JP7354573B2 - wiring board - Google Patents

wiring board Download PDF

Info

Publication number
JP7354573B2
JP7354573B2 JP2019075529A JP2019075529A JP7354573B2 JP 7354573 B2 JP7354573 B2 JP 7354573B2 JP 2019075529 A JP2019075529 A JP 2019075529A JP 2019075529 A JP2019075529 A JP 2019075529A JP 7354573 B2 JP7354573 B2 JP 7354573B2
Authority
JP
Japan
Prior art keywords
wiring board
resin composition
wiring
thickness
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019075529A
Other languages
Japanese (ja)
Other versions
JP2020174139A (en
Inventor
俊亮 大竹
一行 満倉
和彦 蔵渕
崇 増子
広明 藤田
昌久 尾瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019075529A priority Critical patent/JP7354573B2/en
Publication of JP2020174139A publication Critical patent/JP2020174139A/en
Application granted granted Critical
Publication of JP7354573B2 publication Critical patent/JP7354573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、配線基板に関する。 The present invention relates to a wiring board.

半導体パッケージの高密度化に伴い、配線層を高密度化する技術が重要となっている(例えば特許文献1参照)。 BACKGROUND ART With the increasing density of semiconductor packages, techniques for increasing the density of wiring layers have become important (see, for example, Patent Document 1).

特開2015-191968号公報Japanese Patent Application Publication No. 2015-191968

しかしながら、配線層を高密度化する際に、配線の下地となる基板の厚さのばらつきが大きいと、配線形成時の歩留まりが低下するという問題がある。
そこで、本発明の課題は、厚さばらつきが小さい配線基板を提供するとともに、配線形成時の歩留まりを高めることにある。
However, when increasing the density of the wiring layer, if there are large variations in the thickness of the substrate underlying the wiring, there is a problem in that the yield during wiring formation decreases.
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a wiring board with small variations in thickness and to increase the yield during wiring formation.

本発明は、有機コア材又は有機コア材上に作製した樹脂組成物層の表面を研磨する等して、配線基板の厚さのばらつきを低減することで配線形成時のアウトプットを高くするものである。
本発明は、[1]有機コア材、有機コア材上に作製した樹脂組成物層、又は樹脂組成物層単体のいずれかからなり、表面研磨手段により面積2500mmの範囲における、最も厚い部位の厚さと、最も薄い部位の厚さの差を8μm以下とする配線基板である。
また、本発明は、[2]表面研磨手段が、化学的機械研磨法、機械研磨法、電解研磨法、化学研磨法のいずれか1以上である上記[1]に記載の配線基板である。
また、本発明は、[3]前記有機コア材が、配線形成した金属張り積層板又は金属箔を除去した金属張り積層板である上記[1]又は[2]に記載の配線基板である。
また、本発明は、[4]前記樹脂組成物層が、熱硬化性樹脂組成物である上記[1]~[3]のいずれか一項に記載の配線基板である。
また、本発明は、[5]前記樹脂組成物層が、感光性樹脂組成物である上記[1]~[3]のいずれか一項に記載の配線基板である。
更に、本発明は、[6]前記配線基板の少なくとも一方の面にシード層を形成した際の、シード層表面の粗度(算術平均粗さRa)が45nm以下である上記[1]~[5]のいずれか一項に記載の配線基板である。
The present invention improves the output during wiring formation by reducing variations in the thickness of wiring boards by polishing the surface of an organic core material or a resin composition layer prepared on the organic core material. It is.
[1] The present invention consists of either an organic core material, a resin composition layer prepared on the organic core material, or a single resin composition layer, and the thickest portion in an area of 2500 mm 2 is polished by surface polishing means. This is a wiring board in which the difference between the thickness and the thickness of the thinnest portion is 8 μm or less.
Further, the present invention provides the wiring board according to [1] above, wherein [2] the surface polishing means is one or more of chemical mechanical polishing, mechanical polishing, electrolytic polishing, and chemical polishing.
Further, the present invention provides [3] the wiring board according to [1] or [2] above, wherein the organic core material is a metal-clad laminate with wiring formed thereon or a metal-clad laminate with metal foil removed.
Further, the present invention provides the wiring board according to any one of [1] to [3] above, [4] wherein the resin composition layer is a thermosetting resin composition.
Further, the present invention provides the wiring board according to any one of [1] to [3] above, wherein [5] the resin composition layer is a photosensitive resin composition.
Furthermore, the present invention provides [6] the above-mentioned [1] to [6] wherein the seed layer surface roughness (arithmetic mean roughness Ra) is 45 nm or less when the seed layer is formed on at least one surface of the wiring board. 5].

本発明により、配線基板上において高い歩留まりで微細な配線を作製できる。 According to the present invention, fine wiring can be produced on a wiring board with high yield.

本発明の配線基板の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a wiring board of the present invention. 本発明の配線基板の配線形成の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of wiring formation on the wiring board of the present invention.

[配線基板]
配線基板は、有機コア材単体、有機コア材の表裏一方の面又は両面に樹脂組成物層を形成した形態(図1)、又は樹脂組成物層単体のいずれかの形態をとる。
有機コア材に樹脂組成物層を設ける方法は特に限定されないが、例えば、フィルム状の樹脂組成物の場合はラミネートによる貼り合わせ等を用いることができ、液状の樹脂組成物の場合は塗工機による塗工、スピンコート等を用いることができる。ラミネートを行う場合は、例えば、真空ラミネータ(ニッコー・マテリアルズ株式会社製、V-130)を用いて、圧力0.5MPa、真空引き時間15秒、加圧時間60秒、温度100℃の条件で行ってもよい。
[Wiring board]
The wiring board takes the form of a single organic core material, a resin composition layer formed on one or both surfaces of the organic core material (FIG. 1), or a single resin composition layer.
The method of providing the resin composition layer on the organic core material is not particularly limited, but for example, in the case of a film-like resin composition, lamination can be used, and in the case of a liquid resin composition, a coating machine can be used. coating, spin coating, etc. can be used. When laminating, for example, use a vacuum laminator (manufactured by Nikko Materials Co., Ltd., V-130) under the conditions of a pressure of 0.5 MPa, evacuation time of 15 seconds, pressurization time of 60 seconds, and temperature of 100°C. You may go.

樹脂組成物層単体とする形態の配線基板は、例えば、有機コア材や金属板等の支持体上に樹脂組成物層を形成した後、該支持体を除去する方法により、作製することができる。 A wiring board having a single resin composition layer can be produced, for example, by a method in which a resin composition layer is formed on a support such as an organic core material or a metal plate, and then the support is removed. .

本発明で用いる樹脂組成物層を形成する樹脂組成物は、一般に配線基板に用いている物であれば制限されず用いることができ、特に、熱硬化性樹脂組成物、感光性樹脂組成物が好ましく用いられる。それらは、前記のようにフィルム状の形態、液状の形態で用いられる。
有機コア材上に塗布した樹脂組成物やフィルム状の樹脂組成物の硬化方法は特に限定されないが、例えば熱硬化性樹脂組成物の場合は加熱により、感光性樹脂組成物の場合は紫外線照射により硬化することができる。
The resin composition forming the resin composition layer used in the present invention is not limited as long as it is generally used for wiring boards, and in particular, thermosetting resin compositions and photosensitive resin compositions can be used. Preferably used. As mentioned above, they are used in film form or liquid form.
The method of curing the resin composition coated on the organic core material or the resin composition in the form of a film is not particularly limited, but for example, in the case of a thermosetting resin composition, by heating, and in the case of a photosensitive resin composition, by irradiation with ultraviolet rays. Can be hardened.

本発明の配線基板は、表面研磨手段により面積2500mmの範囲における、最も厚い部位の厚さと、最も薄い部位の厚さの差を8μm以下とする。
配線基板の、表裏一方の面又は両面を研磨してもよい。研磨の手法は特に限定されないが、化学的機械研磨法[CMP(Chemical mechanical polishing)法]、機械研磨法、電解研磨法、化学研磨法等を用いることができる。
化学的機械研磨法(CMP法)は、研磨剤(砥粒)自体が有する表面化学作用又は、スラリーに含まれる化学成分の作用によって、スラリーと研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、極めて平滑な研磨面を得ることができる。
機械研磨法としては、例えば、グラインド法、フライカット法、バフ研磨法、サンドブラスト法等を用いることができる。
電解研磨法は、金属の配線層表面を平滑化するもので、製品をプラス側にして電解液を介して直流電流を流し、金属表面を溶解させることで研磨効果を得る方法である。
化学研磨法としては、例えば、過酸化水素を用いた方法を用いることができる。
これらの方法を複数組み合わせて用いてもよい。例えば、グラインド法によって配線基板表面を研磨した後に、CMP法によって表面を更に平滑に研磨してもよい。
In the wiring board of the present invention, the difference between the thickness of the thickest portion and the thickness of the thinnest portion within an area of 2500 mm 2 is made 8 μm or less by surface polishing means.
One or both surfaces of the wiring board may be polished. The polishing method is not particularly limited, but a chemical mechanical polishing method (CMP), a mechanical polishing method, an electrolytic polishing method, a chemical polishing method, etc. can be used.
The chemical mechanical polishing method (CMP method) is a mechanical polishing method (surface removal method) that uses the relative movement of the slurry and the object to be polished, using the surface chemical action of the abrasive itself or the action of the chemical components contained in the slurry. ) The effect can be increased and an extremely smooth polished surface can be obtained.
As the mechanical polishing method, for example, a grinding method, a fly cutting method, a buffing method, a sandblasting method, etc. can be used.
The electrolytic polishing method is a method for smoothing the surface of a metal wiring layer, and a polishing effect is obtained by turning the product on the positive side and passing a direct current through an electrolytic solution to dissolve the metal surface.
As the chemical polishing method, for example, a method using hydrogen peroxide can be used.
A combination of two or more of these methods may be used. For example, after the surface of the wiring board is polished by a grinding method, the surface may be further polished to be smooth by a CMP method.

研磨は、配線基板の最も薄い部分に配線基板全体の厚さが一致するように行うのが好ましい。有機コア材の表裏両面に樹脂組成物層を形成した場合は、配線基板の反りを抑制するために表裏とも同じ研磨深さにするのが好ましい。 The polishing is preferably performed so that the thickness of the entire wiring board matches the thinnest part of the wiring board. When resin composition layers are formed on both the front and back surfaces of the organic core material, it is preferable to polish both the front and back surfaces to the same depth in order to suppress warping of the wiring board.

上記グラインド法の条件としては、例えば、グラインダ(株式会社ディスコ製、Automatic Surface Grinder DAG810)に粗さ番手#2000の刃を取り付けて、研磨速度0.5μm/s、スピンドル回転速度2200回転/分(rpm)、テーブル回転速度300回転/分(rpm)とすることができる。また、異なる粗さ番手の刃による研磨を連続で行ってもよい。 The conditions for the above grinding method are, for example, a grinder (Automatic Surface Grinder DAG810 manufactured by DISCO Co., Ltd.) equipped with a blade with a roughness number of #2000, a polishing speed of 0.5 μm/s, and a spindle rotation speed of 2200 revolutions/min ( rpm), and the table rotation speed can be 300 revolutions per minute (rpm). Further, polishing may be performed continuously using blades having different roughness counts.

上記CMP法の条件としては、例えば、アルミナ系のスラリーを用いて、プラテン回転速度40回転/分(rpm)、配線基板の回転速度41回転/分(rpm)としてもよい。 As conditions for the CMP method, for example, an alumina-based slurry may be used, the platen rotation speed may be 40 revolutions per minute (rpm), and the wiring board rotation speed may be 41 revolutions per minute (rpm).

有機コア材の厚さは特に制限されないが、700~1600μmの厚さが好ましく、1000~1400μmがより好ましい。700μmより薄いと、反りによってハンドリング性が悪くなる傾向があり、1600μmより厚いと重くなるためハンドリング性が悪くなる傾向がある。 The thickness of the organic core material is not particularly limited, but the thickness is preferably 700 to 1600 μm, more preferably 1000 to 1400 μm. If it is thinner than 700 μm, handling properties tend to deteriorate due to warpage, and if it is thicker than 1600 μm, it tends to become heavy and thus handling properties tend to deteriorate.

有機コア材は、熱硬化性樹脂組成物、熱可塑性樹脂組成物等、有機物を含んでいればその種類を問わないが、信頼性、剛直性の観点から金属張り積層板を材料とするのが好ましい。
この金属張り積層板を配線形成したものを有機コア材として使用してもよい。また、金属張り積層板の金属層をエッチングで除去したものを有機コア材として使用してもよい。更には、配線層をあらかじめ転写板に形成し、プリプレグ等の複合材料や樹脂と共に積層成形して、配線層を複合材料や樹脂に転写し、配線層の表面と樹脂層の表面を同一平面とした転写法による有機コア材を用いてもよい。
The organic core material can be of any type as long as it contains an organic substance, such as a thermosetting resin composition or a thermoplastic resin composition, but from the viewpoint of reliability and rigidity, it is preferable to use a metal-clad laminate as the material. preferable.
This metal-clad laminate with wiring formed thereon may be used as the organic core material. Alternatively, a metal-clad laminate with the metal layer removed by etching may be used as the organic core material. Furthermore, the wiring layer is formed on a transfer plate in advance and laminated with a composite material such as prepreg or resin, and the wiring layer is transferred to the composite material or resin so that the surface of the wiring layer and the surface of the resin layer are on the same plane. An organic core material produced by a transfer method may also be used.

上記の金属張り積層板は、1枚又は複数枚のプリプレグの片面又は両面に金属箔を配置し、プレス成形等の積層成形をして得ることができる。成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の範囲で成形することができる。 The above-mentioned metal-clad laminate can be obtained by arranging metal foil on one or both sides of one or more sheets of prepreg and performing lamination molding such as press molding. As for the molding conditions, for example, methods for laminated plates and multilayer plates for electrically insulating materials can be applied, such as using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., temperature of 100 to 250 ° C., pressure of 0.2 Molding can be performed at a pressure of ~10 MPa and a heating time of 0.1 to 5 hours.

プリプレグは、熱硬化性樹脂組成物を、基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)して得ることができる。
プリプレグに含まれる熱硬化性樹脂は特に制限されないが、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、成形性や電気絶縁性の点からエポキシ樹脂、シアネート樹脂が好ましい。
The prepreg can be obtained by impregnating or coating a base material with a thermosetting resin composition and semi-curing (B-staged) by heating or the like.
The thermosetting resin contained in the prepreg is not particularly limited, but includes, for example, epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin. , dicyclopentadiene resin, silicone resin, triazine resin, melamine resin, etc., and these may be used alone or in combination of two or more types. Among these, epoxy resins and cyanate resins are preferred from the viewpoint of moldability and electrical insulation.

これらの熱硬化性樹脂には、必要に応じて国際公開第2012/099133号に記載の変性シリコーン化合物、硬化剤、硬化促進剤、無機充填剤、熱可塑性樹脂、エラストマー、有機充填剤、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、接着性向上剤等を添加することができる。 These thermosetting resins may contain modified silicone compounds, curing agents, curing accelerators, inorganic fillers, thermoplastic resins, elastomers, organic fillers, and flame retardants as described in International Publication No. 2012/099133. , ultraviolet absorbers, antioxidants, photopolymerization initiators, optical brighteners, adhesion improvers, etc. can be added.

プリプレグの基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。
これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。基材の厚さは、特に制限されず、例えば、約0.03~0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
As the prepreg base material, well-known materials used in various electrically insulating material laminates can be used. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof.
These base materials have shapes such as woven fabrics, non-woven fabrics, raw binders, chopped strand mats, and surfacing mats, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, It can be used alone or in combination of two or more types of materials and shapes. The thickness of the base material is not particularly limited, and for example, about 0.03 to 0.5 mm may be used, and the base material may be surface-treated with a silane coupling agent or the like or mechanically opened. However, it is suitable in terms of heat resistance, moisture resistance, and processability.

金属張り積層板に用いる金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
上記のように金属張り積層板に用いる金属箔はエッチングによって一部又は全面が研削されていてもよい。エッチングに用いる薬液には特に制限は無く、例えば、過硫酸アンモニウム等を用いることができる。
The metal foil used in the metal-clad laminate is not particularly limited as long as it is used as an electrically insulating material.
As mentioned above, the metal foil used for the metal-clad laminate may be partially or entirely ground by etching. There are no particular limitations on the chemical solution used for etching, and for example, ammonium persulfate or the like can be used.

有機コア材上に作製した樹脂組成物層の厚さは特に制限されないが、10~70μmが好ましく、20~60μmがより好ましい。10μmより薄くなると、研磨によって樹脂組成物層を残すことが困難になる傾向があり、70μmより厚くなると、配線基板の質量が大きくなるためハンドリング性が悪くなる傾向がある。 The thickness of the resin composition layer formed on the organic core material is not particularly limited, but is preferably 10 to 70 μm, more preferably 20 to 60 μm. If it becomes thinner than 10 μm, it tends to be difficult to leave the resin composition layer by polishing, and if it becomes thicker than 70 μm, the mass of the wiring board becomes large and handling properties tend to deteriorate.

樹脂組成物の種類は特に制限されないが、例えば、熱硬化性樹脂組成物や感光性樹脂組成物を用いることができる。熱硬化性樹脂組成物としては、例えば、エポキシ系の樹脂を用いることができる。樹脂組成物はシリカ(SiO)などのフィラーを含んでいてもよい。 Although the type of resin composition is not particularly limited, for example, a thermosetting resin composition or a photosensitive resin composition can be used. As the thermosetting resin composition, for example, an epoxy resin can be used. The resin composition may contain filler such as silica (SiO 2 ).

配線基板上にシード層を形成する場合は、配線基板表層に金属層が形成できる方法であれば特に制限はないが、無電解めっき法やスパッタリング法を用いることができる。 When forming the seed layer on the wiring board, there are no particular limitations as long as the method can form a metal layer on the surface layer of the wiring board, but electroless plating or sputtering can be used.

<評価サンプル>
銅エッチング後の銅張り積層板の表裏両面に、熱硬化性樹脂組成物層を形成した配線基板を用いた。表1に示す通り、配線基板の表面研磨方法の違いにより、厚さばらつき及び表面粗度Ra(算術平均粗さRa)が異なる6種類のサンプルを用意した。
<Evaluation sample>
A wiring board was used in which a thermosetting resin composition layer was formed on both the front and back surfaces of a copper-clad laminate after copper etching. As shown in Table 1, six types of samples with different thickness variations and surface roughness Ra (arithmetic mean roughness Ra) were prepared depending on the surface polishing method of the wiring board.

<微細配線の歩留まり測定方法>
セミアディティブ法によって銅配線を形成する。配線基板の一方の面に、スパッタリング法によってシード層(チタン層25nmと銅層150nmとの積層体)を形成した(図2(a))。
真空ラミネータ(ニッコー・マテリアルズ株式会社製、V-130)を用いて、感光性樹脂組成物のレジストフィルム(日立化成株式会社製、RY-5107UT)を配線基板にラミネートした。条件は圧力0.5MPa、真空引き時間15秒、加圧時間60秒、温度50℃とした(図2(b))。
投影露光装置(株式会社サーマプレシジョン製、S6Ck露光機)を用いてUVを照射して露光した後、スピン現像機(ブルーオーシャンテクノロジー株式会社製、超高圧スピン現像装置)を用いて炭酸ナトリウム1質量%水溶液をスプレーして現像した。この工程によってレジスト幅/スペース幅=2μm/2μmのパターンを作製した(図2(c))。
プラズマアッシャー(ノードソン・アドバンスト・テクノロジー株式会社製、APシリーズ バッチ式プラズマ処理装置)を用いて、酸素プラズマをレジストパターンに当てることで、現像時のレジスト残渣を取り除いた。
電解銅めっき法により、配線幅/スペース幅=2μm/2μmの銅配線を作製した。配線高さは3μmとした(図2(d))。
スピン現像機でTMAH(水酸化テトラメチルアンモニウム)2.38質量%水溶液をスプレーし、レジストを剥離した(図2(e))。
エッチングによってシード層を除去した。銅層はリン酸及び過酸化水素の水溶液によって除去した。チタン層はアンモニア及び過酸化水素の水溶液によって除去した(図2(f))。
金属顕微鏡で、配線幅/スペース幅=2μm/2μmの銅配線を観察し、配線倒れ、配線の欠損、配線同士の繋がり、配線の変形等の不良が無い配線の数を計測し、作製した全配線に対する割合を算出した。これを配線歩留まりとした。
<Method for measuring yield of fine wiring>
Copper wiring is formed by a semi-additive method. A seed layer (a laminate of a 25 nm titanium layer and a 150 nm copper layer) was formed on one surface of the wiring board by sputtering (FIG. 2(a)).
A resist film of a photosensitive resin composition (RY-5107UT, manufactured by Hitachi Chemical Co., Ltd.) was laminated onto the wiring board using a vacuum laminator (V-130, manufactured by Nikko Materials Co., Ltd.). The conditions were a pressure of 0.5 MPa, evacuation time of 15 seconds, pressurization time of 60 seconds, and temperature of 50° C. (FIG. 2(b)).
After exposure by UV irradiation using a projection exposure device (manufactured by Therma Precision Co., Ltd., S6Ck exposure machine), 1 mass of sodium carbonate was applied using a spin developing device (manufactured by Blue Ocean Technology Co., Ltd., ultra-high pressure spin developing device). % aqueous solution was sprayed and developed. Through this step, a pattern with resist width/space width=2 μm/2 μm was produced (FIG. 2(c)).
Resist residue from development was removed by applying oxygen plasma to the resist pattern using a plasma asher (AP series batch type plasma processing apparatus manufactured by Nordson Advanced Technology Co., Ltd.).
A copper wiring having a wiring width/space width of 2 μm/2 μm was produced by electrolytic copper plating. The wiring height was 3 μm (FIG. 2(d)).
A 2.38% by mass aqueous solution of TMAH (tetramethylammonium hydroxide) was sprayed using a spin developer to peel off the resist (FIG. 2(e)).
The seed layer was removed by etching. The copper layer was removed with an aqueous solution of phosphoric acid and hydrogen peroxide. The titanium layer was removed with an aqueous solution of ammonia and hydrogen peroxide (FIG. 2(f)).
Using a metallurgical microscope, we observed copper wiring with wiring width/space width = 2 μm/2 μm, and counted the number of wires that had no defects such as fallen wires, missing wires, connections between wires, or deformed wires. The ratio to wiring was calculated. This was defined as the wiring yield.

<配線基板の厚さばらつき測定方法>
配線基板を200mm×200mmに裁断し、それを50mm×50mm(面積2500mm)の16エリアに区分けした。
マイクロメーター(株式会社ミツトヨ製、ID-H0530)を用いて50mm×50mmのエリアの4隅から10mm内側の4点の厚さを測定し、4点のうち最も厚い厚さの値と、最も薄い厚さの値の差を厚さばらつきとする。200mm×200mm中の16エリアの厚さばらつきのうち、最大の値を表1中に記載した。
<Measuring method for wiring board thickness variation>
The wiring board was cut into 200 mm x 200 mm and divided into 16 areas of 50 mm x 50 mm (area: 2500 mm 2 ).
Using a micrometer (manufactured by Mitutoyo Co., Ltd., ID-H0530), measure the thickness at four points 10 mm inside from the four corners of a 50 mm x 50 mm area, and calculate the thickest thickness value and the thinnest value among the four points. The difference in thickness values is defined as thickness variation. The maximum value among the thickness variations in 16 areas within 200 mm x 200 mm is listed in Table 1.

<表面粗度(算術平均粗さ)Raの測定方法>
表層にシード層を形成後の配線基板の粗度Raを接触式段差計(ブルカー社製、DXT-S(Dektak XT-S))を用いて測定した。測定長は5mm、測定荷重は10.2mg、測定速度は100μm/sとした。
6種類のサンプルの表面研磨方法の違い(研磨種類)による、厚さばらつき及び表面粗度Ra、配線歩留まりの測定・評価結果をまとめて表1に示した。
<Measurement method of surface roughness (arithmetic mean roughness) Ra>
The roughness Ra of the wiring board after forming the seed layer on the surface layer was measured using a contact type protrusion meter (manufactured by Bruker, DXT-S (Dektak XT-S)). The measurement length was 5 mm, the measurement load was 10.2 mg, and the measurement speed was 100 μm/s.
Table 1 summarizes the measurement and evaluation results of thickness variations, surface roughness Ra, and wiring yields for the six types of samples, depending on the surface polishing method (polishing type).

Figure 0007354573000001
Figure 0007354573000001

表面研磨手段により最も厚い部位の厚さと、最も薄い部位の厚さの差を8μm以下とした実施例1~3は、配線歩留まりが高い。これに対し、表面研磨なしの比較例2、3は、配線基板自体に12~26μmの厚さばらつきがあり、微細配線形成時の配線歩留まりが低い。
表1に記載は無いが、配線基板の厚さばらつきが減少することで、配線基板表面の配線の電送距離が短くなるため、特に高周波回路において、伝送損失が少なく、計算による伝送損失により近似するため回路の設計が容易になる傾向がある。
Examples 1 to 3, in which the difference between the thickness of the thickest portion and the thickness of the thinnest portion was reduced to 8 μm or less by surface polishing, had a high wiring yield. On the other hand, in Comparative Examples 2 and 3 without surface polishing, the wiring substrate itself had a thickness variation of 12 to 26 μm, and the wiring yield during formation of fine wiring was low.
Although it is not mentioned in Table 1, by reducing the thickness variation of the wiring board, the transmission distance of the wiring on the surface of the wiring board is shortened, so the transmission loss is small, especially in high frequency circuits, and the transmission loss can be approximated by the calculated transmission loss. Therefore, circuit design tends to be easier.

1…有機コア材、2…樹脂組成物層、3…シード層、4…感光性樹脂組成物、5…電解めっき銅 DESCRIPTION OF SYMBOLS 1...Organic core material, 2...Resin composition layer, 3...Seed layer, 4...Photosensitive resin composition, 5...Electroplated copper

Claims (6)

有機コア材、有機コア材上に作製した樹脂組成物層、又は樹脂組成物層単体のいずれかからなり、表面研磨手段により面積2500mmの範囲における、最も厚い部位の厚さと、最も薄い部位の厚さの差が8μm以下である配線基板であって、
前記配線基板の少なくとも一方の面にシード層を形成した際の、シード層表面の粗度(算術平均粗さRa)が45nm以下である、配線基板。
Consisting of either an organic core material, a resin composition layer prepared on the organic core material, or a single resin composition layer, the thickness of the thickest part and the thickness of the thinnest part in an area of 2500 mm 2 are determined by surface polishing means. A wiring board having a thickness difference of 8 μm or less,
A wiring board, wherein the seed layer has a surface roughness (arithmetic mean roughness Ra) of 45 nm or less when a seed layer is formed on at least one surface of the wiring board.
表面研磨手段が、化学的機械研磨法、機械研磨法、電解研磨法、化学研磨法のいずれか1以上である請求項1に記載の配線基板。 2. The wiring board according to claim 1, wherein the surface polishing means is one or more of a chemical mechanical polishing method, a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. 前記有機コア材が、配線形成した金属張り積層板又は金属箔を除去した金属張り積層板である、請求項1又は請求項2に記載の配線基板。 3. The wiring board according to claim 1, wherein the organic core material is a metal-clad laminate with wiring formed thereon or a metal-clad laminate with metal foil removed. 前記樹脂組成物層が、熱硬化性樹脂組成物である請求項1~3のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 3, wherein the resin composition layer is a thermosetting resin composition. 前記樹脂組成物層が、感光性樹脂組成物である請求項1~3のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 3, wherein the resin composition layer is a photosensitive resin composition. 有機コア材、有機コア材上に作製した樹脂組成物層、又は樹脂組成物層単体のいずれかからなり、表面研磨手段により面積2500mmConsisting of either an organic core material, a resin composition layer prepared on the organic core material, or a single resin composition layer, the area is 2500 mm by surface polishing means. 2 の範囲における、最も厚い部位の厚さと、最も薄い部位の厚さの差が8μm以下である配線基板であって、A wiring board in which the difference between the thickness of the thickest part and the thickness of the thinnest part is 8 μm or less in the range of
前記表面研磨手段が、化学的機械研磨法、機械研磨法、電解研磨法、化学研磨法のいずれか2以上を組み合わせた、配線基板。A wiring board, wherein the surface polishing means is a combination of two or more of a chemical mechanical polishing method, a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
JP2019075529A 2019-04-11 2019-04-11 wiring board Active JP7354573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019075529A JP7354573B2 (en) 2019-04-11 2019-04-11 wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075529A JP7354573B2 (en) 2019-04-11 2019-04-11 wiring board

Publications (2)

Publication Number Publication Date
JP2020174139A JP2020174139A (en) 2020-10-22
JP7354573B2 true JP7354573B2 (en) 2023-10-03

Family

ID=72831926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075529A Active JP7354573B2 (en) 2019-04-11 2019-04-11 wiring board

Country Status (1)

Country Link
JP (1) JP7354573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153433A1 (en) * 2021-01-14 2022-07-21 昭和電工マテリアルズ株式会社 Method for manufacturing wiring-layer-equipped board, wiring-layer-equipped board, method for manufacturing semiconductor device, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051567A (en) 2001-08-03 2003-02-21 Sony Corp High-frequency module substrate unit therefor and manufacturing method therefor
JP2006210565A (en) 2005-01-27 2006-08-10 Hitachi Cable Ltd Wiring board and manufacturing method thereof
JP2015065295A (en) 2013-09-25 2015-04-09 味の素株式会社 Method for manufacturing multilayer printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558082B2 (en) * 1994-11-25 1996-11-27 インターナショナル・ビジネス・マシーンズ・コーポレイション Resin layer forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051567A (en) 2001-08-03 2003-02-21 Sony Corp High-frequency module substrate unit therefor and manufacturing method therefor
JP2006210565A (en) 2005-01-27 2006-08-10 Hitachi Cable Ltd Wiring board and manufacturing method thereof
JP2015065295A (en) 2013-09-25 2015-04-09 味の素株式会社 Method for manufacturing multilayer printed wiring board

Also Published As

Publication number Publication date
JP2020174139A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6109569B2 (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
EP2759400B1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP5892157B2 (en) Printed circuit board, method for manufacturing printed circuit board, and semiconductor device
WO2013042752A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP5659673B2 (en) Resin sheet, laminated board, electronic component, printed wiring board, and semiconductor device
WO2014034112A1 (en) Exfoliable copper foil attached substrate and circuit board producing method
JPWO2013042750A1 (en) LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE
JP7354573B2 (en) wiring board
JP2010285523A (en) Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device
JP2008244189A (en) Circuit board and semiconductor device
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP6135846B2 (en) Curable resin composition
JP2010258419A (en) Resin composition for wiring board, and resin sheet for wiring board
WO2020144861A1 (en) Metal-clad layered plate production method, metal-clad layered plate, printed circuit board and semiconductor package, and coreless base board forming support and semiconductor re-wiring layer forming support
JP2009094217A (en) Semiconductor, printed circuit board for semiconductor device, and copper clad laminate
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP5194423B2 (en) Resin composition, prepreg, laminate, and semiconductor device
JP2018049998A (en) Laminate board for wiring board, and wiring board
JP2009070921A (en) Insulative resin sheet containing glass woven fabric, laminate sheet, multilayer printed wiring board, and semiconductor device
JP7479596B2 (en) Copper foil with insulating resin layer, laminate using same, and method for manufacturing laminate
WO2022059166A1 (en) Organic core material and manufacturing method therefor
JP2019065072A (en) Adhesive sheet with metallic foil, and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7354573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151