WO2020143812A1 - 数据传输方法和通信装置 - Google Patents

数据传输方法和通信装置 Download PDF

Info

Publication number
WO2020143812A1
WO2020143812A1 PCT/CN2020/071598 CN2020071598W WO2020143812A1 WO 2020143812 A1 WO2020143812 A1 WO 2020143812A1 CN 2020071598 W CN2020071598 W CN 2020071598W WO 2020143812 A1 WO2020143812 A1 WO 2020143812A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
tci
qcl information
time
information
Prior art date
Application number
PCT/CN2020/071598
Other languages
English (en)
French (fr)
Inventor
纪刘榴
葛士斌
杭海存
王潇涵
毕晓艳
施弘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738197.1A priority Critical patent/EP3902354B1/en
Publication of WO2020143812A1 publication Critical patent/WO2020143812A1/zh
Priority to US17/371,300 priority patent/US20210337572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication, and more specifically, to a data transmission method and communication device.
  • a new generation of radio access technology can support a wider range of communication application scenarios.
  • NR new radio access technology
  • there are some scenarios that put forward higher requirements for the reliability of communication such as ultra-high reliability and ultra-low latency communication (ultra reliable & low latency communication, URLLC), and the technical requirements for reliability have reached 10 ⁇ -
  • ultra-high reliability and ultra-low latency communication ultra reliable & low latency communication, URLLC
  • URLLC ultra reliable & low latency communication
  • the method used in the prior art is to repeatedly transmit the same data in multiple consecutive slots, which can correspond to a redundancy (redundancy version, RV). version.
  • RV redundancy version
  • this transmission scheme relies on the time-domain correlation of the channel. Only when the channel has a rapidly changing property in the time domain can the diversity gain be obtained through multiple transmissions. For example, assuming that the data transmission demodulation of time slot 1 fails and time slot 2 is repeatedly transmitted, and the channel corresponding to time slot 1 and the channel corresponding to time slot 2 are highly correlated, it may result in transmission in time slot 2 Demodulation failed. Only when there is a large difference between the channel corresponding to time slot 2 and the channel corresponding to time slot 1, can the probability of successful second transmission be increased.
  • the present application provides a data transmission method and a communication device, which can improve the reliability of data transmission.
  • a data transmission method including: receiving downlink control information DCI; determining multiple quasi-co-location (QCL) information according to the DCI, the multiple QCL information and multiple Corresponding to the time domain unit, each time domain unit corresponds to at least one piece of QCL information, and at least two pieces of QCL information in the plurality of QCL information are different; receiving downlink data according to the plurality of QCL information.
  • QCL quasi-co-location
  • a data transmission method including: sending downlink control information DCI, the DCI including a plurality of quasi-co-located QCL information, the plurality of QCL information corresponding to a plurality of time domain units, each time domain The unit corresponds to at least one piece of QCL information, and at least two pieces of QCL information in the plurality of QCL information are different; according to the plurality of QCL information, downlink data is sent.
  • the multiple QCL information is used for multiple repeated transmissions of the same downlink data.
  • the same downlink data refers to the same information bits or the same encoded bits of the bit stream corresponding to the downlink data.
  • the multiple TCI states correspond one-to-one with the multiple time domain units.
  • the number of QCL information and the number of time-domain units may be the same, and the number of QCL information corresponding to each time-domain unit may be the same.
  • the amount of QCL information corresponding to at least two time-domain units may be different. If a time domain unit corresponds to at least two QCL information, the two QCL information may be the same or different. If at least two QCL information corresponding to each time domain unit is the same, the QCL information corresponding to at least two time domain units may be different.
  • the number of QCL information and the number of time domain units may also be different. Further, the number of QCL information and the number of time-domain units may be related to the first parameter.
  • the number of QCL information may be the product of the number of time-domain units and the first parameter.
  • the first parameter may be the number of codewords (CW) of a time domain unit, the number of transmission blocks of a time domain unit, the number of antenna port groups of a time domain unit, the antenna ports/layers of a time domain unit /Number of data streams, number of code division multiplexing groups in a time domain unit, etc.
  • the number of QCL information and the number of time domain units may be the same.
  • the terminal device may determine the number of time domain units and the first parameter according to the repeated transmission instruction information configured by the upper layer.
  • the repeated transmission instruction information is used to indicate the number of repeated transmissions.
  • the terminal device may determine the number of time-domain units and the first parameter in combination with preset rules and repeated transmission indication information configured by a higher layer.
  • the preset rule is specifically as follows: when the number of repeated transmissions is less than the repetition threshold, the first parameter is 1, and the number of time domain units is the number of repeated transmissions.
  • the first parameter is the first constant
  • the number of time-domain units is the number of repeated transmissions
  • the dependent variable of the first constant as a function of the independent variable, for example, the number of time-domain units is repeated
  • the number of time-domain units is a second constant
  • the first parameter is the number of repeated transmissions and the number of time-domain units as the dependent variable as a function of the independent variable, for example, the first parameter It is the ratio of the number of repeated transmissions to the number of time-domain units.
  • the first parameter may be 1 or a first constant, or the first parameter is the number of repeated transmissions and the number of time-domain units as the dependent variable as a function of the independent variable.
  • the repetition threshold may be a preset constant, such as 2, 4 and so on.
  • the first constant is a preset constant, such as 2.
  • the second constant is a preset constant, such as 2, 4 and so on.
  • the QCL information is used to determine the quasi-co-location relationship between at least one demodulation reference signal (DMRS) port and at least one reference signal.
  • the QCL information also includes at least one channel large-scale parameter associated with the quasi-co-location relationship of at least one DMRS port and at least one reference signal.
  • the at least one channel large-scale parameter may be represented by QCL type.
  • the multiple time-domain units may be continuous in the time domain or discontinuous, which is not limited in this application.
  • the terminal device will not be in the time domain unit used for uplink transmission.
  • the QCL information corresponding to the time-domain unit used for uplink transmission will be regarded as useless information.
  • the time domain unit may also be referred to as a time unit.
  • the time domain unit may be a slot, mini-slot, symbol, subframe, frame, system frame, wireless frame, or half-frame The application does not limit this.
  • At least two QCL information in the multiple QCL information corresponding to multiple time domain units are different, that is to say, multiple transmissions performed in multiple time domain units are transmitted at least twice Comes from different network equipment, so it can improve the reliability of data transmission.
  • each QCL information is associated with at least one of a redundant version of the downlink data and an antenna port group of the downlink data.
  • the identification of the antenna port involved in this application has a one-to-one correspondence with the identification of the DMRS port, and each QCL information may also be associated with the DMRS port group of the downlink data.
  • each QCL message can be associated with a redundant version of the downlink data.
  • each QCL information may be associated with an antenna port group of downlink data.
  • each QCL information may be simultaneously associated with a redundant version of the downlink data and an antenna port group of the downlink data.
  • An antenna port group involved in the present application may include one or more antenna ports, and the antenna port may be, for example, a DMRS port.
  • the terminal device can determine the redundancy version of the downlink data and use it for downlink data reception according to the QCL information
  • At least one of the antenna port groups in the case that different QCL information is associated with different redundancy versions or antenna port groups used for downlink data reception can further improve data transmission reliability.
  • the DCI includes multiple transmission configuration indication (TCI) indication information, each TCI indication information is used to indicate a TCI status, and each TCI The status includes at least one QCL information among the plurality of QCL information.
  • TCI transmission configuration indication
  • the multiple TCI indication information indicates multiple TCI states, and the TCI state can be flexibly configured.
  • the DCI includes a transmission configuration indication TCI indication information
  • the TCI indication information is used to indicate a TCI status group
  • the TCI status group includes multiple TCIs State
  • each TCI state includes at least one QCL information among the plurality of QCL information.
  • TCI indication information indicating one TCI status group, which can reduce the signaling overhead required for configuring QCL information.
  • the TCI state group is one of a plurality of TCI state groups, and the plurality of TCI state groups are media access control control elements (media Access control (element, MAC CE) configuration.
  • media access control control elements media Access control (element, MAC CE) configuration.
  • the multiple TCI status groups belong to the TCI status group configured by the network device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the multiple TCI states correspond to the multiple time-domain units through cyclic expansion or adjacent expansion.
  • the DCI may include two TCI domains, and the TCI states indicated by the two TCI domains may be cyclically expanded or adjacently expanded to obtain 4 TCI states.
  • the four TCI states correspond to the four time-domain units. After cyclic expansion or adjacent expansion, the TCI states for adjacent time-domain units are the same and the same TCI states only correspond to adjacent time-domain units, or the TCI states for adjacent time-domain units are different.
  • the TCI state includes first QCL information and second QCL information
  • the first QCL information includes a first reference signal and a first QCL type
  • the The second QCL information includes a second reference signal and the first QCL type
  • the first reference signal and the second reference signal are different
  • the first reference signal and the first antenna port group satisfy a QCL relationship
  • the The second reference signal and the second antenna port group satisfy the QCL relationship.
  • the first QCL type may be QCL type (type A).
  • the first QCL information further includes a third reference signal and a second QCL type
  • the second QCL information further includes a fourth reference signal and the second QCL type
  • the third reference signal and the The fourth reference signal is different
  • the third reference signal and the first antenna port group satisfy a QCL relationship
  • the fourth reference signal and the second antenna port group satisfy a QCL relationship.
  • the second QCL type may be QCL type D.
  • the first antenna port group and the second antenna port group are associated with the same time domain unit in the plurality of time domain units.
  • the downlink data transmission in the same time-domain unit comes from two different network devices, so that the reliability of data transmission can be improved.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the first aspect or the method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute the instructions in the memory to implement the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor performs the first aspect or the second aspect and any possible implementation manner of the first aspect to the second aspect The method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code or instructions) that, when the computer program is executed, causes the computer to perform the first aspect or the above The method in the second aspect and any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code or instructions
  • a computer-readable medium that stores a computer program (also referred to as code or instructions) that when executed on a computer, causes the computer to perform the first aspect or the above
  • a computer program also referred to as code or instructions
  • a communication system including the aforementioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a specific embodiment of a data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • WiMAX future fifth generation
  • 5G fifth generation
  • NR new radio
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for a data transmission method and apparatus according to an embodiment of the present application.
  • the communication system 100 may include at least two network devices, such as the network devices 101 and 102 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal shown in FIG. Device 103.
  • the terminal device 103 may establish a wireless link with the network device 101 and the network device 102 through dual connectivity (DC) technology or multi-connection technology.
  • the network device 101 may be a primary base station, and the network device 101 may be a secondary base station, for example.
  • the network device 101 is a network device when the terminal device 103 initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device 103, and the network device 102 may be added during RRC reconfiguration , To provide additional wireless resources.
  • RRC radio resource control
  • the network device 102 may also be the primary base station, and the network device 101 may also be the secondary base station, which is not limited in this application.
  • the figure is only for ease of understanding, and shows the situation of wireless connection between two network devices and terminal devices, but this should not constitute any limitation to the scenario to which this application applies.
  • the terminal device can also establish a wireless link with more network devices.
  • Each communication device such as the network device 101, the network device 102, or the terminal device 103 in FIG. 1, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can include multiple components related to signal transmission and reception (such as processors, modulators, and multiplexers) , Demodulator, demultiplexer or antenna, etc.). Therefore, network devices and terminal devices can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (Radio Network Controller, RNC), Node B (Node B, NB), base station controller (Base Station Controller, BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be 5G, such as NR , GNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain
  • the functions of the radio link (control RLC) layer, media access control (MAC) layer and physical (PHY) layer The functions of the radio link (control RLC) layer, media access control (MAC) layer and physical (PHY) layer.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (RAN), and may also be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, safety terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, devices, or articles using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CD), digital universal discs (digital) discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the method used in the prior art is to repeatedly transmit the same data in multiple consecutive slots, which can correspond to a redundancy (redundancy version, RV). version.
  • RV redundancy version
  • this transmission scheme relies on the time-domain correlation of the channel. Only when the channel has a rapidly changing property in the time domain can the diversity gain be obtained through multiple transmissions. For example, assuming that the data transmission demodulation of time slot 1 fails and time slot 2 is repeatedly transmitted, and the channel corresponding to time slot 1 and the channel corresponding to time slot 2 are highly correlated, it may result in transmission in time slot 2 Demodulation failed. Only when there is a large difference between the channel corresponding to time slot 2 and the channel corresponding to time slot 1, can the probability of successful second transmission be increased.
  • the present application provides a data transmission method.
  • This method combines air and time domains and sends data to terminal devices through at least two different air domain resources on multiple time domain resources. Increase the probability of successful data transmission.
  • the scheme provided by the present application will be described.
  • Reference signal The reference signal can be used for channel measurement or channel estimation.
  • the reference signal resource can be used to configure the transmission properties of the reference signal, for example, time-frequency resource location, port mapping relationship, power factor, and scrambling code. For details, reference may be made to the prior art.
  • the reference signal may include, for example, a channel state information reference signal (channel-state information reference (CSI-RS), a synchronization signal block (synchronization signal block (SSB)), and a sounding reference signal (sounding reference signal (SRS)).
  • CSI-RS channel state information reference
  • SSB synchronization signal block
  • SRS sounding reference signal
  • the reference signal resources may include CSI-RS resources (CSI-RS resources), SSB resources, and SRS resources (SRS resources).
  • SSB may also be called a synchronization signal (synchronization signal, SS) or a physical broadcast channel block (physical broadcast channel block, PBCH block).
  • SS synchronization signal
  • PBCH block physical broadcast channel block
  • Antenna port referred to as port. Refers to the transmitting antenna recognized by the receiving end device, or the transmitting antenna that can be distinguished in space.
  • One antenna port may be configured for each virtual antenna, each virtual antenna may be a weighted combination of multiple physical antennas, and each antenna port may correspond to one reference signal port.
  • Quasi-co-location or quasi-co-location.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port with the QCL relationship of the antenna port, or the two antenna ports have the same parameters Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter is a large-scale channel parameter, and may include one or more of the following: delay spread (delay spread), Doppler spread (Doppler spread), Doppler frequency shift (Doppler shift), average delay (average delay), average gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters may include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle) of departure (AOD), average angle of departure AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, and resource identification.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler expansion
  • Type C Doppler frequency shift, average delay
  • Type D space receiving parameter.
  • a redundant version of data refers to a subset of coded bits determined according to the index of the redundant version among the coded bits of the data that have been coded.
  • the index of the redundancy version corresponds to the starting bit position of the coded bit subset in the coded bits.
  • the time domain units involved in this application may be slots, mini-slots, symbols, subframes, frames, system frames, radio frames, half frames, etc., which is not limited in this application.
  • FIG. 2 is a schematic flowchart of a data transmission method 200 provided by the present application. This method can be applied to the system 100 shown in FIG. 1, but this embodiment of the present application does not limit this. Hereinafter, each step of the method 200 will be described.
  • the terminal device receives the DCI sent by the network device.
  • the network device is any network device among a plurality of network devices that can schedule the terminal device, for example, it may be a primary base station, but this application does not limit this.
  • the terminal device may be the terminal device 103, and the network device may be the network device 101 or the network device 102.
  • the terminal device determines multiple QCL information according to the DCI.
  • the multiple QCL information corresponds to multiple time domain units, and each time domain unit corresponds to at least one QCL information. At least two QCL information in the plurality of QCL information are different.
  • the multiple QCL information is used for multiple repeated transmissions of the same downlink data.
  • the same downlink data means that the information bits or the encoded bits of the bit stream corresponding to the downlink data are the same.
  • One QCL message can be used for one transmission or reception.
  • one piece of QCL information is used to determine a quasi-co-location relationship between at least one antenna port (or DMRS port) and at least one reference signal.
  • the QCL information also includes at least one channel large-scale parameter associated with the quasi-co-location relationship of at least one antenna port (or DMRS port) and at least one reference signal.
  • the at least one channel large-scale parameter may be represented by QCL type.
  • the difference in the two QCL information may refer to that the two reference signals corresponding to at least one QCL type in the two QCL information are different.
  • the reference signal corresponding to QCL type #1 in QCL information #1 is reference signal #1
  • the reference signal corresponding to QCL type #1 in QCL information #2 is reference signal #2
  • reference signal #1 and reference signal #2 If it is different, it can be said that QCL information #1 and QCL information #2 are different.
  • QCL type #1 may be, for example, one of QCL type A, QCL type B, QCL type C, and QCL type D.
  • one QCL information can represent one channel characteristic, and two channel characteristics characterized by different two QCL information are different. Therefore, the downlink data received according to different QCL information can be considered to come from two different network devices, such as TRP, panel, and beam.
  • the number of QCL information and the number of time-domain units may be the same, the number of QCL information corresponding to each time-domain unit may be the same, or the number of QCL information corresponding to at least two time-domain units may be different. If a time domain unit corresponds to at least two QCL information, the two QCL information may be the same or different. If at least two QCL information corresponding to each time domain unit is the same, the QCL information corresponding to at least two time domain units may be different.
  • the two QCL information corresponding to time domain unit #1 are both QCL information #1
  • time domain unit #2 may correspond to QCL information #2, which is different from QCL information #1 and QCL information #2.
  • the number of QCL information and the number of time domain units may also be different.
  • the quantity of QCL information corresponding to the multiple time domain units is different.
  • one time domain unit among the multiple time domain units may correspond to 1 QCL information, and the other time domain unit may correspond to 2 QCL information.
  • the quantity of QCL information is related to the quantity of time domain units and the first parameter.
  • the number of QCL information may be the product of the number of time-domain units and the first parameter.
  • the first parameter may be the number of codewords of a time domain unit, the number of transmission blocks of a time domain unit, the number of antenna port groups of a time domain unit, the number of transmission layers or data streams of a time domain unit, or The number of code division multiplexing groups of a time domain unit, etc.
  • the correspondence between the QCL information and the time domain unit means that the network device performs downlink data transmission on the time domain unit according to the QCL information, and accordingly, the terminal device receives downlink data on the time domain unit according to the QCL information.
  • the relationship between the multiple time-domain units and the multiple QCLs may be as shown in FIG. 3.
  • DCI schedules the terminal device to perform PDSCH reception in four time-domain units (ie, time-domain unit #1 to time-domain unit #4).
  • each QCL information can correspond to a network device, it can be considered that the terminal device receives data from network device #1 to network device #4 on time domain unit #1 to time domain unit #4, respectively .
  • this combination of time domain and space domain can make full use of time domain diversity and space domain diversity to improve the reliability of data transmission.
  • the multiple time-domain units may also be referred to as time units, which may be continuous in the time domain or discontinuous, which is not limited in this application.
  • time domain units that are not used for downlink transmission among the multiple time domain units, such as time domain units used for uplink transmission.
  • the terminal device will not be in the time domain unit used for uplink transmission.
  • the QCL information corresponding to the time-domain unit used for uplink transmission will be regarded as useless information.
  • the terminal device receives downlink data according to the QCL information of the time-domain unit for downlink transmission in most multiple time-domain units.
  • the pattern of the time-domain unit may be defined in advance, such as the pattern of the time-domain unit that is transmitted or not transmitted within a period of time, so that the network device can indicate to the terminal device by indicating the pattern of the time-domain unit. Which time-domain units receive downlink data.
  • the plurality of QCL information may be indicated by information carried by the DCI, that is, the DCI includes information indicating the plurality of QCL information.
  • the DCI includes information indicating the plurality of QCL information.
  • multiple QCL information is indicated by information carried by multiple DCIs, wherein one DCI carries indication information of part of QCL information.
  • the QCL information indicated by the information carried by the DCI is part of the QCL information among the multiple QCL information.
  • the plurality of QCL information can be obtained by performing cyclic expansion or adjacent expansion on the part of QCL information.
  • the multiple time-domain units are time-domain unit #1 to time-domain unit #4.
  • the DCI can carry QCL information #1 and QCL information #2.
  • the obtained multiple QCL information is ⁇ QCL information #1, QCL information #2, QCL information #1, QCL information #2 ⁇ , and these four QCL information sequentially correspond to time domain unit #1 to time domain unit #4.
  • the QCL information carried by the DCI may be adjacently expanded to obtain the multiple QCL information as ⁇ QCL information #1, QCL information #1, QCL information #2, QCL information #2 ⁇ , the four QCL information It corresponds to time domain unit #1 to time domain unit #4 in this order. It should be noted that if the number of QCL information after cyclic expansion or adjacent expansion exceeds the number of multiple QCL information, the excess QCL information may be discarded. In other words, at least two QCLs in the multiple QCL information are the same. When at least two QCLs in the plurality of QCL information are the same, the QCL information for adjacent time-domain units is the same, and the same QCL information corresponds only to the adjacent time-domain units. Alternatively, the QCL information for adjacent time-domain units is different.
  • the network device sends downlink data according to the multiple QCL information. Accordingly, the terminal device receives downlink data according to the multiple QCL information.
  • each network device may perform data transmission according to its corresponding QCL information, and the terminal device receives on the corresponding time-domain unit according to the multiple QCL information.
  • the data transmission method provided by the present application because at least two QCL information in the multiple QCL information corresponding to the multiple time domain units are different, that is to say, the multiple transmissions performed by the multiple time domain units at least two transmissions come from different Network equipment can therefore make better use of the spatial and temporal correlations of the channels and improve the reliability of data transmission.
  • each QCL information in the plurality of QCL information is associated with at least one of a redundancy version of the downlink data and an antenna port group of the downlink data.
  • the antenna port group may include one or more antenna ports. If the antenna port group includes only one antenna port, the antenna port group may also be called an antenna port.
  • the antenna port group may be a DMRS antenna port group, and the antenna port may be a DMRS port, but this application does not limit it.
  • each QCL information can also be associated with the DMRS port of the downlink data.
  • each QCL information can be associated with a redundant version of the downlink data.
  • each QCL information can be associated with an antenna port group.
  • each QCL information may be simultaneously associated with a redundant version of the downlink data and an antenna port group (or DMRS port group).
  • the redundancy version of the downlink data or the antenna port group of the downlink data associated with different QCL information may be different, or the redundancy version of the downlink data and the antenna port group of the downlink data are different. That is to say, the redundancy version of the downlink data transmitted according to different QCL information is different, or the antenna port groups used when performing downlink data transmission according to different QCL information are different.
  • the redundant version can be regarded as a code domain resource. By combining time domain, space domain, and code domain resources for downlink data transmission, the reliability of data transmission can be further improved.
  • the antenna port involved in this application may be indicated by DCI, and the DCI indicates the identifier of the antenna port.
  • the identification of the antenna port and the identification of the DMRS port have a one-to-one correspondence.
  • the antenna port groups corresponding to different time domain units in the multiple time domain units may be different, but this embodiment of the present application does not limit this.
  • the DCI may include multiple TCI indication information, each TCI indication information is used to indicate a TCI state, and each TCI state includes at least one QCL information among the multiple QCL information .
  • the DCI may include multiple TCI domains, and the information in each TCI domain is a TCI state.
  • a TCI state may include one QCL information, or may include multiple QCL information. In this way, by indicating multiple TCI states through multiple TCI fields, the TCI states can be flexibly configured.
  • a TCI state includes only one QCL information, at least two TCI indication information in the plurality of TCI indication information in the DCI are different. If a TCI state includes multiple QCL information, the multiple QCL information may be different, but this application does not limit it. If multiple QCL information included in one TCI state is different, the multiple TCI indication information in the DCI may be the same, but this application does not limit this.
  • multiple TCI indication information corresponds to multiple time-domain units one-to-one.
  • the DCI may include 4 TCI domains, and the TCI state indicated by each TCI domain corresponds to one time domain unit.
  • the QCL information included in each TCI state may be the same or different, which is not limited in this application.
  • the DCI may include 2 TCI domains, and the TCI status information indicated by the two TCI domains may be cyclically expanded or adjacently expanded to obtain 4 TCI states , These 4 TCI states correspond to 4 time-domain units one-to-one.
  • the DCI may include TCI indication information, and the TCI indication information is used to indicate a TCI state group, and the TCI state group includes multiple TCI states, and each TCI state includes the multiple At least one QCL information in the QCL information.
  • the TCI state group may also be called a TCI state sequence, a TCI state pattern, or the like.
  • TCI indication information indicating one TCI status group, which can reduce the signaling overhead required for configuring QCL information.
  • the TCI indication information may be information in the TCI field in the DCI, and the TCI indication information may indicate a TCI state group, such as indicating TCI state group #1, TCI state group #1 includes multiple TCI states: ⁇ TCI state #1, TCI state 2, ... ⁇ , each TCI state in TCI state group #1 includes one or more QCL information.
  • the number of TCI states included in the TCI state group #1 may be the same as the number of time-domain units, and the multiple TCI states included in the TCI state group #1 correspond to the multiple time-domain units one-to-one.
  • the number of TCI states included in the TCI state group #1 may also be different from the number of time-domain units, for example, may be less than the number of time-domain units.
  • the TCI states included in the TCI state group #1 may be cyclically expanded or adjacently expanded to obtain the same number of TCI states as the time domain units, and each TCI state may correspond to one time domain unit.
  • the TCI state group is one of multiple TCI state groups, and the multiple TCI state groups are configured by the network device through MAC CE.
  • the network device configures multiple TCI state groups through MAC CE, and DCI activates one of the TCI state groups.
  • the multiple TCI state groups belong to the TCI state group configured by the network device through RRC signaling. That is to say, the network device configures multiple TCI state groups for the terminal device through RRC signaling, and configures at least two TCI state groups among the multiple TCI state groups through MAC, and finally activates one of the TCI states through DCI State group.
  • the network device may also configure multiple TCI states through RRC signaling, and then configure multiple TCI state groups through MAC, and each TCI state group includes one or more TCI states configured by RRC.
  • the TCI state described above may include at least two reference signals and the QCL type corresponding to the reference signal.
  • the QCL types corresponding to the two reference signals are the same, that is, the large-scale parameters of the channels associated with the two reference signals are the same.
  • the two reference signals can be the same or different.
  • Two reference signals being the same means that the reference signals have the same identifier, and different means that the reference signals have different identifiers.
  • the identifier may be a resource identifier.
  • the same QCL type corresponding to each of the two reference signals may refer to that the two QCL types configured in the TCI state are the same, or that one QCL type configured in the TCI state corresponds to two reference signals.
  • the inclusion of the reference signal in the TCI means that the TCI contains indication information indicating the reference signal, and the indication information indicates the identification of the reference signal or the indication information may be the identification of the reference signal.
  • one DCI may indicate a TCI state, and at least two reference signals (reference signals (RS) (or RS sets)) are allocated to a QCL type in the TCI state.
  • a TCI state may include multiple RSs (or multiple RS sets), which may be used for PDSCH transmission from multiple network devices (eg, TRP).
  • multiple RSs (or multiple RS sets) are associated with multiple antenna port groups or multiple codewords, that is, one RS (or RS set) has a QCL association relationship with one antenna port group or DMRS in the codeword.
  • An antenna port group or a codeword is also associated with a redundant version RV.
  • one DCI may indicate two TCI states, and the two TCI states are used for the PDSCH of the same time domain unit.
  • a TCI state may include multiple QCL information having the same QCL type, and the multiple QCL information may be used for PDSCH transmission from multiple network devices.
  • a TCI state is used to indicate the QCL relationship of an antenna port group or codeword.
  • a TCI state is associated with a redundant version.
  • the TCI state includes first QCL information and second QCL information.
  • the first QCL information includes a first reference signal and a first QCL type
  • the second QCL information includes a second reference signal and the first QCL type
  • the first reference signal and the second reference signal may be the same or different
  • the first reference signal A QCL relationship is satisfied with the first antenna port group
  • a QCL relationship is satisfied with the second reference signal and the second antenna port group.
  • the QCL relationship between the first reference signal and the first antenna port group, and the QCL relationship between the second reference signal and the second antenna port group may be pre-defined, for example, a reference signal with a smaller identifier may be pre-defined
  • the antenna port group with the smaller identifier corresponds, but this embodiment of the present application does not limit this.
  • the TCI state may also include a first antenna port group satisfying the QCL relationship with the first reference signal, and a second antenna port group satisfying the QCL relationship with the second reference signal.
  • the first QCL type is QCL type A.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • DMRS group#1 and DMRS group#2 are two different antenna port groups.
  • first antenna port group and the second antenna port group are associated with the same time domain unit among the multiple time domain units.
  • first antenna port group and the second antenna port group are respectively associated with different time domain units in the plurality of time domain units. In this case, it can be understood that one TCI state may correspond to two time domain units.
  • the TCI state includes first QCL information and second QCL information.
  • the first QCL information includes a first reference signal and a first QCL type, and a third reference signal and a second QCL type
  • the second QCL information includes a second reference signal and the first QCL type, and a fourth reference signal and a first Two QCL types.
  • the first reference signal and the second reference signal are different
  • the third reference signal and the fourth reference signal are different. Both the first reference signal and the third reference signal satisfy the QCL relationship with the first antenna port group, and the second reference signal and the fourth reference signal satisfy the QCL relationship with the second antenna port group.
  • the QCL relationship between the first reference signal and the first antenna port group and the QCL relationship between the second reference signal and the second antenna port group may be predefined, but this embodiment of the present application does not limit this.
  • the TCI state may include a first antenna port group satisfying the QCL relationship with the first reference signal and the third reference signal, and a second antenna port group satisfying the QCL relationship with the second reference signal and the fourth reference signal.
  • the first QCL type is QCL type A
  • the second QCL type is QCL type D.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • RS#3 and RS#4 are two different reference signals
  • RS#1 and RS#3 are different
  • RS#2 and RS#4 are different .
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • RS#3 and RS#4 are two different reference signals
  • RS#1 and RS#3 are different
  • RS#2 and RS#4 are different
  • DMRS group#1 and DMRS group#2 are two different DMRS port groups.
  • the ID of the DMRS group#1 corresponds to the ID of the first antenna port group
  • the ID of the DMRS group#2 corresponds to the ID of the second antenna port group.
  • DMRS group#1 and DMRS group#2 are associated with the same time-domain unit among multiple time-domain units. Or, DMRS group#1 and DMRS group#2 are respectively associated with different time-domain units in the multiple time-domain units. In this case, it can be understood that one TCI state can correspond to two time-domain units.
  • the TCI state includes the first reference signal, the second reference signal, and the corresponding first QCL type.
  • the first reference signal and the second reference signal are different.
  • the first reference signal and the first antenna port group satisfy the QCL relationship.
  • the second reference signal is The second antenna port group satisfies the QCL relationship.
  • the QCL relationship between the first reference signal and the first antenna port group and the QCL relationship between the second reference signal and the second antenna port group may be predefined, but this embodiment of the present application does not limit this.
  • the TCI state may include a first antenna port group satisfying the QCL relationship with the first reference signal, and a second antenna port group satisfying the QCL relationship with the second reference signal.
  • the first QCL type is QCL type A.
  • Form three can be understood as a transformation of form one.
  • the first reference signal and the first QCL type may be considered to belong to the first QCL information
  • the second reference signal and the first QCL type may be considered to belong to the second QCL information.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • DMRS group#1 and DMRS group#2 are two different DMRS port groups.
  • the ID of the DMRS group#1 corresponds to the ID of the first antenna port group
  • the ID of the DMRS group#2 corresponds to the ID of the second antenna port group.
  • DMRS group#1 and DMRS group#2 are associated with the same time-domain unit among multiple time-domain units. Or, DMRS group#1 and DMRS group#2 are respectively associated with different time-domain units in the multiple time-domain units. In this case, it can be understood that one TCI state can correspond to two time-domain units.
  • the TCI state includes the first reference signal, the second reference signal, and the corresponding first QCL type, and the third reference signal, the fourth reference signal, and the corresponding second QCL type.
  • the first reference signal and the second reference signal are different, the first reference signal and the first antenna port group satisfy the QCL relationship, and the second reference signal and the second antenna port group satisfy the QCL relationship.
  • the first reference signal and the second reference signal are different, and the third reference signal and the fourth reference signal are different. Both the first reference signal and the third reference signal satisfy the QCL relationship with the first antenna port group, and the second reference signal and the fourth reference signal satisfy the QCL relationship with the second antenna port group.
  • the QCL relationship between the first reference signal and the first antenna port group and the QCL relationship between the second reference signal and the second antenna port group may be predefined, but this embodiment of the present application does not limit this.
  • the TCI state may include a first antenna port group satisfying the QCL relationship with the first reference signal and the third reference signal, and a second antenna port group satisfying the QCL relationship with the second reference signal and the fourth reference signal.
  • the first QCL type is QCL type A
  • the second QCL type is QCL type D.
  • Form 4 can be understood as a modification of Form 2.
  • the first reference signal and the first QCL type, and the third reference signal and the second QCL type can be considered to belong to the first QCL information
  • the second reference signal and the first QCL type, and the fourth reference signal and the first The second QCL type can be considered to belong to the second QCL information.
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • RS#3 and RS#4 are two different reference signals
  • RS#1 and RS#3 are different
  • RS#2 and RS#4 are different .
  • a TCI state may include:
  • RS#1 and RS#2 are two different reference signals
  • RS#3 and RS#4 are two different reference signals
  • RS#1 and RS#3 are different
  • RS#2 and RS#4 are different
  • DMRS group#1 and DMRS group#2 are two different DMRS port groups.
  • the ID of the DMRS group#1 corresponds to the ID of the first antenna port group
  • the ID of the DMRS group#2 corresponds to the ID of the second antenna port group.
  • DMRS group#1 and DMRS group#2 are associated with the same time-domain unit among multiple time-domain units. Or, DMRS group#1 and DMRS group#2 are respectively associated with different time-domain units in the multiple time-domain units. In this case, it can be understood that one TCI state may correspond to two or more time-domain units.
  • the reference signal included in the QCL information may be a non-zero power (NZP) CSI-RS reference signal or a synchronization signal block SSB or a channel reference signal SRS.
  • NZP non-zero power
  • each TCI state in this application may also be associated with a redundant version of downlink data.
  • the association relationship between the TCI state and the redundant version may be a predefined or high-level configuration. Then, according to the TCI state, the associated RV version information can be determined.
  • each TCI state in this application may also be associated with antenna port group information.
  • the association relationship between the TCI state and the antenna port group may be a predefined or high-level configuration
  • an antenna port group may be associated with multiple TCI states, and after determining the TCI state, the corresponding antenna port group may be determined.
  • the terminal device may determine the time-frequency resource mapping position of the phase tracking reference signal (PTRS) according to the multiple QCL information. For example, when the QCL information corresponding to two adjacent time-domain units is different, the minimum mapped time-domain symbol identifying the PTRS in the larger time-domain unit is the time-domain symbol determined according to the time-domain unit.
  • PTRS phase tracking reference signal
  • At least one QCL information in the plurality of QCL information corresponds to a control resource set (control resource, set, CORESET) relationship.
  • the QCL information is configured in the configuration information of CORESET.
  • the QCL information used to determine the data can also be used to determine the QCL relationship of the control channel (physical downlink control channel, PDCCH) transmitted in CORESET.
  • some QCL information can be used to determine the QCL relationship of the control channel PDCCH transmitted in CORESET.
  • the QCL relationship of the PDCCH means that the DMRS in the PDCCH and the reference signal have a quasi-co-location relationship; the reference signal is the reference information in the QCL information.
  • the scheduling delay referred to in this application refers to the time interval from sending DCI to sending a downlink data channel, or the time interval from receiving DCI to receiving a downlink data channel.
  • the scheduling delay is the time between the time domain unit where the DCI is located and the first time domain unit or any one of the multiple time domain units.
  • the multiple time domain units are time domain units corresponding to the aforementioned multiple QCL information.
  • the scheduling delay is the time interval between the slot that sends DCI and the first slot among the multiple slots that send PDSCH, or the slot that sends DCI, and any one of the multiple slots that sends PDSCH. Time interval.
  • the scheduling delay is the time interval between the slot receiving the DCI and the first slot among the multiple slots receiving the PDSCH, or the slot receiving the DCI and any one of the slots receiving the PDSCH The time interval between.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application .
  • the data transmission method provided by the present application because at least two QCL information in the multiple QCL information corresponding to the multiple time domain units are different, that is to say, the multiple transmissions performed by the multiple time domain units at least two transmissions come from different Network equipment, so it can improve the reliability of data transmission.
  • the data transmission method provided by the embodiments of the present application has been described in detail above with reference to FIGS. 2 and 3.
  • the communication device provided by the embodiment of the present application will be described in detail with reference to FIGS. 4 to 6.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 according to an embodiment of the present application, and the communication device 1000 may include a unit for performing the method performed by the terminal device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and the other operations and/or functions described above are respectively for implementing the corresponding flow of the method 200 in FIG. 2.
  • the communication unit 1100 is used to receive downlink control information DCI; the processing unit 1200 is used to determine a plurality of quasi co-located QCL information according to the DCI, the plurality of QCL information corresponds to a plurality of time domain units, each time domain unit Corresponding to at least one piece of QCL information, at least two pieces of QCL information are different; the communication unit 1100 is further used to receive downlink data according to the pieces of QCL information.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 200 or the method 500 according to an embodiment of the present application.
  • the communication device 1000 may include a unit for performing the method performed by the network device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and the other operations and/or functions described above are respectively for implementing the corresponding flow of the method 200 in FIG. 2.
  • the communication unit 1100 is used to send downlink control information DCI
  • the DCI includes multiple quasi-co-located QCL information
  • the multiple QCL information corresponds to multiple time domain units
  • each time domain unit corresponds to at least one QCL information
  • the At least two of the multiple QCL information are different; according to the multiple QCL information, the downlink data is sent.
  • the multiple QCL information is used for multiple repeated transmissions of the same downlink data.
  • each QCL information is associated with at least one of a redundant version of the downlink data and a port group of the downlink data.
  • the DCI includes multiple transmission configuration indication TCI indication information, and each TCI indication information is used to indicate a TCI state, and each TCI state includes at least one QCL information among the multiple QCL information.
  • the DCI includes a transmission configuration indication TCI indication information.
  • the TCI indication information is used to indicate a TCI state group.
  • the TCI state group includes multiple TCI states, and each TCI state includes at least one of the multiple QCL information.
  • a QCL message is used to indicate a TCI state group.
  • the TCI state group is one of a plurality of TCI state groups, and the plurality of TCI state groups are configured by a network device through a media access control element MAC CE.
  • the multiple TCI state groups belong to the TCI state group configured by the network device through RRC signaling.
  • the multiple TCI states correspond one-to-one with the multiple time-domain units.
  • the multiple TCI states correspond to the multiple time-domain units through cyclic expansion or adjacent expansion.
  • the TCI state includes first QCL information and second QCL information, the first QCL information indicates a first reference signal and a first QCL type, and the second QCL information indicates a second reference signal and the first QCL type
  • the first reference signal and the second reference signal are different, the first reference signal and the first antenna port group satisfy the QCL relationship, and the second reference signal and the second antenna port group satisfy the QCL relationship.
  • the first QCL information also indicates a third reference signal and a second QCL type
  • the second QCL information also indicates a fourth reference signal and the second QCL type
  • the third reference signal and the fourth reference signal Differently, the third reference signal and the first antenna port group satisfy the QCL relationship, and the fourth reference signal and the second antenna port group satisfy the QCL relationship.
  • the first antenna port group and the second antenna port group are associated with the same time domain unit in the plurality of time domain units.
  • the communication device since at least two QCL information in the multiple QCL information corresponding to multiple time domain units are different, that is to say, multiple transmissions performed in multiple time domain units are transmitted from different Network equipment can therefore improve data transmission reliability.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 5, and the processing unit 1200 in the communication device 1000 may correspond to The processor 2010 in the terminal device 2000 shown in FIG. 5.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 6, and the processing unit 1200 in the communication device 1000 may correspond to The processor 3100 in the network device 3000 shown in FIG. 6.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 5 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the memory 2030 is used to store a computer program, and the processor 2010 is used from the memory 2030 Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the processor 2010 and the memory 2030 may be combined into a processing device.
  • the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 4.
  • the above-mentioned transceiver 2020 may correspond to the communication unit in FIG. 4 and may also be called a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 5 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the above method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 2000 may further include a power supply 2050, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 2050 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also called a distributed unit (DU) )) 3200.
  • RRU 3100 may be referred to as a transceiver unit, which corresponds to the communication unit 1200 in FIG. 4.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiving unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending DCI to terminal devices.
  • the 3200 part of the BBU is mainly used for baseband processing and controlling the base station.
  • the RRU 3100 and the BBU 3200 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1100 in FIG. 4 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow of the network device in the foregoing method embodiment, for example, to generate the DCI and the like.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the base station 3000 shown in FIG. 6 can implement various processes involving network devices in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the base station 3000 are to implement the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to perform the communication method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array (FPGA)), an application specific integrated circuit (ASIC), or a system chip (SoC), or It is a central processor (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to perform the operations shown in FIGS. 2 and 5 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer is caused to execute the embodiment shown in FIG. 2 The method.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disc
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by the corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or The steps of sending, other than sending and receiving, can be executed by the processing unit (processor).
  • the function of the specific unit can refer to the corresponding method embodiment. There may be one or more processors.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and/or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and/or thread of execution, and a component can be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和通信装置,能够提高数据传输可靠性。该方法包括:接收下行控制信息DCI;根据DCI确定多个QCL信息,并根据多个QCL信息接收下行数据。多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息,多个QCL信息中至少两个QCL信息不同,即该下行数据来自至少两个网络设备。

Description

数据传输方法和通信装置
本申请要求于2019年01月11日提交中国专利局、申请号为201810028430.7、申请名称为“数据传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输方法和通信装置。
背景技术
新一代无线接入技术(new radio access technology,NR)或其他的先进通信技术,可以支持更为广泛的通信应用场景。在这些应用场景中,有一些场景对通信的可靠性提出了更高的要求,如超高可靠超低时延通信(ultra reliable&low latency communication,URLLC),技术对可靠性的需求达到了10^-5次方甚至更高的要求,其含义是在10^-5甚至更高量级的传输(比特)中出现1次的错误。
为了提高通信的可靠性,现有技术采用的方法是在连续的多个时隙(slot)对同一数据进行多次重复传输,这多次重复传输可以分别对应一个冗余(redundancy version,RV)版本。但是,该传输方案依赖于信道的时域相关性,只有在信道在时域上有快变的性质时,才能够通过多次传输获得分集增益。举例来说,假设时隙1的数据传输解调失败,时隙2重复传输,而时隙1对应的信道和时隙2对应的信道是高相关的,那么可能会导致在时隙2的传输解调失败。只有在时隙2对应的信道与时隙1对应的信道有较大的差异的时候,才能够提高第二次传输成功的概率。
可见,现有的传输方案有可能导致数据传输失败。因此,如何提高数据传输可靠性,成为一个亟需解决的问题。
发明内容
本申请提供一种数据传输方法和通信装置,能够提高数据传输可靠性。
第一方面,提供了一种数据传输方法,包括:接收下行控制信息DCI;根据所述DCI确定多个准共址(quasi-co-location,QCL)信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息,所述多个QCL信息中至少两个QCL信息不同;根据所述多个QCL信息接收下行数据。
第二方面,提供了一种数据传输方法,包括:发送下行控制信息DCI,所述DCI包括多个准共址QCL信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息,所述多个QCL信息中至少两个QCL信息不同;根据所述多个QCL信息发送下行数据。
可选地,该多个QCL信息用于同一下行数据的多次重复传输。同一下行数据是指该 下行数据对应的比特流的信息比特相同或者编码比特相同等。
可选地,所述多个TCI状态与所述多个时域单元一一对应。比如,QCL信息的数量和时域单元的数量可以相同,每个时域单元对应的QCL信息的数量可以相同。此外,至少两个时域单元对应的QCL信息的数量可以不同。若一个时域单元对应至少两个QCL信息,这两个QCL信息可以相同,也可以不同。若每个时域单元对应的至少两个QCL信息相同,则至少两个时域单元所对应的QCL信息可以不同。
另外,QCL信息的数量和时域单元的数量还可以不同。进一步的,QCL信息的数量与时域单元的数量可以和第一参数有关。如QCL信息的数量可以是时域单元的数量与第一参数的乘积。第一参数可以是一个时域单元的码字(codeword,CW)的数量、一个时域单元的传输块的数量、一个时域单元的天线端口组的数量、一个时域单元的天线端口/层/数据流的数量、一个时域单元的码分复用组的数量等。
当第一参数为1时,QCL信息的数量和时域单元的数量可以相同。
示例性地,终端设备可以根据高层配置的重复传输指示信息确定时域单元的数量和第一参数。重复传输指示信息用于指示重复传输的次数。其中,终端设备可以结合预设的规则和由高层配置的重复传输指示信息确定时域单元的数量和第一参数。预设的规则具体如,当重复传输的次数小于重复阈值时,第一参数为1,时域单元的数量为重复传输的次数。当重复传输的次数大于重复阈值时,第一参数为第一常数,时域单元的数量为重复传输的次数和第一常数作为自变量的函数的应变量,比如,时域单元的数量为重复传输的次数与第一常数的比值;
或者,当重复传输的次数大于重复阈值时,时域单元的数量为第二常数,第一参数为重复传输的次数和时域单元的数量作为自变量的函数的应变量,比如,第一参数为重复传输的次数与时域单元的数量的比值。
当重复传输次数等于重复阈值时,第一参数可以为1或者第一常数,或第一参数为重复传输的次数和时域单元的数量作为自变量的函数的应变量。
所述重复阈值可以为预设的常数,如2、4等。所述第一常数为预设的常数,如为2。所述第二常数是预设的常数,如为2、4等。也就是说,当重复传输的次数小于重复阈值时,一个时域单元对应一次传输,当重复传输的次数大于重复阈值,一个时域单元可以对应多次重复传输;当重复传输的次数等于重复阈值时,一个时域单元对应一次传输或对应多次重复传输。
QCL信息用于确定至少一个解调参考信号(demodulation reference signal,DMRS)端口与至少一个参考信号的准共址关系。QCL信息还包括至少一个DMRS端口与至少一个参考信号的准共址关系所关联的至少一个信道大尺度参数。该至少一个信道大尺度参数可以通过QCL类型表示。其中,当QCL信息用于确定至少一个DMRS端口与多个参考信号的准共址关系时,多个参考信号所对应的至少一个信道大尺度参数至少部分不同,即,多个参考信号所对应的准共址类型不同。
该多个时域单元可以在时域上连续,也可以不连续,本申请对此不作限定。此外,该多个时域单元中可能存在不用于下行传输的时域单元,如用于上行传输的时域单元,在此情况下,终端设备将不会在该用于上行传输的时域单元进行数据接收,与该用于上行传输的时域单元对应的QCL信息将被视作无用的信息。
时域单元还可以称为时间单元,可选地,该时域单元可以是时隙(slot)、迷你时隙(mini-slot)、符号、子帧、帧、系统帧、无线帧、半帧等,本申请对此不作限定。
因此,本申请提供的数据传输方法,由于多个时域单元所对应的多个QCL信息中至少两个QCL信息不同,也就是说,在多个时域单元进行的多个传输至少两次传输来自不同的网络设备,因此能够提高数据传输可靠性。
结合第一方面和第二方面,在某些实现方式中,每个QCL信息关联所述下行数据的一个冗余版本和下行数据的一个天线端口组中的至少一种。
本申请涉及的天线端口的标识与DMRS端口的标识具有一一对应的关系,每个QCL信息还可以关联所述下行数据的DMRS端口组。
比如,每个QCL信息可以关联该下行数据的一个冗余版本。或者,每个QCL信息可以关联下行数据的一个天线端口组。或者,每个QCL信息可以同时关联该下行数据的一个冗余版本和下行数据的一个天线端口组。本申请所涉及的一个天线端口组可以包括一个或多个天线端口,该天线端口例如可以是DMRS端口。
通过将QCL信息与所述下行数据的一个冗余版本和下行数据的一个天线端口组中的至少一种关联起来,终端设备可以根据QCL信息确定该下行数据的冗余版本和用于下行数据接收的天线端口组中的至少一种,在不同的QCL信息关联不同的冗余版本或者用于下行数据接收的天线端口组的情况下,可以进一步提高数据传输可靠性。
结合第一方面和第二方面,在某些实现方式中,所述DCI包括多个传输配置指示(transmission configuration indicator,TCI)指示信息,每个TCI指示信息用于指示一个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
通过该多个TCI指示信息指示多个TCI状态,可以灵活配置TCI状态。
结合第一方面和第二方面,在某些实现方式中,所述DCI包括一个传输配置指示TCI指示信息,所述TCI指示信息用于指示一个TCI状态组,所述TCI状态组包括多个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
通过一个TCI指示信息指示一个TCI状态组来指示多个QCL信息,能够减少配置QCL信息所需的信令开销。
结合第一方面和第二方面,在某些实现方式中,所述TCI状态组为多个TCI状态组中的一个,所述多个TCI状态组为网络设备通过媒体接入控制控制元素(media access control control element,MAC CE)配置的。
结合第一方面和第二方面,在某些实现方式中,所述多个TCI状态组属于所述网络设备通过无线资源控制(radio resource control,RRC)信令所配置的TCI状态组。
结合第一方面和第二方面,在某些实现方式中,所述多个TCI状态通过循环扩展或者相邻扩展的方式与所述多个时域单元对应。
比如,假设该多个时域单元的数量为4,该DCI可以包括2个TCI域,可以通过对这2个TCI域所指示的TCI状态循环扩展或者相邻扩展,得到4个TCI状态,这4个TCI状态与4个时域单元一一对应。通过循环扩展或者相邻扩展后,用于相邻的时域单元的TCI状态相同且相同的TCI状态仅对应相邻的时域单元,或者,用于相邻的时域单元的TCI状态不同。
结合第一方面和第二方面,在某些实现方式中,所述TCI状态包括第一QCL信息和 第二QCL信息,所述第一QCL信息包括第一参考信号和第一QCL类型,所述第二QCL信息包括第二参考信号和所述第一QCL类型,所述第一参考信号和所述第二参考信号不同,所述第一参考信号与第一天线端口组满足QCL关系,所述第二参考信号与第二天线端口组满足QCL关系。
可选地,第一QCL类型可以是QCL类型(type)A。
进一步地,所述第一QCL信息还包括第三参考信号和第二QCL类型,所述第二QCL信息还包括第四参考信号和所述第二QCL类型,所述第三参考信号和所述第四参考信号不同,所述第三参考信号与所述第一天线端口组满足QCL关系,所述第四参考信号与所述第二天线端口组满足QCL关系。
可选地,第二QCL类型可以是QCL type D。
可选地,所述第一天线端口组和所述第二天线端口组与所述多个时域单元中的同一时域单元关联。
也就是说,在同一时域单元中进行的下行数据传输来自两个不同的网络设备,从而能够提高数据传输可靠性。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电 路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面或第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统的示意图;
图2是本申请实施例提供的数据传输方法的示意性流程图;
图3是本申请实施例提供的数据传输方法的一个具体实施例的示意图;
图4是本申请实施例提供的通信装置的示意性框图;
图5是本申请实施例提供的终端设备的结构示意图;
图6是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。为便于理解本申请,首先结合图1详细说明适用于本申请的通信系统。
图1示出了适用于本申请实施例的数据传输方法和装置的通信系统100的示意图。如图所示,该通信系统100可以包括至少两个网络设备,例如图1中所示的网络设备101和102;该通信系统100还可以包括至少一个终端设备,例如图1中所示的终端设备103。该终端设备103可以通过双连接(dual connectivity,DC)技术或者多连接技术与网络设备101和网络设备102建立无线链路。其中,网络设备101例如可以为主基站,网络设备101例如可以为辅基站。此情况下,网络设备101为终端设备103初始接入时的网络设备,负责与终端设备103之间的无线资源控制(radio resource control,RRC)通信,网络设备102可以是RRC重配置时添加的,用于提供额外的无线资源。
当然,网络设备102也可以为主基站,网络设备101也可以为辅基站,本申请对此不做限定。另外,图中仅为便于理解,示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更多的网络设备建立无线链路。
各通信设备,如图1中的网络设备101、网络设备102或终端设备103,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等, 还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介 质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为了提高通信的可靠性,现有技术采用的方法是在连续的多个时隙(slot)对同一数据进行多次重复传输,这多次重复传输可以分别对应一个冗余(redundancy version,RV)版本。但是,该传输方案依赖于信道的时域相关性,只有在信道在时域上有快变的性质时,才能够通过多次传输获得分集增益。举例来说,假设时隙1的数据传输解调失败,时隙2重复传输,而时隙1对应的信道和时隙2对应的信道是高相关的,那么可能会导致在时隙2的传输解调失败。只有在时隙2对应的信道与时隙1对应的信道有较大的差异的时候,才能够提高第二次传输成功的概率。为了提高传输的可靠性,本申请提供了一种数据传输方法,该方法通过将空域和时域相结合,在多个时域资源上通过至少两份不同的空域资源向终端设备发送数据,来提高数据传输成功的概率。以下,对本申请提供的方案进行说明。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、参考信号:参考信号可用于信道测量或者信道估计等。参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。
其中,参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号块(synchronization signal block,SSB)以及探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SSB资源、SRS资源(SRS resource)。
需要说明的是,上述SSB也可以称为同步信号(synchronization signal,SS)或物理广播信道块physical broadcast channel block,PBCH block)。应理解,上文中列举的参考信号仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
2、天线端口(antenna port):简称端口。是指被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
3、准共址(quasi-co-location,QCL):或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数是信道大尺度参数,可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
4、冗余版本。一个数据的冗余版本是指在所述数据经过编码的编码比特中,根据冗余版本的索引确定的编码比特子集。所述冗余版本的索引对应了所述编码比特子集在编码比特中的起始比特位置。
5、时域单元
本申请中涉及的时域单元可以是时隙(slot)、迷你时隙(mini-slot)、符号、子帧、帧、系统帧、无线帧、半帧等,本申请对此不作限定。
图2是本申请提供的一种数据传输方法200的示意性流程图。该方法可以应用于图1所示的系统100,但本申请实施例对此不作限定。以下,对方法200的各步骤进行说明。
S210,终端设备接收网络设备发送的DCI。
应理解,该网络设备为可以调度该终端设备的多个网络设备中的任一网络设备,例如可以是主基站,但本申请对此不作限定。以该方法应用于如1所示的系统为例来说,该终端设备可以是终端设备103,该网络设备可以是网络设备101,也可以是网络设备102。
S220,终端设备根据该DCI确定多个QCL信息。
其中,该多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息。所述多个QCL信息中至少两个QCL信息不同。
可选地,该多个QCL信息用于同一下行数据的多次重复传输。同一下行数据是指该下行数据对应的比特流的信息比特相同或者编码比特相同。
一个QCL信息可以用于一次传输或者接收。具体地,一个QCL信息用于确定至少一个天线端口(或DMRS端口)与至少一个参考信号的准共址关系。QCL信息还包括至少一个天线端口(或DMRS端口)与至少一个参考信号的准共址关系所关联的至少一个信道大尺度参数。该至少一个信道大尺度参数可以通过QCL类型表示。其中,当QCL信息用于确定至少一个天线端口(或DMRS端口)与多个参考信号的准共址关系时,多个参考信号所对应的至少一个信道大尺度参数至少部分不同,即,多个参考信号所对应的准共址类型不同。
两个QCL信息不同可以是指,这两个QCL信息中至少对应一种QCL类型的两个参考信号不同。比如,若QCL信息#1中QCL类型#1对应的参考信号为参考信号#1,QCL信息#2中QCL类型#1对应的参考信号为参考信号#2,参考信号#1和参考信号#2不同,则可以称QCL信息#1和QCL信息#2不同。QCL类型#1例如可以是QCL type A、QCL type B、QCL type C和QCL type D中的一种。
本领域技术人员可以理解,一个QCL信息可以表征一个信道特征,不同的两个QCL信息所表征的两个信道特征不同。因此,根据不同QCL信息接收的下行数据可以认为是来自两个不同的网络设备,例如TRP,面板,波束等。
示例性地,本申请中,QCL信息的数量和时域单元的数量可以相同,每个时域单元对应的QCL信息的数量可以相同,或者,至少两个时域单元对应的QCL信息的数量可以不同。若一个时域单元对应至少两个QCL信息,这两个QCL信息可以相同,也可以不同。若每个时域单元对应的至少两个QCL信息相同,则至少两个时域单元所对应的QCL信息可以不同。比如,时域单元#1对应的两个QCL信息都为QCL信息#1,时域单元#2可以对应QCL信息#2,QCL信息#1和QCL信息#2不同。
示例性的,本申请中,QCL信息的数量和时域单元的数量也可以不同。比如,该多个时域单元对应的QCL信息的数量不同。举例来讲,该多个时域单元中一个时域单元可以对应1个QCL信息,另一时域单元可以对应2个QCL信息。
进一步的,QCL信息的数量与时域单元的数量以及第一参数有关。如QCL信息的数量可以是时域单元的数量与第一参数的乘积。第一参数可以是一个时域单元的码字的数量、一个时域单元的传输块的数量、一个时域单元的天线端口组的数量、一个时域单元的传输层或数据流的数量,或一个时域单元的码分复用组的数量等。
应理解,QCL信息与时域单元对应是指,网络设备在该时域单元上根据该QCL信息进行下行数据传输,相应地,终端设备在该时域单元上根据该QCL信息接收下行数据。
在一个示例中,该多个时域单元与该多个QCL的关系可以如图3所示。参见图3,DCI调度该终端设备在四个时域单元(即,时域单元#1至时域单元#4)进行PDSCH接收,时域单元#1至时域单元#4与QCL信息#1至QCL信息#4一一对应,每个QCL信息可以对应一个网络设备,可以认为终端设备在时域单元#1至时域单元#4上分别接收来自网络设备#1至网络设备#4的数据。相比于仅利用时域分集或者仅利用空域分集的方式,这种通过时域和空域相结合的方式,能够充分利用时域分集和空域分集来提高数据传输的可靠性。
本申请中,该多个时域单元又可以称为时间单元,可以在时域上连续,也可以不连续,本申请对此不作限定。此外,该多个时域单元中可能存在不用于下行传输的时域单元,如用于上行传输的时域单元,在此情况下,终端设备将不会在该用于上行传输的时域单元进行数据接收,与该用于上行传输的时域单元对应的QCL信息将被视作无用的信息。也就是说,终端设备根据多数多个时域单元中,用下行传输的时域单元的QCL信息接收下行数据。
示例性的,可以预先定义时域单元的图样(pattern),如在一段时间内传输或不传输的时域单元的pattern,这样网络设备通过指示时域单元的pattern就可以让终端设备知道需要在哪些时域单元上接收下行数据。
在一种可能的实现方式中,所述多个QCL信息可以由该DCI携带的信息指示,即,该DCI包括指示该多个QCL信息的信息。或者,多个QCL信息通过多个DCI携带的信息指示,其中一个DCI携带部分QCL信息的指示信息。
进一步的,所述DCI携带的信息所指示的QCL信息为多个QCL信息中的部分QCL信息。比如,该多个QCL信息可以通过对该部分QCL信息进行循环扩展或者相邻扩展获得。举例来说,该多个时域单元为时域单元#1至时域单元#4,该DCI可以携带QCL信息#1和QCL信息#2,通过对该DCI所携带的QCL信息进行循环扩展可获得该多个QCL信息为{QCL信息#1,QCL信息#2,QCL信息#1,QCL信息#2},这四个QCL信息依次与时域单元#1至时域单元#4对应。或者,通过对该DCI所携带的QCL信息进行相邻扩展可获得该多个QCL信息为{QCL信息#1,QCL信息#1,QCL信息#2,QCL信息#2},这四个QCL信息依次与时域单元#1至时域单元#4对应。需要说明的是,若进行循环扩展或者相邻扩展后的QCL信息的数量超过该多个QCL信息的数量,则可以将多余的QCL信息丢弃。也就是说,多个QCL信息中有至少2个QCL相同。多个QCL信息中有至少2个QCL相同时,用于相邻的时域单元的QCL信息相同,且相同的QCL信息仅对应相邻的 时域单元。或者,用于相邻的时域单元的QCL信息不同。
S230,网络设备根据该多个QCL信息发送下行数据。相应地,终端设备根据该多个QCL信息接收下行数据。
具体地,每个网络设备可以根据其对应的QCL信息进行数据传输,终端设备根据该多个QCL信息,在相应地时域单元上进行接收。
本申请提供的数据传输方法,由于多个时域单元所对应的多个QCL信息中至少两个QCL信息不同,也就是说,在多个时域单元进行的多个传输至少两次传输来自不同的网络设备,因此能够更好的利用信道的空间相关性和时间相关性,进行能够提高数据传输可靠性。
进一步地,该多个QCL信息中每个QCL信息关联该下行数据的一个冗余版本和下行数据的一个天线端口组中的至少一种。
本申请中,天线端口组可以包括一个或多个天线端口。若天线端口组仅包括一个天线端口,天线端口组还可以称为天线端口。该天线端口组可以是DMRS天线端口组,该天线端口可以是DMRS端口,但本申请对此不作限定。也就是说,每个QCL信息也可以关联该下行数据的DMRS端口。
具体来讲,每个QCL信息可以关联该下行数据的一个冗余版本。或者,每个QCL信息可以关联一个天线端口组。或者,每个QCL信息可以同时关联该下行数据的一个冗余版本和一个天线端口组(或DMRS端口组)。
进一步地,不同的QCL信息所关联的下行数据的冗余版本或下行数据的天线端口组可以不同,或者下行数据的冗余版本和下行数据的天线端口组都不同。也就是说,根据不同的QCL信息所传输的下行数据的冗余版本不同,或者,根据不同的QCL信息进行下行数据传输时所使用的天线端口组不同。冗余版本可以认为是码域资源,通过结合时域、空域和码域资源进行下行数据传输,能够进一步提高数据传输可靠性。
本申请所涉及的天线端口可以通过DCI指示,DCI指示天线端口的标识。所述天线端口的标识与DMRS端口的标识具有一一对应的关系。
另外,所述多个时域单元中不同时域单元对应的天线端口组可以不同,但本申请实施例对此不作限定。
可选地,作为本申请一个实施例,该DCI可以包括多个TCI指示信息,每个TCI指示信息用于指示一个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
示例性的,该DCI可以包括多个TCI域,每个TCI域中的信息为一个TCI状态。一个TCI状态可以包括一个QCL信息,也可以包括多个QCL信息。这样,通过多个TCI域指示多个TCI状态,可以灵活配置TCI状态。
应理解,若一个TCI状态仅包括一个QCL信息,那么该DCI中的该多个TCI指示信息中至少两个TCI指示信息不同。若一个TCI状态包括多个QCL信息,这多个QCL信息可以不同,但本申请对此不作限定。若一个TCI状态所包括的多个QCL信息不同,那么该DCI中的该多个TCI指示信息可以相同,但本申请对此不作限定。
进一步地,多个TCI指示信息与多个时域单元一一对应。比如,假设该多个时域单元的数量为4,该DCI可以包括4个TCI域,每个TCI域所指示的TCI状态与一个时域单 元对应。每个TCI状态所包括的QCL信息可以相同,也可以不同,本申请对此不作限定。又如,假设该多个时域单元的数量为4,该DCI可以包括2个TCI域,可以通过对这2个TCI域所指示的TCI状态信息循环扩展或者相邻扩展,得到4个TCI状态,这4个TCI状态与4个时域单元一一对应。
可选地,作为本申请一个实施例,该DCI可以包括一个TCI指示信息,该TCI指示信息用于指示一个TCI状态组,该TCI状态组包括多个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。所述TCI状态组也可以称为TCI状态序列、TCI状态图样等。
通过一个TCI指示信息指示一个TCI状态组来指示多个QCL信息,能够减少配置QCL信息所需的信令开销。
示例性的,TCI指示信息可以是该DCI中的TCI域中的信息,该TCI指示信息可以指示一个TCI状态组,比如指示TCI状态组#1,TCI状态组#1包括多个TCI状态:{TCI状态#1,TCI状态2,……},TCI状态组#1中的每个TCI状态包括一个或多个QCL信息。TCI状态组#1中所包括的TCI状态的数量可以和时域单元的数量相同,TCI状态组#1所包括的多个TCI状态和多个时域单元一一对应。TCI状态组#1中所包括的TCI状态的数量也可以和时域单元的数量不同,比如,可以少于时域单元的数量。此时,可以通过对TCI状态组#1中所包括的TCI状态进行循环扩展或者相邻扩展获得与时域单元的数量相同的TCI状态,每个TCI状态可以对应一个时域单元。
进一步地,该TCI状态组为多个TCI状态组中的一个,该多个TCI状态组为网络设备通过MAC CE配置的。也就是说,网络设备通过MAC CE配置多个TCI状态组,DCI激活其中的一个TCI状态组。
示例性地,该多个TCI状态组属于网络设备通过RRC信令配置的TCI状态组。也就是说,网络设备通过RRC信令为终端设备配置了多个TCI状态组,又通过MAC CE配置了该多个TCI状态组中的至少两个TCI状态组,最后通过DCI激活其中的一个TCI状态组。
示例性的,网络设备也可以通过RRC信令配置多个TCI状态,然后通过MAC CE配置多个TCI状态组,每个TCI状态组包括RRC配置的一个或多个TCI状态。
上文中所描述的TCI状态的可以至少包括两个参考信号与参考信号所对应的QCL类型。其中,以两个参考信号为例,两个参考信号各自所对应的QCL类型相同,即,两个参考信号所关联的信道大尺度参数相同。两个参考信号可以相同或不同。两个参考信号相同是指参考信号的标识相同,不同是指参考信号的标识不同。所述标识可以为资源标识。其中,两个参考信号各自所对应的QCL类型相同可以是指,TCI状态中所配置的两个QCL类型相同,或者为TCI状态中所配置的一个QCL类型对应两个参考信号。所述TCI中包含参考信号是指TCI中包含指示所述参考信号的指示信息,所述指示信息指示参考信号的标识或者所述指示信息可以是参考信号的标识。
一种实现方式中,一个DCI可以指示一个TCI状态,这个TCI状态里对于一个QCL类型配了至少两个参考信号(reference signal,RS)(或RS集合)。一个TCI状态中可以包括多个RS(或多个RS集合),该多个RS可以用于来自多个网络设备(例如,TRP)的PDSCH传输。这里,多个RS(或多个RS集合)与多个天线端口组或者多个码字关联, 也即一个RS(或RS集合)与一个天线端口组或码字里的DMRS有QCL关联关系。一个天线端口组或者一个码字还关联1个冗余版本RV。
另一种实现方式中,一个DCI可以指示2个TCI状态,该两个TCI状态用于同一个时域单元的PDSCH。一个TCI状态里面可以包括多个具有相同的QCL类型的QCL信息,该多个QCL信息可以用于来自多个网络设备的PDSCH传输。一个TCI状态用于一个天线端口组或者码字的QCL关系指示。这里,一个TCI状态关联一个冗余版本。
以下对TCI状态的可能的形式进行举例说明。
形式一
TCI状态包括第一QCL信息和第二QCL信息。第一QCL信息包括第一参考信号和第一QCL类型,第二QCL信息包括第二参考信号和所述第一QCL类型,第一参考信号和第二参考信号可以相同或不同,第一参考信号与第一天线端口组满足QCL关系,第二参考信号与第二天线端口组满足QCL关系。
第一参考信号与第一天线端口组之间的QCL关系,以及第二参考信号与第二天线端口组之间的QCL关系可以是预定义的,比如,可以预定义标识较小的参考信号与标识较小的天线端口组对应,但本申请实施例对此不作限定。此外,TCI状态也可以包括与第一参考信号满足QCL关系的第一天线端口组,以及与第二参考信号满足QCL关系的第二天线端口组。
进一步地,第一QCL类型为QCL type A。
示例性的,一个TCI状态可以包括:
RS#1和对应的QCL type A;
RS#2和对应的QCL type A。
其中,RS#1和RS#2为两个不同的参考信号。
示例性地,一个TCI状态可以包括:
RS#1和对应的QCL type A,
DMRS group#1;
RS#2和对应的QCL type A,
DMRS group#2。
其中,RS#1和RS#2为两个不同的参考信号,DMRS group#1和DMRS group#2为两个不同的天线端口组。
进一步地,第一天线端口组和第二天线端口组与多个时域单元中的同一时域单元关联。或者,第一天线端口组和第二天线端口组分别与该多个时域单元中的不同时域单元关联,在此情况下,可以理解,一个TCI状态可以对应两个时域单元。
形式二
TCI状态包括第一QCL信息和第二QCL信息。第一QCL信息包括第一参考信号和第一QCL类型,以及第三参考信号和第二QCL类型,第二QCL信息包括第二参考信号和所述第一QCL类型,以及第四参考信号和第二QCL类型。第一参考信号和第二参考信号不同,第三参考信号和第四参考信号不同。第一参考信号和第三参考信号均与第一天线端口组满足QCL关系,第二参考信号和第四参考信号均与第二天线端口组满足QCL关系。
第一参考信号与第一天线端口组之间的QCL关系,以及第二参考信号与第二天线端 口组之间的QCL关系可以是预定义的,但本申请实施例对此不作限定。比如,TCI状态可以包括与第一参考信号和第三参考信号满足QCL关系的第一天线端口组,以及与第二参考信号和第四参考信号满足QCL关系的第二天线端口组。
进一步地,第一QCL类型为QCL type A,第二QCL类型为QCL type D。
示例性的,一个TCI状态可以包括:
RS#1和对应的QCL type A,
RS#3和对应的QCL type D;
RS#2和对应的QCL type A,
RS#4和对应的QCL type D。
其中,RS#1和RS#2为两个不同的参考信号,RS#3和RS#4为两个不同的参考信号,并且RS#1和RS#3不同,RS#2和RS#4不同。
示例性地,一个TCI状态可以包括:
RS#1和对应的QCL type A,
RS#3和对应的QCL type D,
DMRS group#1;
RS#2和对应的QCL type A,
RS#4和对应的QCL type D,
DMRS group#2。
其中,RS#1和RS#2为两个不同的参考信号,RS#3和RS#4为两个不同的参考信号,并且RS#1和RS#3不同,RS#2和RS#4不同,DMRS group#1和DMRS group#2为两个不同的DMRS端口组。该DMRS group#1的标识与第一天线端口组的标识对应,DMRS group#2的标识与第二天线端口组的标识对应。
进一步地,DMRS group#1和DMRS group#2与多个时域单元中的同一时域单元关联。或者,DMRS group#1和DMRS group#2分别与该多个时域单元中的不同时域单元关联,在此情况下,可以理解,一个TCI状态可以对应两个时域单元。
形式三
TCI状态包括第一参考信号、第二参考信号和对应的第一QCL类型,第一参考信号和第二参考信号不同,第一参考信号与第一天线端口组满足QCL关系,第二参考信号与第二天线端口组满足QCL关系。
第一参考信号与第一天线端口组之间的QCL关系,以及第二参考信号与第二天线端口组之间的QCL关系可以是预定义的,但本申请实施例对此不作限定。比如,TCI状态可以包括与第一参考信号满足QCL关系的第一天线端口组,以及与第二参考信号满足QCL关系的第二天线端口组。
进一步地,第一QCL类型为QCL type A。
形式三可以理解为是对形式一的变形。在形式三中,第一参考信号和第一QCL类型可以认为属于第一QCL信息,第二参考信号和第一QCL类型可以认为属于第二QCL信息。
示例性的,一个TCI状态可以包括:
QCL type A,
RS#1和RS#2。
其中,RS#1和RS#2为两个不同的参考信号。
示例性地,一个TCI状态可以包括:
QCL type A,
RS#1,DMRS group#1,
RS#2,DMRS group#2。
其中,RS#1和RS#2为两个不同的参考信号,DMRS group#1和DMRS group#2为两个不同的DMRS端口组。该DMRS group#1的标识与第一天线端口组的标识对应,DMRS group#2的标识与第二天线端口组的标识对应。
进一步地,DMRS group#1和DMRS group#2与多个时域单元中的同一时域单元关联。或者,DMRS group#1和DMRS group#2分别与该多个时域单元中的不同时域单元关联,在此情况下,可以理解,一个TCI状态可以对应两个时域单元。
形式四
TCI状态包括第一参考信号、第二参考信号和对应的第一QCL类型,以及第三参考信号、第四参考信号和对应的第二QCL类型。第一参考信号和第二参考信号不同,第一参考信号与第一天线端口组满足QCL关系,第二参考信号与第二天线端口组满足QCL关系。第一参考信号和第二参考信号不同,第三参考信号和第四参考信号不同。第一参考信号和第三参考信号均与第一天线端口组满足QCL关系,第二参考信号和第四参考信号均与第二天线端口组满足QCL关系。
第一参考信号与第一天线端口组之间的QCL关系,以及第二参考信号与第二天线端口组之间的QCL关系可以是预定义的,但本申请实施例对此不作限定。比如,TCI状态可以包括与第一参考信号和第三参考信号满足QCL关系的第一天线端口组,以及与第二参考信号和第四参考信号满足QCL关系的第二天线端口组。
进一步地,第一QCL类型为QCL type A,第二QCL类型为QCL type D。
形式四可以理解为是对形式二的变形。在形式四中,第一参考信号和第一QCL类型,以及第三参考信号和第二QCL类型可以认为属于第一QCL信息,第二参考信号和第一QCL类型,以及第四参考信号和第二QCL类型可以认为属于第二QCL信息。
示例性的,一个TCI状态可以包括:
QCL type A,
RS#1和RS#2;
QCL type D,
RS#3和RS#4;
其中,RS#1和RS#2为两个不同的参考信号,RS#3和RS#4为两个不同的参考信号,并且RS#1和RS#3不同,RS#2和RS#4不同。
示例性地,一个TCI状态可以包括:
QCL type A,
RS#1,DMRS group#1,
RS#2,DMRS group#2;
QCL type D,
RS#3,DMRS group#1,
RS#4,DMRS group#2。
其中,RS#1和RS#2为两个不同的参考信号,RS#3和RS#4为两个不同的参考信号,并且RS#1和RS#3不同,RS#2和RS#4不同,DMRS group#1和DMRS group#2为两个不同的DMRS端口组。该DMRS group#1的标识与第一天线端口组的标识对应,DMRS group#2的标识与第二天线端口组的标识对应。
进一步地,DMRS group#1和DMRS group#2与多个时域单元中的同一时域单元关联。或者,DMRS group#1和DMRS group#2分别与该多个时域单元中的不同时域单元关联,在此情况下,可以理解,一个TCI状态可以对应两个或更多时域单元。
示例性的,QCL信息中所包括的参考信号可以是非零功率(non-zero power,NZP)CSI-RS参考信号或同步信号块SSB或信道参测信号SRS等。
可选地,本申请中每个TCI状态还可以关联下行数据的冗余版本。TCI状态与冗余版本的关联关系可以是预定义的或者高层配置的,那么,根据TCI状态,可以确定所关联的RV版本信息。
可选地,本申请中每个TCI状态中还可以关联天线端口组信息。比如,TCI状态与天线端口组的关联关系可以是预定义的或者高层配置的,一个天线端口组可以关联多个TCI状态,在确定TCI状态后,可以确定对应的天线端口组。
可选地,作为本申请一个实施例,终端设备可以根据所述多个QCL信息,确定相位追踪参考信号(phase tracking reference signal,PTRS)的时频资源映射位置。如,当相邻两个时域单元所对应的QCL信息不同时,标识较大的时域单元中的PTRS的最小映射时域符号为根据该时域单元确定的时域符号。
可选地,作为本申请一个实施例,当所述下行数据的调度时延小于一个阈值时,所述多个QCL信息中的至少一个QCL信息与控制资源集合(control resource set,CORESET)有对应关系。比如,所述QCL信息是在CORESET的配置信息中配置的。用于确定数据的QCL信息还可以用于确定CORESET中传输的控制信道(physical downlink control channel,PDCCH)的QCL关系。多个用于确定数据的QCL信息中还有部分QCL信息是可以用于确定CORESET中传输的控制信道PDCCH的QCL关系。所述PDCCH的QCL关系是指:PDCCH中的DMRS与参考信号具有准共址关系;该参考信号是QCL信息中的参考信息。本申请中所称的调度时延是指从发送DCI到发送下行数据信道的时间间隔,或者是接收DCI到接收下行数据信道的时间间隔。
所述调度时延是所述DCI所在的时域单元与多个时域单元中的第一个时域单元或者任意一个时域单元之间的时间。该多个时域单元是前述多个QCL信息对应的时域单元。
例如,调度时延是发送DCI的slot,与发送PDSCH的多个slot中的第一个slot之间的时间间隔,或者是发送DCI的slot,与发送PDSCH的多个slot中的任一个slot之间的时间间隔。再如,调度时延是接收DCI的slot,与接收PDSCH的多个slot中的第一个slot之间的时间间隔,或者是接收DCI的slot,与接收PDSCH的多个slot中的任一个slot之间的时间间隔。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请提供的数据传输方法,由于多个时域单元所对应的多个QCL信息中至少两个QCL信息不同,也就是说,在多个时域单元进行的多个传输至少两次传输来自不同的网络设备,因此能够提高数据传输可靠性。以上,结合图2和图3详细说明了本申请实施例提供的数据传输方法。以下,结合图4至图6详细说明本申请实施例提供的通信装置。
图4是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200中的终端设备,该通信装置1000可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,通信单元1100,用于接收下行控制信息DCI;处理单元1200,用于根据该DCI确定多个准共址QCL信息,该多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息,该多个QCL信息中至少两个QCL信息不同;该通信单元1100还用于,根据该多个QCL信息接收下行数据。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法500中的网络设备,该通信装置1000可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,通信单元1100,用于发送下行控制信息DCI,该DCI包括多个准共址QCL信息,该多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息,该多个QCL信息中至少两个QCL信息不同;根据该多个QCL信息发送下行数据。
结合上述两种可能的设计,可选地,该多个QCL信息用于同一下行数据的多次重复传输。
可选地,每个QCL信息关联该下行数据的一个冗余版本和下行数据的一个端口组中的至少一种。
可选地,该DCI包括多个传输配置指示TCI指示信息,每个TCI指示信息用于指示一个TCI状态,每个TCI状态包括该多个QCL信息中的至少一个QCL信息。
可选地,该DCI包括一个传输配置指示TCI指示信息,该TCI指示信息用于指示一个TCI状态组,该TCI状态组包括多个TCI状态,每个TCI状态包括该多个QCL信息中的至少一个QCL信息。
可选地,该TCI状态组为多个TCI状态组中的一个,该多个TCI状态组为网络设备通过媒体接入控制控制元素MAC CE配置的。
可选地,该多个TCI状态组属于该网络设备通过RRC信令所配置的TCI状态组。
可选地,该多个TCI状态与该多个时域单元一一对应。
可选地,该多个TCI状态通过循环扩展或者相邻扩展的方式与该多个时域单元对应。
可选地,该TCI状态包括第一QCL信息和第二QCL信息,该第一QCL信息指示第一参考信号和第一QCL类型,该第二QCL信息指示第二参考信号和该第一QCL类型,该第一参考信号和该第二参考信号不同,该第一参考信号与第一天线端口组满足QCL关系,该第二参考信号与第二天线端口组满足QCL关系。
可选地,该第一QCL信息还指示第三参考信号和第二QCL类型,该第二QCL信息还指示第四参考信号和该第二QCL类型,该第三参考信号和该第四参考信号不同,该第三参考信号与该第一天线端口组满足QCL关系,该第四参考信号与该第二天线端口组满足QCL关系。
可选地,该第一天线端口组和该第二天线端口组与该多个时域单元中的同一时域单元关联。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
本申请提供的通信装置,由于多个时域单元所对应的多个QCL信息中至少两个QCL信息不同,也就是说,在多个时域单元进行的多个传输至少两次传输来自不同的网络设备,因此能够提高数据传输可靠性。
应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图5中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图5中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图6中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图6中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图5是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图4中的处理单元对应。
上述收发器2020可以与图4中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中, 接收器用于接收信号,发射器用于发射信号。
应理解,图5所示的终端设备2000能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图6是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图4中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送DCI。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图4中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述DCI等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图6所示的基站3000能够实现图2所示的方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相 应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2和图5所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应 用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种数据传输方法,其特征在于,包括:
    接收下行控制信息DCI;
    根据所述DCI确定多个准共址QCL信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息;
    根据所述多个QCL信息接收下行数据。
  2. 一种数据传输方法,其特征在于,包括:
    发送下行控制信息DCI,所述DCI包括多个准共址QCL信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息;
    根据所述多个QCL信息发送下行数据。
  3. 如权利要求1或2所述的方法,其特征在于,所述多个QCL信息用于同一下行数据的多次重复传输。
  4. 如权利要求3所述的方法,其特征在于,每个QCL信息关联所述下行数据的一个冗余版本和下行数据的一个天线端口组中的至少一种。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述DCI包括多个传输配置指示TCI指示信息,每个TCI指示信息用于指示一个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
  6. 如权利要求1至4中任一项所述的方法,其特征在于,所述DCI包括一个传输配置指示TCI指示信息,所述TCI指示信息用于指示一个TCI状态组,所述TCI状态组包括多个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
  7. 如权利要求6所述的方法,其特征在于,所述TCI状态组为多个TCI状态组中的一个,所述多个TCI状态组为网络设备通过媒体接入控制控制元素MAC CE配置的。
  8. 如权利要求7所述的方法,其特征在于,所述多个TCI状态组属于所述网络设备通过无线资源控制RRC信令所配置的TCI状态组。
  9. 如权利要求6至8中任一项所述的方法,其特征在于,所述多个TCI状态与所述多个时域单元一一对应。
  10. 如权利要求6至8中任一项所述的方法,其特征在于,所述多个TCI状态通过循环扩展或者相邻扩展的方式与所述多个时域单元对应。
  11. 如权利要求10所述的方法,其特征在于,所述多个TCI状态的数量为2,所述多个时域单元的数量为4;
    以及,所述多个TCI状态通过循环扩展的方式与所述多个时域单元对应,包括:所述多个TCI状态中的第一个TCI状态与所述多个时域单元中的第一个和第三个时域单元对应,所述多个TCI状态中的第二个TCI状态与所述多个时域单元中的第二个和第四个时域单元对应,或者,所述多个TCI状态通过相邻扩展的方式与所述多个时域单元对应,包括:所述多个TCI状态中的第一个TCI状态与所述多个时域单元中的第一个和第二个时域单元对应,所述多个TCI状态中的第二个TCI状态与所述多个时域单元中的第三个和第四个时域单元对应。
  12. 如权利要求5至11中任一项所述的方法,其特征在于,所述TCI状态包括第一QCL信息和第二QCL信息,所述第一QCL信息包括第一参考信号和第一QCL类型,所述第二QCL信息包括第二参考信号和所述第一QCL类型,所述第一参考信号和所述第二参考信号不同,所述第一参考信号与第一天线端口组满足QCL关系,所述第二参考信号与第二天线端口组满足QCL关系。
  13. 如权利要求12所述的方法,其特征在于,所述第一QCL信息还包括第三参考信号和第二QCL类型,所述第二QCL信息还包括第四参考信号和所述第二QCL类型,所述第三参考信号和所述第四参考信号不同,所述第三参考信号与所述第一天线端口组满足QCL关系,所述第四参考信号与所述第二天线端口组满足QCL关系。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一天线端口组和所述第二天线端口组与所述多个时域单元中的同一时域单元关联。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,若所述多个时域单元包括用于上行传输的时域单元,则不使用所述用于上行传输的时域单元所对应的QCL信息。
  16. 一种通信装置,其特征在于,包括:
    通信单元,用于接收下行控制信息DCI;
    处理单元,用于根据所述DCI确定多个准共址QCL信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息;
    所述通信单元还用于,根据所述多个QCL信息接收下行数据。
  17. 一种通信装置,其特征在于,包括:
    通信单元,用于发送下行控制信息DCI,所述DCI包括多个准共址QCL信息,所述多个QCL信息与多个时域单元对应,每个时域单元对应至少一个QCL信息;
    所述通信单元还用于,根据所述多个QCL信息发送下行数据。
  18. 如权利要求16或17所述的装置,其特征在于,所述多个QCL信息用于同一下行数据的多次重复传输。
  19. 如权利要求18所述的装置,其特征在于,每个QCL信息关联所述下行数据的一个冗余版本和下行数据的一个天线端口组中的至少一种。
  20. 如权利要求12至15中任一项所述的装置,其特征在于,所述DCI包括多个传输配置指示TCI指示信息,每个TCI指示信息用于指示一个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
  21. 如权利要求12至19中任一项所述的装置,其特征在于,所述DCI包括一个传输配置指示TCI指示信息,所述TCI指示信息用于指示一个TCI状态组,所述TCI状态组包括多个TCI状态,每个TCI状态包括所述多个QCL信息中的至少一个QCL信息。
  22. 如权利要求21所述的装置,其特征在于,所述TCI状态组为多个TCI状态组中的一个,所述多个TCI状态组为网络设备通过媒体接入控制控制元素MAC CE配置的。
  23. 如权利要求22所述的装置,其特征在于,所述多个TCI状态组属于所述网络设备通过无线资源控制RRC信令所配置的TCI状态组。
  24. 如权利要求21至23中任一项所述的装置,其特征在于,所述多个TCI状态与所述多个时域单元一一对应。
  25. 如权利要求21至23中任一项所述的装置,其特征在于,所述多个TCI状态通过 循环扩展或者相邻扩展的方式与所述多个时域单元对应。
  26. 如权利要求25所述的装置,其特征在于,所述多个TCI状态的数量为2,所述多个时域单元的数量为4;
    以及,所述多个TCI状态通过循环扩展的方式与所述多个时域单元对应,包括:所述多个TCI状态中的第一个TCI状态与所述多个时域单元中的第一个和第三个时域单元对应,所述多个TCI状态中的第二个TCI状态与所述多个时域单元中的第二个和第四个时域单元对应,
    或者,所述多个TCI状态通过相邻扩展的方式与所述多个时域单元对应,包括:所述多个TCI状态中的第一个TCI状态与所述多个时域单元中的第一个和第二个时域单元对应,所述多个TCI状态中的第二个TCI状态与所述多个时域单元中的第三个和第四个时域单元对应。
  27. 如权利要求20至26中任一项所述的装置,其特征在于,所述TCI状态包括第一QCL信息和第二QCL信息,所述第一QCL信息包括第一参考信号和第一QCL类型,所述第二QCL信息包括第二参考信号和所述第一QCL类型,所述第一参考信号和所述第二参考信号不同,所述第一参考信号与第一天线端口组满足QCL关系,所述第二参考信号与第二天线端口组满足QCL关系。
  28. 如权利要求27所述的装置,其特征在于,所述第一QCL信息还包括第三参考信号和第二QCL类型,所述第二QCL信息还包括第四参考信号和所述第二QCL类型,所述第三参考信号和所述第四参考信号不同,所述第三参考信号与所述第一天线端口组满足QCL关系,所述第四参考信号与所述第二天线端口组满足QCL关系。
  29. 如权利要求27或28所述的装置,其特征在于,所述第一天线端口组和所述第二天线端口组与所述多个时域单元中的同一时域单元关联。
  30. 如权利要求16至29中任一项所述的装置,其特征在于,若所述多个时域单元包括用于上行传输的时域单元,则不使用所述用于上行传输的时域单元所对应的QCL信息。
  31. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至15中任一项所述的方法。
  32. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2020/071598 2019-01-11 2020-01-11 数据传输方法和通信装置 WO2020143812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738197.1A EP3902354B1 (en) 2019-01-11 2020-01-11 Data transmission based on downlink control information (dci) comprising a plurality of pieces of tci indication information and communication apparatus therefor
US17/371,300 US20210337572A1 (en) 2019-01-11 2021-07-09 Data transmission method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028430.7 2019-01-11
CN201910028430.7A CN111436129B (zh) 2019-01-11 2019-01-11 数据传输方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,300 Continuation US20210337572A1 (en) 2019-01-11 2021-07-09 Data transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020143812A1 true WO2020143812A1 (zh) 2020-07-16

Family

ID=71520425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071598 WO2020143812A1 (zh) 2019-01-11 2020-01-11 数据传输方法和通信装置

Country Status (4)

Country Link
US (1) US20210337572A1 (zh)
EP (1) EP3902354B1 (zh)
CN (1) CN111436129B (zh)
WO (1) WO2020143812A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230027096A (ko) * 2020-09-30 2023-02-27 지티이 코포레이션 전송 구성 지시자들을 사용한 의사 코로케이션 정보의 획득
WO2022077309A1 (zh) * 2020-10-15 2022-04-21 富士通株式会社 无线通信方法、装置和系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180084572A1 (en) * 2015-04-10 2018-03-22 Lg Electronics Inc. Method and wireless device for receiving pdsch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10986647B2 (en) * 2017-05-04 2021-04-20 At&T Intellectual Property I, L.P. Management of group common downlink control channels in a wireless communications system
US10554262B2 (en) * 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
US10506587B2 (en) * 2017-05-26 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in next generation wireless systems
US11546867B2 (en) * 2018-07-25 2023-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and apparatus
EP3833081B1 (en) * 2018-07-27 2023-04-26 Beijing Xiaomi Mobile Software Co., Ltd. Configuration method and apparatus for transmission configuration indication
JP6843110B2 (ja) * 2018-12-26 2021-03-17 シャープ株式会社 端末装置、基地局装置及び通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180084572A1 (en) * 2015-04-10 2018-03-22 Lg Electronics Inc. Method and wireless device for receiving pdsch

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on enhanced PDCCH for NR URLLC", 3GPP TSG RAN WG1 MEETING #92, R1-1801750, 2 March 2018 (2018-03-02), XP051397731, DOI: 20200330143049A *
CATT: "Multi-TRP/panel Transmission Enhancement for Rel-16", 3GPP TSG RAN WG1 MEETING #95, R1-1812635, 16 November 2018 (2018-11-16), XP051478876, DOI: 20200330142543X *
HUAWEI ET AL.: "Enhancements on Multi-TRP/Panel Transmission", 3GPP TSG RAN WG1 MEETING #95, R1-1812243, 16 November 2018 (2018-11-16), XP051478409, DOI: 20200330142453X *
LG ELECTRONICS: "Correction on slot-PDSCH repetition for TDD", 3GPP TSG RAN WG1 MEETING #95, R1-1813734, 16 November 2018 (2018-11-16), XP051489799, DOI: 20200330142702A *
NTT DOCOMO, INC.: "Enhancements on Multi-TRP/Panel Transmission", 3GPP TSG RAN WG1 MEETING #95, R1-1813333, 16 November 2018 (2018-11-16), XP051555360, DOI: 20200330142913A *

Also Published As

Publication number Publication date
CN111436129A (zh) 2020-07-21
EP3902354B1 (en) 2023-10-11
EP3902354A1 (en) 2021-10-27
EP3902354A4 (en) 2022-02-23
US20210337572A1 (en) 2021-10-28
CN111436129B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2023092468A1 (zh) 一种智能中继服务链路的波束指示方法及其装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2020143752A1 (zh) 信息传输的方法和通信装置
WO2020143828A1 (zh) 资源配置的方法和装置
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2020143428A1 (zh) 传输上行信息的方法和通信装置
WO2020156484A1 (zh) 传输信号的方法和装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
US11540267B2 (en) DCI detection method, PDCCH configuration method, and communications apparatus
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2021008416A1 (zh) 确定资源分配的方法和装置
WO2021062764A1 (zh) 终端的定时提前量ta处理的方法和装置
WO2021017611A1 (zh) 数据传输方法和装置
WO2020143812A1 (zh) 数据传输方法和通信装置
WO2021017765A1 (zh) 通信方法和通信装置
WO2020199767A1 (zh) 通信方法、通信装置和系统
WO2019029405A1 (zh) 通信方法与设备
WO2022199346A1 (zh) 指示方法及相关产品
WO2021082985A1 (zh) 接入网络设备的方法和装置
WO2021147112A1 (zh) 通信方法和通信装置
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021068202A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738197

Country of ref document: EP

Effective date: 20210721