WO2020143589A1 - 视频图像解码、编码方法及装置 - Google Patents

视频图像解码、编码方法及装置 Download PDF

Info

Publication number
WO2020143589A1
WO2020143589A1 PCT/CN2020/070552 CN2020070552W WO2020143589A1 WO 2020143589 A1 WO2020143589 A1 WO 2020143589A1 CN 2020070552 W CN2020070552 W CN 2020070552W WO 2020143589 A1 WO2020143589 A1 WO 2020143589A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
processed
knowledge base
identifier
pixel value
Prior art date
Application number
PCT/CN2020/070552
Other languages
English (en)
French (fr)
Inventor
王业奎
虞露
范宇群
于化龙
袁锜超
赵寅
杨海涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143589A1 publication Critical patent/WO2020143589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present application relates to the technical field of image encoding and decoding, and in particular to video image decoding and encoding methods and devices.
  • the knowledge base encoding scheme introduces a knowledge base image (which can be simply referred to as a knowledge image).
  • the knowledge base image is a random part of the current image in the random access segment.
  • the knowledge base image serves as a reference image (such as a long-term reference image) to provide a reference for the image to be encoded or the image to be decoded.
  • Encoding a video sequence using knowledge-based video coding will generate a knowledge layer code stream containing the knowledge base image coding code stream and a main code stream containing the video sequence image reference code base image coding code stream, and the knowledge base Images can be repeatedly referenced by random access fragments of multiple main streams.
  • the decoding of the main video stream must rely on the knowledge base code stream.
  • decoding the main stream video image if the image refers to an image in the knowledge base code stream, you need to decode the image in the knowledge base code stream first. Decoding the video image in the main bitstream, resulting in poor codec performance.
  • the present application provides a video image decoding and encoding method and device.
  • the decoding of the main video stream depends on the knowledge base code stream
  • the encoding and decoding performance of the video image is improved.
  • an embodiment of the present application provides a video image decoding method, including:
  • the first identifier is parsed from the code stream; when the first identifier indicates the reconstruction pixel value of the current to-be-processed image to copy the pixel value of the knowledge base image (For example, the reconstructed pixel value of the knowledge base image or the original pixel value of the knowledge base image), acquire (for example, from the knowledge base image storage unit) the pixel value of the knowledge base image referred to by the current image to be processed; The pixel value of the knowledge base image of determines the reconstructed pixel value of the current image to be processed.
  • the first identifier is used to indicate whether the reconstruction pixel value of the current image to be processed copies the pixel value of the knowledge base image. For example, when the value of the first flag is ture/1, it indicates that the reconstruction pixel value of the current image to be processed copies the pixel value of the knowledge base image; otherwise, when the value of the first flag is false/0, it indicates that the current to be processed The image reconstruction pixel value does not copy the knowledge base image pixel value.
  • Example 1 copying so that the reconstructed pixel value of the current image to be processed is exactly the same as the pixel value of the reference knowledge image;
  • Example 2 copying so that the predicted pixel value of the current image to be processed is exactly the same as the pixel value of the knowledge image that it refers to, and is combined by the predicted pixel value of the current image to be processed and the prediction residual of the current image to be processed (such as summation or superposition Etc.) Get the reconstructed pixel value of the current image to be processed.
  • Example 3 copying so that the predicted pixel value of the current image to be processed is exactly the same as the reconstructed pixel value of the knowledge image referenced by it, and the predicted pixel value of the current image to be processed and the post-processing information of the current image to be processed (such as filtered information) Etc.) Combine (for example, sum or superimpose) to get the reconstructed pixel value of the current image to be processed
  • a first identifier is added to the code stream.
  • the first identifier indicates that the reconstruction pixel value of the current image to be processed copies the pixel value of the knowledge base image
  • the decoding of the current image to be processed in the main code stream is simplified to a certain extent.
  • the process of reconstructing the pixel value that is, determining the pixel value of the current image to be processed by copying the pixel value of the knowledge base image (for example, using the pixel value of the knowledge base image as the pixel value of the current image to be processed), so as to target the The situation that the video image and the reference image in the knowledge base code stream have the same or close to the same (for example, similar) pixel value, to a certain extent, to avoid the codec redundancy of the main code stream and the knowledge base code stream, thereby improving the codec performance .
  • a second identifier is parsed from the code stream, and the second identifier is used to indicate the current to-be-processed
  • the knowledge base image referenced by the image; the acquiring the pixel value of the knowledge base image referenced by the current image to be processed includes: acquiring the pixel value of the knowledge base image indicated by the second identifier.
  • the design can be applied in a scenario that follows the audio and video coding standard (AVS).
  • the second identifier is the index of the knowledge base image referenced by the current image to be processed, and the second identifier in standard text or code can be represented by the syntax element copied_library_picture_idx_in_rcs.
  • the method further includes: when it is determined to perform inter prediction on the current image to be processed to refer to the knowledge base image, parsing a third identifier from the code stream, where the third identifier is used to indicate the current A knowledge base image referenced by the image to be processed; acquiring pixel values of the knowledge base image referenced by the current image to be processed includes: acquiring pixel values of the knowledge base image indicated by the third identifier.
  • HEVC high efficiency video coding
  • VVC multifunctional video coding
  • the third identifier is an index of a knowledge base image.
  • the third identifier may be represented by library_picture_id.
  • the fourth flag parsing the fourth flag from the code stream (for example, the fourth flag can be represented by reference_to_library_picture_flag), the fourth flag is an image-level syntax element, and the fourth flag indicates the current Whether the image to be processed refers to the knowledge base image for inter prediction.
  • the fourth identifier is a first value (for example, ture or 1) to indicate that the current to-be-processed image is inter-predicted by referring to a knowledge base image; otherwise, the fourth identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • the reference image configuration set determines whether to refer to the knowledge base image for the inter prediction of the current image to be processed;
  • the fifth identifier is a first value (for example, ture or 1) to indicate that the video sequence in which the current image to be processed is inter-predicted refers to the knowledge base image; otherwise, the fifth identifier is the second A value (for example, false or 0) to indicate that inter prediction of the video sequence where the current image to be processed is located does not refer to the knowledge base image.
  • a third possible way parsing the reference image configuration set from the code stream, and determining whether to refer to the knowledge base image for inter prediction of the current image to be processed based on the reference image configuration set;
  • the fourth possible way parsing the sixth identifier from the code stream (for example, the sixth identifier can be represented by library_picture_enable_flag), when the sixth identifier indicates inter prediction of the video sequence where the current image to be processed is located
  • a seventh flag is parsed from the code stream (for example, the seventh flag can be represented by reference_to_library_picture_flag), and the seventh flag indicates whether inter-prediction of the current image to be processed refers to the knowledge base image.
  • the sixth identifier is a sequence-level syntax element, and the sixth identifier is used to indicate whether inter-prediction is performed on the video sequence where the current image to be processed refers to a knowledge base image, and the sixth identifier is the A value (for example, ture or 1) to indicate the reference knowledge base image for inter prediction of the video sequence where the current image is to be processed; otherwise, the sixth identifier is a second value (for example, false or 0) to indicate the The video sequence where the current image to be processed is inter-frame predicted does not refer to the knowledge base image.
  • the seventh identifier is a first value (for example, ture or 1) to indicate that the current to-be-processed image is inter-predicted by referring to a knowledge base image; otherwise, the seventh identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • a first value for example, ture or 1
  • the seventh identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • the above design provides several ways to determine whether the current image to be processed refers to the knowledge base image for inter-frame prediction, which is simple and easy.
  • the method further includes: when the first identifier indicates that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image, using the knowledge base image referenced by the current image to be processed to The reconstruction pixel value of the current image to be processed is obtained in a non-copying manner.
  • the first identifier decoded from the code stream does not exist, it is determined that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image, and the knowledge base image referenced by the current image to be processed is used to copy To obtain the reconstructed pixel value of the current image to be processed.
  • the pixel value of the acquired knowledge base image may be used as the pixel value of the current image to be processed, or the pixel value of the current knowledge base image may be
  • the prediction residuals of the processed image are jointly determined (such as superimposed) to reconstruct the pixel value of the current image to be processed, and then the pixel value of the current knowledge base image is used as the predicted pixel value of the current image to be processed, and then the predicted pixel of the current image to be processed.
  • the value and post-processing information of the current image to be processed (for example, filtered information, etc.) jointly obtain the reconstructed pixel value of the current image to be processed.
  • the first identification is carried in a slice header (eg slice_segment_header), an image header (eg inter_picture_header), or a sequence header.
  • the determining the reconstructed pixel value of the current image to be processed based on the acquired pixel value of the knowledge base image includes: using the acquired pixel value of the knowledge base image as the current value of the current image to be processed Reconstruct pixel values.
  • an embodiment of the present application provides a video image encoding method, including:
  • the encoding information when it is determined to perform inter prediction on the current to-be-processed image to refer to the knowledge base image, the encoding information includes a first identifier that is used to indicate whether the reconstruction pixel value of the current to-be-processed image copies the knowledge The pixel value of the library image;
  • the first identifier when the first identifier is a first value, the first identifier is used to indicate the pixel value of the knowledge base image to be copied from the reconstructed pixel value of the current image to be processed.
  • the first identifier is a first value.
  • a first identifier is added to the code stream.
  • the first identifier indicates that the reconstruction pixel value of the current image to be processed copies the pixel value of the knowledge base image, there is no need to decode the reconstruction pixel of the current image to be processed in the main code stream Value, but to determine the pixel value of the current image to be processed by copying the pixel value of the knowledge base image, to a certain extent, it can avoid the coding and decoding redundancy of the main code stream and the knowledge base code stream, reduce the use of codec resources, and reduce Bitstream bit overhead.
  • the encoding information when the first identifier is a first value, the encoding information further includes a second identifier, and the second identifier is used to indicate the knowledge base referenced by the current image to be processed Image; wherein, the pixel value of the knowledge base image indicated by the second identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the second identification is located after the first identification.
  • the encoding information when it is determined that the current image to be processed refers to the knowledge base image for inter prediction, the encoding information further includes a third identifier, and the third identifier is used to indicate the reference to the current image to be processed Knowledge base image of; wherein the pixel value of the knowledge base image indicated by the third identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the first identifier when the first identifier is a second value, the first identifier is used to indicate that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image.
  • the encoding information may further include other identifiers for instructing to determine the reconstruction pixel value of the current image to be processed by a non-copying method;
  • identifications may include an indication indicating an inter prediction mode, such as whether to use a merge model, an indication indicating a reference frame of an image to be processed currently, or an index of a motion vector, etc.
  • the code stream when it is determined to perform inter prediction on the current image to be processed to refer to the knowledge base image, the code stream does not include the first identifier to indicate that the reconstructed pixel values of the current image to be processed are not copied The pixel value of the knowledge base image.
  • the encoding information further includes a fourth identifier, where the fourth identifier is an image-level syntax element, and the fourth identifier is used to indicate whether to refer to the inter prediction for the current image to be processed Knowledge base image.
  • the first mark is located after the fourth mark.
  • the fourth identifier is a first value (for example, ture or 1) to indicate that the current to-be-processed image is inter-predicted by referring to a knowledge base image; otherwise, the fourth identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • the coding information further includes a fifth identifier (such as library_picture_enable_flag) and a reference image configuration set, the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates that the current pending Whether the video sequence of the image is inter-predicted by referring to the knowledge base image, when the fifth flag indicates that the video sequence of the current image to be processed is inter-predicted by the reference knowledge base image, the reference image configuration set is used to indicate the current Whether the image to be processed refers to the knowledge base image for inter prediction.
  • the first identification is located after the reference image configuration set
  • the reference image configuration is located after the fifth identification.
  • the fifth identifier is a first value (for example, ture or 1) to indicate that the video sequence in which the current image to be processed is inter-predicted refers to the knowledge base image; otherwise, the fifth identifier is the second A value (for example, false or 0) to indicate that inter prediction of the video sequence where the current image to be processed is located does not refer to the knowledge base image.
  • the coding information further includes a reference image configuration set, and the reference image configuration set is used to indicate whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the first identifier is located after the reference image configuration set.
  • the encoded information further includes a sixth identifier (such as library_picture_enable_flag), the sixth identifier is a sequence-level syntax element, and the sixth identifier indicates the video sequence where the current image to be processed is located.
  • the coding information also includes a seventh flag (such as reference_to_library_picture_flag) , The seventh identifier is used to indicate whether inter prediction of the current image to be processed refers to a knowledge base image.
  • the sixth identifier is a sequence-level syntax element, and the sixth identifier is used to indicate whether inter-prediction is performed on the video sequence where the current image to be processed refers to a knowledge base image, and the sixth identifier is the A value (for example, ture or 1) to indicate the reference knowledge base image for inter prediction of the video sequence where the current image is to be processed; otherwise, the sixth identifier is a second value (for example, false or 0) to indicate the The video sequence where the current image to be processed is inter-frame predicted does not refer to the knowledge base image.
  • the seventh identifier is a first value (for example, ture or 1) to indicate that the current to-be-processed image is inter-predicted by referring to a knowledge base image; otherwise, the seventh identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • a first value for example, ture or 1
  • the seventh identifier is a second value (for example, false Or 0) to indicate that inter prediction of the current image to be processed does not refer to the knowledge base image.
  • the first identification is carried in a slice header (slice_segment_header), an image header (for example, inter_picture_header), or a sequence header.
  • an embodiment of the present application provides a video image decoding device, including a plurality of functional units for implementing any method of the second aspect.
  • the video image decoding device may include an image storage unit and a decapsulation unit.
  • the image storage unit is used to store knowledge base images
  • the decapsulation unit is configured to parse the first identifier from the code stream when determining the inter-prediction reference knowledge base image for the current image to be processed; when the first identifier indicates the reconstruction pixel value of the current image to be processed copy the
  • the pixel value of the knowledge base image is obtained, the pixel value of the knowledge base image referenced by the current image to be processed is acquired from the image storage unit; the reconstruction of the current image to be processed is determined according to the acquired pixel value of the knowledge base image Pixel values.
  • the unpacking unit is further configured to parse from the code stream when the first identifier indicates that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image
  • a second identifier is used to indicate the knowledge base image referenced by the current image to be processed; in terms of acquiring the pixel value of the knowledge base image referenced by the current image to be processed by the depacketizing unit, Specifically, it is used to obtain the pixel value of the knowledge base image indicated by the second identifier from the image storage unit.
  • the decapsulation unit is further used to parse a third identifier from the code stream when it is determined that the current image to be processed is inter-predicted with reference to a knowledge base image. Used to indicate the knowledge base image referenced by the current image to be processed;
  • the unpacking unit is specifically used to acquire the pixel value of the knowledge base image indicated by the third identifier from the image storage unit.
  • the unpacking unit is also used to determine whether to refer to the knowledge base image for inter prediction of the current image to be processed in any of the following ways:
  • Parsing a fourth identifier from the code stream where the fourth identifier is an image-level syntax element, and the fourth identifier indicates whether inter-prediction of the current image to be processed refers to a knowledge base image;
  • Parsing a fifth identifier from the code stream the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates whether inter-frame prediction is performed on the video sequence where the current image to be processed refers to a knowledge base image, when the The fifth indicator indicates that when inter-frame prediction is performed on the video sequence where the current image to be processed belongs to the reference knowledge base image, whether to refer to the knowledge base for inter-prediction of the current image to be processed is determined based on the reference image configuration set parsed from the code stream image;
  • the device further includes a decoding unit, the unpacking unit, and is further configured to not copy the pixel value of the knowledge base image when the first identifier indicates that the reconstructed pixel value of the current image to be processed
  • the decoding unit uses the knowledge base image to obtain the reconstructed pixel value of the current image to be processed in a non-copying manner.
  • the first identification is carried in a stripe header, an image header, or a sequence header.
  • the unpacking unit in terms of determining the reconstructed pixel value of the current image to be processed based on the acquired pixel value of the knowledge base image, is specifically configured to use the acquired pixel value of the knowledge base image as The reconstructed pixel value of the current image to be processed.
  • an embodiment of the present application provides a video image encoding device, including a plurality of functional units for implementing any method of the third aspect.
  • the video image encoding device may include:
  • Image storage unit for storing knowledge base images
  • Code stream encapsulation unit used to encode the encoded information into the code stream
  • the encoding information when it is determined that the current image to be processed performs inter prediction with reference to the knowledge base image, the encoding information includes a first identifier, and the first identifier is used to indicate whether the reconstruction pixel value of the current image to be processed copies the knowledge base Among the pixel values of the image, when the first identifier is a first numerical value, the first identifier is used to indicate the pixel value of the knowledge base image copied from the reconstructed pixel value of the current image to be processed.
  • the encoding information when the first identifier is a first value, the encoding information further includes a second identifier, and the second identifier is used to indicate the knowledge base referenced by the current image to be processed Image; wherein, the pixel value of the knowledge base image indicated by the second identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the second identification is located after the first identification.
  • the encoding information when it is determined that the current image to be processed refers to the knowledge base image for inter prediction, the encoding information further includes a third identifier, and the third identifier is used to indicate the reference to the current image to be processed Knowledge base image of; wherein the pixel value of the knowledge base image indicated by the third identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the first identifier when the first identifier is a second value, the first identifier is used to indicate that the reconstruction pixel value of the current image to be processed does not copy the pixel value of the knowledge base image; corresponding
  • the encoding information further includes other identifiers for instructing to determine the reconstruction pixel value of the current image to be processed by a non-copying method.
  • the encoding information further includes a fourth identifier, where the fourth identifier is an image-level syntax element, and the fourth identifier is used to indicate whether to refer to the inter prediction for the current image to be processed Knowledge base image.
  • the coding information further includes a fifth identifier and a reference image configuration set, the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates the video sequence where the current image to be processed is located Whether to refer to the knowledge base image for inter prediction, when the fifth flag indicates that inter prediction is performed on the video sequence where the current image to be processed refers to the knowledge base image, the reference image configuration set is used to indicate the current image to be processed Whether inter prediction refers to knowledge base images.
  • the coding information further includes a reference image configuration set, and the reference image configuration set is used to indicate whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the coding information further includes a sixth identifier, which is a sequence-level syntax element, and the sixth identifier indicates inter prediction of the video sequence in which the current image to be processed is located Whether to refer to the knowledge base image, when the sixth identifier indicates that the video sequence where the current image to be processed is inter-predicted refers to the knowledge base image, the encoding information further includes a seventh identifier, and the seventh identifier is an image The syntax element of the level, the seventh identifier is used to indicate whether inter prediction of the current image to be processed refers to a knowledge base image.
  • the first identification is carried in a stripe header, an image header, or a sequence header.
  • an embodiment of the present application provides a video decoder, where the video decoder is used to decode an image from a code stream.
  • the video decoder may implement any of the methods described in the first aspect of the design.
  • the video decoder includes the device according to any design of the third aspect.
  • an embodiment of the present application provides a video encoder that is used to encode an image.
  • the video encoder may implement the method described in the second aspect.
  • the video encoder includes the device described in any of the fourth aspects.
  • an embodiment of the present application provides an apparatus for decoding video data.
  • the apparatus includes:
  • Memory used to store video data in the form of code stream
  • the video decoder is used for parsing the first identifier from the code stream when it is determined that the current to-be-processed image is inter-predicted with reference to the knowledge base image;
  • the pixel value of the knowledge base image is obtained, the pixel value of the knowledge base image referred to by the current image to be processed is acquired; the reconstructed pixel value of the current image to be processed is determined according to the acquired pixel value of the knowledge base image.
  • the first identifier when the first identifier indicates that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image, it parses the second identifier from the code stream, The second identifier is used to indicate the knowledge base image referenced by the current image to be processed; in terms of acquiring the pixel value of the knowledge base image referenced by the current image to be processed, it is specifically used to: obtain the second identification indication Pixel value of the knowledge base image.
  • the video decoder is also used to parse the third identifier from the code stream when it is determined that the current image to be processed is inter-predicted with reference to the knowledge base image, and the third identifier is used to Indicating the knowledge base image referenced by the current image to be processed; in terms of acquiring the pixel value of the knowledge base image referenced by the current image to be processed, specifically used to: acquire the knowledge base image indicated by the third identifier Pixel values.
  • an embodiment of the present application provides an apparatus for encoding video data.
  • the apparatus includes:
  • Video encoder used to encode the encoded information into the code stream
  • the encoding information when it is determined that the current image to be processed performs inter prediction with reference to the knowledge base image, the encoding information includes a second identifier, and the first identifier is used to indicate whether the reconstruction pixel value of the current image to be processed copies the knowledge base Among the pixel values of the image, when the second identifier is a first value, the first identifier is used to indicate the pixel value of the knowledge base image copied from the reconstructed pixel value of the current image to be processed.
  • the coding information when the first identifier is a first value, the coding information further includes a second identifier, and the second identifier is used to indicate the knowledge base referenced by the current image to be processed Image; wherein, the pixel value of the knowledge base image indicated by the second identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the second identification is located after the first identification.
  • the encoding information when it is determined that the current image to be processed refers to the knowledge base image for inter prediction, the encoding information further includes a third identifier, and the third identifier is used to indicate the reference to the current image to be processed Knowledge base image of; wherein the pixel value of the knowledge base image indicated by the third identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • an embodiment of the present application provides an encoding device, including: a non-volatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform any one of the second aspect Some or all steps of this method.
  • an embodiment of the present application provides a decoding device, including: a nonvolatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform any one of the first aspect Some or all steps of this method.
  • an embodiment of the present application provides a computer-readable storage medium that stores program code, where the program code includes any one for performing the first aspect or the second aspect Instructions for some or all steps of this method.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to perform part or all of the steps of any method of the first aspect or the second aspect .
  • FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 for implementing embodiments of the present application;
  • FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present application
  • FIG. 2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present application
  • FIG. 3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present application
  • FIG. 4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present application
  • FIG. 5 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present application
  • FIG. 6 is a schematic diagram of a reference relationship between a random access segment and a knowledge base image used to implement the embodiment of the present application;
  • FIG. 7 is a schematic flowchart of a video image decoding method for implementing an embodiment of the present application.
  • 8A is a schematic structural diagram of a syntax element in a code stream for implementing an embodiment of the present application.
  • 8B is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • 8C is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a video image encoding method for implementing an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another video image decoding method for implementing an embodiment of the present application.
  • 11A is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • 11B is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • 11C is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • 11D is a schematic structural diagram of another syntax element in a code stream for implementing embodiments of the present application.
  • FIG. 12 is a schematic flowchart of another video image encoding method for implementing the embodiment of the present application.
  • FIG. 13 is a structural block diagram of a video image decoding device 1300 for implementing an embodiment of the present application
  • FIG. 14 is a structural block diagram of a video image encoding device 1400 for implementing an embodiment of the present application.
  • the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include a step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
  • Video coding as used herein means video coding or video decoding.
  • Video encoding is performed on the source side and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the “encoding” of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • the video sequence includes a series of pictures, the picture is further divided into slices, and the slices are further divided into blocks.
  • Video coding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • MB macroblock
  • the macroblock can be further divided into multiple prediction blocks (partitions) that can be used for predictive coding.
  • HEVC high-efficiency video coding
  • the basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted.
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • a variety of block units are divided and described using a new tree-based structure.
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CUs can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and coding the encoded image.
  • PU can correspond to the prediction block and is the basic unit of predictive coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
  • PU or TU they all belong to the concept of block (or image block) in essence.
  • the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
  • a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
  • Each CU can be further split into one, two, or four PUs according to the PU split type.
  • the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
  • the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
  • quad-tree and binary-tree Quad-tree and binary-tree (Quad-tree and binary tree, QTBT) split frames are used to split code blocks.
  • the CU may have a square or rectangular shape.
  • the image block to be encoded in the current encoded image may be referred to as the current block.
  • the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
  • the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
  • further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
  • Several video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of a video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
  • the encoder side usually processes the encoded video at the block (video block) level.
  • the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra-frame prediction and inter-frame prediction) and/or reconstruction for processing, ie encoding subsequent blocks.
  • FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and a memory coupled to the one or more processors.
  • Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
  • FIG. 1A depicts the source device 12 and the destination device 14 as separate devices
  • device embodiments may also include both the source device 12 and the destination device 14 or the functionality of both, ie the source device 12 or the corresponding And the destination device 14 or the corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving the encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20.
  • the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture pre-processor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • Picture source 16 which can include or can be any kind of picture capture device, for example to capture real-world pictures, and/or any kind of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (eg, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
  • the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
  • the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
  • the external picture generation device for example It is an external computer graphics processor, computer or server.
  • the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of pixels.
  • the pixels in the array can also be called sampling points.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the array or picture defines the size and/or resolution of the picture.
  • three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
  • the picture includes corresponding red, green, and blue sampling arrays.
  • each pixel is usually expressed in a luminance/chrominance format or color space.
  • YUV format picture it includes the luminance component indicated by Y (sometimes also indicated by L) and the two indicated by U and V.
  • the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
  • the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color toning, or denoising.
  • the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 using a related prediction mode (such as the prediction mode in various embodiments herein), thereby
  • the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5).
  • the encoder 20 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present application on the encoding side.
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
  • the other device may be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or through any type of network.
  • the link 13 is, for example, a direct wired or wireless connection.
  • the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private network and public network, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packets transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
  • the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 4 or FIG. 5 Structural details).
  • the decoder 30 may be used to implement various embodiments described below to implement the application of the chroma block prediction method described in the present application on the decoding side.
  • the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to post-process the image data 33 Transmitted to the display device 34.
  • the display device 34 is used to receive post-processed picture data 33 to display pictures to a user or viewer, for example.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (liquid crystal display (LCD), organic light emitting diode (OLED) display, plasma display, projector, micro LED display, liquid crystal on silicon (LCoS), Digital light processor (digital light processor, DLP) or any other type of display.
  • FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices
  • device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie, the source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • handheld or stationary devices such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • Both the encoder 20 and the decoder 30 may be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate array
  • the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the techniques of the present disclosure . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the present application may be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video decoding).
  • data may be retrieved from local storage, streamed on the network, and so on.
  • the video encoding device can encode the data and store the data to the memory, and/or the video decoding device can retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
  • FIG. 1B is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
  • the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
  • the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video codec/decoder implemented by a logic circuit 47), an antenna 42, one or more Processors 43, one or more memories 44 and/or display devices 45.
  • the imaging device 41, the antenna 42, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, or the like.
  • the video decoding system 40 may also include an optional processor 43, which may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, and the processor 43 may be implemented by general-purpose software, an operating system, and so on.
  • the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • non-volatile Memory for example, flash memory, etc.
  • the memory 44 may be implemented by cache memory.
  • the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
  • the logic circuit 47 may include memory (eg, cache, etc.) for implementing image buffers and the like.
  • the encoder 20 implemented by the logic circuit may include an image buffer (for example, implemented by the logic circuit 47 or the memory 44) and a graphics processing unit (for example, implemented by the logic circuit 47).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein. Logic circuits can be used to perform the various operations discussed herein.
  • decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
  • the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (eg, implemented by the logic circuit 47).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data defining the code segmentation).
  • Video coding system 40 may also include a decoder 30 coupled to antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
  • encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
  • the video image encoding method described in the embodiment of the present application occurs at the encoder 20, and the video image decoding method described in the embodiment of the present application occurs at the decoder 30.
  • the encoder 20 and the decoding in the embodiment of the present application may be a codec corresponding to a video standard protocol such as H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9, or a next-generation video standard protocol (such as H.266, etc.).
  • FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
  • the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter A unit 220, a decoded picture buffer (DPB) 230, a prediction processing unit 260, an entropy encoding unit 270, and a code stream encapsulation unit 280.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, the heavy
  • the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form a backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path for the decoder (see decoder 30 in FIG. 3).
  • the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, a picture in a picture sequence forming a video or a video sequence.
  • the image block 203 may also be referred to as a current picture block or a picture block to be coded
  • the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, other pictures such as the same video sequence That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
  • An embodiment of the encoder 20 may include a segmentation unit (not shown in FIG. 2) for segmenting the picture 201 into a plurality of blocks such as image blocks 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and corresponding grids that define the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
  • image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
  • the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of black and white pictures 201) or three sampling arrays (for example, one brightness array and two chromaticity arrays in the case of color pictures) or An array of any other number and/or category depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction for each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
  • the transform coefficient 207 may also be called a transform residual coefficient, and represents a residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
  • the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost, and so on.
  • a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and a corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting quantization parameters (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
  • QP quantization parameters
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • a suitable quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
  • larger quantization parameters may correspond to coarse quantization (larger quantization step size)
  • the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using a fixed-point approximation including an equation of division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in fixed-point approximation of the equations for quantization step size and quantization parameter.
  • the scale of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
  • the inverse quantized coefficient 211 may also be referred to as an inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
  • the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), in the sample domain
  • the inverse transform block 213 is obtained.
  • the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
  • the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
  • a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
  • the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
  • the decoded picture buffer 230 is also used to store knowledge base images. For the detailed description of the knowledge base, it will not be repeated here.
  • the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, self-adaptive filters Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as the filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
  • Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy coding unit outputs after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access (DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access
  • the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode eg, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • An embodiment of the mode selection unit 262 may be used to select a prediction mode (for example, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
  • the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria .
  • RDO rate distortion optimization
  • the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
  • the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
  • the intra prediction mode set may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
  • non-directional modes such as DC (or mean) mode and planar mode
  • directional modes as defined in the developing H.266.
  • the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DBP 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only A part of the reference picture, for example a search window area around the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied.
  • the set of inter prediction modes may include, for example, a skip mode and a merge mode.
  • the intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
  • the embodiments of the present application may also apply skip mode and/or direct mode.
  • the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) partitioning, or any combination thereof, and for performing predictions for each of block partitions or sub-blocks, for example, where mode selection includes selecting the tree structure of the divided image block 203 and selecting applications The prediction mode for each of the block partitions or sub-blocks.
  • QT quad-tree
  • BT binary-tree
  • TT triple-tree
  • the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
  • the motion estimation unit is used to receive or acquire a picture image block 203 (current picture image block 203 of the current picture 201) and a decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
  • the reconstructed block of the previously decoded picture 231 is used for motion estimation.
  • the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of or form a sequence of pictures that form the video sequence.
  • the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide a reference picture and/or provide a reference to a motion estimation unit (not shown in FIG. 2)
  • the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called motion vector (MV).
  • the motion compensation unit is used to obtain inter prediction parameters and perform inter prediction based on or using the inter prediction parameters to obtain inter prediction blocks 245.
  • the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
  • the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
  • the above inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes inter prediction parameters (such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions).
  • inter prediction parameters such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions.
  • the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
  • the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
  • the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
  • Embodiments of the encoder 20 may be used to select an intra prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203) or minimum rate distortion.
  • a minimum residual eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203
  • minimum rate distortion e.g., a minimum rate distortion
  • the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
  • the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes intra-prediction parameters (such as the intra-prediction mode selected for the current block prediction after traversing multiple intra-prediction modes) Instructions).
  • the intra prediction parameters may not be carried in the syntax element.
  • the decoding terminal 30 may directly use the default prediction mode for decoding.
  • the entropy coding unit 270 is used to convert the entropy coding algorithm or scheme (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval entropy (probability interval interpartitioning entropy, PIPE) encoding or other entropy Coding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters, and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
  • VLC variable length coding
  • CABAC context adaptive binary arithmetic
  • SBAC syntax-based context-adaptive binary arithmetic coding
  • the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • the code stream encapsulating unit 280 is used to decode the current pending image when it is determined that the current image to be processed is inter-predicted to refer to the knowledge base image and the reconstruction pixel value of the current image to be processed can copy the referenced knowledge base image. How to refer to the encoding information related to the image of the knowledge base (such as the first logo, the second logo, the third logo, etc.) that needs to be used during the processing of the image to be encoded into the code stream (such as the main code stream), and directly output 272 Output.
  • the encoding information related to the image of the knowledge base such as the first logo, the second logo, the third logo, etc.
  • the current image will be output to the residual calculation unit 204 , And the knowledge base image referenced by outputting the current image to the prediction processing unit 260 (for example, the inter prediction unit 244).
  • the case where the reconstructed pixel value of the current image to be processed can copy the referenced knowledge base image includes: the current image to be processed is the same as the referenced knowledge base image or the current image to be processed is substantially the same as the referenced knowledge base image (For example, the similarity reaches a preset threshold).
  • the first identifier is encoded into the code stream (for example, the main code stream), and the first identifier Indicates that the reconstructed pixel value of the current image to be processed can copy the pixel value of the referenced knowledge base image.
  • video encoder 20 may be used to encode video streams.
  • the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the video image encoding method described in the embodiments below.
  • the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression encoding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
  • the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
  • encoded picture data eg, encoded bitstream
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330, the prediction processing unit 360, and the decapsulation unit 303.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform a decoding pass that is generally inverse to the encoding pass described with reference to video encoder 20 of FIG. 2.
  • the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
  • the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110
  • the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212
  • the reconstruction unit 314 may be functionally the same as the reconstruction unit 214
  • the buffer 316 may be functionally
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and to receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
  • the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter prediction unit 344 eg, motion compensation unit
  • Other syntax elements generate a prediction block 365 for the video block of the current video slice.
  • a prediction block may be generated from a reference picture in a reference picture list.
  • the video decoder 30 may construct the reference frame lists: list 0 and list 1 based on the reference pictures stored in the DPB 330 using default construction techniques.
  • the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (eg, intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
  • the prediction mode eg, intra or inter prediction
  • the inter prediction slice type For example, B slice, P slice, or GPB slice
  • the syntax elements received by the video decoder 30 from the bitstream include receiving adaptive parameter sets (adaptive parameter set (APS)) and video parameter sets (video parameter set (vps)). Syntax elements in one or more of a sequence parameter set (SPS), picture parameter set (PPS), or slice header.
  • adaptive parameter set adaptive parameter set
  • vps video parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients to generate a residual block in the pixel domain.
  • an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
  • the reconstruction unit 314 (eg, summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example by The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
  • the loop filter unit 320 (during the encoding cycle or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoded picture buffer 330 is also used to store a knowledge base image, where the knowledge base image is an image decoded from the knowledge base code stream.
  • the decapsulation unit 303 is used to parse coding information related to the referenced knowledge base image in the main code stream.
  • the syntax element for example, the first identifier
  • the main code stream indicates the reconstructed pixel value of the current to-be-processed image to copy the pixel value of the knowledge base image, from Obtaining the pixel value of the knowledge base image referenced by the current image to be processed in the decoded picture buffer 330; determining the reconstructed pixel value of the current image to be processed according to the pixel value of the acquired knowledge base image (for example, the The acquired pixel value of the knowledge base image (for example, the original pixel value of the knowledge base image or the reconstructed pixel value of the knowledge base image) is output as the reconstructed pixel value of the current image to be processed through output 332).
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • video decoder 30 may be used to decode the compressed bitstream.
  • the decoder 30 may generate the output video stream without the loop filter unit 320.
  • the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the video image decoding method described in the embodiment below.
  • video decoder 30 may be used to decode the encoded video bitstream.
  • the video decoder 30 may generate an output video stream without processing by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and for lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
  • the inter prediction unit and the intra prediction unit may be selectively enabled.
  • the processing results for a certain link can be further processed and output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the results of the corresponding link are further clipped or shift shifted.
  • the motion vectors of the control points of the current image block derived from the motion vectors of adjacent affine coding blocks, or the motion vectors of the sub-blocks of the current image block derived may be further processed, and this application does not do this limited.
  • the value range of the motion vector is constrained to be within a certain bit width. Assuming that the allowed bit width of the motion vector is bitDepth, the range of the motion vector is -2 ⁇ (bitDepth-1) ⁇ 2 ⁇ (bitDepth-1)-1, where the " ⁇ " symbol indicates a power. If bitDepth is 16, the value ranges from -32768 to 32767. If bitDepth is 18, the value ranges from -131072 to 131071.
  • the values of the motion vectors are constrained so that the maximum difference between the integer parts of the four 4x4 sub-blocks MV does not exceed N pixels, for example no more than one pixel.
  • FIG. 4 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
  • the video coding device 400 is suitable for implementing the embodiments described herein.
  • the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1A) or a video encoder (eg, encoder 20 of FIG. 1A).
  • the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
  • the video decoding device 400 includes: an inlet port 410 for receiving data and a receiver (Rx) 420, a processor, logic unit or processor (such as a CPU) 430 for processing data, and a transmitter unit for transmitting data (Transmitter for short, Tx) 440 and exit port 450, and a memory (or memory) 460 for storing data.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver 420, the transmitter 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
  • the processor 430 communicates with the inlet port 410, the receiver 420, the transmitter 440, the outlet port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid-state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, as well as instructions and data read during program execution.
  • the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
  • FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
  • the device 500 can implement the technology of the present application.
  • FIG. 5 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
  • the memory of the decoding device stores the program code, and the processor can call the program code stored in the memory to perform various video image encoding or decoding methods described in this application. In order to avoid repetition, they are not described in detail here.
  • the processor 510 may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), dedicated integrated Circuit (ASIC), ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 530 may include a read-only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
  • the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to perform the video encoding or decoding method described in this application (especially the video image encoding or decoding method described in this application) .
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video decoding application) that performs the video encoding or decoding method described in this application.
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clarity, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may also include one or more output devices, such as a display 570.
  • the display 570 may be a tactile display that merges the display with a tactile unit that operably senses touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • a video sequence in order to enable the encoded video sequence to support the random access function, the video sequence is divided into a plurality of fragments with random access function (referred to as random access fragments).
  • a video sequence includes at least one random access segment, and each random access segment includes one random access image and multiple non-random access images.
  • an image in a random access segment can be intra-coded, or, inter-coded with reference to other images in a video sequence using inter-frame prediction.
  • the knowledge base encoding scheme introduces a knowledge base image (or knowledge image for short).
  • the knowledge base image is the random access to which the current image in the random access segment belongs
  • the database storing the above-mentioned collection of knowledge base images may be called a knowledge base.
  • a method of encoding and decoding an image in this video with reference to at least one knowledge base image may be called knowledge base-based video encoding (English: library-based video encoding).
  • the knowledge base image combines multiple random access fragments with relevant information within a large time span, eliminating redundant information between multiple random access fragments.
  • the image that provides random access capability can also refer to the knowledge base image.
  • this article refers to such referenced knowledge base images as reference knowledge base (Reference Library, RL) images, which provide random access capabilities when knowledge base images are available.
  • Reference picture set (reference picture set, rps)
  • the reference image set may be composed of related information of the image referred to by the current image to be processed.
  • the reference image set may include information of referenced non-knowledge base images, and may also include information of knowledge base images.
  • the current image to be processed may refer to the knowledge base image using a knowledge base-based video encoding and decoding method.
  • the reference image set may also be referred to as a reference configuration set (reference configure set, rcs).
  • the rcs may include the number of reference images, and the number of the knowledge base image in the reference images included in the reference configuration set. For example, rcs indicates whether the ith image is a knowledge base image, the number of the ith image, etc.
  • FIG. 6 shows a reference relationship between a random access segment to which a main stream image obtained by a video encoding method used in a knowledge base belongs to a knowledge base image, and each knowledge image is accessed by at least two discrete random Refer to the clip.
  • the reference image is intra-coded to obtain encoded data of the reference image.
  • the reconstructed image of the reference image is reconstructed, and the reconstructed image of the reference image is inter-coded to the image to be processed, thereby obtaining the encoded data of the image to be processed.
  • the code stream data of the reference image is sent to the decoding end as a knowledge layer code stream. Send the stream data of the image to be processed as the main stream to the decoder.
  • the decoding end After receiving the main code stream of the current image to be processed, the decoding end determines the image in the reference knowledge base image set as a reference image, reconstructs the reference knowledge base image, and inter-frame decodes the image to be processed based on the reconstructed knowledge base image Get the reconstructed pixel value of the image to be processed.
  • the to-be-processed image of the main stream if the to-be-processed image refers to a knowledge base image in the knowledge base, you need to decode the knowledge base image in the knowledge layer code stream before decoding the pending image in the main stream Process the image.
  • the knowledge base image may be an image in a to-be-processed video sequence, and of course the acquired knowledge base image may also be an image synthesized by an image modeled in the to-be-processed video sequence and an image in the to-be-processed video sequence. That is to say, the reference knowledge base image selected for the current image to be processed may have the same or close to the same pixel value as the current image to be processed. In this case, after encoding and decoding the reference knowledge base image, it is not actually necessary
  • the image to be processed in the main stream is additionally encoded and decoded.
  • the pixel value of the referenced knowledge base image selected for the current image to be processed may be different from the current image to be processed
  • the pixel value of the image is the same, or the pixel value of the reference knowledge base image selected by the current image to be processed may be substantially the same as the pixel value of the current image to be processed, the encoding/decoding knowledge base code After the reference image in the stream, there is redundancy in the way of further encoding/decoding the video image in the main bitstream.
  • this application proposes a video image encoding and decoding method and device.
  • the reference knowledge base image selected for the current image to be processed may be the same or close to the same pixel value as the current image to be processed
  • the codec is decoded
  • the image to be processed in the main code stream is no longer coded, but the decoded data of the image to be processed in the main code stream is determined based on the simple copy of the decoded data of the knowledge base image referenced, Therefore, the existing redundant coding method can be avoided, and transmission resources can be saved.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition is not repeated here.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • the video image decoding and encoding methods provided in the embodiments of the present application are applicable to various application scenarios.
  • the following examples illustrate the methods adopted in the two application scenarios.
  • the first application scenario is applied to follow the audio and video coding standard (AVS) standard
  • the second application scenario is applied to follow the high efficiency video coding and decoding (high efficiency video (HEVC) or multifunctional video
  • AVS audio and video coding standard
  • HEVC high efficiency video
  • VVC multifunctional video
  • the video image decoding and encoding method provided by the present application will be described in detail from the decoding side with reference to the drawings.
  • the decoding When the decoding is implemented, it may be specifically performed by the decoder 30, or by the depacketizing unit 303 and the DPB 330 in the decoder, or by the processor.
  • the encoding When the encoding is implemented, it may be specifically implemented by the encoder 20, or by the code stream encapsulation unit 280 and the DPB 230 in the decoder.
  • S701 When it is determined to perform inter prediction on the current image to be processed to refer to the knowledge base image, parse the first identifier from the code stream. Perform S702a or S702b or S705.
  • the first identifier is used to indicate whether the reconstruction pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • the first identification may be carried in a slice header (for example, slice_segment_header), an image header (for example, inter_picture_header), or a sequence header.
  • a slice header for example, slice_segment_header
  • an image header for example, inter_picture_header
  • a sequence header for example, a sequence header
  • the pixel value of the knowledge base image may be the reconstructed pixel value of the knowledge base image or the original pixel value of the knowledge base image, which is not specifically limited in this embodiment of the present application.
  • Example 1 copying so that the reconstructed pixel value of the current image to be processed is exactly the same as the pixel value of the reference knowledge image;
  • Example 2 copying so that the predicted pixel value of the current image to be processed is exactly the same as the pixel value of the reference knowledge image, and is obtained by combining the predicted pixel value of the current image to be processed and the prediction residual of the current image to be processed (such as superposition, etc.) The reconstruction pixel value of the current image to be processed.
  • Example 3 copying so that the predicted pixel value of the current image to be processed is exactly the same as the reconstructed pixel value of the knowledge image referenced by it, and the predicted pixel value of the current image to be processed and the post-processing information of the current image to be processed (such as filtered information) Etc.) jointly obtain the reconstructed pixel value of the current image to be processed.
  • only one knowledge base image that can be referred to by the current image to be processed may exist.
  • only one available knowledge base image may exist in the external knowledge base at any time.
  • S702a when the first identifier indicates that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image, the pixel value of the knowledge base image referred to by the current image to be processed is acquired. Go to S704.
  • S702b is executed when the first identifier indicates the reconstruction pixel value of the current image to be processed to copy the pixels of the knowledge base image. Value, the second identifier is parsed from the code stream, and the second identifier is used to indicate the knowledge base image referenced by the current image to be processed. Go to S703.
  • S702a and S702b are respectively examples in two different situations referred to by the first identification.
  • the second identification may be an index of the knowledge base image referred to by the current image to be processed.
  • the second identifier in the standard text or code can be represented by the syntax element copied_library_picture_idx_in_rcs.
  • S704 Determine the reconstructed pixel value of the current image to be processed according to the acquired pixel value of the knowledge base image.
  • the pixel value of the acquired knowledge base image may be used as the pixel value of the current image to be processed, or the pixel value of the current knowledge base image and the prediction residual of the current image to be processed may be jointly determined (such as superposition )
  • the reconstructed pixel value of the current image to be processed for example, the pixel value of the current knowledge base image is used as the predicted pixel value of the current image to be processed, and then the predicted pixel value of the current image to be processed and the post-processing information of the current image to be processed ( For example, the filtered information, etc.) jointly obtain the reconstructed pixel value of the current image to be processed.
  • step S705 it may be determined that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image: when decoding the first identifier from the code stream does not exist, it is determined that the current The reconstructed pixel value of the image to be processed does not copy the pixel value of the knowledge base image, and the reconstructed pixel value of the current image to be processed is obtained in a non-copying manner using the referenced knowledge base image.
  • the non-copying method may be a motion compensation-based method (such as block division, motion compensation, merge, quantization, etc.) to obtain the reconstructed pixel value of the current image to be processed, and the present application is not limited thereto.
  • a motion compensation-based method such as block division, motion compensation, merge, quantization, etc.
  • a fourth identifier is parsed from the code stream.
  • the fourth identifier is an image-level syntax element, and the fourth identifier indicates whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the fourth mark in the standard text or code can be represented by the syntax element reference_to_library_picture_flag.
  • the second way is to parse the fifth identifier from the code stream, where the fifth identifier is a syntax element at the sequence level, and the fifth identifier indicates whether to refer to the knowledge base image for the inter prediction of the video sequence where the current image to be processed is located,
  • the reference knowledge base image is determined based on the reference image configuration set parsed from the code stream to determine whether to perform inter-frame prediction on the current image to be processed Refer to the knowledge base image.
  • the fifth identifier in the standard text or code can be represented by the syntax element library_picture_enable_flag.
  • it indicates that inter prediction of the video sequence where the current image to be processed is located does not refer to the knowledge base image.
  • a reference image configuration set is parsed from the code stream, and based on the reference image configuration set, it is determined whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • a fifth identifier is parsed from the code stream, where the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates whether inter-frame prediction is performed on the video sequence where the current image to be processed refers to a knowledge base image. For example, when the fifth flag indicates inter-frame prediction on the video sequence where the current image to be processed is located, the reference knowledge base image is determined.
  • this article describes some syntax elements of the video image decoding method when the first method is used to determine whether to refer to the knowledge base image for inter prediction of the current image to be processed, as shown in Table 1-1.
  • reference_to_library_picture_flag corresponds to the fourth flag.
  • copy_rec_library_picture_flag corresponds to the first identification, and copied_library_picture_idx_in_rcs corresponds to the second identification.
  • Parse reference_to_library_picture_flag (such as a 1-bit flag) from the code stream.
  • parse copy_rec_library_picture_flag (such as a 1-bit flag) from the code stream.
  • CopyRecLibraryPictureFlag is assigned a value of 1.
  • the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed.
  • CopyRecLibraryPictureFlag is assigned a value of 0.
  • the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed.
  • copied_library_picture_idx_in_rcs can be a fixed-length bit unsigned integer (for example, 3 bits, 4 bits), indicating that the reference knowledge base image of the current image to be processed is in the reference image configuration set (rcs ) Index. Obtain the pixel value of the knowledge base image referenced by the index to determine the reconstructed pixel value of the current image to be processed.
  • FIG. 8A the structure of some of the syntax elements in the above-mentioned Table 1-1 in the code stream may be shown in FIG. 8A.
  • Reference_to_library_picture_flag and copy_rec_library_picture_flag are in the picture header.
  • the AVS may or may not include a tape head.
  • the tape head is one level lower than the image head.
  • the image-level information is mainly included in the image header, so the stripe header may not be used, and the stripe header may be considered in the image data.
  • this article describes some of the syntax elements of the video image decoding method when the second method is used to determine whether the inter-prediction of the current image to be processed refers to the knowledge base image, see Table 1-2 and Table 1-3. Show.
  • library_picture_enable_flag corresponds to the fifth flag.
  • copy_rec_library_picture_flag corresponds to the first identification, and copied_library_picture_idx_in_rcs corresponds to the second identification.
  • the value of ReferenceToLibraryPictureFlag is derived from the information of the reference image configuration set (for example, the partial syntax structure shown in Table 1-4 below) used by the current image to be processed. For example, when the current image to be processed uses the i When the value of is_library_index_flag[i][j] of j reference images is 1, the value of ReferenceToLibraryPictureFlag of the current image to be processed is 1, when the is_library_index_flag[ of all jth reference images in the i-th rcs used by the current image to be processed i] When the value of [j] is 0, the value of ReferenceToLibraryPictureFlag of the current image to be processed is 0.
  • ReferenceToLibraryPictureFlag value of 1 means that the current image to be processed performs inter prediction reference knowledge base image, at this time it is necessary to perform copy_rec_library_picture_flag analysis from the code stream.
  • the reconstructed pixel value of the current image to be processed can be obtained through motion compensation.
  • CopyRecLibraryPictureFlag is assigned a value of 1. At this time, the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed. When copy_rec_library_picture_flag is 0 or does not exist, CopyRecLibraryPictureFlag is assigned a value of 0. At this time, the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed. For copy_rec_library_picture_flag and CopyRecLibraryPictureFlag, reference may be made to the relevant description of the embodiment corresponding to Table 1-1, and details are not repeated here.
  • copied_library_picture_idx_in_rcs can be a fixed-length bit unsigned integer (for example, 3 bits, 4 bits), indicating that the reference knowledge base image of the current image to be processed is in the reference image configuration set (rcs ) Index. Obtain the pixel value of the knowledge base image referenced by the index to determine the reconstructed pixel value of the current image to be processed.
  • copy_rec_library_picture_flag is in the picture header
  • library_picture_enable_flag is in the sequence header.
  • this article describes some syntax elements of the video image decoding method when the third method is used to determine whether the inter-prediction of the current image to be processed refers to the knowledge base image. See Table 1-3 and Table 1-4 Shown.
  • copy_rec_library_picture_flag is in the picture header.
  • this article describes some syntax elements of the video image decoding method when the fourth method is used to determine whether the inter-prediction of the current image to be processed refers to a knowledge base image, as shown in Table 1-5.
  • library_picture_enable_flag corresponds to the fifth flag.
  • copy_rec_library_picture_flag corresponds to the first identification, and copied_library_picture_idx_in_rcs corresponds to the second identification.
  • CopyRecLibraryPictureFlag is assigned a value of 1.
  • the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed.
  • CopyRecLibraryPictureFlag is assigned a value of 0.
  • the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed.
  • copy_rec_library_picture_flag and CopyRecLibraryPictureFlag reference may be made to the relevant description of the embodiment corresponding to Table 1-1, and details are not repeated here.
  • copied_library_picture_idx_in_rcs can be a fixed-length bit unsigned integer (for example, 3 bits, 4 bits), indicating that the reference knowledge base image of the current image to be processed is in the reference image configuration set (rcs ) Index. Obtain the pixel value of the knowledge base image referenced by the index to determine the reconstructed pixel value of the current image to be processed.
  • the structure of some of the syntax elements in Table 1-5 in the code stream is similar to the structure of the syntax elements corresponding to the second way in the code stream, copy_rec_library_picture_flag is in the image header, and library_picture_enable_flag is in the sequence header.
  • step S902 may be included.
  • S901 and S902 may also be included.
  • S901 Determine encoding information of an image block to be processed currently.
  • S902 Encoding the encoded information into the code stream.
  • the encoded information is used to provide reference information and a method of using the reference information to the decoder to restore the reconstructed pixel values of the current image to be processed; wherein, when it is determined to interframe the current image to be processed
  • the coding information includes a first identifier, and the first identifier is used to indicate whether the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • the first identifier when the first identifier is a first value, the first identifier is used to indicate the pixel value of the knowledge base image to be copied from the reconstructed pixel value of the current image to be processed.
  • the first identifier is a first value.
  • the case where the pixel value of the current image to be processed is the same as the pixel value of the reference knowledge base image will be used as an example for description.
  • the encoding information further includes a second identifier, and the second identifier is used to indicate a knowledge base image referenced by the current image to be processed; wherein, The pixel value of the knowledge base image indicated by the second identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the second identification is located after the first identification.
  • the encoding information may further include other identifiers used to indicate that the reconstruction pixel value of the current image to be processed is determined by a non-copy method; wherein, the The first identifier is a second value to indicate that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image.
  • the second value may be 0.
  • the reconstruction pixel value of the current to-be-processed image may also be indicated in the following manner not to copy the pixel value of the knowledge base image: when the code stream does not include the first identifier, the current to-be-processed image may be indicated The reconstruction pixel value does not copy the pixel value of the knowledge base image.
  • the encoding information may further include other identifiers for instructing to determine the reconstruction pixel value of the current image to be processed by a non-copying method.
  • the encoding information may further include a fourth identifier, which is an image-level syntax element, and the fourth identifier is used to indicate whether reference knowledge is used for inter prediction of the current image to be processed Library image.
  • this example corresponds to the coding method corresponding to the decoding method of the first method described above.
  • the encoding information when it is determined to perform inter prediction on the current image to be processed to refer to the knowledge base image, the encoding information includes a fourth identifier, and the fourth identifier is used to indicate whether inter prediction on the current image to be processed refers to knowledge Library image, when the fourth indicator indicates that the current image to be processed is inter-predicted to refer to the knowledge base image, the encoding information includes the first identity; when the pixel value of the current image to be processed and the referenced knowledge base image When the pixel values of are the same or substantially close to the same, the first identifier is a first numerical value to indicate that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • an encoding process (such as block division, motion) is performed on the current image to be processed Compensation, merge, quantization, etc.), and the subsequent syntax elements related to the encoding process are encoded in the code stream.
  • the first identifier is located after the fourth identifier.
  • the encoding information further includes a fifth identifier and a reference image configuration set, the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates that the current video sequence of the image to be processed is located.
  • the encoding information further includes a reference image configuration set, the reference image The configuration set is used to indicate whether inter prediction of the current image to be processed refers to a knowledge base image.
  • the encoding information includes a fifth identifier, and when the fifth identifier indicates that the video sequence where the current image to be processed is inter-predicted refers to a knowledge base image, the encoding information further includes a reference image configuration set, When the reference image configuration set indicates that the current image to be processed is inter-predicted to refer to the knowledge base image, the encoding information further includes a first identifier.
  • the first identification is located after the reference image configuration set
  • the reference image configuration is located after the fifth identification.
  • this example corresponds to the encoding mode corresponding to the decoding mode of the above-mentioned second mode.
  • ReferenceToLibraryPictureFlag 1
  • the reconstruction of the current image to be processed is judged based on whether the pixel value of the current image to be processed and the pixel value of the reference knowledge base image are the same or substantially close to the same Whether the pixel value can copy the reconstructed pixel value of the knowledge image it refers to, determine the value of copy_rec_library_picture_flag (corresponding to the first flag), and encode copy_rec_library_picture_flag into the code stream.
  • the reconstructed pixel value of the current image to be processed can copy the pixel value of the knowledge base image it refers to, determine the value of coined_library_picture_idx_in_rcs (corresponding to the second identification) according to the index number of the copied knowledge image in rcs, and edit the coined_library_picture_idx_in_rcs Into the code stream, and skip the current coding process of the image to be processed (such as block division, motion compensation, merge, quantization, etc.), and not include all subsequent syntax elements related to the coding process of the current image to be processed in the code stream.
  • an encoding process (such as block division, motion) is performed on the current image to be processed Compensation, merge, quantization, etc.), and the syntax elements related to the current encoding process of the current image to be processed are encoded in the code stream.
  • the encoding information further includes a reference image configuration set, where the reference image configuration set is used to indicate whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the encoding information further includes a first identifier.
  • the first identifier is located after the reference image configuration set in the code stream.
  • this example corresponds to the coding method corresponding to the decoding method of the third method described above.
  • ReferenceToLibraryPictureFlag is determined according to whether the current image to be processed refers to the knowledge base image, and the following operations are performed:
  • ReferenceToLibraryPictureFlag 1
  • the reconstruction of the current image to be processed is judged based on whether the pixel value of the current image to be processed and the pixel value of the reference knowledge base image are the same or substantially close to the same Whether the pixel value can copy the reconstructed pixel value of the knowledge image it refers to, determine the value of copy_rec_library_picture_flag (corresponding to the first flag), and encode copy_rec_library_picture_flag into the code stream.
  • the reconstructed pixel value of the current image to be processed can copy the pixel value of the knowledge base image it refers to, determine the value of coined_library_picture_idx_in_rcs (corresponding to the second identification) according to the index number of the copied knowledge image in rcs, and edit the coined_library_picture_idx_in_rcs Into the code stream, and skip the current coding process of the image to be processed (such as block division, motion compensation, merge, quantization, etc.), and not include all subsequent syntax elements related to the coding process of the current image to be processed in the code stream.
  • an encoding process (such as block division, motion) is performed on the current image to be processed Compensation, merge, quantization, etc.), and the syntax elements related to the current encoding process of the current image to be processed are encoded in the code stream.
  • the encoding information further includes a fifth identifier, and when the fifth identifier indicates whether inter-prediction is performed on the video sequence where the current image to be processed is located, whether to refer to the knowledge base image.
  • the fifth identifier is a sequence level syntax element. Specifically, when the fifth identifier indicates that the current image to be processed is inter-predicted to refer to the knowledge base image, the encoding information further includes the first identifier. Exemplarily, the first identifier is located after the fifth identifier in the code stream.
  • this example corresponds to the encoding mode corresponding to the decoding mode of the above-mentioned fourth mode.
  • the reconstructed pixel value of the current image to be processed can copy the pixel value of the knowledge base image it refers to, determine the value of coined_library_picture_idx_in_rcs (corresponding to the second identification) according to the index number of the copied knowledge image in rcs, and edit the coined_library_picture_idx_in_rcs Into the code stream, and skip the current coding process of the image to be processed (such as block division, motion compensation, merge, quantization, etc.), and not include all subsequent syntax elements related to the coding process of the current image to be processed in the code stream.
  • an encoding process (such as block division, motion) is performed on the current image to be processed Compensation, merge, quantization, etc.), and the syntax elements related to the current encoding process of the current image to be processed are encoded in the code stream.
  • the meaning of the first identifier is the same, and reference may be made to the related description of the first identifier in the embodiment shown in FIG. 7, and details are not repeated here.
  • the method executes 1001b.
  • a third identifier is parsed in the code stream, and the third identifier is used to indicate the knowledge base image referenced by the current image to be processed. Go to S1003.
  • S1001a and S1001b are examples in two different cases when there are one or more knowledge base images that the current image to be processed can refer to in the knowledge base.
  • S1003 Obtain the pixel value of the knowledge base image indicated by the third identifier. Go to S1004.
  • the second identification may be an index of the knowledge base image referred to by the current image to be processed.
  • the third identifier in the standard text or code can be represented by the syntax element library_picture_id.
  • Method 1 similar to the first method described above, that is, parsing a fourth identifier from the code stream, the fourth identifier is an image-level syntax element, and the fourth identifier indicates whether to refer to the inter prediction of the current image to be processed Knowledge base image.
  • the fourth mark in the standard text or code can be represented by the syntax element reference_to_library_picture_flag.
  • Method 2 Parse the sixth identifier from the code stream, where the sixth identifier is a sequence-level syntax element, and the sixth identifier indicates whether to refer to the knowledge base image for inter prediction of the video sequence where the current image to be processed is located
  • the sixth identifier indicates that when performing inter-frame prediction on the video sequence where the current image to be processed refers to the knowledge base image, the seventh identifier is parsed from the code stream, and the seventh identifier is used to indicate whether to perform inter-frame prediction on the current image to be processed Refer to the knowledge base image.
  • the sixth identifier in the standard text or code can be represented by the syntax element library_picture_enable_flag.
  • it indicates that inter prediction of the video sequence where the current image to be processed is located does not refer to the knowledge base image.
  • Manner 3 Determine whether the current image to be processed refers to the knowledge base image for inter prediction based on the reference image configuration set.
  • the reference picture configuration set can be represented by rps.
  • this article describes some of the syntax elements of the video image decoding method when the method 1 is used to determine whether the inter-prediction of the current image to be processed refers to the knowledge base image. See Table 2-1. There is only one knowledge base image available in the library for encoding the current image to be processed.
  • reference_to_library_picture_flag corresponds to the fourth flag.
  • copy_rec_library_picture_flag corresponds to the first identification.
  • reference_to_library_picture_flag Parse the reference_to_library_picture_flag from the code stream (such as a 1-bit identifier, which can be carried in the slice header).
  • CopyRecLibraryPictureFlag is assigned a value of 1.
  • the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed.
  • CopyRecLibraryPictureFlag is assigned a value of 0.
  • the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed.
  • copy_rec_library_picture_flag and ReferenceToLibraryPictureFlag are in the slice header.
  • Longterm_Reference in FIG. 11A represents a long-term reference.
  • the example in this article describes some of the syntax elements of the video image decoding method when the method 2 is used to determine whether the inter-prediction of the current image to be processed refers to the knowledge base image, as shown in Table 2-2, at any time There is only one knowledge base image available in the knowledge base for encoding the current image to be processed.
  • library_picture_enable_flag corresponds to the sixth flag
  • reference_to_library_picture_flag corresponds to the seventh flag
  • copy_rec_library_picture_flag corresponds to the first identification.
  • the ReferenceToLibraryPictureFlag is parsed from the code stream (such as a 1-bit identifier, which can be carried in the stripe header )
  • the copy_rec_library_picture_flag (such as a 1-bit flag) is parsed from the code stream.
  • CopyRecLibraryPictureFlag is assigned a value of 1. At this time, the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed.
  • CopyRecLibraryPictureFlag is assigned a value of 0.
  • the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed.
  • copy_rec_library_picture_flag and CopyRecLibraryPictureFlag reference may be made to the relevant description of the embodiment corresponding to Table 2-1, and details are not described here.
  • copy_rec_library_picture_flag and reference_to_library_picture_flag are in the slice header
  • library_picture_enable_flag is in the sequence header.
  • the example in this article describes some of the syntax elements of the video image decoding method when the method 2 is used to determine whether the inter-prediction of the current image to be processed refers to the knowledge base image, as shown in Table 2-3.
  • the knowledge base image There are multiple knowledge base images available when encoding the current image to be processed as an example. When there is only one knowledge base image available for encoding the current image to be processed in the knowledge base at any time, there is no need to parse library_picture_id in Table 2-3.
  • library_picture_enable_flag corresponds to the sixth flag
  • reference_to_library_picture_flag corresponds to the seventh flag
  • copy_rec_library_picture_flag corresponds to the first identification
  • library_picture_id corresponds to the third identification.
  • reference_to_library_picture_flag such as a 1-bit identifier
  • CopyRecLibraryPictureFlag is assigned a value of 1. At this time, the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed. When copy_rec_library_picture_flag is 0 or does not exist, CopyRecLibraryPictureFlag is assigned a value of 0. At this time, the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed. For copy_rec_library_picture_flag and CopyRecLibraryPictureFlag, reference may be made to the relevant description of the embodiment corresponding to Table 2-1, and details are not described here.
  • copy_rec_library_picture_flag and reference_to_library_picture_flag, library_picture_id are in the slice header
  • library_picture_enable_flag is in the sequence header.
  • Library_reference includes information indicating the knowledge base image bearing the reference of the current image to be processed, such as the number of reference knowledge base images, the index or id of the knowledge base image, etc.
  • copy_rec_library_picture_flag corresponds to the first flag.
  • the value of ReferenceToLibraryPictureFlag is derived from the information of the reference image configuration set (rps) used by the current image to be processed. For example, when the reference image in the rps used by the current image to be processed is a knowledge base image, the value of ReferenceToLibraryPictureFlag of the current image to be processed Is 1, when the reference image in the rps used by the current image to be processed is a non-knowledge image, the value of ReferenceToLibraryPictureFlag of the current image to be processed is 0.
  • the ReferenceToLibraryPictureFlag value of 1 indicates that the current image to be processed performs inter prediction on the reference knowledge base image.
  • the reconstructed pixel value of the current image to be processed can be obtained through motion compensation.
  • the code stream does not include subsequent syntax elements related to the current image motion compensation to be processed.
  • CopyRecLibraryPictureFlag is assigned a value of 0.
  • the code stream It includes subsequent syntax elements related to motion compensation of the current image to be processed.
  • copy_rec_library_picture_flag and CopyRecLibraryPictureFlag reference may be made to the relevant description of the embodiment corresponding to Table 1-1, and details are not repeated here.
  • copy_rec_library_picture_flag, library_picture_id are in the slice header.
  • step S1202. S1201 and S1202 may also be included.
  • S1201 Determine the coding information of the current image block to be processed.
  • S1202 Encoding the encoded information into the code stream; the encoded information is used to provide reference information and a method of using the reference information to the decoder to restore the reconstructed pixel values of the current image to be processed; wherein, when it is determined to interframe the current image to be processed When predicting the reference knowledge base image, the coding information includes a first identifier, and the first identifier is used to indicate whether the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • the first identifier is a first value to indicate the knowledge of the reconstruction pixel value copy of the current image to be processed The pixel value of the library image.
  • the encoding information further includes a third identifier, and the third identifier is used to Indicating the knowledge base image referred to by the current image to be processed; wherein the pixel value of the knowledge base image indicated by the third identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the third identifier and the first identifier are in no particular order.
  • the first identifier when the first identifier is a second value, the first identifier is used to indicate that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image.
  • the encoding information may further include other identifiers for indicating that the reconstruction pixel value of the current image to be processed is determined by a non-copy method.
  • the second value may be 0.
  • the encoding information may further include a fourth identifier, which is an image-level syntax element, and the fourth identifier is used to indicate whether reference knowledge is used for inter prediction of the current image to be processed Library image.
  • this example corresponds to the coding method corresponding to the decoding method of the above method 1.
  • the encoding information when it is determined to perform inter prediction on the current image to be processed to refer to the knowledge base image, the encoding information includes a fourth identifier, and the fourth identifier is used to indicate whether inter prediction on the current image to be processed refers to knowledge Library image, when the fourth indicator indicates that the current image to be processed is inter-predicted to refer to the knowledge base image, the encoding information includes the first identity; when the pixel value of the current image to be processed and the referenced knowledge base image When the pixel values of are the same or substantially close to the same, the first identifier is a first numerical value to indicate that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • the first identifier is located after the fourth identifier.
  • reference_to_library_picture_flag (corresponding to the fourth flag) is determined according to whether the current image to be processed refers to a knowledge base image, and reference_to_library_picture_flag is encoded into the code stream;
  • the current to-be-processed image refers to the knowledge base image
  • the pixel value of the knowledge base image of the image determine the value of copy_rec_library_picture_flag (corresponding to the first flag), and encode copy_rec_library_picture_flag into the code stream; when the reconstruction pixel value of the current image to be processed can directly copy the pixel value of the reference knowledge base image , Skip the current encoding process of the image to be processed (such as block division, motion compensation, merge, quantization, etc.), and do not include all subsequent syntax elements related to the encoding method in the code stream.
  • the current image to be processed is subjected to an encoding process (such as a traditional encoding process, Including block division, motion compensation, merge, quantization, etc.), and the subsequent syntax elements related to the encoding process of the current image to be processed are coded in the code stream.
  • an encoding process such as a traditional encoding process, Including block division, motion compensation, merge, quantization, etc.
  • the encoding information further includes a reference image configuration set, and the reference image configuration set is used to indicate whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the encoding information further includes a first identifier.
  • the first identifier is located after the reference image configuration set in the code stream.
  • this example corresponds to the coding method corresponding to the decoding method of the above method 3.
  • ReferenceToLibraryPictureFlag 1
  • the reconstruction of the current image to be processed is judged based on whether the pixel value of the current image to be processed and the pixel value of the reference knowledge base image are the same or substantially close to the same Whether the pixel value can copy the reconstructed pixel value of the knowledge image it references, determine the value of copy_rec_library_picture_flag (corresponding to the first flag), and encode copy_rec_library_picture_flag into the code stream.
  • the reconstructed pixel value of the current image to be processed can copy the pixel value of the knowledge base image it refers to, determine the value of copied_library_picture_idx_in_rcs (corresponding to the second identification) according to the index number of the copied knowledge image in rcs, and encode copied_library_picture_idx_in_rcs into Code stream, and skip the current encoding process of the image to be processed (such as block division, motion compensation, merge, quantization, etc.), and do not include all subsequent syntax elements related to the encoding process of the current image to be processed in the code stream.
  • the current image to be processed is subjected to an encoding process (such as a traditional encoding process, For example, including block division, motion compensation, merge, quantization, etc.), and the subsequent syntax elements related to the encoding process of the current image to be processed are encoded in the code stream.
  • an encoding process such as a traditional encoding process, For example, including block division, motion compensation, merge, quantization, etc.
  • the coding information further includes a sixth identifier, and when the sixth identifier indicates whether inter-prediction is performed on the video sequence where the current image to be processed is located, whether to refer to a knowledge base image.
  • the coding information further includes a seventh identifier, and the seventh identifier is used to indicate whether the current image to be processed refers to the knowledge base image.
  • the encoding information further includes a first identifier. Exemplarily, in the code stream, the first identification is located after the seventh identification, and the seventh identification is located after the sixth identification.
  • this example corresponds to the coding method corresponding to the decoding method of the above method 2.
  • the current image to be processed is encoded based on the knowledge base image referenced by the current image to be processed (such as the traditional encoding process , For example, including block division, motion compensation, merge, quantization, etc.), and the subsequent syntax elements related to the encoding process of the current image to be processed are encoded in the code stream.
  • the traditional encoding process For example, including block division, motion compensation, merge, quantization, etc.
  • an embodiment of the present application further provides a video image decoding device 1300, which includes an image storage unit 1301 and a decapsulation unit 1302.
  • the device 1300 may further include a decoding unit 1303.
  • the image storage unit 1301 is used to store knowledge base images
  • the decapsulation unit 1302 is configured to parse the first identifier from the code stream when determining the inter-prediction reference knowledge base image for the current image to be processed; when the first identifier indicates the reconstruction pixel value copy knowledge of the current image to be processed
  • the pixel value of the library image is obtained, the pixel value of the knowledge base image referenced by the current image to be processed is acquired from the image storage unit 1301; the reconstruction of the current image to be processed is determined according to the acquired pixel value of the knowledge base image Pixel values.
  • the decapsulation unit 1302 is further configured to parse the second identifier from the code stream when the first identifier indicates that the reconstructed pixel value of the current image to be processed copies the pixel value of the knowledge base image.
  • the second identifier is used to indicate the knowledge base image referenced by the current image to be processed; the depacketizing unit 1302 is specifically used to obtain the pixel value of the knowledge base image referenced by the current image to be processed, from The image storage unit 1301 obtains the pixel value of the knowledge base image indicated by the second identifier.
  • the decapsulation unit 1302 is further configured to parse a third identifier from the code stream when it is determined that the current image to be processed is inter-predicted with reference to a knowledge base image, and the third identifier is used to indicate The knowledge base image referenced by the current image to be processed; the depacketizing unit 1302 is specifically used to obtain the pixel value of the knowledge base image referenced by the current image to be processed from the image storage unit 1301 Obtain the pixel value of the knowledge base image indicated by the third identifier.
  • the decapsulation unit 1302 is further configured to determine whether to refer to the knowledge base image for the inter prediction of the current image to be processed in any of the following ways:
  • Parsing a fourth identifier from the code stream where the fourth identifier is an image-level syntax element, and the fourth identifier indicates whether inter-frame prediction is performed on the current image to be referred to the knowledge base image;
  • Parse the fifth identifier from the code stream the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates whether inter-frame prediction is performed on the video sequence where the current image to be processed refers to a knowledge base image, when the fifth The indicator indicates that when performing inter-frame prediction on the video sequence where the current image to be processed refers to the knowledge base image, it is determined based on the reference image configuration set parsed from the bitstream whether to perform inter-frame prediction on the current image to be processed to refer to the knowledge base image;
  • Parse the sixth identifier from the code stream and when the sixth identifier indicates that the video sequence where the current image to be processed is inter-predicted refers to the knowledge base image, parse the seventh identifier from the code stream, the seventh The flag indicates whether to perform inter-frame prediction on the current image to be referred to the knowledge base image.
  • the unpacking unit 1302 is also used to pass the decoding unit when the first identifier indicates that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image 1303
  • Use the knowledge base image referenced by the current image to obtain the reconstructed pixel value of the current image to be processed in a non-copying manner (for example, perform a traditional decoding process on the current image to be processed based on the knowledge base image referenced by the current image to be processed).
  • the first identification is carried in a slice header, an image header, or a sequence header.
  • the unpacking unit 1302 is specifically configured to use the acquired pixel value of the knowledge base image as the current The reconstructed pixel value of the image to be processed.
  • the position of the image storage unit 1301 corresponds to the position of the DPB 330 in FIG. 3.
  • the position of the unpacking unit 1302 corresponds to the position of the unpacking unit 303 in FIG. 3, in other words, the specific implementation of the function of the unpacking unit 1302 and the specific details of the unpacking unit 303 in FIG. 3 can be referred to each other.
  • the decoding unit 1303 here may correspond to a combination of one or more of the entropy decoding unit 303, the prediction processing unit 360, and the reconstruction unit 314 in the decoder in FIG.
  • an embodiment of the present application further provides a video image encoding device 1400, which includes an image storage unit 1401 and a code stream encapsulation unit 1402.
  • the image storage unit 1401 is used to store knowledge base images
  • the code stream encapsulation unit 1402 is used to encode the encoded information into the code stream;
  • the encoding information when it is determined that the current image to be processed performs inter prediction with reference to the knowledge base image, the encoding information includes a first identifier, and the first identifier is used to indicate whether the reconstruction pixel value of the current image to be processed copies the knowledge base The pixel value of the image; wherein, when the first identifier is a first numerical value, the first identifier is used to indicate the pixel value of the knowledge base image copied from the reconstructed pixel value of the current image to be processed.
  • the encoding information further includes a second identifier, and the second identifier is used to indicate a knowledge base image referenced by the current image to be processed; wherein, The pixel value of the knowledge base image indicated by the second identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the second identification is located after the first identification.
  • the encoding information further includes a third identifier, and the third identifier is used to indicate the knowledge base image referenced by the current image to be processed Wherein the pixel value of the knowledge base image indicated by the third identifier is used to determine the reconstructed pixel value of the current image to be processed.
  • the first identifier when the first identifier is a second value, the first identifier is used to indicate that the reconstructed pixel value of the current image to be processed does not copy the pixel value of the knowledge base image.
  • the encoding information also includes other identifiers used to indicate the determination of the reconstruction pixel value of the current image to be processed by a non-copying method. For details, refer to the foregoing embodiment, and details are not described here.
  • the encoding information further includes a fourth identifier, which is an image-level syntax element, and the fourth identifier is used to indicate whether inter-prediction of the current image to be processed refers to a knowledge base image.
  • the coding information further includes a fifth identifier and a reference image configuration set.
  • the fifth identifier is a sequence-level syntax element, and the fifth identifier indicates inter prediction of the video sequence where the current image to be processed is located.
  • the reference image configuration set is used to indicate whether to perform inter prediction on the current image to be processed Refer to the knowledge base image.
  • the encoding information further includes a reference image configuration set, and the reference image configuration set is used to indicate whether inter-prediction is performed on the current image to be referenced to the knowledge base image.
  • the encoding information further includes a sixth identifier, where the sixth identifier is a syntax element at the sequence level, and the sixth identifier indicates whether to refer to the knowledge base for inter prediction of the video sequence where the current image to be processed is located Image, when the sixth identifier indicates that the video sequence where the current image to be processed is inter-predicted refers to a knowledge base image, the encoding information further includes a seventh identifier, and the seventh identifier is an image-level syntax element , The seventh identifier is used to indicate whether inter prediction of the current image to be processed refers to a knowledge base image.
  • the first identification is carried in a slice header, an image header, or a sequence header.
  • the position of the image storage unit 1401 corresponds to the position of the DPB 230 in FIG. 2.
  • the position of the code stream encapsulation unit 1402 corresponds to the position of the code stream encapsulation unit 280 in FIG. 2.
  • the specific implementation of the function of the code stream encapsulation unit 1402 and the specific details of the code stream encapsulation unit 280 in FIG. 2 can be referred to each other.
  • Computer readable media may include computer readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
  • computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or may be used to store instructions or data structures
  • the desired program code in the form of and any other medium that can be accessed by the computer. And, any connection is properly called a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave are used to transmit instructions from a website, server, or other remote source
  • coaxial cable Wire, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media.
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
  • magnetic disks and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and Blu-ray discs, where magnetic discs usually reproduce data magnetically, while optical discs reproduce optically using lasers data. Combinations of the above should also be included within the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functions described in the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or in combination Into the combined codec.
  • the techniques can be fully implemented in one or more circuits or logic elements.
  • the technology of the present application may be implemented in a variety of devices or equipment, including wireless handsets, integrated circuits (ICs), or a set of ICs (eg, chipsets).
  • ICs integrated circuits
  • a set of ICs eg, chipsets
  • Various components, modules or units are described in this application to emphasize the functional aspects of the device for performing the disclosed technology, but do not necessarily need to be implemented by different hardware units.
  • various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) provide.

Abstract

本申请提供视频图像解码、编码方法及装置,当确定对当前待处理图像进行帧间预测参考知识库图像时,在码流中编入第一标识,第一标识用于指示当前待处理图像的重建像素值是否拷贝参考的知识库图像的像素值,在当前待处理图像的重建像素值拷贝知识库图像的像素值的情况下,不再需要利用知识库图像对当前待处理图像进行视频编解码(比如运动补偿),从而针对主码流中的视频图像与知识库码流中的参考图像具有相同的或接近相同(例如相似的)像素值的情形,一定程度上可以避免主码流与知识库码流编解码冗余(例如,避免在解码知识层码流中参考图像后,进一步解码主码流中的视频图像的必要性),从而提高了编解码性能。

Description

视频图像解码、编码方法及装置
相关申请的交叉引用
本申请要求在2019年01月07日提交中国专利局、申请号为201910017708.0、申请名称为“视频图像解码、编码方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像编解码技术领域,尤其涉及视频图像解码、编码方法及装置。
背景技术
为了提供随机访问能力,视频中会被周期性地插入能够支持随机访问的图像,将视频分割为多个独立的随机访问片段,随机访问片段之间不能相互参考。为了挖掘和利用多个随机访问片段之间的图像在编码时相互参考的信息,知识库编码方案引入知识库图像(可以简称为知识图像),知识库图像为随机访问片段中当前图像所属的随机访问片段及其之前最邻近的一个随机访问片段中的需要显示的图像集之外的图像,知识库图像作为一种参考图像(例如长期参考图像)为待编码图像或待解码图像提供参考。
采用基于知识库的视频编码对视频序列进行编码会产生一个包含知识库图像编码码流的知识层码流和一个包含视频序列图像参考知识库图像编码得到的码流的主码流,且知识库图像可以反复被多个主码流的随机访问片段参考。
视频主码流的解码必须依赖知识库码流,当解码主码流视频图像时,如果该图像参考了知识库码流中的某一图像,则需要先解码知识库码流中的图像之后才能解码该主码流中的视频图像,造成编解码性能低下。
发明内容
本申请提供一种视频图像解码、编码方法及装置,针对视频主码流的解码依赖知识库码流的场景,提高视频图像的编解码性能。
第一方面,本申请实施例提供一种视频图像解码方法,包括:
当确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值(例如知识库图像的重建像素值或知识库图像的原始像素值)时,获取(例如从知识库图像存储单元中获取)所述当前待处理图像所参考的知识库图像的像素值;根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
示例性的,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝知识库图像的像素值。例如当所述第一标识取值为ture/1,指示当前待处理图像的重建像素值拷贝知识库图像的像素值;反之,当所述第一标识取值为false/0,指示当前待处理图像的重建像素值不拷贝知识库图像的像素值。
在标准文本或者代码中第一标识可以通过copy_rec_library_picture_flag来表示。比如 copy_rec_library_picture_flag==1时,指示当前待处理图像的重建像素值拷贝知识库图像的像素值,copy_rec_library_picture_flag==0时,指示当前待处理图像的重建像素值不拷贝知识库图像的像素值。
应当理解的是,本申请实施例所说的拷贝操作包括但不限于常规的直接复制。如下示例几种本申请实施例中所涉及的拷贝:
示例1,拷贝使得当前待处理图像的重建像素值与参考的知识图像的像素值完全相同;
示例2,拷贝使得当前待处理图像的预测像素值与其参考的知识图像的像素值完全相同,并由当前待处理图像的预测像素值和当前待处理图像的预测残差联合(例如求和或叠加等)得到当前待处理图像的重建像素值。
示例3,拷贝使得当前待处理图像的预测像素值与其参考的知识图像的重建像素值完全相同,并由当前待处理图像的预测像素值和当前待处理图像的后处理信息(例如滤波后的信息等)联合(例如求和或叠加等)得到当前待处理图像的重建像素值。
通过上述方案,在码流中添加第一标识,当第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值,一定程度上简化了解码主码流中的当前待处理图像的重建像素值的过程,即通过拷贝知识库图像的像素值来确定当前待处理图像的像素值(例如将知识库图像的像素值作为当前待处理图像的像素值),从而针对主码流中的视频图像与知识库码流中的参考图像具有相同的或接近相同(例如相似的)像素值的情形,一定程度上避免主码流与知识库码流编解码冗余,从而提高了编解码性能。
在一种可能的设计中,还包括:
当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;所述获取所述当前待处理图像所参考的知识库图像的像素值,包括:获取所述第二标识指示的知识库图像的像素值。示例性的,该设计可以应用于遵循音视频编解码标准(audio video coding standard,AVS)的场景中。
示例性的,第二标识为当前待处理图像所参考的知识库图像的索引,在标准文本或代码中第二标识可以通过语法元素copied_library_picture_idx_in_rcs来表示。
另外,应当理解的是,在当前待处理图像所能够参考的知识库图像可以仅存在一幅,换句话说,在任一时刻外部知识库中只能同时存在一个可用的知识库图像,则在编码时不需要编码第二标识,当然解码时也不需要解码第二标识,可以直接拷贝当前待处理图像所能参考的那一个知识库图像的像素值来确定当前待处理图像的重建像素值。
在一种可能的设计中,还包括:当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;获取所述当前待处理图像所参考的知识库图像的像素值,包括:获取所述第三标识指示的知识库图像的像素值。示例性的,该设计可以应用于遵循高效视频编解码(high efficiency video coding,HEVC)或多功能视频编解码(versatile video coding,VVC)的场景。
示例性的,所述第三标识为知识库图像的索引,在标准文本或代码中,第三标识可以通过library_picture_id来表示。
在一种可能的设计中,通过如下任一方式确定对当前待处理图像进行帧间预测是否参考知识库图像:
第一种可能的方式:从所述码流中解析第四标识(比如,第四标识可以通过reference_to_library_picture_flag来表示),所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像。示例性的,所述第四标识为第一值(例如ture或1),以指示对当前待处理图像进行帧间预测参考知识库图像;反之,所述第四标识为第二值(例如false或0),以指示对当前待处理图像进行帧间预测不参考知识库图像。
第二种可能的方式:从所述码流中解析第五标识(比如,第五标识可以通过library_picture_enable_flag来表示),所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
示例性的,所述第五标识为第一值(例如ture或1),以指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像;反之,所述第五标识为第二值(例如false或0),以指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。
第三种可能的方式:从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
第四种可能的方式:从所述码流中解析第六标识(比如,第六标识可以通过library_picture_enable_flag来表示),当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,从所述码流中解析第七标识(比如,第七标识可以通过reference_to_library_picture_flag来表示),所述第七标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述第六标识是序列层级的语法元素,所述第六标识用于指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,所述第六标识为第一值(例如ture或1),以指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像;反之,所述第六标识为第二值(例如false或0),以指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。示例性的,所述第七标识为第一值(例如ture或1),以指示对当前待处理图像进行帧间预测参考知识库图像;反之,所述第七标识为第二值(例如false或0),以指示对当前待处理图像进行帧间预测不参考知识库图像。
上述设计,提供几种确定当前待处理图像进行帧间预测是否参考知识库图像的方式,简单易行。
在一种可能的设计中,还包括:当所述第一标识指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值时,利用当前待处理图像所参考的知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。或者,当从码流中解码第一标识不存在时,则确定所述当前待处理图像的重建像素值不拷贝知识库图像的像素值,利用当前待处理图像所参考的知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。
通过非拷贝方式获得所述当前待处理图像的重建像素值时,比如可以将获取的知识库图像的像素值作为当前待处理图像的像素值,或者可以将当前知识库图像的像素值与当前待处理图像的预测残差联合确定(比如叠加)当前待处理图像的重建像素值,再比如将当前知识库图像的像素值作为当前待处理图像的预测像素值,再将当前待处理图像的预测像素值和当前待处理图像的后处理信息(例如滤波后的信息等)联合得到当前待处理图像的 重建像素值。
在一种可能的设计中,所述第一标识携带在条带头(例如slice_segment_header)、图像头(例如inter_picture_header)、或序列头中。
在一种可能的设计中,所述基于获取的知识库图像的像素值确定所述当前待处理图像的重建像素值,包括:将获取的知识库图像的像素值作为所述当前待处理图像的重建像素值。
第二方面,本申请实施例提供一种视频图像编码方法,包括:
将编码信息编入码流;
其中,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值;
其中,当所述第一标识为第一数值,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
示例性的,当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同时,或者当所述当前待处理图像的像素值与所参考的知识库图像的像素值实质上接近相同(例如所述当前待处理图像与所参考的知识库图像相似度达到预设阈值)时,所述第一标识为第一数值。
通过上述方案,在码流中添加第一标识,当第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值,不再需要解码主码流中的当前待处理图像的重建像素值,而是通过拷贝知识库图像的像素值来确定当前待处理图像的像素值,从而在一定程度上可以避免主码流与知识库码流编解码冗余,降低编解码资源的使用,减少码流比特开销。
在一种可能的设计中,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
在一种可能的设计中,在所述码流中,所述第二标识位于所述第一标识之后。
在一种可能的设计中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
在一种可能的设计中,当所述第一标识为第二数值时,所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。相应地,所述编码信息中还可以包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识;
示例性的,其它标识可以包括用于指示帧间预测模式的标识,比如是否采用merge模型,用于指示当前待处理图像的参考帧的标识,或者运动矢量的索引等。
在一种可能的设计中,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述码流中不包括第一标识,以指示所述当前待处理图像的重建像素值不拷贝所述知识库图像的像素值。
在一种可能的设计中,所述编码信息中还包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。在码流中,第一标识位于第四标识之后。
示例性的,所述第四标识为第一值(例如ture或1),以指示对当前待处理图像进行帧间预测参考知识库图像;反之,所述第四标识为第二值(例如false或0),以指示对当前待处理图像进行帧间预测不参考知识库图像。
在一种可能的设计中,所述编码信息中还包括第五标识(比如library_picture_enable_flag)和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。比如,在码流中,第一标识位于参考图像配置集之后,参考图像配置集位于第五标识之后。
示例性的,所述第五标识为第一值(例如ture或1),以指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像;反之,所述第五标识为第二值(例如false或0),以指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。
在一种可能的设计中,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。比如,在码流中,第一标识位于参考图像配置集之后。
在一种可能的设计中,所述编码信息中还包括第六标识(比如library_picture_enable_flag),所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识(比如reference_to_library_picture_flag),所述第七标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述第六标识是序列层级的语法元素,所述第六标识用于指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,所述第六标识为第一值(例如ture或1),以指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像;反之,所述第六标识为第二值(例如false或0),以指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。示例性的,所述第七标识为第一值(例如ture或1),以指示对当前待处理图像进行帧间预测参考知识库图像;反之,所述第七标识为第二值(例如false或0),以指示对当前待处理图像进行帧间预测不参考知识库图像。
在一种可能的设计中,所述第一标识携带在条带头(slice_segment_header)、图像头(例如inter_picture_header)、或序列头中。
第三方面,本申请实施例提供一种视频图像解码装置,包括用于实施第二方面的任意一种方法的若干个功能单元。
举例来说,视频图像解码装置可以包括图像存储单元和解封装单元。
其中,图像存储单元,用于存储知识库图像;
解封装单元,用于在确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述图像存储单元中获取所述当前待处理图像所参考的知识库图像的像素值;根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
在一种可能的设计中,所述解封装单元,还用于当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述码流中解析第二标识,所述第二标 识用于指示所述当前待处理图像所参考的知识库图像;所述解封装单元在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元中获取所述第二标识指示的知识库图像的像素值。
在一种可能的设计中,所述解封装单元,还用于当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;
所述解封装单元在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元中获取所述第三标识指示的知识库图像的像素值。
在一种可能的设计中,所述解封装单元,还用于通过如下任一方式确定对当前待处理图像进行帧间预测是否参考知识库图像:
从所述码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从所述码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从所述码流中解析第六标识,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,从所述码流中解析第七标识,所述第七标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述装置还包括解码单元,所述解封装单元,还用于当所述第一标识指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值时,通过所述解码单元利用所述知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。
在一种可能的设计中,所述第一标识携带在条带头、图像头、或序列头中。
在一种可能的设计中,在基于获取的知识库图像的像素值确定所述当前待处理图像的重建像素值的方面,所述解封装单元具体用于将获取的知识库图像的像素值作为所述当前待处理图像的重建像素值。
第四方面,本申请实施例提供一种视频图像编码装置,包括用于实施第三方面的任意一种方法的若干个功能单元。
举例来说,视频图像编码装置可以包括:
图像存储单元,用于存储知识库图像;
码流封装单元,用于将编码信息编入码流;
其中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值其中,当所述第一标识为第一数值,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
在一种可能的设计中,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
在一种可能的设计中,在所述码流中,所述第二标识位于所述第一标识之后。
在一种可能的设计中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
在一种可能的设计中,当所述第一标识为第二数值时,所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝所述知识库图像的像素值;相应地,所述编码信息中还包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识。
在一种可能的设计中,所述编码信息中还包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述编码信息中还包括第五标识和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述编码信息中还包括第六标识,所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识,所述第七标识是图像层级的语法元素,所述第七标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述第一标识携带在条带头、图像头、或序列头中。
第五方面,本申请实施例提供一种视频解码器,所述视频解码器用于从码流中解码出图像。
示例性的,视频解码器可以实现第一方面的任一种设计所述的方法。视频解码器包括第三方面的任一设计所述的装置。
第六方面,本申请实施例提供一种视频编码器,所述视频编码器用于编码图像。
示例性的,视频编码器可以实现第二方面所述的方法。视频编码器包括第四方面中任一设计所述的装置。
第七方面,本申请实施例提供一种用于解码视频数据的设备,所述设备包括:
存储器,用于存储码流形式的视频数据;
视频解码器,用于当确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,获取所述当前待处理图像所参考的知识库图像的像素值;根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
在一种可能的设计中,视频解码器当所述第一标识指示当前待处理图像的重建像素值 拷贝所述知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于:获取所述第二标识指示的知识库图像的像素值。
在一种可能的设计中,视频解码器,还用于当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于:获取所述第三标识指示的知识库图像的像素值。
第八方面,本申请实施例提供一种用于编码视频数据的设备,所述设备包括:
存储器,用于存储知识库图像;
视频编码器,用于将编码信息编入码流;
其中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第二标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值其中,当所述第二标识为第一数值时,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
在一种可能的设计中,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
在一种可能的设计中,在所述码流中,所述第二标识位于所述第一标识之后。
在一种可能的设计中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
第九方面,本申请实施例提供一种编码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第二方面的任意一种方法的部分或全部步骤。
第十方面,本申请实施例提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面的任意一种方法的部分或全部步骤。
第十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面或第二方面的任意一种方法的部分或全部步骤的指令。
第十二方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面或第二方面的任意一种方法的部分或全部步骤。
应当理解的是,本申请的第二至十二方面与本申请的第一方面的技术方案相同或者类似,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1A是用于实现本申请实施例的视频编码及解码系统10实例的框图;
图1B是用于实现本申请实施例的视频译码系统40实例的框图;
图2是用于实现本申请实施例的编码器20实例结构的框图;
图3是用于实现本申请实施例的解码器30实例结构的框图;
图4是用于实现本申请实施例的视频译码设备400实例的框图;
图5是用于实现本申请实施例的另一种编码装置或解码装置实例的框图;
图6是用于实现本申请实施例的随机访问片段和知识库图像之间的参考关系的示意图;
图7是用于实现本申请实施例的一种视频图像解码方法流程示意图;
图8A是用于实现本申请实施例的一种语法元素在码流中的结构示意图;
图8B是用于实现本申请实施例的另一种语法元素在码流中的结构示意图;
图8C是用于实现本申请实施例的又一种语法元素在码流中的结构示意图;
图9是用于实现本申请实施例的一种视频图像编码方法流程示意图;
图10是用于实现本申请实施例的另一种视频图像解码方法流程示意图;
图11A是用于实现本申请实施例的又一种语法元素在码流中的结构示意图;
图11B是用于实现本申请实施例的又一种语法元素在码流中的结构示意图;
图11C是用于实现本申请实施例的又一种语法元素在码流中的结构示意图;
图11D是用于实现本申请实施例的又一种语法元素在码流中的结构示意图;
图12是用于实现本申请实施例的另一种视频图像编码方法流程示意图;
图13为用于实现本申请实施例的一种视频图像解码装置1300的结构框图;
图14为用于实现本申请实施例的一种视频图像编码装置1400的结构框图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片 (picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块 并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual  reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的色度块预测方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于 解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的色度块预测方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设 备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过逻辑电路47或存储器44实施的)图像缓冲器和(例如,通过逻辑电路47实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过逻辑电路47实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于 解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例描述的视频图像编码方法发生在编码器20处,本申请实施例描述的视频图像解码方法发生在解码器30处,本申请实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260、熵编码单元270以及码流封装单元280。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和 预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加 至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。解码图片缓冲器230还用于存储知识库图像。针对知识库后续会详细描述,此处不予赘述。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括跳过(skip)模式和融合(merge)模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获 取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
码流封装单元280,用于当确定对当前待处理图像进行帧间预测参考知识库图像且确定当前待处理图像的重建像素值能够拷贝所参考的知识库图像的情况下,将与解码当前待处理图像过程中需要用到的如何参考知识库图像相关的编码信息(比如,第一标识、第二标识、第三标识等等)编入码流(例如主码流),并直接通过输出272输出。当确定对当前待处理图像进行帧间预测参考知识库图像且当前待处理图像的重建像素值不能够拷贝所参考的知识库图像的像素值的情况下,将输出当前图像给残差计算单元204,以及将输 出当前图像所参考的知识库图像给预测处理单元260(例如帧间预测单元244)。
示例性的,当前待处理图像的重建像素值能够拷贝所参考的知识库图像的情况包括:当前待处理图像与参考的知识库图像相同或者当前待处理图像与参考的知识库图像实质上接近相同(例如相似度达到预设阈值)。
例如,当确定当前待处理图像的像素值与参考的知识库图像的像素值相同或者实质上接近相同的情况下,将第一标识编入码流(例如主码流),所述第一标识指示当前待处理图像的重建像素值能够拷贝所参考的知识库图像的像素值。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的视频图像编码方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330、预测处理单元360和解封装单元303。预测处理单元360可以包含帧间预测单元344、帧内预测单元354、模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、视频参数集(video parameter set,vps)。序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。解码图片缓冲器330还用于存储知识库图像,其中所述知识 库图像为在先从知识库码流中解码所得的图像。
解封装单元303,用于解析主码流中与参考的知识库图像相关的编码信息。当确定对当前待处理图像进行帧间预测参考知识库图像且主码流中的语法元素(例如第一标识)指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从解码图片缓冲器330中获取所述当前待处理图像所参考的知识库图像的像素值;根据所述获取的知识库图像的像素值确定所述当前待处理图像的重建像素值(例如将所述获取的知识库图像的像素值(例如该知识库图像的原始像素值或者该知识库图像的重建像素值)作为所述当前待处理图像的重建像素值通过输出332输出)。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的视频图像解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)~2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768~32767。如bitDepth为18,则取值范围为-131072~131071。又例如,对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量MV)的取值进行约束,使得所述四个4x4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收器(Rx)420,用于处理数据的处理器、逻辑单元或处理器(比如CPU)430,用于传输数据的发射器单元(简称发射器,Tx)440和出口端口450,以及,用于存储数据的存储器(或者称为内存)460。 视频译码设备400还可以包括与入口端口410、接收器420、发射器440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器420、发射器440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频图像的编码或解码方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的视频图像编码或解码方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
下面针对本申请涉及到几个技术概念进行描述。
1)随机访问片段
在视频序列处理中,为了使编码后的视频序列支持随机访问功能,视频序列被分割成多个具有随机访问功能的片段(简称为随机访问片段)。比如:一个视频序列包括至少一个随机访问片段,每个随机访问片段包括一幅随机访问图像以及多幅非随机访问图像。其中,一个随机访问片段中的图像可以进行帧内编码,或者,参考视频序列中的其他图像利用帧间预测进行帧间编码。
2)知识库
为了挖掘和利用多个随机访问片段之间的图像在编码时相互参考的信息,知识库编码方案引入知识库图像(或者简称知识图像),知识库图像为随机访问片段中当前图像所属的随机访问片段及其之前最邻近的一个随机访问片段中的需要显示的图像集之外的图像,知识图像作为一种参考图像为待编码图像或待解码图像提供参考。存储上述知识库图像的集合的数据库可以称为知识库。另外,这种视频中一幅图像参考至少一幅知识库图像进行编解码的方法可以称为基于知识库的视频编码(英文:library-based video coding)。
为了消除随机访问片段之间的冗余信息,知识库图像将大时间跨度内的多个拥有相关信息的随机访问片段联合起来,剔除了多个随机访问片段之间的冗余信息。在随机访问片段中,提供随机访问能力的图像同样可以参考知识库图像。示例性地,本文将这种所参考的知识库图像称为参考知识库(Reference Library,RL)图像,RL图像在知识库图像可用的情况下提供随机访问能力。
3)参考图像集(reference picture set,rps)
参考图像集可以由当前待处理图像所参考的图像的相关信息构成。参考图像集中可以包括参考的非知识库图像的信息,还可以包括知识库图像的信息。当参考图像集中包括知识库图像时,当前待处理图像可以参考知识库图像采用基于知识库视频编解码方法。
参考图像集,也可以称为参考配置集(reference configure set,rcs)。rcs中可以包括参考图像数目,以及参考配置集中包括的参考图像中的知识库图像的编号等。例如,rcs指示第i个图像是否为知识库图像,第i个图像的编号等。
4)知识库码流
采用基于知识库的视频编码对一个视频序列进行编码时,会产生两个码流,其中一个是包含知识库图像编码的码流,该包含知识库图像编码的码流可以称为知识层码流,另外,一个是包含视频序列各帧图像参考知识库图像编码得到的码流,该包含视频序列各帧图像参考知识库图像编码得到的码流可以称为主码流。此外,知识库图像可以反复被多个主码流的随机访问片段参考。例如,图6展示了一种使用于知识库的视频编码方法得到的主码流图像所属的随机访问片段和知识库图像之间的参考关系,每个知识图像被至少两个不连续的随机访问片段所参考。
在基于知识库的视频编解码时,针对当前待处理图像,从该待处理图像对应的知识库中选择至少一幅图像作为待处理图像的参考图像。对参考图像进行帧内编码,从而获得参考图像的编码数据。根据参考图像的编码数据,重建得到参考图像的重建图像,根据参考图像的重建图像对待处理图像进行帧间编码,从而获得待处理图像的编码数据。将参考图像的码流数据作为知识层码流发送到解码端。将待处理图像的码流数据作为主码流发送到 解码端。解码端在接收到当前待处理图像的主码流后,确定参考知识库图像集中的图像作为参考图像,对参考的知识库图像进行重建,并基于重建的知识库图像对待处理图像进行帧间解码得到待处理图像的重建像素值。解码主码流的待处理图像时,如果该待处理图像参考了知识库中的某一知识库图像,则需要先解码知识层码流中的知识库图像之后才能解码该主码流中的待处理图像。而知识库图像可以是待处理视频序列中的图像,当然获取的知识库图像也可以是待处理视频序列中的图像建模得到的图像和待处理视频序列中的图像合成的图像。也就是说针对当前待处理图像选择的所参考的知识库图像可能与当前待处理图像的像素值相同或者接近相同,在情况下,编解码完该参考的知识库图像后,实际上并不需要再额外编解码该主码流中的待处理图像,因此,现有的基于知识库的视频编解码方法中,针对当前待处理图像选择的所参考的知识库图像的像素值可能与当前待处理图像的像素值是相同的情况下,或者当前待处理图像选择的所参考的知识库图像的像素值可能与当前待处理图像的像素值实质上接近相同的情况下,在编码/解码知识库码流中参考图像后,进一步编码/解码主码流中的视频图像的方式存在冗余。
基于此,本申请提出了一种视频图像编码、解码方法及装置,针对当前待处理图像选择的所参考的知识库图像可能与当前待处理图像的像素值相同或者接近相同的情况下,编解码完该参考的知识库图像后,不再额外编解码该主码流中的待处理图像,而是基于简单拷贝参考的知识库图像的解码数据确定该主码流中待处理图像的解码数据,从而可以避免现有的冗余编码方式,节省传输资源。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
另外,需要说明的是,本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的视频图像解码、编码方法适用于多种应用场景下,下面示例两种应用场景下所采用的方式。第一种应用场景是应用于遵循音视频编解码标准(audio video coding standard,AVS)的场景,第二种应用场景是应用于遵循高效视频编解码(high efficiency video coding,HEVC)或多功能视频编解码(versatile video coding,VVC)的场景。
下面结合附图从解码侧对本申请提供的视频图像解码和编码方法进行详细说明。在实现解码时,具体可以由解码器30执行,或者由解码器中的解封装单元303和DPB330来实现,或者由处理器来执行。在实现编码时,具体可以由编码器20来实现,或者由解码器中的码流封装单元280和DPB230来实现。
针对第一种应用场景下的视频图像解码方法进行说明,参见图7所示。
S701,当确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识。执行S702a或者S702b或者S705。
第一标识用于指示当前待处理图像的重建像素值是否拷贝知识库图像的像素值。示例性的,在标准文本或代码中第一标识可以通过语法元素copy_rec_library_picture_flag来表示, 比如copy_rec_library_picture_flag==1时,指示当前待处理图像的重建像素值拷贝知识库图像的像素值,copy_rec_library_picture_flag==0时,指示当前待处理图像的重建像素值不拷贝知识库图像的像素值。
示例性的,所述第一标识可以携带在条带头(例如,slice_segment_header)、图像头(例如inter_picture_header)、或序列头中。
示例性的,知识库图像的像素值可以是知识库图像的重建像素值或者是知识库图像的原始像素值,本申请实施例对此不作具体限定。
本申请实施例所说的拷贝操作不限于常规的直接复制。如下示例几种本申请实施例中所涉及的拷贝:
示例1,拷贝使得当前待处理图像的重建像素值与参考的知识图像的像素值完全相同;
示例2,拷贝使得当前待处理图像的预测像素值与其参考的知识图像的像素值完全相同,并由当前待处理图像的预测像素值和当前待处理图像的预测残差联合(例如叠加等)得到当前待处理图像的重建像素值。
示例3,拷贝使得当前待处理图像的预测像素值与其参考的知识图像的重建像素值完全相同,并由当前待处理图像的预测像素值和当前待处理图像的后处理信息(例如滤波后的信息等)联合得到当前待处理图像的重建像素值。
本申请实施例中,当前待处理图像所能够参考的知识库图像可以仅存在一幅,换句话说,在任一时刻外部知识库中只能同时存在一个可用的知识库图像。在该情况下,S702a,当所述第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值时,获取所述当前待处理图像所参考的知识库图像的像素值。执行S704。
当然在知识库中还可以存在当前待处理图像能够参考的多个知识库图像,在该情况下,执行S702b,当所述第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像。执行S703。
应理解的是,S702a和S702b分别是第一标识指代的两种不同的情况下的示例。
S703,获取所述第二标识指示的知识库图像的像素值。执行S704。示例性的,第二标识可以是当前待处理图像所参考的知识库图像的索引。
示例性的,在标准文本或代码中第二标识可以通过语法元素copied_library_picture_idx_in_rcs来表示。
S704,根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
步骤S704在实现时,比如可以将获取的知识库图像的像素值作为当前待处理图像的像素值,或者可以将当前知识库图像的像素值与当前待处理图像的预测残差联合确定(比如叠加)当前待处理图像的重建像素值,再比如将当前知识库图像的像素值作为当前待处理图像的预测像素值,再将当前待处理图像的预测像素值和当前待处理图像的后处理信息(例如滤波后的信息等)联合得到当前待处理图像的重建像素值。
S705,当所述第一标识指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值时,利用所参考的知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。
另外,在步骤S705确定所述当前待处理图像的重建像素值不拷贝知识库图像的像素值还可以采用另一种方式:当从码流中解码第一标识不存在时,则确定所述当前待处理图像的重建像素值不拷贝知识库图像的像素值,利用所参考的知识库图像以非拷贝方式获得 所述当前待处理图像的重建像素值。
非拷贝的方式可以是基于运动补偿的方式(例如块划分、运动补偿、merge、量化等)获取当前待处理图像的重建像素值,本申请不限于此。
本申请实施例中,在确定对当前待处理图像进行帧间预测是否参考知识库图像时可以通过多种方式实现,下面示例几种确定对当前待处理图像进行帧间预测是否参考知识库图像的方式。
第一种方式,从码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,在标准文本或代码中第四标识可以通过语法元素reference_to_library_picture_flag来表示,比如reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,reference_to_library_picture_flag==0时,指示对当前待处理图像进行帧间预测不参考知识库图像。
第二种方式,从码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像。
示例性地,在标准文本或代码中第五标识可以通过语法元素library_picture_enable_flag来表示,比如library_picture_enable_flag==1时,指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,library_picture_enable_flag==0时,指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。
第三种方式,从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像。
第四种方式,从码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像。比如,当第五标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,则确定当前待处理图像进行帧间预测参考知识库图像。
作为一种示例,本文示例描述采用第一种方式确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表1-1所示。
表1-1
Figure PCTCN2020070552-appb-000001
Figure PCTCN2020070552-appb-000002
表1-1中,reference_to_library_picture_flag对应第四标识。copy_rec_library_picture_flag对应于第一标识,copied_library_picture_idx_in_rcs对应于第二标识。
从码流中解析reference_to_library_picture_flag(比如1比特标识),reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,从码流中解析copy_rec_library_picture_flag(比如1比特标识)。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。
应当理解的是,在本申请实施例中,一种方式是显式传输copy_rec_library_picture_flag,当copy_rec_library_picture_flag==1时,表示当前待处理图像重建像素值拷贝其参考的知识图像的像素值,当copy_rec_library_picture_flag==0,表示当前待处理图像重建像素值不拷贝其参考的知识图像的像素值。另一种方式是隐式传输copy_rec_library_picture_flag,当前待处理图像重建像素值拷贝其参考的知识图像的像素值时,码流中存在copy_rec_library_picture_flag,当当前待处理图像重建像素值不拷贝其参考的知识图像的像素值时,码流中不存在copy_rec_library_picture_flag。
另外,需要说明的是,当采用显示传输时,本申请实施例中可以不配置CopyRecLibraryPictureFlag这个元素,表1-1中if(CopyRecLibraryPictureFlag==0)可以表示if(copy_rec_library_picture_flag==0)。
当copy_rec_library_picture_flag==0时,从码流中解析copied_library_picture_idx_in_rcs,copied_library_picture_idx_in_rcs可以是定长比特无符号整数(例如3比特、4比特),表示当前待处理图像的参考的知识库图像在参考图像配置集(rcs)中的索引。获取索引对应参考的知识库图像的像素值来确定当前待处理图像的重建像素值。
示例性的,上述表1-1中的部分语法元素在码流中的结构可以参见图8A所示。reference_to_library_picture_flag和copy_rec_library_picture_flag在图像头中。
应理解的是,AVS中可以包括条带头,也可以不包括条带头,在包括条带头的情况下,但是条带头比图像头更低一级。示例性的,图像级的信息主要包括在图像头中,因此可以不使用条带头,可以认为条带头在图像数据中。
作为一种示例,本文示例描述采用第二种方式确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表1-2和表1-3所示。
表1-2
Figure PCTCN2020070552-appb-000003
Figure PCTCN2020070552-appb-000004
表1-3
Figure PCTCN2020070552-appb-000005
表1-2和表1-3中,library_picture_enable_flag对应第五标识。copy_rec_library_picture_flag对应于第一标识,copied_library_picture_idx_in_rcs对应于第二标识。
在library_picture_enable_flag==1时,解码表1-3所对应的语法结构。
其中ReferenceToLibraryPictureFlag的值根据当前待处理图像使用的参考图像配置集(比如,如下表1-4所示的部分语法结构)的信息推导得到,例如,当当前待处理图像使用的第i个rcs中第j个参考图像的is_library_index_flag[i][j]的值为1时,当前待处理图像的ReferenceToLibraryPictureFlag的值为1,当当前待处理图像使用的第i个rcs中所有第j个参考图像的is_library_index_flag[i][j]的值为0时,当前待处理图像的ReferenceToLibraryPictureFlag的值为0。ReferenceToLibraryPictureFlag值为1表示当前待处理图像进行帧间预测参考知识库图像,此时需要执行从码流中解析 copy_rec_library_picture_flag。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。针对copy_rec_library_picture_flag与CopyRecLibraryPictureFlag可以参见表1-1对应的实施例的相关描述,此处不再赘述。
当copy_rec_library_picture_flag==0时,从码流中解析copied_library_picture_idx_in_rcs,copied_library_picture_idx_in_rcs可以是定长比特无符号整数(例如3比特、4比特),表示当前待处理图像的参考的知识库图像在参考图像配置集(rcs)中的索引。获取索引对应参考的知识库图像的像素值来确定当前待处理图像的重建像素值。
示例性的,上述表1-2和表1-3中的部分语法元素在码流中的结构可以参见图8B所示。copy_rec_library_picture_flag在图像头中,library_picture_enable_flag在序列头中。
表1-4
Figure PCTCN2020070552-appb-000006
作为一种示例,本文示例描述采用第三种方式确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,可以参见表1-3和表1-4所示。与第二种方式对应的视频图像解码方法的语法元素区别在于在序列层级不包括 library_picture_enable_flag。不需要解码library_picture_enable_flag==1后,再去解码表1-3的语法元素,具体实现此处不再赘述。
示例性的,上述第三种方式对应的部分语法元素在码流中的结构可以参见图8C所示。copy_rec_library_picture_flag在图像头中。
作为一种示例,本文示例描述采用第四种方式确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,可以参见表1-5所示。
表1-5
Figure PCTCN2020070552-appb-000007
表1-5中,library_picture_enable_flag对应第五标识。copy_rec_library_picture_flag对应于第一标识,copied_library_picture_idx_in_rcs对应于第二标识。
从码流中解析library_picture_enable_flag(比如1比特标识),library_picture_enable_flag==1时,指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,从码流中解析copy_rec_library_picture_flag(比如1比特标识)。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参 考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。针对copy_rec_library_picture_flag与CopyRecLibraryPictureFlag可以参见表1-1对应的实施例的相关描述,此处不再赘述。
当copy_rec_library_picture_flag==0时,从码流中解析copied_library_picture_idx_in_rcs,copied_library_picture_idx_in_rcs可以是定长比特无符号整数(例如3比特、4比特),表示当前待处理图像的参考的知识库图像在参考图像配置集(rcs)中的索引。获取索引对应参考的知识库图像的像素值来确定当前待处理图像的重建像素值。
示例性的,上述表1-5中的部分语法元素在码流中的结构与第二种方式对应的语法元素在码流中的结构类似,copy_rec_library_picture_flag在图像头中,library_picture_enable_flag在序列头中。
下面针对第一种应用场景下的视频图像编码方法进行说明。示例性的,参见图9所示,可以仅包括步骤S902。可选地,还可以包括S901和S902。
S901,确定当前待处理图像块的编码信息。
S902,将编码信息编入码流,编码信息用于为解码端提供参考信息、参考信息的使用方法,以恢复当前待处理图像的重建像素值;其中,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝知识库图像的像素值。
其中,当所述第一标识为第一数值,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同时,或者当所述当前待处理图像的像素值与所参考的知识库图像的像素值实质上接近相同(例如所述当前待处理图像与所参考的知识库图像的相似度达到预设阈值)时,第一标识为第一数值。后续以所述当前待处理图像的像素值与所参考的知识库图像的像素值相同的情况为例进行说明。
示例性的,第一数值为1,copy_rec_library_picture_flag值为1时,此时码流中不需要编入所有后续与当前待处理图像进行运动补偿相关的语法元素。
示例性的,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
示例性的,第二标识位于所述第一标识之后。
示例性的,当所述第一标识为第二数值时,所述编码信息中还可以包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识;其中,所述第一标识为第二数值,以指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。示例性的,第二数值可以为0。copy_rec_library_picture_flag值为0时,此时码流中需要编入后续与当前待处理图像进行运动补偿相关的语法元素。本申请实施例中还可以通过如下方式指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值:当所述码流中不包括第一标 识时,指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。进而所述编码信息中还可以包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识。
在一种示例中,所述编码信息中还可以包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
其中,该示例对应于上述第一种方式的解码方式对应的编码方式。
具体的,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第四标识,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像,当第四标识指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识;当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同或实质上接近相同时,所述第一标识为第一数值,以指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
以表1-1所示的解码流程为例,则在编码时,根据当前待处理图像是否参考知识库图像,确定reference_to_library_picture_flag(对应第四标识)的值,并将reference_to_library_picture_flag编入码流;当当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识库图像的像素值,确定copy_rec_library_picture_flag(对应第一标识)的值,并将copy_rec_library_picture_flag编入码流;当当前待处理图像的重建像素值能够拷贝其参考的知识库图像的像素值时,根据其拷贝的知识图像在rcs中的索引编号,确定copied_library_picture_idx_in_rcs(对应第二标识)的值,并将copied_library_picture_idx_in_rcs编入码流,并跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像所参考的知识库图像对当前待处理图像执行编码过程(例如块划分、运动补偿、merge、量化等),且码流中编入后续与编码过程相关的语法元素。
示例性的,在所述码流中,第一标识位于所述第四标识之后。
在另一种示例中,所述编码信息中还包括第五标识和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
具体的,所述编码信息中包括第五标识,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括参考图像配置集,参考图像配置集指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中还包括第一标识。示例性的,在码流中第一标识位于参考图像配置集之后,参考图像配置集位于所述第五标识之后。
其中,该示例对应于上述第二种方式的解码方式对应的编码方式。
以表1-2和表1-3所示的解码流程为例,则在编码时,根据当前待处理图像的视频序列是否参考知识库图像,确定library_picture_enable_flag(对应第五标识)的值,并将 library_picture_enable_flag编入码流;当当前待处理图像所在的视频序列参考知识库图像时,进一步根据当前待处理图像是否参考知识库图像来确定ReferenceToLibraryPictureFlag的值,并执行如下操作:
当ReferenceToLibraryPictureFlag的值为1,即当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或者实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识图像的重建像素值,确定copy_rec_library_picture_flag(对应第一标识)的值,并将copy_rec_library_picture_flag编入码流。当当前待处理图像的重建像素值能够拷贝其参考的知识库图像的像素值时,根据其拷贝的知识图像在rcs中的索引编号,确定copied_library_picture_idx_in_rcs(对应第二标识)的值,并将copied_library_picture_idx_in_rcs编入码流,并跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与当前待处理图像的编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像所参考的知识库图像对当前待处理图像执行编码过程(例如块划分、运动补偿、merge、量化等),且码流中编入后续与当前待处理图像的编码过程相关的语法元素。
在又一种示例中,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。具体的,当参考图像配置集指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中还包括第一标识。示例性的,在码流中第一标识位于参考图像配置集之后。
其中,该示例对应于上述第三种方式的解码方式对应的编码方式。
以表1-3所示的解码流程为例,则在编码时,根据当前待处理图像是否参考知识库图像来确定ReferenceToLibraryPictureFlag的值,并执行如下操作:
当ReferenceToLibraryPictureFlag的值为1,即当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或者实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识图像的重建像素值,确定copy_rec_library_picture_flag(对应第一标识)的值,并将copy_rec_library_picture_flag编入码流。当当前待处理图像的重建像素值能够拷贝其参考的知识库图像的像素值时,根据其拷贝的知识图像在rcs中的索引编号,确定copied_library_picture_idx_in_rcs(对应第二标识)的值,并将copied_library_picture_idx_in_rcs编入码流,并跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与当前待处理图像的编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像所参考的知识库图像对当前待处理图像执行编码过程(例如块划分、运动补偿、merge、量化等),且码流中编入后续与当前待处理图像的编码过程相关的语法元素。
在再一种示例中,所述编码信息中还包括第五标识,当所述第五标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像。第五标识是序列层级的语法元素。具体的,当第五标识指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中还包括第一标识。示例性的,在码流中第一标识位于所述第五标识之后。
其中,该示例对应于上述第四种方式的解码方式对应的编码方式。
以表1-5所示的解码流程为例,则在编码时,根据当前待处理图像的视频序列是否参 考知识库图像,确定library_picture_enable_flag(对应第五标识)的值,并将library_picture_enable_flag编入码流;当当前待处理图像所在的视频序列参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或者实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识图像的重建像素值,确定copy_rec_library_picture_flag(对应第一标识)的值,并将copy_rec_library_picture_flag编入码流。当当前待处理图像的重建像素值能够拷贝其参考的知识库图像的像素值时,根据其拷贝的知识图像在rcs中的索引编号,确定copied_library_picture_idx_in_rcs(对应第二标识)的值,并将copied_library_picture_idx_in_rcs编入码流,并跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与当前待处理图像的编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像所参考的知识库图像对当前待处理图像执行编码过程(例如块划分、运动补偿、merge、量化等),且码流中编入后续与当前待处理图像的编码过程相关的语法元素。
针对第二种应用场景下的视频图像解码方法进行说明,参见图10所示。
本申请实施例中,当前待处理图像所能够参考的知识库图像可以仅存在一幅,换句话说,在任一时刻外部知识库中只能同时存在一个可用的知识图像。在该情况下,S1001a,当确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识。执行S1002或者S1005。
本实施例中与图7所示的实施例中,第一标识的含义相同,可以参见图7所示的实施例对第一标识的相关描述,此处不再赘述。
S1002,当所述第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值时,获取所述当前待处理图像所参考的知识库图像的像素值。执行S1004。
当然在知识库中还可以存在当前待处理图像能够参考的多个知识库图像,在该情况下,该方法执行1001b,当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像。执行S1003。
应理解的是,S1001a和S1001b分别是在知识库中存在当前待处理图像能够参考的一个或者多个知识库图像时的两种不同的情况下的示例。
S1003,获取所述第三标识指示的知识库图像的像素值。执行S1004。示例性的,第二标识可以是当前待处理图像所参考的知识库图像的索引。
示例性的,在标准文本或代码中第三标识可以通过语法元素library_picture_id来表示。
S1004,参见S704,此处不再赘述。
S1005,参见S705,此处不再赘述。
本申请实施例中,在确定对当前待处理图像进行帧间预测是否参考知识库图像时可以通过多种方式实现,下面示例几种确定对当前待处理图像进行帧间预测是否参考知识库图像的方式。
方式1,与上述第一种方式类似,即从码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,在标准文本或代码中第四标识可以通过语法元素 reference_to_library_picture_flag来表示,比如reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,reference_to_library_picture_flag==0时,指示对当前待处理图像进行帧间预测不参考知识库图像。
方式2,从码流中解析第六标识,所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,从码流中解析第七标识,所述第七标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性地,在标准文本或代码中第六标识可以通过语法元素library_picture_enable_flag来表示,比如library_picture_enable_flag==1时,指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,library_picture_enable_flag==0时,指示对当前待处理图像所在的视频序列进行帧间预测不参考知识库图像。
示例性地,在标准文本或代码中第七标识可以通过语法元素library_picture_enable_flag来表示,比如reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,reference_to_library_picture_flag==0时,指示对当前待处理图像进行帧间预测不参考知识库图像。
方式3,基于参考图像配置集确定当前待处理图像进行帧间预测是否参考知识库图像。
在HEVC或者VVC中,参考图像配置集可以通过rps来表示。
作为一种示例,本文示例描述采用方式1确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表2-1所示,以任一时刻知识库中仅存在一幅针对当前待处理图像进行编码时可用的知识库图像。
表2-1
Figure PCTCN2020070552-appb-000008
表2-1中,reference_to_library_picture_flag对应第四标识。copy_rec_library_picture_flag对应于第一标识。
从码流中解析reference_to_library_picture_flag(比如1比特标识,可以携带在条带头中),reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,从码流中解析copy_rec_library_picture_flag(比如1比特标识)。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。
应当理解的是,在本申请实施例中,一种方式是显式传输copy_rec_library_picture_flag,当copy_rec_library_picture_flag==1时,表示当前待处理图像重建像素值拷贝其参考的知识图像的像素值,当copy_rec_library_picture_flag==0,表示当前待处理图像重建像素值不拷贝其参考的知识图像的像素值。另一种方式是隐式传输copy_rec_library_picture_flag,当前待处理图像重建像素值拷贝其参考的知识图像的像素值时,码流中存在copy_rec_library_picture_flag,当当前待处理图像重建像素值不拷贝其参考的知识图像的像素值时,码流中不存在copy_rec_library_picture_flag。
另外,需要说明的是,当采用显式传输copy_rec_library_picture_flag时,本申请实施例中可以不配置CopyRecLibraryPictureFlag这个元素,表2-1中if(CopyRecLibraryPictureFlag==0)可以通过if(copy_rec_library_picture_flag==0)表示。
示例性的,上述表2-1中的部分语法元素在码流中的结构可以参见图11A所示。copy_rec_library_picture_flag和ReferenceToLibraryPictureFlag在条带头中。图11A中Longterm_Reference表示长期参考。
作为另一种示例,本文示例描述采用方式2确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表2-2所示,以任一时刻知识库中仅存在一幅针对当前待处理图像进行编码时可用的知识库图像。
表2-2
Figure PCTCN2020070552-appb-000009
Figure PCTCN2020070552-appb-000010
表2-2中,library_picture_enable_flag对应第六标识,reference_to_library_picture_flag对应第七标识。copy_rec_library_picture_flag对应于第一标识。
从码流中解析library_picture_enable_flag,library_picture_enable_flag==1时,指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,从码流中解析ReferenceToLibraryPictureFlag(比如1比特标识,可以携带在条带头中),ReferenceToLibraryPictureFlag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,从码流中解析copy_rec_library_picture_flag(比如1比特标识)。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。针对copy_rec_library_picture_flag与CopyRecLibraryPictureFlag可以参见表2-1对应的实施例的相关描述,此处不再赘述。
示例性的,上述表2-2中的部分语法元素在码流中的结构可以参见图11B所示。copy_rec_library_picture_flag和reference_to_library_picture_flag在条带头中,library_picture_enable_flag在序列头中。
作为又一种示例,本文示例描述采用方式2确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表2-3所示,以知识库中存在多幅针对当前待处理图像进行编码时可用的知识库图像为例。当任一时刻知识库中仅存在一幅针对当前待处理图像进行编码时可用的知识库图像时,表2-3中不需要解析library_picture_id。
表2-3
Figure PCTCN2020070552-appb-000011
Figure PCTCN2020070552-appb-000012
表2-3中,library_picture_enable_flag对应第六标识,reference_to_library_picture_flag对应第七标识。copy_rec_library_picture_flag对应于第一标识,library_picture_id对应于第三标识。
从码流的序列头中解析library_picture_enable_flag,library_picture_enable_flag==1时,指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像,从码流中解析reference_to_library_picture_flag(比如1比特标识,可以携带在条带头中),reference_to_library_picture_flag==1时,指示对当前待处理图像进行帧间预测参考知识库图像,从码流中解析copy_rec_library_picture_flag(比如1比特标识)和library_picture_id。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值,具体的,可以拷贝library_picture_id指示的知识库图像的像素值,用来确定当前待处理图像的重建像素值。copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以参考library_picture_id指示的知识库图像通过运动补偿的方式获得当前待处理图像的重建像素值。
copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。针对copy_rec_library_picture_flag与CopyRecLibraryPictureFlag可以参见表2-1对应的实施例的相关描述,此处不再赘述。
示例性的,上述表2-3中的部分语法元素在码流中的结构可以参见图11C所示。copy_rec_library_picture_flag和reference_to_library_picture_flag、library_picture_id在条带头中,library_picture_enable_flag在序列头中。Library_reference中包括指示承载当前待处理图像参考的知识库图像的信息,比如参考知识库图像数目,知识库图像的索引或者id等。
作为再一种示例,本文示例描述采用方式3确定对当前待处理图像进行帧间预测是否参考知识库图像时的视频图像解码方法的部分语法元素,参见表2-4所示,以知识库中存 在多幅针对当前待处理图像进行编码时可用的知识库图像为例。
表2-4
Figure PCTCN2020070552-appb-000013
表2-4中,copy_rec_library_picture_flag对应于第一标识。
其中ReferenceToLibraryPictureFlag的值根据当前待处理图像使用的参考图像配置集(rps)的信息推导得到,例如,当当前待处理图像使用的rps中参考图像为知识库图像时,当前待处理图像的ReferenceToLibraryPictureFlag的值为1,当当前待处理图像使用的rps中参考图像为不知识库图像时,当前待处理图像的ReferenceToLibraryPictureFlag的值为0。ReferenceToLibraryPictureFlag值为1表示当前待处理图像进行帧间预测参考知识库图像,此时需要执行从码流中解析copy_rec_library_picture_flag。copy_rec_library_picture_flag==1表示当前图像的重建像素值不使用基于预测补偿的方法获得,可以直接拷贝其参考的知识图像的像素值;copy_rec_library_picture_flag==0表示当前图像的重建像素值不直接拷贝其参考的知识图像的重建像素值,可以通过运动补偿的方式来获得当前待处理图像的重建像素值。copy_rec_library_picture_flag==1时,CopyRecLibraryPictureFlag赋值为1,此时码流中不包括后续与当前待处理图像运动补偿相关的语法元素,copy_rec_library_picture_flag值为0或不存在时,CopyRecLibraryPictureFlag赋值为0,此时码流中包括后续与当前待处理图像运动补偿相关的语法元素。针对copy_rec_library_picture_flag与CopyRecLibraryPictureFlag可以参见表1-1对应的实施例的相关描述,此处不再赘述。
示例性的,上述表2-4中的部分语法元素在码流中的结构可以参见图11D所示。copy_rec_library_picture_flag、library_picture_id在条带头中。
下面针对第二种应用场景下的视频图像编码方法进行说明。示例性的,参见图12所示,可以仅包括步骤S1202。可选地,还可以包括S1201和S1202。
S1201,确定当前待处理图像块的编码信息。
S1202,将编码信息编入码流;编码信息用于为解码端提供参考信息、参考信息的使用方法,以恢复当前待处理图像的重建像素值;其中,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝知识库图像的像素值。
当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同或实质上接近相同时,所述第一标识为第一数值,以指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
示例性的,第一数值为1,copy_rec_library_picture_flag值为1时,此时码流中不需要编入所有后续与当前待处理图像进行运动补偿相关的语法元素。
示例性的,当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同或实质上接近相同时,所述编码信息中还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
示例性的,在码流中,第三标识与所述第一标识不分先后顺序。
示例性的,当所述第一标识为第二数值时,所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。相应的,所述第一标识为第二数值时,所述编码信息中还可以包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识。示例性的,第二数值可以为0。copy_rec_library_picture_flag值为0时,此时码流中需要编入后续与当前待处理图像进行运动补偿相关的语法元素。
在一种示例中,所述编码信息中还可以包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
其中,该示例对应于上述方式1的解码方式对应的编码方式。
具体的,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第四标识,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像,当第四标识指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识;当所述当前待处理图像的像素值与所参考的知识库图像的像素值相同或实质上接近相同时,所述第一标识为第一数值,以指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
示例性的,在所述码流中,第一标识位于所述第四标识之后。
以表2-1所示的解码流程为例,相应地,在编码时,根据当前待处理图像是否参考知识库图像,确定reference_to_library_picture_flag(对应第四标识)的值,并将reference_to_library_picture_flag编入码流;当当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识库图像的像素值,确定copy_rec_library_picture_flag(对应第一标识)的取值,并将copy_rec_library_picture_flag编入码流;当当前待处理图像的重建像素值能够直接拷贝其参考的知识库图像的像素值时,跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与编码方法相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像参考的知识库图像对当前待 处理图像执行编码过程(例如传统的编码过程,包括块划分、运动补偿、merge、量化等),且码流中编入后续与当前待处理图像的编码过程相关的语法元素。
在另一种示例中,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。具体的,当参考图像配置集指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中还包括第一标识。示例性的,在码流中第一标识位于参考图像配置集之后。
其中,该示例对应于上述方式3的解码方式对应的编码方式。
以表2-4所示的解码流程为例,则在编码时,根据当前待处理图像是否参考知识库图像来确定ReferenceToLibraryPictureFlag的值,并执行如下操作:
当ReferenceToLibraryPictureFlag的值为1,即当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识图像的重建像素值,确定copy_rec_library_picture_flag(对应第一标识)的取值,并将copy_rec_library_picture_flag编入码流。当当前待处理图像的重建像素值能够拷贝其参考的知识库图像的像素值时,根据其拷贝的知识图像在rcs中的索引编号,确定copied_library_picture_idx_in_rcs(对应第二标识)的值,将copied_library_picture_idx_in_rcs编入码流,并跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与当前待处理图像的编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像参考的知识库图像对当前待处理图像执行编码过程(例如传统的编码过程,例如包括块划分、运动补偿、merge、量化等),且在码流中编入后续与当前待处理图像的编码过程相关的语法元素。
在又一种示例中,所述编码信息中还包括第六标识,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像。具体的,当第六标识指示对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识,所述第七标识用于指示当前待处理图像是否参考知识库图像。当第七标识指示所述当前待处理图像参考知识库图像时,所述编码信息中还包括第一标识。示例性的,在码流中第一标识位于所述第七标识之后,所述第七标识位于所述第六标识之后。
其中,该示例对应于上述方式2的解码方式对应的编码方式。
以表2-2所示的解码流程为例,相应地,在编码时,根据序列头中library_picture_enable_flag(第六标识)的值,判断当前待处理图像所在的视频序列是否参考知识库图像;当当前待处理图像所在视频序列参考知识库图像时,根据当前待处理图像是否参考知识库图像,确定reference_to_library_picture_flag(对应第七标识)的值,并将reference_to_library_picture_flag编入码流;当当前待处理图像参考知识库图像时,根据当前待处理图像的像素值与其参考的知识库图像的像素值是否相同或者实质上接近相同,判断当前待处理图像的重建像素值是否能够拷贝其参考的知识库图像的像素值,确定copy_rec_library_picture_flag(对应第一标识)的值,并将copy_rec_library_picture_flag编入码流;当当前待处理图像的重建像素值能够直接拷贝其参考的知识库图像的像素值时,跳过当前待处理图像的编码过程(例如块划分、运动补偿、merge、量化等),且不在码流中编入所有后续与当前待处理图像的编码过程相关的语法元素。当当前待处理图像的重建像素值不能够直接拷贝其参考的知识库图像的像素值时,并基于当前待处理图像所参考的 知识库图像对当前待处理图像执行编码过程(例如传统的编码过程,例如包括块划分、运动补偿、merge、量化等),且码流中编入后续与当前待处理图像的编码过程相关的语法元素。
基于与上述方法相同的发明构思,如图13所示,本申请实施例还提供了一种视频图像解码装置1300,该装置1300包括图像存储单元1301和解封装单元1302。该装置1300还可以包括解码单元1303。
其中,图像存储单元1301,用于存储知识库图像;
解封装单元1302,用于在确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;当所述第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值时,从所述图像存储单元1301中获取所述当前待处理图像所参考的知识库图像的像素值;根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
示例性的,所述解封装单元1302,还用于当所述第一标识指示当前待处理图像的重建像素值拷贝知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;所述解封装单元1302在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元1301中获取所述第二标识指示的知识库图像的像素值。
示例性的,所述解封装单元1302,还用于当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;所述解封装单元1302在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元1301中获取所述第三标识指示的知识库图像的像素值。
示例性的,所述解封装单元1302,还用于通过如下任一方式确定对当前待处理图像进行帧间预测是否参考知识库图像:
从码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
或者,
从码流中解析第六标识,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,从所述码流中解析第七标识,所述第七标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
在一种可能的设计中,所述解封装单元1302,还用于当所述第一标识指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值时,通过所述解码单元1303利用当前 图像所参考的知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值(例如基于当前待处理图像所参考的知识库图像对当前待处理图像执行传统的解码过程)。
示例性的,所述第一标识携带在条带头、图像头、或序列头中。
示例性的,在基于获取的知识库图像的像素值确定所述当前待处理图像的重建像素值的方面,所述解封装单元1302具体用于将获取的知识库图像的像素值作为所述当前待处理图像的重建像素值。
还需要说明的是,图像存储单元1301、解封装单元1302和解码单元1303的具体实现过程可参考图7或者图10实施例的详细描述,为了说明书的简洁,这里不再赘述。
示例性地,在解码端,图13中,图像存储单元1301的位置对应于图3中DPB330的位置,换言之,图像存储单元1301的功能的具体实现可以参见图3中的DPB330的具体细节。解封装单元1302的位置对应于图3中解封装单元303的位置,换言之,解封装单元1302的功能的具体实现与图3中的解封装单元303的具体细节可以相互参见。这里的解码单元1303可以对应于图3中的解码器中的熵解码单元303、预测处理单元360和重构单元314中的一个或多个的组合。
基于与上述方法相同的发明构思,如图14所示,本申请实施例还提供了一种视频图像编码装置1400,该装置1400包括图像存储单元1401和码流封装单元1402。
图像存储单元1401,用于存储知识库图像;
码流封装单元1402,用于将编码信息编入码流;
其中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值;其中,当所述第一标识为第一数值时,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
示例性的,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
示例性的,在所述码流中,所述第二标识位于所述第一标识之后。
示例性的,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
示例性的,当所述第一标识为第二数值时,所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。相应地,所述编码信息中还包括用于指示通过非拷贝方法确定所述当前待处理图像的重建像素值的其它标识,详情参见前述实施例,这里不再赘述。
示例性的,所述编码信息中还包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述编码信息中还包括第五标识和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述编码信息中还包括第六标识,所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识,所述第七标识是图像层级的语法元素,所述第七标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
示例性的,所述第一标识携带在条带头、图像头、或序列头中。
还需要说明的是,图像存储单元1401和码流封装单元1402的具体实现过程可参考图9或者图12实施例的详细描述,为了说明书的简洁,这里不再赘述。示例性地,在编码端,图14中,图像存储单元1401的位置对应于图2中DPB230的位置,换言之,图像存储单元1401的功能的具体实现可以参见图2中的DPB230的具体细节。码流封装单元1402的位置对应于图2中码流封装单元280的位置,换言之,码流封装单元1402的功能的具体实现与参见图2中的码流封装单元280的具体细节可以相互参见。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (36)

  1. 一种视频图像解码方法,其特征在于,包括:
    当确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;
    当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,获取所述当前待处理图像所参考的知识库图像的像素值;
    根据所述获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;
    所述获取所述当前待处理图像所参考的知识库图像的像素值,包括:
    获取所述第二标识指示的知识库图像的像素值。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;
    获取所述当前待处理图像所参考的知识库图像的像素值,包括:
    获取所述第三标识指示的知识库图像的像素值。
  4. 如权利要求1-3任一所述的方法,其特征在于,通过如下任一方式确定对当前待处理图像进行帧间预测是否参考知识库图像:
    从所述码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像;当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析第六标识,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,从所述码流中解析第七标识,所述第七标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
  5. 如权利要求1-4任一项所述的方法,其特征在于,还包括:
    当所述第一标识指示所述当前待处理图像的重建像素值不拷贝所述知识库图像的像素值时,利用所述知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一标识携带在条带头、图像头、或序列头中。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述基于所述获取的知识库图像 的像素值确定所述当前待处理图像的重建像素值,包括:
    将所述获取的知识库图像的像素值作为所述当前待处理图像的重建像素值。
  8. 一种视频图像编码方法,其特征在于,包括:
    将编码信息编入码流;
    其中,当确定对当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值;
    其中,当所述第一标识为第一数值,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
  9. 如权利要求8所述的方法,其特征在于,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
  10. 如权利要求9所述的方法,其特征在于,在所述码流中,所述第二标识位于所述第一标识之后。
  11. 如权利要求8所述的方法,其特征在于,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
  12. 如权利要求8-11任一项所述的方法,其特征在于,当所述第一标识为第二数值时,所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝所述知识库图像的像素值。
  13. 如权利要求8-12任一项所述的方法,其特征在于,所述编码信息中还包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  14. 如权利要求8-12任一项所述的方法,其特征在于,所述编码信息中还包括第五标识和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  15. 如权利要求8-12任一项所述的方法,其特征在于,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  16. 如权利要求8-12任一项所述的方法,其特征在于,所述编码信息中还包括第六标识,所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识,所述第七标识是图像层级的语法元素,所述第七标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  17. 如权利要求8-16任一项所述的方法,其特征在于,所述第一标识携带在条带头、 图像头、或序列头中。
  18. 一种视频图像解码装置,其特征在于,包括:
    图像存储单元,用于存储知识库图像;
    解封装单元,用于在确定对当前待处理图像进行帧间预测参考知识库图像时,从码流中解析第一标识;当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述图像存储单元中获取所述当前待处理图像所参考的知识库图像的像素值;根据获取的知识库图像的像素值确定所述当前待处理图像的重建像素值。
  19. 如权利要求18所述的装置,其特征在于,所述解封装单元,还用于当所述第一标识指示当前待处理图像的重建像素值拷贝所述知识库图像的像素值时,从所述码流中解析第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;
    所述解封装单元在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元中获取所述第二标识指示的知识库图像的像素值。
  20. 如权利要求18所述的装置,其特征在于,所述解封装单元,还用于当确定对当前待处理图像进行帧间预测参考知识库图像时,从所述码流中解析第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;
    所述解封装单元在获取所述当前待处理图像所参考的知识库图像的像素值的方面,具体用于从所述图像存储单元中获取所述第三标识指示的知识库图像的像素值。
  21. 如权利要求18-20任一所述的装置,其特征在于,所述解封装单元,还用于通过如下任一方式确定对当前待处理图像进行帧间预测是否参考知识库图像:
    从所述码流中解析第四标识,所述第四标识是图像层级的语法元素,所述第四标识指示对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析第五标识,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,基于从所述码流中解析出的参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析参考图像配置集,基于所述参考图像配置集确定对当前待处理图像进行帧间预测是否参考知识库图像;
    或者,
    从所述码流中解析第六标识,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,从所述码流中解析第七标识,所述第七标识指示对当前待处理图像进行帧间预测是否参考知识库图像。
  22. 如权利要求18-21任一项所述的装置,其特征在于,所述装置还包括解码单元,所述解封装单元,还用于当所述第一标识指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值时,通过所述解码单元利用所述知识库图像以非拷贝方式获得所述当前待处理图像的重建像素值。
  23. 如权利要求18-22任一项所述的装置,其特征在于,所述第一标识携带在条带头、图像头、或序列头中。
  24. 如权利要求18-23任一项所述的装置,其特征在于,在基于所述获取的知识库图 像的像素值确定所述当前待处理图像的重建像素值的方面,所述解封装单元具体用于将获取的知识库图像的像素值作为所述当前待处理图像的重建像素值。
  25. 一种视频图像编码装置,其特征在于,包括:
    图像存储单元,用于存储知识库图像;
    码流封装单元,用于将编码信息编入码流;
    其中,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息中包括第一标识,所述第一标识用于指示当前待处理图像的重建像素值是否拷贝所述知识库图像的像素值;
    其中,当所述第一标识为第一数值时,所述第一标识用于指示当前待处理图像的重建像素值拷贝知识库图像的像素值。
  26. 如权利要求25所述的装置,其特征在于,当所述第一标识为第一数值时,所述编码信息中还包括第二标识,所述第二标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第二标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
  27. 如权利要求26所述的装置,其特征在于,在所述码流中,所述第二标识位于所述第一标识之后。
  28. 如权利要求25所述的装置,其特征在于,当确定当前待处理图像进行帧间预测参考知识库图像时,所述编码信息还包括第三标识,所述第三标识用于指示所述当前待处理图像所参考的知识库图像;其中,所述第三标识所指示的知识库图像的像素值用于确定所述当前待处理图像的重建像素值。
  29. 如权利要求25-28任一项所述的装置,其特征在于,当所述第一标识为第二数值时,
    所述第一标识用于指示所述当前待处理图像的重建像素值不拷贝知识库图像的像素值。
  30. 如权利要求25-29任一项所述的装置,其特征在于,所述编码信息中还包括第四标识,所述第四标识是图像层级的语法元素,所述第四标识用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  31. 如权利要求25-29任一项所述的装置,其特征在于,所述编码信息中还包括第五标识和参考图像配置集,所述第五标识是序列层级的语法元素,所述第五标识指示对当前待处理图像所在视频序列进行帧间预测是否参考知识库图像,当所述第五标识指示对当前待处理图像所在视频序列进行帧间预测参考知识库图像时,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  32. 如权利要求25-29任一项所述的装置,其特征在于,所述编码信息中还包括参考图像配置集,所述参考图像配置集用于指示对当前待处理图像进行帧间预测是否参考知识库图像。
  33. 如权利要求25-29任一项所述的装置,其特征在于,所述编码信息中还包括第六标识,所述第六标识是序列层级的语法元素,所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测是否参考知识库图像,当所述第六标识指示对当前待处理图像所在的视频序列进行帧间预测参考知识库图像时,所述编码信息中还包括第七标识,所述第七标识是图像层级的语法元素,所述第七标识用于指示对当前待处理图像进行帧间预测是否 参考知识库图像。
  34. 如权利要求25-33任一项所述的装置,其特征在于,所述第一标识携带在条带头、图像头、或序列头中。
  35. 一种视频解码设备,其特征在于,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-7任一项所描述的方法。
  36. 一种视频编码设备,其特征在于,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求8-17任一项所描述的方法。
PCT/CN2020/070552 2019-01-07 2020-01-06 视频图像解码、编码方法及装置 WO2020143589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910017708.0 2019-01-07
CN201910017708.0A CN111416981B (zh) 2019-01-07 2019-01-07 视频图像解码、编码方法及装置

Publications (1)

Publication Number Publication Date
WO2020143589A1 true WO2020143589A1 (zh) 2020-07-16

Family

ID=71494794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070552 WO2020143589A1 (zh) 2019-01-07 2020-01-06 视频图像解码、编码方法及装置

Country Status (2)

Country Link
CN (1) CN111416981B (zh)
WO (1) WO2020143589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988626A (zh) * 2020-07-22 2020-11-24 浙江大华技术股份有限公司 帧参考方法、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055231B (zh) * 2020-08-31 2021-10-15 浙江大华技术股份有限公司 视频解码方法、解码装置、解码器及电子设备
CN113301341A (zh) * 2021-05-27 2021-08-24 上海国茂数字技术有限公司 基于知识图像的视频编码方法、装置及可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814575A (zh) * 2011-09-23 2014-05-21 高通股份有限公司 译码参考图像集的参考图像
CN104756499A (zh) * 2012-10-25 2015-07-01 高通股份有限公司 用于视频译码的参考图片状态
CN104768011A (zh) * 2015-03-31 2015-07-08 浙江大学 图像编解码方法和相关装置
CN106878750A (zh) * 2017-03-17 2017-06-20 珠海全志科技股份有限公司 一种基于长期参考帧的视频编码方法及装置
CN106937168A (zh) * 2015-12-30 2017-07-07 掌赢信息科技(上海)有限公司 一种利用长期参考帧的视频编码方法、电子设备及系统
US20170223372A1 (en) * 2011-09-07 2017-08-03 Sun Patent Trust Image coding method, image decoding method, image coding apparatus, image decoding apparatus, and image coding and decoding apparatus
CN107018418A (zh) * 2015-12-23 2017-08-04 联发科技股份有限公司 参考数据重用方法、带宽估计方法及相关视频解码器
CN108243339A (zh) * 2016-12-27 2018-07-03 浙江大学 图像编解码方法及装置
US20180234698A1 (en) * 2011-11-07 2018-08-16 Microsoft Technology Licensing, Llc Signaling of state information for a decoded picture buffer and reference picture lists

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170223372A1 (en) * 2011-09-07 2017-08-03 Sun Patent Trust Image coding method, image decoding method, image coding apparatus, image decoding apparatus, and image coding and decoding apparatus
CN103814575A (zh) * 2011-09-23 2014-05-21 高通股份有限公司 译码参考图像集的参考图像
US20180234698A1 (en) * 2011-11-07 2018-08-16 Microsoft Technology Licensing, Llc Signaling of state information for a decoded picture buffer and reference picture lists
CN104756499A (zh) * 2012-10-25 2015-07-01 高通股份有限公司 用于视频译码的参考图片状态
CN104768011A (zh) * 2015-03-31 2015-07-08 浙江大学 图像编解码方法和相关装置
CN107018418A (zh) * 2015-12-23 2017-08-04 联发科技股份有限公司 参考数据重用方法、带宽估计方法及相关视频解码器
CN106937168A (zh) * 2015-12-30 2017-07-07 掌赢信息科技(上海)有限公司 一种利用长期参考帧的视频编码方法、电子设备及系统
CN108243339A (zh) * 2016-12-27 2018-07-03 浙江大学 图像编解码方法及装置
CN106878750A (zh) * 2017-03-17 2017-06-20 珠海全志科技股份有限公司 一种基于长期参考帧的视频编码方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988626A (zh) * 2020-07-22 2020-11-24 浙江大华技术股份有限公司 帧参考方法、设备及存储介质
CN111988626B (zh) * 2020-07-22 2023-10-27 浙江大华技术股份有限公司 帧参考方法、设备及存储介质

Also Published As

Publication number Publication date
CN111416981B (zh) 2023-06-02
CN111416981A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN115243039B (zh) 一种视频图像预测方法及装置
CN115695785A (zh) 图像预测方法及装置
US11849109B2 (en) Image prediction method, apparatus, and system, device, and storage medium
WO2020125595A1 (zh) 视频译码器及相应方法
WO2020244579A1 (zh) Mpm列表构建方法、色度块的帧内预测模式获取方法及装置
WO2020114394A1 (zh) 视频编解码方法、视频编码器和视频解码器
CN111385572B (zh) 预测模式确定方法、装置及编码设备和解码设备
WO2020143589A1 (zh) 视频图像解码、编码方法及装置
US20230370597A1 (en) Picture partitioning method and apparatus
WO2020143585A1 (zh) 视频编码器、视频解码器及相应方法
WO2020135467A1 (zh) 帧间预测方法、装置以及相应的编码器和解码器
WO2020253681A1 (zh) 融合候选运动信息列表的构建方法、装置及编解码器
WO2020216294A1 (zh) 图像预测方法、装置和计算机可读存储介质
CN111432219B (zh) 一种帧间预测方法及装置
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
WO2020224476A1 (zh) 一种图像划分方法、装置及设备
WO2020182194A1 (zh) 帧间预测的方法及相关装置
WO2020147514A1 (zh) 视频编码器、视频解码器及相应方法
WO2020114509A1 (zh) 视频图像解码、编码方法及装置
WO2020135615A1 (zh) 视频图像解码方法及装置
WO2020134817A1 (zh) 预测模式确定方法、装置及编码设备和解码设备
WO2020114393A1 (zh) 变换方法、反变换方法以及视频编码器和视频解码器
WO2020135371A1 (zh) 一种标志位的上下文建模方法及装置
WO2020151274A1 (zh) 图像显示顺序的确定方法、装置和视频编解码设备
WO2020181476A1 (zh) 视频图像预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737998

Country of ref document: EP

Kind code of ref document: A1