WO2020135467A1 - 帧间预测方法、装置以及相应的编码器和解码器 - Google Patents

帧间预测方法、装置以及相应的编码器和解码器 Download PDF

Info

Publication number
WO2020135467A1
WO2020135467A1 PCT/CN2019/128136 CN2019128136W WO2020135467A1 WO 2020135467 A1 WO2020135467 A1 WO 2020135467A1 CN 2019128136 W CN2019128136 W CN 2019128136W WO 2020135467 A1 WO2020135467 A1 WO 2020135467A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
value
current image
image block
prediction
Prior art date
Application number
PCT/CN2019/128136
Other languages
English (en)
French (fr)
Inventor
陈旭
郑建铧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021538314A priority Critical patent/JP2022515555A/ja
Priority to CN202111014505.XA priority patent/CN113709478B/zh
Priority to KR1020217023866A priority patent/KR20210107109A/ko
Priority to CN201980015446.2A priority patent/CN111788833B/zh
Publication of WO2020135467A1 publication Critical patent/WO2020135467A1/zh
Priority to US17/360,786 priority patent/US11956444B2/en
Priority to JP2024021174A priority patent/JP2024056899A/ja
Priority to US18/597,291 priority patent/US20240340427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Definitions

  • the present invention relates to the field of video encoding and decoding, and in particular to an inter prediction method, device, and corresponding encoder and decoder.
  • Digital video capabilities can be incorporated into a variety of devices, including digital TVs, digital live broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, e-book readers, Digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio phones (so-called "smart phones"), video teleconferencing devices, video streaming devices, and the like .
  • Digital video devices implement video compression technology, for example, in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4 Part 10 Advanced Video Coding (AVC), The video compression technology described in the video coding standard H.265/High Efficiency Video Coding (HEVC) standard and extensions to such standards.
  • Video devices can more efficiently transmit, receive, encode, decode, and/or store digital video information by implementing such video compression techniques.
  • Video compression techniques perform spatial (intra-image) prediction and/or temporal (inter-image) prediction to reduce or remove redundancy inherent in video sequences.
  • a video slice ie, a video frame or a portion of a video frame
  • the image block in the to-be-intra-coded (I) slice of the image is encoded using spatial prediction regarding reference samples in adjacent blocks in the same image.
  • An image block in an inter-coded (P or B) slice of an image may use spatial prediction relative to reference samples in neighboring blocks in the same image or temporal prediction relative to reference samples in other reference images.
  • the image may be referred to as a frame, and the reference image may be referred to as a reference frame.
  • Embodiments of the present application provide an inter-frame prediction method, device, and corresponding encoder and decoder, to a certain extent, redundancy in the encoding and decoding process, thereby improving encoding and decoding efficiency.
  • an embodiment of the present application provides an inter prediction method, the method includes: acquiring a motion vector prediction value of a current image block; acquiring an index value of a length of a motion vector difference value of the current image block, the current image
  • the motion vector difference value of the block is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block;
  • the target length information is determined from the candidate length information set according to the length index value, and the candidate length
  • the information set only includes candidate length information of N motion vector difference values, N is a positive integer greater than 1 and less than 8; according to the target length information, the motion vector difference value of the current image block is obtained; according to the motion of the current image block
  • the vector difference value and the motion vector prediction value of the current image block determine the motion vector target value of the current image block; according to the motion vector target value of the current image block, the prediction block of the current image block is obtained.
  • the candidate length information set may be preset.
  • the method further includes: acquiring the index value of the direction of the motion vector difference of the current image block; from M motion vectors according to the index value of the direction
  • the target direction information is determined from the candidate direction information of the difference, M is a positive integer greater than 1;
  • the obtaining the motion vector difference value of the current image block according to the target length information includes: determining the motion vector difference value of the current image block according to the target direction information and the target length information.
  • the N is 4.
  • the candidate length information of the N motion vector difference values includes at least one of the following: when the index value of the length is the first preset value, the length indicated by the target length information is one quarter of the pixel length; When the index value of is the second preset value, the length indicated by the target length information is one-half pixel length; when the index value of the length is the third preset value, the length indicated by the target length information is one Pixel length; when the index value of the length is the fourth preset value, the length indicated by the target length information is two pixel lengths.
  • the acquiring the motion vector prediction value of the current image block includes: constructing the current image block Candidate motion information list, which is composed of L motion vectors, where L is 1, 3, 4 or 5; obtain the index value of the motion information prediction information of the current image block in the candidate motion information list, the The motion information prediction information of the current image block includes the motion vector prediction value; the motion vector prediction value is obtained according to the index value of the motion information of the current image block in the candidate motion information list and the candidate motion information list.
  • an embodiment of the present application provides an inter prediction method.
  • the method includes: acquiring a motion vector prediction value of a current image block; and executing within a region where the position indicated by the motion vector prediction value of the current image block Motion search to obtain the target value of the motion vector of the current image block; according to the target value of the motion vector of the current image block and the predicted value of the motion vector of the current image block, the index value of the length of the difference of the motion vector of the current image block is obtained ,
  • the motion vector difference value of the current image block is used to indicate the difference between the motion vector prediction value and the motion image target value of the current image block
  • the index value of the length of the motion vector difference value of the current image block is used to indicate
  • One candidate length information in a preset candidate length information set, the candidate length information set includes only candidate length information of N motion vector difference values, N is a positive integer greater than 1 and less than 8.
  • the motion vector difference of the current image block is obtained according to the motion vector target value of the current image block and the motion vector predicted value of the current image block
  • the index value of the length of the value includes: obtaining the motion vector difference value of the current image block according to the motion vector target value of the current image block and the motion vector prediction value of the current image block; according to the motion vector difference value of the current image block To determine the index value of the length of the motion vector difference of the current image block and the direction index value of the motion vector difference of the current image block.
  • N is 4.
  • an embodiment of the present application provides an inter prediction method, the method includes: acquiring a motion vector prediction value of a current image block; acquiring an index value of a direction of a motion vector difference value of the current image block, the current image
  • the motion vector difference value of the block is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block;
  • the target direction information is determined from the candidate direction information set according to the index value of the direction, and the candidate direction
  • the information set includes M candidate direction information of motion vector difference values, M is a positive integer greater than 4; according to the target direction information, the motion vector difference value of the current image block is obtained; according to the motion vector difference value of the current image block and The prediction value of the motion vector of the current image block to determine the target value of the motion vector of the current image block;
  • the predicted block of the current image block is obtained.
  • the method further includes: acquiring an index value of a length of a motion vector difference value of the current image block; from N motions according to the index value of the length
  • the target length information is determined from the candidate length information of the vector difference, and N is a positive integer greater than 1;
  • the obtaining the motion vector difference of the current image block according to the target direction information includes: determining the motion vector difference of the current image block according to the target direction information and the target length information.
  • the M is 8.
  • the candidate direction information of the M motion vector difference values includes at least one of the following:
  • the direction indicated by the target direction information is to the right;
  • the direction indicated by the target direction information is positive left
  • the index value of the direction is the third preset value
  • the direction indicated by the target direction information is directly below
  • the index value of the direction is the fourth preset value
  • the direction indicated by the target direction information is directly above
  • the direction indicated by the target direction information is the lower right
  • the direction indicated by the target direction information is the upper right
  • the direction indicated by the target direction information is the lower left
  • the direction indicated by the target direction information is the upper left.
  • the acquiring the motion vector prediction value of the current image block includes: constructing the current image block A candidate motion information list.
  • the candidate motion information list may be composed of L motion vectors, where L is 1, 3, 4, or 5; obtain the index value of the motion information prediction information of the current image block in the candidate motion information list,
  • the motion information prediction information of the current image block includes the motion vector prediction value; the motion vector prediction value is obtained according to the index value of the motion information of the current image block in the candidate motion information list and the candidate motion information list.
  • an embodiment of the present application provides an inter prediction method.
  • the method includes: acquiring a motion vector prediction value of a current image block; and executing within a region where a position indicated by the motion vector prediction value of the current image block Motion search to obtain the target value of the motion vector of the current image block; according to the target value of the motion vector of the current image block and the predicted value of the motion vector of the current image block, the index value of the direction of the difference of the motion vector of the current image block is obtained ,
  • the motion vector difference value of the current image block is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block, and the index value of the direction of the motion vector difference value of the current image block is used to indicate
  • One candidate direction information in a preset candidate direction information set the candidate direction information set includes candidate length information of M motion vector difference values, and M is a positive integer greater than 4.
  • the motion vector difference of the current image block is obtained according to the motion vector target value of the current image block and the motion vector predicted value of the current image block
  • the index value of the length of the value includes: obtaining the motion vector difference value of the current image block according to the motion vector target value of the current image block and the motion vector prediction value of the current image block; according to the motion vector difference value of the current image block To determine the index value of the length of the motion vector difference of the current image block and the direction index value of the motion vector difference of the current image block.
  • M is 8.
  • an embodiment of the present application provides an inter prediction method.
  • the method includes: acquiring a first motion vector predicted value and a second motion vector predicted value of a current image block.
  • the first motion vector predicted value corresponds to the first A reference frame
  • the second motion vector prediction value corresponds to the second reference frame
  • the first motion vector difference value of the current image block is obtained, and the first motion vector difference value of the current image block is used to indicate the first motion vector prediction
  • the A second motion vector difference value of the current image block the second motion vector difference value of the current image block is used to indicate a difference between the second motion vector prediction value and the second motion vector target value of the current image block
  • the The second motion vector target value corresponds to the same reference frame as the second motion vector prediction value, wherein, in the direction of the first reference frame relative to the current frame where the current image block is located
  • an inter prediction device which includes:
  • the prediction unit is used to obtain the motion vector prediction value of the current image block
  • An obtaining unit configured to obtain an index value of the length of the motion vector difference value of the current image block, and the motion vector difference value of the current image block is used to indicate between the motion vector prediction value and the motion vector target value of the current image block Difference
  • the prediction unit is also used to determine target length information from the candidate length information set according to the index value of the length, the candidate length information set includes only candidate length information of N motion vector difference values, N is greater than 1 and less than 8 Is a positive integer; based on the target length information, the motion vector difference of the current image block is obtained; according to the motion vector difference of the current image block and the motion vector prediction value of the current image block, the motion vector of the current image block is determined Target value; according to the target value of the motion vector of the current image block, the predicted block of the current image block is obtained.
  • the acquiring unit is further configured to: acquire the index value of the direction of the motion vector difference of the current image block;
  • the prediction unit is also used to: determine target direction information from M candidate direction information of motion vector difference values according to the index value of the direction, where M is a positive integer greater than 1;
  • the predicted unit is used to determine the motion vector difference of the current image block according to the target direction information and the target length information.
  • the N is 4.
  • the candidate length information of the N motion vector difference values may include at least one of the following: when the index value of the length is the first preset value, the length indicated by the target length information is one quarter of the pixel length; When the index value of the length is the second preset value, the length indicated by the target length information is one-half pixel length; when the index value of the length is the third preset value, the length indicated by the target length information is One pixel length; when the index value of the length is the fourth preset value, the length indicated by the target length information is two pixel lengths.
  • the prediction unit is configured to: construct a candidate motion information list of the current image block, the The candidate motion information list may be composed of L motion vectors, where L is 1, 3, 4, or 5; the index value of the motion information prediction information of the current image block in the candidate motion information list is obtained, and the motion of the current image block
  • the information prediction information includes the motion vector prediction value; the motion vector prediction value is obtained according to the index value of the motion information of the current image block in the candidate motion information list and the candidate motion information list.
  • an inter prediction device which includes:
  • An obtaining unit used to obtain the motion vector prediction value of the current image block
  • the prediction unit is configured to perform a motion search in the area where the position indicated by the motion vector prediction value of the current image block is to obtain the target value of the motion vector of the current image block;
  • the prediction unit is further used to obtain the index value of the length of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the prediction value of the motion vector of the current image block, the motion of the current image block
  • the vector difference value is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block
  • the index value of the length of the motion vector difference value of the current image block is used to indicate the preset candidate length information set
  • the candidate length information set includes only candidate length information of N motion vector difference values, where N is a positive integer greater than 1 and less than 8.
  • the prediction unit is configured to: obtain the current image according to the motion vector target value of the current image block and the motion vector prediction value of the current image block The motion vector difference value of the block; according to the motion vector difference value of the current image block, the index value of the length of the motion vector difference value of the current image block and the direction index value of the motion vector difference value of the current image block are determined.
  • N is 4.
  • an inter prediction device which includes:
  • the prediction unit is used to obtain the motion vector prediction value of the current image block
  • An obtaining unit configured to obtain an index value of a direction of a motion vector difference value of the current image block, and a motion vector difference value of the current image block is used to indicate between the motion vector prediction value and the motion vector target value of the current image block Difference
  • the prediction unit is also used to determine target direction information from a set of candidate direction information according to the index value of the direction.
  • the set of candidate direction information includes candidate direction information of M motion vector difference values, M is a positive integer greater than 4; According to the target direction information, the motion vector difference value of the current image block is obtained; according to the motion vector difference value of the current image block and the motion vector prediction value of the current image block, the motion vector target value of the current image block is determined; The target value of the motion vector of the current image block is a prediction block of the current image block.
  • the acquiring unit is further configured to: acquire the index value of the length of the motion vector difference of the current image block;
  • the prediction unit is also used to determine target length information from candidate length information of N motion vector differences according to the index value of the length, where N is a positive integer greater than 1;
  • the prediction unit is used to determine the motion vector difference of the current image block according to the target direction information and the target length information.
  • the M is 8.
  • the candidate direction information of the M motion vector difference values may include at least one of the following:
  • the direction indicated by the target direction information is to the right;
  • the direction indicated by the target direction information is positive left
  • the index value of the direction is the third preset value
  • the direction indicated by the target direction information is directly below
  • the index value of the direction is the fourth preset value
  • the direction indicated by the target direction information is directly above
  • the direction indicated by the target direction information is the lower right
  • the direction indicated by the target direction information is the upper right
  • the direction indicated by the target direction information is the lower left
  • the direction indicated by the target direction information is the upper left.
  • the prediction unit is configured to: construct a candidate motion information list of the current image block, the The candidate motion information list is composed of L motion vectors, where L is 1, 3, 4, or 5; the index value of the motion information prediction information of the current image block in the candidate motion information list is obtained, and the motion information of the current image block
  • the prediction information includes the motion vector prediction value; the motion vector prediction value is obtained according to the index value of the motion information of the current image block in the candidate motion information list and the candidate motion information list.
  • an embodiment of the present application provides an inter-frame prediction device.
  • the device includes:
  • An obtaining unit used to obtain the motion vector prediction value of the current image block
  • the prediction unit is configured to perform a motion search in the area where the position indicated by the motion vector prediction value of the current image block is to obtain the target value of the motion vector of the current image block;
  • the prediction unit is also used to obtain the index value of the direction of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the prediction value of the motion vector of the current image block, the motion of the current image block
  • the vector difference value is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block
  • the index value of the direction of the motion vector difference value of the current image block is used to indicate the preset candidate direction information set
  • the candidate direction information set includes candidate length information of M motion vector differences, where M is a positive integer greater than 4.
  • the prediction unit is configured to: obtain the current image according to the motion vector target value of the current image block and the motion vector prediction value of the current image block The motion vector difference value of the block; according to the motion vector difference value of the current image block, the index value of the length of the motion vector difference value of the current image block and the direction index value of the motion vector difference value of the current image block are determined.
  • M is 8.
  • an inter prediction device which includes:
  • An obtaining unit configured to obtain the first motion vector predicted value and the second motion vector predicted value of the current image block, the first motion vector predicted value corresponds to the first reference frame, and the second motion vector predicted value corresponds to the second reference frame ;
  • the acquiring unit is further configured to acquire a first motion vector difference value of the current image block, and the first motion vector difference value of the current image block is used to indicate the first motion vector prediction value and the first motion of the current image block
  • the difference between the vector target values, the first motion vector target value and the first motion vector predicted value correspond to the same reference frame
  • the prediction unit is used to determine the second motion vector difference value of the current image block according to the first motion vector difference value
  • the second motion vector difference value of the current image block is used to indicate the second motion vector prediction value and the The difference between the second motion vector target value of the current image block, the second motion vector target value and the second motion vector prediction value corresponding to the same reference frame, where the first reference frame is relative to the current image block Where the direction of the current frame is the same as the direction of the second reference frame relative to the current frame, the second motion vector difference is the first motion vector difference; or, the first reference frame is relative to the When the direction of the current frame where the current image block is located is opposite to the direction of the second reference frame relative to the current frame, the sign of the second motion vector difference is opposite to the sign of the first motion vector difference , And the absolute value of the second motion vector difference is the same as the absolute value of the first motion vector difference; according to the first motion vector difference and the first motion vector prediction value, the first of the current image block is determined Motion vector target value; according to the second motion
  • an embodiment of the present application provides a video decoder for decoding an image block from a code stream, including:
  • the inter prediction device in the first aspect or any possible implementation manner of the first aspect, is used to obtain a prediction block of the current image block;
  • the reconstruction module is configured to reconstruct the current image block based on the prediction block.
  • an embodiment of the present application provides a video encoder for encoding an image block, including:
  • the inter prediction device in the second aspect or any possible implementation manner of the second aspect wherein the inter prediction device is used to obtain the motion vector difference value of the current image block based on the motion vector prediction value of the current image block
  • the index value of the length, the index value of the length of the motion vector difference of the current image block is used to indicate one candidate length information in the preset candidate length information set;
  • the entropy encoding module is used to encode the index value of the length of the motion vector difference of the current image block into the code stream.
  • an embodiment of the present application provides a video decoder for decoding an image block from a code stream, including:
  • the inter prediction device in the third aspect or any possible implementation manner of the third aspect is used to obtain a prediction block of the current image block;
  • the reconstruction module is configured to reconstruct the current image block based on the prediction block.
  • an embodiment of the present application provides a video encoder for encoding an image block, including:
  • the inter prediction device in the fourth aspect or any possible implementation manner of the fourth aspect wherein the inter prediction device is used to obtain the motion vector difference value of the current image block based on the motion vector prediction value of the current image block
  • the index value of the direction of the direction, the index value of the length of the motion vector difference of the current image block is used to indicate one candidate direction information in the preset candidate direction information set;
  • the entropy encoding module is used to encode the index value of the direction of the motion vector difference of the current image block into the code stream.
  • an embodiment of the present application provides an apparatus for decoding video data.
  • the apparatus includes:
  • Memory used to store video data in the form of code stream
  • the video decoder provided in any one of the eleventh aspect, or the thirteenth aspect, or the fifteenth aspect, or the eleventh aspect, the thirteenth aspect, and the fifteenth aspect.
  • an embodiment of the present application provides an apparatus for encoding video data.
  • the apparatus includes:
  • Memory used to store video data, the video data includes one or more image blocks;
  • an embodiment of the present application provides an encoding device, including: a non-volatile memory and a processor coupled to each other, the processor calling program code stored in the memory to perform the second aspect, or the fourth Aspect, or part or all of the steps of the method in any one of the embodiments of the second aspect and the fourth aspect.
  • an embodiment of the present application provides a decoding device, including: a non-volatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform the first aspect or the third aspect , Or the fifth aspect, or part or all of the steps of the method in any one of the implementation manners of the first aspect, the third aspect, and the fifth aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores a program code, where the program code includes the first aspect to the fifth aspect, or the first aspect to Instructions for some or all steps of the method in any of the embodiments of the fifth aspect.
  • an embodiment of the present application provides a computer program product which, when the computer program product runs on a computer, causes the computer to execute the first aspect to the fifth aspect, or any one of the first aspect to the fifth aspect Part or all steps of the method in the embodiment.
  • FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 for implementing an embodiment of the present invention
  • FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present invention
  • FIG. 2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present invention
  • FIG. 3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present invention.
  • FIG. 4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present invention
  • FIG. 5 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present invention.
  • FIG. 6 is an example block diagram of an adjacent block in space domain and an adjacent block in time domain for implementing an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of an inter prediction method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of an inter prediction method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of an inter prediction method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for implementing an inter prediction method provided by an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of an inter prediction method provided by an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of an apparatus for inter prediction provided in an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram for implementing an inter prediction apparatus provided by an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of an apparatus for inter prediction provided in an embodiment of the present invention.
  • 15 is a schematic block diagram of an inter prediction apparatus provided by an embodiment of the present invention.
  • 16 is a schematic block diagram of an apparatus for inter prediction provided in an embodiment of the present invention.
  • the corresponding device may contain one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include a step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
  • Video coding as used herein means video coding or video decoding.
  • Video encoding is performed on the source side, and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the “encoding” of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • the video sequence includes a series of pictures, which are further divided into slices, and the slices are further divided into blocks.
  • Video coding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • macroblock macroblock, MB
  • HEVC high-efficiency video coding
  • basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted.
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CU can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and coding the coded image.
  • PU can correspond to the prediction block and is the basic unit of predictive coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
  • PU or TU they all belong to the concept of block (or image block) in essence.
  • the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
  • a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
  • Each CU can be further split into one, two, or four PUs according to the PU split type.
  • the same prediction process is applied within a PU, and related information is transmitted to the decoder based on the PU.
  • the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
  • Multi-tree multi-type tree
  • multi-type tree multi-type tree
  • Multi-type tree includes binary tree (binary-tree) And ternary-tree.
  • the CU may have a square or rectangular shape.
  • the image block to be encoded in the current encoded image may be referred to as the current block.
  • the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
  • the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
  • the current block may also be called a current image block.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
  • further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
  • Several video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of a video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
  • the encoder side usually processes the encoded video at the block (video block) level.
  • the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra prediction and inter prediction) and/or reconstruction for processing, ie, encoding subsequent blocks.
  • FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present invention.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
  • Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
  • FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices
  • device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie the source device 12 or the corresponding Functionality of the destination device 14 or the corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • the communication connection between the source device 12 and the destination device 14 may be via a link 13, and the destination device 14 may receive the encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20.
  • the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture pre-processor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • Picture source 16 which can include or can be any type of picture capture device, for example to capture real-world pictures, and/or any type of picture or comment (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (eg, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
  • the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
  • the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
  • the external picture generation device is, for example, External computer graphics processor, computer or server.
  • the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of picture elements.
  • the pixels in the array can also be called sampling points.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the array or picture defines the size and/or resolution of the picture.
  • three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
  • the picture includes corresponding red, green, and blue sampling arrays.
  • each pixel is usually expressed in a brightness/chroma format or color space.
  • YUV format picture it includes the brightness component indicated by Y (sometimes also indicated by L) and the two indicated by U and V. Chroma components.
  • the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
  • the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color grading, or denoising.
  • the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 in a related prediction mode (such as the prediction mode in various embodiments herein), thereby
  • the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5).
  • the encoder 20 may be used to implement various embodiments described below to implement the application of the chroma block prediction method described in the present invention on the encoding side.
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) via the link 13 for storage or direct reconstruction.
  • the other device may be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a post-picture processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 through the link 13 between the source device 12 and the destination device 14 or through any type of network.
  • the link 13 is, for example, a direct wired or wireless connection.
  • a network of a category is, for example, a wired or wireless network or any combination thereof, or a private network and a public network of any category, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 may be configured as a one-way communication interface or a two-way communication interface, and may be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
  • the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 4 or FIG. 5 Structural details). In some embodiments, the decoder 30 may be used to implement various embodiments described later to implement the application of the chroma block prediction method described in the present invention on the decoding side.
  • the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to convert the post-processed image data 33transmitted to the display device 34.
  • the display device 34 is used to receive post-processed picture data 33 to display pictures to, for example, a user or a viewer.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital light processor (digital light processor, DLP) or any other type of display.
  • FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices
  • device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie, the source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
  • the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
  • Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • handheld or stationary devices such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate array
  • the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the techniques of the present disclosure. Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the present application may be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (eg, video encoding or video decoding).
  • data can be retrieved from local storage, streamed on the network, and so on.
  • the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
  • FIG. 1B is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3, according to an exemplary embodiment.
  • the video decoding system 40 can implement a combination of various technologies of the embodiments of the present invention.
  • the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
  • the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may be implemented by the processing unit 46.
  • the processing unit 46 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the video decoding system 40 may also include an optional processor 43, which may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, etc., and the processor 43 may be implemented by general-purpose software, an operating system, or the like.
  • the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • non-volatile Memory for example, flash memory, etc.
  • the memory 44 may be implemented by cache memory.
  • the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
  • the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers and the like.
  • the encoder 20 implemented by logic circuits may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein.
  • Logic circuits can be used to perform the various operations discussed herein.
  • decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
  • the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data defining the code segmentation).
  • the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
  • encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
  • the inter prediction method described in the embodiment of the present invention is mainly used in the inter prediction process. This process exists in both the encoder 20 and the decoder 30.
  • the encoder 20 and the decoder 30 in the embodiment of the present invention may For example, H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9 and other video standard protocols or next-generation video standard protocols (such as H.266, etc.) corresponding codec/decoder.
  • FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present invention.
  • the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, the heavy
  • the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form a backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path of the decoder (see decoder 30 in FIG. 3).
  • the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, a picture in a picture sequence forming a video or a video sequence.
  • the image block 203 may also be called a current picture block or a picture block to be encoded
  • the picture 201 may be called a current picture or a picture to be encoded (especially when the current picture is distinguished from other pictures in video encoding, the other pictures are the same video sequence, for example That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
  • An embodiment of the encoder 20 may include a division unit (not shown in FIG. 2) for dividing the picture 201 into a plurality of blocks such as image blocks 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and corresponding grids that define the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
  • image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
  • the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of black and white picture 201) or three sampling arrays (for example, one brightness array and two chroma arrays in the case of color picture) or An array of any other number and/or category depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) on the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
  • the transform coefficient 207 may also be called a transform residual coefficient, and represents a residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
  • the scaling factor is usually selected based on certain constraints. For example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost, and so on.
  • a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, the encoder can be The 20 side specifies a corresponding scaling factor for the positive transform through the transform processing unit 206.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as a quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting quantization parameters (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
  • QP quantization parameters
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • a suitable quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
  • larger quantization parameters may correspond to coarse quantization (larger quantization step size)
  • the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using a fixed-point approximation including an equation of division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in fixed-point approximation of the equations for quantization step size and quantization parameter.
  • the scale of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in the bitstream, for example.
  • Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantization coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
  • the inverse quantized coefficient 211 may also be referred to as an inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
  • the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST), in the sample domain
  • the inverse transform block 213 is obtained.
  • the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
  • the reconstruction unit 214 (for example, the summer 214) is used to add the inverse transform block 213 (that is, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
  • a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
  • the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
  • the loop filter unit 220 (or simply "loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as the filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed encoding block after the loop filter unit 220 performs a filtering operation on the reconstructed encoding block.
  • Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy encoding unit outputs after entropy encoding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (decoded picture buffer, DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access memory, DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • MRAM magnetoresistive RAM
  • RRAM resistive RAM
  • the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode eg, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • Embodiments of the mode selection unit 262 may be used to select a prediction mode (for example, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means transmission Or better compression in storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
  • the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides a minimum rate distortion, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria.
  • RDO rate distortion optimization
  • the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
  • the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
  • the intra prediction mode set may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
  • non-directional modes such as DC (or mean) mode and planar mode
  • directional modes as defined in the developing H.266.
  • the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DBP 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only Use a part of the reference picture, for example the search window area surrounding the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied
  • the set of inter prediction modes may include advanced motion vector (Advanced Motion Vector Prediction, AMVP) mode and merge mode.
  • AMVP Advanced Motion Vector Prediction
  • the set of inter prediction modes may include an improved control point-based AMVP mode according to an embodiment of the present invention, and an improved control point-based merge mode.
  • the intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
  • the embodiments of the present invention may also apply skip mode and/or direct mode.
  • the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) partitioning, or any combination thereof, and for performing prediction for each of block partitions or sub-blocks, for example, where mode selection includes selecting the tree structure of the divided image block 203 and selecting the application The prediction mode for each of the block partitions or sub-blocks.
  • QT quad-tree
  • BT binary-tree
  • TT triple-tree
  • the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
  • the motion estimation unit is used to receive or acquire the image block 203 (the current image block 203 of the current picture 201) and the decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different previous warp
  • the reconstructed block of the picture 231 is decoded to perform motion estimation.
  • the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of the picture sequence forming the video sequence, or form the picture sequence.
  • a motion estimation unit may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and to a motion compensation unit (not shown in FIG. 2)
  • the reference picture and/or the motion vector (offset between the position of the reference block (X, Y coordinates) and the position of the current block (spatial offset)) are provided as inter prediction parameters. This offset is also called a motion vector (MV).
  • the motion compensation unit is used to acquire inter prediction parameters, and perform inter prediction based on or using inter prediction parameters to obtain inter prediction blocks 245.
  • the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
  • the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
  • the aforementioned inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, the syntax element including an inter prediction parameter (such as an indication of selecting an inter prediction mode used for current block prediction after traversing multiple inter prediction modes Information, or at least one of the index value of the length of the motion vector difference value of the current image block and the index value of the direction of the motion vector difference value of the current image block).
  • an inter prediction parameter such as an indication of selecting an inter prediction mode used for current block prediction after traversing multiple inter prediction modes Information, or at least one of the index value of the length of the motion vector difference value of the current image block and the index value of the direction of the motion vector difference value of the current image block.
  • the inter prediction parameters may not be carried in the syntax element.
  • the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
  • the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
  • the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
  • Embodiments of the encoder 20 may be used to select an intra prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203) or minimum rate distortion.
  • a minimum residual eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203
  • minimum rate distortion e.g., a minimum rate distortion
  • the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
  • the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, the syntax element including an intra-prediction parameter (such as an indication of selecting an intra-prediction mode for current block prediction after traversing multiple intra-prediction modes) information).
  • an intra-prediction parameter such as an indication of selecting an intra-prediction mode for current block prediction after traversing multiple intra-prediction modes
  • the intra prediction parameters may not be carried in the syntax element.
  • the decoding terminal 30 may directly use the default prediction mode for decoding.
  • the entropy coding unit 270 is used to entropy coding algorithms or schemes (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval partition entropy (probability interval interpartitioning entropy, PIPE) encoding or other entropy Coding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters, and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
  • VLC variable length coding
  • CABAC context adaptive binary arithmetic Encoding
  • SBAC syntax-based context-adaptive binary arithmetic coding
  • the encoded bitstream may be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • video encoder 20 may be used to encode video streams.
  • the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the inter prediction method described in the embodiments below.
  • the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present invention.
  • the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
  • encoded picture data eg, encoded bitstream
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform a decoding pass that is generally inverse to the encoding pass described with reference to video encoder 20 of FIG. 2.
  • the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
  • the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110
  • the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212
  • the reconstruction unit 314 may be functionally the same as the reconstruction unit 214
  • the buffer 316 may be functionally
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, wherein the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and to receive or obtain prediction-related parameters (for example, may be At least one of the index value of the length of the motion vector difference value of the current image block and the index value of the direction of the motion vector difference value of the current image block) and/or information about the selected prediction mode.
  • the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture. Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter prediction unit 344 eg, motion compensation unit
  • the inter prediction processing unit 360 is used for the motion vector-based and received from the entropy decoding unit 304
  • Other syntax elements may be at least one of the index value of the length of the motion vector difference value of the current image block and the index value of the direction of the motion vector difference value of the current image block
  • the prediction block 365 For inter prediction, a prediction block may be generated from a reference picture in a reference picture list.
  • the video decoder 30 may construct the reference frame lists: list 0 and list 1 based on the reference pictures stored in the DPB 330 using default construction techniques.
  • the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and/or other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (e.g., intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information of one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction state of each inter-coded video block of the slice, the difference value of the motion vector of the current image tile, and other information to decode the video block of the current video slice.
  • the prediction mode e.g., intra or inter prediction
  • the inter prediction slice type For example, B slice, P slice, or GPB slice
  • the syntax elements received by the video decoder 30 from the bitstream include an adaptive parameter set (adaptive parameter set, APS), sequence parameter set (SPS), and picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
  • adaptive parameter set adaptive parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients, so as to generate a residual block in the pixel domain.
  • an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
  • the reconstruction unit 314 (eg, summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example by The sample values of the reconstructed residual block 313 are added to the sample values of the prediction block 365.
  • the loop filter unit 320 (during the encoding loop or after the encoding loop) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, self-adaptive filters Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • video decoder 30 may be used to decode the compressed bitstream.
  • the decoder 30 may generate the output video stream without the loop filter unit 320.
  • the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the inter prediction method described in the embodiments below.
  • video decoder 30 may be used to decode the encoded video bitstream.
  • the video decoder 30 may generate an output video stream without processing by the filter 320; or, for certain image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and in the case of lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
  • the inter prediction unit and the intra prediction unit may be selectively enabled.
  • the processing results for a certain link can be further processed and output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the results of the corresponding link are further clipped or shift shifted.
  • the motion vector of the control point of the current image block derived from the motion vector of the adjacent affine coding block, or the motion vector of the sub-block of the current image block derived may be further processed, and this application does not limited.
  • the value range of the motion vector is constrained to be within a certain bit width. Assuming that the allowed bit width of the motion vector is bitDepth, the range of the motion vector is -2 ⁇ (bitDepth-1) ⁇ 2 ⁇ (bitDepth-1)-1, where the " ⁇ " symbol represents a power. If bitDepth is 16, the value ranges from -32768 to 32767. If bitDepth is 18, the value ranges from -131072 to 131071.
  • the value of the motion vector (such as the motion vector MV of four 4x4 sub-blocks in an 8x8 image block) is constrained so that the maximum difference between the integer parts of the four 4x4 sub-blocks MV does not exceed N Pixels, for example no more than one pixel.
  • ux (vx+2 bitDepth )%2 bitDepth
  • vx is the horizontal component of the motion vector of the image block or the sub-block of the image block
  • vy is the vertical component of the motion vector of the image block or the sub-block of the image block
  • ux and uy are intermediate values
  • bitDepth represents the bit width
  • the value of vx is -32769, and the value obtained by the above formula is 32767. Because in the computer, the value is stored in the form of two's complement, the complement of -32769 is 1,0111,1111,1111,1111 (17 bits), the computer handles the overflow as discarding the high bit, then the value of vx If it is 0111,1111,1111,1111, it is 32767, which is consistent with the result obtained by formula processing.
  • vx Clip3 (-2 bitDepth-1 , 2 bitDepth-1 -1, vx)
  • vx is the horizontal component of the motion vector of the image block or sub-block of the image block
  • vy is the vertical component of the motion vector of the image block or sub-block of the image block
  • x, y, and z correspond to the MV clamping process, respectively
  • the three input values of Clip3, the definition of Clip3, means that the value of z is clamped to the interval [x, y]:
  • FIG. 4 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present invention.
  • the video coding apparatus 400 is suitable for implementing the embodiments described herein.
  • the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1A) or a video encoder (eg, encoder 20 of FIG. 1A).
  • the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
  • the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor for processing data, a logic unit or a central processing unit (CPU) 430, and a transmitter unit for transmitting data (Tx) 440 and exit port 450, and a memory 460 for storing data.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
  • the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present invention. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement to the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid-state hard disks, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, as well as instructions and data read during program execution.
  • the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
  • FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
  • the device 500 can implement the technology of the present application.
  • FIG. 5 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
  • the memory of the decoding device stores program codes, and the processor can call the program codes stored in the memory to perform various video encoding or decoding methods described in this application, especially various new inter-frame prediction methods. In order to avoid repetition, they are not described in detail here.
  • the processor 510 may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integrated Circuit (ASIC), ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
  • the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to perform the video encoding or decoding method described in the present application (in particular, the inter prediction method described in the present application).
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video coding application for short) that performs the video encoding or decoding method described in this application.
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clarity, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may also include one or more output devices, such as a display 570.
  • the display 570 may be a tactile display that merges the display with a tactile unit that operably senses touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • the inter prediction unit 244, or the inter prediction unit 344, or the encoder 20, or the decoder 30, or the video decoding device 400, or the decoding device 500 implements video encoding or decoding method, and inter prediction includes motion information
  • the determination of, specifically, the determination of motion information may be performed by a motion estimation unit, where the motion information may include at least one of reference image information and motion vector information.
  • the reference image information may include at least one of them: unidirectional/bidirectional prediction information (bidirectional prediction refers to the need for two reference blocks to determine the prediction block of the current image block. In bidirectional prediction, two sets of motion information are needed, respectively Used to determine two reference blocks), reference image list information, and reference image index corresponding to the reference image list.
  • the motion vector information may include a motion vector, and the motion vector refers to a positional offset in the horizontal and vertical directions.
  • the motion vector information may also include a motion vector difference (MVD).
  • the determination of the motion information and the determination of the further prediction block may include one of the following modes:
  • AMVP mode the encoding end first constructs a candidate motion vector list from the motion vectors of the current block in the spatial or temporal neighboring blocks (such as but not limited to the encoded block), and then determines the current motion vector list as the current candidate by calculating the rate distortion
  • the motion vector of a block's motion vector predictor (Motion vector predictor, MVP).
  • the encoding end passes the index value of the selected motion vector prediction value in the candidate motion vector list and the index value of the reference frame (the reference frame may also be referred to as a reference image) to the decoding end.
  • a motion search is performed in the MVP-centered neighborhood to obtain a better motion vector (also called a motion vector target value) of the current block, and the encoder end uses the difference between the MVP and the better motion vector (Motion vector difference) ) To the decoder.
  • the decoder first constructs a candidate motion vector list from the motion vectors of the current block in the spatial or temporal neighboring blocks (such as but not limited to decoded blocks), and then based on the index value of the obtained motion vector prediction value in the candidate motion vector list and
  • the candidate motion vector list obtains the predicted value of the motion vector, and then obtains the better motion vector based on the difference between the obtained MVP and the better motion vector, and then based on the better motion vector and the reference frame according to the reference frame index value
  • the prediction block to the current block. It should be noted that, when the number of candidates in the candidate motion vector list is 1, the index value of the selected motion vector prediction value in the candidate motion vector list may not be transmitted.
  • the encoding end may be the source device 12, or the video decoding system 40, or the encoder 20, or the video decoding device 400, or the decoding device 500.
  • the decoding end may be the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500.
  • the index value of the motion vector prediction value in the candidate motion vector list and the index value of the reference frame may be the syntax elements used for transmission above.
  • the encoding end first constructs the candidate motion information list by using the motion information of the current block in the spatial or temporal neighboring blocks (such as but not limited to the encoded block), and then determines the optimal from the candidate motion information list by calculating the rate distortion
  • the motion information of the current block as the motion information of the current block, and then the optimal motion information in the candidate motion information list (also referred to as the current block motion information or the current block motion information prediction information) in the candidate motion information list
  • the index value (recorded as merge index, the same below) is passed to the decoder.
  • the candidate motion information of the spatial and temporal domains of the current block is shown in Fig. 6.
  • the candidate motion information of the spatial domain comes from the five neighboring blocks (A0, A1, B0, B1 and B2). If the neighboring block is not available or it is an intraframe In the coding mode, the candidate motion information list is not added.
  • the temporal motion candidate information of the current block is obtained by scaling the MV of the corresponding position block in the reference frame according to the picture order count (POC) of the reference frame and the current frame. First determine whether the block at position T0 in the reference frame is available, and if it is not available, select the block at position T1.
  • the decoding end first constructs a candidate motion information list by using motion information of neighboring blocks (such as but not limited to decoded blocks) of the current block in the spatial or temporal domain, where the motion information in the motion information list includes motion vectors and reference frame index values.
  • the decoding end obtains the optimal motion information based on the index value of the candidate motion information list and the position of the optimal motion information in the candidate motion information list, and obtains the prediction block of the current block based on the optimal motion information. It should be noted that, when the number of candidates in the candidate motion information list is 1, the index value of the position of the optimal motion information in the candidate motion information list may not be transmitted.
  • the candidate motion information list used in the embodiment of the present invention is not limited to the construction of the motion information of the neighboring blocks of the current block in the spatial domain or time domain, and can be constructed or modified by at least one of the following: the motion of the neighboring blocks in the spatial domain Information, motion information of neighboring blocks in the time domain, pairwise average candidates (pairwise, average, candidates), history-based candidates (history-based candidates), and zero motion vector candidates (zero motion vector candidates).
  • the specific construction process can refer to JVET-L1001-v6. However, the embodiments of the present invention are not limited to this.
  • Merge mode with motion vector difference (MMVD) mode This mode adds MVD transmission on the basis of Merge mode.
  • the encoding end will further perform a motion search in the neighborhood centered on the optimal motion information in the candidate motion information list to obtain a better motion vector (also referred to as a motion vector target value) of the current block, and encode The end transfers the difference (Motion vector difference) between the motion vector included in the optimal motion information in the candidate motion information list and the better motion vector to the decoding end.
  • the decoder After obtaining the optimal motion information, the decoder will further obtain a better motion vector based on the above-mentioned difference and the motion vector included in the optimal motion information in the candidate motion information list, and then based on the better motion vector and the candidate
  • the reference frame indicated by the reference frame index value included in the optimal motion information in the motion information list obtains the prediction block of the current block.
  • the MMVD mode may also add MVD transmission on the basis of the skip mode.
  • the skip mode can be understood as not transmitting residual information between the prediction block of the current block and the original block of the current block.
  • the encoding end will further perform a motion search in the neighborhood centered on the optimal motion information in the candidate motion information list to obtain a better motion vector for the current block, and the encoding end will select the candidate motion
  • the difference between the motion vector included in the optimal motion information in the information list and the better motion vector is passed to the decoding end.
  • the decoder After obtaining the optimal motion information, the decoder will further obtain a better motion vector based on the above-mentioned difference and the motion vector included in the optimal motion information in the candidate motion information list, and then based on the better motion vector and the candidate
  • the reference frame indicated by the reference frame index value included in the optimal motion information in the motion information list obtains the prediction block of the current block.
  • the existing H.266 draft document working draft, such as JVET-L1001-v6
  • MMVD utilizes the Merge candidate in VVC.
  • One or more candidates are selected from merge candidates, and then the MV expansion expression is performed based on the candidates.
  • the MV expansion expression is realized through a simplified marking method.
  • the marking method includes the MV starting point, the movement step length, and the movement direction.
  • the selected candidate can be MRG_TYPE_DEFAULT_N mode.
  • the selected candidate determines the initial position of the MV.
  • Base candidate IDX (Table 1) indicates which candidate in the candidate list is selected as the best candidate.
  • Base IDID is the index value of the optimal motion information in the candidate motion information list in the candidate motion information list.
  • Nth MVP indicates that the Nth item in the candidate motion information list is MVP.
  • the transmission object can be the offset value itself, such as x, y, the length of the MVD and the direction of the MVD, or the index value of the length of the MVD (indicating the distance from 1/4 pixel to 32 pixels) and Index value of MVD direction (up, down, left, and right).
  • the index value of the MVD length is used to indicate the length of the MVD.
  • the correspondence between the MVD length index (Distance IDX) and the MVD length (Pixel distance) may be preset, and the correspondence may be as shown in Table 2:
  • the index value of the MVD direction is used to indicate the direction of the MVD.
  • the corresponding relationship between the index value (Direction IDX) of the MVD direction and the direction (x-axis, y-axis) of the MVD may be preset, and the corresponding relationship may be as shown in Table 3.
  • the y-axis of N/A can indicate that the direction of MVD is independent of the y-axis direction
  • the x-axis of N/A can indicate that the direction of MVD is independent of the x-axis direction.
  • the MMVD flag (mmvd_flag, used to indicate whether the current block is decoded in MMVD mode) is located in the Skip flag (cu_skip_flag, used to indicate whether the current block is decoded in skip mode) or the Merge flag (merge_flag, used to decode After indicating whether the current block is decoded using merge mode). If the skip or merge flag is true, the MMVD flag needs to be resolved. If the MMVD flag is true, other identification bits corresponding to the MMVD need to be coded.
  • the decoding end or the encoding end may only decode or encode only the MVD information in one direction, and the MVD information in the other direction may pass the MVD information in the one direction Obtained, the specific process can be as follows:
  • the POC value of the frame where the current block is located and the POC of the reference frame in both directions Value For example, if the first difference between the POC value of the frame in the current block minus the POC value of the reference frame in one direction and the POC value of the frame in the current block minus the POC value of the reference frame in the other direction If the sign of the second difference is the same, the direction of the reference frame corresponding to the MVD in one direction is the same as the direction of the reference frame corresponding to the MVD in the other direction.
  • the direction of the reference frame may be the direction of the reference frame relative to the current frame (the frame where the current block is located), or the direction of the current frame relative to the reference frame.
  • the specific implementation process of determining the same direction or the reverse direction not only the current frame POC value minus the reference frame POC value can be used for judgment, but also the reference frame POC value minus the current frame POC value for judgment.
  • the MVD in the other direction is the same as the MVD in the one direction, for example, the MVD in the one direction is (x, y), then the MVD in the other direction is (x, y).
  • the MVD in the one direction can be obtained by the index value of the MVD length in the one direction and the index value of the MVD direction in the one direction. or,
  • the sign of the MVD in the other direction is opposite to the MVD in the one direction, for example, the MVD in the one direction is (x , Y), the MVD in the other direction is (-x, -y).
  • the first POC difference and the second POC difference scale the MVD in the other direction to obtain a better MVD in the other direction.
  • the first POC difference is the difference between the POC value of the frame where the current block is located and the POC value of the reference frame corresponding to the MVD in the one direction
  • the second POC difference is the POC value of the frame where the current block is located and the other The difference between the POC values of the reference frames corresponding to the MVD of the direction.
  • the above MVD solution has room for further optimization.
  • the index value of a longer value of Pixel is rarely used.
  • the index of the direction of the MVD can only indicate 4 directions, and in the specific implementation process, step 3) (according to The MVD in one direction, the first POC difference and the second POC difference scale the MVD in the other direction) is too complicated. Therefore, the embodiments of the present invention provide a series of improvement solutions.
  • the method may be executed by the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500, or may be executed by the video decoder 30, or specific Can be performed by the entropy decoding unit 304 and the prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the method may include:
  • obtaining the motion vector prediction value of the current image block may include: constructing a candidate motion information list of the current image block, the candidate motion information list may be composed of L motion vectors, and L is 1, 3 , 4 or 5; obtain the index value of the motion information prediction information of the current image block in the candidate motion information list, the motion information prediction information of the current image block includes the motion vector prediction value; according to the motion information of the current image block The index value in the candidate motion information list and the candidate motion information list obtain the motion vector prediction value.
  • the candidate motion information list of the current image block may be a Merge candidate motion information list.
  • the inter prediction method provided by the embodiment of the present invention may be applied to the MMVD mode.
  • the index value in the candidate motion information list may be an index value in the form of variable length coding. For example, when L is 3, 1 may be used to indicate the first item in the candidate motion information list, and 01 may be used to indicate the candidate The second item in the motion information list, 00 can be used to indicate the third item in the candidate motion information list. Or, when L is 4, 1 can be used to indicate the first item in the candidate motion information list, 01 can be used to indicate the second item in the candidate motion information list, and 001 can be used to indicate the second item in the candidate motion information list. Three items, 000, can be used to indicate the fourth item in the candidate motion information list, and so on.
  • the motion vector difference value of the current image block is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block.
  • the index value of the length of the motion vector difference value may be used to indicate one piece of candidate length information in the candidate length information set.
  • the candidate length information set may be at least two candidate length information, or may be one candidate length information.
  • One piece of candidate length information may be used to indicate the length of a motion vector difference value.
  • the piece of candidate length information may be a length value, or may be information used to derive a length value.
  • the length can be expressed by the Euclidean distance, and the length can also be the absolute value of the x component and the y component including the difference of the motion vector. Of course, it can also be expressed by other norms, which is not limited herein.
  • the difference of the motion vectors can also be represented by a two-dimensional array. If the motion vector is a three-dimensional array, the motion vector difference can also be represented by a three-dimensional array.
  • the candidate length information set includes only candidate length information of N motion vector difference values, and N is a positive integer greater than 1 and less than 8.
  • index values of different lengths may indicate different lengths
  • the candidate length information of the N motion vector difference values may include at least one of the following: the index value of the length is the first When setting the value, the length indicated by the target length information is one-quarter pixel length; when the index value of the length is the second preset value, the length indicated by the target length information is one-half pixel length; When the index value of the length is the third preset value, the length indicated by the target length information is one pixel length; when the index value of the length is the fourth preset value, the length indicated by the target length information is two Pixel length.
  • first preset value to the fourth preset value may not be sequential, and are independent of each other, and are only used to distinguish different preset values.
  • first preset value to the fourth preset value may also be a sequence, or have a sequence attribute.
  • the correspondence between the length index value and the length of the MVD may be as shown in Table 4:
  • pel means pixel, for example, 1/4-pel means one quarter of the pixel length.
  • pel means pixel, for example, 1/4-pel means one quarter of the pixel length.
  • MmvdDistance is a value used to obtain the length of the MVD, for example, MmvdDistance is shifted to the right by two bits to obtain the value of the length of the MVD.
  • the method may further include: acquiring the index value of the direction of the motion vector difference of the current image block; determining the target direction information from the candidate direction information of the M motion vector differences according to the index value of the direction, where M is Positive integer greater than 1.
  • the candidate direction information of the M motion vector difference values may refer to the M candidate direction information.
  • the index value of the direction of the motion vector difference value may be used to indicate one candidate direction information among the candidate direction information of the M motion vector difference values.
  • a candidate direction information can be used to indicate the direction of a motion vector difference.
  • the candidate direction information may be a symbol representing a sign, the symbol may be the symbol of the x component of the motion vector difference, or the symbol of the y component of the motion vector difference, or the x and y components of the motion vector symbol.
  • the candidate direction information may be information used to derive the symbol.
  • the obtaining the motion vector difference value of the current image block according to the target length information may include: determining the motion vector difference value of the current image block according to the target direction information and the target length information.
  • S705 Determine the target value of the motion vector of the current image block according to the difference of the motion vector of the current image block and the predicted value of the motion vector of the current image block.
  • the sum of the difference between the motion vector of the current image block and the predicted value of the motion vector of the current image block may be used as the target value of the motion vector of the current image block.
  • S706 Obtain the prediction block of the current image block according to the target value of the motion vector of the current image block.
  • the method may be executed by the source device 12, or the video decoding system 40, or the encoder 20, or the video decoding device 400, or the decoding device 500, or may be specifically performed by the prediction processing unit 260 in the encoder 30 (Or, for example, the inter prediction unit 244 in the prediction processing unit 260).
  • the method may include:
  • This process can refer to the introduction of AMVP, Merge, MMVD, or skip modes in the foregoing, which will not be repeated here.
  • the motion vector difference of the current image block is used to Indicates the difference between the motion vector prediction value and the motion vector target value of the current image block.
  • the index value of the length of the motion vector difference value of the current image block is used to indicate a candidate length in the preset candidate length information set Information, the candidate length information set includes only candidate length information of N motion vector difference values, and N is a positive integer greater than 1 and less than 8.
  • the index value of the length of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the predicted value of the motion vector of the current image block may include: according to the motion vector of the current image block The target value and the motion vector prediction value of the current image block to obtain the motion vector difference value of the current image block; according to the motion vector difference value of the current image block, the index value of the length of the motion vector difference value of the current image block is determined The direction index value of the difference between the motion vector and the current image block.
  • N can be 4.
  • FIG. 8 describes the encoding-side method corresponding to the decoding-side method described in FIG. 7. For related descriptions, reference may be made to FIG. 7 or related descriptions in the foregoing, and details are not described here.
  • the method may be executed by the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500, or may be executed by the video decoder 30, or specific Can be performed by the entropy decoding unit 304 and the prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the method may include:
  • obtaining the motion vector prediction value of the current image block may include: constructing a candidate motion information list of the current image block, the candidate motion information list may be composed of L motion vectors, and L is 1, 3 , 4 or 5; obtain the index value of the motion information prediction information of the current image block in the candidate motion information list, the motion information prediction information of the current image block includes the motion vector prediction value; according to the motion information of the current image block The index value in the candidate motion information list and the candidate motion information list obtain the motion vector prediction value.
  • the candidate motion information list of the current image block may be a Merge candidate motion information list.
  • the inter prediction method provided by the embodiment of the present invention may be applied to the MMVD mode.
  • the motion vector difference of the current image block is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block.
  • the index value of the direction of the motion vector difference value may be used to indicate one candidate direction information in the candidate direction information set.
  • the candidate direction information set may be at least two candidate direction information, or may be one candidate direction information.
  • a candidate direction information can be used to indicate the direction of a motion vector difference.
  • the candidate direction information may be a symbol representing a sign, the symbol may be the symbol of the x component of the motion vector difference, or the symbol of the y component of the motion vector difference, or the x and y components of the motion vector symbol.
  • the candidate direction information may be information used to derive the symbol.
  • the difference of the motion vectors can also be represented by a two-dimensional array. If the motion vector is a three-dimensional array, the motion vector difference can also be represented by a three-dimensional array.
  • the candidate direction information set includes M motion vector difference candidate direction information, where M is a positive integer greater than 4.
  • the index values of different directions may indicate different directions
  • the candidate direction information of the M motion vector difference values may include at least one of the following:
  • the index value in the direction is the first When setting the value, the direction indicated by the target direction information is positive right; when the index value of the direction is the second preset value, the direction indicated by the target direction information is positive left; the index value in the direction is the first At three preset values, the direction indicated by the target direction information is directly below; when the index value of this direction is the fourth preset value, the direction indicated by the target direction information is directly above; the index value at this direction is the first When five preset values, the direction indicated by the target direction information is the lower right; when the index value in the direction is the sixth preset value, the direction indicated by the target direction information is the upper right; the index value in the direction is the At seven preset values, the direction indicated by the target direction information is the lower left; when the index value of the direction is the eighth preset value, the direction indicated by the target
  • first preset value to the eighth preset value may not be sequential, and are independent of each other, and are only used to distinguish different preset values.
  • first preset value to the eighth preset value may also be a sequence, or have sequence attributes.
  • the correspondence between the index value of the direction and the direction of the MVD may be as shown in Table 5 or Table 6 or Table 7:
  • x-axis is "+” to indicate the direction is the positive x-axis direction
  • y-axis is “+” to indicate the direction is the positive y-axis direction
  • x-axis is "-" to indicate the direction is The negative direction of the x-axis
  • the y-axis is "-" can indicate that the direction is the negative direction of the y-axis
  • the x-axis is N/A can indicate that the direction of the MVD is independent of the x-axis direction
  • the y-axis is N/A can indicate the The direction is independent of the y-axis direction
  • x-axis and y-axis are both "+” at the same time, which means that the direction is the direction where the projection is positive on the x-axis and the projection is also the positive direction on the y-axis
  • both x-axis and y-axis "-" indicates that the direction is projected on the x axis in the negative direction and the projection
  • x-axis may represent the symbol coefficient of the x component of the MVD, and the product of the symbol coefficient of the x component and the absolute value of the x component of the MVD is the x component of the MVD.
  • the y-axis may represent the sign coefficient of the y component of the MVD, and the product of the sign coefficient of the y component and the absolute value of the y component is the y component of the MVD.
  • the method may further include: the method may further include: acquiring an index value of the length of the motion vector difference value of the current image block; and determining from the candidate length information of the N motion vector difference values according to the length index value For target length information, N is a positive integer greater than 1.
  • the candidate length information of the N motion vector difference values may be the candidate length information set in the embodiment of FIG. 7, and may specifically be the candidate length information set provided in Table 4.
  • the index value of the length of the difference value of the motion vector, the candidate length information and the description of the difference value of the motion vector reference may be made to FIG. 7 or the previous description, which will not be repeated here.
  • the obtaining the motion vector difference value of the current image block according to the target direction information may include: determining the motion vector difference value of the current image block according to the target direction information and the target length information.
  • S905. Determine the target value of the motion vector of the current image block according to the difference of the motion vector of the current image block and the predicted value of the motion vector of the current image block.
  • the sum of the difference between the motion vector of the current image block and the predicted value of the motion vector of the current image block may be used as the target value of the motion vector of the current image block.
  • the method may be executed by the source device 12, or the video decoding system 40, or the encoder 20, or the video decoding device 400, or the decoding device 500, or may be specifically performed by the prediction processing unit 260 in the encoder 30 (Or, for example, the inter prediction unit 244 in the prediction processing unit 260).
  • the method may include:
  • This process can refer to the introduction of AMVP, Merge, MMVD, or skip modes in the foregoing, which will not be repeated here.
  • the motion vector difference of the current image block is used to Indicates the difference between the motion vector prediction value and the motion vector target value of the current image block
  • the index value of the direction of the motion vector difference value of the current image block is used to indicate a candidate direction in the preset candidate direction information set Information
  • the candidate direction information set includes candidate length information of M motion vector difference values
  • M is a positive integer greater than 4.
  • the index value of the length of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the predicted value of the motion vector of the current image block may include: according to the motion vector of the current image block The target value and the motion vector prediction value of the current image block to obtain the motion vector difference value of the current image block; according to the motion vector difference value of the current image block, the index value of the length of the motion vector difference value of the current image block is determined The direction index value of the difference between the motion vector and the current image block.
  • M can be 8.
  • FIG. 10 depicts the encoding-side method corresponding to the decoding-side method described in FIG. 9.
  • FIG. 9 depicts the encoding-side method corresponding to the decoding-side method described in FIG. 9.
  • FIG. 11 is a schematic flowchart of an inter prediction method according to an embodiment of the present invention.
  • the method may be executed by the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500, or may be executed by the video decoder 30, or specific Can be performed by the entropy decoding unit 304 and the prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the method may include:
  • S1101 Obtain a first motion vector predicted value and a second motion vector predicted value of the current image block, the first motion vector predicted value corresponds to a first reference frame, and the second motion vector predicted value corresponds to a second reference frame.
  • S1102 Obtain a first motion vector difference value of the current image block.
  • the first motion vector difference value of the current image block is used to indicate between the first motion vector prediction value and the first motion vector target value of the current image block Difference, the first motion vector target value and the first motion vector prediction value correspond to the same reference frame.
  • S1103 Determine a second motion vector difference value of the current image block according to the first motion vector difference value, and the second motion vector difference value of the current image block is used to indicate the second motion vector prediction value and the current image block The difference between the second motion vector target value of the second motion vector target value and the second motion vector prediction value corresponding to the same reference frame, wherein, in the first reference frame relative to the current image block The direction of the frame is the same as the direction of the second reference frame relative to the current frame, the second motion vector difference is the first motion vector difference; or, the first reference frame is relative to the current image block Where the direction of the current frame is opposite to the direction of the second reference frame relative to the current frame, the sign of the second motion vector difference is opposite to the sign of the first motion vector difference, and the The absolute value of the second motion vector difference is the same as the absolute value of the first motion vector difference.
  • S1104 Determine the first motion vector target value of the current image block according to the first motion vector difference value and the first motion vector prediction value.
  • the first motion vector target value may be the sum of the first motion vector difference value and the first motion vector prediction value.
  • S1105 Determine the second motion vector target value of the current image block according to the second motion vector difference value and the second motion vector prediction value.
  • the second motion vector target value may be the sum of the second motion vector difference value and the second motion vector prediction value.
  • an embodiment of the present invention further provides an inter prediction device 1200, which can be a destination device 14, or a video decoding system 40, or The decoder 30, or the video decoding device 400, or the decoding device 500 itself may also be the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500 Or the inter prediction device 1200 may include an entropy decoding unit 304 and a prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the inter prediction device 1200 includes an acquisition unit 1201 and a prediction unit 1202, which can be implemented by software, for example, the acquisition unit 1201 and the prediction unit 1202 can be software modules, or the acquisition unit 1201 and the prediction unit 1202 are executed
  • the instruction processor and memory, the acquisition unit 1201 and the prediction unit 1202 can also be implemented by hardware, for example, the acquisition unit 1201 and the prediction unit 1202 can be modules in the chip, where:
  • the prediction unit 1202 may be used to obtain the motion vector prediction value of the current image block.
  • the obtaining unit 1201 may be used to obtain the index value of the length of the motion vector difference value of the current image block.
  • the motion vector difference value of the current image block is used to indicate the motion vector prediction value and the motion vector target value of the current image block difference between.
  • the obtaining unit 1201 may include an entropy decoding unit 304 for obtaining the index value of the length of the motion vector difference of the current image block, or the direction of the direction of obtaining the motion vector difference of the current image block Index value.
  • the prediction unit 1202 may include a prediction unit 360, and may specifically include an inter prediction unit 344.
  • the prediction unit 1202 can also be used to determine target length information from the candidate length information set according to the index value of the length, the candidate length information set includes only candidate length information of N motion vector difference values, N is greater than 1 and less than A positive integer of 8; based on the target length information, the motion vector difference value of the current image block is obtained; according to the motion vector difference value of the current image block and the motion vector prediction value of the current image block, the motion of the current image block is determined Vector target value; according to the motion vector target value of the current image block, the predicted block of the current image block is obtained.
  • the obtaining unit 1201 may also be used to obtain the index value of the direction of the motion vector difference of the current image block.
  • the prediction unit 1202 can also be used to determine the target direction information from the candidate direction information of the M motion vector difference values according to the index value of the direction, where M is a positive integer greater than 1. After obtaining the target direction information, the predicted unit 1202 may be used to determine the motion vector difference of the current image block according to the target direction information and the target length information.
  • the candidate length information of the N motion vector difference values may include at least one of the following: when the index value of the length is a first preset value, the length indicated by the target length information is quarter One pixel length; when the index value of the length is the second preset value, the length indicated by the target length information is one-half pixel length; when the index value of the length is the third preset value, The length indicated by the target length information is one pixel length; when the index value of the length is the fourth preset value, the length indicated by the target length information is two pixel lengths.
  • the prediction unit 1202 may be used to: construct a candidate motion information list of the current image block, and the candidate motion information list may be composed of L motion vectors, where L is 1, 3, 4, or 5; obtain the current image block
  • the index value of the motion information prediction information in the candidate motion information list, the motion information prediction information of the current image block includes the motion vector prediction value; the index value in the candidate motion information list according to the motion information of the current image block And the candidate motion information list to obtain the motion vector prediction value.
  • each unit of the inter prediction apparatus 1200 of this embodiment may be specifically implemented according to the method in the above-described inter prediction method embodiment, and for the specific implementation process, reference may be made to the related description of the above method embodiment, here No longer.
  • an embodiment of the present invention further provides an inter prediction device 1300, which may be the source device 12, or the video decoding system 40, or the encoding
  • the device 20, or the video decoding device 400, or the decoding device 500 itself may also be the source device 12, or the video decoding system 40, or the encoder 20, or the components of the video decoding device 400, or the decoding device 500
  • the inter prediction device 1300 may include a prediction processing unit 260 (or, for example, the inter prediction unit 244 in the prediction processing unit 260).
  • the inter prediction device 1300 includes an acquisition unit 1301 and a prediction unit 1302, which may be implemented by software, for example, the acquisition unit 1301 and the prediction unit 1302 may be software modules, or the acquisition unit 1301 and the prediction unit 1302 are executed
  • the instruction processor and memory, the acquisition unit 1301 and the prediction unit 1302 may also be implemented by hardware, for example, the acquisition unit 1301 and the prediction unit 1302 may be modules in a chip, where:
  • the obtaining unit 1301 may be used to obtain the motion vector prediction value of the current image block.
  • the prediction unit 1302 may be used to perform a motion search in the area where the position indicated by the motion vector prediction value of the current image block is to obtain the motion vector target value of the current image block.
  • the obtaining unit 1301 and the prediction unit 1302 may be used as an implementation manner of the prediction processing unit 260.
  • the prediction unit 1302 may also be used to obtain the index value of the length of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the prediction value of the motion vector of the current image block.
  • the motion vector difference value is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block
  • the index value of the length of the motion vector difference value of the current image block is used to indicate preset candidate length information
  • One candidate length information in the set, the candidate length information set includes only candidate length information of N motion vector difference values, N is a positive integer greater than 1 and less than 8.
  • the prediction unit 1302 may be used to: obtain the motion vector difference value of the current image block according to the motion vector target value of the current image block and the motion vector prediction value of the current image block; according to the motion vector difference of the current image block Value, determine the index value of the length of the motion vector difference of the current image block and the direction index value of the motion vector difference of the current image block.
  • N may be 4, for example.
  • each unit of the inter prediction apparatus 1300 of this embodiment may be specifically implemented according to the method in the above method embodiment, and the specific implementation process may refer to the related description of the above method embodiment, which will not be repeated here. .
  • an embodiment of the present invention further provides an inter prediction device 1400, which may be the destination device 14, or the video decoding system 40, or The decoder 30, or the video decoding device 400, or the decoding device 500 itself may also be the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500 Or the inter prediction device 1400 may include an entropy decoding unit 304 and a prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the inter prediction device 1400 includes an acquisition unit 1401 and a prediction unit 1402, which may be implemented by software, for example, the acquisition unit 1401 and the prediction unit 1402 may be software modules, or the acquisition unit 1401 and the prediction unit 1402 are executed
  • the instruction processor and memory, the acquisition unit 1401 and the prediction unit 1402 may also be implemented by hardware, for example, the acquisition unit 1401 and the prediction unit 1402 may be modules in a chip, where:
  • the prediction unit 1402 may be used to obtain the motion vector prediction value of the current image block.
  • the obtaining unit 1401 may be used to obtain the index value of the direction of the motion vector difference of the current image block.
  • the motion vector difference of the current image block is used to indicate the motion vector prediction value and the motion vector target value of the current image block difference between.
  • the obtaining unit 1401 may include an entropy decoding unit 304 for obtaining the index value of the length of the motion vector difference of the current image block, or the direction of the direction of obtaining the motion vector difference of the current image block Index value.
  • the prediction unit 1402 may include a prediction unit 360, and may specifically include an inter prediction unit 344.
  • the prediction unit 1402 can also be used to determine target direction information from the candidate direction information set according to the index value of the direction, the candidate direction information set includes candidate direction information of M motion vector difference values, M is a positive integer greater than 4 According to the target direction information, the motion vector difference value of the current image block is obtained; the motion vector target value of the current image block is determined according to the motion vector difference value of the current image block and the motion vector prediction value of the current image block; According to the motion vector target value of the current image block, the predicted block of the current image block is obtained.
  • the obtaining unit 1401 can also be used to obtain the index value of the length of the motion vector difference of the current image block.
  • the prediction unit 1402 can also be used to determine target length information from candidate length information of N motion vector difference values according to the index value of the length, where N is a positive integer greater than 1. After obtaining the target length information, the prediction unit 1402 may be used to determine the motion vector difference of the current image block according to the target direction information and the target length information.
  • the candidate direction information of the M motion vector difference values may include at least one of the following: when the index value of the direction is the first preset value, the direction indicated by the target direction information is right When the index value of the direction is the second preset value, the direction indicated by the target direction information is positive left; when the index value of the direction is the third preset value, the direction indicated by the target direction information is Directly below; when the index value of the direction is the fourth preset value, the direction indicated by the target direction information is directly above; when the index value of the direction is the fifth preset value, the direction indicated by the target direction information is Bottom right; when the index value of the direction is the sixth preset value, the direction indicated by the target direction information is the upper right; when the index value of the direction is the seventh preset value, the direction indicated by the target direction information is Bottom left; when the index value of the direction is the eighth preset value, the direction indicated by the target direction information is the top left.
  • the prediction unit 1402 may be used to: construct a candidate motion information list of the current image block, and the candidate motion information list may be composed of L motion vectors, where L is 1, 3, 4, or 5; obtain the current image block
  • the index value of the motion information prediction information in the candidate motion information list, the motion information prediction information of the current image block includes the motion vector prediction value; the index value in the candidate motion information list according to the motion information of the current image block And the candidate motion information list to obtain the motion vector prediction value.
  • each unit of the inter prediction apparatus 1400 of this embodiment may be specifically implemented according to the method in the above-described inter prediction method embodiment, and for the specific implementation process, reference may be made to the relevant description of the above method embodiment, here No longer.
  • an embodiment of the present invention further provides an inter prediction device 1500, which may be the source device 12, or the video decoding system 40, or the encoding
  • the device 20, or the video decoding device 400, or the decoding device 500 itself may also be the source device 12, or the video decoding system 40, or the encoder 20, or the components of the video decoding device 400, or the decoding device 500
  • the inter prediction device 1500 may include a prediction processing unit 260 (or, for example, the inter prediction unit 244 in the prediction processing unit 260).
  • the inter prediction device 1500 includes an acquisition unit 1501 and a prediction unit 1502, which can be implemented by software, for example, the acquisition unit 1501 and the prediction unit 1502 can be software modules, or the acquisition unit 1501 and the prediction unit 1502 are executed
  • the instruction processor and memory, the acquisition unit 1501 and the prediction unit 1502 may also be implemented by hardware, for example, the acquisition unit 1501 and the prediction unit 1502 may be modules in a chip, where:
  • the obtaining unit 1501 may be used to obtain the motion vector prediction value of the current image block.
  • the prediction unit 1502 may be used to perform a motion search in the area where the position indicated by the motion vector prediction value of the current image block is to obtain the motion vector target value of the current image block.
  • the acquisition unit 1501 and the prediction unit 1502 may be used as an implementation manner of the prediction processing unit 260.
  • the prediction unit 1502 can also be used to obtain the index value of the direction of the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the prediction value of the motion vector of the current image block.
  • the motion vector difference value of is used to indicate the difference between the motion vector prediction value and the motion vector target value of the current image block
  • the index value of the direction of the motion vector difference value of the current image block is used to indicate the preset candidate direction
  • the candidate direction information set includes candidate length information of M motion vector differences, where M is a positive integer greater than 4.
  • the prediction unit 1502 may be used to: obtain the difference of the motion vector of the current image block according to the target value of the motion vector of the current image block and the prediction value of the motion vector of the current image block; according to the motion vector of the current image block
  • the difference value determines the index value of the length of the motion vector difference value of the current image block and the direction index value of the motion vector difference value of the current image block.
  • M may be 8, for example.
  • each unit of the inter prediction apparatus 1500 of this embodiment may be specifically implemented according to the method in the above method embodiment, and the specific implementation process may refer to the related description of the above method embodiment, which will not be repeated here. .
  • an embodiment of the present invention further provides an inter prediction device 1600, which can be the destination device 14, or the video decoding system 40, or The decoder 30, or the video decoding device 400, or the decoding device 500 itself may also be the destination device 14, or the video decoding system 40, or the decoder 30, or the video decoding device 400, or the decoding device 500
  • the inter prediction device 1600 may include an entropy decoding unit 304 and a prediction processing unit 360 (or, for example, the inter prediction unit 344 in the prediction processing unit 360).
  • the inter prediction device 1600 includes an acquisition unit 1601 and a prediction unit 1602, which can be implemented by software, for example, the acquisition unit 1601 and the prediction unit 1602 can be software modules, or the acquisition unit 1601 and the prediction unit 1602 are executed
  • the instruction processor and memory, the acquisition unit 1601 and the prediction unit 1602 can also be implemented by hardware, for example, the acquisition unit 1601 and the prediction unit 1602 can be modules in the chip, where:
  • the obtaining unit 1601 may be used to obtain the first motion vector predicted value and the second motion vector predicted value of the current image block, the first motion vector predicted value corresponds to the first reference frame, and the second motion vector predicted value corresponds to the second Reference frame.
  • the obtaining unit 1601 may also be used to obtain the first motion vector difference value of the current image block, and the first motion vector difference value of the current image block is used to indicate the first motion vector prediction value and the current image block A difference between a motion vector target value, the first motion vector target value and the first motion vector predicted value correspond to the same reference frame.
  • the prediction unit 1602 may be used to determine the second motion vector difference value of the current image block according to the first motion vector difference value, and the second motion vector difference value of the current image block is used to indicate the second motion vector prediction value
  • the second motion vector difference value is the first motion vector difference value; or, relative to the first reference frame
  • the sign of the second motion vector difference and the sign of the first motion vector difference Sign is opposite, and the absolute value of the second motion vector difference is the same as the absolute value of the first motion vector difference; according to the first motion vector difference and the first motion vector prediction value, determine the current image block's The first motion vector target value; according to the first motion vector difference and the first motion vector prediction value, determine the current image block's The first motion vector target value; according to the first motion vector difference and the first motion vector prediction value, determine the current image block's The first motion vector
  • the obtaining unit 1601 and the prediction unit 1602 may be used as an implementation manner of the prediction processing unit 360.
  • each unit of the inter prediction device 1600 of this embodiment may be specifically implemented according to the method in the above-described inter prediction method embodiment, and for the specific implementation process, reference may be made to the relevant description of the above-mentioned method embodiment, here No longer.
  • Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
  • computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM, or other optical disk storage devices, magnetic disk storage devices, or other magnetic storage devices, flash memory, or may be used to store instructions or data structures
  • the desired program code in the form of and any other medium that can be accessed by the computer. And, any connection is properly called a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave is used to transmit instructions from a website, server, or other remote source
  • coaxial cable Wire, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media.
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
  • magnetic disks and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and Blu-ray discs, where magnetic discs typically reproduce data magnetically, while optical discs reproduce optically using lasers data. Combinations of the above should also be included in the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functions described in the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or in combination Into the combined codec.
  • the technique can be fully implemented in one or more circuits or logic elements.
  • the technology of the present application may be implemented in a variety of devices or equipment, including wireless handsets, integrated circuits (ICs), or a set of ICs (eg, chipsets).
  • ICs integrated circuits
  • a set of ICs eg, chipsets
  • Various components, modules or units are described in this application to emphasize the functional aspects of the device for performing the disclosed technology, but do not necessarily need to be implemented by different hardware units.
  • various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种帧间预测方法方法以及装置以及相应的编码器和解码器,该方法包括:获取当前图像块的运动矢量预测值;获取所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异;根据所述长度的索引值从候选长度信息集合中确定出目标长度信息,所述候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数;根据所述目标长度信息,得到所述当前图像块的运动矢量差值;根据所述当前图像块的运动矢量差值和所述当前图像块的运动矢量预测值,确定所述当前图像块的运动矢量目标值;根据所述当前图像块的运动矢量目标值,得到所述当前图像块的预测块。实施本申请能够提高编解码效率。

Description

帧间预测方法、装置以及相应的编码器和解码器
本申请要求于2018年12月29日提交中国国家知识产权局、申请号为201811645808.X、申请名称为“帧间预测方法、装置以及相应的编码器和解码器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及视频编解码领域,尤其涉及一种帧间预测方法、装置以及相应的编码器和解码器。
背景技术
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分高级视频编码(AVC)定义的标准、视频编码标准H.265/高效视频编码(HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。
视频压缩技术执行空间(图像内)预测和/或时间(图像间)预测以减少或去除视频序列中固有的冗余。对于基于块的视频编码,视频条带(即,视频帧或视频帧的一部分)可分割成若干图像块,所述图像块也可被称作树块、编码单元(CU)和/或编码节点。使用关于同一图像中的相邻块中的参考样本的空间预测来编码图像的待帧内编码(I)条带中的图像块。图像的待帧间编码(P或B)条带中的图像块可使用相对于同一图像中的相邻块中的参考样本的空间预测或相对于其它参考图像中的参考样本的时间预测。图像可被称作帧,且参考图像可被称作参考帧。
发明内容
本申请实施例提供一种帧间预测方法、装置及相应的编码器和解码器,一定程度上编解码过程中的冗余,从而提高编解码效率。
第一方面,本申请实施例提供了一种帧间预测方法,该方法包括:获取当前图像块的运动矢量预测值;获取该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异;根据该长度的索引值从候选长度信息集合中确定出目标长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数;根据该目标长度信息,得到该当前图像块的运动矢量差值;根据该当前图像块的 运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
其中,该候选长度信息集合可以为预设的。
结合第一方面,在第一方面第一种可能的实施方式中,该方法还包括:获取该当前图像块的运动矢量差值的方向的索引值;根据该方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数;
该根据该目标长度信息,得到该当前图像块的运动矢量差值包括:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
结合第一方面或者第一方面第一种可能的实施方式,在第一方面的第二种可能的实施方式中,该N为4。
结合第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,
该N个运动矢量差值的候选长度信息包括以下至少一种:在该长度的索引值为第一预设值时,该目标长度信息指示的长度为四分之一个像素长度;在该长度的索引值为第二预设值时,该目标长度信息指示的长度为二分之一个像素长度;在该长度的索引值为第三预设值时,该目标长度信息指示的长度为一个像素长度;在该长度的索引值为第四预设值时,该目标长度信息指示的长度为两个像素长度。结合第一方面或者第一方面的以上任一种可能的实施方式,在第一方面的第四种可能的实施方式中,该获取当前图像块的运动矢量预测值包括:构建该当前图像块的候选运动信息列表,该候选运动信息列表由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
第二方面,本申请实施例提供了一种帧间预测方法,该方法包括:获取当前图像块的运动矢量预测值;在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
结合第二方面,在第二方面的第一种可能的实施方式中,该根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值包括:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
结合第二方面或者第二方面第一种可能的实施方式,在第二方面的第二种可能的实施方式中,N为4。
第三方面,本申请实施例提供了一种帧间预测方法,该方法包括:获取当前图像块的运动矢量预测值;获取该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异;根据该方向的索引值从候选方向信息集合中确定出目标方向信息,该候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数;根据该目标方向信息,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;
根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
结合第三方面,在第三方面的第一种可能的实施方式中,该方法还包括:获取该当前图像块的运动矢量差值的长度的索引值;根据该长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数;
该根据该目标方向信息,得到该当前图像块的运动矢量差值包括:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
结合第三方面或者第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,该M为8。
结合第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,
该M个运动矢量差值的候选方向信息包括以下至少一种:
在该方向的索引值为第一预设值时,该目标方向信息指示的方向为正右方;
在该方向的索引值为第二预设值时,该目标方向信息指示的方向为正左方;
在该方向的索引值为第三预设值时,该目标方向信息指示的方向为正下方;
在该方向的索引值为第四预设值时,该目标方向信息指示的方向为正上方;
在该方向的索引值为第五预设值时,该目标方向信息指示的方向为右下方;
在该方向的索引值为第六预设值时,该目标方向信息指示的方向为右上方;
在该方向的索引值为第七预设值时,该目标方向信息指示的方向为左下方;
在该方向的索引值为第八预设值时,该目标方向信息指示的方向为左上方。
结合第三方面或者第三方面的以上任一种可能的实施方式,在第三方面的第四种可能的实施方式中,该获取当前图像块的运动矢量预测值包括:构建该当前图像块的候选运动信息列表,该候选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
第四方面,本申请实施例提供了一种帧间预测方法,该方法包括:获取当前图像块的运动矢量预测值;在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块 的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,该候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
结合第四方面,在第四方面的第一种可能的实施方式中,该根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值包括:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
结合第四方面或者第四方面第一种可能的实施方式,在第四方面的第二种可能的实施方式中,M为8。
第五方面,本申请实施例提供了一种帧间预测方法,该方法包括:获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,该第一运动矢量预测值对应第一参考帧,该第二运动矢量预测值对应第二参考帧;获取该当前图像块的第一运动矢量差值,该当前图像块的第一运动矢量差值用于指示该第一运动矢量预测值与该当前图像块的第一运动矢量目标值之间的差异,该第一运动矢量目标值与该第一运动矢量预测值对应相同的参考帧;根据该第一运动矢量差值,确定该当前图像块的第二运动矢量差值,该当前图像块的第二运动矢量差值用于指示该第二运动矢量预测值与该当前图像块的第二运动矢量目标值之间的差异,该第二运动矢量目标值与该第二运动矢量预测值对应相同的参考帧,其中,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相同时,该第二运动矢量差值为该第一运动矢量差值;或者,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相反时,该第二运动矢量差值的正负号与该第一运动矢量差值的正负号相反,且该第二运动矢量差值的绝对值与该第一运动矢量差值的绝对值相同;根据该第一运动矢量差值和该第一运动矢量预测值,确定该当前图像块的第一运动矢量目标值;根据该第二运动矢量差值和该第二运动矢量预测值,确定该当前图像块的第二运动矢量目标值;根据该第一运动矢量目标值和该第二运动矢量目标值,得到该当前图像块的预测块。
第六方面,本申请实施例提供了一种帧间预测装置,该装置包括:
预测单元,用于获取当前图像块的运动矢量预测值;
获取单元,用于获取该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异;
该预测单元,还用于根据该长度的索引值从候选长度信息集合中确定出目标长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并 且小于8的正整数;根据该目标长度信息,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
结合第六方面,在第六方面第一种可能的实施方式中,该获取单元还用于:获取该当前图像块的运动矢量差值的方向的索引值;
该预测单元还用于:根据该方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数;
所预测单元用于:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
结合第六方面或者第六方面第一种可能的实施方式,在第六方面的第二种可能的实施方式中,该N为4。
结合第六方面的第二种可能的实施方式,在第六方面的第三种可能的实施方式中,
该N个运动矢量差值的候选长度信息可以包括以下至少一种:在该长度的索引值为第一预设值时,该目标长度信息指示的长度为四分之一个像素长度;在该长度的索引值为第二预设值时,该目标长度信息指示的长度为二分之一个像素长度;在该长度的索引值为第三预设值时,该目标长度信息指示的长度为一个像素长度;在该长度的索引值为第四预设值时,该目标长度信息指示的长度为两个像素长度。
结合第六方面或者第六方面的以上任一种可能的实施方式,在第六方面的第四种可能的实施方式中,该预测单元用于:构建该当前图像块的候选运动信息列表,该候选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
第七方面,本申请实施例提供了一种帧间预测装置,该装置包括:
获取单元,用于获取当前图像块的运动矢量预测值;
预测单元,用于在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值;
该预测单元,还用于根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
结合第七方面,在第七方面的第一种可能的实施方式中,该预测单元用于:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
结合第七方面或者第七方面第一种可能的实施方式,在第七方面的第二种可能的实施方式中,N为4。
第八方面,本申请实施例提供了一种帧间预测装置,该装置包括:
预测单元,用于获取当前图像块的运动矢量预测值;
获取单元,用于获取该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异;
该预测单元,还用于根据该方向的索引值从候选方向信息集合中确定出目标方向信息,该候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数;根据该目标方向信息,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
结合第八方面,在第八方面的第一种可能的实施方式中,该获取单元还用于:获取该当前图像块的运动矢量差值的长度的索引值;
该预测单元,还用于根据该长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数;
该预测单元用于:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
结合第八方面或者第八方面的第一种可能的实施方式,在第八方面的第二种可能的实施方式中,该M为8。
结合第八方面的第二种可能的实施方式,在第八方面的第三种可能的实施方式中,
该M个运动矢量差值的候选方向信息可以包括以下至少一种:
在该方向的索引值为第一预设值时,该目标方向信息指示的方向为正右方;
在该方向的索引值为第二预设值时,该目标方向信息指示的方向为正左方;
在该方向的索引值为第三预设值时,该目标方向信息指示的方向为正下方;
在该方向的索引值为第四预设值时,该目标方向信息指示的方向为正上方;
在该方向的索引值为第五预设值时,该目标方向信息指示的方向为右下方;
在该方向的索引值为第六预设值时,该目标方向信息指示的方向为右上方;
在该方向的索引值为第七预设值时,该目标方向信息指示的方向为左下方;
在该方向的索引值为第八预设值时,该目标方向信息指示的方向为左上方。
结合第八方面或者第八方面的以上任一种可能的实施方式,在第八方面的第四种可能的实施方式中,该预测单元用于:构建该当前图像块的候选运动信息列表,该候选运动信息列表由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
第九方面,本申请实施例提供了一种帧间预测装置,该装置包括:
获取单元,用于获取当前图像块的运动矢量预测值;
预测单元,用于在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值;
该预测单元,还用于根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,该候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
结合第九方面,在第九方面的第一种可能的实施方式中,该预测单元用于:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
结合第九方面或者第九方面第一种可能的实施方式,在第九方面的第二种可能的实施方式中,M为8。
第十方面,本申请实施例提供了一种帧间预测装置,该装置包括:
获取单元,用于获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,该第一运动矢量预测值对应第一参考帧,该第二运动矢量预测值对应第二参考帧;
该获取单元,还用于获取该当前图像块的第一运动矢量差值,该当前图像块的第一运动矢量差值用于指示该第一运动矢量预测值与该当前图像块的第一运动矢量目标值之间的差异,该第一运动矢量目标值与该第一运动矢量预测值对应相同的参考帧;
预测单元,用于根据该第一运动矢量差值,确定该当前图像块的第二运动矢量差值,该当前图像块的第二运动矢量差值用于指示该第二运动矢量预测值与该当前图像块的第二运动矢量目标值之间的差异,该第二运动矢量目标值与该第二运动矢量预测值对应相同的参考帧,其中,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相同时,该第二运动矢量差值为该第一运动矢量差值;或者,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相反时,该第二运动矢量差值的正负号与该第一运动矢量差值的正负号相反,且该第二运动矢量差值的绝对值与该第一运动矢量差值的绝对值相同;根据该第一运动矢量差值和该第一运动矢量预测值,确定该当前图像块的第一运动矢量目标值;根据该第二运动矢量差值和该第二运动矢量预测值,确定该当前图像块的第二运动矢量目标值;根据该第一运动矢量目标值和该第二运动矢量目标值,得到该当前图像块的预测块。
第十一方面,本申请实施例提供一种视频解码器,该视频解码器用于从码流中解码出图像块,包括:
第一方面或者第一方面中任一种可能的实施方式中的帧间预测装置,该帧间预测装置用于得到该当前图像块的预测块;
重建模块,用于基于该预测块重建该当前图像块。
第十二方面,本申请实施例提供一种视频编码器,该视频编码器用于编码图像块,包括:
第二方面或者第二方面中任一种可能的实施方式中的帧间预测装置,其中该帧间预测装置用于基于当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息;
熵编码模块,用于将该当前图像块的运动矢量差值的长度的索引值编入码流。
第十三方面,本申请实施例提供一种视频解码器,该视频解码器用于从码流中解码出图像块,包括:
第三方面或者第三方面中任一种可能的实施方式中的帧间预测装置,该帧间预测装置用于得到该当前图像块的预测块;
重建模块,用于基于该预测块重建该当前图像块。
第十四方面,本申请实施例提供一种视频编码器,该视频编码器用于编码图像块,包括:
第四方面或者第四方面中任一种可能的实施方式中的帧间预测装置,其中该帧间预测装置用于基于当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选方向信息集合中的一个候选方向信息;
熵编码模块,用于将该当前图像块的运动矢量差值的方向的索引值编入码流。
第十五方面,本申请实施例提供一种用于解码视频数据的设备,该设备包括:
存储器,用于存储码流形式的视频数据;
第十一方面,或者第十三方面,或者第十五方面,或者第十一方面、第十三方面和第十五方面中任意一种实施方式提供的视频解码器。
第十六方面,本申请实施例提供一种用于编码视频数据的设备,该设备包括:
存储器,用于存储视频数据,该视频数据包括一个或多个图像块;
第十二方面,或者第十四方面,或者第十二方面和第十四方面中任意一种实施方式提供的视频编码器。
第十七方面,本申请实施例提供一种编码设备,包括:相互耦合的非易失性存储器和处理器,该处理器调用存储在该存储器中的程序代码以执行第二方面,或者第四方面,或者第二方面和第四方面中的任意一种实施方式中的方法的部分或全部步骤。
第八方面,本申请实施例提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,该处理器调用存储在该存储器中的程序代码以执行第一方面,或者第三方面,或者第五方面,或者第一方面、第三方面和第五方面的任意一种实施方式中的方法的部分或全部步骤。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储了程序代码,其中,该程序代码包括用于执行第一方面至第五方面,或者第一方面至第五方面的任意一种实施方式中的方法的部分或全部步骤的指令。
第十方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行第一方面至第五方面,或者第一方面至第五方面的任意一种实施方式中的方法的部分或全部步骤。
应当理解的是,本申请的第二至十方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1A是用于实现本发明实施例的视频编码及解码系统10实例的框图;
图1B是用于实现本发明实施例的视频译码系统40实例的框图;
图2是用于实现本发明实施例的编码器20实例结构的框图;
图3是用于实现本发明实施例的解码器30实例结构的框图;
图4是用于实现本发明实施例的视频译码设备400实例的框图;
图5是用于实现本发明实施例的另一种编码装置或解码装置实例的框图;
图6是用于实现本发明实施例的一种空域相邻块和时域相邻块的实例框图;
图7是用于实现本发明实施例提供的一种帧间预测方法的流程示意图;
图8是用于实现本发明实施例提供的一种帧间预测方法的流程示意图;
图9是用于实现本发明实施例提供的一种帧间预测方法的流程示意图;
图10是用于实现本发明实施例提供的一种帧间预测方法的流程示意图;
图11是用于实现本发明实施例提供的一种帧间预测方法的流程示意图;
图12是用于实现本发明实施例提供的一种帧间预测装置的示意性框图;
图13是用于实现本发明实施例提供的一种帧间预测装置的示意性框图;
图14是用于实现本发明实施例提供的一种帧间预测装置的示意性框图;
图15是用于实现本发明实施例提供的一种帧间预测装置的示意性框图;
图16是用于实现本发明实施例提供的一种帧间预测装置的示意性框图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本发明实施例的具体方面或可使用本发明实施例 的具体方面的附图。应理解,本发明实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行该方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本发明实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。下面先对本发明实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个 PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树(Quad-tree)加多类型树(multi-type tree)分割CTU从而得到CU,多类型树(multi-type tree)包括二叉树(binary-tree)和三叉树(ternary-tree)。在该划分结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。当前块也可以称为当前图像块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本发明实施例所应用的系统架构。参见图1A,图1A示例性地给出了本发明实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到该一或多个处理器的存储器。该存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏 控制台、车载计算机、无线通信设备或其类似者。
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。该一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。该一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。该一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,该编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当该图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示, 例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本发明实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,该其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,该任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它 处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施该技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本发明实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本发明实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频 数据。
需要说明的是,本发明实施例描述的帧间预测方法主要用于帧间预测过程,此过程在编码器20和解码器30均存在,本发明实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。
参见图2,图2示出用于实现本发明实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样 本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213) 添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的 参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),该预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文该,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(Advanced Motion Vector Prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本发明实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本发明实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图像块203(当前图片201的当前图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,运动估计单元(图2中未示出)可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动补偿单元(图2中未示出)提供参考图片和/或提供运动矢量(参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移))作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,该语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息,或者,当前图像块的运动矢量差值的长度的索引值和当前图像块的运动矢量差值的方向的索引值中至少一项)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,该语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning  entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本发明实施例中,编码器20可用于实现后文实施例中描述的帧间预测方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本发明实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解 码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数(例如,可以是当前图像块的运动矢量差值的长度的索引值和当前图像块的运动矢量差值的方向的索引值中至少一项)和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动矢量及从熵解码单元304接收的其它语法元素(例如,可以是当前图像块的运动矢量差值的长度的索引值和当前图像块的运动矢量差值的方向的索引值中至少一项)生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和/或其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本发明的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态、当前图像图块的运动矢量的差值以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移 (sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本发明实施例中,解码器30用于实现后文实施例中描述的帧间预测方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)~2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768~32767。如bitDepth为18,则取值范围为-131072~131071。又例如,对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量MV)的取值进行约束,使得该四个4x4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。
可以通过以下两种方式进行约束,使其在一定的位宽内:
方式1,将运动矢量溢出的高位去除:
ux=(vx+2 bitDepth)%2 bitDepth
vx=(ux>=2 bitDepth-1)?(ux-2 bitDepth):ux
uy=(vy+2 bitDepth)%2 bitDepth
vy=(uy>=2 bitDepth-1)?(uy-2 bitDepth):uy
其中,vx为图像块或该图像块的子块的运动矢量的水平分量,vy为图像块或该图像块的子块的运动矢量的垂直分量,ux和uy为中间值;bitDepth表示位宽。
例如vx的值为-32769,通过以上公式得到的为32767。因为在计算机中,数值是以二进制的补码形式存储的,-32769的二进制补码为1,0111,1111,1111,1111(17位),计算机对于溢出的处理为丢弃高位,则vx的值为0111,1111,1111,1111,则为32767,与通过公式处理得到的结果一致。
方法2,将运动矢量进行Clipping,如以下公式所示:
vx=Clip3(-2 bitDepth-1,2 bitDepth-1-1,vx)
vy=Clip3(-2 bitDepth-1,2 bitDepth-1-1,vy)
其中vx为图像块或该图像块的子块的运动矢量的水平分量,vy为图像块或该图像块的子块的运动矢量的垂直分量;其中,x、y和z分别对应MV钳位过程Clip3的三个输入值,该Clip3的定义为,表示将z的值钳位到区间[x,y]之间:
Figure PCTCN2019128136-appb-000001
参见图4,图4是本发明实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本发明实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者, 以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的帧间预测的方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的帧间预测方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
下面详细阐述本申请实施例的方案:
帧间预测单元244,或者帧间预测单元344,或者编码器20,或者解码器30,或者视频译码设备400,或者译码设备500实施视频编码或者解码方法中的帧间预测中包括运动信息的确定,具体的,运动信息的确定可以由运动估计单元执行,其中,运动信息可以包括:参考图像信息和运动矢量信息中至少一种。参考图像信息可以包括其中至少一种:单向/双向预测信息(双向预测指的是需要两个参考块来确定当前图像块的预测块,在双向预测中,需要用到两组运动信息,分别用于确定两个参考块), 参考图像列表信息,和参考图像列表对应的参考图像索引。运动矢量信息可以包括运动矢量,运动矢量是指水平和竖直方向的位置偏移。运动矢量信息还可以包括运动矢量差值(motion vector difference,MVD),运动信息的确定以及进一步的预测块的确定可以包括如下模式之一:
AMVP模式:编码端先通过当前块空域或者时域相邻块(例如但不限于已编码块)的运动矢量,构建候选运动矢量列表,然后通过计算码率失真从候选运动矢量列表中确定作为当前块的运动矢量预测值(Motion vector predictor,MVP)的运动矢量。编码端将选择的运动矢量预测值在候选运动矢量列表中的索引值和参考帧(参考帧也可以称为参考图像)索引值传递到解码端。进一步地,在MVP为中心的邻域内进行运动搜索获得当前块更优的运动矢量(也可以称为运动矢量目标值),编码端将MVP与更优运动矢量之间的差值(Motion vector difference)传递到解码端。解码端先通过当前块空域或者时域相邻块(例如但不限于已解码块)的运动矢量,构建候选运动矢量列表,然后基于得到的运动矢量预测值在候选运动矢量列表中的索引值和候选运动矢量列表得到运动矢量预测值,再基于得到的MVP与更优运动矢量之间的差值得到更优的运动矢量,然后基于更优的运动矢量和根据参考帧索引值得到的参考帧的到当前块的预测块。需要说明的是,在候选运动矢量列表中的候选项个数为1时,可以不传输选择的运动矢量预测值在候选运动矢量列表中的索引值。
其中,编码端可以是源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500。解码端可以是目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500。其中,运动矢量预测值在候选运动矢量列表中的索引值和参考帧(参考帧也可以称为参考图像)索引值可以为上文中用于传输的语法元素。
Merge模式:编码端先通过当前块空域或者时域相邻块(例如但不限于已编码块)的运动信息,构建候选运动信息列表,然后通过计算码率失真从候选运动信息列表中确定最优的运动信息作为当前块的运动信息,再将候选运动信息列表中的最优的运动信息(也可以称为当前块的运动信息或者当前块的运动信息预测信息)在候选运动信息列表中位置的索引值(记为merge index,下同)传递到解码端。当前块空域和时域候选运动信息如图6所示,空域候选运动信息来自于空间相邻的5个块(A0,A1,B0,B1和B2),若相邻块不可得或者为帧内编码模式,则不加入候选运动信息列表。当前块的时域候选运动信息根据参考帧和当前帧的图序计数(Picture order count,POC)对参考帧中对应位置块的MV进行缩放后获得。首先判断参考帧中位置为T0的块是否可得,若不可得则选择位置在T1的块。解码端先通过当前块空域或者时域相邻块(例如但不限于已解码块)的运动信息,构建候选运动信息列表,其中运动信息列表中的运动信息包括运动矢量和参考帧索引值。解码端再基于候选运动信息列表和最优的运动信息在候选运动信息列表中位置的索引值得到最优运动信息,基于最优运动信息得到当前块的预测块。需要说明的是,在候选运动信息列表中的候选项个数为1时,可以不传输最优的运动信息在候选运动信息列表中位置的索引值。
需要说明的是本发明实施例所使用的候选运动信息列表并不限于通过当前块空域或者时域相邻块的运动信息构建,可以通过以下至少一项进行构建或者修正:空域相 邻块的运动信息,时域相邻块的运动信息,双平均融合候选(pairwise average merging candidates),基于历史的融合候选(history-based merging candidates)和零运动矢量候选(zero motion vector merging candidates)。具体的构建过程可以参考JVET-L1001-v6。但本发明实施例不限于此。
具有运动矢量差值的融合(merge mode with motion vector difference,MMVD)模式:该模式在Merge模式的基础上增加了MVD的传输。具体来说,编码端会进一步地,在候选运动信息列表中的最优的运动信息为中心的邻域内进行运动搜索获得当前块的更优运动矢量(也可以称为运动矢量目标值),编码端将候选运动信息列表中的最优的运动信息包括的运动矢量与更优运动矢量之间的差值(Motion vector difference)传递到解码端。解码端在得到最优运动信息后,会进一步基于上述差值和候选运动信息列表中的最优的运动信息包括的运动矢量,得到更优的运动矢量,然后在基于更优的运动矢量和候选运动信息列表中的最优的运动信息包括的参考帧索引值指示的参考帧得到当前块的预测块。
需要说明的是MMVD模式也可以是在skip模式的基础上增加了MVD的传输,skip模式相比于Merge模式可以理解为不传输当前块预测块与当前块的原始块之间的残差信息。同样的,在skip模式的基础上,编码端会进一步地,在候选运动信息列表中的最优的运动信息为中心的邻域内进行运动搜索获得当前块更优的运动矢量,编码端将候选运动信息列表中的最优的运动信息包括的运动矢量与更优运动矢量之间的差值(Motion vector difference)传递到解码端。解码端在得到最优运动信息后,会进一步基于上述差值和候选运动信息列表中的最优的运动信息包括的运动矢量,得到更优的运动矢量,然后在基于更优的运动矢量和候选运动信息列表中的最优的运动信息包括的参考帧索引值指示的参考帧得到当前块的预测块。关于skip模式的描述,可以参考现有的H.266的草案文档(working draft,例如JVET-L1001-v6),在此不再赘述。
MMVD利用了VVC中的Merge候选。在merge候选中选取其中一个或多个候选,然后基于候选进行MV拓展表达。通过简化的标识方式来实现MV拓展表达,标识方法包括了MV起始点,运动步长以及运动方向。利用已有的Merge候选列表,所选用的候选可以是MRG_TYPE_DEFAULT_N模式。所选的候选确定了MV的初始位置。Base candidate IDX(表1)表明了选用候选列表中哪个候选作为最佳候选。
表1.Base candidate IDX
Figure PCTCN2019128136-appb-000002
其中,Base candidate IDX为候选运动信息列表中的最优的运动信息在候选运动信息列表中位置的索引值。Nth MVP表示候选运动信息列表中的第N项为MVP。
在传输MVD时,传输对象可以是偏移值本身,例如x,y,也可以是MVD的长度和MVD的方向,也可以是MVD长度的索引值(表示1/4像素到32像素距离)和MVD方向(上下左右)的索引值。
MVD长度的索引值用于指示MVD的长度。MVD长度的索引值(Distance IDX)和MVD的长度(Pixel distance)的对应关系可以是预设的,该对应关系可以如表2所示:
表2
Figure PCTCN2019128136-appb-000003
MVD方向的索引值用于指示MVD的方向。MVD方向的索引值(Direction IDX)与MVD的方向(x-axis,y-axis)的对应关系可以是预设的,该对应关系可以如表3所示
表3
Figure PCTCN2019128136-appb-000004
其中,表3中y-axis为N/A可以表示MVD的方向与y轴方向无关,x-axis为N/A可以表示MVD的方向与x轴方向无关。
其中,在解码过程中,MMVD标识(mmvd_flag,用于指示当前块是否使用MMVD模式解码)的解析位于Skip标识(cu_skip_flag,用于指示当前块是否使用skip模式解码)或者Merge标识(merge_flag,用于指示当前块是否使用merge模式解码)之后。如果skip标识或merge标识为真,则需要对MMVD标识位进行解析。如果MMVD标识为真,则MMVD对应的其他标识位需要编解码。
进一步的,在双向帧间预测(或者称为双向预测)的场景中,解码端或者编码端可以只解码或者只编码一个方向的MVD信息,另一个方向的MVD信息可以通过该一个方向的MVD信息得到,具体的过程可以如下:
1)确定该一个方向的MVD对应的参考帧与该另一个方向的MVD对应的参考帧是同向还是反向,具体可以通过当前块所在的帧的POC值与两个方向的参考帧的POC值进行判断。例如,如果当前块所在帧的POC值减去该一个方向的参考帧的POC值的到的第一差值,与当前块所在帧的POC值减去该另一个方向的参考帧的POC值的到的第二差值的正负号相同,则该一个方向的MVD对应的参考帧的方向与该另一个方向的MVD对应的参考帧的方向是同向。反之,如果当前块所在帧的POC值减去该一个方向的参考帧的POC值的到的第一差值,与当前块所在帧的POC值减去该另一个方向的参考帧的POC值的到的第二差值的正负号相反,则该一个方向的MVD对应的参考帧的方向与该另一个方向的MVD对应的参考帧的方向是反向。
需要说明的是,参考帧的方向可以是参考帧相对于当前帧(当前块所在帧)的方向,或者当前帧相对于参考帧的方向。在具体确定同向还是反向的实现过程中,不仅仅可以通过当前帧POC值减去参考帧POC值来判断,同样可以通过参考帧POC值减去当前帧POC来判断。
2)在该一个方向的MVD对应的参考帧与该另一个方向的MVD对应的参考帧是同向时,该另一个方向MVD与该一个方向的MVD符号相同,例如,该一个方向的MVD为(x,y),则该另一个方向的MVD为(x,y)。具体的,该一个方向的MVD可以通过该一个方向的MVD长度的索引值和该一个方向的MVD方向的索引值获得。或者,
在该一个方向的MVD对应的参考帧与该另一个方向的MVD对应的参考帧是反向时,该另一个方向MVD与该一个方向的MVD符号相反,例如,该一个方向的MVD为(x,y),则该另一个方向的MVD为(-x,-y)。
3)根据该一个方向的MVD,第一POC差值与第二POC差值对另一个方向的MVD进行缩放,得到更优的另一个方向的MVD。其中,第一POC差值为当前块所在帧的POC值与该一个方向的MVD对应的参考帧的POC值之间差值,第二POC差值为当前块所在帧的POC值与该另一个方向的MVD对应的参考帧的POC值之间差值。关于缩放方法的具体描述,可以参考现有的H.266的草案文档(working draft,例如JVET-L1001-v6),在此不再赘述。
上述MVD的方案还有进一步的优化空间,例如Pixel distance较长的值的索引值很少被使用,MVD的方向的索引只能指示4个方向,以及在具体实现过程中,步骤3)(根据该一个方向的MVD,第一POC差值与第二POC差值对另一个方向的MVD进行缩放)过于复杂。因此,本发明实施例提供了一系列改善方案。
图7为本发明实施例提供的一种帧间预测方法的流程示意图。其中,该方法可以由目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500执行,或者具体的可以由视频解码器30执行,或者具体的可以由熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)执行。该方法可以包括:
S701、获取当前图像块的运动矢量预测值。
在具体的实现过程中,该获取当前图像块的运动矢量预测值可以包括:构建该当前图像块的候选运动信息列表,该候选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。其中,当前图像块的候选运动信息列表可以是Merge候选运动信息列表,相应的,本发明实施例提供的帧间预测方法可以应用于MMVD模式。
其中,该候选运动信息列表中的索引值可以采用变长编码形式的索引值,例如,当L为3时,1可以用于指示候选运动信息列表中的第一项,01可以用于指示候选运动信息列表中的第二项,00可以用于指示候选运动信息列表中的第三项。或者,当L为4时,1可以用于指示候选运动信息列表中的第一项,01可以用于指示候选运动信 息列表中的第二项,001可以用于指示候选运动信息列表中的第三项,000可以用于指示候选运动信息列表中的第四项,以此类推。
上述通过构建当前图像块的候选运动信息列表得到运动矢量预测值的方式,可以参考前文中AMVP、Merge,MMVD或者skip等模式的介绍,此处不再赘述。
S702、获取该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异。
其中,该运动矢量差值的长度的索引值可以用于指示候选长度信息集合中的一个候选长度信息。
其中,候选长度信息集合可以是至少两个候选长度信息,也可以是一个候选长度信息。
其中,一个候选长度信息可以用于指示一个运动矢量差值的长度,该候选长度信息可以是长度值,也可以是可以是用于推导得到长度值的信息。其中,长度可以用欧氏距离表示,长度也可以是包括运动矢量差值的x分量和y分量的绝对值,当然也可以用其它的范数表示,在此不做限定。
需要说明的是,由于运动矢量是一个二维数组,则运动矢量差值也可以用二维数组来表示。如果运动矢量是一个三维数组,则运动矢量差值也可以用一个三维数组来表示。
S703、根据该长度的索引值从候选长度信息集合中确定出目标长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
其中,该N可以为4。在一些可行的实施方式中,不同的长度的索引值可以指示不同的长度,例如,该N个运动矢量差值的候选长度信息可以包括以下至少一种:在该长度的索引值为第一预设值时,该目标长度信息指示的长度为四分之一个像素长度;在该长度的索引值为第二预设值时,该目标长度信息指示的长度为二分之一个像素长度;在该长度的索引值为第三预设值时,该目标长度信息指示的长度为一个像素长度;在该长度的索引值为第四预设值时,该目标长度信息指示的长度为两个像素长度。需要说明的是,第一预设值到第四预设值可以不是顺序的,彼此是独立的,仅仅用来区别不同的预设值。当然,第一预设值到第四预设值也可以是顺序,或者说具有顺序属性。在一些可行的实施方式中,长度的索引值与MVD的长度的对应关系可以如表4所示:
表4
Figure PCTCN2019128136-appb-000005
其中,pel是像素的意思,例如,1/4-pel表示四分之一个像素长度。类似的描述可 以参考表2的描述。
其中,MmvdDistance为用于得到MVD的长度的值,例如MmvdDistance右移两位可以得到MVD的长度的值。
S704、根据该目标长度信息,得到该当前图像块的运动矢量差值。
其中,该方法还可以包括:获取该当前图像块的运动矢量差值的方向的索引值;根据该方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数。
其中,M个运动矢量差值的候选方向信息可以指的是M个候选方向信息。
其中,该运动矢量差值的方向的索引值可以用于指示M个运动矢量差值的候选方向信息中的一个候选方向信息。
其中,一个候选方向信息可以用于指示一个运动矢量差值的方向。具体来说,候选方向信息可以是一个表示正负号的符号,该符号可以运动矢量差值的x分量的符号,或者运动矢量差值的y分量的符号,或者是运动矢量x分量和y分量的符号。或者,候选方向信息也可以是用于推导得到该符号的信息。
在具体的实现过程中,该根据该目标长度信息,得到该当前图像块的运动矢量差值可以包括:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
S705、根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值。
在一些可行的实施方式中,可以将当前图像块的运动矢量差值和当前图像块的运动矢量预测值的和,作为当前图像块的运动矢量目标值。
S706、根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
关于帧间预测的更多内容可以参考前文中的描述,在此不再赘述。
图8为本发明实施例提供的一种帧间预测方法的流程示意图。其中,该方法可以由源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500执行,或者具体的可以由编码器30中的预测处理单元260(或者例如预测处理单元260中的帧间预测单元244)执行。该方法可以包括:
S801、获取当前图像块的运动矢量预测值。
该过程可以参考前文中AMVP、Merge,MMVD或者skip等模式的介绍,此处不再赘述。
S802、在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值。
S803、根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
其中,该根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值, 得到该当前图像块的运动矢量差值的长度的索引值可以包括:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
其中,N可以为4。
图8描述为与图7描述的解码侧方法对应的编码侧方法,相关的描述可以参考图7或者前文中的相关描述,此处不再赘述。
图9为本发明实施例提供的一种帧间预测方法的流程示意图。其中,该方法可以由目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500执行,或者具体的可以由视频解码器30执行,或者具体的可以由熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)执行。该方法可以包括:
S901、获取当前图像块的运动矢量预测值。
在具体的实现过程中,该获取当前图像块的运动矢量预测值可以包括:构建该当前图像块的候选运动信息列表,该候选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。其中,当前图像块的候选运动信息列表可以是Merge候选运动信息列表,相应的,本发明实施例提供的帧间预测方法可以应用于MMVD模式。
上述通过构建当前图像块的候选运动信息列表得到运动矢量预测值的方式,可以参考前文中AMVP、Merge,MMVD或者skip等模式的介绍,此处不再赘述。
S902、获取该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异。
其中,该运动矢量差值的方向的索引值可以用于指示候选方向信息集合中的一个候选方向信息。
其中,候选方向信息集合可以是至少两个候选方向信息,也可以是一个候选方向信息。
其中,一个候选方向信息可以用于指示一个运动矢量差值的方向。具体来说,候选方向信息可以是一个表示正负号的符号,该符号可以运动矢量差值的x分量的符号,或者运动矢量差值的y分量的符号,或者是运动矢量x分量和y分量的符号。或者,候选方向信息也可以是用于推导得到该符号的信息。
需要说明的是,由于运动矢量是一个二维数组,则运动矢量差值也可以用二维数组来表示。如果运动矢量是一个三维数组,则运动矢量差值也可以用一个三维数组来表示。
S903、根据该方向的索引值从候选方向信息集合中确定出目标方向信息,该候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数。
其中,该M可以为8。在一些可行的实施方式中,不同的方向的索引值可以指示不同的方向,例如,该M个运动矢量差值的候选方向信息可以包括以下至少一种:在 该方向的索引值为第一预设值时,该目标方向信息指示的方向为正右方;在该方向的索引值为第二预设值时,该目标方向信息指示的方向为正左方;在该方向的索引值为第三预设值时,该目标方向信息指示的方向为正下方;在该方向的索引值为第四预设值时,该目标方向信息指示的方向为正上方;在该方向的索引值为第五预设值时,该目标方向信息指示的方向为右下方;在该方向的索引值为第六预设值时,该目标方向信息指示的方向为右上方;在该方向的索引值为第七预设值时,该目标方向信息指示的方向为左下方;在该方向的索引值为第八预设值时,该目标方向信息指示的方向为左上方。需要说明的是,第一预设值到第八预设值可以不是顺序的,彼此是独立的,仅仅用来区别不同的预设值。当然,第一预设值到第八预设值也可以是顺序,或者说具有顺序属性。
在一些可行的实施方式中,方向的索引值与MVD的方向的对应关系可以如表5或者表6或者表7所示:
表5
Figure PCTCN2019128136-appb-000006
表6
Figure PCTCN2019128136-appb-000007
表7
Figure PCTCN2019128136-appb-000008
其中,在表5中,x-axis为“+”可以表示方向为x轴正方向,y-axis为“+”可以表示方向为y轴正方向,x-axis为“-”可以表示方向为x轴负方向,y-axis为“-”可以表示方向为y轴负方向,x-axis为N/A可以表示MVD的方向与x轴方向无关,y-axis为N/A可以表示MVD的方向与y轴方向无关,x-axis和y-axis同时为“+”可以表示方向为投影在x轴为正方向且投影在y轴也为正方向的方向,x-axis和y-axis同时为“-”可以表示方向为投影在x轴为负方向且投影在y轴也为负方向的方向,x-axis为“+”和y-axis为“-”可以表示方向为投影在x轴为正方向且投影在y轴为负方向的方向,x-axis为“-”和y-axis为“+”可以表示方向为投影在x轴为负方向且投影在y轴为正方向的方向。其中,x轴正方向可以表示左方,y轴正方向可以表示下方。
其中,在表6或者表7中,x-axis可以表示MVD的x分量的符号系数,该x分量的符号系数与MVD的x分量的绝对值的乘积为MVD的x分量。y-axis可以表示MVD的y分量的符号系数,该y分量的符号系数与y分量的绝对值的乘积为MVD的y分量。
S904、根据该目标方向信息,得到该当前图像块的运动矢量差值。
其中,该方法还可以包括:该方法还可以包括:获取该当前图像块的运动矢量差值的长度的索引值;根据该长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数。
其中,N个运动矢量差值的候选长度信息可以为图7实施例中的候选长度信息集合,具体可以是表4提供的候选长度信息集合。关于运动矢量的差值的长度,运动矢量差值的长度的索引值,候选长度信息以及运动矢量差值的描述可以参考图7或者前文的描述,此处不再赘述。
在具体的实现过程中,该根据该目标方向信息,得到该当前图像块的运动矢量差值可以包括:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
S905、根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值。
在一些可行的实施方式中,可以将当前图像块的运动矢量差值和当前图像块的运动矢量预测值的和,作为当前图像块的运动矢量目标值。
S906、根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
关于帧间预测的更多内容可以参考前文中的描述,在此不再赘述。
图9实施例中与图7以及前文中相似的内容可参考图7以及前文中的描述,在此不再赘述。
图10为本发明实施例提供的一种帧间预测方法的流程示意图。其中,该方法可以由源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500执行,或者具体的可以由编码器30中的预测处理单元260(或者例如预测处理单元260中的帧间预测单元244)执行。该方法可以包括:
S1001、获取当前图像块的运动矢量预测值。
该过程可以参考前文中AMVP、Merge,MMVD或者skip等模式的介绍,此处不再赘述。
S1002、在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值。
S1003、根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,该候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
其中,该根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值可以包括:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
其中,M可以为8。
图10描述为与图9描述的解码侧方法对应的编码侧方法,相关的描述可以参考图9或者前文中的相关描述,此处不再赘述。
图11为本发明实施例提供的一种帧间预测方法的流程示意图。其中,该方法可以由目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500执行,或者具体的可以由视频解码器30执行,或者具体的可以由熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)执行。该方法可以包括:
S1101、获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,该第一运动矢量预测值对应第一参考帧,该第二运动矢量预测值对应第二参考帧。
S1102、获取该当前图像块的第一运动矢量差值,该当前图像块的第一运动矢量差值用于指示该第一运动矢量预测值与该当前图像块的第一运动矢量目标值之间的差异,该第一运动矢量目标值与该第一运动矢量预测值对应相同的参考帧。
S1103、根据该第一运动矢量差值,确定该当前图像块的第二运动矢量差值,该当前图像块的第二运动矢量差值用于指示该第二运动矢量预测值与该当前图像块的第二运动矢量目标值之间的差异,该第二运动矢量目标值与该第二运动矢量预测值对应相同的参考帧,其中,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相同时,该第二运动矢量差值为该第一运动矢量差值;或者,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相反时,该第二运动矢量差值的正负号与该第一运动矢量差值的正负号相反,且该第二运动矢量差值的绝对值与该第一运动矢量差值的绝对值相同。
S1104、根据该第一运动矢量差值和该第一运动矢量预测值,确定该当前图像块的第一运动矢量目标值。
其中,第一运动矢量目标值可以是该第一运动矢量差值和该第一运动矢量预测值的和。
S1105、根据该第二运动矢量差值和该第二运动矢量预测值,确定该当前图像块的第二运动矢量目标值。
其中,该第二运动矢量目标值可以是该第二运动矢量差值和该第二运动矢量预测值的和。
S1106、根据该第一运动矢量目标值和该第二运动矢量目标值,得到该当前图像块的预测块。
图11实施例中与前文中相似的内容可参考前文中的描述,在此不再赘述。
基于与上述方法相同的发明构思,如图12所示,本发明实施例还提供了一种帧间预测装置1200,该帧间预测装置1200可以目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500本身,也可以是目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500的部件,或者帧间预测装置1200可以包括熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)。帧间预测装置1200包括获取单元1201和预测单元1202,该获取单元1201和预测单元1202可以通过软件实现,例如获取单元1201和预测单元1202可以软件模块,或者,获取单元1201和预测单元1202为执行指令的处理器和存储器,获取单元1201和预测单元1202也可以通过硬件实现,例如获取单元1201和预测单元1202可以为芯片中的模块,其中:
预测单元1202,可以用于获取当前图像块的运动矢量预测值。
获取单元1201,可以用于获取该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异。
在一些可行的实施方式中,获取单元1201可以包括熵解码单元304,用于获取该当前图像块的运动矢量差值的长度的索引值,或者获取该当前图像块的运动矢量差值的方向的索引值。预测单元1202可以包括预测单元360,具体可以包括帧间预测单元344。
预测单元1202,还可以用于根据该长度的索引值从候选长度信息集合中确定出目标长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数;根据该目标长度信息,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
其中,该获取单元1201还可以用于:获取该当前图像块的运动矢量差值的方向的索引值。相应的,该预测单元1202还可以用于:根据该方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数。在得到目标方向信息后,所预测单元1202可以用于:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
其中,该N可以例如为4。在一些可行的实施方式中,该N个运动矢量差值的候选长度信息可以包括以下至少一种:在该长度的索引值为第一预设值时,该目标长度信息指示的长度为四分之一个像素长度;在该长度的索引值为第二预设值时,该目标 长度信息指示的长度为二分之一个像素长度;在该长度的索引值为第三预设值时,该目标长度信息指示的长度为一个像素长度;在该长度的索引值为第四预设值时,该目标长度信息指示的长度为两个像素长度。
其中,该预测单元1202可以用于:构建该当前图像块的候选运动信息列表,该候选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
可以理解的是,本实施例的帧间预测装置1200的各个单元的功能可以根据上述帧间预测方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
基于与上述方法相同的发明构思,如图13所示,本发明实施例还提供了一种帧间预测装置1300,该帧间预测装置1300可以源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500本身,也可以是源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500的部件,或者帧间预测装置1300可以包括预测处理单元260(或者例如预测处理单元260中的帧间预测单元244)。帧间预测装置1300包括获取单元1301和预测单元1302,该获取单元1301和预测单元1302可以通过软件实现,例如获取单元1301和预测单元1302可以软件模块,或者,获取单元1301和预测单元1302为执行指令的处理器和存储器,获取单元1301和预测单元1302也可以通过硬件实现,例如获取单元1301和预测单元1302可以为芯片中的模块,其中:
获取单元1301,可以用于获取当前图像块的运动矢量预测值。
预测单元1302,可以用于在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值。
在一些可行的实施方式中,获取单元1301和预测单元1302可以作为预测处理单元260的一种实现方式。
预测单元1302,还可以用于根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的长度的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,该候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
其中,预测单元1302可以用于:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
其中,N可以例如为4。
可以理解的是,本实施例的帧间预测装置1300的各个单元的功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述, 此处不再赘述。
基于与上述方法相同的发明构思,如图14所示,本发明实施例还提供了一种帧间预测装置1400,该帧间预测装置1400可以目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500本身,也可以是目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500的部件,或者帧间预测装置1400可以包括熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)。帧间预测装置1400包括获取单元1401和预测单元1402,该获取单元1401和预测单元1402可以通过软件实现,例如获取单元1401和预测单元1402可以软件模块,或者,获取单元1401和预测单元1402为执行指令的处理器和存储器,获取单元1401和预测单元1402也可以通过硬件实现,例如获取单元1401和预测单元1402可以为芯片中的模块,其中:
预测单元1402,可以用于获取当前图像块的运动矢量预测值。
获取单元1401,可以用于获取该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异。
在一些可行的实施方式中,获取单元1401可以包括熵解码单元304,用于获取该当前图像块的运动矢量差值的长度的索引值,或者获取该当前图像块的运动矢量差值的方向的索引值。预测单元1402可以包括预测单元360,具体可以包括帧间预测单元344。
预测单元1402,还可以用于根据该方向的索引值从候选方向信息集合中确定出目标方向信息,该候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数;根据该目标方向信息,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值和该当前图像块的运动矢量预测值,确定该当前图像块的运动矢量目标值;根据该当前图像块的运动矢量目标值,得到该当前图像块的预测块。
其中,该获取单元1401还可以用于:获取该当前图像块的运动矢量差值的长度的索引值。相应的,该预测单元1402,还可以用于根据该长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数。在得到目标长度信息后,该预测单元1402可以用于:根据该目标方向信息和该目标长度信息,确定该当前图像块的运动矢量差值。
其中,该M可以例如为8。在一些可行的实施方式中,该M个运动矢量差值的候选方向信息可以包括以下至少一种:在该方向的索引值为第一预设值时,该目标方向信息指示的方向为正右方;在该方向的索引值为第二预设值时,该目标方向信息指示的方向为正左方;在该方向的索引值为第三预设值时,该目标方向信息指示的方向为正下方;在该方向的索引值为第四预设值时,该目标方向信息指示的方向为正上方;在该方向的索引值为第五预设值时,该目标方向信息指示的方向为右下方;在该方向的索引值为第六预设值时,该目标方向信息指示的方向为右上方;在该方向的索引值为第七预设值时,该目标方向信息指示的方向为左下方;在该方向的索引值为第八预设值时,该目标方向信息指示的方向为左上方。
其中,该预测单元1402可以用于:构建该当前图像块的候选运动信息列表,该候 选运动信息列表可以由L个运动矢量组成,该L为1,3,4或5;获取该当前图像块的运动信息预测信息在该候选运动信息列表中的索引值,该当前图像块的运动信息预测信息包括该运动矢量预测值;根据该当前图像块的运动信息在该候选运动信息列表中的索引值和该候选运动信息列表,得到该运动矢量预测值。
可以理解的是,本实施例的帧间预测装置1400的各个单元的功能可以根据上述帧间预测方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
基于与上述方法相同的发明构思,如图15所示,本发明实施例还提供了一种帧间预测装置1500,该帧间预测装置1500可以源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500本身,也可以是源设备12,或者视频译码系统40,或者编码器20,或者视频译码设备400,或者译码设备500的部件,或者帧间预测装置1500可以包括预测处理单元260(或者例如预测处理单元260中的帧间预测单元244)。帧间预测装置1500包括获取单元1501和预测单元1502,该获取单元1501和预测单元1502可以通过软件实现,例如获取单元1501和预测单元1502可以软件模块,或者,获取单元1501和预测单元1502为执行指令的处理器和存储器,获取单元1501和预测单元1502也可以通过硬件实现,例如获取单元1501和预测单元1502可以为芯片中的模块,其中:
获取单元1501,可以用于获取当前图像块的运动矢量预测值。
预测单元1502,可以用于在该当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到该当前图像块的运动矢量目标值。
在一些可行的实施方式中,获取单元1501和预测单元1502可以作为预测处理单元260的一种实现方式。
该预测单元1502,还可以用于根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值的方向的索引值,该当前图像块的运动矢量差值用于指示该运动矢量预测值与该当前图像块的运动矢量目标值之间的差异,该当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,该候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
其中,该预测单元1502可以用于:根据该当前图像块的运动矢量目标值和该当前图像块的运动矢量预测值,得到该当前图像块的运动矢量差值;根据该当前图像块的运动矢量差值,确定该当前图像块的运动矢量差值的长度的索引值和该当前图像块的运动矢量差值的方向索引值。
其中,M可以例如为8。
可以理解的是,本实施例的帧间预测装置1500的各个单元的功能可以根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
基于与上述方法相同的发明构思,如图16所示,本发明实施例还提供了一种帧间预测装置1600,该帧间预测装置1600可以目的地设备14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500本身,也可以是目的地设备 14,或者视频译码系统40,或者解码器30,或者视频译码设备400,或者译码设备500的部件,或者帧间预测装置1600可以包括熵解码单元304和预测处理单元360(或者例如预测处理单元360中的帧间预测单元344)。帧间预测装置1600包括获取单元1601和预测单元1602,该获取单元1601和预测单元1602可以通过软件实现,例如获取单元1601和预测单元1602可以软件模块,或者,获取单元1601和预测单元1602为执行指令的处理器和存储器,获取单元1601和预测单元1602也可以通过硬件实现,例如获取单元1601和预测单元1602可以为芯片中的模块,其中:
获取单元1601,可以用于获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,该第一运动矢量预测值对应第一参考帧,该第二运动矢量预测值对应第二参考帧。
该获取单元1601,还可以用于获取该当前图像块的第一运动矢量差值,该当前图像块的第一运动矢量差值用于指示该第一运动矢量预测值与该当前图像块的第一运动矢量目标值之间的差异,该第一运动矢量目标值与该第一运动矢量预测值对应相同的参考帧。
预测单元1602,可以用于根据该第一运动矢量差值,确定该当前图像块的第二运动矢量差值,该当前图像块的第二运动矢量差值用于指示该第二运动矢量预测值与该当前图像块的第二运动矢量目标值之间的差异,该第二运动矢量目标值与该第二运动矢量预测值对应相同的参考帧,其中,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相同时,该第二运动矢量差值为该第一运动矢量差值;或者,在该第一参考帧相对于该当前图像块所在的当前帧的方向,与该第二参考帧相对于该当前帧的方向相反时,该第二运动矢量差值的正负号与该第一运动矢量差值的正负号相反,且该第二运动矢量差值的绝对值与该第一运动矢量差值的绝对值相同;根据该第一运动矢量差值和该第一运动矢量预测值,确定该当前图像块的第一运动矢量目标值;根据该第二运动矢量差值和该第二运动矢量预测值,确定该当前图像块的第二运动矢量目标值;根据该第一运动矢量目标值和该第二运动矢量目标值,得到该当前图像块的预测块。
在一些可行的实施方式中,获取单元1601和预测单元1602可以作为预测处理单元360的一种实现方式。
可以理解的是,本实施例的帧间预测装置1600的各个单元的功能可以根据上述帧间预测方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器 存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,该计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,该技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上该,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (39)

  1. 一种帧间预测方法,其特征在于,所述方法包括:
    获取当前图像块的运动矢量预测值;
    获取所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异;
    根据所述长度的索引值从候选长度信息集合中确定出目标长度信息,所述候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数;
    根据所述目标长度信息,得到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值和所述当前图像块的运动矢量预测值,确定所述当前图像块的运动矢量目标值;
    根据所述当前图像块的运动矢量目标值,得到所述当前图像块的预测块。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述当前图像块的运动矢量差值的方向的索引值;
    根据所述方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数;
    所述根据所述目标长度信息,得到所述当前图像块的运动矢量差值包括:
    根据所述目标方向信息和所述目标长度信息,确定所述当前图像块的运动矢量差值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N为4。
  4. 根据权利要求3所述的方法,其特征在于,所述N个运动矢量差值的候选长度信息包括以下至少一种:在所述长度的索引值为第一预设值时,所述目标长度信息指示的长度为四分之一个像素长度;
    在所述长度的索引值为第二预设值时,所述目标长度信息指示的长度为二分之一个像素长度;
    在所述长度的索引值为第三预设值时,所述目标长度信息指示的长度为一个像素长度;
    在所述长度的索引值为第四预设值时,所述目标长度信息指示的长度为两个像素长度。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述获取当前图像块的运动矢量预测值包括:
    构建所述当前图像块的候选运动信息列表,所述候选运动信息列表由L个运动矢量组成,所述L为1,3,4或5;
    获取所述当前图像块的运动信息预测信息在所述候选运动信息列表中的索引值,所述当前图像块的运动信息预测信息包括所述运动矢量预测值;
    根据所述当前图像块的运动信息在所述候选运动信息列表中的索引值和所述候选运动信息列表,得到所述运动矢量预测值。
  6. 一种帧间预测方法,其特征在于,所述方法包括:
    获取当前图像块的运动矢量预测值;
    在所述当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到所述当前图像块的运动矢量目标值;
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异,所述当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,所述候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的长度的索引值包括:
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值,确定所述当前图像块的运动矢量差值的长度的索引值和所述当前图像块的运动矢量差值的方向索引值。
  8. 根据权利要求6或7所述的方法,其特征在于,N为4。
  9. 一种帧间预测方法,其特征在于,所述方法包括:
    获取当前图像块的运动矢量预测值;
    获取所述当前图像块的运动矢量差值的方向的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异;
    根据所述方向的索引值从候选方向信息集合中确定出目标方向信息,所述候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数;
    根据所述目标方向信息,得到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值和所述当前图像块的运动矢量预测值,确定所述当前图像块的运动矢量目标值;
    根据所述当前图像块的运动矢量目标值,得到所述当前图像块的预测块。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    获取所述当前图像块的运动矢量差值的长度的索引值;
    根据所述长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数;
    所述根据所述目标方向信息,得到所述当前图像块的运动矢量差值包括:
    根据所述目标方向信息和所述目标长度信息,确定所述当前图像块的运动矢量差值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述M为8。
  12. 根据权利要求11所述的方法,其特征在于,所述M个运动矢量差值的候选方向信息包括以下至少一种:
    在所述方向的索引值为第一预设值时,所述目标方向信息指示的方向为正右方;
    在所述方向的索引值为第二预设值时,所述目标方向信息指示的方向为正左方;
    在所述方向的索引值为第三预设值时,所述目标方向信息指示的方向为正下方;
    在所述方向的索引值为第四预设值时,所述目标方向信息指示的方向为正上方;
    在所述方向的索引值为第五预设值时,所述目标方向信息指示的方向为右下方;
    在所述方向的索引值为第六预设值时,所述目标方向信息指示的方向为右上方;
    在所述方向的索引值为第七预设值时,所述目标方向信息指示的方向为左下方;
    在所述方向的索引值为第八预设值时,所述目标方向信息指示的方向为左上方。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述获取当前图像块的运动矢量预测值包括:
    构建所述当前图像块的候选运动信息列表,所述候选运动信息列表由L个运动矢量组成,所述L为1,3,4或5;
    获取所述当前图像块的运动信息预测信息在所述候选运动信息列表中的索引值,所述当前图像块的运动信息预测信息包括所述运动矢量预测值;
    根据所述当前图像块的运动信息在所述候选运动信息列表中的索引值和所述候选运动信息列表,得到所述运动矢量预测值。
  14. 一种帧间预测方法,其特征在于,所述方法包括:
    获取当前图像块的运动矢量预测值;
    在所述当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到所述当前图像块的运动矢量目标值;
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的方向的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异,所述当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,所述候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的长度的索引值包括:
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得 到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值,确定所述当前图像块的运动矢量差值的长度的索引值和所述当前图像块的运动矢量差值的方向索引值。
  16. 根据权利要求14或15所述的方法,其特征在于,M为8。
  17. 一种帧间预测方法,其特征在于,所述方法包括:
    获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,所述第一运动矢量预测值对应第一参考帧,所述第二运动矢量预测值对应第二参考帧;
    获取所述当前图像块的第一运动矢量差值,所述当前图像块的第一运动矢量差值用于指示所述第一运动矢量预测值与所述当前图像块的第一运动矢量目标值之间的差异,所述第一运动矢量目标值与所述第一运动矢量预测值对应相同的参考帧;
    根据所述第一运动矢量差值,确定所述当前图像块的第二运动矢量差值,所述当前图像块的第二运动矢量差值用于指示所述第二运动矢量预测值与所述当前图像块的第二运动矢量目标值之间的差异,所述第二运动矢量目标值与所述第二运动矢量预测值对应相同的参考帧,其中,在所述第一参考帧相对于所述当前图像块所在的当前帧的方向,与所述第二参考帧相对于所述当前帧的方向相同时,所述第二运动矢量差值为所述第一运动矢量差值;或者,在所述第一参考帧相对于所述当前图像块所在的当前帧的方向,与所述第二参考帧相对于所述当前帧的方向相反时,所述第二运动矢量差值的正负号与所述第一运动矢量差值的正负号相反,且所述第二运动矢量差值的绝对值与所述第一运动矢量差值的绝对值相同;
    根据所述第一运动矢量差值和所述第一运动矢量预测值,确定所述当前图像块的第一运动矢量目标值;
    根据所述第二运动矢量差值和所述第二运动矢量预测值,确定所述当前图像块的第二运动矢量目标值;
    根据所述第一运动矢量目标值和所述第二运动矢量目标值,得到所述当前图像块的预测块。
  18. 一种帧间预测装置,其特征在于,所述装置包括:
    预测单元,用于获取当前图像块的运动矢量预测值;
    获取单元,用于获取所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异;
    所述预测单元,还用于根据所述长度的索引值从候选长度信息集合中确定出目标长度信息,所述候选长度信息集合仅包括N个运动矢量差值的候选长度信息,N为大于1并且小于8的正整数;根据所述目标长度信息,得到所述当前图像块的运动矢量差值;根据所述当前图像块的运动矢量差值和所述当前图像块的运动矢量预测值,确定所述当前图像块的运动矢量目标值;根据所述当前图像块的运动矢量目标值,得到所 述当前图像块的预测块。
  19. 根据权利要求18所述的装置,其特征在于,所述获取单元还用于:
    获取所述当前图像块的运动矢量差值的方向的索引值;
    所述预测单元还用于:根据所述方向的索引值从M个运动矢量差值的候选方向信息中确定出目标方向信息,M为大于1的正整数;
    所预测单元用于:
    根据所述目标方向信息和所述目标长度信息,确定所述当前图像块的运动矢量差值。
  20. 根据权利要求18或19所述的装置,其特征在于,所述N为4。
  21. 根据权利要求20所述的装置,其特征在于,所述N个运动矢量差值的候选长度信息包括以下至少一种:
    在所述长度的索引值为第一预设值时,所述目标长度信息指示的长度为四分之一个像素长度;
    在所述长度的索引值为第二预设值时,所述目标长度信息指示的长度为二分之一个像素长度;
    在所述长度的索引值为第三预设值时,所述目标长度信息指示的长度为一个像素长度;
    在所述长度的索引值为第四预设值时,所述目标长度信息指示的长度为两个像素长度。
  22. 根据权利要求18至21任一项所述的装置,其特征在于,所述预测单元用于:
    构建所述当前图像块的候选运动信息列表,所述候选运动信息列表由L个运动矢量组成,所述L为1,3,4或5;
    获取所述当前图像块的运动信息预测信息在所述候选运动信息列表中的索引值,所述当前图像块的运动信息预测信息包括所述运动矢量预测值;
    根据所述当前图像块的运动信息在所述候选运动信息列表中的索引值和所述候选运动信息列表,得到所述运动矢量预测值。
  23. 一种帧间预测装置,其特征在于,所述装置包括:
    获取单元,用于获取当前图像块的运动矢量预测值;
    预测单元,用于在所述当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到所述当前图像块的运动矢量目标值;
    所述预测单元,还用于根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异,所述当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息,所述候选长度信息集合仅包括N个运动矢量 差值的候选长度信息,N为大于1并且小于8的正整数。
  24. 根据权利要求23所述的装置,其特征在于,所述预测单元用于:
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值,确定所述当前图像块的运动矢量差值的长度的索引值和所述当前图像块的运动矢量差值的方向索引值。
  25. 根据权利要求23或24所述的装置,其特征在于,N为4。
  26. 一种帧间预测装置,其特征在于,所述装置包括:
    预测单元,用于获取当前图像块的运动矢量预测值;
    获取单元,用于获取所述当前图像块的运动矢量差值的方向的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异;
    所述预测单元,还用于根据所述方向的索引值从候选方向信息集合中确定出目标方向信息,所述候选方向信息集合包括M个运动矢量差值的候选方向信息,M为大于4的正整数;根据所述目标方向信息,得到所述当前图像块的运动矢量差值;根据所述当前图像块的运动矢量差值和所述当前图像块的运动矢量预测值,确定所述当前图像块的运动矢量目标值;根据所述当前图像块的运动矢量目标值,得到所述当前图像块的预测块。
  27. 根据权利要求26所述的装置,其特征在于,所述获取单元还用于:获取所述当前图像块的运动矢量差值的长度的索引值;
    所述预测单元,还用于根据所述长度的索引值从N个运动矢量差值的候选长度信息中确定出目标长度信息,N为大于1的正整数;
    所述预测单元用于:
    根据所述目标方向信息和所述目标长度信息,确定所述当前图像块的运动矢量差值。
  28. 根据权利要求26或27所述的装置,其特征在于,所述M为8。
  29. 根据权利要求28所述的装置,其特征在于,所述M个运动矢量差值的候选方向信息包括以下至少一种:
    在所述方向的索引值为第一预设值时,所述目标方向信息指示的方向为正右方;
    在所述方向的索引值为第二预设值时,所述目标方向信息指示的方向为正左方;
    在所述方向的索引值为第三预设值时,所述目标方向信息指示的方向为正下方;
    在所述方向的索引值为第四预设值时,所述目标方向信息指示的方向为正上方;
    在所述方向的索引值为第五预设值时,所述目标方向信息指示的方向为右下方;
    在所述方向的索引值为第六预设值时,所述目标方向信息指示的方向为右上方;
    在所述方向的索引值为第七预设值时,所述目标方向信息指示的方向为左下方;
    在所述方向的索引值为第八预设值时,所述目标方向信息指示的方向为左上方。
  30. 根据权利要求26至29任一项所述的装置,其特征在于,所述预测单元用于:
    构建所述当前图像块的候选运动信息列表,所述候选运动信息列表由L个运动矢量组成,所述L为1,3,4或5;
    获取所述当前图像块的运动信息预测信息在所述候选运动信息列表中的索引值,所述当前图像块的运动信息预测信息包括所述运动矢量预测值;
    根据所述当前图像块的运动信息在所述候选运动信息列表中的索引值和所述候选运动信息列表,得到所述运动矢量预测值。
  31. 一种帧间预测装置,其特征在于,所述装置包括:
    获取单元,用于获取当前图像块的运动矢量预测值;
    预测单元,用于在所述当前图像块的运动矢量预测值所指示的位置所在的区域内执行运动搜索,得到所述当前图像块的运动矢量目标值;
    所述预测单元,还用于根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的方向的索引值,所述当前图像块的运动矢量差值用于指示所述运动矢量预测值与所述当前图像块的运动矢量目标值之间的差异,所述当前图像块的运动矢量差值的方向的索引值用于指示预设的候选方向信息集合中的一个候选方向信息,所述候选方向信息集合包括M个运动矢量差值的候选长度信息,M为大于4的正整数。
  32. 根据权利要求31所述的装置,其特征在于,所述预测单元用于:
    根据所述当前图像块的运动矢量目标值和所述当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值;
    根据所述当前图像块的运动矢量差值,确定所述当前图像块的运动矢量差值的长度的索引值和所述当前图像块的运动矢量差值的方向索引值。
  33. 根据权利要求31或32所述的装置,其特征在于,M为8。
  34. 一种帧间预测装置,其特征在于,所述装置包括:
    获取单元,用于获取当前图像块的在第一运动矢量预测值和第二运动矢量预测值,所述第一运动矢量预测值对应第一参考帧,所述第二运动矢量预测值对应第二参考帧;
    所述获取单元,还用于获取所述当前图像块的第一运动矢量差值,所述当前图像块的第一运动矢量差值用于指示所述第一运动矢量预测值与所述当前图像块的第一运动矢量目标值之间的差异,所述第一运动矢量目标值与所述第一运动矢量预测值对应相同的参考帧;
    预测单元,用于根据所述第一运动矢量差值,确定所述当前图像块的第二运动矢量差值,所述当前图像块的第二运动矢量差值用于指示所述第二运动矢量预测值与所述当前图像块的第二运动矢量目标值之间的差异,所述第二运动矢量目标值与所述第二运动矢量预测值对应相同的参考帧,其中,在所述第一参考帧相对于所述当前图像 块所在的当前帧的方向,与所述第二参考帧相对于所述当前帧的方向相同时,所述第二运动矢量差值为所述第一运动矢量差值;或者,在所述第一参考帧相对于所述当前图像块所在的当前帧的方向,与所述第二参考帧相对于所述当前帧的方向相反时,所述第二运动矢量差值的正负号与所述第一运动矢量差值的正负号相反,且所述第二运动矢量差值的绝对值与所述第一运动矢量差值的绝对值相同;根据所述第一运动矢量差值和所述第一运动矢量预测值,确定所述当前图像块的第一运动矢量目标值;根据所述第二运动矢量差值和所述第二运动矢量预测值,确定所述当前图像块的第二运动矢量目标值;根据所述第一运动矢量目标值和所述第二运动矢量目标值,得到所述当前图像块的预测块。
  35. 一种视频解码器,其特征在于,所述视频解码器用于从码流中解码出图像块,包括:
    如权利要求18至22任一项所述的帧间预测装置,所述帧间预测装置用于得到当前图像块的预测块;
    重建模块,用于基于所述预测块重建所述当前图像块。
  36. 一种视频编码器,其特征在于,所述视频编码器用于编码图像块,包括:
    如权利要求23至25任一项所述的帧间预测装置,其中所述帧间预测装置用于基于当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的长度的索引值,所述当前图像块的运动矢量差值的长度的索引值用于指示预设的候选长度信息集合中的一个候选长度信息;
    熵编码模块,用于将所述当前图像块的运动矢量差值的长度的索引值编入码流。
  37. 一种视频解码器,其特征在于,所述视频解码器用于从码流中解码出图像块,包括:
    如权利要求26至30任一项所述的帧间预测装置,所述帧间预测装置用于得到当前图像块的预测块;
    重建模块,用于基于所述预测块重建所述当前图像块。
  38. 一种视频编码器,其特征在于,所述视频编码器用于编码图像块,包括:
    如权利要求31至33任一项所述的帧间预测装置,其中所述帧间预测装置用于基于当前图像块的运动矢量预测值,得到所述当前图像块的运动矢量差值的方向的索引值,所述当前图像块的运动矢量差值的长度的索引值用于指示预设的候选方向信息集合中的一个候选方向信息;
    熵编码模块,用于将所述当前图像块的运动矢量差值的方向的索引值编入码流。
  39. 一种视频编解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-17任一项所描述的方法。
PCT/CN2019/128136 2018-12-29 2019-12-25 帧间预测方法、装置以及相应的编码器和解码器 WO2020135467A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021538314A JP2022515555A (ja) 2018-12-29 2019-12-25 インター予測の方法および装置、並びに対応するエンコーダおよびデコーダ
CN202111014505.XA CN113709478B (zh) 2018-12-29 2019-12-25 帧间预测方法、装置以及相应的编码器和解码器
KR1020217023866A KR20210107109A (ko) 2018-12-29 2019-12-25 인터 프레임 예측 방법, 디바이스, 및 대응하는 인코더 및 디코더
CN201980015446.2A CN111788833B (zh) 2018-12-29 2019-12-25 帧间预测方法、装置以及相应的编码器和解码器
US17/360,786 US11956444B2 (en) 2018-12-29 2021-06-28 Inter prediction method and apparatus, and corresponding encoder and decoder
JP2024021174A JP2024056899A (ja) 2018-12-29 2024-02-15 インター予測の方法および装置、並びに対応するエンコーダおよびデコーダ
US18/597,291 US20240340427A1 (en) 2018-12-29 2024-03-06 Inter prediction method and apparatus, and corresponding encoder and decoder that reduce redundancy in video coding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811645808.X 2018-12-29
CN201811645808.XA CN111385575A (zh) 2018-12-29 2018-12-29 帧间预测方法、装置以及相应的编码器和解码器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,786 Continuation US11956444B2 (en) 2018-12-29 2021-06-28 Inter prediction method and apparatus, and corresponding encoder and decoder

Publications (1)

Publication Number Publication Date
WO2020135467A1 true WO2020135467A1 (zh) 2020-07-02

Family

ID=71128701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128136 WO2020135467A1 (zh) 2018-12-29 2019-12-25 帧间预测方法、装置以及相应的编码器和解码器

Country Status (5)

Country Link
US (2) US11956444B2 (zh)
JP (2) JP2022515555A (zh)
KR (1) KR20210107109A (zh)
CN (3) CN111385575A (zh)
WO (1) WO2020135467A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615176A (zh) * 2018-12-31 2021-11-05 北京达佳互联信息技术有限公司 用于在视频编解码中信令发送运动合并模式的系统和方法
CN113794889B (zh) * 2021-03-19 2022-12-23 杭州海康威视数字技术股份有限公司 解码方法、编码方法、装置、设备及机器可读存储介质
US20230059035A1 (en) * 2021-08-23 2023-02-23 Netflix, Inc. Efficient encoding of film grain noise
US11522563B1 (en) * 2021-10-13 2022-12-06 Western Digital Technologies, Inc. Processor instructions for iterative decoding operations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322543A1 (en) * 2011-02-22 2013-12-05 Toshiyasu Sugio Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
CN104365101A (zh) * 2012-04-15 2015-02-18 三星电子株式会社 用于确定用于帧间预测的参考图像的方法及设备
CN104519363A (zh) * 2013-09-26 2015-04-15 汤姆逊许可公司 视频编/解码方法、对应计算机程序及视频编/解码设备
CN104717513A (zh) * 2015-03-31 2015-06-17 北京奇艺世纪科技有限公司 一种双向帧间预测方法及装置
US20160381384A1 (en) * 2012-03-06 2016-12-29 Sun Patent Trust Moving picture coding method, moving picture decoding method, moving picture coding apparatus, moving picture decoding apparatus, and moving picture coding and decoding apparatus
CN107257483A (zh) * 2011-05-31 2017-10-17 太阳专利托管公司 运动图像编码方法、运动图像编码装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445463B2 (ja) * 2005-12-16 2010-04-07 株式会社東芝 動画像再符号化方法及び装置
KR20120016991A (ko) * 2010-08-17 2012-02-27 오수미 인터 프리딕션 방법
KR20130002242A (ko) * 2011-06-28 2013-01-07 주식회사 케이티 영상 정보의 부호화 방법 및 복호화 방법
JPWO2013058363A1 (ja) * 2011-10-20 2015-04-02 ソニー株式会社 画像処理装置および方法
RU2585976C2 (ru) * 2011-11-08 2016-06-10 Кт Корпорейшен Способ и устройство для определения способа сканирования на основании режима деления блока предсказания
JP6681609B2 (ja) * 2012-04-09 2020-04-15 サン パテント トラスト 画像符号化方法および画像復号化方法
CN103338372A (zh) * 2013-06-15 2013-10-02 浙江大学 一种视频处理方法及装置
CN103561263B (zh) * 2013-11-06 2016-08-24 北京牡丹电子集团有限责任公司数字电视技术中心 基于运动矢量约束和加权运动矢量的运动补偿预测方法
CN107113424B (zh) * 2014-11-18 2019-11-22 联发科技股份有限公司 以帧间预测模式编码的块的视频编码和解码方法
JP2016187134A (ja) * 2015-03-27 2016-10-27 日本電信電話株式会社 予測モード判定方法及び予測モード判定プログラム
CN107925774A (zh) * 2015-08-24 2018-04-17 Lg 电子株式会社 基于间预测模式的图像处理方法及其装置
WO2017039117A1 (ko) * 2015-08-30 2017-03-09 엘지전자(주) 영상의 부호화/복호화 방법 및 이를 위한 장치
EP3439303B1 (en) * 2016-04-28 2020-12-30 LG Electronics Inc. -1- Inter prediction mode-based image processing method and apparatus therefor
US20210006824A1 (en) * 2018-01-08 2021-01-07 Samsung Electronics Co., Ltd. Encoding and decoding method for motion information, and encoding and decoding device for motion information
US11310526B2 (en) * 2018-01-26 2022-04-19 Mediatek Inc. Hardware friendly constrained motion vector refinement
US10965951B2 (en) * 2018-06-22 2021-03-30 Avago Technologies International Sales Pte. Limited Memory latency management for decoder-side motion refinement
US11516490B2 (en) * 2018-07-16 2022-11-29 Lg Electronics Inc. Method and device for inter predicting on basis of DMVR
US10893291B2 (en) * 2018-09-28 2021-01-12 Qualcomm Incorporated Ultimate motion vector expression with adaptive directional information set
CN113170167A (zh) * 2018-11-29 2021-07-23 北京字节跳动网络技术有限公司 块内拷贝模式中的标志指示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322543A1 (en) * 2011-02-22 2013-12-05 Toshiyasu Sugio Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
CN107257483A (zh) * 2011-05-31 2017-10-17 太阳专利托管公司 运动图像编码方法、运动图像编码装置
US20160381384A1 (en) * 2012-03-06 2016-12-29 Sun Patent Trust Moving picture coding method, moving picture decoding method, moving picture coding apparatus, moving picture decoding apparatus, and moving picture coding and decoding apparatus
CN104365101A (zh) * 2012-04-15 2015-02-18 三星电子株式会社 用于确定用于帧间预测的参考图像的方法及设备
CN104519363A (zh) * 2013-09-26 2015-04-15 汤姆逊许可公司 视频编/解码方法、对应计算机程序及视频编/解码设备
CN104717513A (zh) * 2015-03-31 2015-06-17 北京奇艺世纪科技有限公司 一种双向帧间预测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEETHAL PALURI ET AL: "CE4-related: Generic Vector Coding of Motion Vector Difference", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC1/SC29/WG11, 12 October 2018 (2018-10-12), Macao CN, pages 1 - 5, XP030190913 *
SERGEY IKONIN ET AL: "CE9: Motion vector difference signs derivation (Test 4.2)", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC1/SC29/WG11, 17 July 2018 (2018-07-17), Ljubljana SI, pages 1 - 3, XP030195729 *

Also Published As

Publication number Publication date
CN113709478B (zh) 2023-08-04
CN111788833A (zh) 2020-10-16
US11956444B2 (en) 2024-04-09
CN111385575A (zh) 2020-07-07
US20210329251A1 (en) 2021-10-21
KR20210107109A (ko) 2021-08-31
CN113709478A (zh) 2021-11-26
CN111788833B (zh) 2021-09-14
US20240340427A1 (en) 2024-10-10
JP2024056899A (ja) 2024-04-23
JP2022515555A (ja) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2020114510A1 (zh) 用于多假设编码的加权预测方法及装置
WO2020232845A1 (zh) 一种帧间预测的方法和装置
WO2020114394A1 (zh) 视频编解码方法、视频编码器和视频解码器
CN113709478B (zh) 帧间预测方法、装置以及相应的编码器和解码器
WO2020143589A1 (zh) 视频图像解码、编码方法及装置
CN112055200A (zh) Mpm列表构建方法、色度块的帧内预测模式获取方法及装置
CN111526362A (zh) 帧间预测方法和装置
WO2020253681A1 (zh) 融合候选运动信息列表的构建方法、装置及编解码器
CN113366850B (zh) 视频编码器、视频解码器及相应方法
CN113170147B (zh) 视频编码器、视频解码器、及对应方法
CN111432219B (zh) 一种帧间预测方法及装置
WO2020155791A1 (zh) 帧间预测方法和装置
CN111263166B (zh) 一种视频图像预测方法及装置
CN112135137A (zh) 视频编码器、视频解码器及相应方法
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
WO2020114508A1 (zh) 视频编解码方法及装置
WO2020135615A1 (zh) 视频图像解码方法及装置
WO2020114509A1 (zh) 视频图像解码、编码方法及装置
WO2020135371A1 (zh) 一种标志位的上下文建模方法及装置
WO2020114393A1 (zh) 变换方法、反变换方法以及视频编码器和视频解码器
CN112135129B (zh) 一种帧间预测方法及装置
WO2020187062A1 (zh) 用于融合运动矢量差技术的优化方法、装置及编解码器
WO2020186882A1 (zh) 基于三角预测单元模式的处理方法及装置
WO2020108168A9 (zh) 一种视频图像预测方法及装置
WO2020135368A1 (zh) 一种帧间预测的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023866

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19905001

Country of ref document: EP

Kind code of ref document: A1