method for producing a metal-clad laminate according to any one of the above [1] to [5], wherein at least a part of the thickness of the cured product is smaller than the thickness of the central part of the cured product.
[7] Manufacturing of the metal-clad laminate according to any one of [1] to [6] above, wherein in the step (1), the entire surface is polished until the thickness of the thinnest part of the cured product of the prepreg becomes uniform. Method.
[8] In the step (1), (i) CMP (Chemical mechanical polishing) method, (ii) mechanical polishing such as fly-cutting, grinding, sandblasting, belt polishing, and scrubbing, (iii) persulfate, peroxide The method for producing a metal-clad laminate according to any one of the above [1] to [7], wherein polishing is performed by a method selected from the group consisting of hydrogen-sulfuric acid mixture, chemical polishing using inorganic acid, organic acid and the like. ..
[9] The method for producing a metal-clad laminate according to any one of [1] to [8] above, wherein the difference between the maximum value and the minimum value of the thickness of the obtained metal-clad laminate is 20 μm or less.
[10] A metal-clad laminate obtained by the method according to any one of [1] to [9] above.
[11] (a) A cured product of a prepreg containing a thermosetting resin composition and a substrate, wherein the cured product has at least one surface polished, and (b) a substrate. A metal-clad laminate comprising a thermosetting resin composition layer, and (c) a metal foil.
[12] A printed wiring board containing the metal-clad laminate according to the above [10] or [11].
[13] A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to [12].
[14] A support for forming a coreless substrate, containing the metal-clad laminate according to the above [10] or [11].
[15] A support for forming a semiconductor redistribution layer, comprising the metal-clad laminate according to the above [10] or [11].
 本発明により、板厚精度に優れた金属張り積層板及びその製造方法を提供することができる。また、前記金属張り積層板に回路形成してなるプリント配線板及び該プリント配線板に半導体素子を搭載してなる半導体パッケージ、並びに前記金属張り積層板を含有してなるコアレス基板形成用支持体及び半導体再配線層形成用支持体を提供することができる。
 本発明の方法によれば、無機充填材を高充填せずとも板厚精度に優れた金属張り積層板が得られるため、加工性が良好な金属張り積層板とすることが可能である。
According to the present invention, it is possible to provide a metal-clad laminate excellent in plate thickness accuracy and a method for manufacturing the same. Further, a printed wiring board formed by forming a circuit on the metal-clad laminate, a semiconductor package in which a semiconductor element is mounted on the printed wiring board, and a support for coreless substrate formation containing the metal-clad laminate, A support for forming a semiconductor redistribution layer can be provided.
According to the method of the present invention, a metal-clad laminate having excellent plate thickness accuracy can be obtained without highly filling with an inorganic filler, so that the metal-clad laminate with good workability can be obtained.
本発明の製造方法の実施態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the embodiment of the manufacturing method of this invention. 本発明の製造方法の実施態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the embodiment of the manufacturing method of this invention. 本発明のコアレス基板形成用支持体を用いたコアレス基板の製造工程の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing process of the coreless board using the support for coreless board formation of the present invention. 実施例1で使用した研磨前の積層体の表面について、高精度3次元表面形状粗さ測定システム(Veeco Instruments社製、Wyko NT9100)を用いて表面粗さ(Ra)を測定した結果を示す図である。The figure which shows the result of having measured the surface roughness (Ra) about the surface of the laminated body used in Example 1 before polishing by using a highly accurate three-dimensional surface shape roughness measurement system (Veeco Instruments, Wyko NT9100). Is. 実施例1で得た研磨後のプリプレグの硬化物の表面について、高精度3次元表面形状粗さ測定システム(Veeco Instruments社製、Wyko NT9100)を用いて表面粗さ(Ra)を測定した結果を示す図である。The surface roughness (Ra) of the surface of the cured product of the prepreg after polishing obtained in Example 1 was measured using a high-accuracy three-dimensional surface shape roughness measuring system (Veeco Instruments, Wyko NT9100). FIG. 実施例1で得た銅張積層板Aの断面のデジタルマイクロスコープ画像である。3 is a digital microscope image of a cross section of the copper clad laminate A obtained in Example 1. プレス成形して金属張り積層板(プレスパネル)を製造する際に、樹脂組成物層の端部の厚みが薄くなる様子を示す概念図である。It is a conceptual diagram which shows a mode that the thickness of the edge part of a resin composition layer becomes thin, when press-molding and manufacturing a metal-clad laminated board (press panel).
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
In the numerical ranges described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. The lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value and the upper limit value of the other numerical range.
Further, each component and material exemplified in the present specification may be used alone or in combination of two or more unless otherwise specified.
The present invention also includes embodiments in which the items described in this specification are arbitrarily combined.
[金属張り積層板の製造方法]
 本発明の金属張り積層板の製造方法の一態様は、
 (1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程[以下、工程(1)と称することがある]、
 (2-1)前記工程(1)で研磨された面に金属箔を積層して金属張り積層板を形成する工程[以下、工程(2-1)と称することがある]、
を有する、金属張り積層板の製造方法である。
[Method of manufacturing metal-clad laminate]
One aspect of the method for producing a metal-clad laminate of the present invention,
(1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate [hereinafter, sometimes referred to as step (1)],
(2-1) A step of laminating a metal foil on the surface polished in the step (1) to form a metal-clad laminate [hereinafter, sometimes referred to as step (2-1)],
And a method for producing a metal-clad laminate.
 また、本発明の金属張り積層板の製造方法の別の一態様は、
 (1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程、
 (2-2)前記工程(1)で研磨された面に、金属箔及び熱硬化性樹脂フィルムを又は金属箔付き熱硬化性樹脂フィルムを、熱硬化性樹脂フィルムが前記研磨された面側となるように積層して金属張り積層板を形成する工程[以下、工程(2-2)と称することがある]、
を有する、金属張り積層板の製造方法である。
 以下、必要に応じて図1又は図2を参照しながら、前記工程(1)から順に詳述する。
Another aspect of the method for producing a metal-clad laminate of the present invention is,
(1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate,
(2-2) A metal foil and a thermosetting resin film or a thermosetting resin film with a metal foil is provided on the surface polished in the step (1), and the thermosetting resin film is on the polished surface side. A step of forming a metal-clad laminate by laminating so that [hereinafter, referred to as step (2-2)],
And a method for producing a metal-clad laminate.
Hereinafter, the step (1) will be described in detail with reference to FIG. 1 or FIG. 2 as necessary.
<工程(1)>
 工程(1)は、熱硬化性樹脂組成物6及び基材7を含有してなるプリプレグの硬化物1の少なくとも一方の面を研磨する工程である。ここで本発明において、プリプレグの硬化物とは、プリプレグが含有する熱硬化性樹脂組成物がC-ステージ化された状態のものを言い、熱硬化性樹脂組成物がB-ステージ化された状態のものは含まれない。また、「プリプレグの硬化物1の少なくとも一方の面」とは、プリプレグの硬化物1において、最も面積の大きい2面のうちの少なくとも一方の面を意味し、厚み方向の面(横の面)は含まれない。但し、「プリプレグの硬化物1の少なくとも一方の面」に加えて、厚み方向の面(横の面)を研磨することを否定するものではない。
 工程(1)で使用するプリプレグの硬化物1は、内部の硬化物の表面が研磨されていない金属張り積層板の金属箔をエッチング除去することによって得ることができる。換言すると、1枚又は複数枚のプリプレグの片面又は両面に金属箔を配置し、プレス成形等の積層成形をして得られる金属張り積層板は表面うねりが生じており、板厚精度が十分ではないため、当該金属張り積層板から金属箔をエッチング除去し、当該工程(1)を経ることによって、表面うねりを解消し、ひいては高い板厚精度を有する金属張り積層板を形成することに繋がる。
 ここで、表面うねりとは、表面粗さより大きい間隔で繰り返される起伏のことである。本発明では、高精度3次元表面形状粗さ測定システムを用いて実施例に記載の条件にて表面観察した図4が示すように、X軸:95μm及びY軸:95μmという広い範囲(但し、場所は任意である。)において表面粗さ(算術平均粗さ:Ra)が1.0μm以下となる箇所と1.0μm超となる箇所とを有するとき、表面うねりが大きいと称し、この場合、板厚精度が低いこととなる。該表面粗さ(Ra)が1.0μm超となる箇所の表面粗さが大きい程(例えば、1.5μm以上、2.0μm以上等)、表面うねりが大きいと言える。本発明では表面うねりが解消されているため、前記高精度3次元表面形状粗さ測定システムを用いて表面粗さを観察すると、プリプレグの硬化物の表面全範囲において表面粗さが1.0μm以下となり、好ましくは0.9μm以下、より好ましくは0.8μm以下となる。
<Step (1)>
The step (1) is a step of polishing at least one surface of the cured product 1 of the prepreg containing the thermosetting resin composition 6 and the base material 7. Here, in the present invention, the cured product of the prepreg means a state in which the thermosetting resin composition contained in the prepreg is C-staged, and the state in which the thermosetting resin composition is B-staged. Not included. Further, "at least one surface of the cured product 1 of the prepreg" means at least one of the two surfaces having the largest area in the cured product 1 of the prepreg, and the surface in the thickness direction (lateral surface). Is not included. However, in addition to "at least one surface of the cured product 1 of the prepreg", polishing the surface (lateral surface) in the thickness direction is not denied.
The hardened material 1 of the prepreg used in the step (1) can be obtained by etching away the metal foil of the metal-clad laminate in which the surface of the inner hardened material is not polished. In other words, the metal-clad laminate obtained by arranging the metal foil on one side or both sides of one or more prepregs and performing laminate molding such as press molding has surface waviness, and the plate thickness accuracy is not sufficient. Therefore, by removing the metal foil from the metal-clad laminate by etching and performing the step (1), the surface waviness is eliminated, which leads to the formation of a metal-clad laminate having high plate thickness accuracy.
Here, the surface waviness is undulations repeated at intervals larger than the surface roughness. In the present invention, as shown in FIG. 4 in which the surface was observed under the conditions described in the examples using a high-precision three-dimensional surface roughness measuring system, as shown in FIG. 4, a wide range of X axis: 95 μm and Y axis: 95 μm (however, When the surface roughness (arithmetic mean roughness: Ra) is 1.0 μm or less and the surface roughness is more than 1.0 μm, the surface waviness is said to be large. The plate thickness accuracy is low. It can be said that the greater the surface roughness at the surface roughness (Ra) of more than 1.0 μm (for example, 1.5 μm or more, 2.0 μm or more), the greater the surface waviness. Since the surface waviness is eliminated in the present invention, when the surface roughness is observed using the high precision three-dimensional surface shape roughness measuring system, the surface roughness is 1.0 μm or less in the entire surface area of the cured product of the prepreg. And is preferably 0.9 μm or less, more preferably 0.8 μm or less.
 内部の硬化物の表面が研磨されていない金属張り積層板の金属箔をエッチング除去する方法に特に制限はなく、プリント配線板の製造に用いられる金属張り積層板の金属箔の通常のエッチング除去方法を採用することができる。例えば、塩化第二鉄液、過硫酸アンモニウム等を用いて金属箔をエッチング除去できる。
 なお、内部の硬化物の表面が研磨されていない金属張り積層板としては、市販されている金属張り積層板を用いることもできる、公知の方法で製造することもできる。製造する方法としては、例えば、熱硬化性樹脂組成物及び基材を含有してなるプリプレグ1枚の又は複数枚(例えば2~20枚)を重ねたものの片面又は両面に金属箔を配置し、積層成形して得られる硬化物を使用することもできる。前記熱硬化性樹脂組成物及び前記基材については後述する。前記積層成形条件としては、特に制限されるものではないが、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用して、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の条件が挙げられる。
There is no particular limitation on the method for etching away the metal foil of the metal-clad laminate in which the surface of the cured product inside is not polished, and a general etching removal method for the metal foil of the metal-clad laminate used in the production of printed wiring boards. Can be adopted. For example, the metal foil can be removed by etching using ferric chloride solution, ammonium persulfate, or the like.
A commercially available metal-clad laminate can be used as the metal-clad laminate whose surface of the cured product inside is not polished, or can be produced by a known method. As a method for producing, for example, a prepreg containing a thermosetting resin composition and a base material, or a plurality of (for example, 2 to 20) prepregs are stacked, and a metal foil is arranged on one side or both sides of the prepreg. A cured product obtained by laminating and molding can also be used. The thermosetting resin composition and the base material will be described later. The lamination molding conditions are not particularly limited, but for example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., a temperature of 100 to 250° C., a pressure of 0.2 to 10 MPa, The heating time may be 0.1 to 5 hours.
 内部の硬化物の表面が研磨されていない金属張り積層板の金属箔としては、例えば、銅箔、ニッケル箔、アルミ箔等が挙げられ、これらの中でも銅箔が好ましい。金属箔の厚みに特に制限はないが、例えば、0.5~150μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、5~30μmが特に好ましく、7~18μmが最も好ましい。 Examples of the metal foil of the metal-clad laminate in which the surface of the cured product inside is not polished include copper foil, nickel foil, aluminum foil and the like, and among these, copper foil is preferable. The thickness of the metal foil is not particularly limited, but is preferably 0.5 to 150 μm, more preferably 1 to 100 μm, further preferably 5 to 50 μm, particularly preferably 5 to 30 μm, and most preferably 7 to 18 μm.
 研磨する面2は、硬化物の少なくとも一方の面であればよいが、十分に表面うねりを解消し、板厚精度を高いものとする観点からは、硬化物の両面を研磨することが好ましい。ここで、「硬化物の少なくとも一方の面」とは、硬化物において、最も面積の大きい2面のうちの少なくとも一方の面を意味し、厚み方向の面(横の面)は含まれない。また、「硬化物の両面」とは、硬化物において、最も面積の大きい2面を意味し、厚み方向の面(横の面)は含まれない。但し、「硬化物の両面」に加えて、厚み方向の面(横の面)を研磨することを否定するものではない。
 なお、十分に表面うねりを解消し、板厚精度を高いものとする観点から、研磨対象の面全体を研磨することが好ましい。
 前記プリプレグの硬化物1のサイズに特に制限はないが、プレス成形して得られる金属張り積層板(つまり、所定サイズにカットされる前の、いわゆるプレスパネル)サイズとして、最も面積の大きい面のサイズが、縦200mm~1,300mm×横200mm~1,300mmであることがより好ましい。さらに、前記プリプレグの硬化物は、例えば、前記プリプレグの硬化物の端部から70mm以内の範囲(又は前記端部から50mm以内の範囲)における少なくとも一部の厚みが硬化物の中央部3の厚みに比べて薄い部位4があっても使用することができる。ここで、前記「プリプレグの硬化物の端部から70mm以内の範囲」とは、プリプレグの硬化物の任意の端部から硬化物の内側に向かって、端部に対して垂直に測定したときに70mm以内の範囲であることを意味する。
The surface 2 to be polished may be at least one surface of the cured product, but it is preferable to polish both surfaces of the cured product from the viewpoint of sufficiently eliminating the surface waviness and enhancing the plate thickness accuracy. Here, "at least one surface of the cured product" means at least one of the two surfaces having the largest area in the cured product, and does not include the surface in the thickness direction (lateral surface). In addition, "the both surfaces of the cured product" means the two surfaces having the largest area in the cured product, and does not include the surface in the thickness direction (horizontal surface). However, in addition to “both sides of the cured product”, polishing the surface in the thickness direction (lateral surface) is not denied.
From the viewpoint of sufficiently eliminating the surface waviness and enhancing the plate thickness accuracy, it is preferable to polish the entire surface to be polished.
The size of the cured product 1 of the prepreg is not particularly limited, but as the size of the metal-clad laminate (that is, a so-called press panel before being cut into a predetermined size) obtained by press molding, the surface having the largest area can be used. More preferably, the size is 200 mm to 1,300 mm in length×200 mm to 1,300 mm in width. Further, in the cured product of the prepreg, for example, at least a part of the thickness of the cured product of the prepreg within the range of 70 mm from the end (or within the range of 50 mm from the end) is the thickness of the central part 3 of the cured product. It can be used even if there is a thin portion 4 as compared with. Here, the "range within 70 mm from the end of the cured product of the prepreg" means when measured from any end of the cured product of the prepreg toward the inside of the cured product and perpendicularly to the end. It means within a range of 70 mm.
 硬化物の面を研磨する方法に特に制限はないが、(i)CMP(Chemical mechanical polishing)法、(ii)フライカット、グラインド、サンドブラスト、ベルト研磨、スクラブ研磨等の機械研磨、(iii)過硫酸塩、過酸化水素-硫酸混合物、無機酸、有機酸等を使用する化学研磨、からなる群から選択される方法によって研磨することが好ましい。これらの中でも、CMP法、フライカット、グラインドによる研磨がより好ましい。研磨する方法は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 研磨により、研磨された硬化物の面の表面うねりは低減され、前記面の表面粗さ(Ra)は好ましくは1.0μm以下、より好ましくは0.9μm以下、さらに好ましくは0.8μm以下となる。なお、本発明において、表面粗さ(Ra)は、触針式表面形状測定器(Bruker Corporation社製、商品名「DektakXT」)を用いて測定することができる。
 前記CMP法は、アルカリ性の研磨溶液による化学的エッチング作用を伴う機械的研磨である。CMP法を利用する場合、特に制限されるものではないが、例えば、「太田真朗、外2名、''酸化膜CMP用光学式終点検出モニタ''、[online]、エバラ時報、No.207(2005-4)、[平成30年6月12日検索]、インターネット、<URL:https://www.ebara.co.jp/about/technologies/abstract/detail/__icsFiles/afieldfile/2016/04/25/207_P25.pdf>」に記載されたCMP装置等を利用することができる。また、前記機械研磨として、例えばフライカットは、特に制限されるものではないが、ダイヤモンドバイトによる研削装置、例えば、300mmウェハ対応のオートマチックサーフェースプレーナ(株式会社ディスコ製、商品名「DAS8930」)、グラインダ(株式会社ディスコ製、商品名「DFG8540」「DFG8560」)等を使用して、物理的に研削(研磨)する方法である。
The method for polishing the surface of the cured product is not particularly limited, but (i) CMP (Chemical mechanical polishing) method, (ii) mechanical polishing such as fly-cut, grind, sandblast, belt polishing, scrub polishing, etc., (iii) excess polishing Polishing is preferably carried out by a method selected from the group consisting of sulfates, hydrogen peroxide-sulfuric acid mixtures, chemical polishing using inorganic acids, organic acids and the like. Among these, polishing by the CMP method, fly cutting and grinding is more preferable. As the polishing method, one type may be used alone, or two or more types may be used in combination.
By the polishing, the surface waviness of the surface of the polished cured product is reduced, and the surface roughness (Ra) of the surface is preferably 1.0 μm or less, more preferably 0.9 μm or less, and further preferably 0.8 μm or less. Become. In the present invention, the surface roughness (Ra) can be measured using a stylus-type surface profile measuring instrument (trade name “DektakXT” manufactured by Bruker Corporation).
The CMP method is mechanical polishing with a chemical etching action by an alkaline polishing solution. When the CMP method is used, it is not particularly limited, but for example, “Maro Ohta, two others, “Optical end point monitor for oxide film CMP”, [online], Ebara Jikkan, No. 207. (2005-4), [June 12, 2018 search], Internet, <URL:https://www.ebara.co.jp/about/technologies/abstract/detail/__icsFiles/afieldfile/2016/04/ 25/207_P25.pdf>” can be used. Further, as the mechanical polishing, for example, fly cutting is not particularly limited, but a grinding device with a diamond bite, for example, an automatic surface planer for a 300 mm wafer (manufactured by DISCO Corporation, product name “DAS8930”), This is a method of physically grinding (polishing) using a grinder (trade name “DFG8540” and “DFG8560” manufactured by DISCO Corporation).
 当該工程(1)によって、プリプレグの硬化物の表面うねりを解消し、且つ板厚精度を高めることができる。該硬化物は厚みが略均一化されているといえる。ここで、略均一化とは、完全に厚みが均一化されている態様と共に、完全ではなくても、表面うねりが前述の範囲となる程度に厚みが均一化されている態様も含まれる。
 また、図1及び図2に示すように、前記研磨は、前記プリプレグの硬化物中の最も薄い部位5の厚みに揃うまで面全体を研磨することが好ましい。ここで、「前記プリプレグの硬化物中の最も薄い部位5の厚みに揃う」とは、プリプレグ全体の厚みが略均一化される程度に揃っていることを意味する。このように研磨することによって硬化物全体の厚みが略均一化されるため、硬化物の厚みが薄くなっていた部位を破棄する必要がなくなる。研磨の際、プリプレグ中の基材まで研磨しても特に問題はないが、基材を研磨しない程度に調整しながら研磨してもよい。
By the step (1), the surface waviness of the cured product of the prepreg can be eliminated and the plate thickness accuracy can be improved. It can be said that the cured product has a substantially uniform thickness. Here, the term “approximately uniformized” includes not only a mode in which the thickness is completely uniformed, but also a mode in which the thickness is uniformed to such an extent that the surface waviness falls within the above range even if it is not completely uniform.
Further, as shown in FIGS. 1 and 2, it is preferable that in the polishing, the entire surface is polished until the thickness of the thinnest portion 5 in the cured product of the prepreg is adjusted. Here, "equal to the thickness of the thinnest part 5 in the cured product of the prepreg" means that the thickness of the entire prepreg is substantially uniform. By polishing in this manner, the thickness of the entire cured product is made substantially uniform, and it is not necessary to discard the portion where the cured product is thin. At the time of polishing, even if the base material in the prepreg is polished, there is no particular problem, but the base material may be polished while being adjusted so as not to polish the base material.
(熱硬化性樹脂組成物)
 前記プリプレグが含有する熱硬化性樹脂組成物としては、熱硬化性樹脂を含有していれば特に制限されるものではない。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、変性シリコーン樹脂、トリアジン樹脂、メラミン樹脂、尿素樹脂、フラン樹脂等が挙げられる。また、特にこれらに制限されず、公知の熱硬化性樹脂を使用できる。これらは、1種を単独で使用してもよいし、2種以上を併用することもできる。これらの中でも、エポキシ樹脂、不飽和イミド樹脂、変性シリコーン樹脂が好ましい。
(Thermosetting resin composition)
The thermosetting resin composition contained in the prepreg is not particularly limited as long as it contains a thermosetting resin. As the thermosetting resin, for example, epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, modified Examples include silicone resins, triazine resins, melamine resins, urea resins, furan resins and the like. In addition, known thermosetting resins can be used without particular limitation. These may be used alone or in combination of two or more. Among these, epoxy resin, unsaturated imide resin, and modified silicone resin are preferable.
 前記エポキシ樹脂としては、特に制限されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂などが挙げられる。これらの中から、ナフタレン骨格含有型エポキシ樹脂を選択してもよく、ナフトールアラルキル型エポキシ樹脂を選択してもよい。 The epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin or other bisphenol type epoxy resin; alicyclic epoxy resin; aliphatic chain Epoxy resin; novolac type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin; phenol aralkyl type epoxy resin; stilbene type epoxy resin; dicyclopentadiene Type epoxy resin; naphthalene skeleton-containing epoxy resin such as naphthol novolac type epoxy resin and naphthol aralkyl type epoxy resin; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy resin; dihydroanthracene type epoxy resin. From these, a naphthalene skeleton-containing epoxy resin may be selected, or a naphthol aralkyl epoxy resin may be selected.
 前記不飽和イミド樹脂としては、例えば、マレイミド樹脂、マレイミド樹脂とモノアミン化合物との付加反応物、マレイミド樹脂とモノアミン化合物とジアミン化合物との反応物等が挙げられる。前記マレイミド化合物としては、特に制限されるものではないが、例えば、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、ビス(4-(4-マレイミドフェノキシ)フェニル)スルホン、4,4’-ビス(3-マレイミドフェノキシ)ビフェニル、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等が挙げられる。これらの中から、ビス(4-マレイミドフェニル)メタンを選択してもよい。
 上記モノアミン化合物としては、酸性置換基(例えば、水酸基、カルボキシ基等)を有するモノアミン化合物が好ましく、具体的には、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等が挙げられる。
 上記ジアミン化合物としては、少なくとも2個のベンゼン環を有するジアミン化合物が好ましく、2つのアミノ基の間に少なくとも2個のベンゼン環を直鎖状に有するジアミン化合物がより好ましく、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-ジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン等が挙げられる。
 前記不飽和イミド樹脂としては、例えば、特開2018-165340号公報等に記載のマレイミド化合物を使用することもできる。
Examples of the unsaturated imide resin include a maleimide resin, an addition reaction product of a maleimide resin and a monoamine compound, a reaction product of a maleimide resin, a monoamine compound and a diamine compound, and the like. The maleimide compound is not particularly limited, and examples thereof include bis(4-maleimidophenyl)methane, polyphenylmethanemaleimide, bis(4-maleimidophenyl)ether, 3,3′-dimethyl-5,5. '-Diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, bis(4-maleimidophenyl) sulfone, bis(4-maleimidophenyl) sulfide, bis (4-maleimidophenyl)ketone, 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane, bis(4-(4-maleimidophenoxy)phenyl)sulfone, 4,4'-bis(3-maleimide Examples thereof include phenoxy)biphenyl and 1,6-bismaleimide-(2,2,4-trimethyl)hexane. Of these, bis(4-maleimidophenyl)methane may be selected.
The above-mentioned monoamine compound is preferably a monoamine compound having an acidic substituent (eg, hydroxyl group, carboxy group, etc.), specifically, o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid. , M-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, etc. Can be mentioned.
As the diamine compound, a diamine compound having at least two benzene rings is preferable, and a diamine compound having at least two benzene rings in a straight chain between two amino groups is more preferable, and 4,4′-diamino is preferred. Diphenylmethane, 4,4'-diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone , 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl ketone and the like.
As the unsaturated imide resin, for example, a maleimide compound described in JP-A-2018-165340 can be used.
 熱硬化性樹脂組成物は、前記熱硬化性樹脂の他に、必要に応じて、硬化剤、硬化促進剤、無機充填材、有機充填材、カップリング剤、レベリング剤、酸化防止剤、難燃剤、難燃助剤、揺変性付与剤、増粘剤、チキソ性付与剤、可撓性材料、界面活性剤及び光重合開始材等から選択される少なくとも1つを含有する態様が好ましい。特に、無機充填材については、本発明ではこれを高充填しなくとも板厚精度を高めることができるため、該無機充填材の含有量を例えば10~60体積%にすることができ、20~60体積%にしてもよく、30~60体積%にしてもよく、当該数値範囲においてさらに上限値を57体積%とすることもでき、55体積%とすることもできる。但し、無機充填材を高充填する必要がある場合には、本発明においては、無機充填材の含有量が60体積%を超えることを必ずしも否定はせず、例えば前記含有量の数値範囲の上限値を70体積%としてもよいし、80体積%としてもよい。 The thermosetting resin composition may include, in addition to the thermosetting resin, a curing agent, a curing accelerator, an inorganic filler, an organic filler, a coupling agent, a leveling agent, an antioxidant, and a flame retardant, if necessary. An embodiment containing at least one selected from a flame retardant aid, a thixotropic agent, a thickening agent, a thixotropic agent, a flexible material, a surfactant, a photopolymerization initiator and the like is preferable. In particular, with respect to the inorganic filler, in the present invention, the plate thickness accuracy can be improved without high filling, so that the content of the inorganic filler can be, for example, 10 to 60% by volume, and 20 to It may be 60% by volume or 30 to 60% by volume, and the upper limit value in the numerical range may be 57% by volume or 55% by volume. However, when it is necessary to highly fill the inorganic filler, in the present invention, it is not necessarily denied that the content of the inorganic filler exceeds 60% by volume, for example, the upper limit of the numerical range of the content. The value may be 70% by volume or 80% by volume.
 また、例えば国際公開第2012/099133号に記載されている、変性シリコーン化合物(変性シリコーン樹脂)、必要に応じてさらに、他の熱硬化性樹脂、硬化剤、硬化促進剤、無機充填材、熱可塑性樹脂、エラストマー、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び接着性向上剤等からなる群から選択される少なくとも1種を含有する熱硬化性樹脂組成物等も用いることができる。
 前記変性シリコーン化合物としては、両末端アミノ変性シリコーン化合物が好ましく、具体的には、(A)下記一般式(1)に示すシロキサンジアミン、(B)分子構中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物、(C)下記一般式(2)に示す酸性置換基を有するアミン化合物を反応させてなる両末端アミノ変性シリコーン化合物であり、詳細は国際公開第2012/099133号に記載の通りである。
Figure JPOXMLDOC01-appb-C000001

[式(1)中、複数のRは、それぞれ独立にアルキル基、フェニル基又は置換フェニル基を示し、互いに同じでも異なっていてもよく、複数のRは、それぞれ独立にアルキル基、フェニル基又は置換フェニル基を示し、互いに同じでも異なっていてもよく、R及びRはそれぞれ独立にアルキル基、フェニル基又は置換フェニル基を示し、R及びRはそれぞれ独立に2価の有機基を示す。nは2~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000002

[式(2)中、Rは複数ある場合は各々独立に、水酸基、カルボキシル基又はスルホン酸基を示し、Rは複数ある場合は各々独立に水素原子、炭素数1~5の脂肪族炭化水素基、ハロゲン原子を示す。xは1~5の整数、yは0~4の整数であり、x+y=5である。]
In addition, for example, a modified silicone compound (modified silicone resin) described in International Publication No. WO 2012/099133, and, if necessary, other thermosetting resin, curing agent, curing accelerator, inorganic filler, heat Thermosetting containing at least one selected from the group consisting of a plastic resin, an elastomer, an organic filler, a flame retardant, an ultraviolet absorber, an antioxidant, a photopolymerization initiator, an optical brightener and an adhesion improver. Resin compositions and the like can also be used.
The modified silicone compound is preferably a silicone compound modified at both ends with amino groups. Specifically, (A) a siloxane diamine represented by the following general formula (1), and (B) at least two N-substituted maleimides in the molecular structure. A maleimide compound having a group, (C) a both-terminal amino-modified silicone compound obtained by reacting an amine compound having an acidic substituent represented by the following general formula (2), and the details are described in International Publication No. 2012/099133. On the street.
Figure JPOXMLDOC01-appb-C000001

[In the formula (1), a plurality of R 1 's each independently represent an alkyl group, a phenyl group or a substituted phenyl group, and may be the same or different, and a plurality of R 2 's each independently represent an alkyl group, a phenyl group. Group or a substituted phenyl group, which may be the same or different from each other, R 3 and R 4 each independently represent an alkyl group, a phenyl group or a substituted phenyl group, and R 5 and R 6 each independently represent a divalent group. Indicates an organic group. n represents an integer of 2 to 50. ]
Figure JPOXMLDOC01-appb-C000002

[In the formula (2), when a plurality of R 7's are present, each independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group, and when a plurality of R 8's are present, each independently represents a hydrogen atom or an aliphatic group having 1 to 5 carbon atoms. Indicates a hydrocarbon group or a halogen atom. x is an integer of 1 to 5, y is an integer of 0 to 4, and x+y=5. ]
(基材)
 前記プリプレグが含有する基材としては、シート状補強基材が用いられ、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。基材の材質としては、紙、コットンリンター等の天然繊維;ガラス繊維及びアスベスト等の無機繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン及びアクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混抄したもの等が挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
 これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途や性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
 基材の厚さは、例えば、0.01~0.5mmであってもよく、成形性及び高密度配線を可能にする観点から、0.015~0.2mmが好ましく、0.02~0.15mmがより好ましい。これらの基材は、耐熱性、耐湿性、加工性等の観点から、シランカップリング剤等で表面処理したもの、機械的に開繊処理を施したものなどであることが好ましい。
(Base material)
As the base material contained in the prepreg, a sheet-shaped reinforcing base material is used, and well-known materials used for various laminated plates for electrical insulating materials can be used. Examples of the material of the base material include natural fibers such as paper and cotton linters; inorganic fibers such as glass fibers and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene and acrylic; and mixtures thereof. To be Among these, glass fibers are preferable from the viewpoint of flame retardancy. Examples of the glass fiber base material include a woven fabric using E glass, C glass, D glass, S glass, or the like, or a glass woven fabric obtained by adhering short fibers with an organic binder; and a mixture of glass fiber and cellulose fiber. To be More preferably, it is a glass woven fabric using E glass.
These base materials have, for example, a woven cloth, a non-woven cloth, a robink, a chopped strand mat, a surfacing mat, or the like. The material and shape are selected depending on the intended use and performance of the molded product, and one kind may be used alone, or two or more kinds of material and shape may be combined if necessary.
The thickness of the base material may be, for example, 0.01 to 0.5 mm, preferably 0.015 to 0.2 mm, and 0.02 to 0 mm from the viewpoint of enabling moldability and high-density wiring. 0.15 mm is more preferable. From the viewpoint of heat resistance, moisture resistance, processability, etc., these base materials are preferably surface-treated with a silane coupling agent or the like, or mechanically opened.
(プリプレグ)
 前記熱硬化性樹脂組成物を前記基材に含浸した後、加熱処理を施すことによって、熱硬化性樹脂組成物をB-ステージ化させたプリプレグが得られる。プリプレグは、プリプレグの取扱い性及びタック性の観点から、これを冷却する冷却工程に供することが好ましい。プリプレグの冷却は、自然放冷によって行ってもよく、送風装置、冷却ロール等の冷却装置を用いて行ってもよい。冷却後のプリプレグの温度は、通常、5~80℃であり、8~50℃が好ましく、10~30℃がより好ましく、室温がさらに好ましい。また、プリプレグ中の熱硬化性樹脂組成物の固形分換算の含有量は、特に制限されるものではないが、20~90質量%が好ましく、30~85質量%がより好ましく、50~80質量%がさらに好ましい。プリプレグの厚さは、特に制限されるものではないが、例えば、20~150μmが好ましく、60~120μmがより好ましい。
(Prepreg)
After impregnating the base material with the thermosetting resin composition, a heat treatment is performed to obtain a prepreg in which the thermosetting resin composition is B-staged. From the viewpoint of handleability and tackiness of the prepreg, the prepreg is preferably subjected to a cooling step of cooling the prepreg. Cooling of the prepreg may be performed by natural cooling, or may be performed using a cooling device such as an air blower or a cooling roll. The temperature of the prepreg after cooling is usually 5 to 80°C, preferably 8 to 50°C, more preferably 10 to 30°C, and further preferably room temperature. The content of the thermosetting resin composition in terms of solid content in the prepreg is not particularly limited, but is preferably 20 to 90% by mass, more preferably 30 to 85% by mass, and 50 to 80% by mass. % Is more preferable. The thickness of the prepreg is not particularly limited, but is preferably 20 to 150 μm, more preferably 60 to 120 μm, for example.
<工程(2-1)及び工程(2-2)>
 工程(2-1)は、前記工程(1)で研磨された面に金属箔9を積層して金属張り積層板を形成する工程である。一方、工程(2-2)は、前記工程(1)で研磨された面8に、金属箔9及び熱硬化性樹脂フィルム10を又は金属箔付き熱硬化性樹脂フィルム11を、熱硬化性樹脂フィルム10が研磨された面8側となるように積層して金属張り積層板12を形成する工程である。なお、前記金属箔付き熱硬化性樹脂フィルム11は、金属箔9上に熱硬化性樹脂フィルム10が配置されてなるものである。
 工程(1)の後は、工程(2-1)及び工程(2-2)のいずれを選択してもよいが、プリプレグの硬化物を研磨した深さ分の熱硬化性樹脂層を設けることが可能である工程(2-2)を選択することが好ましい。該工程(2-2)を選択することにより、前記工程(1)における研磨の量によらず、プリプレグの厚みを研磨前の厚みに戻すことも可能であり、また、任意の厚みに調整することも可能である。
<Step (2-1) and Step (2-2)>
The step (2-1) is a step of laminating the metal foil 9 on the surface polished in the step (1) to form a metal-clad laminate. On the other hand, in the step (2-2), the metal foil 9 and the thermosetting resin film 10 or the thermosetting resin film 11 with the metal foil is attached to the surface 8 polished in the step (1) by the thermosetting resin. This is a step of forming the metal-clad laminate 12 by laminating the film 10 so as to be on the polished surface 8 side. The thermosetting resin film 11 with the metal foil is formed by disposing the thermosetting resin film 10 on the metal foil 9.
After step (1), either step (2-1) or step (2-2) may be selected, but a thermosetting resin layer having a depth obtained by polishing the cured product of the prepreg is provided. It is preferable to select the step (2-2) capable of By selecting the step (2-2), it is possible to return the thickness of the prepreg to the thickness before polishing, regardless of the amount of polishing in the step (1), and to adjust it to an arbitrary thickness. It is also possible.
 前記金属箔9(金属箔付き熱硬化性樹脂フィルム11の金属箔を含む。)の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されず、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金が好ましく、銅、アルミニウムがより好ましく、銅がさらに好ましい。
 また、前記工程(2-2)で使用する熱硬化性樹脂フィルムの素材としては、前記工程(1)で使用するプリプレグが含有する熱硬化性樹脂組成物と同じであることが好ましい。
The metal of the metal foil 9 (including the metal foil of the thermosetting resin film 11 with a metal foil) is not particularly limited as long as it is used for an electric insulating material, and from the viewpoint of conductivity, copper, Gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, or an alloy containing at least one of these metal elements is preferable, copper and aluminum are more preferable, and copper is further preferable. ..
The material of the thermosetting resin film used in the step (2-2) is preferably the same as the thermosetting resin composition contained in the prepreg used in the step (1).
[金属張り積層板]
 本発明は、上記製造方法により得られる金属張り積層板も提供する。
 内部の硬化物の厚みが略均一化されているため、本発明の金属張り積層板も厚みが略均一化されており、具体的には、厚みの最大値と最小値の差が20μm以下となり得るものであり、板厚精度に優れている。厚みの最大値と最小値の差は、より優れたものでは10μm以下、さらに優れたものでは5μm以下となる。
 ここで、厚みの最大値と最小値の差及びそれらの差は以下の方法に従って測定した値であり、より詳細には実施例に記載の方法に従って測定した値である。
<厚みの最大値と最小値の差及びそれらの差の算出方法>
 550mm角の金属張り積層板を、50mm角のサイズにカットし、計81個に小片化する。端部及びセンター部を含む17か所のサンプルを選択し、任意4点の厚みをマイクロメータにより計測する。計68点のデータから、板厚の最大値、最小値、及びそれらの差を算出する。
[Metal-clad laminate]
The present invention also provides a metal-clad laminate obtained by the above manufacturing method.
Since the thickness of the cured product inside is substantially uniform, the metal-clad laminate of the present invention is also substantially uniform in thickness. Specifically, the difference between the maximum value and the minimum value of the thickness is 20 μm or less. It is obtained, and it excels in plate thickness accuracy. The difference between the maximum value and the minimum value of the thickness is 10 μm or less for the more excellent one and 5 μm or less for the more excellent one.
Here, the difference between the maximum value and the minimum value of the thickness and the difference between them are the values measured by the following method, and more specifically, the values measured by the method described in Examples.
<Difference between maximum and minimum values of thickness and calculation method of those differences>
A 550 mm square metal-clad laminate is cut into a size of 50 mm square and cut into 81 pieces in total. Samples at 17 points including the end and the center are selected, and the thickness at arbitrary 4 points is measured by a micrometer. From the data of 68 points in total, the maximum value, the minimum value, and the difference between them are calculated.
 また、本発明の製造方法により得られる金属張り積層板は、厚みの標準偏差(σ)が10μm以下となり得るものであり、板厚精度に優れている。該標準偏差(σ)は、より優れたものでは5μm以下、さらに優れたものでは3μm以下となる。なお、厚みの標準偏差(σ)は、例えば、金属張り積層板の任意のn箇所の厚みを測定したときのそれらの厚みをそれぞれT、T、・・・、Tとし、金属張り積層板の平均厚みをTとするとき、下記式からn箇所での標準偏差を求めることができる。 Further, the metal-clad laminate obtained by the production method of the present invention can have a thickness standard deviation (σ) of 10 μm or less, and is excellent in plate thickness accuracy. The more excellent standard deviation (σ) is 5 μm or less, and the more excellent one is 3 μm or less. Note that the standard deviation (σ) of the thickness is, for example, T 1 , T 2 ,..., T n when the thicknesses at arbitrary n positions of the metal-clad laminate are measured, and When the average thickness of the laminated plate is T, the standard deviation at n points can be calculated from the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、本発明の製造方法により得られる金属張り積層板の一態様として、(a)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物であって、該硬化物の少なくとも一方の面が研磨された硬化物、(b)基材を含まない熱硬化性樹脂組成物層、及び(c)金属箔、を含有する金属張り積層板が挙げられる。特に、前記製造方法における工程(1)及び工程(2-2)を経ることにより当該金属張り積層板を製造することができる。
 前記(a)については、特に制限されるものではないが、硬化物の両面が研磨されている態様が好ましい。研磨する方法の好ましい態様としては、前述の通りである。
Moreover, as one aspect of the metal-clad laminate obtained by the production method of the present invention, (a) a cured product of a prepreg containing a thermosetting resin composition and a substrate, wherein at least one of the cured products A metal-clad laminate containing a cured product whose surface is polished, (b) a thermosetting resin composition layer containing no base material, and (c) a metal foil. In particular, the metal-clad laminate can be manufactured through the steps (1) and (2-2) in the manufacturing method.
The above-mentioned (a) is not particularly limited, but a mode in which both surfaces of the cured product are polished is preferable. The preferred embodiment of the polishing method is as described above.
[プリント配線板]
 本発明は、前記金属張り積層板を含有してなるプリント配線板も提供する。
 より詳細には、本発明のプリント配線板は、金属張り積層板の金属箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、金属箔表面にレジストパターンを形成後、エッチングにより不要部分の金属箔を除去し、レジストパターンを剥離後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを剥離することにより行うことができる。このようにして得られたプリント配線板の表面にさらに上記の金属張り積層板を前記したのと同様の条件で積層し、さらに、上記と同様にして回路加工して多層プリント配線板とすることができる。この場合、必ずしもスルーホールを形成する必要はなく、ビアホールを形成してもよく、両方を形成することができる。このような多層化は必要枚数行われる。
 こうして得られる本発明のプリント配線板も、板厚精度に優れている。
[Printed wiring board]
The present invention also provides a printed wiring board containing the metal-clad laminate.
More specifically, the printed wiring board of the present invention can be manufactured by subjecting the metal foil of the metal-clad laminate to circuit processing. Circuit processing, for example, after forming a resist pattern on the metal foil surface, remove the unnecessary portion of the metal foil by etching, after peeling the resist pattern, to form a necessary through hole by a drill, after forming the resist pattern again, It can be performed by performing plating for electrical connection to the through hole and finally peeling off the resist pattern. The above-mentioned metal-clad laminate is further laminated on the surface of the printed wiring board thus obtained under the same conditions as described above, and the circuit is processed in the same manner as described above to form a multilayer printed wiring board. You can In this case, it is not always necessary to form a through hole, a via hole may be formed, and both can be formed. The required number of layers is provided in this way.
The printed wiring board of the present invention thus obtained is also excellent in plate thickness accuracy.
[半導体パッケージ]
 本発明の半導体パッケージは、本発明のプリント配線板に半導体を搭載してなるものである。本発明の半導体パッケージは、本発明のプリント配線板の所定の位置に、半導体チップ、メモリ等を搭載して製造することができる。本発明のプリント配線板が板厚精度に優れているため、本発明の半導体パッケージは、(1)半導体チップ実装時の歩留まりが向上し、(2)ビルドアップフィルム上又は再配線層上にてL/S=2μm/2μm以下の微細配線形成性が向上し、(3)反り量が低減し、且つ反り量のばらつきが生じ難い、という傾向にある。
[Semiconductor package]
The semiconductor package of the present invention is obtained by mounting a semiconductor on the printed wiring board of the present invention. The semiconductor package of the present invention can be manufactured by mounting a semiconductor chip, a memory, etc. at a predetermined position on the printed wiring board of the present invention. Since the printed wiring board of the present invention is excellent in plate thickness accuracy, the semiconductor package of the present invention is (1) improved in yield at the time of mounting a semiconductor chip, and (2) on a build-up film or a rewiring layer. When L/S=2 μm/2 μm or less, the fine wiring formability is improved, (3) there is a tendency that the warp amount is reduced, and the warp amount is less likely to vary.
[コアレス基板形成用支持体]
 本発明は、本発明の金属張り積層板を含有してなる、コアレス基板形成用支持体も提供する。該コアレス基板形成用支持体(コア基板)上に、回路パターンを有する絶縁樹脂組成物層を順次積層してビルドアップ層を形成した後、前記支持体を分離することにより、コアレス基板の作製が可能である。本発明のコアレス基板形成用支持体は板厚精度が良好であるため、こうして得られるコアレス基板の反り及び表面うねりを低減することができるため、該コアレス基板の板厚精度向上に適している。
 なお、前記ビルドアップ層の形成方法に特に制限はなく、公知の方法を採用できる。図3を参照しながら説明すると、例えば、ビルドアップ層は次の方法によって形成できる。
 まず、本発明のコアレス基板形成用支持体(コア基板)13上にプリプレグ14を配置する。なお、前記コアレス基板形成用支持体(コア基板)13上には接着層を配置した上で、プリプレグ14を配置してもよい。その後、プリプレグ14を加熱硬化して絶縁層とする。次いで、ドリル切削方法、又はYAGレーザー、COレーザー等を用いるレーザー加工方法などによってビアホール15を形成した後、必要に応じて表面粗化処理及びデスミア処理を行なう。続いて、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:Semi Additive Process)、モディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等によって回路パターン16を形成する。以上の過程を繰り返すことによって、ビルドアップ層17が形成される。形成したビルドアップ層17を、コアレス基板形成用支持体(コア基板)13から分離することによって、コアレス基板18が得られる。なお、ビルドアップ層17は、支持体(コア基板)13の片面に形成してもよいし、両面に形成してもよい。
[Support for coreless substrate formation]
The present invention also provides a support for forming a coreless substrate, which comprises the metal-clad laminate of the present invention. On the support for coreless substrate formation (core substrate), an insulating resin composition layer having a circuit pattern is sequentially laminated to form a build-up layer, and then the support is separated to prepare a coreless substrate. It is possible. Since the coreless substrate forming support of the present invention has good plate thickness accuracy, it is possible to reduce the warp and surface waviness of the coreless substrate thus obtained, and thus it is suitable for improving the plate thickness accuracy of the coreless substrate.
The method for forming the buildup layer is not particularly limited, and a known method can be adopted. Explaining with reference to FIG. 3, for example, the buildup layer can be formed by the following method.
First, the prepreg 14 is arranged on the coreless substrate forming support (core substrate) 13 of the present invention. In addition, an adhesive layer may be arranged on the coreless substrate forming support (core substrate) 13 and then the prepreg 14 may be arranged. Then, the prepreg 14 is heated and cured to form an insulating layer. Next, after the via hole 15 is formed by a drill cutting method, a laser processing method using a YAG laser, a CO 2 laser, or the like, surface roughening treatment and desmear treatment are performed if necessary. Subsequently, the circuit pattern 16 is formed by a subtractive method, a full additive method, a semi-additive method (SAP: Semi-Additive Process), a modified semi-additive method (m-SAP: modified Semi-Additive Process). The build-up layer 17 is formed by repeating the above process. A coreless substrate 18 is obtained by separating the formed buildup layer 17 from the coreless substrate forming support (core substrate) 13. The buildup layer 17 may be formed on one side of the support (core substrate) 13 or on both sides.
[半導体再配線層形成用支持体]
 本発明は、本発明の金属張り積層板を含有してなる、半導体再配線層形成用支持体も提供する。前記半導体再配線層とは、はんだボールに繋げる銅配線が設けられる絶縁層のことであり、通常、半導体チップとはんだボールとの間に設けられる絶縁層である。当該半導体再配線層を形成するために、好ましくは半導体再配線層形成用樹脂フィルムが使用されるが、本発明の半導体再配線層形成用支持体は板厚精度が良好であるため、当該半導体再配線層形成用樹脂フィルムの支持体として有効に機能する。
[Support for forming semiconductor redistribution layer]
The present invention also provides a support for forming a semiconductor redistribution layer, which comprises the metal-clad laminate of the present invention. The semiconductor redistribution layer is an insulating layer provided with copper wiring connected to the solder balls, and is usually an insulating layer provided between the semiconductor chip and the solder balls. In order to form the semiconductor redistribution layer, a semiconductor redistribution layer forming resin film is preferably used. However, since the semiconductor redistribution layer forming support of the present invention has good plate thickness accuracy, It effectively functions as a support for the rewiring layer forming resin film.
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。 Next, the present invention will be described in more detail by the following examples, but these examples do not limit the present invention in any sense.
[実施例1]
 まず、下記の手順に従いプリプレグを作製した。
 両末端アミノ変性シリコーン化合物100質量部、ビス(4-マレイミドフェニル)メタン222質量部及びp-アミノフェノール8.5質量部を反応させて、変性シリコーン化合物含有溶液を得た。次に、該変性シリコーン化合物含有溶液を固形分換算で16質量部、ナフトールアラルキル型エポキシ樹脂16質量部、溶融シリカ〔平均粒子径:0.5μm〕69質量部、イソシアネートマスクイミダゾール0.15質量部を混合し、樹脂分65質量%のワニスを得た。得られたワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、加熱乾燥してプリプレグ(溶融シリカの充填率:50体積%)を得た。
 こうして得られたプリプレグを8枚重ね合わせ、その両面に、ロープロタイプ銅箔(厚み12μm、最大高さ粗さ(Rz)約4.0μm、三井金属鉱業株式会社製)を重ね、圧力0.5MPa、温度200~230℃で約2時間加熱加圧成型することによって、両面に銅箔を有する積層板(以下、銅張積層板aと称する。)を得た。
 次に、得られた銅張積層板aを用い、銅箔をエッチングで除去して積層体を得た。該積層体の表面について、高精度3次元表面形状粗さ測定システム(Veeco Instruments社製、Wyko NT9100)を用いて下記測定条件にて表面粗さ(Ra)を測定した。その結果を図4に示す。
 次に、この積層体の表裏両面(つまり最も面積の大きい2面)をダイヤモンドバイトによる研削装置(300mmウェハ対応のオートマチックサーフェースプレーナ、株式会社ディスコ製、商品名「DAS8930」)を使用して、両面に研磨加工を施し、平坦化処理した。研磨加工後の表面について、高精度3次元表面形状粗さ測定システム(Veeco Instruments社製、Wyko NT9100)を用いて下記測定条件にて表面粗さ(Ra)を測定した。その結果を図5に示す。図4に比べて、図5の方が表面うねりが小さいことを確認できた。
 さらに、この平坦化処理した積層体の両面に、前記プリプレグ「GEA-705G」と同一成分の熱硬化性樹脂フィルム(厚み10μm)を配し、さらにその外側に銅箔(厚み12μm)を配し、熱プレスで加熱及び加圧することにより、最外層に回路形成可能な550mm角の銅張り積層板Aを得た。こうして得られた銅張積層板Aの断面をデジタルマイクロスコープ(キーエンス製、商品名「VHX-5000」)を用いて観察した。その画像を図6に示す。
<高精度3次元表面形状粗さ測定システムの測定条件>
 内部レンズ:1倍
 外部レンズ:50倍
 測定範囲:95μm(Y軸)×95μm(X軸)の範囲で任意の位置
 測定深度:10μm
 測定方式:垂直走査型干渉方式(VSI方式)
[Example 1]
First, a prepreg was produced according to the following procedure.
A modified silicone compound-containing solution was obtained by reacting 100 parts by mass of an amino-modified silicone compound at both ends, 222 parts by mass of bis(4-maleimidophenyl)methane and 8.5 parts by mass of p-aminophenol. Next, 16 parts by mass of the modified silicone compound-containing solution in terms of solid content, 16 parts by mass of naphthol aralkyl type epoxy resin, 69 parts by mass of fused silica [average particle diameter: 0.5 μm], 0.15 parts by mass of isocyanate mask imidazole. Were mixed to obtain a varnish having a resin content of 65% by mass. An E glass cloth having a thickness of 0.1 mm was impregnated and coated with the obtained varnish and dried by heating to obtain a prepreg (fused silica filling rate: 50% by volume).
Eight prepregs thus obtained were laminated, and low-pro type copper foils (thickness 12 μm, maximum height roughness (Rz) about 4.0 μm, manufactured by Mitsui Mining & Smelting Co., Ltd.) were laminated on both surfaces, and the pressure was 0.5 MPa. By heat-press molding at a temperature of 200 to 230° C. for about 2 hours, a laminate having copper foils on both sides (hereinafter referred to as copper-clad laminate a) was obtained.
Next, using the obtained copper clad laminate a, the copper foil was removed by etching to obtain a laminate. The surface roughness (Ra) of the surface of the laminate was measured under the following measurement conditions using a high-precision three-dimensional surface roughness measuring system (Veeco Instruments, Wyko NT9100). The result is shown in FIG.
Next, using a grinding device (automatic surface planer for 300 mm wafer, manufactured by DISCO, trade name "DAS8930") with a diamond bite on both front and back surfaces (that is, two surfaces having the largest area) of this laminate, Both sides were polished and flattened. The surface roughness (Ra) of the surface after polishing was measured under the following measurement conditions using a highly accurate three-dimensional surface shape roughness measuring system (Veeco Instruments, Wyko NT9100). The result is shown in FIG. It was confirmed that the surface waviness was smaller in FIG. 5 than in FIG.
Further, a thermosetting resin film (thickness: 10 μm) having the same components as the prepreg “GEA-705G” is arranged on both surfaces of the flattened laminate, and a copper foil (thickness: 12 μm) is arranged on the outer side thereof. A 550 mm square copper-clad laminate A capable of forming a circuit in the outermost layer was obtained by heating and pressing with a hot press. The cross section of the copper clad laminate A thus obtained was observed using a digital microscope (manufactured by KEYENCE, trade name "VHX-5000"). The image is shown in FIG.
<Measurement conditions of high precision 3D surface roughness measurement system>
Inner lens: 1x External lens: 50x Measurement range: 95μm (Y axis) x 95μm (X axis) at any position Measurement depth: 10μm
Measurement method: Vertical scanning interference method (VSI method)
 上記方法によって得られた銅張積層板について、下記評価方法に従って各評価を行った。結果を表1に示す。 The copper clad laminate obtained by the above method was evaluated according to the following evaluation methods. The results are shown in Table 1.
<評価方法>
(1.銅張積層板の板厚の最大値、最小値及びそれらの差)
 各例にて得た銅張り積層板は、湿式ダイヤモンドカッターによって50mm角のサイズにカットし、計81個に小片化した。端部及びセンター部を含む17か所のサンプルを選択し、任意4点の厚みをマイクロメータにより計測した。計68点のデータから、板厚の最大値、最小値、及びそれらの差を算出した。
<Evaluation method>
(1. Maximum and minimum thicknesses of copper clad laminates and their differences)
The copper-clad laminate obtained in each example was cut into a size of 50 mm square with a wet diamond cutter and cut into 81 pieces in total. Samples at 17 locations including the edge and the center were selected, and the thickness at arbitrary 4 points was measured with a micrometer. From the data of 68 points in total, the maximum value and the minimum value of the plate thickness and their difference were calculated.
(2.ドリル加工性-折損寿命)
 ドリルとしてULFコートドリル「MCW Z699MWU」(φ0.15mm(小径)×φ3.5mm(大径)、ユニオンツール株式会社製、商品名)を用い、回転数:200,000rpm、送り速度:2.0m/分、チップロード:10.0μm/rev、の条件でドリル加工を行った。10,000ヒットさせて評価を行い、折損が生じるまでのヒット数(折損寿命)を求め、これをドリル加工性の指標とした。
(2. Drill workability-broken life)
ULF coated drill “MCW Z699MWU” (φ0.15 mm (small diameter)×φ3.5 mm (large diameter), manufactured by Union Tool Co., Ltd., trade name) is used as a drill, and the rotation speed is 200,000 rpm and the feed speed is 2.0 m. /Min, chip load: 10.0 μm/rev. Evaluation was performed with 10,000 hits, and the number of hits until breakage occurred (broken life) was obtained, and this was used as an index of drill workability.
[比較例1]
 実施例1において、銅張積層板a中の積層体の表面を研磨せず、銅張積層板aをそのまま用い、前記方法に従って各評価を行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, the surface of the laminate in the copper-clad laminate a was not polished, and the copper-clad laminate a was used as it was, and each evaluation was performed according to the methods described above. The results are shown in Table 1.
[参考例1]
 実施例1の銅張積層板aの製造において、プリプレグ中の無機充填材の充填率を58体積%へ増加したこと以外は同様にして、銅張積層板bを製造した。無機充填材の充填率を高めたときのドリル加工性を確認するため、該銅張積層板bについて、前記方法に従ってドリル加工性の評価を行った。結果を表1に示す。
[Reference Example 1]
A copper-clad laminate b was produced in the same manner as in the production of the copper-clad laminate a of Example 1 except that the filling rate of the inorganic filler in the prepreg was increased to 58% by volume. In order to confirm the drill workability when the filling rate of the inorganic filler was increased, the drill workability of the copper clad laminate b was evaluated according to the method described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より、実施例1で得た銅張積層板Aは、板厚精度が極めて高く、且つ、加工性(ドリル加工性)が良好である。一方、比較例の銅張積層板aは、実施例1で得た銅張積層板Aと比べて、板厚精度が劣る結果となった。
 なお、熱硬化性樹脂組成物中の無機充填材の充填率を高くした参考例1の銅張積層板bでは、加工性(ドリル加工性)が低下した。
From Table 1, the copper clad laminate A obtained in Example 1 has extremely high plate thickness accuracy and good workability (drill workability). On the other hand, the copper clad laminate a of the comparative example resulted in inferior plate thickness accuracy as compared with the copper clad laminate A obtained in Example 1.
In the copper clad laminate b of Reference Example 1 in which the filling rate of the inorganic filler in the thermosetting resin composition was increased, the workability (drill workability) was lowered.
 本発明の製造方法により得られる金属張り積層板は板厚精度に優れているため、電子機器用のプリント配線板及び半導体パッケージに有用である。 Since the metal-clad laminate obtained by the manufacturing method of the present invention has excellent thickness accuracy, it is useful for printed wiring boards and semiconductor packages for electronic devices.
1 プリプレグの硬化物
2 研磨する面
3 硬化物の中央部
4 硬化物の中央部の厚みに比べて薄い部位
5 硬化物中の最も薄い部位
6 熱硬化性樹脂組成物
7 基材
8 工程(1)で研磨された面
9 金属箔
10 熱硬化性樹脂フィルム
11 金属箔付き熱硬化性樹脂フィルム
12 金属張り積層板
13 コアレス基板形成用支持体(コア基板)
14 プリプレグ
15 ビアホール
16 回路パターン
17 ビルドアップ層
18 コアレス基板
1 Cured Product of Prepreg 2 Surface to be Polished 3 Central Part of Cured Product 4 Area Thinner than Central Area of Cured Product 5 Thinnest Area in Cured Product 6 Thermosetting Resin Composition 7 Base Material 8 Step (1 ) Polished surface 9) Metal foil 10 Thermosetting resin film 11 Thermosetting resin film with metal foil 12 Metal-clad laminate 13 Coreless substrate forming support (core substrate)
14 prepreg 15 via hole 16 circuit pattern 17 build-up layer 18 coreless substrate

Claims (15)

  1.  (1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程、
     (2-1)前記工程(1)で研磨された面に金属箔を積層して金属張り積層板を形成する工程、
    を有する、金属張り積層板の製造方法。
    (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate,
    (2-1) A step of laminating a metal foil on the surface polished in the step (1) to form a metal-clad laminate,
    And a method for producing a metal-clad laminate.
  2.  (1)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物の少なくとも一方の面を研磨する工程、
     (2-2)前記工程(1)で研磨された面に、金属箔及び熱硬化性樹脂フィルムを又は金属箔付き熱硬化性樹脂フィルムを、熱硬化性樹脂フィルムが前記研磨された面側となるように積層して金属張り積層板を形成する工程、
    を有する、金属張り積層板の製造方法。
    (1) A step of polishing at least one surface of a cured product of a prepreg containing a thermosetting resin composition and a substrate,
    (2-2) A metal foil and a thermosetting resin film or a thermosetting resin film with a metal foil is provided on the surface polished in the step (1), and the thermosetting resin film is on the polished surface side. Laminating to form a metal-clad laminate,
    And a method for producing a metal-clad laminate.
  3.  前記工程(1)において、前記プリプレグの硬化物の両面を研磨する、請求項1又は2に記載の金属張り積層板の製造方法。 The method for producing a metal-clad laminate according to claim 1 or 2, wherein, in the step (1), both surfaces of the cured product of the prepreg are polished.
  4.  前記工程(1)における研磨により、前記プリプレグの硬化物の厚みを略均一化する、請求項1~3のいずれか1項に記載の金属張り積層板の製造方法。 The method for manufacturing a metal-clad laminate according to any one of claims 1 to 3, wherein the thickness of the cured product of the prepreg is made substantially uniform by polishing in the step (1).
  5.  前記プリプレグの硬化物が、内部の硬化物の表面が研磨されていない金属張り積層板の金属箔をエッチング除去して得られたものである、請求項1~4のいずれか1項に記載の金属張り積層板の製造方法。 5. The cured product of the prepreg is obtained by etching and removing a metal foil of a metal-clad laminate in which the surface of the cured product inside is not polished. Manufacturing method of metal-clad laminate.
  6.  前記プリプレグの硬化物の最も面積の大きい面のサイズが、縦200mm~1,300mm×横200mm~1,300mmであり、且つ、前記プリプレグの硬化物の端部から70mm以内の範囲における少なくとも一部の厚みが硬化物の中央部の厚みに比べて薄い、請求項1~5のいずれか1項に記載の金属張り積層板の製造方法。 The size of the surface of the cured product of the prepreg having the largest area is 200 mm to 1,300 mm in length×200 mm to 1,300 mm in width, and at least a part within a range of 70 mm from the end of the cured product of the prepreg. The method for producing a metal-clad laminate according to any one of claims 1 to 5, wherein the thickness is smaller than the thickness of the central portion of the cured product.
  7.  前記工程(1)において、前記プリプレグの硬化物の最も薄い部分の厚みに揃うまで面全体を研磨する、請求項1~6のいずれか1項に記載の金属張り積層板の製造方法。 The method for producing a metal-clad laminate according to any one of claims 1 to 6, wherein in the step (1), the entire surface is polished until the thickness of the thinnest part of the cured product of the prepreg is adjusted.
  8.  前記工程(1)において、(i)CMP(Chemical mechanical polishing)法、(ii)フライカット、グラインド、サンドブラスト、ベルト研磨、スクラブ研磨等の機械研磨、(iii)過硫酸塩、過酸化水素-硫酸混合物、無機酸、有機酸等を使用する化学研磨、からなる群から選択される方法によって研磨する、請求項1~7のいずれか1項に記載の金属張り積層板の製造方法。 In the step (1), (i) CMP (Chemical mechanical polishing) method, (ii) mechanical polishing such as fly-cutting, grinding, sandblasting, belt polishing, and scrubbing, (iii) persulfate, hydrogen peroxide-sulfuric acid The method for producing a metal-clad laminate according to any one of claims 1 to 7, wherein polishing is performed by a method selected from the group consisting of a mixture, chemical polishing using an inorganic acid, an organic acid and the like.
  9.  得られる金属張り積層板の厚みの最大値と最小値の差が20μm以下である、請求項1~8のいずれか1項に記載の金属張り積層板の製造方法。 The method for producing a metal-clad laminate according to any one of claims 1 to 8, wherein the difference between the maximum value and the minimum value of the thickness of the obtained metal-clad laminate is 20 μm or less.
  10.  請求項1~9のいずれか1項に記載の製造方法により得られる金属張り積層板。 A metal-clad laminate obtained by the manufacturing method according to any one of claims 1 to 9.
  11.  (a)熱硬化性樹脂組成物及び基材を含有してなるプリプレグの硬化物であって、該硬化物の少なくとも一方の面が研磨された硬化物、(b)基材を含まない熱硬化性樹脂組成物層、及び(c)金属箔、を含有する金属張り積層板。 (A) A cured product of a prepreg containing a thermosetting resin composition and a substrate, wherein at least one surface of the cured product is polished, and (b) a substrate-free thermal cure A metal-clad laminate containing a resin composition layer and (c) a metal foil.
  12.  請求項10又は11に記載の金属張り積層板を含有してなるプリント配線板。 A printed wiring board comprising the metal-clad laminate according to claim 10 or 11.
  13.  請求項12に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。 A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to claim 12.
  14.  請求項10又は11に記載の金属張り積層板を含有してなる、コアレス基板形成用支持体。 A support for forming a coreless substrate, which comprises the metal-clad laminate according to claim 10 or 11.
  15.  請求項10又は11に記載の金属張り積層板を含有してなる、半導体再配線層形成用支持体。 A support for forming a semiconductor redistribution layer, comprising the metal-clad laminate according to claim 10 or 11.
PCT/JP2019/000741 2019-01-11 2019-01-11 Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support WO2020144861A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980088653.0A CN113272131A (en) 2019-01-11 2019-01-11 Method for producing metal-clad laminate, printed wiring board, semiconductor package, support for forming coreless substrate, and support for forming semiconductor rewiring layer
KR1020217021651A KR20210113229A (en) 2019-01-11 2019-01-11 Method for manufacturing a metal clad laminate, a metal clad laminate, a printed wiring board and a semiconductor package, a support for forming a coreless substrate, and a support for forming a semiconductor redistribution layer
JP2020565556A JP7351315B2 (en) 2019-01-11 2019-01-11 Method for manufacturing a metal-clad laminate, metal-clad laminate, printed wiring board, and semiconductor package, support for forming a coreless board, and support for forming a semiconductor rewiring layer
PCT/JP2019/000741 WO2020144861A1 (en) 2019-01-11 2019-01-11 Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000741 WO2020144861A1 (en) 2019-01-11 2019-01-11 Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support

Publications (1)

Publication Number Publication Date
WO2020144861A1 true WO2020144861A1 (en) 2020-07-16

Family

ID=71521155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000741 WO2020144861A1 (en) 2019-01-11 2019-01-11 Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support

Country Status (4)

Country Link
JP (1) JP7351315B2 (en)
KR (1) KR20210113229A (en)
CN (1) CN113272131A (en)
WO (1) WO2020144861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080221A1 (en) * 2022-10-13 2024-04-18 三井金属鉱業株式会社 Circuit board manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279081A (en) * 1991-02-13 1992-10-05 Mitsubishi Electric Corp Epoxy resin-copper foil laminated board and manufacture thereof
JPH05320382A (en) * 1992-05-28 1993-12-03 Toshiba Chem Corp Production of prepreg
JPH1134221A (en) * 1997-07-15 1999-02-09 Matsushita Electric Works Ltd Production of copper clad laminated sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945148A (en) * 1982-09-09 1984-03-13 住友ベークライト株式会社 Manufacture of unsaturated polyester resin -paper-copper lined laminated board
JP2001085838A (en) * 1999-09-14 2001-03-30 Matsushita Electric Works Ltd Method for manufacturing multilayer laminated plate
JP2001113527A (en) * 1999-10-15 2001-04-24 Risho Kogyo Co Ltd Thermosetting resin-impregnated prepreg and method for manufacturing the same
WO2011138865A1 (en) 2010-05-07 2011-11-10 住友ベークライト株式会社 Epoxy resin composition for circuit boards, prepreg, laminate, resin sheet, laminate for printed wiring boards, printed wiring boards, and semiconductor devices
JP5152601B2 (en) * 2010-06-01 2013-02-27 日立化成工業株式会社 Method for manufacturing connection board using thin plate-like article and method for manufacturing multilayer wiring board
JP6697759B2 (en) * 2016-02-05 2020-05-27 パナソニックIpマネジメント株式会社 Metal-clad laminate, method of manufacturing metal-clad laminate, metal member with resin, method of manufacturing metal member with resin, wiring board, and method of manufacturing wiring board
JP7062331B2 (en) 2017-11-16 2022-05-06 株式会社ディスコ Manufacturing method of core material and manufacturing method of copper-clad laminate
JP2020070386A (en) 2018-11-01 2020-05-07 株式会社ディスコ Production method of core material and production method of copper-clad laminate plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279081A (en) * 1991-02-13 1992-10-05 Mitsubishi Electric Corp Epoxy resin-copper foil laminated board and manufacture thereof
JPH05320382A (en) * 1992-05-28 1993-12-03 Toshiba Chem Corp Production of prepreg
JPH1134221A (en) * 1997-07-15 1999-02-09 Matsushita Electric Works Ltd Production of copper clad laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080221A1 (en) * 2022-10-13 2024-04-18 三井金属鉱業株式会社 Circuit board manufacturing method

Also Published As

Publication number Publication date
KR20210113229A (en) 2021-09-15
JPWO2020144861A1 (en) 2021-11-18
CN113272131A (en) 2021-08-17
JP7351315B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
US7666509B2 (en) Resin composition, prepreg and metal-foil-clad laminate
US20110308848A1 (en) Resin composition for wiring board, resin sheet for wiring board, composite body, method for producing composite body, and semiconductor device
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JPWO2017183621A1 (en) Prepreg, metal-clad laminate and printed wiring board
US11234329B2 (en) Prepreg, substrate, metal-clad laminate, semiconductor package, and printed circuit board
JP3821728B2 (en) Prepreg
WO2020144861A1 (en) Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support
JP2003268136A (en) Prepreg and laminate
JP6778889B2 (en) Prepreg, metal-clad laminate and printed wiring board
JP2003213019A (en) Prepreg and printed wiring board using the same
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP2004277671A (en) Prepreg and printed circuit board using the same
JP5256681B2 (en) Semiconductor device, printed wiring board for semiconductor device, and copper-clad laminate
JP7354573B2 (en) wiring board
JP2022164680A (en) Prepreg, method for manufacturing the same, laminate, printed wiring board and semiconductor package
WO2022059166A1 (en) Organic core material and manufacturing method therefor
JP2005209489A (en) Insulation sheet
KR20190008838A (en) Metallic laminate, printed wiring board and semiconductor package
JP5861995B2 (en) Resin composition, prepreg, resin layer, circuit board, and semiconductor device
JP2021059646A (en) Thermosetting resin composition, composite laminate, and printed wiring board
JP2004149577A (en) Prepreg and laminated sheet
WO2024075245A1 (en) Prepreg, laminated plate, printed wiring board, and semiconductor package
JP5975090B2 (en) Resin composition, prepreg, resin layer, circuit board, and semiconductor device
JP2003206360A (en) Prepreg and printed wiring board prepared therefrom
JP5211624B2 (en) Manufacturing method of semiconductor device and manufacturing method of printed wiring board for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 01/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19909416

Country of ref document: EP

Kind code of ref document: A1