WO2020114509A1 - 视频图像解码、编码方法及装置 - Google Patents

视频图像解码、编码方法及装置 Download PDF

Info

Publication number
WO2020114509A1
WO2020114509A1 PCT/CN2019/123810 CN2019123810W WO2020114509A1 WO 2020114509 A1 WO2020114509 A1 WO 2020114509A1 CN 2019123810 W CN2019123810 W CN 2019123810W WO 2020114509 A1 WO2020114509 A1 WO 2020114509A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
processed
image block
inter prediction
current image
Prior art date
Application number
PCT/CN2019/123810
Other languages
English (en)
French (fr)
Inventor
陈旭
郑建铧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811574426.2A external-priority patent/CN111294601A/zh
Priority to EP23210025.5A priority Critical patent/EP4346212A2/en
Priority to AU2019394522A priority patent/AU2019394522A1/en
Priority to CN201980081126.7A priority patent/CN113491132B/zh
Priority to CN202210811245.7A priority patent/CN115174931A/zh
Priority to CA3122329A priority patent/CA3122329C/en
Priority to BR112021010896-3A priority patent/BR112021010896A2/pt
Priority to CN202210810881.8A priority patent/CN115243048B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2021006683A priority patent/MX2021006683A/es
Priority to KR1020237035929A priority patent/KR20230149344A/ko
Priority to JP2021532301A priority patent/JP7314274B2/ja
Priority to KR1020217020780A priority patent/KR102593525B1/ko
Priority to EP19893119.8A priority patent/EP3893510B1/en
Priority to CN202210811022.0A priority patent/CN115243049A/zh
Publication of WO2020114509A1 publication Critical patent/WO2020114509A1/zh
Priority to US17/339,746 priority patent/US11425372B2/en
Priority to US17/865,233 priority patent/US11758130B2/en
Priority to US18/361,596 priority patent/US20240040113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present application relates to the technical field of image coding and decoding, in particular to a video image decoding and coding method and device.
  • Video signals have become the most important way for people to obtain information in their daily lives due to their intuitive and efficient advantages. Due to the large amount of data contained in the video signal, a large amount of transmission bandwidth and storage space are required. In order to effectively transmit and store video signals, it is necessary to compress and encode the video signals. Video compression technology is increasingly becoming an indispensable key technology in the field of video applications.
  • the basic principle of video coding compression is to use the correlation between the space domain, time domain, and codewords to remove as much redundancy as possible.
  • the current popular method is to adopt a hybrid video coding framework based on image blocks, and realize video coding compression through steps such as prediction (including intra prediction and inter prediction), transformation, quantization, and entropy coding.
  • motion estimation/motion compensation in inter prediction is a key technology that affects encoding/decoding performance.
  • the existing inter prediction adds the merge motion vector difference (MMVD) method and the triangle prediction unit (triangle prediction unit, triangle PU) method, but in the existing inter prediction implementation, MMVD and triangle PU are in the same Under the conditions, both need to be encoded and decoded, and compatibility is redundant.
  • MMVD merge motion vector difference
  • triangle PU triangle prediction unit
  • the present application provides a video image decoding and encoding method and device to solve the problem of compatibility and redundancy of MMVD and triangle PU in the prior art to a certain extent.
  • an embodiment of the present application provides a video image decoding method, including:
  • the second identifier is parsed from the code stream Flag; when the second flag indicates that inter prediction of the current image block to be processed does not use the fusion motion vector difference (MMVD) method (for example: in the skip mode, the current image block to be processed
  • MMVD fusion motion vector difference
  • the third identifier is parsed from the code stream; where, when the third identifier is the first value, it indicates that inter prediction is used for the current image block to be processed Triangular prediction unit method (for example: in skip mode, the inter prediction of the current image block to be processed adopts the triangular prediction unit method); when the third identifier is a second value, it indicates that the current It is not allowed to use the triangle prediction unit method for processing image blocks for inter prediction (for example: in skip mode, the triangle prediction unit method is not allowed for inter prediction for the current image block to be processed).
  • MMVD fusion motion vector difference
  • the three flags are not sps_triangle_enabled_flag. Use the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed.
  • the identification information includes the first identification, the second identification, and the first One or more of the three signs.
  • the present application does not exclude that before the third logo is parsed, other logos may also be parsed.
  • the third identifier may be parsed when other identifiers are parsed as false.
  • the first logo may also be called cu_skip_flag[x0][y0], and the first logo may be named as above in standard text or code.
  • the second logo may also be called skip_mmvd_flag[x0][y0] or mmvd_flag[x0][y0] or merge_mmvd_flag[x0][y0], and the second logo may adopt one of the above-mentioned names in the standard text or code.
  • the third logo may also be called skip_triangle_flag[x0][y0] or triangle_flag[x0][y0] or merge_triangle_flag[x0][y0]. In the standard text or code, the third logo may use one of the above names.
  • the first value may be 1 (or true), and the second value may be 0 (or false). It should be understood that the first value and the second value may be exchanged, for example: the first value may be 0 (or false), and the second value may be 1 (or ture).
  • the triangle prediction unit (triangle PU) logo is decoded only when the MMVD is not decoded, in other words, when the MMVD is decoded, There is no need to parse the third identifier from the code stream (that is, no coding and decoding of the triangle prediction unit identifier), and the inter prediction of the current image block to be processed can be directly performed according to the MMVD method; to a certain extent, it can be avoided MMVD is compatible with triangle PUs for redundancy, thereby reducing the use of coding resources and reducing the bit overhead of the code stream.
  • using the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed includes:
  • the third identifier is the first value, it is allowed to perform inter prediction on the current image block to be processed according to the triangular prediction unit mode; or,
  • the third identifier is the second value, it is allowed to perform inter prediction on the current image block to be processed according to the skip mode.
  • the skip mode is used for inter prediction.
  • other modes in skip mode can also be used to perform inter-frame prediction on the current image block to be processed, which is not limited in this application.
  • using the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed includes: when the second identification indicates a
  • inter prediction is performed on the current image block to be processed according to the MMVD mode.
  • the operation of decoding the third identifier is no longer performed.
  • the second identifier indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the second identifier indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the current prediction image block is inter predicted according to the MMVD mode.
  • the second identifier indicates that the MMVD method is used for the inter prediction of the current image block to be processed
  • the relevant identifier of the triangle PU method is not performed, and the MMVD method in the skip mode is directly used.
  • the current image block to be processed performs inter prediction.
  • the third logo may not be decoded, and accordingly, the encoding end does not need to encode the third logo
  • the Triangle PU logo is decoded, to a certain extent, it can avoid MMVD and triangle compatible PU redundancy, thereby reducing the use of coding resources and reducing the problem of bit overhead of the code stream.
  • the method further includes:
  • the first identifier indicates that the inter prediction for the current image block to be processed does not adopt (for example, not allowed to use) skip mode
  • parse the fourth identifier from the code stream when the fourth identifier Indicating that when the inter prediction for the current image block to be processed adopts the fusion mode, the fifth identifier is parsed from the code stream; when the fifth identifier indicates that the inter prediction for the current image block to be processed is not adopted
  • the fusion motion vector difference MMVD method for example: in the fusion mode, the inter prediction of the current image block to be processed does not use the fusion motion vector difference MMVD method
  • the sixth identifier is parsed from the code stream; wherein,
  • the sixth identifier is a third value, it indicates that inter prediction of the current image block to be processed allows the use of a triangular prediction unit (for example, in the fusion mode, inter frame of the current image block to be processed The prediction is allowed to use the triangular prediction unit method); when the sixth flag is the fourth value, it
  • the sixth identifier may be parsed when other identifiers are parsed as false.
  • the identification information includes the first identification, the fourth identification, One or more of the fifth identifier and the sixth identifier.
  • the fourth logo may be called merge_flag[x0][y0], and the fourth logo may adopt the above naming in standard text or code.
  • the fifth logo may also be called merge_mmvd_flag[x0][y0] or mmvd_flag[x0][y0], and the fifth logo may adopt one of the above naming in the standard text or code.
  • the sixth logo may also be called merge_triangle_flag[x0][y0] or triangle_flag[x0][y0], and the sixth logo may adopt one of the above naming in standard text or codes.
  • the third value and the first value are only for convenience of distinction, and are not limited in this application.
  • both the first value and the third value can be 1.
  • the fourth numerical value and the second numerical value are only for convenience of distinction, for example, both the second numerical value and the fourth numerical value may be 0.
  • the first value and the second value may be exchanged, for example: the first value may be 0, and the second value may be 1.
  • the third value and the fourth value can be exchanged, for example: the third value can be 0, and the fourth value can be 1.
  • the second and fifth logos here can be named the same way, such as mmvd_flag[x0][y0] or merge_mmvd_flag[x0][y0] .
  • the third logo and the sixth logo can also be named in the same way, for example, they are both called triangle_flag[x0][y0] or merge_triangle_flag[x0][y0].
  • the Triangle PU logo is decoded only when the MMVD is not decoded. To a certain extent, the compatibility and redundancy of MMVD and triangle PU can be avoided, thereby reducing the codec The use of resources reduces the bit overhead of the code stream.
  • using the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed includes:
  • the sixth identifier is a third value, perform inter prediction on the current image block to be processed according to the triangular prediction unit mode; or,
  • the sixth identifier is a fourth value, perform inter prediction on the current image block to be processed according to the fusion mode.
  • the parsing the third identifier from the code stream includes:
  • the third identifier is parsed from the code stream.
  • using the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed includes:
  • the current prediction image block is inter predicted according to the MMVD mode in the fusion mode.
  • the fifth identifier indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the operation of decoding the sixth identifier is no longer performed.
  • the fifth indicator indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the fifth flag indicates that the MMVD mode is used for the inter prediction of the current image block to be processed, the current prediction image block is inter predicted according to the MMVD mode in the merge mode.
  • the fifth indicator indicates that the MMVD method is used for the inter-frame prediction of the current image block to be processed, it is no longer necessary to execute the relevant identifier of the parse triangle PU method, and the MMVD in the merge mode can be directly used Performing inter prediction on the current image block to be processed.
  • the Triangle PU logo may not be coded, and the Triangle PU logo may only be coded when the MMVD is decoded.
  • MMVD and triangle prediction unit (triangle PU) compatible redundancy can be avoided, thereby reducing the use of coding resources and reducing the bit overhead of the code stream.
  • parsing the sixth identifier from the code stream may include: when the current image block to be processed satisfies the condition that allows the inter prediction in the triangular prediction unit manner, from the Parse the sixth identifier in the code stream.
  • the conditions for allowing inter prediction in the triangular prediction unit manner may include at least one of the following:
  • the MMVD mode is decoded first and then the trianglePU mode is described.
  • the trianglePU mode may be decoded first and then the MMVD mode. Examples are as follows:
  • a video image decoding method including:
  • the MMVD mode is used for the inter prediction of the image block to be processed; when the second identifier is a second value, it indicates that the MMVD mode is not used for the inter prediction of the current image block to be processed.
  • the identification information includes the first identification, the second identification, and the first One or more of the three signs.
  • the inter prediction of the current image block to be processed is performed according to the MMVD mode
  • inter prediction is performed on the current image block to be processed according to the skip mode.
  • the fourth identifier is parsed from the code stream
  • the sixth identifier is parsed from the code stream
  • the fifth identifier when the fifth identifier is a third value, it indicates that MMVD is used for inter prediction of the current image block to be processed; when the sixth identifier is a fourth value, it indicates that the current to-be-processed The MMVD method is not used for inter prediction of image blocks. It should be noted that the sixth flag is not sps_triangle_enabled_flag.
  • the inter prediction of the current image block to be processed is performed according to the MMVD mode
  • the inter prediction of the current image block to be processed is performed according to the fusion mode.
  • an embodiment of the present application provides a video image decoding method, including:
  • Parsing the fourth identifier from the code stream when the fourth identifier indicates that inter prediction is performed for the current image block to be processed as the fusion mode, the fifth identifier is parsed from the code stream; when the fifth identifier indicates When performing inter-frame prediction on the current image block to be processed without using the fusion motion vector difference MMVD method (for example, in the fusion mode, performing inter-frame prediction on the current image block to be processed without using the fusion motion vector difference MMVD method) , Parsing the sixth identifier from the code stream; where, when the sixth identifier is the third value, it indicates that the inter prediction of the current image block to be processed adopts a triangular prediction unit method (for example, in the fusion mode Next, inter prediction for the current image block to be processed adopts a triangular prediction unit method); when the sixth identifier is a fourth value, it indicates that inter prediction for the current image block to be processed does not use triangular prediction Unit mode (for example, in the fusion mode, the inter prediction of the current
  • the triangle PU logo is decoded only when the MMVD is not decoded.
  • the sixth identifier (that is, without encoding and decoding the triangle PU symbol), can directly perform inter-frame prediction on the current image block to be processed according to the MMVD method, to a certain extent, avoiding the compatibility and redundancy of MMVD and triangle PU. Therefore, the use of coding resources can be reduced, and the bit overhead of the code stream can be reduced.
  • using the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed includes:
  • the current prediction image block is inter predicted according to the MMVD mode in the fusion mode.
  • parsing the sixth identifier from the code stream includes: when the current image block to be processed satisfies the condition that allows the inter-frame prediction using the triangular prediction unit, the code Parse the sixth identifier in the stream.
  • the method further includes: parsing the first identifier from the code stream;
  • the parsing the fourth identifier from the code stream includes:
  • the fourth identifier is parsed from the code stream.
  • an embodiment of the present application provides a video image encoding method, including:
  • the identification information includes a first identification
  • the identifier information further includes a second identifier
  • the identification information further includes a third identification
  • the third identifier is a first numerical value to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method (for example: performing an inter frame of the current image block to be processed in a skip mode The prediction uses the triangular prediction unit method); or, the third identifier is a second value to indicate that the inter prediction of the current image block to be processed does not use the triangular prediction unit method (for example, in skip mode (The inter-prediction of the current image block to be processed does not use the triangle prediction unit).
  • a method for the current image block to be processed may be selected in the process of determining or selecting a prediction mode suitable for the current image block to be processed
  • the prediction mode for inter prediction of the current image block to be processed is determined according to the rate-distortion cost criterion, for example, the prediction mode corresponding to the result with the lowest rate-distortion cost is to frame the current image block to be processed The prediction mode of inter prediction.
  • an embodiment of the present application provides a video image encoding method, including:
  • the third identifier is encoded into the code stream
  • the third identifier is a first numerical value to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method, or the third identifier is a second numerical value to indicate the current value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • an embodiment of the present application provides a video image encoding method, including:
  • the first identifier is used to indicate that the current image block to be processed adopts a skip mode for inter prediction
  • the value of the second identifier is used to indicate that inter prediction of the image block to be processed does not use the fusion motion vector difference MMVD method
  • the value of the third identifier is used to indicate the frame of the image block to be processed
  • the inter prediction uses the triangular prediction unit method; or
  • the first identifier is used to indicate that the current image block to be processed adopts a skip mode for inter-frame prediction;
  • the value is used to indicate that inter prediction for the image block to be processed does not use the fusion motion vector difference MMVD method;
  • the value of the third flag is used to indicate that the inter prediction for the image block to be processed does not use triangular prediction Unit method; or
  • the first identifier and the second identifier into the code stream, where the value of the first identifier is used to indicate that the current image block to be processed adopts a skip mode for inter prediction; the value of the second identifier is used to indicate The inter prediction of the image block to be processed adopts a fusion motion vector difference MMVD method.
  • the identification information when the identification information includes a second identification (when a second identification exists in the code stream), the second identification is located after the first identification in the code stream; or When the identification information further includes a third identification (when a third identification exists in the code stream), the third identification is located after the second identification in the code stream.
  • the identifier information when the first identifier indicates that the current image block to be processed does not use skip mode for inter prediction, the identifier information further includes a fourth identifier (that is, the fourth identifier is incorporated Stream);
  • the identifier information further includes a fifth identifier (that is, the fifth identifier is encoded into the code stream);
  • the identifier information further includes a sixth identifier (that is, the sixth identifier is encoded into the code stream);
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identifier information when the second identifier indicates that the MMVD mode is not used for inter prediction of the current image block to be processed, the identifier information further includes a third identifier, including:
  • the identification information also includes a third identification.
  • an embodiment of the present application provides a video image encoding method, including:
  • the identification information includes a fourth identification
  • the identifier information further includes a fifth identifier
  • the identification information further includes a sixth identification
  • the sixth identifier is a third numerical value to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method (for example: in the fusion mode, the current image block to be processed Inter prediction uses a triangular prediction unit method); or, the sixth identifier is a fourth numerical value to indicate that inter prediction for the current image block to be processed does not use the triangular prediction unit method.
  • an embodiment of the present application provides a video image encoding method, including:
  • the fifth identifier is encoded into the code stream
  • the sixth identifier is encoded into the code stream
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identification information when the identification information includes a fifth identification (the fifth identification exists in the code stream), the fifth identification is located after the fourth identification in the code stream; or, When the identification information further includes a sixth identification (when a sixth identification exists in the code stream), the sixth identification is located after the fifth identification in the code stream.
  • the identifier information when the fifth identifier indicates that the MMVD mode is not used for inter prediction of the current image block to be processed, the identifier information further includes a sixth identifier, including:
  • the identification information also includes a sixth identification.
  • the identification information further includes a first identification, which indicates that the current image block to be processed does not adopt the skip mode for inter prediction.
  • the first identification is located before the fourth identification.
  • an embodiment of the present application provides a video image decoding device, including several functional units for implementing any one of the methods of the first aspect.
  • the video image decoding device may include an entropy decoding unit and an inter prediction unit:
  • the entropy decoding unit is used to parse the first identifier from the code stream
  • the entropy decoding unit is also used to parse the second identifier from the code stream when the first identifier indicates that the current image block to be processed is inter-predicted in the skip mode;
  • the entropy decoding unit is further configured to parse the third identifier from the code stream when the second identifier indicates that inter prediction of the current image block to be processed does not use the fusion motion vector difference MMVD method;
  • the third identifier when the third identifier is the first value, it indicates that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; when the third identifier is the second value, it indicates that the current value The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • the inter prediction unit is configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes a first identification and a second One or more of the logo and the third logo.
  • the inter prediction unit is specifically configured to: when the third identifier is the first value, perform inter prediction on the current image block to be processed according to the triangular prediction unit manner; Or, when the third identifier is a second value, perform inter prediction on the current image block to be processed according to the skip mode.
  • the inter prediction unit is specifically configured to, when the second identifier indicates that the MPVD method is used for inter prediction of the current image block to be processed, to perform the current prediction on the MMVD method The image block to be processed performs inter prediction.
  • the entropy decoding unit is also used to:
  • the fourth identifier is parsed from the code stream
  • the fifth identifier is parsed from the code stream
  • the sixth identifier is parsed from the code stream
  • the sixth identifier when the sixth identifier is the third value, it indicates that the inter prediction of the current image block to be processed adopts the triangle prediction unit method; when the sixth identifier is the fourth value, it indicates that the current value The inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identification information includes the first identification, the fourth identification, One or more of the fifth identifier and the sixth identifier.
  • the inter prediction The mode is specifically used for:
  • the sixth identifier is a third value, perform inter prediction on the current image block to be processed according to the triangular prediction unit mode; or,
  • the sixth identifier is a fourth value, perform inter prediction on the current image block to be processed according to the fusion mode.
  • the entropy decoding unit when parsing the third identifier from the code stream, is specifically used to:
  • the third identifier is parsed from the code stream.
  • an embodiment of the present application provides a video image decoding device, including a plurality of functional units for implementing any method of the second aspect.
  • the video image decoding device may include an entropy decoding unit and an inter prediction unit:
  • Entropy decoding unit used to parse the fourth identifier from the code stream
  • the entropy decoding unit is also used to parse the fifth identifier from the code stream when the fourth identifier indicates that the current image block to be inter-frame predicted is used as the fusion mode; when the fifth identifier indicates When the current image block to be processed does not adopt the fusion motion vector difference MMVD method for inter-frame prediction, parse the sixth identifier from the code stream;
  • the sixth identifier when the sixth identifier is the third value, it indicates that the inter prediction of the current image block to be processed adopts the triangle prediction unit method; when the sixth identifier is the fourth value, it indicates that the current value The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • the inter prediction unit is configured to perform inter prediction on the current image block to be processed by using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes a fourth identification, a fifth identification, One or more of the sixth identification.
  • the inter prediction unit is specifically configured to, when the fifth identifier indicates that the MPVD method is used for inter prediction of the current image block to be processed, to perform the current prediction on the MMVD method The image block to be processed performs inter prediction.
  • the entropy decoding unit when parsing the sixth identifier from the code stream, is specifically used to:
  • the sixth identifier is parsed from the code stream.
  • the entropy decoding unit is also used to parse the first identifier from the code stream;
  • the entropy decoding unit when parsing the fourth identifier from the code stream, is specifically used to:
  • the fourth identifier is parsed from the code stream.
  • an embodiment of the present application provides a video image encoding device, including several functional units for implementing any method of the third aspect.
  • the video image encoding device may include:
  • the inter prediction unit is used to determine the prediction mode used for inter prediction of the current image block to be processed
  • the entropy coding unit is used to encode the identification information indicating the determined prediction mode into the code stream;
  • the identification information includes a first identification
  • the identifier information further includes a second identifier
  • the identifier information further includes a third identifier
  • the third identifier is a first numerical value to indicate that the current prediction image block is to be inter-frame predicted using a triangular prediction unit method; or, the third identifier is a second numerical value to indicate the current value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the inter prediction unit may target the current to be processed in the process of determining or selecting a prediction mode suitable for the current image block to be processed
  • a prediction mode suitable for the current image block to be processed One or more inter prediction modes of the image block, the prediction mode for inter prediction of the current image block to be processed is determined according to the rate-distortion cost criterion, for example, the prediction mode corresponding to the result with the lowest rate-distortion cost is selected as the current prediction The prediction mode for processing image blocks for inter prediction.
  • the identification information when the identification information includes a second identification, the second identification is located after the first identification in the code stream; or, when the identification information further includes a third identification During identification, the third identification is located after the second identification in the code stream.
  • the identifier information when the first identifier indicates that the current image block to be processed does not use skip mode for inter prediction, the identifier information further includes a fourth identifier;
  • the identifier information further includes a fifth identifier
  • the identifier information further includes a sixth identifier
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identifier information when the second identifier indicates that the MMVD mode is not used for inter prediction of the current image block to be processed, the identifier information further includes a third identifier, including:
  • the identification information also includes a third identification.
  • an embodiment of the present application provides a video image encoding device, including a plurality of functional units for implementing any method of the third aspect.
  • the video image encoding device may include:
  • the inter prediction unit is used to determine the prediction mode used for inter prediction of the current image block to be processed
  • the entropy coding unit encodes the identification information indicating the determined prediction mode into the code stream
  • the identification information includes a fourth identification
  • the identification information further includes a fifth identification
  • the identifier information further includes a sixth identifier
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identification information when the identification information includes a fifth identification, in the code stream, the fifth identification is located after the fourth identification; or, when the identification information further includes the sixth During identification, the sixth identification is located after the fifth identification in the code stream.
  • the identifier information when the fifth identifier indicates that the MMVD mode is not used for inter prediction of the current image block to be processed, the identifier information further includes a sixth identifier, including:
  • the identification information also includes a sixth identification.
  • the identification information further includes a first identification, which indicates that the current image block to be processed does not adopt the skip mode for inter prediction.
  • the first identification is located before the fourth identification.
  • an embodiment of the present application further provides a video image decoding method, including:
  • Parse the seventh flag from the code stream (for example, mh_intra_flag[x0][y0]); when the seventh flag indicates that the intra-frame inter prediction mode (that is, Combined merge/intra prediction) is not used for the current image block to be processed , Parsing the eighth flag (for example, merge_triangle_flag[x0][y0]) from the code stream; wherein, when the eighth flag is the first value, it indicates to perform inter prediction on the current image block to be processed A triangular prediction unit method is used; when the eighth identifier is the second value, it indicates that the inter prediction of the current image block to be processed does not use the triangular prediction unit method; the identifier information in the code stream indicates In the inter prediction mode, inter prediction is performed on the current image block to be processed, and the identification information includes one or more of the seventh identifier and the eighth identifier.
  • sps_triangle_enabled_flag indicates whether the sequence of the current image block to be processed is allowed to use the triangle prediction unit method. In other words, whether the sequence parameter set level allows the triangle prediction unit method.
  • the triangle prediction unit (triangle PU) flag is decoded only when the intra-frame inter prediction mode is not used.
  • the intra-frame inter prediction mode when the intra-frame inter prediction mode is decoded, no The eighth logo needs to be parsed from the code stream (that is, without coding and decoding the triangle prediction unit logo), and the current image block to be processed can be inter-predicted directly according to the intra-frame inter prediction mode; to a certain extent
  • the above can avoid the problem of intra-frame inter prediction mode compatible with triangle and PU compatible redundancy, thereby reducing the use of coding resources and bit stream bit overhead.
  • an embodiment of the present application provides a video image decoding device, including:
  • the entropy decoding unit is used to parse the seventh identifier from the code stream; when the seventh identifier indicates that the intra-frame prediction mode is not used for the current image block to be processed, parse the eighth identifier from the code stream; , When the eighth flag is the first value, it indicates that the inter prediction of the current image block to be processed is allowed to adopt the triangle prediction unit method; when the eighth flag is the second value, it indicates that the current Triangular prediction unit mode is not allowed for inter prediction of image blocks to be processed;
  • An inter prediction unit configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes the seventh identification and the One or more of the eighth logo.
  • an embodiment of the present application provides a video image decoding method, including:
  • the eighth flag (merge_triangle_flag[x0][y0]) is parsed from the code stream, and the The conditions for inter prediction in the triangular prediction unit manner include at least: the seventh flag indicates that the intra prediction mode is not used for the current image block to be processed;
  • the eighth mark when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed is allowed to adopt the triangle prediction unit method; when the eighth mark is the second value, it indicates that the The current prediction of the image block to be processed is not allowed to use the triangle prediction unit method;
  • the identification information Adopting the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed, the identification information including one of the seventh identification and the eighth identification Multiple.
  • the triangle prediction unit (triangle PU) flag is decoded only when the intra-frame inter prediction mode is not used.
  • the The eighth logo needs to be parsed from the code stream (that is, without coding and decoding the triangle prediction unit logo), and the current image block to be processed can be inter-predicted directly according to the intra-frame inter prediction mode; to a certain extent
  • the above can avoid the problem of intra-frame inter prediction mode compatible with triangle and PU compatible redundancy, thereby reducing the use of coding resources and bit stream bit overhead.
  • an embodiment of the present application provides a video image decoding device, including:
  • the entropy decoding unit is used to parse the seventh identifier from the code stream; when the current image block to be processed meets the conditions that allow the inter prediction using the triangular prediction unit, the eighth identifier is parsed from the code stream ,
  • the condition that allows the inter prediction in the triangular prediction unit mode is at least included: the seventh flag indicates that the intra prediction mode is not used for the current image block to be processed;
  • the eighth mark when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed is allowed to adopt the triangle prediction unit method; when the eighth mark is the second value, it indicates that the The current prediction of the image block to be processed is not allowed to use the triangle prediction unit method;
  • An inter prediction unit configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes the seventh identification and the One or more of the eighth logo.
  • an embodiment of the present application provides a video encoder that is used to encode image blocks.
  • the video encoder may implement the method described in the third aspect.
  • the video encoder includes the device described in any of the seventh aspects.
  • the video encoder may implement any of the methods described in the fourth aspect.
  • the video encoder includes the device described in any of the eighth aspects.
  • an embodiment of the present application provides a video decoder that is used to decode an image block from a code stream.
  • the video decoder may implement any of the methods described in the first aspect of the design.
  • the video decoder includes the device described in any of the fifth aspects.
  • the video decoder may implement any of the methods described in the second aspect.
  • the video decoder includes the device according to any design of the sixth aspect.
  • the video decoder may implement any of the methods described in the ninth aspect.
  • the video decoder includes the device according to any design of the tenth aspect.
  • the video decoder may implement any of the methods described in the eleventh aspect.
  • the video decoder includes the device described in any of the twelfth aspects.
  • an embodiment of the present application provides an apparatus for decoding video data.
  • the apparatus includes:
  • Memory used to store video data in the form of code stream
  • the video decoder is used to parse the first identifier from the code stream; when the first identifier indicates that the skip mode is used for the inter prediction of the current image block to be processed, the second identifier is parsed from the code stream; The second identifier indicates that when performing inter prediction on the current image block to be processed without adopting the fusion motion vector difference MMVD method, the third identifier is parsed from the code stream; wherein, when the third identifier is the first When it is a numerical value, it indicates that the inter prediction of the current image block to be processed is allowed to adopt a triangular prediction unit; when the third flag is a second value, it indicates that the inter prediction of the current image block is not allowed A triangular prediction unit method is adopted; the inter prediction mode indicated by the identification information in the code stream is used to perform inter prediction on the current image block to be processed, and the identification information includes the first identification, the third One or more of the second logo and the third logo.
  • an embodiment of the present application provides another device for decoding video data.
  • the device includes:
  • Memory used to store video data in the form of code stream
  • the video decoder is used to parse the first identifier from the code stream; when the first identifier indicates that inter prediction is not performed for the current image block to be processed, the fourth identifier is parsed from the code stream; When the fourth identifier indicates that the inter prediction for the current image block to be processed is adopted as the fusion mode, the fifth identifier is parsed from the code stream; when the fifth identifier indicates that the current image block to be processed When inter prediction does not use the MMVD fusion motion vector difference method, the sixth identifier is parsed from the code stream; wherein, when the sixth identifier is the third value, it indicates that the current image block to be processed is inter-framed The prediction is allowed to use the triangular prediction unit method; when the sixth identifier is the fourth value, it indicates that the inter prediction of the current image block to be processed is not allowed to adopt the triangular prediction unit method; the identification information in the code stream is used
  • the indicated inter prediction mode performs inter prediction on the current image block to be processed, and the identification information
  • an embodiment of the present application provides an apparatus for encoding video data.
  • the apparatus includes:
  • a memory for storing video data, the video data including one or more image blocks
  • the video encoder is used to determine the prediction mode used for the inter prediction of the current image block to be processed; the identification information indicating the determined prediction mode is encoded into the code stream; wherein, the identification information includes the first identification; When the first identifier indicates that the current image block to be processed adopts the skip mode for inter prediction, the identification information further includes a second identification; when the second identification indicates the current image block to be processed When inter-frame prediction is not performed using the fusion motion vector difference MMVD method, the identification information further includes a third identification; the third identification is a first value to indicate the current image block to be processed in the skip mode Triangular prediction unit mode is allowed for inter prediction; the third identifier is a second value to indicate that inter prediction of the current image block to be processed in the skip mode does not allow the triangular prediction unit mode.
  • an embodiment of the present application provides another device for encoding video data.
  • the device includes:
  • a memory for storing video data, the video data including one or more image blocks
  • the video encoder is used to determine the prediction mode used for the inter prediction of the current image block to be processed; the identification information indicating the determined prediction mode is encoded into the code stream; wherein, the identification information includes the first identification; When the first identifier indicates that the current image block to be processed does not use skip mode for inter prediction, the identification information further includes a fourth identifier; when the fourth identifier indicates the current image block to be processed When the fusion mode is used for inter prediction, the identification information further includes a fifth identifier; when the fifth identifier indicates that inter prediction is not performed for the current image block to be processed, the fusion motion vector difference MMVD method is not used.
  • the identification information further includes a sixth identification; wherein the sixth identification is a third value to indicate that inter prediction of the current image block to be processed is allowed to adopt a triangular prediction unit method; or, the sixth identification is The fourth value is to indicate that the inter prediction of the current image block to be processed does not allow the triangular prediction unit mode.
  • the first identification is located before the fourth identification.
  • an embodiment of the present application provides an encoding device, including: a nonvolatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform the third aspect or the first Part or all of the steps in any of the four aspects.
  • an embodiment of the present application provides a decoding device, including: a nonvolatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform the first aspect or the first Part or all of the steps of any method of the second aspect or the ninth aspect or the eleventh aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores program code, where the program code includes the first to fourth aspects, the first Instruction of part or all steps of any method of the ninth aspect and the eleventh aspect.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to execute the first aspect to the fourth aspect, the ninth aspect, and the eleventh aspect Part or all of the steps of any method.
  • the codec determines to use MMVD
  • the Triangle PU logo may not be coded, only if the codec determines that MMVD is not used, Only encode and decode the triangle PU logo, can avoid MMVD and triangle compatible PU redundancy, thereby reducing the use of coding resources and reducing the bit stream bit overhead.
  • FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 for implementing embodiments of the present application;
  • FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present application
  • FIG. 2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present application
  • FIG. 3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present application
  • FIG. 4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present application
  • FIG. 5 is a block diagram of another example of an encoding device or a decoding device used to implement embodiments of the present application;
  • FIG. 6 is a schematic diagram of space and time domain candidate blocks for implementing embodiments of the present application.
  • FIG. 7 is a schematic diagram of a division method of a triangular prediction unit used to implement an embodiment of the present application.
  • FIG. 8 is a schematic diagram of weighted calculation for implementing the embodiment of the present application.
  • FIG. 9A is a schematic diagram of an MMVD search point used to implement an embodiment of the present application.
  • 9B is a schematic diagram of an MMVD search process used to implement an embodiment of the present application.
  • FIG. 10A is a schematic flowchart of a video image decoding method for implementing an embodiment of the present application
  • FIG. 10B is a schematic flowchart of a video image encoding method for implementing an embodiment of the present application
  • 11A is a schematic flowchart of another video image decoding method for implementing an embodiment of the present application.
  • 11B is a schematic flowchart of another video image encoding method for implementing an embodiment of the present application.
  • FIG. 12 is a structural block diagram of a video image decoding device 1200 for implementing an embodiment of the present application
  • FIG. 13 is a structural block diagram of a video image encoding device 1300 for implementing an embodiment of the present application.
  • the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include one step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
  • Video coding as used herein means video coding or video decoding.
  • Video encoding is performed on the source side and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the "encoding" of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • the video sequence includes a series of pictures, which are further divided into slices, and the slices are further divided into blocks.
  • Video encoding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • macroblock macroblock, MB
  • partitions multiple prediction blocks (partitions) that can be used for predictive coding.
  • HEVC high efficiency video coding
  • the basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted.
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • a variety of block units are divided, and a new tree-based structure is used for description.
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CU can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and coding the coded image.
  • PU can correspond to the prediction block and is the basic unit of predictive coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
  • PU or TU they all belong to the concept of block (or image block) in essence.
  • the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
  • a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
  • Each CU can be further split into one, two, or four PUs according to the PU split type.
  • the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
  • the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
  • quad-tree and binary-tree (Quad-tree and binary tree, QTBT) split frames are used to split the coding blocks.
  • the CU may have a square or rectangular shape.
  • the image block to be encoded in the current encoded image may be referred to as the current block.
  • the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
  • the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
  • further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
  • Video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of the video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
  • the encoder side usually processes the video at the block (video block) level, that is, encodes the video.
  • the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra prediction and inter prediction) and/or reconstruction for processing, ie, encoding subsequent blocks.
  • FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
  • Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
  • FIG. 1A depicts the source device 12 and the destination device 14 as separate devices
  • device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie, the source device 12 or the corresponding Functionality of the destination device 14 or the corresponding functionality.
  • the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
  • a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20.
  • the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • Picture source 16 which can include or can be any kind of picture capture device, for example for capturing real-world pictures, and/or any kind of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (for example, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
  • the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
  • the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
  • the external picture generation device for example It is an external computer graphics processor, computer or server.
  • the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of pixels (picture elements).
  • the pixels in the array can also be called sampling points.
  • the number of sampling points of the array or picture in the horizontal and vertical directions (or axis) defines the size and/or resolution of the picture.
  • three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
  • the picture includes corresponding red, green, and blue sampling arrays.
  • each pixel is usually expressed in a brightness/chroma format or color space.
  • YUV format it includes the brightness component indicated by Y (sometimes also indicated by L) and the two indicated by U and V.
  • the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
  • the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color grading, or denoising.
  • the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 in a related prediction mode (such as the prediction mode in various embodiments herein), thereby
  • the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5).
  • the encoder 20 may be used to implement various embodiments described below to implement the application of the chroma block prediction method described in this application on the encoding side.
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
  • the other device may be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network.
  • the link 13 is, for example, a direct wired or wireless connection.
  • the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private and public networks, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
  • the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 4 or FIG. 5 Structural details).
  • the decoder 30 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present application on the decoding side.
  • the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to post-process the image data 33 Transmitted to the display device 34.
  • the display device 34 is used to receive post-processed picture data 33 to display pictures to, for example, a user or a viewer.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital Light Processor (DLP) or other displays of any kind.
  • FIG. 1A depicts source device 12 and destination device 14 as separate devices
  • device embodiments may also include the functionality of source device 12 and destination device 14 or both, ie source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
  • the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
  • Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • handheld or stationary devices such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate array
  • the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the techniques of the present disclosure . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the present application may be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video decoding).
  • data can be retrieved from local storage, streamed on the network, and so on.
  • the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
  • FIG. 1B is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
  • the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
  • the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
  • the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may be implemented by the processing unit 46.
  • the processing unit 46 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the video decoding system 40 may also include an optional processor 43, which may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, etc., and the processor 43 may be implemented by general-purpose software, an operating system, or the like.
  • the memory 44 may be any type of memory, for example, volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • non-volatile Memory for example, flash memory, etc.
  • the memory 44 may be implemented by cache memory.
  • the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
  • the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers and the like.
  • the encoder 20 implemented by a logic circuit may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein.
  • Logic circuits can be used to perform the various operations discussed herein.
  • decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
  • the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data that defines the code segmentation).
  • the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
  • encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
  • the video image encoding method described in the embodiment of the present application occurs at the encoder 20, and the video image decoding method described in the embodiment of the present application occurs at the decoder 30.
  • the encoder 20 and the decoding in the embodiment of the present application may be a codec corresponding to a video standard protocol such as H.263, H.264, HEVV, MPEG-2, MPEG-4, VP8, VP9, or a next-generation video standard protocol (such as H.266, etc.).
  • FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
  • the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, and
  • the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form the backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path for the decoder (see decoder 30 in FIG. 3).
  • the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, forming a picture in a picture sequence of a video or a video sequence.
  • the image block 203 may also be referred to as a current picture block or a picture block to be coded
  • the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, other pictures such as the same video sequence That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
  • An embodiment of the encoder 20 may include a division unit (not shown in FIG. 2) for dividing the picture 201 into a plurality of blocks such as an image block 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and corresponding grid that defines the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
  • image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
  • the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of a black and white picture 201) or three sampling arrays (for example, one brightness array and two chroma arrays in the case of a color picture) or An array of any other number and/or category depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (further details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
  • the transform coefficient 207 may also be referred to as a transform residual coefficient, and represents a residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
  • the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost and so on.
  • a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, the encoder can be The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting the quantization parameter (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
  • QP quantization parameter
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • a suitable quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
  • larger quantization parameters may correspond to coarse quantization (larger quantization step size)
  • the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using fixed-point approximation that includes equations for division. Additional scaling factors can be introduced for quantization and inverse quantization to recover the norm of the residual block that may be modified due to the scale used in the fixed-point approximation of the equations for quantization step size and quantization parameter.
  • the scale of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
  • the inverse quantized coefficient 211 may also be referred to as the inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
  • the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, an inverse discrete cosine transform (DCT) or an inverse discrete sine transform (DST) in the sample domain
  • the inverse transform block 213 is obtained.
  • the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
  • the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
  • a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
  • the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only for storing the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
  • the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as the filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
  • Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy coding unit outputs after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access (DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access
  • the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode eg, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • An embodiment of the mode selection unit 262 may be used to select a prediction mode (eg, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
  • the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria .
  • RDO rate distortion optimization
  • the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
  • the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
  • the intra prediction mode set may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
  • non-directional modes such as DC (or mean) mode and planar mode
  • directional modes as defined in the developing H.266.
  • the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DBP 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only used A part of the reference picture, for example a search window area around the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied,
  • the set of inter prediction modes may include, for example, a skip mode and a merge mode.
  • the set of inter prediction modes may include a triangle prediction unit (triangle prediction unit, Triangle PU) mode based on skip in this embodiment of the present application, or a triangle mode based on merge PU mode, or a fusion motion vector difference based on skip (merge with motion vector difference (MMVD) mode, or merge-based MMVD mode.
  • intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
  • the embodiments of the present application may also apply skip mode and/or direct mode.
  • the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) partitioning, or any combination thereof, and for performing predictions for each of block partitions or sub-blocks, for example, where mode selection includes selecting the tree structure of the divided image block 203 and selecting applications The prediction mode for each of the block partitions or sub-blocks.
  • QT quad-tree
  • BT binary-tree
  • TT triple-tree
  • the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
  • the motion estimation unit is used to receive or acquire a picture image block 203 (current picture image block 203 of the current picture 201) and a decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
  • the reconstructed block of the previously decoded picture 231 is used for motion estimation.
  • the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of or form a sequence of pictures that form the video sequence.
  • the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide a reference picture and/or provide a reference to a motion estimation unit (not shown in FIG. 2)
  • the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called motion vector (MV).
  • the motion compensation unit is used to acquire inter prediction parameters and perform inter prediction based on or using inter prediction parameters to obtain inter prediction blocks 245.
  • the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
  • the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
  • the above inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes inter prediction parameters (such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions).
  • inter prediction parameters such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions.
  • the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
  • the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
  • the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
  • Embodiments of the encoder 20 may be used to select an intra-prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203) or a minimum code rate distortion.
  • a minimum residual eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
  • a minimum code rate distortion eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
  • the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
  • the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes intra-prediction parameters (such as an intra-prediction mode selected for the current block prediction after traversing multiple intra-prediction modes) Instructions).
  • the intra prediction parameters may not be carried in the syntax element.
  • the decoding terminal 30 may directly use the default prediction mode for decoding.
  • the entropy coding unit 270 is used to encode an entropy coding algorithm or scheme (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval entropy (probability interval entropy, PIPE) encoding or other entropy Encoding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
  • VLC variable length coding
  • CABAC context adaptive binary arithmetic
  • SBAC syntax-based context-adaptive binary arithmetic coding
  • PIPE probability
  • the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • video encoder 20 may be used to encode video streams.
  • the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the video image encoding method described in the embodiments below.
  • the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
  • the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
  • encoded picture data eg, encoded bitstream
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform a decoding pass that is generally reciprocal to the encoding pass described with reference to video encoder 20 of FIG. 2.
  • the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
  • the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 can be functionally the same as the inverse quantization unit 110
  • the inverse transform processing unit 312 can be functionally the same as the inverse transform processing unit 212
  • the reconstruction unit 314 can be functionally the same as the reconstruction unit 214
  • the buffer 316 can be functionally
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
  • the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture. Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter prediction unit 344 eg, motion compensation unit
  • Other syntax elements generate a prediction block 365 for the video block of the current video slice.
  • a prediction block may be generated from a reference picture in a reference picture list.
  • the video decoder 30 may construct the reference frame lists: list 0 and list 1 using default construction techniques based on the reference pictures stored in the DPB 330.
  • the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (eg, intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
  • the prediction mode eg, intra or inter prediction
  • the inter prediction slice type For example, B slice, P slice, or GPB slice
  • the syntax elements received by the video decoder 30 from the bitstream include an adaptive parameter set (adaptive parameter set, APS), a sequence parameter set (SPS), and a picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
  • an adaptive parameter set adaptive parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients, so as to generate a residual block in the pixel domain.
  • an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
  • the reconstruction unit 314 (for example, the summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example, by adding The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
  • the loop filter unit 320 (during the encoding loop or after the encoding loop) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • video decoder 30 may be used to decode the compressed bitstream.
  • the decoder 30 may generate the output video stream without the loop filter unit 320.
  • the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the video image decoding method described in the embodiments below.
  • video decoder 30 may be used to decode the encoded video bitstream.
  • the video decoder 30 may generate an output video stream without being processed by the filter 320; or, for certain image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and in the case of lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
  • the inter prediction unit and the intra prediction unit may be selectively enabled.
  • the processing results for a certain link can be further processed and then output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the results of the corresponding link are further clipped or shift shifted.
  • the motion vector of the control point of the current image block derived from the motion vector of the adjacent affine coding block, or the motion vector of the sub-block of the current image block derived can be further processed, and this application does not do this limited.
  • the value range of the motion vector is constrained to be within a certain bit width. Assuming that the allowed bit width of the motion vector is bitDepth, the range of the motion vector is -2 ⁇ (bitDepth-1) ⁇ 2 ⁇ (bitDepth-1)-1, where the " ⁇ " symbol indicates a power. If bitDepth is 16, the value ranges from -32768 to 32767. If bitDepth is 18, the value ranges from -131072 to 131071.
  • the values of the motion vectors are constrained so that the maximum difference between the integer parts of the four 4x4 sub-blocks MV does not exceed N pixels, for example no more than one pixel.
  • FIG. 4 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
  • the video coding apparatus 400 is suitable for implementing the embodiments described herein.
  • the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1A) or a video encoder (eg, encoder 20 of FIG. 1A).
  • the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
  • the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor for processing data, a logic unit or a central processing unit (CPU) 430, and a transmitter unit for transmitting data (Tx) 440 and exit port 450, and a memory 460 for storing data.
  • the receiving unit 420 may also be called a receiver 420 or a receiver unit 420.
  • the transmitter unit 440 may also be simply referred to as the transmitter 440.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
  • the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and storing instructions and data read during the execution of the programs.
  • the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
  • FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
  • the device 500 can implement the technology of the present application.
  • FIG. 5 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
  • the memory of the decoding device stores program codes, and the processor can call the program codes stored in the memory to perform various video image encoding or decoding methods described in this application. In order to avoid repetition, they will not be described in detail here.
  • the processor 510 may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), dedicated integrated Circuit (ASIC), ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
  • the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to perform the video encoding or decoding method described in this application (in particular, the video image encoding or decoding method described in this application) .
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application that performs the video encoding or decoding method described in this application (referred to as a video coding application for short).
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clear explanation, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may also include one or more output devices, such as a display 570.
  • the display 570 may be a tactile display that combines the display with a tactile unit that operably senses touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • the motion information of the coded blocks adjacent to the current block in the spatial or temporal domain is used to construct a candidate motion vector list
  • the candidate motion information with the minimum rate distortion cost of the candidate motion vector list is used as the motion vector prediction value of the current block ( motion vector predictor (MVP)
  • MVP motion vector predictor
  • the index value of the optimal candidate motion information position in the candidate motion vector list for example, recorded as merge index, the same below
  • the position of the neighboring block and its traversal order are pre-defined.
  • the rate-distortion cost is calculated by formula (1), where J represents the rate-distortion cost RD Cost, and SAD is the sum of absolute errors between the predicted pixel value and the original pixel value obtained after motion estimation using candidate motion vector prediction values (sum of absolute differences, SAD), R represents the code rate, ⁇ represents the Lagrangian multiplier.
  • the encoding end passes the index value of the selected motion vector prediction value in the candidate motion vector list to the decoding end. Further, a motion search is performed in the MVP-centered neighborhood to obtain the actual motion vector of the current block, and the encoding end passes the difference (motion residual) between the MVP and the actual motion vector to the decoding end.
  • the candidate motion information of the spatial and temporal domains of the current block is shown in FIG. 6.
  • the candidate motion information of the spatial domain is from five spatially adjacent blocks (A0, A1, B0, B1, and B2). See FIG. 6. Not available (the neighboring block does not exist or the neighboring block is not encoded or the prediction mode adopted by the neighboring block is not an inter prediction mode), the motion information of the neighboring block is not added to the candidate motion vector list.
  • the time-domain candidate motion information of the current block is obtained by scaling the MV of the corresponding position block in the reference frame according to the picture order count (POC) of the reference frame and the current frame. First, determine whether the block at the T position in the reference frame is available. If not, select the block at the C position in the reference frame.
  • POC picture order count
  • the position and traversal order of neighboring blocks in merge mode are also predefined, and the position and traversal order of neighboring blocks may be different in different modes.
  • Skip is a special mode of merge. The difference is that there is no residual during transmission, and only the fusion candidate index (merge index) is passed.
  • the merge index is used to indicate the best or target candidate motion information in the fusion candidate motion information list.
  • the current block is divided into two triangular prediction units, and each triangular prediction unit individually selects a motion vector and a reference frame index from a unidirectional prediction candidate list. Then one prediction value is obtained for each of the two triangular prediction units. Then, the pixels included in the hypotenuse region are adaptively weighted to obtain a predicted value. Then, the entire current block is transformed and quantized.
  • the triangular prediction unit method is generally only applicable to skip mode or merge mode. (1) in FIG. 7 is a division method of upper left and lower right (that is, division from upper left to lower right), and (2) in FIG. 7 is a division method of upper right and lower left (that is, division from upper right to lower left).
  • the unidirectional prediction candidate list in the triangular prediction unit mode may generally include 5 candidate prediction motion vectors. These candidate prediction motion vectors are obtained as the 7 neighboring neighboring blocks in FIG. 6 (5 neighboring blocks in the spatial domain and 2 corresponding blocks in the time domain). By searching for the motion information of 7 neighboring blocks and putting them into the unidirectional prediction candidate list in order, for example, the order may be the bidirectional prediction motion vector of L0, the bidirectional prediction motion vector of L1, and the average of the motion vectors of L0 and L1. If the number of candidates is less than 5, the complementary zero motion vector 0 is added to the unidirectional prediction candidate list. During encoding, the unidirectional prediction candidate list is obtained in the above manner.
  • forward prediction motion information in the unidirectional prediction candidate list is used to predict pixel prediction values of one triangular PU
  • backward prediction motion information is used to predict pixel prediction values of another triangular PU.
  • the encoder selects the best motion vector through traversal. For example, you can ⁇ m,i,j ⁇ as follows:
  • the first m of ⁇ m,i,j ⁇ indicates the division mode from the upper left to the lower right or the division mode from the lower left to the upper right.
  • the second bit represents forward motion information of the i-th candidate prediction motion vector for the first triangular PU
  • the third bit represents backward motion information in the j-th candidate prediction motion vector for the second triangular PU.
  • the adaptive weighting process based on the prediction value of the pixels included in the hypotenuse region can be seen in FIG. 8.
  • an adaptive weighting process is performed on the pixels included in the hypotenuse region to obtain the prediction value of the final current block.
  • the predicted value of the pixel at position 2 is P 1 represents the predicted value of the pixel in the upper right region in FIG. 8, and P 2 represents the predicted value of the pixel in the lower left region in FIG. 8.
  • the first set of weighting parameters ⁇ 7/8, 6/8, 4/8, 2/8, 1/8 ⁇ and ⁇ 7/8, 4/8, 1/8 ⁇ are used for brightness and chromaticity points, respectively;
  • the second set of weighting parameters ⁇ 7/8, 6/8, 5/8, 4/8, 3/8, 2/8, 1/8 ⁇ and ⁇ 6/8, 4/8, 2/8 ⁇ respectively Used for brightness and chroma points.
  • One set of weighting parameters will be used for the coding and decoding of the current block.
  • the second set of weighting parameters is selected, otherwise the first set of weighting parameters is used.
  • MMVD uses merge candidates.
  • One or more candidate motion vectors are selected in the merge candidate motion vector list, and then the motion vector (MV) expansion expression is performed based on the candidate motion vectors.
  • the extended expression of MV includes the starting point of MV, movement step length and movement direction.
  • the selected candidate motion vector is the default merge type (such as MRG_TYPE_DEFAULT_N).
  • the selected candidate motion vector is the starting point of the MV, in other words, the selected candidate motion vector is used to determine the initial position of the MV.
  • the basic candidate index indicates which candidate motion vector in the candidate motion vector list is selected as the optimal candidate motion vector.
  • the step IDX (Distance IDX) represents the offset distance information of the motion vector.
  • the value of the step size identifier represents the distance offset from the initial position (for example, the preset distance), and the definition of the preset distance is shown in Table 2.
  • the direction ID indicates the direction based on the initial position motion vector difference (MVD).
  • the direction indicator can include four cases in total, and the specific definitions are shown in Table 3.
  • the codec of the MMVD logo is located after the skip and merge logos. If the skip or merge flag is true, you need to encode and decode the MMVD flag. For example, if the skip or merge flag is 1, and the MMVD flag is 1, then other related flags corresponding to the MMVD need to be coded.
  • Intra-inter hybrid mode (combined inter-picture merge and intra-picture prediction, CIIP) combines Intra prediction and a merge prediction.
  • the merge mode is allowed for the inter prediction of the current image block, an identification bit is introduced, and when this identification bit is 1, it indicates that one of the intra modes is selected from the intra candidate list.
  • the candidates in the intra-candidate list are derived from four intra-prediction modes, namely direct current mode (DC mode), plane (PLANAR) mode, horizontal mode, and vertical prediction mode.
  • DC mode direct current mode
  • PLANAR plane
  • the length of the intra-candidate list can be set to 3 or 4.
  • the width of the current image block is greater than twice the height, the horizontal pattern is excluded from the intra candidate list.
  • the vertical mode is excluded from the intra-candidate list.
  • Select an intra prediction mode from the intra candidate list according to the intra mode index perform intra prediction on the current block based on the selected intra prediction mode to obtain the intra prediction block of the current block, and from the candidate according to the merge index
  • the candidate motion information determined in the motion information list performs inter prediction on the current block to obtain the inter prediction block of the current block, and weights and averages the intra prediction block and the inter prediction block to obtain the current block of the Intra-inter mixed mode. Prediction block.
  • At least one refers to one or more, and “multiple” refers to two or more than two.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • MMVD and triangle PU methods are introduced for inter-frame prediction.
  • the inter prediction mode used in the current block is merge or skip mode
  • both the MMVD and triangle PU logos need to be encoded and decoded, but in fact, when the MMVD method is adopted, it will not At the same time, the Triangle PU method is adopted, that is, there is no case where the MMVD flag is true and the triangle PU flag is true. Therefore, in this case, it is redundant to encode and decode both MMVD and Triangle PU flags, which results in a waste of codec resources and increases the bit overhead of the code stream.
  • the embodiments of the present application provide a video image decoding and encoding method and device.
  • the triangle PU logo may not be encoded and decoded. Only after decoding the MMVD flag is false, the triangle PU flag is encoded and decoded, which can reduce the use of coding resources and reduce the bit overhead of the code stream to a certain extent.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition is not repeated here.
  • the first case is that the inter prediction uses the skip mode
  • the second case is that the inter prediction uses the merge mode.
  • the video image decoding method provided by the present application will be described in detail below from the decoding side with reference to the drawings. Specifically, it may be executed by the decoder 30, or implemented by the entropy decoding unit and the prediction processing unit in the decoder, or executed by the processor.
  • S1001a Parse the first identifier from the code stream.
  • the first flag is used to indicate whether skip mode is used for inter prediction of the current image to be processed.
  • the first flag is used to indicate whether skip mode is allowed for inter prediction of the current image to be processed.
  • the second flag is used to indicate whether the MMVD mode in skip mode is used for the inter prediction of the current image to be processed, or the second flag is used to indicate whether the MMVD mode is allowed for the inter prediction of the current image to be processed.
  • the second identifier in the standard text or code may be represented by the syntax elements skip_mmvd_flag[x0][y0] or mmvd_flag[x0][y0].
  • the third flag is used to indicate whether to use the triangle PU method for the inter-frame prediction of the current image to be processed, or the third flag is used to indicate whether the triangle PU method is allowed for the inter-frame prediction of the current image to be processed.
  • the third identifier when the third identifier is a first value, it indicates that the inter prediction of the current image block to be processed adopts the triangle PU method; when the third identifier is a second value, it indicates that the current pending The processing of image blocks for inter-frame prediction does not use the triangle PU method.
  • the first value is 1, and the second value is 0.
  • the third identification may be represented by the syntax elements skip_triangle_flag[x0][y0] or triangle_flag[x0][y0] or merge_triangle_flag[x0][y0].
  • S1004a Perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream.
  • the identification information includes one or more of the first identification, the second identification, and the third identification.
  • the third identifier indicates that the inter prediction for the current image block to be processed adopts the triangular prediction unit method, perform inter prediction on the current image block to be processed according to the triangular prediction unit method;
  • inter prediction of the current image block to be processed is performed according to the skip mode.
  • the decoding second The operation of the logo, MMVD mode is applied in skip mode, so the second logo is used to indicate whether the MMVD mode is used for inter prediction of the current image to be processed, or the second logo is used to indicate Whether to use the MMVD method for processing images for inter prediction.
  • the third flag is used to indicate whether to use the triangle PU method for the inter-frame prediction of the current image to be processed, or the second flag is used to indicate whether the triangle is used for the inter-frame prediction of the current image to be processed in skip mode the way.
  • the skip mode when it is determined that the skip mode is used to indicate that inter prediction of the current image block to be processed does not use the triangle PU method, it may be determined that the skip mode is used for inter prediction.
  • the third identifier when parsing the third identifier from the code stream, when it is determined that the current image block to be processed satisfies the condition that allows the triangle to be used for inter prediction, parsing from the code stream
  • the third identifier that is, when the second identifier indicates an MMVD mode that is not used for inter prediction of the current image block to be processed, and the current image block to be processed satisfies the permission of using the triangle PU
  • the condition of inter prediction is performed in a manner, the third identifier is parsed from the code stream.
  • Conditions can include at least one of the following:
  • triangle PU control bit is true (for example: sps_triangle_enabled_flag is true);
  • the operation of decoding the third identifier is no longer performed.
  • the second identifier indicates that the MMVD mode is used for the inter prediction of the current image block to be processed, it can be directly determined or inferred that the inter prediction of the current image block to be processed does not use a triangle PU the way.
  • the second identifier indicates that the MMVD mode is used for the inter prediction of the current image block to be processed, the current prediction image block is inter predicted according to the MMVD mode in the skip mode.
  • the second identifier indicates that the MMVD method is used for the inter prediction of the current image block to be processed
  • the relevant identifier of the triangle PU method is not performed, and the MMVD method in the skip mode is directly used.
  • the current image block to be processed performs inter prediction.
  • the current image block adopts the triangular prediction unit mode it may be judged first whether the condition for allowing the inter prediction by the triangular prediction unit mode is satisfied, in fact, whether the current image block adopts the triangular prediction
  • the unit mode depends on the value of merge_triangle_flag. If merge_triangle_flag is 1, the current image block adopts or allows the use of triangular prediction unit mode; otherwise, the current image block does not use or allow the use of triangular prediction unit mode.
  • FIG. 10B an exemplary flowchart of a video image encoding method is illustrated.
  • S1001b Determine a prediction mode used for inter prediction of the current image block to be processed.
  • one or more inter prediction modes for the current image block to be processed can be determined according to the rate-distortion cost criterion in the process of determining or selecting the prediction mode applicable to the current image block to be processed
  • the prediction mode for performing inter prediction on the current image block to be processed for example, the prediction mode corresponding to the result with the lowest selection rate distortion cost is the prediction mode for performing inter prediction on the current image block to be processed.
  • identification information indicating the determined prediction mode into the code stream
  • the identification information includes a first identification; when the first identification indicates that the current image block to be processed is inter-frame predicted, a jump is adopted When the mode is over, the identification information further includes a second identification; when the second identification indicates that the current image block to be processed does not use the fusion motion vector difference MMVD method for inter-frame prediction, the identification information also includes the second identification Three logo.
  • the third identifier is a first numerical value, indicating that the inter prediction of the current image block to be processed adopts a triangular prediction unit method, or the third identifier is a second numerical value, indicating that the current to-be-processed The inter prediction of image blocks does not use the triangle prediction unit.
  • the identifiers when the identifiers are coded into the code stream, they can be coded one by one, and whether the following identifier is coded into the code stream is determined based on the value of the previous identifier.
  • B1 the first identifier is encoded into the code stream.
  • the second identifier is encoded into the code stream.
  • the third identifier is encoded into the code stream.
  • the third identifier is a first numerical value to indicate that the current image block to be processed adopts a triangle prediction unit method for inter prediction, or the third identifier is a second numerical value to indicate to the current image to be processed The block does not use triangle prediction unit for inter prediction.
  • the value of each identifier may be determined first, and then, which codes need to be encoded into the code stream may be determined according to the value.
  • C1 determining the value of the first identifier, the value of the second identifier, and the value of the third identifier, executing C21 or C22 or C23.
  • the first identifier, the second identifier, and the third identifier are encoded into a code stream, wherein the value of the first identifier is used to instruct the current image block to be processed to use the skip mode for inter prediction
  • the value of the second identifier is used to indicate that the image block to be processed is inter-predicted without using the fusion motion vector difference MMVD method; the value of the third identifier is used to indicate the image block to be processed Triangular prediction unit method is used for inter prediction.
  • the identification information when the identification information includes a second identification (when a second identification exists in the code stream), the second identification is located after the first identification in the code stream; Or, when the identification information includes a second identification and a third identification (when there is a third identification in the code stream), in the code stream, the third identification is located after the second identification, the third The second mark is located after the first mark.
  • the identifier information when the first identifier indicates that the current image block to be processed does not use skip mode for inter prediction, the identifier information further includes a fourth identifier (that is, the fourth identifier is edited). Input stream);
  • the identifier information further includes a fifth identifier (that is, the fifth identifier is encoded into the code stream);
  • the identifier information further includes a sixth identifier (that is, the sixth identifier is encoded into the code stream);
  • the sixth identifier is a third value, which indicates that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth value, which indicates that the current to-be-processed The inter prediction of image blocks does not use the triangle prediction unit.
  • the identifier information when the second identifier indicates that the MMVD mode is not used for inter prediction of the current image block to be processed, the identifier information further includes a third identifier, including:
  • the identification information also includes a third identification.
  • S1101a Parse the fourth identifier from the code stream.
  • the fourth flag is used to indicate whether the merge mode is used for the inter prediction of the current image to be processed.
  • the first flag is used to indicate whether the merge mode is allowed for the inter prediction of the current image to be processed.
  • the fifth flag is used to indicate whether inter prediction of the current image to be processed adopts the MMVD mode in the merge mode.
  • the fifth flag is used to indicate whether the MMVD mode is allowed for inter prediction of the current image to be processed.
  • the sixth flag is used to indicate whether the inter-frame prediction of the current to-be-processed image is allowed to adopt the triangle PU mode.
  • the sixth flag is used to indicate whether the inter-frame prediction of the current to-be-processed image is allowed to adopt the triangle in the merge mode the way.
  • the sixth identifier when the sixth identifier is a third value, it indicates that inter prediction of the current image block to be processed is allowed to use the triangle PU method; when the sixth identifier is a fourth value, it indicates that the current value For the inter prediction of the image block to be processed, the triangle PU method is not allowed.
  • the third value is 1, and the fourth value is 0.
  • the third value is 0 and the fourth value is 1.
  • the identification information includes the fourth identification, the fifth identification, and the One or more of the sixth identification.
  • the sixth identifier is a third value, perform inter prediction on the current image block to be processed according to the triangular prediction unit mode; or,
  • the sixth identifier is a fourth value, perform inter prediction on the current image block to be processed according to the fusion mode; or,
  • inter prediction of the current image block to be processed in merge mode may be determined that inter mode prediction is performed in merge mode.
  • other modes in merge mode can also be used to perform inter-frame prediction on the current image block to be processed.
  • the sixth identifier when parsing the sixth identifier from the code stream, when it is determined that the current image block to be processed satisfies the conditions for allowing inter-prediction using the triangle PU method, parsing from the code stream
  • the sixth identifier that is to say, when the fifth identifier indicates that inter prediction of the current image block to be processed does not use the MMVD method, and the current image block to be processed satisfies the permission of the triangle PU method
  • the sixth identifier is parsed from the code stream.
  • the operation of decoding the sixth identifier is no longer performed.
  • the fifth indicator indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the fifth flag indicates that the MMVD mode is used for the inter prediction of the current image block to be processed
  • the current prediction image block is inter predicted according to the MMVD mode in the merge mode.
  • the fifth indicator indicates that the MMVD method is used for the inter prediction of the current image block to be processed
  • the relevant identifier of the triangle PU method is not executed, and the position is directly determined according to the MMVD method in the merge mode.
  • the current image block to be processed is subjected to inter prediction.
  • the first identifier when decoding the fourth identifier from the code stream, the first identifier needs to be decoded first, and when the first identifier indicates that inter prediction of the current image block to be processed does not use the skip mode Only when decoding the fourth identifier from the code stream. That is, the video image decoding process shown in FIG. 11A is executed.
  • the operation of decoding the fourth flag is not performed, that is, the video image decoding process shown in FIG. 11A is not performed, and the process shown in FIG. 10A is performed. The video image decoding process shown.
  • the second and fifth logos here can be named the same way, for example, they are both called mmvd_flag[x0][y0] or both are called merge_mmvd_flag[x0] [y0].
  • the third logo and the sixth logo can also be named in the same way, for example, they are both called merge_triangle_flag[x0][y0] or are both called triangle_flag[x0][y0].
  • the fifth flag may be executed in the merge mode.
  • the MMVD method is applied in merge mode, so the fifth flag is used to indicate whether the MMVD method is used for inter prediction of the current image to be processed.
  • the fifth flag is used to indicate that the current mode Whether the MMVD mode is used for inter prediction of the image to be processed.
  • the sixth mark is used to indicate whether the inter prediction of the current image to be processed adopts the triangle PU method. In other words, the sixth mark is used to indicate whether to perform inter prediction on the current image to be processed in merge mode Use triangle PU method.
  • FIG. 11B an exemplary flowchart of a video image encoding method is illustrated.
  • S1101b Determine the prediction mode used for inter prediction of the current image block to be processed.
  • identification information indicating the determined prediction mode into a code stream; wherein, the identification information includes a fourth identification; when the fourth identification indicates that the current image block to be processed is inter-frame predicted, fusion is used In the mode, the identification information further includes a fifth identification; when the fifth identification indicates that inter prediction of the current image block to be processed does not adopt the fusion motion vector difference MMVD method, the identification information also includes the fifth Six logo.
  • the sixth identifier is a third numerical value to indicate that inter prediction of the current image block to be processed is allowed to adopt a triangular prediction unit method; or, the sixth identifier is a fourth numerical value to indicate the The current prediction of the image block to be processed is not allowed to adopt the triangular prediction unit mode.
  • the mark into the code stream when coding the mark into the code stream, it can be coded one by one, and whether the following mark is coded into the code stream can be determined based on the value of the previous mark or the meaning indicated by the previous mark. .
  • E1 encode the fourth identifier into the code stream
  • the sixth identifier is encoded into the code stream
  • the sixth identifier when the sixth identifier is a third value, it indicates that inter prediction of the current image block to be processed is allowed to adopt a triangular prediction unit method, and when the sixth identifier is a fourth value, it indicates that the The current prediction of the image block to be processed is not allowed to adopt the triangular prediction unit mode.
  • the value of each identifier may be determined first, and then, which codes need to be encoded into the code stream may be determined according to the value.
  • F1 determine the value of the fourth mark, the value of the fifth mark, and the value of the sixth mark, and execute F21 or F22 or F23.
  • the fourth identifier, the fifth identifier and the sixth identifier are encoded into the code stream, wherein the value of the fourth identifier is used to indicate that the current image block to be processed adopts the fusion mode for inter prediction; the fifth identifier The value is used to indicate that the MMVD mode is not used for the inter prediction of the image block to be processed; the value of the sixth flag is used to indicate that the triangular prediction unit mode is not used for the inter prediction of the image block to be processed.
  • the identification information when the identification information includes a fifth identification (when a fifth identification exists in the code stream), the fifth identification is located after the fourth identification in the code stream; Or, when the identification information includes a fifth identification and a sixth identification (when a sixth identification exists in the code stream), in the code flow, the sixth identification is located after the fifth identification, and the fifth identification After the fourth sign.
  • the identifier information further includes a sixth identifier, including:
  • the identification information also includes a sixth identification.
  • the identification information further includes a first identification, which indicates that the current image block to be processed does not adopt the skip mode for inter prediction.
  • the first identification is located before the fourth identification.
  • An embodiment of the present application also provides a video image decoding method, including:
  • G1 Parse the seventh identifier from the code stream (eg mh_intra_flag[x0][y0]);
  • the eighth flag (for example, merge_triangle_flag[x0 ][y0]);
  • the eighth mark when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed adopts the triangular prediction unit method; when the eighth mark is the second value, it indicates that the current The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • G3 Use the inter prediction mode indicated by the identification information in the code stream to perform inter prediction on the current image block to be processed.
  • the identification information includes the seventh identifier and the eighth identifier. one or more.
  • sps_triangle_enabled_flag indicates whether the sequence of the current image block to be processed is allowed to adopt the triangle prediction unit mode.
  • An embodiment of the present application also provides another video image decoding method, including:
  • H1 Parse the seventh identifier from the code stream (for example, mh_intra_flag[x0][y0]);
  • the seventh flag indicates that the intra prediction mode is not used for the current image block to be processed
  • the eighth mark when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed adopts the triangular prediction unit method; when the eighth mark is the second value, it indicates that the current The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • the identification information includes the seventh identification and the eighth identification. one or more.
  • this article illustrates a partial syntax structure for parsing the inter prediction mode adopted by the current image block, as shown in Table 4.
  • an embodiment of the present application further provides a video image decoding device 1200, which includes an entropy decoding unit 1201 and an inter prediction unit 1202.
  • the entropy decoding unit 1201 is used to parse the first identifier from the code stream
  • the entropy decoding unit 1201 is further configured to parse the second identifier from the code stream when the first identifier indicates that the current image block to be processed is inter-predicted in the skip mode;
  • the entropy decoding unit 1201 is further configured to parse the third identifier from the code stream when the second identifier indicates that inter prediction of the current image block to be processed does not use the fusion motion vector difference MMVD method;
  • the third identifier when the third identifier is the first value, it indicates that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; when the third identifier is the second value, it indicates that the current value The inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the inter prediction unit 1202 is configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes a first identification and a second identification , One or more of the third identification.
  • inter prediction unit 1202 is specifically used for:
  • the third identifier indicates that the inter prediction for the current image block to be processed adopts the triangular prediction unit method, perform inter prediction on the current image block to be processed according to the triangular prediction unit method;
  • inter prediction of the current image block to be processed is performed according to the skip mode.
  • the inter prediction unit 1202 is specifically configured to, when the second identifier indicates that the MMVD mode is used for inter prediction of the current image block to be processed, to perform the current image block to be processed according to the MMVD mode Perform inter prediction.
  • the entropy decoding unit 1201 is also used to:
  • the fourth identifier is parsed from the code stream
  • the fifth identifier is parsed from the code stream
  • the sixth identifier is parsed from the code stream
  • the sixth identifier when the sixth identifier is the third value, it indicates that the inter prediction of the current image block to be processed adopts the triangle prediction unit method; when the sixth identifier is the fourth value, it indicates that the current value The inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the inter prediction unit 1202 is configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes a first identification, One or more of the fourth mark, the fifth mark, and the sixth mark.
  • the entropy decoding unit 1201 when parsing the third identifier from the code stream, is specifically used to:
  • the third identifier is parsed from the code stream.
  • the entropy decoding unit 1201 is also used to parse the seventh logo from the code stream before parsing the third logo from the code stream;
  • the condition that allows the inter prediction in the triangular prediction unit manner includes: the seventh flag indicates that the intra prediction mode is not used for the current image block to be processed;
  • the identification information includes one or more of the first identification, the second identification, the third identification, and the seventh identification.
  • the entropy decoding unit 1201 is also used to parse the seventh logo from the code stream before parsing the third logo from the code stream;
  • the entropy decoding unit is specifically used when the seventh identifier indicates that the intra-frame prediction mode is not used for the current image block to be processed. Parse the third identifier in the code stream;
  • the identification information includes one or more of the first identification, the second identification, the third identification, and the seventh identification.
  • the entropy decoding unit 1201 is used to parse the fourth identifier from the code stream;
  • the entropy decoding unit 1201 is also used to parse the fifth identifier from the code stream when the fourth identifier indicates that the current image block to be inter predicted is used as a fusion mode; when the fifth identifier indicates a When the current image block to be processed does not use the fusion motion vector difference MMVD method for inter-frame prediction, the sixth identifier is parsed from the code stream;
  • the sixth identifier when the sixth identifier is the third value, it indicates that the inter prediction of the current image block to be processed adopts the triangle prediction unit method; when the sixth identifier is the fourth value, it indicates that the current value The inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the inter prediction unit 1202 is configured to perform inter prediction on the current image block to be processed using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes a fourth identifier and a fifth identifier , One or more of the sixth identification.
  • the inter prediction unit 1202 is configured to, when the fifth flag indicates that the MMVD mode is used for inter prediction of the current image block to be processed, perform the current image block to be processed according to the MMVD mode Inter prediction.
  • the entropy decoding unit 1201 when parsing the sixth identifier from the code stream, is specifically used to:
  • the sixth identifier is parsed from the code stream.
  • the entropy decoding unit 1201 is also used to parse the first identifier from the code stream;
  • the entropy decoding unit 1201 when parsing the fourth identifier from the code stream, is specifically used to:
  • the fourth identifier is parsed from the code stream.
  • the identification information may further include the first identification.
  • the entropy decoding unit 1201 is configured to parse the seventh identifier from the code stream; when the seventh identifier indicates that the intra-frame prediction mode is not used for the current image block to be processed, parse the eighth identifier from the code stream; Wherein, when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed adopts the triangular prediction unit method; when the eighth mark is the second value, it indicates that the current The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • the inter prediction unit 1202 is configured to perform inter prediction on the current image block to be processed by using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes the seventh identification and the One or more of the eighth identification.
  • the entropy decoding unit 1201 is used to parse the seventh identifier from the code stream; when the current image block to be processed meets the conditions that allow the inter prediction in the triangular prediction unit mode, the eighth is parsed from the code stream Flag, the condition that allows the inter prediction in the triangular prediction unit mode is at least included: the seventh flag indicates that the intra-frame inter prediction mode is not used for the current image block to be processed;
  • the eighth mark when the eighth mark is the first value, it indicates that the inter prediction of the current image block to be processed adopts the triangular prediction unit method; when the eighth mark is the second value, it indicates that the current The inter prediction of image blocks to be processed does not use the triangle prediction unit method;
  • the inter prediction unit 1202 is configured to perform inter prediction on the current image block to be processed by using the inter prediction mode indicated by the identification information in the code stream, and the identification information includes the seventh identification and the One or more of the eighth identification.
  • an embodiment of the present application further provides a video image encoding device 1300, which includes an inter prediction unit 1301 and an entropy encoding unit 1302.
  • the inter prediction unit 1301 is used to determine the prediction mode used for inter prediction of the current image block to be processed
  • the entropy encoding unit 1302 is used to encode the identification information indicating the determined prediction mode into the code stream;
  • the identification information includes a first identification
  • the identifier information further includes a second identifier
  • the identifier information further includes a third identifier
  • the third identifier is a first numerical value to indicate that the current prediction image block is to be inter-frame predicted using a triangular prediction unit method; or, the third identifier is a second numerical value to indicate the current value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identification information when the identification information includes a second identification, the second identification is located after the first identification in the code stream; or, when the identification information further includes a third identification, the In the code stream, the third identifier is located after the second identifier.
  • the identification information when the first identification indicates that the current image block to be processed does not use skip mode for inter prediction, the identification information further includes a fourth identification;
  • the identifier information further includes a fifth identifier
  • the identifier information further includes a sixth identifier
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identifier information further includes a third identifier, including:
  • the identification information also includes a third identification.
  • the inter prediction unit 1301 determines the prediction mode used for inter prediction of the current image block to be processed
  • the entropy encoding unit 1302 encodes the identification information indicating the determined prediction mode into the code stream
  • the identification information includes a fourth identification
  • the identifier information further includes a fifth identifier
  • the identifier information further includes a sixth identifier
  • the sixth identifier is a third numerical value, to indicate that the inter prediction of the current image block to be processed adopts a triangular prediction unit method; or, the sixth identifier is a fourth numerical value, to indicate the current numerical value
  • the inter prediction of the image block to be processed does not use the triangle prediction unit.
  • the identification information when the identification information includes a fifth identification, the fifth identification is located after the fourth identification in the code stream; or, when the identification information includes a fifth identification and a sixth identification At this time, in the code stream, the sixth identifier is located after the fifth identifier, and the fifth identifier is located after the fourth identifier.
  • the identifier information further includes a sixth identifier, including:
  • the identification information also includes a sixth identification.
  • the identification information further includes a first identification, which indicates that the current image block to be processed does not adopt the skip mode for inter prediction.
  • the first identification is located before the fourth identification.
  • the position of the entropy decoding unit 1201 corresponds to the position of the entropy decoding unit 304 in FIG. 3.
  • the position of the inter prediction unit 1202 corresponds to the position of the inter prediction unit 344 in FIG. 3.
  • the specific implementation of the function of the inter prediction unit 1202 can be referred to the specific details of the inter prediction unit 344 in FIG. 3.
  • the position of the entropy encoding unit 1302 corresponds to the position of the entropy encoding unit 270 in FIG. 2.
  • the position of the inter prediction unit 1301 corresponds to the position of the inter prediction unit 244 in FIG. 2.
  • the specific implementation of the function of the inter prediction unit 1301 can be referred to the specific details of the inter prediction unit 244 in FIG. 2.
  • Computer readable media may include computer readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
  • computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM, or other optical disk storage devices, magnetic disk storage devices, or other magnetic storage devices, flash memory, or may be used to store instructions or data structures
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave are used to transmit instructions from a website, server, or other remote source
  • coaxial cable Wire, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media.
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
  • magnetic disks and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and Blu-ray discs, where magnetic discs typically reproduce data magnetically, while optical discs reproduce optically using lasers data. Combinations of the above should also be included in the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functions described in the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or in combination Into the combined codec.
  • the techniques can be fully implemented in one or more circuits or logic elements.
  • the technology of the present application can be implemented in a variety of devices or equipment, including wireless handsets, integrated circuits (ICs), or a set of ICs (eg, chipsets).
  • ICs integrated circuits
  • a set of ICs eg, chipsets
  • Various components, modules or units are described in this application to emphasize the functional aspects of the device for performing the disclosed technology, but do not necessarily need to be implemented by different hardware units.
  • various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) provide.

Abstract

本申请提供一种视频图像解码、编码方法及装置,在确定采用merge或者skip模式的情况下,如果解码到MMVD标识为真,可以不对Triangle PU标识进行编解码,仅在解码到MMVD标识为假的情况下,才对Triangle PU标识进行编解码,从而降低编码资源的使用,可以减少码流比特开销。

Description

视频图像解码、编码方法及装置
相关申请的交叉引用
本申请要求在2018年12月07日提交中国专利局、申请号为201811497390.2、申请名称为“一种视频图像预测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求在2018年12月21日提交中国专利局、申请号为201811574426.2、申请名称为“视频图像解码、编码方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像编解码技术领域,尤其涉及一种视频图像解码、编码方法及装置。
背景技术
随着信息技术的发展,高清晰度电视,网络会议,IPTV,3D电视等视频业务迅速发展,视频信号以其直观性和高效性等优势成为人们日常生活中获取信息最主要的方式。由于视频信号包含的数据量大,需要占用大量的传输带宽和存储空间。为了有效的传输和存储视频信号,需要对视频信号进行压缩编码,视频压缩技术越来越成为视频应用领域不可或缺的关键技术。
视频编码压缩的基本原理是,利用空域、时域和码字之间的相关性,尽可能去除冗余。目前流行的做法是采用根据图像块的混合视频编码框架,通过预测(包括帧内预测和帧间预测)、变换、量化、熵编码等步骤来实现视频编码压缩。
在各种视频编/解码方案中,帧间预测中的运动估计/运动补偿是一种影响编/解码性能的关键技术。现有帧间预测增加了融合运动矢量差(merge motion vector difference,MMVD)方式以及三角预测单元(triangle prediction unit,triangle PU)方式,但是现有帧间预测实现方式中,MMVD与triangle PU在同条件下,两者均需要编解码,兼容存在冗余。
发明内容
本申请提供一种视频图像解码、编码方法及装置,用以一定程度上解决现有技术中存在的MMVD与triangle PU兼容冗余的问题。
第一方面,本申请实施例提供一种视频图像解码方法,包括:
从码流中解析第一标识;当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式(例如:允许采用跳过模式)时,从所述码流中解析第二标识;当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差(MMVD)方式(例如:在所述跳过模式下,对所述当前待处理图像块进行帧间预测不采用MMVD方式)时,从所述码流中解析第三标识;其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式(例如:在跳过模式下,对所述当前待处理图像块进行帧间预测采用三角预测单元方式);当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式(例如:在跳过模式下,对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式),需要说明的是,第 三标识不是sps_triangle_enabled_flag。采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第二标识、所述第三标识中的一个或多个。
应该理解的是,本申请不排除在解析第三标识之前,还可能解析其它标识。例如,可以在解析其它标识为false的情况下再解析第三标识。
例如,第一标识也可以称为cu_skip_flag[x0][y0],在标准文本或者代码中第一标识可能采用上述命名。第二标识也可以称为skip_mmvd_flag[x0][y0]或者mmvd_flag[x0][y0]或者merge_mmvd_flag[x0][y0],在标准文本或代码中第二标识可能采用上述命名中的一个。第三标识也可以称为skip_triangle_flag[x0][y0]或者triangle_flag[x0][y0]或者merge_triangle_flag[x0][y0],在标准文本或代码中,第三标识可能采用上述命名中的一个。
例如,第一数值可以为1(或ture),第二数值可以为0(或false)。应当理解的是,第一数值和第二数值可以交换,例如:第一数值可以为0(或false),第二数值可以为1(或ture)。本申请实施例中,在确定采用skip模式的情况下,仅在解码到不采用MMVD的情况下,才对三角预测单元(triangle PU)标识进行解码,换言之,在解码到采用MMVD的情况下,不需要从码流中解析第三标识(亦即不用对三角预测单元标识进行编解码),可以直接根据所述MMVD方式对所述当前待处理图像块进行帧间预测;在一定程度上可以避免MMVD与triangle PU兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
在一种可能的设计中,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
当所述第三标识为第一数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第三标识为第二数值时,允许根据所述跳过模式对所述当前待处理图像块进行帧间预测。
作为一种示例,当确定对所述当前待处理图像块进行帧间预测不允许采用triangle PU方式时,可以确定采用skip模式进行帧间预测。当然,还有可能从码流中解析到skip模式下的其它方式,在该情况下,还可以采用skip模式下的其它方式对当前待处理图像块进行帧间预测,本申请对此不作限定。
在一种可能的设计中,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不再执行解码第三标识的操作。换句话说,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,可以直接地确定或者推断对所述当前待处理图像块进行帧间预测不采用triangle PU方式。进而,在所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据的MMVD方式对所述当前待处理图像块进行帧间预测。也就是说,在所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不执行解析triangle PU方式的相关标识,直接根据所述跳过模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
通过上述设计,在确定采用skip模式的情况下,如果解码到采用MMVD的情况下,可以不对第三标识(triangle PU标识)进行解码,相应地,编码端也不需要将第三标识编入码流,仅在解码到不采用MMVD的情况下,才对Triangle PU标识进行解码,在一定程度上可以避免MMVD与triangle PU兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
在一种可能的设计中,该方法还包括:
当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用(例如:不允许采用)跳过模式时,从所述码流中解析第四标识;当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式)时,从所述码流中解析第六标识;其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式);当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式)。需要说明的是,第六标识不是sps_triangle_enabled_flag。
应该理解的是,本申请不排除在解析第六标识之前,还可能解析其它标识。例如,可以在解析其它标识为false的情况下再解析第六标识。
相应地,采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第四标识、所述第五标识、第六标识中的一个或多个。
例如,第四标识可以称为merge_flag[x0][y0],在标准文本或者代码中第四标识可能采用上述命名。第五标识也可以称为merge_mmvd_flag[x0][y0]或者mmvd_flag[x0][y0],在标准文本或者代码中第五标识可能采用上述命名中的一个。第六标识也可以称为merge_triangle_flag[x0][y0]或triangle_flag[x0][y0],在标准文本或者代码中第六标识可能采用上述命名中的一个。
应当理解的是,这里的第三数值与第一数值,仅仅只是为了方便区分而已,本申请不做限定。例如,第一数值和第三数值,都可以是1。同理,第四数值与第二数值,也仅仅只是为了方便区分,例如,第二数值和第四数值都可以是0。应当理解的是,第一数值和第二数值可以交换,例如:第一数值可以为0,第二数值可以为1。第三数值和第四数值可以交换,例如:第三数值可以为0,第四数值可以为1。
应当理解的是,skip属于merge模式的一种,因此,这里的第二标识和第五标识可以采用相同的命名方式,比如均称为mmvd_flag[x0][y0]或者merge_mmvd_flag[x0][y0]。同理,第三标识和第六标识也可以采用相同的命名方式,比如均称为triangle_flag[x0][y0]或者merge_triangle_flag[x0][y0]。
通过上述设计,在确定采用merge模式的情况下,仅在解码到不采用MMVD的情况下,才对Triangle PU标识进行解码,在一定程度上可以避免MMVD与triangle PU兼容冗余,从而降低编解码资源的使用,减少码流比特开销的问题。
在一种可能的设计中,所述采用所述码流中的标识信息所指示的帧间预测模式,对所 述当前待处理图像块进行帧间预测,包括:
当所述第六标识为第三数值时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第六标识为第四数值时,根据所述融合模式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,所述从所述码流中解析第三标识,包括:
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从码流中解析所述第三标识。
在一种可能的设计中,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述融合模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不再执行解码第六标识的操作。换句话说,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,可以直接地确定或者推断对所述当前待处理图像块进行帧间预测不采用triangle PU方式。进而,在所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述merge模式下的MMVD方式对所述当前待处理图像块进行帧间预测。也就是说,在所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不再需要执行解析triangle PU方式的相关标识,可以直接根据所述merge模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
通过上述设计,在确定采用merge模式的情况下,如果解码到采用MMVD的情况下,可以不对Triangle PU标识进行编解码,仅在解码到不采用MMVD的情况下,才对Triangle PU标识进行编解码,在一定程度上可以避免MMVD与三角预测单元(triangle PU)兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
在一种可能的设计中,从所述码流中解析第六标识,可以包括:当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
比如,允许采用所述三角预测单元方式进行帧间预测的条件可以包括如下至少一项:
(1)triangle PU控制位为真(sps_triangle_enabled_flag==1);
(2)当前待处理图像块所在的视频帧为B帧(slice_type==B);
(3)当前待处理图像块宽度乘以高度大于或者等于16(cbWidth*cbHeight>=16);
(4)当前待处理图像块不允许仿射(affine)模式。
应当理解的是,本申请实施例中,不排除在解析第三标识之前,还会解析其他的标识信息。应当理解的是,当这些标识信息的取值是false时,从码流中解析第三标识。
示例性的,上述第一方面的各个设计中,从先解码MMVD方式再解码trianglePU方式进行说明的,本申请还可以先解码trianglePU方式再解码MMVD方式。示例如下:
一种视频图像解码方法,包括:
从码流中解析第一标识;当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第三标识;当所述第三标识指示对所述当前待处理图像块 进行帧间预测不采用三角预测单元方式时,从所述码流中解析第二标识;其中,当所述第二标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用MMVD方式;当所述第二标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用MMVD方式。采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第二标识、所述第三标识中的一个或多个。
示例性的,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测;或,
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,根据所述跳过模式对所述当前待处理图像块进行帧间预测。
当所述第三标识为第一数值时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测。
示例性地,当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;
当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第六标识;
当所述第六标识指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式时,从所述码流中解析第五标识;
其中,当所述第五标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用MMVD方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用MMVD方式。需要说明的是,第六标识不是sps_triangle_enabled_flag。
示例性的,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测;或,
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,根据所述融合模式对所述当前待处理图像块进行帧间预测。
第二方面,本申请实施例提供一种视频图像解码方法,包括:
从码流中解析第四标识;当所述第四标识指示对当前待处理图像块进行帧间预测采用为融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式)时,从所述码流中解析第六标识;其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式(例如,在融合模式下,对所述当前待处理图像块进行帧间预测采用三角预测单元方式);当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测不采用三角预测单元方式);采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第四标识、所述第五标识、所述第六标识中的一个或多个。需要说明的是,第六标识不是sps_triangle_enabled_flag。
通过上述设计,在确定采用merge模式的情况下,仅在解码到不采用MMVD的情况 下,才对triangle PU标识进行解码,换言之,在解码到采用MMVD的情况下,不需要从码流中解析第六标识(亦即不用对triangle PU标识进行编解码),可以直接根据所述MMVD方式对所述当前待处理图像块进行帧间预测,在一定程度上可以避免MMVD与triangle PU兼容冗余,从而可以降低编码资源的使用,减少码流比特开销的问题。
在一种可能的设计中,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述融合模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,从所述码流中解析第六标识,包括:当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
在一种可能的设计中,还包括:从所述码流中解析第一标识;
所述从所述码流中解析第四标识,包括:
当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析所述第四标识。
第三方面,本申请实施例提供一种视频图像编码方法,包括:
确定对当前待处理图像块进行帧间预测采用的预测模式;
将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第一标识;
当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式(例如:在跳过模式下,对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式)时,所述标识信息还包括第三标识;
其中,所述第三标识为第一数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式(例如:在跳过模式下对所述当前待处理图像块进行帧间预测采用三角预测单元方式);或者,所述第三标识为第二数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式(例如,在跳过模式下对所述当前待处理图像块进行帧间预测不采用三角预测单元方式)。
其中,在确定对当前待处理图像块进行帧间预测所采用的预测模式时,可以通过在确定或者选择适用于当前待处理图像块的预测模式的过程中,针对当前待处理图像块的一种或者多种帧间预测模式,根据率失真代价准则确定对当前待处理图像块进行帧间预测的预测模式,例如,选择率失真代价最小的结果对应的预测模式为对当前待处理图像块进行帧间预测的预测模式。
另一种描述方式为:本申请实施例提供一种视频图像编码方法,包括:
将第一标识编入码流,当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,将第二标识编入码流;
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,将第三标识编入码流;
其中,所述第三标识为第一数值,以指示对所述当前待处理图像块进行帧间预测采用 三角预测单元方式,或者,所述第三标识为第二数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
再一种描述方式为:本申请实施例提供一种视频图像编码方法,包括:
确定第一标识的取值,第二标识的取值和第三标识的取值;
将所述第一标识,所述第二标识和所述第三标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于指示对所述待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式;所述第三标识的取值用于指示对所述待处理图像块进行帧间预测采用三角预测单元方式;或者
将第一标识,第二标识和第三标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于指示对所述待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式;所述第三标识的取值用于指示对所述待处理图像块进行帧间预测不采用三角预测单元方式;或者
将第一标识和第二标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于指示对所述待处理图像块进行帧间预测采用融合运动矢量差MMVD方式。
在一种可能的设计中,当所述标识信息包括第二标识时(码流中存在第二标识时),在所述码流中,所述第二标识位于所述第一标识之后;或者,当所述标识信息还包括第三标识时(码流中存在第三标识时),在所述码流中,所述第三标识位于所述第二标识之后。
在一种可能的设计中,当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识(即将第四标识编入码流);
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识(即将第五标识编入码流);
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识(即将第六标识编入码流);
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在一种可能的设计中,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第三标识,包括:
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
第四方面,本申请实施例提供一种视频图像编码方法,包括:
确定对当前待处理图像块进行帧间预测采用的预测模式;
将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第四标识;
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式(例如:在融合模式下,对所述当前待处理图像块进行帧间预测不采用融合运 动矢量差MMVD方式),所述标识信息中还包括第六标识;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式(例如:在所述融合模式下,对所述当前待处理图像块进行帧间预测采用三角预测单元方式);或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
另一种描述方式为:本申请实施例提供一种视频图像编码方法,包括:
将第四标识编入码流;
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,将第五标识编入码流;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,将第六标识编入码流;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在一种可能的设计中,当所述标识信息包括第五标识时(码流中存在第五标识),在所述码流中,所述第五标识位于所述第四标识之后;或者,当所述标识信息还包括第六标识时(码流中存在第六标识时),在所述码流中,所述第六标识位于所述第五标识之后。
在一种可能的设计中,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
在一种可能的设计中,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
在一种可能的设计中,在所述码流中,所述第一标识位于所述第四标识之前。
第五方面,本申请实施例提供一种视频图像解码装置,包括用于实施第一方面的任意一种方法的若干个功能单元。
举例来说,视频图像解码装置可以包括熵解码单元和帧间预测单元:
所述熵解码单元用于从码流中解析第一标识;
所述熵解码单元还用于当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识;
所述熵解码单元还用于当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识;
其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
所述帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第一标识、第二标识、第三标识中的一个或多个。
在一种可能的设计中,所述帧间预测单元具体用于:当所述第三标识为第一数值时, 根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,当所述第三标识为第二数值时,根据所述跳过模式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,所述帧间预测单元具体用于当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,所述熵解码单元,还用于:
当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;
当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,从所述码流中解析第六标识;
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
相应地,采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第四标识、所述第五标识、第六标识中的一个或多个。
在一种可能的设计中,在所述标识信息包括所述第一标识、所述第四标识、所述第五标识、第六标识中的一个或多个的情况下,所述帧间预测模式具体用于:
当所述第六标识为第三数值时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第六标识为第四数值时,根据所述融合模式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,所述熵解码单元,在从码流中解析第三标识时,具体用于:
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从码流中解析所述第三标识。
第六方面,本申请实施例提供一种视频图像解码装置,包括用于实施第二方面的任意一种方法的若干个功能单元。
举例来说,视频图像解码装置可以包括熵解码单元和帧间预测单元:
熵解码单元,用于从码流中解析第四标识;
熵解码单元,还用于当所述第四标识指示对当前待处理图像块进行帧间预测采用为融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第六标识;
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第四标识、第五标识、第六标识中的一个或多个。
在一种可能的设计中,所述帧间预测单元具体用于当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
在一种可能的设计中,所述熵解码单元,在从所述码流中解析第六标识时,具体用于:
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
应当理解的是,本申请中,不排除在解析第六标识之前,还会解析其他的标识信息。应当理解的是,当这些标识信息的取值是false时,从码流中解析第六标识。
在一种可能的设计中,所述熵解码单元,还用于从所述码流中解析第一标识;
所述熵解码单元,在从所述码流中解析第四标识时,具体用于:
当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析所述第四标识。
第七方面,本申请实施例提供一种视频图像编码装置,包括用于实施第三方面的任意一种方法的若干个功能单元。
举例来说,视频图像编码装置可以包括:
帧间预测单元,用于确定对当前待处理图像块进行帧间预测采用的预测模式;
熵编码单元,用于将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第一标识;
当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识;
其中,所述第三标识为第一数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第三标识为第二数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
示例性的,帧间预测单元在确定对当前待处理图像块进行帧间预测采用的预测模式时,可以通过在确定或者选择适用于当前待处理图像块的预测模式的过程中,针对当前待处理图像块的一种或者多种帧间预测模式,根据率失真代价准则确定对当前待处理图像块进行帧间预测的预测模式,例如,选择率失真代价最小的结果对应的预测模式作为对当前待处理图像块进行帧间预测的预测模式。
在一种可能的设计中,当所述标识信息包括第二标识时,在所述码流中,所述第二标识位于所述第一标识之后;或者,当所述标识信息还包括第三标识时,在所述码流中,所述第三标识位于所述第二标识之后。
在一种可能的设计中:当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识;
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用 三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在一种可能的设计中,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第三标识,包括:
当所述第二标识指示在对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
第八方面,本申请实施例提供一种视频图像编码装置,包括用于实施第三方面的任意一种方法的若干个功能单元。
举例来说,视频图像编码装置可以包括:
帧间预测单元,用于确定当前待处理图像块进行帧间预测采用的预测模式;
熵编码单元,将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第四标识;
当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在一种可能的设计中,当所述标识信息包括第五标识时,在所述码流中,所述第五标识位于所述第四标识之后;或者,当所述标识信息还包括第六标识时,在所述码流中,所述第六标识位于所述第五标识之后。
在一种可能的设计中,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
在一种可能的设计中,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
在一种可能的设计中,在所述码流中,所述第一标识位于所述第四标识之前。
第九方面,本申请实施例还提供一种视频图像解码方法,包括:
从码流中解析第七标识(例如mh_intra_flag[x0][y0]);当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式(即Combined inter merge/intra prediction)时,从所述码流中解析第八标识(例如,merge_triangle_flag[x0][y0]);其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
应当理解的是,不排除在解析第八标识之前,还会解析其他的标识信息。也不排除还 要考虑其它条件来决定是否解析第八标识。这里的其它条件,例如是sps_triangle_enabled_flag&&slice_type(切片类型)==B&&cbWidth(当前块宽度)*cbHeight(当前块高度)>=16。在一种示例下,sps_triangle_enabled_flag表示当前待处理图像块所在的序列是否允许采用三角预测单元方式,换句话说,是指序列参数集level上是否允许采用三角预测单元方式。
在另一种示例下,表示当前待处理图像块所在的图像是否允许采用三角预测单元方式的条件可以包括:“所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式(即Combined inter merge/intra prediction)”、sps_triangle_enabled_flag&&slice_type(切片类型)==B&&cbWidth(当前块宽度)*cbHeight(当前块高度)>=16。
上述方案中,仅在解码到不采用帧内帧间预测模式的情况下,才对三角预测单元(triangle PU)标识进行解码,换言之,在解码到采用帧内帧间预测模式的情况下,不需要从码流中解析第八标识(亦即不用对三角预测单元标识进行编解码),可以直接根据所述帧内帧间预测模式对所述当前待处理图像块进行帧间预测;在一定程度上可以避免帧内帧间预测模式与triangle PU兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
第十方面,本申请实施例提供一种视频图像解码装置,包括:
熵解码单元,用于从码流中解析第七标识;当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式时,从所述码流中解析第八标识;其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
第十一方面,本申请实施例提供一种视频图像解码方法,包括:
从码流中解析第七标识(例如mh_intra_flag[x0][y0]);
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识(merge_triangle_flag[x0][y0]),所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
示例性的,所述允许采用所述三角预测单元方式进行帧间预测的条件可以包括:mh_intra_flag[x0][y0](第七标识)==0&&sps_triangle_enabled_flag&&slice_type==B&&cbWidth*cbHeight>=16。
上述设计中,仅在解码到不采用帧内帧间预测模式的情况下,才对三角预测单元(triangle PU)标识进行解码,换言之,在解码到采用帧内帧间预测模式的情况下,不需 要从码流中解析第八标识(亦即不用对三角预测单元标识进行编解码),可以直接根据所述帧内帧间预测模式对所述当前待处理图像块进行帧间预测;在一定程度上可以避免帧内帧间预测模式与triangle PU兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
第十二方面,本申请实施例提供一种视频图像解码装置,包括:
熵解码单元,用于从码流中解析第七标识;当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识,所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
第十三方面,本申请实施例提供一种视频编码器,所述视频编码器用于编码图像块。
示例性的,视频编码器可以实现第三方面所述的方法。视频编码器包括第七方面中任一设计所述的装置。
示例性的,视频编码器可以实现第四方面的任一种设计所述的方法。视频编码器包括第八方面中任一设计所述的装置。
第十四方面,本申请实施例提供一种视频解码器,所述视频解码器用于从码流中解码出图像块。
示例性的,视频解码器可以实现第一方面的任一种设计所述的方法。视频解码器包括第五方面的任一设计所述的装置。
示例性的,视频解码器可以实现第二方面的任一种设计所述的方法。视频解码器包括第六方面的任一设计所述的装置。
示例性的,视频解码器可以实现第九方面的任一种设计所述的方法。视频解码器包括第十方面的任一设计所述的装置。
示例性的,视频解码器可以实现第十一方面的任一种设计所述的方法。视频解码器包括第十二方面的任一设计所述的装置。
第十五方面,本申请实施例提供一种用于解码视频数据的设备,所述设备包括:
存储器,用于存储码流形式的视频数据;
视频解码器,用于从码流中解析第一标识;当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识;当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识;其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第二标识、所述第三标识中的一个或多个。
第十六方面,本申请实施例提供另一种用于解码视频数据的设备,所述设备包括:
存储器,用于存储码流形式的视频数据;
视频解码器,用于从码流中解析第一标识;当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;当所述第四标识指示对当前待处理图像块进行帧间预测采用为融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第六标识;其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第四标识、所述第五标识、所述第六标识中的一个或多个。
第十七方面,本申请实施例提供一种用于编码视频数据的设备,所述设备包括:
存储器,用于存储视频数据,所述视频数据包括一个或多个图像块;
视频编码器,用于确定对当前待处理图像块进行帧间预测采用的预测模式;将用于指示确定的预测模式的标识信息编入码流;其中,所述标识信息中包括第一标识;当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识;所述第三标识为第一数值,以指示所述跳过模式下对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;所述第三标识为第二数值,以指示所述跳过模式下对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
第十八方面,本申请实施例提供另一种用于编码视频数据的设备,所述设备包括:
存储器,用于存储视频数据,所述视频数据包括一个或多个图像块;
视频编码器,用于确定对当前待处理图像块进行帧间预测采用的预测模式;将用于指示确定的预测模式的标识信息编入码流;其中,所述标识信息中包括第一标识;当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识;当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识;其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
在一种可能的设计中,在所述码流中,所述第一标识位于所述第四标识之前。
第十九方面,本申请实施例提供一种编码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第三方面或第四方面的任意一种方法的部分或全部步骤。
第二十方面,本申请实施例提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面或者第二方面或者第九方面或者第十一方面的任意一种方法的部分或全部步骤。
第二十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介 质存储了程序代码,其中,所述程序代码包括用于执行第一方面至第四方面、第九方面、第十一方面的任意一种方法的部分或全部步骤的指令。
第二十二方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面至第四方面、第九方面、第十一方面的任意一种方法的部分或全部步骤。
应当理解的是,本申请的第二至二十二方面与本申请的第一方面的技术方案相同或者类似,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
可以看到,本申请实施例在确定采用skip模式或者merge的情况下,如果编解码确定采用MMVD的情况下,可以不对Triangle PU标识进行编解码,仅在编解码确定不采用MMVD的情况下,才对triangle PU标识进行编解码,可以避免MMVD与triangle PU兼容冗余,从而降低编码资源的使用,减少码流比特开销的问题。
附图说明
图1A是用于实现本申请实施例的视频编码及解码系统10实例的框图;
图1B是用于实现本申请实施例的视频译码系统40实例的框图;
图2是用于实现本申请实施例的编码器20实例结构的框图;
图3是用于实现本申请实施例的解码器30实例结构的框图;
图4是用于实现本申请实施例的视频译码设备400实例的框图;
图5是用于实现本申请实施例的另一种编码装置或解码装置实例的框图;
图6是用于实现本申请实施例的空域和时域候选块的示意图;
图7是用于实现本申请实施例的三角预测单元划分方式示意图;
图8是用于实现本申请实施例的加权计算示意图;
图9A是用于实现本申请实施例的MMVD搜索点的示意图;
图9B是用于实现本申请实施例的MMVD搜索过程示意图;
图10A是用于实现本申请实施例的一种视频图像解码方法的流程示意图;
图10B是用于实现本申请实施例的一种视频图像编码方法的流程示意图;
图11A是用于实现本申请实施例的另一种视频图像解码方法的流程示意图;
图11B是用于实现本申请实施例的另一种视频图像编码方法的流程示意图;
图12为用于实现本申请实施例的一种视频图像解码装置1200的结构框图;
图13为用于实现本申请实施例的一种视频图像编码装置1300的结构框图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多 个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块, 其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通 信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的 色度块预测方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的色度块预测方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制 台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形 处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例描述的视频图像编码方法发生在编码器20处,本申请实施例描述的视频图像解码方法发生在解码器30处,本申请实施例中的编码器20和解码器30可以是例如H.263、H.264、HEVV、MPEG-2、MPEG-4、VP8、VP9等视频标准协议或者下一代视频标准协议(如H.266等)对应的编/解码器。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改 的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded  picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括跳过(skip)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例中基于skip的三角预测单元(triangle prediction unit,Triangle PU)模式,或者基于merge的triangle PU模式,或者基于skip的融合运动矢量差(merge with motion vector difference,MMVD)模式,或者基于merge的MMVD模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预 测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、 上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的视频图像编码方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲 器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片 的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的视频图像解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)~2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768~32767。如bitDepth为18,则取值范围为-131072~131071。又例如,对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量MV)的取值进行约束,使得所述四个4x4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。接收单元420也可以称为接收器420或者称为接收器单元420。发射器单元440也可以简称为发射器440。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现 本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频图像的编码或解码方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的视频图像编码或解码方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
下面针对本申请涉及到的帧间预测采用的相关技术进行描述。
1)融合(merge)模式
对于merge模式,先通过当前块空域或者时域相邻的已编码块的运动信息,构建候选运动矢量列表,将候选运动矢量列表率失真代价最小的候选运动信息作为当前块的运动矢量预测值(motion vector predictor,MVP),再将最优的候选运动信息在候选运动矢量列表中 位置的索引值(比如记为merge index,下同)传递到解码端。其中,邻块的位置及其遍历顺序都是预先定义好的。率失真代价由公式(1)计算获得,其中,J表示率失真代价RD Cost,SAD为使用候选运动矢量预测值进行运动估计后得到的预测像素值与原始像素值之间的绝对误差和(sum of absolute differences,SAD),R表示码率,λ表示拉格朗日乘子。编码端将选择的运动矢量预测值在候选运动矢量列表中的索引值传递到解码端。进一步地,在MVP为中心的邻域内进行运动搜索获得当前块实际的运动矢量,编码端将MVP与实际运动矢量之间的差值(motion vector difference)(即残差)传递到解码端。
J=SAD+λR(1)
当前块空域和时域候选运动信息如图6所示,空域候选运动信息来自于空间相邻的5个块(A0,A1,B0,B1和B2),参见图6所示,若相邻块不可得(相邻块不存在或者相邻块未编码或者相邻块采用的预测模式不为帧间预测模式),则该相邻块的运动信息不加入候选运动矢量列表。当前块的时域候选运动信息根据参考帧和当前帧的图序计数(picture order count,POC)对参考帧中对应位置块的MV进行缩放后获得。首先判断参考帧中T位置的块是否可得,若不可得则选择参考帧中C位置的块。
merge模式的邻块的位置及其遍历顺序也是预先定义好的,且邻块的位置及其遍历顺序在不同模式下可能不同。
可以看到,merge模式中需要维护一个候选运动矢量列表。每次向候选列表中加入新的运动信息之前都会先检查列表中是否已经存在相同的运动信息,如果存在则不会将该运动信息加入列表中。我们将这个检查过程称为候选运动矢量列表的修剪。列表修剪是为了防止列表中出现相同的运动信息,避免冗余的率失真代价计算。
2)跳过(skip)模式
skip是merge的一种特殊模式,区别在于传输时无残差,仅传递融合候选索引(merge index),merge index用于指示融合候选运动信息列表中的最佳或目标候选运动信息。
3)三角预测单元(triangle prediction unit,triangle PU)方式。
参见图7所示,当前块被划分为两个三角预测单元,每个三角预测单元各自从单向预测候选列表中选取运动矢量和参考帧索引。然后针对两个三角预测单元各自得到一个预测值。然后对斜边区域包括的像素通过自适应加权得到预测值。然后再对整个当前块进行变换和量化过程。另外,需要说明的是,三角预测单元方法一般只应用于skip模式或merge模式。图7中(1)为左上右下的划分方式(即从左上向右下划分),图7中(2)为右上左下的划分方式(即从右上向左下划分)。
三角预测单元方式中的单向预测候选列表一般可以包括5个候选预测运动矢量。这些候选预测运动矢量如图6的7个周边的相邻块(5个空域相邻块,2个时域对应块)得到。通过搜索7个相邻块运动信息,并按顺序放入单向预测候选列表,比如顺序可以是L0的双向预测运动矢量,L1的双向预测运动矢量以及L0和L1的运动矢量均值。如果候选个数不足5个,补充零运动矢量0加入单向预测候选列表中。在编码时,通过上述方式获取单向预测候选列表。示例性的,单向预测候选列表中的前向预测的运动信息用于预测一个三角PU的像素预测值,后向预测的运动信息用于预测另一个三角PU的像素预测值。编码端通过遍历选择最佳的运动矢量。比如,可以通过如下方式{m,i,j}:
{0,1,0},{1,0,1},{1,0,2},{0,0,1},{0,2,0}
{1,0,3},{1,0,4},{1,1,0},{0,3,0},{0,4,0}
{0,0,2},{0,1,2},{1,1,2},{0,0,4},{0,0,3}
{0,1,3},{0,1,4},{1,1,4},{1,1,3},{1,2,1}
{1,2,0},{0,2,1},{0,4,3},{1,3,0},{1,3,2}
{1,3,4},{1,4,0},{1,3,1},{1,2,3},{1,4,1}
{0,4,1},{0,2,3},{1,4,2},{0,3,2},{1,4,3}
{0,3,1},{0,2,4},{1,2,4},{0,4,2},{0,3,4}
其中,{m,i,j}第一位的m表示左上到右下划分方式或者左下到右上的划分方式。第二位表示第一个三角PU用的第i个候选预测运动矢量的前向运动信息,第三位表示第二个三角PU用的第j个候选预测运动矢量中的后向运动信息。
基于斜边区域包括的像素的预测值进行自适应加权过程可以参见图8所示。在完成了对三角预测单元P1和P2的预测后,对斜边区域包括的像素进行自适应加权过程以获得最终当前块的预测值。例如,图8中左侧图像,2位置的像素的预测值为
Figure PCTCN2019123810-appb-000001
P 1表示图8中右上区域的像素的预测值,P 2表示图8中左下区域的像素的预测值。
其中,两组加权参数如下:
第一组加权参数:{7/8,6/8,4/8,2/8,1/8}及{7/8,4/8,1/8}分别用于亮度和色度点;
第二组加权参数:{7/8,6/8,5/8,4/8,3/8,2/8,1/8}及{6/8,4/8,2/8}分别用于亮度和色度点。
其中一组加权参数将用于当前块的编解码实现。当两个预测单元的参考图像不同或它们的运动矢量之间差异大于16个像素则选择第二组加权参数,否则使用第一组加权参数。
4)融合运动矢量差(merge with motion vector difference,MMVD)方式
MMVD利用了merge候选。在merge候选运动矢量列表中选取其中一个或多个候选运动矢量,然后基于候选运动矢量进行运动矢量(MV)拓展表达。MV拓展表达包括MV起始点,运动步长以及运动方向。
利用已有的merge候选运动矢量列表,所选用的候选运动矢量是默认合并类型(比如MRG_TYPE_DEFAULT_N)。所选的候选运动矢量即为MV的起始点,换言之,即所选的候选运动矢量用于确定MV的初始位置。参见表1所示,基本候选索引(Base candidate IDX)表明选用候选运动矢量列表中哪个候选运动矢量作为最优的候选运动矢量。
表1
Figure PCTCN2019123810-appb-000002
如果merge候选运动矢量列表中可供选取的候选运动矢量的个数为1,则可以不确定Base candidate IDX。
步长标识(Distance IDX)代表运动矢量的偏移距离信息。步长标识的数值代表偏移初始位置的距离(例如预设距离),预设距离定义参见表2所示。
表2
Figure PCTCN2019123810-appb-000003
方向标识(Direction IDX)表示基于初始位置运动矢量差(MVD)的方向。方向标识 总共可以包括四种情况,具体定义参见表3所示。
表3
Direction IDX 00 01 10 11
x-axis + N/A N/A
y-axis N/A N/A +
根据MMVD方式确定当前图像块的预测像素值的过程包括:首先根据Base candidate IDX确定MV起始点,比如参见图9A中的位于中心的空心圆点,图9B中的实线所对应的位置。然后基于Direction IDX确定在MV的起始点的基础上向哪个方向偏移,再基于Distance IDX确定在Direction IDX指示的方向上偏移几个像素点。比如,Direction IDX==00,Distance IDX=2,则表示在x正方向上偏移一个像素点的运动矢量作为当前图像块的运动矢量,以预测或获取当前图像块的预测像素值。
MMVD标识的编解码位于skip和merge标识之后。如果skip或merge标识为真,则需要对MMVD标识进行编解码。比如,skip或merge标识为1,且MMVD标识为1,则MMVD对应的其他相关标识需要编解码。
5)Intra-inter模式
Intra-inter的混合模式(combined inter-picture merge and intra-picture prediction,CIIP)结合了Intra预测和一个merge预测。在对当前图像块进行帧间预测允许采用merge模式的情况下,引入一个标识位,且当此标识位为1时表明从帧内候选列表中选择了其中一种帧内模式。对于亮度分量,帧内候选列表中的候选来源于4种帧内预测模式,分别是直流模式(DC模式),平面(PLANAR)模式,水平模式,垂直预测模式。基于当前图像块的大小,帧内候选列表长度可设置为3或者4。当当前图像块的宽度大于高度的两倍时,帧内候选列表中排除水平模式。当当前图像块的高度大于宽度的两倍,帧内候选列表中排除垂直模式。根据帧内模式索引从帧内候选列表中选择出一种帧内预测模式,基于选择出的帧内预测模式对当前块进行帧内预测得到当前块的帧内预测块,以及根据merge索引从候选运动信息列表中确定的候选运动信息对当前块进行帧间预测得到当前块的帧间预测块,对帧内预测块和帧间预测块进行加权求平均得到Intra-inter的混合模式的当前块的预测块。
另外,需要说明的是,本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
目前在帧间预测引入了MMVD和triangle PU方式。在编解码时,如果确定当前块采用的帧间预测模式为merge或者skip模式的情况下,均需要对MMVD和triangle PU的标识进行编解码,而实际上在采用MMVD方式的情况下,不会再同时采用Triangle PU方式,也就是不存在MMVD标识位为真且triangle PU标识位为真的情况。所以这种情况下,对两种MMVD和Triangle PU的标识位均进行编解码比较冗余,导致浪费编解码资源,且增加码流比特开销。
基于此,本申请实施例提供了一种视频图像解码、编码方法及装置,在确定采用merge或者skip模式的情况下,如果解码到MMVD标识为真,可以不对triangle PU标识进行编解码,仅在解码到MMVD标识为假的情况下,才对triangle PU标识进行编解码,从而在一定程度上可以降低编码资源的使用,减少码流比特开销的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的视频图像解码或编码方法存在两种情况,第一种情况是帧间预测采用skip模式,第二种情况是帧间预测采用merge模式。
下面结合附图从解码侧对本申请提供的视频图像解码方法进行详细说明。具体可以由解码器30执行,或者由解码器中的熵解码单元和预测处理单元来实现,或者由处理器来执行。
针对第一种情况下视频图像解码方法进行说明,参见图10A所示,从解码角度进行说明。
S1001a,从码流中解析第一标识。
第一标识用于指示对当前待处理图像进行帧间预测是否采用skip模式,换句话说,第一标识用于指示当前待处理图像进行帧间预测是否允许采用skip模式。示例性的,在标准文本或代码中第一标识可以通过语法元素cu_skip_flag[x0][y0]来表示,比如cu_skip_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测采用skip模式,例如允许采用skip模式,cu_skip_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不采用skip模式,例如不允许采用skip模式。
S1002a,当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识。执行S1003a,或者执行S1005a。
第二标识用于指示对当前待处理图像进行帧间预测是否采用skip模式下的MMVD方式,或者,第二标识用于指示当前待处理图像进行帧间预测是否允许MMVD方式。示例性的,在标准文本或代码中第二标识可以通过语法元素skip_mmvd_flag[x0][y0]或者mmvd_flag[x0][y0]来表示。以mmvd_flag[x0][y0]为例,比如mmvd_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测允许采用MMVD方式,mmvd_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不允许采用MMVD方式。
S1003a,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,从所述码流中解析第三标识。
第三标识用于指示对当前待处理图像进行帧间预测是否采用triangle PU方式,或者,第三标识用于指示当前待处理图像进行帧间预测是否允许triangle PU方式。
其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用triangle PU方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用triangle PU方式。比如,第一数值为1,第二数值为0。再比如,第一数值为0(比如重用已有标识,例如第三标识(比如通过ciip_flag来表示)=0,用于指示不采用CIIP,从而间接地指示对所述当前待处理图像块进行帧间预测允许采用triangle PU方式),第二数值为1。
示例性的,在标准文本或代码中,第三标识可以通过语法元素skip_triangle_flag[x0][y0]或者triangle_flag[x0][y0]或者merge_triangle_flag[x0][y0]来表示。以skip_triangle _flag[x0][y0]为例,比如skip_triangle_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测允许采用triangle PU方式,skip_triangle_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不允许采用triangle PU方式。
S1004a,采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测。所述标识信息包括所述第一标识、所述第二标识、所述第三标识中的一个或多个。
当所述第三标识指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第三标识指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式时,根据所述跳过模式对所述当前待处理图像块进行帧间预测。
应当理解的是,在解码第一标识为真的情况下,比如,cu_skip_flag[x0][y0]=1,也就是对当前待处理图像块进行帧间预测可以采用skip模式时,执行解码第二标识的操作,MMVD方式应用于在skip模式下,因此第二标识用于指示对当前待处理图像进行帧间预测是否采用MMVD方式,或者,第二标识用于指示在skip模式下,对当前待处理图像进行帧间预测是否采用MMVD方式。同理,第三标识用于指示对当前待处理图像进行帧间预测是否采用triangle PU方式,或者,第二标识用于指示在skip模式下,对当前待处理图像进行帧间预测是否采用triangle PU方式。
S1005a,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
作为一种示例,当确定skip模式下指示对所述当前待处理图像块进行帧间预测不采用triangle PU方式时,可以确定采用skip模式进行帧间预测。当然,还有可能解析到skip模式下的其它方式,在该情况下,还可以采用skip模式下的其它方式对当前待处理图像块进行帧间预测。
在一种可能的示例中,在从码流中解析第三标识时,在确定当所述当前待处理图像块满足允许采用所述triangle PU方式进行帧间预测的条件时,从码流中解析所述第三标识,也就是说,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用的MMVD方式,且所述当前待处理图像块满足允许采用所述triangle PU方式进行帧间预测的条件时,从码流中解析所述第三标识。
条件可以包括如下至少一项:
(1)triangle PU控制位为真(例如:sps_triangle_enabled_flag为真);
(2)当前待处理图像块所在的视频帧为B帧(slice_type==B);
(3)当前待处理图像块宽度乘以高度大于或者等于16;
(4)当前待处理图像块不允许affine模式。
在一种可能的示例中,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用跳过模式下的MMVD方式时,不再执行解码第三标识的操作。换句话说,当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,可以直接地确定或者推断对所述当前待处理图像块进行帧间预测不采用triangle PU方式。进而,在所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述跳过模式下的MMVD方式对所述当前待处理图像块进行帧间预测。也就是说,在所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不执行解析triangle PU方 式的相关标识,直接根据所述跳过模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
应当理解的是,虽然判断当前图像块是否采用三角预测单元模式时,可以先判断所述允许采用所述三角预测单元方式进行帧间预测的条件是否满足,实际上,当前图像块是否采用三角预测单元方式,是取决于merge_triangle_flag的取值,如果merge_triangle_flag为1,则当前图像块采用或允许采用三角预测单元方式;反之,则当前图像块不采用或不允许采用三角预测单元方式。
如下示例上述图10A对应的实施例的伪代码。
Figure PCTCN2019123810-appb-000004
下面从编码角度进行详细说明,参见图10B所示,示例一种视频图像编码方法流程示意图。
S1001b,确定对当前待处理图像块进行帧间预测采用的预测模式。
其中,在实现A1时,可以通过在确定或者选择适用于当前待处理图像块的预测模式的过程中,针对当前待处理图像块的一种或者多种帧间预测模式,根据率失真代价准则确定对当前待处理图像块进行帧间预测的预测模式,例如,选择率失真代价最小的结果对应的预测模式为对当前待处理图像块进行帧间预测的预测模式。
S1002b,将用于指示确定的预测模式的标识信息编入码流,其中,所述标识信息中包括第一标识;当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;当所述第二标识指示所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识。
其中,所述第三标识为第一数值,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式,或者,所述第三标识为第二数值,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
针对第一标识、第二标识以及第三标识的说明可以参见解码侧的描述,此处不再赘述。
在一种可能的实现方式中,在编入标识入码流时,可以一个一个编入,后面的标识是否编入码流,基于前面的标识的取值来确定。
在一种示例中,B1,将第一标识编入码流。
B2,当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,将第二标识编入码流。
B3,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,将第三标识编入码流。
其中,所述第三标识为第一数值,以指示对当前待处理图像块进行帧间预测采用三角预测单元方式,或者所述第三标识为第二数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在另一种可能的实现方式中,可以先确定各个标识的取值,然后再根据取值确定哪些需要编入码流。
示例性的,C1,确定第一标识的取值,第二标识的取值和第三标识的取值,执行C21或者C22或者C23。
C21,将所述第一标识,所述第二标识和所述第三标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于对指示所述待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式;所述第三标识的取值用于指示对所述待处理图像块进行帧间预测采用三角预测单元方式。
C22,将第一标识,第二标识和第三标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于指示对所述待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式;所述第三标识的取值用于指示对所述待处理图像块进行帧间预测不采用三角预测单元方式。
C23,将第一标识和第二标识编入码流,其中所述第一标识的取值用于指示当前待处理图像块进行帧间预测采用跳过模式;所述第二标识的取值用于指示对所述待处理图像块进行帧间预测采用融合运动矢量差MMVD方式。
在一种可能的实现方式中,当所述标识信息包括第二标识时(码流中存在第二标识时),在所述码流中,所述第二标识位于所述第一标识之后;或者,当所述标识信息包括第二标识和第三标识时(码流中存在第三标识时),在所述码流中,所述第三标识位于所述第二标识之后,所述第二标识位于所述第一标识之后。
在一种可能的实现方式中,当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识(即将第四标识编入码流);
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识(即将第五标识编入码流);
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识(即将第六标识编入码流);
其中,所述第六标识为第三数值,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
在一种可能的设计中,当所述第二标识指示对所述当前待处理图像块进行帧间预测不 采用MMVD方式时,所述标识信息还包括第三标识,包括:
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
针对第二种情况下视频图像解码方法进行说明,参见图11A所示,从解码角度进行说明。
S1101a,从码流中解析第四标识。
第四标识用于指示对当前待处理图像进行帧间预测是否采用merge模式,换句话说,第一标识用于指示当前待处理图像进行帧间预测是否允许采用merge模式。示例性的,在标准文本或代码中,第四标识可以通过语法元素merge_flag[x0][y0]来表示,比如merge_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测允许采用merge模式,merge_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不允许采用merge模式。
S1102a,当所述第四标识指示对当前待处理图像块进行帧间预测采用merge模式时,从所述码流中解析第五标识。执行S1103a或者执行S1105a。
第五标识用于指示对当前待处理图像进行帧间预测是否采用merge模式下的MMVD方式,换句话说,第五标识用于指示当前待处理图像进行帧间预测是否允许MMVD方式。示例性的,在标准文本或代码中,第五标识可以通过语法元素merge_mmvd_flag[x0][y0]或者mmvd_flag[x0][y0]来表示,比如merge_mmvd_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测允许采用MMVD方式,merge_mmvd_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不允许采用MMVD方式。
S1103a,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用merge模式下的MMVD方式时,从所述码流中解析第六标识。
第六标识用于指示对当前待处理图像进行帧间预测是否允许采用triangle PU方式,换句话说,第六标识用于指示对当前待处理图像进行帧间预测是否允许采用merge模式下的triangle PU方式。
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用triangle PU方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用triangle PU方式。比如,第三数值为1,第四数值为0。再比如,第三数值为0,第四数值为1。
示例性的,在标准文本或代码中,第六标识可以通过语法元素merge_triangle_flag[x0][y0]或者triangle_flag[x0][y0]来表示,比如merge_triangle_flag[x0][y0]==1时,指示对当前待处理图像进行帧间预测允许采用triangle PU方式,merge_triangle_flag[x0][y0]==0时,指示对当前待处理图像进行帧间预测不允许采用triangle PU方式。
S1104a,采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第四标识、所述第五标识、所述第六标识中的一个或多个。
当所述第六标识为第三数值时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第六标识为第四数值时,根据所述融合模式对所述当前待处理图像块进行帧间预测;或,
S1105a,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
作为一种示例,当确定merge模式下对所述当前待处理图像块进行帧间预测不采用triangle PU方式时,可以确定采用merge模式进行帧间预测。当然,还有可能解析到merge模式下的其它方式,在该情况下,还可以采用merge模式下的其它方式对当前待处理图像块进行帧间预测。
在一种可能的示例中,在从码流中解析第六标识时,在确定当所述当前待处理图像块满足允许采用所述triangle PU方式进行帧间预测的条件时,从码流中解析所述第六标识,也就是说,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述triangle PU方式进行帧间预测的条件时,从码流中解析所述第六标识。
条件参见图10A对应的实施例中的相关描述,此处不再赘述。
在一种可能的示例中,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不再执行解码第六标识的操作。换句话说,当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,可以直接地确定或者推断对所述当前待处理图像块进行帧间预测不采用triangle PU方式。进而,在所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述merge模式下的MMVD方式对所述当前待处理图像块进行帧间预测。也就是说,在所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,不执行解析triangle PU方式的相关标识,直接根据所述merge模式下的MMVD方式对所述当前待处理图像块进行帧间预测。
另外,在一种可能的实施方式中,在从码流中解码第四标识时,需要先解码第一标识,当第一标识指示对所述当前待处理图像块进行帧间预测不采用skip模式时,才执行从码流中解码第四标识。即执行图11A所示的视频图像解码流程。而当第一标识指示对所述当前待处理图像块进行帧间预测采用skip模式时,不执行解码第四标识的操作,即不执行图11A所示的视频图像解码流程,而执行图10A所示的视频图像解码流程。
应当理解的是,skip属于merge模式的一种,因此,这里的第二标识和第五标识可以采用相同的命名方式,比如均称为mmvd_flag[x0][y0]或者均称为merge_mmvd_flag[x0][y0]。同理,第三标识和第六标识也可以采用相同的命名方式,比如均称为merge_triangle_flag[x0][y0]或均称为triangle_flag[x0][y0]。
应当理解的是,在解码第四标识为真的情况下,比如,merge_flag[x0][y0]=1,也就是对当前待处理块进行帧间预测可以采用merge模式下,执行解码第五标识的操作,MMVD方式应用于merge模式下,因此第五标识用于指示对当前待处理图像进行帧间预测是否采用MMVD方式,换句话说是,第五标识用于指示在merge模式下,对当前待处理图像进行帧间预测是否采用MMVD方式。同理,第六标识用于指示对当前待处理图像进行帧间预测是否采用triangle PU方式,换句话说是,第六标识用于指示在merge模式下,对当前待处理图像进行帧间预测是否采用triangle PU方式。
下面从编码角度进行详细说明,参见图11B所示,示例一种视频图像编码方法流程示 意图。
S1101b,确定对当前待处理图像块进行帧间预测采用的预测模式。
S1102b,将用于指示确定的预测模式的标识信息编入码流;其中,所述标识信息中包括第四标识;当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识。
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
针对第四标识、第五标识以及第六标识的说明可以参见前述解码侧的描述,此处不再赘述。
在一种可能的实现方式中,在编入标识入码流时,可以一个一个编入,后面的标识是否编入码流,可以基于前面的标识的取值或者基于前面标识指示的意思来确定。
示例性的:E1,将第四标识编入码流;
E2,当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,将第五标识编入码流;
E3,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,将第六标识编入码流;
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式,当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
在另一种可能的实现方式中,可以先确定各个标识的取值,然后再根据取值确定哪些需要编入码流。
示例性的,F1,确定第四标识的取值、第五标识的取值和第六标识的取值,执行F21或者F22或者F23。
F21,将所述第四标识,所述第五标识和所述第六标识编入码流,其中所述第四标识的取值用于指示当前待处理图像块进行帧间预测采用融合模式;所述第五标识的取值用于指示对所述待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式;所述第六标识的取值用于指示对所述待处理图像块进行帧间预测采用三角预测单元方式。
F22,将第四标识,第五标识和第六标识编入码流,其中所述第四标识的取值用于指示当前待处理图像块进行帧间预测采用融合模式;所述第五标识的取值用于指示对所述待处理图像块进行帧间预测不采用MMVD方式;所述第六标识的取值用于指示对所述待处理图像块进行帧间预测不采用三角预测单元方式。
F23,将第四标识和第五标识编入码流,其中所述第四标识的取值用于指示当前待处理图像块进行帧间预测采用融合模式;所述第五标识的取值用于指示对所述待处理图像块进行帧间预测采用MMVD方式。
在一种可能的实现方式中,当所述标识信息包括第五标识时(码流中存在第五标识时),在所述码流中,所述第五标识位于所述第四标识之后;或者,当所述标识信息包括第五标识和第六标识时(码流中存在第六标识时),在所述码流中,所述第六标识位于所述第五标识之后,第五标识位于第四标识之后。
在一种可能的实现方式中,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
在一种可能的实现方式中,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
在一种可能的设计中,在所述码流中,所述第一标识位于所述第四标识之前。
本申请实施例还提供一种视频图像解码方法,包括:
G1:从码流中解析第七标识(例如mh_intra_flag[x0][y0]);
G2:当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式(即Combined inter merge/intra prediction)时,从所述码流中解析第八标识(例如,merge_triangle_flag[x0][y0]);
其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
G3:采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
应当理解的是,不排除在解析第八标识之前,还会解析其他的标识信息。也不排除还要考虑其它条件来决定是否解析第八标识。这里的其它条件,例如是sps_triangle_enabled_flag&&slice_type(切片类型)==B&&cbWidth(当前块宽度)*cbHeight(当前块高度)>=16。在一种示例下,sps_triangle_enabled_flag表示当前待处理图像块所在的序列是否允许采用三角预测单元方式。在另一种示例下,表示当前待处理图像块所在的图像允许采用三角预测单元方式的条件可以包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式、sps_triangle_enabled_flag&&slice_type(切片类型)==B&&cbWidth(当前块宽度)*cbHeight(当前块高度)>=16等。
本申请实施例还提供另一种视频图像解码方法,包括:
H1:从码流中解析第七标识(例如mh_intra_flag[x0][y0]);
H2:当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识(merge_triangle_flag[x0][y0]),所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
H3:采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
示例性的,所述允许采用所述三角预测单元方式进行帧间预测的条件可以包括:mh_intra_flag[x0][y0](第七标识)==0&&sps_triangle_enabled_flag&&slice_type== B&&cbWidth*cbHeight>=16。
作为一种示例,本文示例一种解析当前图像块采用的帧间预测模式的部分语法结构,参见表4所示。
应当理解的是,在解码第一标识(cu_skip_flag[x0][y0])为真时,默认第四标识(merge_flag[x0][y0])为真。
表4
Figure PCTCN2019123810-appb-000005
基于与上述方法相同的发明构思,如图12所示,本申请实施例还提供了一种视频图像解码装置1200,该装置1200包括熵解码单元1201和帧间预测单元1202。
在一种可能的实现方式中:
熵解码单元1201,用于从码流中解析第一标识;
熵解码单元1201,还用于当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识;
熵解码单元1201,还用于当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识;
其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
帧间预测单元1202,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第一标识、第二标识、第三标识中的一个或多个。
示例性的,帧间预测单元1202,具体用于:
当所述第三标识指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式时,根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
当所述第三标识指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式时,根据所述跳过模式对所述当前待处理图像块进行帧间预测。
示例性的,帧间预测单元1202,具体用于当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
示例性的,所述熵解码单元1201,还用于:
当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;
当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,从所述码流中解析第六标识;
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
相应的,帧间预测单元1202,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第一标识、第四标识、第五标识、第六标识中的一个或多个。
示例性的,所述熵解码单元1201,在从码流中解析第三标识时,具体用于:
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从码流中解析所述第三标识。
在一种可能的设计中,所述熵解码单元1201,在从所述码流中解析第三标识之前,还用于从码流中解析第七标识;
所述允许采用所述三角预测单元方式进行帧间预测的条件包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
相应地,所述标识信息包括所述第一标识、所述第二标识、所述第三标识、第七标识中的一个或多个。
在一种可能的设计中,所述熵解码单元1201,在从所述码流中解析第三标识之前,还用于从码流中解析第七标识;
所述熵解码单元在从所述码流中解析所述第三标识的方面,具体用于当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式时,从所述码流中解析第三标识;
相应地,所述标识信息包括所述第一标识、所述第二标识、所述第三标识、第七标识中的一个或多个。
在另一种可能的实现方式中:
熵解码单元1201,用于从码流中解析第四标识;
熵解码单元1201,还用于当所述第四标识指示对当前待处理图像块进行帧间预测采用为融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第六标识;
其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
帧间预测单元1202,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第四标识、第五标识、第六标识中的一个或多个。
示例性的,帧间预测单元1202,用于当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
示例性的,所述熵解码单元1201,在从所述码流中解析第六标识时,具体用于:
当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
示例性的,所述熵解码单元1201,还用于从所述码流中解析第一标识;
所述熵解码单元1201,在从所述码流中解析第四标识时,具体用于:
当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析所述第四标识。此时,标识信息中还可以包括第一标识。
在又一种可能的实现方式中:
熵解码单元1201,用于从码流中解析第七标识;当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式时,从所述码流中解析第八标识;其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
帧间预测单元1202,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
在再一种可能的实现方式中:
熵解码单元1201,用于从码流中解析第七标识;当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识,所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式;
帧间预测单元1202,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
还需要说明的是,熵解码单元1201、帧间预测单元1202的具体实现过程可参考图10A或者图11A实施例的详细描述,为了说明书的简洁,这里不再赘述。
基于与上述方法相同的发明构思,如图13所示,本申请实施例还提供了一种视频图像编码装置1300,该装置1300包括帧间预测单元1301和熵编码单元1302。
在一种可能的实现方式中:
帧间预测单元1301,用于确定对当前待处理图像块进行帧间预测采用的预测模式;
熵编码单元1302,用于将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第一标识;
当所述第一标识指示所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识;
其中,所述第三标识为第一数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第三标识为第二数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
示例性的,当所述标识信息包括第二标识时,在所述码流中,所述第二标识位于所述第一标识之后;或者,当所述标识信息还包括第三标识时,在所述码流中,所述第三标识位于所述第二标识之后。
示例性的:当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识;
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
示例性的,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第三标识,包括:
当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
在另一种可能的实现方式中:
帧间预测单元1301,确定对当前待处理图像块进行帧间预测采用的预测模式;
熵编码单元1302,将用于指示确定的预测模式的标识信息编入码流;
其中,所述标识信息中包括第四标识;
当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识;
其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像块进行帧间预测不采用三角预测单元方式。
示例性的,当所述标识信息包括第五标识时,在所述码流中,所述第五标识位于所述第四标识之后;或者,当所述标识信息包括第五标识和第六标识时,在所述码流中,所述第六标识位于所述第五标识之后,第五标识位于所述第四标识之后。
示例性的,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
示例性的,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
示例性的,在所述码流中,所述第一标识位于所述第四标识之前。
示例性地,在解码端,图12中,熵解码单元1201的位置对应于图3中熵解码单元304 的位置,换言之,熵解码单元1201的功能的具体实现可以参见图3中的熵解码单元304的具体细节。帧间预测单元1202的位置对应于图3中帧间预测单元344的位置,换言之,帧间预测单元1202的功能的具体实现可以参见图3中的帧间预测单元344的具体细节。
示例性地,在编码端,图13中,熵编码单元1302的位置对应于图2中熵编码单元270的位置,换言之,熵解码单元1201的功能的具体实现可以参见图2中的熵编码单元270的具体细节。帧间预测单元1301的位置对应于图2中帧间预测单元244的位置,换言之,帧间预测单元1301的功能的具体实现可以参见图2中的帧间预测单元244的具体细节。
还需要说明的是,帧间预测单元1301、熵编码单元1302的具体实现过程可参考图10B或者图11B实施例的详细描述,为了说明书的简洁,这里不再赘述。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (58)

  1. 一种视频图像解码方法,其特征在于,包括:
    从码流中解析第一标识;
    当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识;
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识;
    其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式,其中所述第三标识是图像块级别的标识;
    采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第一标识、所述第二标识、所述第三标识中的一个或多个。
  2. 如权利要求1所述的方法,其特征在于,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
    当所述第三标识为第一数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第三标识为第二数值时,允许根据所述跳过模式对所述当前待处理图像块进行帧间预测。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一数值为0,所述第二数值为1。
  4. 如权利要求1所述的方法,其特征在于,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
    当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
  5. 如权利要求1至4任一项所述的方法,其特征在于,还包括:
    当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;
    当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,从所述码流中解析第六标识,所述第六标识为图像块级别的标识;
    其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  6. 如权利要求5所述的方法,其特征在于,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
    当所述第六标识为第三数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第六标识为第四数值时,允许根据所述融合模式对所述当前待处理图像块进行 帧间预测。
  7. 如权利要求5或6所述的方法,其特征在于,所述第三数值为0,所述第四数值为1。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述从所述码流中解析第三标识,包括:
    当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第三标识。
  9. 一种视频图像解码方法,其特征在于,包括:
    从码流中解析第四标识;
    当所述第四标识指示对当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不允许采用融合运动矢量差MMVD方式时,从所述码流中解析第六标识;
    其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式,其中所述第六标识时图像块级别的标识;
    采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第四标识、所述第五标识、所述第六标识中的一个或多个。
  10. 如权利要求9所述的方法,其特征在于,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
    当所述第六标识为第三数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第六标识为第四数值时,允许根据所述融合模式对所述当前待处理图像块进行帧间预测。
  11. 如权利要求9或10所述的方法,其特征在于,所述第三数值为0,所述第四数值为1。
  12. 如权利要求9所述的方法,其特征在于,所述采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,包括:
    当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
  13. 如权利要求9-12任一项所述的方法,其特征在于,从所述码流中解析第六标识,包括:
    当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
  14. 如权利要求9-13任一项所述的方法,其特征在于,还包括:
    从所述码流中解析第一标识;
    所述从所述码流中解析第四标识,包括:
    当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析所述第四标识。
  15. 一种视频图像编码方法,其特征在于,包括:
    确定对当前待处理图像块进行帧间预测采用的预测模式;
    将用于指示确定的预测模式的标识信息编入码流;
    其中,所述标识信息中包括第一标识;
    当所述第一标识指示对所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识,所述第三标识为图像块级别的标识;
    其中,所述第三标识为第一数值,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第三标识为第二数值,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  16. 如权利要求15所述的方法,其特征在于,所述第一数值为0,所述第二数值为1。
  17. 如权利要求15或16所述的方法,其特征在于,当所述标识信息包括第二标识时,在所述码流中,所述第二标识位于所述第一标识之后;
    或者,当所述标识信息包括第二标识和第三标识时,在所述码流中,所述第三标识位于所述第二标识之后,所述第二标识位于所述第一标识之后。
  18. 如权利要求15-17任一项所述的方法,其特征在于:
    当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识;
    当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,所述标识信息中还包括第六标识,所述第六标识为图像块级别的标识;
    其中,所述第六标识为第三数值,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  19. 如权利要求18所述的方法,其特征在于,所述第三数值为0,所述第四数值为1。
  20. 如权利要求15-19任一项所述的方法,其特征在于,
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第三标识,包括:
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
  21. 一种视频图像编码方法,其特征在于,包括:
    确定当前待处理图像块进行帧间预测采用的预测模式;
    将用于指示确定的预测模式的标识信息编入码流;
    其中,所述标识信息中包括第四标识;
    当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识,所述第六标识为图像块级别的标识;
    其中,所述第六标识为第三数值,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  22. 如权利要求21所述的方法,其特征在于,所述第三数值为0,所述第四数值为1。
  23. 如权利要求21或22所述的方法,其特征在于,当所述标识信息包括第五标识时,在所述码流中,所述第五标识位于所述第四标识之后;或者,
    当所述标识信息包括所述第五标识和所述第六标识时,在所述码流中,所述第六标识位于所述第五标识之后,所述第五标识位于所述第四标识之后。
  24. 如权利要求21-23任一项所述的方法,其特征在于,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
  25. 如权利要求21-24任一项所述的方法,其特征在于,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
  26. 如权利要求25所述的方法,其特征在于,在所述码流中,所述第一标识位于所述第四标识之前。
  27. 一种视频图像解码装置,其特征在于,包括:熵解码单元和帧间预测单元,其中
    所述熵解码单元用于从码流中解析第一标识;
    所述熵解码单元还用于当所述第一标识指示对当前待处理图像块进行帧间预测采用跳过模式时,从所述码流中解析第二标识;
    所述熵解码单元还用于当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识;
    其中,当所述第三标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第三标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式,所述第三标识为图像块级别的标识;
    所述帧间预测单元用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第一标识、第二标识、第三标识中的一个或多个。
  28. 如权利要求27所述的装置,其特征在于,所述帧间预测单元具体用于:
    当所述第三标识为第一数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第三标识为第二数值时,允许根据所述跳过模式对所述当前待处理图像块进行帧间预测。
  29. 如权利要求27或28所述的装置,其特征在于,所述第一数值为0,所述第二数值为1。
  30. 如权利要求27所述的装置,其特征在于,所述帧间预测单元具体用于:当所述第二标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
  31. 如权利要求27至30任一项所述的装置,其特征在于,所述熵解码单元还用于:
    当所述第一标识指示对所述当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析第四标识;
    当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,从所述码流中解析第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,从所述码流中解析第六标识,所述第六标识为图像块级别的标识;
    其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  32. 如权利要求31所述的装置,其特征在于,所述帧间预测单元具体用于:
    当所述第六标识为第三数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第六标识为第四数值时,允许根据所述融合模式对所述当前待处理图像块进行帧间预测。
  33. 如权利要求31或32所述的装置,其特征在于,所述第三数值为0,所述第四数值为1。
  34. 如权利要求31-33任一项所述的装置,其特征在于,在所述当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第三标识的方面,所述熵解码单元具体用于:
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第三标识。
  35. 一种视频图像解码装置,其特征在于,包括:熵解码单元和帧间预测单元,其中:
    所述熵解码单元用于从码流中解析第四标识;
    所述熵解码单元还用于当所述第四标识指示对当前待处理图像块进行帧间预测采用为融合模式时,从所述码流中解析第五标识;当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,从所述码流中解析第六标识,所述第六标识为图像块级别的标识;
    其中,当所述第六标识为第三数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第六标识为第四数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
    所述帧间预测单元用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括第四标识、第五标识、第六标识中的一个或多个。
  36. 如权利要求35所述的装置,其特征在于,所述帧间预测单元具体用于:
    当所述第六标识为第三数值时,允许根据所述三角预测单元方式对所述当前待处理图像块进行帧间预测;或,
    当所述第六标识为第四数值时,允许根据所述融合模式对所述当前待处理图像块进行帧间预测。
  37. 如权利要求35或36所述的装置,其特征在于,所述第三数值为0,所述第四数值为1。
  38. 如权利要求35所述的装置,其特征在于,所述帧间预测单元具体用于:当所述第五标识指示对所述当前待处理图像块进行帧间预测采用MMVD方式时,根据所述MMVD方式对所述当前待处理图像块进行帧间预测。
  39. 如权利要求35-38任一项所述的装置,其特征在于,所述熵解码单元,在从所述码流中解析第六标识时,具体用于:
    当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析所述第六标识。
  40. 如权利要求35-39任一项所述的装置,其特征在于,所述熵解码单元还用于从所述码流中解析第一标识;
    在从所述码流中解析第四标识的方面,所述熵解码单元具体用于:
    当所述第一标识指示对当前待处理图像块进行帧间预测不采用跳过模式时,从所述码流中解析所述第四标识。
  41. 一种视频图像编码装置,其特征在于,包括:
    帧间预测单元,用于确定对当前待处理图像块进行帧间预测采用的预测模式;
    熵编码单元,用于将用于指示确定的预测模式的标识信息编入码流;
    其中,所述标识信息中包括第一标识;
    当所述第一标识指示对所述当前待处理图像块进行帧间预测采用跳过模式时,所述标识信息中还包括第二标识;
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式时,所述标识信息还包括第三标识,所述第三标识为图像块级别的标识;
    其中,所述第三标识为第一数值,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第三标识为第二数值,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  42. 如权利要求41所述的装置,其特征在于,当所述标识信息包括第二标识时,在所述码流中,所述第二标识位于所述第一标识之后;或者,
    当所述标识信息包括所述第二标识和所述第三标识时,在所述码流中,所述第三标识位于所述第二标识之后,所述第二标识位于所述第一标识之后。
  43. 如权利要求41或42所述的装置,其特征在于,所述第一数值为0,所述第二数值为1。
  44. 如权利要求41-43任一项所述的装置,其特征在于:
    当所述第一标识指示所述当前待处理图像块进行帧间预测不采用跳过模式时,所述标识信息中还包括第四标识;
    当所述第四标识指示所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用融合运动矢量差MMVD方式,所述标识信息中还包括第六标识,所述第六标识为图像块级别的标识;
    其中,所述第六标识为第三数值,以指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,以指示对所述当前待处理图像 块进行帧间预测不允许采用三角预测单元方式。
  45. 如权利要求44所述的装置,其特征在于,所述第三数值为0,所述第四数值为1。
  46. 如权利要求41-45任一项所述的装置,其特征在于,当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第三标识,包括:
    当所述第二标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第三标识。
  47. 一种视频图像编码装置,其特征在于,包括:
    帧间预测单元,确定对当前待处理图像块进行帧间预测采用的预测模式;
    熵编码单元,将用于指示确定的预测模式的标识信息编入码流;
    其中,所述标识信息中包括第四标识;
    当所述第四标识指示对所述当前待处理图像块进行帧间预测采用融合模式时,所述标识信息中还包括第五标识;
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用运动矢量差MMVD方式,所述标识信息中还包括第六标识,所述第六标识为图像块级别的标识;
    其中,所述第六标识为第三数值,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;或者,所述第六标识为第四数值,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式。
  48. 如权利要求47所述的装置,其特征在于,所述第三数值为0,所述第四数值为1。
  49. 如权利要求47或48所述的装置,其特征在于,当所述标识信息包括所述第五标识时,在所述码流中,所述第五标识位于所述第四标识之后;或者,
    当所述标识信息包括所述第五标识和所述第六标识时,在所述码流中,所述第六标识位于所述第五标识之后,所述第五标识位于所述第四标识之后。
  50. 如权利要求47-49任一项所述的装置,其特征在于,当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式时,所述标识信息还包括第六标识,包括:
    当所述第五标识指示对所述当前待处理图像块进行帧间预测不采用MMVD方式,且所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,所述标识信息还包括第六标识。
  51. 如权利要求47-50任一项所述的装置,其特征在于,所述标识信息中还包括第一标识,所述第一标识指示当前待处理图像块进行帧间预测不采用跳过模式。
  52. 如权利要求51所述的装置,其特征在于,在所述码流中,所述第一标识位于所述第四标识之前。
  53. 一种视频图像解码方法,其特征在于,包括:
    从码流中解析第七标识;
    当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式时,从所述码流中解析第八标识;
    其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行 帧间预测不采用三角预测单元方式;
    采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
  54. 一种视频图像解码装置,其特征在于,包括:
    熵解码单元,用于从码流中解析第七标识;当所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式时,从所述码流中解析第八标识;其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
    帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
  55. 一种视频图像解码方法,其特征在于,包括:
    从码流中解析第七标识;
    当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识,所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
    其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
    采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
  56. 一种视频图像解码装置,其特征在于,包括:
    熵解码单元,用于从码流中解析第七标识;当所述当前待处理图像块满足允许采用所述三角预测单元方式进行帧间预测的条件时,从所述码流中解析第八标识,所述允许采用所述三角预测单元方式进行帧间预测的条件至少包括:所述第七标识指示对当前待处理图像块不采用帧内帧间预测模式;
    其中,当所述第八标识为第一数值时,指示对所述当前待处理图像块进行帧间预测允许采用三角预测单元方式;当所述第八标识为第二数值时,指示对所述当前待处理图像块进行帧间预测不允许采用三角预测单元方式;
    帧间预测单元,用于采用所述码流中的标识信息所指示的帧间预测模式,对所述当前待处理图像块进行帧间预测,所述标识信息包括所述第七标识和所述第八标识中的一个或多个。
  57. 一种视频解码设备,其特征在于,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-14任一项所描述的方法。
  58. 一种视频编码设备,其特征在于,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求15-26任一项所描述的方法。
PCT/CN2019/123810 2018-12-07 2019-12-06 视频图像解码、编码方法及装置 WO2020114509A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
MX2021006683A MX2021006683A (es) 2018-12-07 2019-12-06 Método y aparato de codificación y decodificación de imágenes de video.
KR1020237035929A KR20230149344A (ko) 2018-12-07 2019-12-06 비디오 픽처 디코딩 및 인코딩 방법 및 장치
AU2019394522A AU2019394522A1 (en) 2018-12-07 2019-12-06 Video picture decoding and encoding method and apparatus
JP2021532301A JP7314274B2 (ja) 2018-12-07 2019-12-06 ビデオピクチャの復号および符号化の方法ならびに装置
CA3122329A CA3122329C (en) 2018-12-07 2019-12-06 Coding of merge or skip mode with indicator information in inter prediction
BR112021010896-3A BR112021010896A2 (pt) 2018-12-07 2019-12-06 Método e aparelho de codificação e decodificação de imagem de vídeo
CN202210810881.8A CN115243048B (zh) 2018-12-07 2019-12-06 视频图像解码、编码方法及装置
EP23210025.5A EP4346212A2 (en) 2018-12-07 2019-12-06 Video picture decoding and encoding method and apparatus
CN202210811022.0A CN115243049A (zh) 2018-12-07 2019-12-06 视频图像解码、编码方法及装置
CN201980081126.7A CN113491132B (zh) 2018-12-07 2019-12-06 视频图像解码、编码方法、装置及可读存储介质
CN202210811245.7A CN115174931A (zh) 2018-12-07 2019-12-06 视频图像解码、编码方法及装置
KR1020217020780A KR102593525B1 (ko) 2018-12-07 2019-12-06 비디오 픽처 디코딩 및 인코딩 방법 및 장치
EP19893119.8A EP3893510B1 (en) 2018-12-07 2019-12-06 Video image encoding and decoding method and apparatus
US17/339,746 US11425372B2 (en) 2018-12-07 2021-06-04 Video picture decoding and encoding method and apparatus
US17/865,233 US11758130B2 (en) 2018-12-07 2022-07-14 Video picture decoding and encoding method and apparatus
US18/361,596 US20240040113A1 (en) 2018-12-07 2023-07-28 Video picture decoding and encoding method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811497390 2018-12-07
CN201811497390.2 2018-12-07
CN201811574426.2 2018-12-21
CN201811574426.2A CN111294601A (zh) 2018-12-07 2018-12-21 视频图像解码、编码方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/339,746 Continuation US11425372B2 (en) 2018-12-07 2021-06-04 Video picture decoding and encoding method and apparatus

Publications (1)

Publication Number Publication Date
WO2020114509A1 true WO2020114509A1 (zh) 2020-06-11

Family

ID=70974026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123810 WO2020114509A1 (zh) 2018-12-07 2019-12-06 视频图像解码、编码方法及装置

Country Status (1)

Country Link
WO (1) WO2020114509A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116389763A (zh) * 2023-06-05 2023-07-04 瀚博半导体(上海)有限公司 基于多种编码器的视频编码方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500160A (zh) * 2008-01-28 2009-08-05 华为技术有限公司 一种码流标识方法、装置及编解码系统
CN103081475A (zh) * 2010-11-23 2013-05-01 Lg电子株式会社 编码和解码图像的方法及使用该方法的设备
US20130308708A1 (en) * 2012-05-11 2013-11-21 Panasonic Corporation Video coding method, video decoding method, video coding apparatus and video decoding apparatus
US20150222904A1 (en) * 2011-03-08 2015-08-06 Texas Instruments Incorporated Parsing friendly and error resilient merge flag coding in video coding
CN106878751A (zh) * 2015-12-11 2017-06-20 北京三星通信技术研究有限公司 视频帧内编码模式的标识方法、处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500160A (zh) * 2008-01-28 2009-08-05 华为技术有限公司 一种码流标识方法、装置及编解码系统
CN103081475A (zh) * 2010-11-23 2013-05-01 Lg电子株式会社 编码和解码图像的方法及使用该方法的设备
US20150222904A1 (en) * 2011-03-08 2015-08-06 Texas Instruments Incorporated Parsing friendly and error resilient merge flag coding in video coding
US20130308708A1 (en) * 2012-05-11 2013-11-21 Panasonic Corporation Video coding method, video decoding method, video coding apparatus and video decoding apparatus
CN106878751A (zh) * 2015-12-11 2017-06-20 北京三星通信技术研究有限公司 视频帧内编码模式的标识方法、处理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU-LING LIAO ET AL: "CE10: Triangular prediction unit mode (CE10.3.1 and CE10.3.2)", VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16, no. JVET-K0144_v2, 18 July 2018 (2018-07-18), Ljubljana SI, pages 1 - 6, XP030199217 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116389763A (zh) * 2023-06-05 2023-07-04 瀚博半导体(上海)有限公司 基于多种编码器的视频编码方法和装置
CN116389763B (zh) * 2023-06-05 2023-08-11 瀚博半导体(上海)有限公司 基于多种编码器的视频编码方法和装置

Similar Documents

Publication Publication Date Title
WO2020114510A1 (zh) 用于多假设编码的加权预测方法及装置
US11849109B2 (en) Image prediction method, apparatus, and system, device, and storage medium
CN115243048B (zh) 视频图像解码、编码方法及装置
WO2020244579A1 (zh) Mpm列表构建方法、色度块的帧内预测模式获取方法及装置
WO2020114394A1 (zh) 视频编解码方法、视频编码器和视频解码器
CN111385572A (zh) 预测模式确定方法、装置及编码设备和解码设备
WO2020143589A1 (zh) 视频图像解码、编码方法及装置
WO2020143585A1 (zh) 视频编码器、视频解码器及相应方法
WO2020135467A1 (zh) 帧间预测方法、装置以及相应的编码器和解码器
WO2020216294A1 (zh) 图像预测方法、装置和计算机可读存储介质
CN111263166B (zh) 一种视频图像预测方法及装置
WO2020114509A1 (zh) 视频图像解码、编码方法及装置
CN113366850B (zh) 视频编码器、视频解码器及相应方法
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
CN111372086B (zh) 视频图像解码方法及装置
WO2020134817A1 (zh) 预测模式确定方法、装置及编码设备和解码设备
WO2020181476A1 (zh) 视频图像预测方法及装置
CN113316939A (zh) 一种标志位的上下文建模方法及装置
CN111901593A (zh) 一种图像划分方法、装置及设备
CN111726617A (zh) 用于融合运动矢量差技术的优化方法、装置及编解码器
WO2020187062A1 (zh) 用于融合运动矢量差技术的优化方法、装置及编解码器
WO2020186882A1 (zh) 基于三角预测单元模式的处理方法及装置
WO2020114508A1 (zh) 视频编解码方法及装置
WO2020135368A1 (zh) 一种帧间预测的方法和装置
WO2020108168A9 (zh) 一种视频图像预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532301

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3122329

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021010896

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217020780

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019394522

Country of ref document: AU

Date of ref document: 20191206

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019893119

Country of ref document: EP

Effective date: 20210707

ENP Entry into the national phase

Ref document number: 112021010896

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210604