WO2020114394A1 - 视频编解码方法、视频编码器和视频解码器 - Google Patents

视频编解码方法、视频编码器和视频解码器 Download PDF

Info

Publication number
WO2020114394A1
WO2020114394A1 PCT/CN2019/122710 CN2019122710W WO2020114394A1 WO 2020114394 A1 WO2020114394 A1 WO 2020114394A1 CN 2019122710 W CN2019122710 W CN 2019122710W WO 2020114394 A1 WO2020114394 A1 WO 2020114394A1
Authority
WO
WIPO (PCT)
Prior art keywords
division mode
division
sub
octree
block
Prior art date
Application number
PCT/CN2019/122710
Other languages
English (en)
French (fr)
Inventor
余全合
郑建铧
王力强
何芸
Original Assignee
华为技术有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 清华大学 filed Critical 华为技术有限公司
Publication of WO2020114394A1 publication Critical patent/WO2020114394A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present application relates to the technical field of video codec, and more specifically, to a video codec method, a video encoder, and a video decoder.
  • Digital video capabilities can be incorporated into a variety of devices, including digital TVs, digital live broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, electronics Book readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio phones (so-called "smart phones"), video teleconferencing devices, video streaming devices And the like.
  • Digital video devices implement video compression techniques, for example, in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4 Part 10 Advanced Video Coding (AVC), The video coding standard H.265/high efficiency video coding (HEVC) standard and the video compression technology described in the extension of such standards.
  • Video devices can more efficiently transmit, receive, encode, decode, and/or store digital video information by implementing such video compression techniques.
  • Video compression techniques perform spatial (intra-image) prediction and/or temporal (inter-image) prediction to reduce or remove redundancy inherent in video sequences.
  • a video slice ie, a video frame or a portion of a video frame
  • the image block in the to-be-intra-coded (I) slice of the image is encoded using spatial prediction regarding reference samples in adjacent blocks in the same image.
  • An image block in an inter-coded (P or B) slice of an image may use spatial prediction relative to reference samples in neighboring blocks in the same image or temporal prediction relative to reference samples in other reference images.
  • the image may be referred to as a frame, and the reference image may be referred to as a reference frame.
  • the video compression processing technology mainly divides the entire image into small blocks, and then performs intra prediction, inter prediction, transform quantization, entropy coding, and deblocking filter processing in units of these small blocks.
  • the traditional scheme generally divides the image blocks according to the quadtree method (the image block is divided into four equal parts) or the binary tree method (the image block is divided into two parts equally).
  • This division method is relatively simple, and it cannot be well applied to the image area with more complicated texture, and the division effect is limited.
  • This application provides a video codec method, a video encoder, and a video decoder to improve encoding/decoding performance.
  • a video decoding method includes: parsing a code stream to obtain encoded data of a current block to be decoded and target division mode indication information corresponding to the target division mode for dividing the block to be decoded; Determine the target division mode for dividing the current block to be decoded according to the target division mode indication information, wherein the target division mode is an octree division mode or a fusion of sub-image blocks obtained by octree division Division method; dividing the current block to be decoded into multiple sub-blocks to be decoded according to the target division mode; according to the encoded data of the current block to be decoded, the plurality of sub-blocks to be decoded do not need to be further divided
  • the sub-block to be decoded is decoded to obtain the decoded sub-image block.
  • the encoded data of the current block to be decoded may be various information or data required in the process of decoding the current block to be decoded.
  • the encoded data of the current block to be decoded may include residual data of the current block to be decoded and other encoding information of the current block to be decoded.
  • the current block to be decoded may specifically be an image block to be decoded currently.
  • the above octree division method may specifically include two types: horizontal octree division and vertical octree division.
  • the horizontal octree division may refer to dividing the image block three times in the horizontal direction, and the image block is divided only once in the vertical direction; and the vertical octree division may refer to the vertical direction The image block is divided three times in the above, and the image block is divided only once in the horizontal direction.
  • the current block to be decoded can be divided by using the octree division method or the octree division sub-image block fusion method to divide the current block to be decoded, which can improve the codec performance .
  • the determining the target division mode for dividing the current block to be decoded according to the target division mode indication information includes: indicating according to the target division mode Information, and the correspondence between the target division mode indication information and the division mode in the candidate division mode set corresponding to the current block to be decoded, the location is determined from the candidate division mode set corresponding to the current block to be decoded
  • the target division manner, wherein the set of candidate division manners includes the octree division manner and the division manner in which the sub-image blocks obtained by dividing the octree are merged.
  • each target division mode indication information may correspond to a division mode in the candidate division mode set, where the specific expression form of the target division mode indication information may be an index value, that is, each of the candidate division mode sets
  • This division method can correspond to an index value. In this way, when the decoding end obtains the target division mode indication information, it is equivalent to obtaining an index value, and then the target division mode corresponding to the current image block to be decoded can be determined from the candidate division mode set according to the obtained index value.
  • the set of candidate division modes corresponding to the current block to be decoded is preset.
  • the above-mentioned set of candidate partitioning modes may be a set of partitioning modes pre-agreed by the encoding end and the decoding end, and applicable to all blocks to be encoded and to be decoded.
  • the information carried in the code stream can be reduced, and the bandwidth occupied during the code stream transmission process can be reduced.
  • the code stream is parsed to obtain candidate division mode set indication information, where the candidate division mode set indication information is used to indicate the candidate division mode set corresponding to the current decoding block .
  • the specific representation form of the indication information of the candidate division manner set may also be an index value.
  • index values may correspond to different candidate division mode sets.
  • the decoding end obtains the indication information of the division mode set by parsing the code stream, it is equivalent to obtaining an index value.
  • a candidate division mode set corresponding to the current block to be decoded can be determined from multiple candidate division mode sets.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes the octree division direction information and Fusion information of sub-image blocks obtained after octree division.
  • the target division mode indication information includes only octree division direction information
  • the target division mode is octree division
  • the octree division direction information may be used to determine whether the target division mode is horizontal octree division or Vertical octree division.
  • fusion information of the sub-image blocks obtained after the octree is divided may also be simply referred to as fusion information.
  • the fusion information of the sub-image blocks obtained after the octree division can be used to indicate the fusion situation of the sub-image blocks obtained by the octree division.
  • the sub-image blocks obtained by dividing the octree may be numbered, and the fusion information may be used to indicate the number of the sub-image blocks to be merged.
  • the target division mode indication information includes octree division direction information and the fusion information of the sub-image blocks obtained after the octree division
  • the target division mode is a division mode in which the sub-image blocks obtained by the octree division are fused.
  • the octree division direction needs to be determined according to the octree division direction information, but also the sub-image blocks obtained by the octree division need to be determined according to the fusion information of the sub-image blocks obtained by the octree division. The situation of fusion, and then determine the specific form of the target division.
  • the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate between the sub-image blocks obtained by the octree division The retention of dividing lines during fusion.
  • the value of the above identification bit is used to indicate the reservation of all division lines between sub-image blocks obtained by octree division.
  • the value of the above-mentioned identification bit is used to indicate the reserved division lines among all the division lines between the sub-image blocks obtained by the octree division.
  • the value of the above-mentioned identification bit is used to indicate a deleted division line among all division lines between sub-image blocks obtained by octree division.
  • the division line marking bit indicates the reservation of division lines, which can flexibly indicate various fusion situations of sub-image blocks obtained by octree division.
  • a video encoding method includes: determining a target division mode for dividing a current block to be coded, wherein the target division mode is an octree division mode or an octree division A method for dividing the sub-image blocks into fusions; dividing the current block to be coded into multiple sub-blocks to be coded according to the target division method; the sub-blocks to be coded that do not require further division among the multiple sub-blocks to be coded Perform coding to obtain a code stream; write target division mode indication information corresponding to the target division mode into the code stream.
  • the current block to be coded can be divided by adopting the octree division method or the octree division sub-image block fusion division method to divide the current block to be coded, thereby further improving the codec performance .
  • the determining a target division mode for dividing the current block to be coded includes: determining the location from a set of candidate division modes corresponding to the current block to be coded The target division manner, wherein the set of candidate division manners includes the octree division manner and the division manner in which the sub-image blocks obtained by dividing the octree are merged.
  • the method further includes: writing candidate division mode set indication information to the code stream, where the candidate division mode set indication information is used to indicate the current The set of candidate division modes corresponding to the coding block.
  • the set of candidate division modes corresponding to the current block to be coded is preset.
  • the above-mentioned set of candidate partitioning modes may be a set of partitioning modes pre-agreed by the encoding end and the decoding end, and applicable to all blocks to be encoded and to be decoded.
  • the information carried in the code stream can be reduced, and the bandwidth occupied during the code stream transmission process can be reduced.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes the octree division direction information and Fusion information of sub-image blocks obtained after octree division.
  • the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate between sub-image blocks obtained by octree division The retention of dividing lines during fusion.
  • the value of the above identification bit is used to indicate the reservation of all division lines between sub-image blocks obtained by octree division.
  • the value of the above-mentioned identification bit is used to indicate the reserved division lines among all the division lines between the sub-image blocks obtained by the octree division.
  • the value of the above-mentioned identification bit is used to indicate a deleted division line among all division lines between sub-image blocks obtained by octree division.
  • a video decoding device comprising several functional units for implementing any of the methods of the first aspect.
  • the video decoding device may include an image decoding unit and a division unit.
  • the image decoding unit may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
  • a video encoding device including a plurality of functional units for implementing any method of the second aspect.
  • the video encoding device may include a division unit and an image encoding unit.
  • the image coding unit may be composed of one or more of a prediction unit, a transformation unit, a quantization unit, and an entropy coding unit.
  • a video decoder includes an image decoding unit for parsing a code stream to obtain encoded data of a current block to be decoded and a target division method for dividing the block to be decoded Corresponding target division mode indication information; a division unit, configured to determine a target division mode for dividing the current block to be decoded according to the target division mode indication information, wherein the target division mode is an octree division mode or A dividing method for merging sub-image blocks obtained by octree division; the dividing unit is further used to divide the current block to be decoded into multiple sub-blocks to be decoded according to the target dividing method; the image decoding unit It is also used to decode the sub-block to be decoded among the multiple sub-blocks to be decoded according to the encoded data of the current to-be-decoded block to obtain a decoded sub-image block.
  • the dividing unit is configured to: according to the target division mode indication information, and the candidate of the target division mode indication information corresponding to the current block to be decoded Correspondence between the division modes in the division mode set, the target division mode is determined from the candidate division mode set corresponding to the current block to be decoded, wherein the candidate division mode set includes the octree division The method and the dividing method for fusing the sub-image blocks obtained by dividing the octree.
  • the image decoding unit is further configured to: parse the code stream to obtain candidate division mode set indication information, and the candidate division mode set indication information is used to indicate the The set of candidate division modes corresponding to the current decoding block.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes the octree division direction information and Fusion information of sub-image blocks obtained after octree division.
  • the dividing unit is used for: the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate that the octree is divided The division lines between the sub-image blocks are retained during fusion.
  • a video encoder includes: a dividing unit for determining a target division method for dividing a current block to be coded, wherein the target division method is an octree division method or A division method for merging sub-image blocks obtained by octree division; the dividing unit is further used to divide the current block to be coded into multiple sub-blocks to be coded according to the target division method; the image coding unit is used to In order to encode the sub-blocks to be coded that do not need to be further divided among the plurality of sub-blocks to be coded, a code stream is obtained; the image coding unit is further used to write target division mode indication information corresponding to the target division mode To the code stream.
  • the dividing unit is configured to: determine the target dividing mode from a set of candidate dividing modes corresponding to the current block to be coded, wherein the candidate The set of division modes includes the octree division mode and the division mode in which the sub-image blocks obtained by octree division are fused.
  • the image encoding unit is further configured to: write candidate division mode set indication information into the code stream, and the candidate division mode set indication information is used to indicate A set of candidate division modes corresponding to the current coding block.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes the octree division direction information and Fusion information of sub-image blocks obtained after octree division.
  • the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate between the sub-image blocks obtained by the octree division The retention of dividing lines during fusion.
  • an embodiment of the present application provides an apparatus for decoding video data.
  • the apparatus includes: a memory for storing video data in the form of a code stream; and a video decoder for implementing any of the first aspect method.
  • an embodiment of the present application provides an apparatus for encoding video data.
  • the apparatus includes: a memory for storing video data, and the video data includes one or more image blocks; and a video encoder for Implement any of the methods of the second aspect.
  • an embodiment of the present application provides a decoding device, including: a memory and a processor, where the processor calls program codes stored in the memory to perform part or all of the steps of any one of the methods of the first aspect .
  • the above memory is a non-volatile memory.
  • the aforementioned memory and processor are coupled together.
  • an embodiment of the present application provides an encoding device, including: a memory and a processor, where the processor calls program codes stored in the memory to perform part or all of the steps of any method of the second aspect .
  • the above memory is a non-volatile memory.
  • the aforementioned memory and processor are coupled together.
  • an embodiment of the present application provides a computer-readable storage medium that stores program code, where the program code includes any of the first aspect or the second aspect Instructions for some or all steps of a method.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to perform part or all of the method of the first aspect or the second aspect step.
  • the embodiment of the present application divides the current block to be decoded by adopting the octree division method or the sub-image block obtained by the octree division to divide the current block to be decoded. Improve codec performance.
  • FIG. 1 is a schematic block diagram of an example of a video encoding system for implementing embodiments of the present application
  • FIG. 2 is a schematic structural block diagram of an example of a video encoder used to implement an embodiment of the present application
  • FIG. 3 is a schematic structural block diagram of an example of a video decoder used to implement an embodiment of the present application
  • FIG. 4 is a schematic structural block diagram of an example of a video decoding system for implementing embodiments of the present application
  • FIG. 5 is a schematic structural block diagram of an example of a video decoding device used to implement an embodiment of the present application
  • FIG. 6 is a schematic block diagram of an example of an encoding device or a decoding device used to implement an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a video decoding method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of image blocks obtained according to horizontal octree division and vertical octree division;
  • FIG. 9 is a schematic diagram of an image block obtained by fusing sub-image blocks obtained by octree division;
  • FIG. 10 is a schematic diagram of image blocks obtained by fusing sub-image blocks obtained by octree division
  • FIG. 11 is a schematic diagram of an image block obtained by fusing sub-image blocks obtained by octree division;
  • FIG. 12 is a schematic diagram of image blocks obtained by fusing sub-image blocks obtained by octree division;
  • FIG. 13 is a schematic diagram of an image block obtained by fusing sub-image blocks obtained by octree division;
  • FIG. 14 is a schematic diagram of image blocks obtained by fusing sub-image blocks obtained by octree division;
  • 15 is a schematic diagram of image blocks obtained by dividing according to a horizontal octree division method
  • 16 is a schematic flowchart of a video encoding method according to an embodiment of the present application.
  • 17 is a schematic flowchart of dividing image blocks in the video encoding method according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a video decoder according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a video encoder according to an embodiment of the present application.
  • the disclosure in conjunction with the described method may be equally applicable to the corresponding device or system performing the method, and vice versa.
  • the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
  • the corresponding method may include one step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
  • one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units
  • the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
  • Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
  • picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
  • Video coding as used herein means video coding or video decoding.
  • Video encoding is performed on the source side and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
  • Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
  • the "encoding" of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
  • the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
  • the video sequence includes a series of pictures, which are further divided into slices, and the slices are further divided into blocks.
  • Video encoding is performed in units of blocks.
  • the concept of blocks is further expanded.
  • macroblock macroblock, MB
  • partitions multiple prediction blocks (partitions) that can be used for predictive coding.
  • HEVC high efficiency video coding
  • the basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted.
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • a variety of block units are divided, and a new tree-based structure is used for description.
  • the CU can be divided into smaller CUs according to the quadtree, and the smaller CU can be further divided to form a quadtree structure.
  • the CU is the basic unit for dividing and coding the coded image.
  • PU can correspond to the prediction block and is the basic unit of predictive coding.
  • the CU is further divided into multiple PUs according to the division mode.
  • the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
  • PU or TU they all belong to the concept of block (or image block) in essence.
  • the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
  • a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
  • Each CU can be further split into one, two, or four PUs according to the PU split type.
  • the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
  • the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
  • quad-tree and binary-tree (QTBT) split frames are used to split the coding blocks.
  • the CU may have a square or rectangular shape.
  • the image block to be encoded in the current encoded image may be referred to as the current block.
  • the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
  • the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
  • the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
  • further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
  • Video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
  • Each picture of the video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
  • the encoder side usually processes the video at the block (video block) level, that is, encodes the video.
  • the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
  • the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra prediction and inter prediction) and/or reconstruction for processing, ie, encoding subsequent blocks.
  • FIG. 1 exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
  • the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
  • the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
  • Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
  • the memory may include, but is not limited to, read-only memory (ROM), random access memory (random access memory, RAM), erasable programmable read-only memory (erasable, programmable read-only memory, EPROM) , Flash memory, or any other medium that can be used to store the desired program code in the form of instructions or data structures accessible by the computer, as described herein.
  • Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called “smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
  • FIG. 1 depicts source device 12 and destination device 14 as separate devices
  • device embodiments may also include both source device 12 and destination device 14 or the functionality of both, ie source device 12 or corresponding Functionality of the destination device 14 or the corresponding functionality.
  • the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
  • a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
  • Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
  • link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • the source device 12 includes an encoder 20.
  • the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
  • the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
  • Picture source 16 which can include or can be any kind of picture capture device, for example for capturing real-world pictures, and/or any kind of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (for example, augmented reality (AR) pictures).
  • the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
  • the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
  • the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
  • the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
  • the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
  • the external picture generation device for example It is an external computer graphics processor, computer or server.
  • the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
  • the picture can be regarded as a two-dimensional array or matrix of pixels (picture elements).
  • the pixels in the array can also be called sampling points.
  • the number of sampling points in the horizontal or vertical direction (or axis) of the array or picture defines the picture size and/or resolution.
  • three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
  • the picture includes corresponding red, green, and blue sampling arrays.
  • each pixel is usually expressed in a brightness/chroma format or color space. For example, for a picture in YUV format, it includes the brightness component indicated by Y (sometimes also indicated by L) and the two indicated by U and V.
  • the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
  • the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
  • the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
  • the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
  • the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color grading, or denoising.
  • the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 in a related prediction mode (such as the prediction mode in various embodiments herein), thereby
  • the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5).
  • the encoder 20 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present application on the encoding side.
  • the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
  • the other device may be any device used for decoding or storage.
  • the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
  • the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
  • the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
  • the communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network.
  • the link 13 is, for example, a direct wired or wireless connection.
  • the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private and public networks, or any combination thereof.
  • the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
  • Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
  • the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 4 or FIG. 5 Structural details).
  • the decoder 30 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present application on the decoding side.
  • the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
  • the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to convert the post-processed image data 33transmitted to the display device 34.
  • the display device 34 is used to receive post-processed picture data 33 to display pictures to, for example, a user or a viewer.
  • the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
  • the display may include a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital Light Processor (DLP) or other displays of any kind.
  • source device 12 and the destination device 14 are depicted as separate devices in FIG. 1, device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie the source device 12 Or the corresponding functionality and the destination device 14 or the corresponding functionality. In such embodiments, the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
  • Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary device, for example, notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • handheld or stationary device for example, notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
  • Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate array
  • the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the technology of the present application . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
  • the video encoding and decoding system 10 shown in FIG. 1 is only an example, and the technology of the present application can be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video decoding).
  • data can be retrieved from local storage, streamed on the network, and so on.
  • the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
  • encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
  • FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
  • the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
  • the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
  • the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
  • the encoder 20 shown in FIG. 2 may also be called a hybrid video encoder or a video encoder based on a hybrid video codec.
  • the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, and
  • the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form the backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path for the decoder (see decoder 30 in FIG. 3).
  • the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, forming a picture in a picture sequence of a video or a video sequence.
  • the image block 203 may also be referred to as a current picture block or a picture block to be coded
  • the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, other pictures such as the same video sequence That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
  • An embodiment of the encoder 20 may include a division unit (not shown in FIG. 2) for dividing the picture 201 into a plurality of blocks such as an image block 203, usually into a plurality of non-overlapping blocks.
  • the segmentation unit can be used to use the same block size and corresponding grid that defines the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
  • the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
  • image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
  • the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of a black and white picture 201) or three sampling arrays (for example, one brightness array and two chroma arrays in the case of a color picture) or An array of any other number and/or category depending on the color format applied.
  • the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
  • the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
  • the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (further details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
  • the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
  • the transform coefficient 207 may also be referred to as a transform residual coefficient, and represents a residual block 205 in the transform domain.
  • the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
  • the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost and so on.
  • a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, the encoder can be The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
  • the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
  • the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
  • the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
  • the degree of quantization can be modified by adjusting the quantization parameter (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
  • QP quantization parameter
  • a smaller quantization step size corresponds to a finer quantization
  • a larger quantization step size corresponds to a coarser quantization.
  • a suitable quantization step size can be indicated by a quantization parameter (QP).
  • the quantization parameter may be an index of a predefined set of suitable quantization steps.
  • smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
  • larger quantization parameters may correspond to coarse quantization (larger quantization step size)
  • the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
  • Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
  • the quantization step size can be calculated based on the quantization parameter using fixed-point approximation that includes equations for division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in the fixed-point approximation of the equations for quantization step size and quantization parameter.
  • the scale of inverse transform and inverse quantization may be combined.
  • a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
  • the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
  • the inverse quantized coefficient 211 may also be referred to as the inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
  • the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, inverse discrete cosine transform (DCT) or inverse discrete sine transform (discrete sine transform).
  • DCT inverse discrete cosine transform
  • discrete sine transform discrete sine transform
  • the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
  • the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
  • a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
  • the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
  • an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only for storing the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
  • Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
  • the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, self-adaptive filters Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
  • the filtered block 221 may also be referred to as the filtered reconstructed block 221.
  • the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
  • Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
  • the entropy coding unit outputs after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
  • the decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
  • DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access (DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
  • DRAM dynamic random access
  • the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
  • a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
  • the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
  • a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
  • the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
  • the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • a prediction mode eg, intra or inter prediction mode
  • the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
  • An embodiment of the mode selection unit 262 may be used to select a prediction mode (eg, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
  • the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria .
  • RDO rate distortion optimization
  • the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
  • the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
  • the set of intra prediction modes may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
  • the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DBP 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only used A part of the reference picture, for example a search window area around the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied.
  • the set of inter prediction modes may include, for example, advanced motion vector (advanced motion vector prediction, AMVP) mode and merge mode.
  • AMVP advanced motion vector
  • the set of inter prediction modes may include an improved control point-based AMVP mode according to an embodiment of the present application, and an improved control point-based merge mode.
  • intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
  • the embodiments of the present application may also apply skip mode and/or direct mode.
  • the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) partitioning, or any combination thereof, and for performing predictions for each of block partitions or sub-blocks, for example, where mode selection includes selecting the tree structure of the divided image block 203 and selecting applications The prediction mode for each of the block partitions or sub-blocks.
  • QT quad-tree
  • BT binary-tree
  • TT triple-tree
  • the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
  • the motion estimation unit is used to receive or acquire a picture image block 203 (current picture image block 203 of the current picture 201) and a decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
  • the reconstructed block of the previously decoded picture 231 is used for motion estimation.
  • the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of or form a sequence of pictures that form the video sequence.
  • the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide a reference picture and/or provide a reference to a motion estimation unit (not shown in FIG. 2)
  • the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called motion vector (MV).
  • the motion compensation unit is used to acquire inter prediction parameters and perform inter prediction based on or using inter prediction parameters to obtain inter prediction blocks 245.
  • the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
  • the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
  • the above inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes inter prediction parameters (such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions).
  • inter prediction parameters such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions.
  • the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
  • the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
  • the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
  • Embodiments of the encoder 20 may be used to select an intra-prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203) or a minimum code rate distortion.
  • a minimum residual eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
  • a minimum code rate distortion eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
  • the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
  • the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes intra-prediction parameters (such as an intra-prediction mode selected for the current block prediction after traversing multiple intra-prediction modes) Instructions).
  • the intra prediction parameters may not be carried in the syntax element.
  • the decoding terminal 30 may directly use the default prediction mode for decoding.
  • the entropy coding unit 270 is used to encode an entropy coding algorithm or scheme (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval entropy (probability interval entropy, PIPE) encoding or other entropy Encoding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
  • VLC variable length coding
  • CABAC context adaptive binary arithmetic
  • SBAC syntax-based context-adaptive binary arithmetic coding
  • PIPE probability
  • the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
  • the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
  • video encoder 20 may be used to encode video streams.
  • the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
  • the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
  • the encoder 20 may be used to implement the video encoding method described in the embodiments below.
  • the video encoder in this application may include only a part of the modules in the video encoder 20.
  • the video encoder in this application may include an image decoding unit and a division unit.
  • the image decoding unit may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
  • the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
  • the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
  • FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
  • the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
  • encoded picture data eg, encoded bitstream
  • video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
  • the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
  • the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
  • video decoder 30 may perform a decoding pass that is generally reciprocal to the encoding pass described with reference to video encoder 20 of FIG. 2.
  • the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
  • the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
  • Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
  • the inverse quantization unit 310 can be functionally the same as the inverse quantization unit 110
  • the inverse transform processing unit 312 can be functionally the same as the inverse transform processing unit 212
  • the reconstruction unit 314 can be functionally the same as the reconstruction unit 214
  • the buffer 316 can be functionally
  • the loop filter 320 may be functionally the same as the loop filter 220
  • the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
  • the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
  • the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
  • the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture. Data to generate a prediction block 365 for the picture block of the current video slice.
  • the inter prediction unit 344 eg, motion compensation unit
  • Other syntax elements generate a prediction block 365 for the video block of the current video slice.
  • a prediction block may be generated from a reference picture in a reference picture list.
  • the video decoder 30 may construct the reference frame lists: list 0 and list 1 using default construction techniques based on the reference pictures stored in the DPB 330.
  • the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
  • the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (eg, intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
  • the prediction mode eg, intra or inter prediction
  • the inter prediction slice type For example, B slice, P slice, or GPB slice
  • the syntax elements received by the video decoder 30 from the bit stream include an adaptive parameter set (adaptive parameter set, APS), a sequence parameter set (SPS), and a picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
  • an adaptive parameter set adaptive parameter set
  • SPS sequence parameter set
  • PPS picture parameter set
  • the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
  • the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
  • the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients, so as to generate a residual block in the pixel domain.
  • an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
  • the reconstruction unit 314 (for example, the summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example, by adding The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
  • the loop filter unit 320 (during the encoding loop or after the encoding loop) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
  • the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
  • the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
  • the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
  • the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
  • the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
  • video decoder 30 may be used to decode the compressed bitstream.
  • the decoder 30 may generate the output video stream without the loop filter unit 320.
  • the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
  • the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
  • the decoder 30 is used to implement the video decoding method described in the embodiment below.
  • the video encoder in this application may include only a part of the modules in the video encoder 30.
  • the video encoder in this application may include a division unit and an image encoding unit.
  • the image coding unit may be composed of one or more of a prediction unit, a transformation unit, a quantization unit, and an entropy coding unit.
  • video decoder 30 may generate an output video stream without being processed by the filter 320; or, for certain image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
  • the loop filter 320 is optional; and in the case of lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional. It should be understood that, according to different application scenarios, the inter prediction unit and the intra prediction unit may be selectively enabled.
  • the processing results for a certain link can be further processed and then output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the results of the corresponding link are further clipped or shift shifted.
  • FIG. 4 is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
  • the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
  • the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
  • the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
  • the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
  • antenna 42 may be used to transmit or receive an encoded bitstream of video data.
  • the display device 45 may be used to present video data.
  • the logic circuit 47 may be implemented by the processing unit 46.
  • the processing unit 46 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the video decoding system 40 may also include an optional processor 43, which may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
  • the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, etc., and the processor 43 may be implemented by general-purpose software, an operating system, or the like.
  • the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (static random access memory, SRAM), dynamic random access memory (dynamic random access memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
  • volatile memory for example, static random access memory (static random access memory, SRAM), dynamic random access memory (dynamic random access memory, DRAM), etc.
  • non-volatile Memory for example, flash memory, etc.
  • the memory 44 may be implemented by cache memory.
  • the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
  • the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers and the like.
  • the encoder 20 implemented by a logic circuit may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein.
  • Logic circuits can be used to perform the various operations discussed herein.
  • decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
  • the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
  • the graphics processing unit may be communicatively coupled to the image buffer.
  • the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
  • antenna 42 may be used to receive an encoded bitstream of video data.
  • the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data that defines the code segmentation).
  • the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
  • the display device 45 is used to present video frames.
  • the decoder 30 may be used to perform the reverse process.
  • the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
  • encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
  • FIG. 5 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
  • the video coding apparatus 400 is suitable for implementing the embodiments described herein.
  • the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1A) or a video encoder (eg, encoder 20 of FIG. 1A).
  • the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
  • the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor for processing data, a logic unit or a central processing unit (CPU) 430, and a transmitter unit for transmitting data (Tx) 440 and exit port 450, and a memory 460 for storing data.
  • the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
  • EO electro-optical
  • the processor 430 is implemented by hardware and software.
  • the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
  • the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
  • the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
  • the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
  • the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
  • the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
  • the memory 460 includes one or more magnetic disks, tape drives, and solid state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and storing instructions and data read during the execution of the programs.
  • the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
  • FIG. 6 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
  • the device 500 can implement the technology of the present application.
  • FIG. 6 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
  • the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
  • the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
  • the memory of the decoding device stores the program code, and the processor can call the program code stored in the memory to perform various video encoding or decoding methods described in this application, especially various new image block division methods. In order to avoid repetition, they will not be described in detail here.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). , Off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
  • the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
  • the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to execute the video encoding or decoding method described in this application.
  • the application program 535 may include applications 1 to N, which further include a video encoding or decoding application that performs the video encoding or decoding method described in this application (referred to as a video coding application for short).
  • the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clear explanation, various buses are marked as the bus system 550 in the figure.
  • the decoding device 500 may also include one or more output devices, such as a display 570.
  • the display 570 may be a tactile display that combines the display with a tactile unit that operably senses touch input.
  • the display 570 may be connected to the processor 510 via the bus 550.
  • FIG. 7 is a schematic flowchart of a video decoding method according to an embodiment of the present application.
  • the method shown in FIG. 7 may be performed by the decoder 30 shown in FIG. 3 above.
  • the method shown in FIG. 7 includes steps 1001 to 1004, and steps 1001 to 1004 will be described in detail below.
  • the encoded data of the current block to be decoded may be various information or data required in the process of decoding the current block to be decoded.
  • the encoded data of the current block to be decoded may include the residual data of the current block to be decoded and the current data of the block to be decoded Other coding information.
  • the above target division mode is an octree division mode or a division mode in which sub-image blocks obtained by octree division are fused.
  • the octree division method may refer to a division method in which the image blocks are respectively divided from the horizontal direction and the vertical direction to obtain eight sub-image blocks of the same size.
  • the octree division method can be divided into horizontal octree division and vertical octree division.
  • the horizontal octree division refers to dividing the image block three times in the horizontal direction, and dividing the image block only once in the vertical direction (in the horizontal octree division method, the image block is divided in the horizontal direction The number of divisions is greater than the number of divisions of the image block in the vertical direction).
  • Vertical octree division refers to the division of the image block three times in the vertical direction, and the division of the image block only once in the horizontal direction (the vertical octree division method divides the image block in the vertical direction) The number of times is greater than the number of divisions of the image block in the horizontal direction).
  • the image block obtained by using the horizontal octree division method is shown as 201
  • the image block obtained by using the vertical octree division method is shown as 202.
  • 10 division lines are generated, and these 10 division lines are respectively division line 1 to division line 10.
  • the image block when the texture of the image blocks differs greatly in the horizontal direction, the image block can be divided using a vertical octree division method to divide the image block into more sub-image blocks in the horizontal direction; and when the image When the texture difference between the blocks in the vertical direction is large, the image block can be divided using a horizontal octree division method to divide the image block into more sub-image blocks in the vertical direction.
  • the above division method for merging sub-image blocks obtained by octree division refers to a division method for combining part of adjacent sub-image blocks obtained by octree division.
  • any two adjacent sub-image blocks obtained by octree division may be merged, or those obtained by octree division may also be combined. More than N (N is an integer greater than 2) adjacent sub-image blocks are merged.
  • N adjacent sub-image blocks may refer to N two adjacent sub-image blocks.
  • adjacent sub-image blocks 1, sub-image blocks 2 and sub-image blocks 3 need to be merged, then, Sub image block 1 may be adjacent to sub image block 2, sub image block 2 may be adjacent to sub image block 3, and sub image block 2 and sub image block 3 may or may not be adjacent.
  • the image block can be divided into 8 sub-image blocks by the horizontal octree division method or the vertical octree division method. Then, some of the 8 adjacent sub-image blocks can be divided into Merge to get a new sub-image block.
  • merging the partially adjacent sub-image blocks is equivalent to deleting the dividing line between the partially adjacent sub-image blocks, so as to realize the merge between the sub-image blocks.
  • the image block 201 can be divided by a horizontal octree division method to obtain 8 sub-images (sub-image block A to sub-image block H, respectively), and the dividing line between the 8 sub-image blocks Include division line 1 to division line 10.
  • the division lines 1, 4 and 7 may be deleted to obtain the image block 201A, and in order to obtain regular sub-image blocks, the division line in the image block 201A may also be 8 Delete to get the image block 201B.
  • the final image block 201B contains 5 sub-blocks. By fusing the sub-image blocks in 201, the image block 201 is converted from the original 8 image blocks into image blocks Five image blocks in 201B.
  • the division method shown in FIG. 9 is also equivalent to merging four adjacent sub-image blocks of sub-image block A, sub-image block B, sub-image block E, and sub-image block F, thereby obtaining 5 sub-image blocks The image block 201B.
  • the image block 301 is obtained by combining the sub-image block A and the sub-image block E (equivalent to deleting the dividing line 7);
  • Image block 302 is obtained by merging sub-image block A and sub-image block B, and merging sub-image block E and sub-image block F (equivalent to deleting division lines 1 and 4);
  • the image block 303 is obtained by combining the sub-image block A, the sub-image block E, the sub-image block F, and the sub-image block G (equivalent to deleting the dividing lines 4, 5, and 7);
  • the image block 304 is obtained by combining the sub-image block B, the sub-image block C, the sub-image block F and the sub-image block G (equivalent to deleting the division lines 2, 5, 8 and 9);
  • the image block 305 is the merge processing of the sub image block A and the sub image block E, the sub image block B, the sub image block C and the sub image block D, and the sub image block F, the sub image block G and the sub image block H
  • the result of the merge processing (equivalent to deleting the dividing lines 2, 3, 5 and 6).
  • the image block 306 to the image block 310 shown in FIG. 11 and the image block 311 to the image shown in FIG. 12 can also be obtained Block 314.
  • Image block 306 is obtained by merging sub-image block A, sub-image block B, and sub-image block C, and merging sub-image block E, sub-image block F, and sub-image block G (equivalent to dividing line 1 , 2, 4, and 5 deleted);
  • Image block 307 is obtained by merging sub-image block B, sub-image block C and sub-image block D, and sub-image block F, sub-image block G and sub-image block H (equivalent to dividing lines 2, 3, 5, 6 , 8, 9, and 10 deleted);
  • Image block 308 is obtained by merging the sub-image block A, sub-image block B and sub-image block C, and sub-image block E, sub-image block F and sub-image block G (equivalent to dividing lines 1, 2, 4, 5 , 7, 8, and 9 are deleted);
  • the image block 309 is obtained by combining the sub-image block E, the sub-image block F, the sub-image block G and the sub-image block H (equivalent to deleting the dividing lines 4, 5 and 6);
  • Image block 310 is obtained by merging sub-image block B, sub-image block C and sub-image block D, and merging sub-image block F, sub-image block G and sub-image block H (equivalent to dividing line 2 , 3, 5 and 6 are deleted).
  • Image block 311 is obtained by merging sub-image block A and sub-image block E, and merging sub-image block C, sub-image block D, sub-image block G and sub-image block H (equivalent to dividing line 3 , 6, 7, 9 and 10 deleted);
  • the image block 312 is obtained by combining the sub-image block B and the sub-image block C (equivalent to deleting the dividing line 2);
  • the image block 313 is obtained by combining the sub-image block B and the sub-image block C, and the sub-image block F and the sub-image block G (equivalent to deleting the dividing lines 2 and 5);
  • the image block 314 is obtained by combining the sub-image block A and the sub-image block E, and the sub-image block C and the sub-image block G (equivalent to deleting the dividing lines 7 and 9).
  • the image block 202 obtained by dividing the vertical octree can also be divided in a similar manner as shown in FIGS. 9 to 12, and the division results are shown in FIGS. 13 and 14.
  • the resulting image block may include image block 401 to image block 408 (the specific division method is the same as that of FIGS. 9 to 12 The division method in is similar and will not be described in detail here).
  • FIG. 9 to FIG. 14 are only some specific implementation methods for dividing the image block, and the image division method in this application is not limited to the division method shown in FIG. 9 to FIG. 14, as long as it is based on octree division Or, the method of dividing fusion based on the sub-image blocks obtained by octree division is within the protection scope of the present application.
  • the image block to be decoded can be divided according to the horizontal octree method to obtain 8 sub-image blocks to be decoded ( (A to H), if the sub-blocks A to H to be decoded do not need to be further divided, then the sub-image blocks to be decoded A to H can be decoded to obtain the decoded sub-image blocks.
  • the current block to be decoded can be divided by using the octree division method or the octree division sub-image block fusion method to divide the current block to be decoded, which can improve the codec performance .
  • determining the target division mode for dividing the current block to be decoded according to the target division mode indication information includes: according to the target division mode indication information, and the target division mode indication information corresponding to the current block to be decoded Correspondence between the division modes in the candidate division mode set, the target division mode is determined from the candidate division mode set corresponding to the current block to be decoded, wherein the candidate division mode set includes the octree division mode and the octree division A method for dividing the obtained sub-image blocks into fusion.
  • each target division mode indication information may correspond to a division mode in the candidate division mode set, where the specific expression form of the target division mode indication information may be an index value, that is, each of the candidate division mode sets
  • This division method can correspond to an index value.
  • the candidate division method set includes 4 division methods, and the index values corresponding to these 4 division methods are shown in Table 1. Then, when the target division method indication information is specifically the index value 1, according to the correspondence shown in Table 1 Can be determined by the vertical octree division.
  • the set of candidate division modes may be the same, so that when the decoding end performs decoding, the target division mode is determined from the same set of candidate division modes.
  • a set of candidate division modes that match it may also be selected according to the characteristics of the image block, and then the target division mode is determined from the set of candidate division modes.
  • the set of candidate division modes corresponding to the current block to be decoded is preset.
  • the above-mentioned set of candidate partitioning modes may be a set of partitioning modes pre-agreed by the encoding end and the decoding end, and applicable to all blocks to be encoded and to be decoded.
  • the information carried in the code stream can be reduced, and the bandwidth occupied during the code stream transmission process can be reduced.
  • the method shown in FIG. 7 further includes: parsing the code stream to obtain candidate division mode set indication information, and the candidate division mode set indication information is used to indicate the candidate division mode set corresponding to the current decoding block.
  • the specific representation form of the candidate division mode set indication information may be an index value representation.
  • the correspondence between the candidate division mode set indication information and the candidate division mode set may be as shown in Table 2.
  • Candidate partition set 0 Candidate partition set 1 1
  • Candidate partition set 2 Candidate partition set 3
  • Candidate partition set 4
  • the decoding end When the decoding end obtains the index value indicated by the candidate division mode set indication information by parsing the code stream, it can be determined from the relationship shown in Table 2 that the current block to be decoded corresponds to the candidate division mode set 3, and then, it can be based on The target division mode indication information determines the target division mode from the candidate division mode set 3.
  • the target division mode in addition to determining the target division mode according to the target division mode indication information and the correspondence between the target division mode indication information and the division mode in the candidate division mode set corresponding to the current block to be decoded, the target division mode can also be directly determined
  • the target division mode indication information directly determines the target division mode.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes octree division direction information and fusion information of the sub-image blocks obtained after octree division.
  • the target division mode indication information includes only octree division direction information
  • the target division mode is octree division
  • the target division mode may be specifically determined as horizontal octree division according to the octree division direction information Or vertical octree division.
  • the target division mode indication information includes only octree division direction information, and the division direction indicated by the octree division direction information is horizontal octree division, then the target division mode can be directly determined as a horizontal octree Divide.
  • the target division mode indication information needs to include the sub-trees obtained by the octree division in addition to the octree division direction information Fusion information of image blocks. In this way, after the decoding end determines the octree division direction according to the octree division direction information, it can combine the fusion information to determine the target division mode.
  • the target division mode indication information includes octree division direction information and the fusion information of the sub-image blocks obtained after the octree division
  • the target division mode is a division mode in which the sub-image blocks obtained by the octree division are fused.
  • the octree division direction needs to be determined according to the octree division direction information, but also the sub-image blocks obtained by the octree division need to be determined according to the fusion information of the sub-image blocks obtained by the octree division. The situation of fusion, and then determine the specific form of the target division.
  • the decoding end may determine that the image block obtained by dividing the image block according to the target division method is as shown in image block 301 in FIG. 10.
  • the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate the retention of the dividing line between the sub-image blocks obtained by the octree division during fusion.
  • the value of the above-mentioned identification bit may specifically indicate whether all the dividing lines between the sub-image blocks obtained by the octree division are deleted or retained, or the value of the above-mentioned identification bit may also only indicate the dividing line deleted during the fusion process Or, the value of the above identification bit may also only indicate the dividing line that is reserved during the fusion process.
  • each of the division lines among the sub-image blocks obtained by the octree division may correspond to an identification bit, and the value of the flag bit is used to indicate the retention of the corresponding division line.
  • each division line corresponds to an identification bit
  • the value of the identification bit of the division mode corresponding to the image block 201B It is 0110110011, which means that the first, fourth, seventh, and eighth dividing lines are deleted during the fusion of the sub-image blocks.
  • the division line marking bit indicates the reservation of division lines, which can flexibly indicate various fusion situations of sub-image blocks obtained by octree division.
  • the video decoding method of the embodiment of the present application is described in detail above from the perspective of the decoding end in conjunction with FIG. 7, and the video encoding method of the embodiment of the present application is described in detail below from the perspective of the encoding end in conjunction with 16.
  • FIG. 16 is a schematic flowchart of a video encoding method according to an embodiment of the present application. The method shown in FIG. 16 includes steps 2001 to 2004, and these steps will be described in detail below.
  • the target division mode is an octree division mode or a division mode in which sub-image blocks obtained by octree division are fused.
  • determining the target division mode for dividing the current block to be coded includes: determining the target division mode according to the size of the current block to be coded.
  • one division method may be selected as the target division method, and when the size of the current block to be coded is smaller than the preset size, another division method may be selected as the target division method the way.
  • a certain division method may be directly selected as the target division method according to the texture characteristics of the current block to be coded.
  • determining the target division mode for dividing the current block to be coded includes: determining the target division mode from a set of candidate division modes corresponding to the current block to be coded, wherein the candidate division mode set includes an octree division mode and A method of merging sub-image blocks obtained by octree division.
  • the target division mode may be determined from the set of candidate division modes corresponding to the current block to be coded. Specifically, the coding cost corresponding to each division mode in the candidate division mode set corresponding to the current coding block may be determined, and then the division mode with the smallest coding cost is selected as the target division mode.
  • the process of dividing the current block to be coded into multiple sub-blocks to be coded in step 2002 is similar to the method of dividing the current block to be decoded into multiple sub-blocks to be decoded in step 1003 in the method shown in FIG. Repeat in detail.
  • the encoding of the sub-blocks to be decoded that does not need to be further divided in step 2003 may specifically include operations such as transformation, quantization, and entropy coding on the sub-blocks to be coded that do not need to be further divided to obtain an encoded code stream.
  • the target division mode indication information corresponding to the target division mode is written into the code stream.
  • the current block to be coded can be divided by adopting the octree division method or the octree division sub-image block fusion division method to divide the current block to be coded, thereby further improving the codec performance .
  • the method shown in FIG. 16 further includes: writing candidate division mode set indication information into the code stream, where the candidate division mode set indication information is used to indicate the corresponding Candidate partition set.
  • the set of candidate division modes corresponding to the current block to be coded is preset.
  • the above-mentioned set of candidate partitioning modes may be a set of partitioning modes pre-agreed by the encoding end and the decoding end, and applicable to all blocks to be encoded and to be decoded.
  • the information carried in the code stream can be reduced, and the bandwidth occupied during the code stream transmission process can be reduced.
  • the candidate division manner set indication information may be represented by an index value.
  • the correspondence between the candidate division manner set indication information and the candidate division manner set may be as shown in Table 2 above.
  • the index value 2 corresponding to the candidate division mode set 3 can be written into the code stream, so that when the decoding end resolves to the index value 2, Then, the candidate division set corresponding to the current decoding block can be determined as the candidate division set 3 according to the relationship shown in Table 2.
  • the target division mode indication information includes octree division direction information, or the target division mode indication information includes the octree division direction information and the octree division obtained Fusion information of sub-image blocks.
  • the target division mode indication information includes only octree division direction information
  • the target division mode is octree division
  • the octree division direction information can be used to specifically determine whether the target division mode is horizontal octree division or vertical Octree division.
  • the target division mode indication information needs to include the sub-image obtained by the octree division in addition to the octree division direction information The fusion information of the block. In this way, after the decoding end determines the octree division direction according to the octree division direction information, the fusion information can be combined to determine the target division mode.
  • the fusion information includes a dividing line identification bit, and the value of the dividing line identification bit is used to indicate that the dividing line between the sub-image blocks obtained by octree division is retained during fusion happening.
  • the value of the above-mentioned identification bit may specifically indicate whether all the dividing lines between the sub-image blocks obtained by octree division are deleted or retained, or the value of the above-mentioned identification bit may also only indicate the dividing line deleted during the fusion process Or, the value of the above identification bit may also only indicate the dividing line that is reserved during the fusion process.
  • Each of the division lines between the sub-image blocks obtained by the octree division may correspond to an identification bit, and the value of the flag bit is used to indicate the retention of the corresponding division line.
  • the following describes the division process of the image blocks in the video encoding method of the embodiment of the present application with reference to FIG. 17 as an example.
  • the process shown in FIG. 17 may be performed by the encoding end device.
  • the process shown in FIG. 17 includes steps 3001 to 3006.
  • the following describes steps 3001 to 3006.
  • the current block may be a block to be encoded.
  • the current block may be divided according to the horizontal octree method, or the current block may be divided according to the vertical octree method.
  • the division result may be as shown in 201 or 202 in FIG. 8.
  • Derivative processing is performed on the division lines obtained by dividing the octree, and multiple block division methods are obtained.
  • step 3003 the dividing lines obtained by dividing the octree are derivated, which may specifically refer to performing a reduction process on the dividing lines obtained by dividing the octree, thereby realizing the partial image obtained by dividing the octree Block for fusion. Therefore, performing the derivation process on the division lines obtained by dividing the octree in step 3003 is equivalent to fusing the sub-image blocks obtained by dividing the octree in the above.
  • the division result obtained after the processing in step 3003 may be as shown in FIGS. 10 to 12 of 301 to 314, and then, from 301 to 314 Choose a division method as the optimal block division method.
  • the optimal block division method can be determined according to the rate distortion rate. Specifically, the rate distortion cost corresponding to the image block obtained in each of the multiple block division methods obtained in step 3003 can be calculated. Then, the block division method with the lowest rate-distortion cost is selected as the optimal block division method.
  • the division results corresponding to the multiple division methods obtained in step 3003 are respectively 301 to 314, then, an optimal block division method can be selected from 301 to 314 by calculating the rate-distortion cost.
  • step 3003 there are three block division modes (A, B, and C) in step 3003, and the rate-distortion cost corresponding to each block division mode is shown in Table 3.
  • the rate-distortion cost corresponding to block division mode C is the lowest, and block division mode C can be used as the optimal block division mode.
  • step 3005 it is necessary to determine whether the image block obtained by the optimal block division manner needs to be further divided. If you need to continue to divide, you can obtain the sub-image block in the image block that needs to be further divided, and use the sub-image block as the current block, continue to perform steps 3001 to 3004, and if it is determined in step 3005 that no further division is required, then Step 3006 is executed, and the block division ends.
  • the final block division result information may also be written into the code stream, so that the decoding end can obtain the block division result by parsing the code stream.
  • the video decoding method and the video encoding method of the embodiment of the present application are described in detail above with reference to the drawings.
  • the video decoder and the video encoder of the embodiment of the present application are described below with reference to FIGS. 18 and 19 respectively.
  • the video decoder shown in 18 can execute each step in the video decoding method of the embodiment of the present application
  • the video encoder shown in FIG. 19 can execute each step in the video encoding method of the embodiment of the present application.
  • the following description is appropriately omitted when introducing the video encoder and the video decoder of the embodiments of the present application.
  • FIG. 18 is a schematic block diagram of a video decoder according to an embodiment of the present application.
  • the video decoder 4000 shown in FIG. 18 includes:
  • the image decoding unit 4001 is configured to parse the code stream to obtain the encoded data of the current block to be decoded and the target division mode indication information corresponding to the target division mode for dividing the block to be decoded;
  • a dividing unit 4002 configured to determine a target dividing mode for dividing the current block to be decoded according to the target dividing mode indication information, wherein the target dividing mode is an octree division mode or an octree division How to divide the sub-image blocks into fusion;
  • the dividing unit 4002 is further configured to divide the current block to be decoded into multiple sub-blocks to be decoded according to the target division mode;
  • the image decoding unit 4001 is further configured to decode the sub-blocks to be decoded among the multiple sub-blocks to be decoded according to the encoded data of the current to-be-decoded block to obtain decoded sub-image blocks.
  • the above-mentioned image decoding unit 4003 may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
  • the above-mentioned image decoding unit 4003 may be composed of a prediction processing unit, an inverse quantization unit, an inverse transform processing unit, and an entropy decoding unit in the decoder 30 in FIG. 3.
  • FIG. 19 is a schematic block diagram of a video decoder according to an embodiment of the present application.
  • the video encoder 5000 shown in FIG. 19 includes:
  • the dividing unit 5001 is configured to determine a target dividing mode for dividing the current block to be coded, wherein the target dividing mode is an octree division mode or a division mode in which sub-image blocks obtained by octree division are fused;
  • the dividing unit 5001 is further configured to divide the current block to be coded into multiple sub-blocks to be coded according to the target division mode;
  • the image encoding unit 5002 is configured to encode the sub-blocks to be encoded that do not need to be further divided among the multiple sub-blocks to be encoded, to obtain a code stream;
  • the image coding unit 5002 is further configured to write target division mode indication information corresponding to the target division mode into the code stream.
  • the above-mentioned image coding unit 5002 may be composed of one or more of a prediction unit, a transformation unit, a quantization unit, and an entropy coding unit.
  • the above-mentioned image coding unit 5002 may be composed of a prediction processing unit, a transformation processing unit, a quantization unit, and an entropy coding unit in the encoder 20 in FIG. 2.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored or transmitted as one or more instructions or codes on a computer-readable medium and executed by a hardware-based processing unit.
  • the computer-readable medium may include a computer-readable storage medium, which corresponds to a tangible medium such as a data storage medium or a communication medium including, for example, any medium that facilitates transfer of a computer program from one place to another according to a communication protocol .
  • a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium, such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure.
  • the computer program product may include a computer-readable medium.
  • such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, flash memory, or may be used to store instructions or data structures Any other media that can be accessed by the computer and required program code.
  • any connection is properly termed a computer-readable medium.
  • a coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL) or wireless technology such as infrared, radio, and microwave are used to transmit instructions from a website, server, or other remote source
  • DSL digital subscriber line
  • wireless technology such as infrared, radio, and microwave
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
  • magnetic discs and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), flexible magnetic discs, and Blu-ray discs, where magnetic discs are usually magnetic The data is reproduced, and the optical disc reproduces the data optically with a laser. Combinations of the above should also be included within the scope of computer-readable media.
  • processors such as one or more digital signal processors (DSPs), general-purpose microprocessors, application-specific integrated circuits , ASIC), field programmable logic arrays (field programmable logic arrays, FPGA) or other equivalent integrated or discrete logic circuits.
  • DSPs digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field programmable logic arrays
  • processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • the functionality described herein may be provided within dedicated hardware and/or software modules for encoding and decoding, or incorporated in a composite codec.
  • the techniques can be fully implemented in one or more circuits or logic elements.
  • the technology of the present application may be implemented in various devices or apparatuses including a wireless handset, an integrated circuit (IC), or an IC set (for example, a chipset).
  • IC integrated circuit
  • This application describes various components, modules or units in order to emphasize the functional aspects of the device for performing the disclosed technology, but does not necessarily need to be implemented by different hardware units.
  • various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or provided by a collection of interoperable hardware units, the hardware unit including as described above One or more processors.

Abstract

本申请公开了视频编解码方法、视频解码器和视频编码器。该视频解码方法包括:解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式指示信息;根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;根据所述目标划分方式将所述当前待解码块划分成多个待解码子块;根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。实施本申请能够提高编解码过程中的图像块的划分效果,提高编解码编码效率。

Description

视频编解码方法、视频编码器和视频解码器
本申请要求于2018年12月04日提交中国专利局、申请号为201811476154.2、申请名称为“视频编解码方法、视频编码器和视频解码器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及视频编解码技术领域,并且更具体地,涉及视频编解码方法、视频编码器和视频解码器。
背景技术
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(personal digital assistant,PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分高级视频编码(AVC)定义的标准、视频编码标准H.265/高效视频编码(high efficiency video coding,HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。
视频压缩技术执行空间(图像内)预测和/或时间(图像间)预测以减少或去除视频序列中固有的冗余。对于基于块的视频编码,视频条带(即,视频帧或视频帧的一部分)可分割成若干图像块,所述图像块也可被称作树块、编码单元(CU)和/或编码节点。使用关于同一图像中的相邻块中的参考样本的空间预测来编码图像的待帧内编码(I)条带中的图像块。图像的待帧间编码(P或B)条带中的图像块可使用相对于同一图像中的相邻块中的参考样本的空间预测或相对于其它参考图像中的参考样本的时间预测。图像可被称作帧,且参考图像可被称作参考帧。
视频压缩处理技术主要是先把整幅图像划分为各个小块,然后以这些小块为单位进行帧内预测、帧间预测、变换量化、熵编码以及消块滤波处理等。
在视频压缩处理过程中,传统方案一般是按照四叉树的方式(将图像块等分成四份)或者二叉树的方式(将图像块等分成两份)对图像块进行划分。这种划分方式比较单一,不能很好地适用于纹理比较复杂的图像区域,划分效果有限。
发明内容
本申请提供一种视频编解码方法、视频编码器以及视频解码器,以提高编码/解码性能。
第一方面,提供了一种视频解码方法,该方法包括:解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式对应的目标划分方式指示信息;根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;根据所述目标划分方式将所述当前待解码块划分成多个待解码子块;根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
当前待解码块的编码数据可以是解码当前待解码块的过程中需要的各种信息或者数据。例如,当前待解码块的编码数据可以包括当前待解码块的残差数据以及当前待解码块的其它编码信息。
当前待解码块具体可以是当前待解码的图像块。
上述八叉树划分方式具体可以包含两种类型:水平八叉树划分和垂直八叉树划分。
具体地,水平八叉树划分可以是指在水平方向上对图像块进行三次划分,而在垂直方向上仅对图像块进行一次划分的划分方式;而垂直八叉树划分可以是指在垂直方向上对图像块进行三次划分,而在水平方向上仅对图像块进行一次划分的划分方式。
本申请中,通过采用八叉树划分方式或者八叉树划分得到的子图像块进行融合的划分方式对当前待解码块进行划分,能够适用于图像纹理比较复杂的情况,进而能够提高编解码性能。
结合第一方面,在第一方面的某些实现方式中,所述根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,包括:根据所述目标划分方式指示信息,以及所述目标划分方式指示信息与所述当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系,从所述当前待解码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
应理解,每个目标划分方式指示信息可以对应候选划分方式集合中的一种划分方式,其中,目标划分方式指示信息具体表现形式可以是一个索引值,也就是说,候选划分方式集合中的每种划分方式可以对应一个索引值。这样当解码端获取到了目标划分方式指示信息之后相当于获取到了一个索引值,接下来就可以根据获取到的索引值从候选划分方式集合中确定出当前待解码图像块对应的目标划分方式。
可选地,当前待解码块对应的候选划分方式集合是预先设置好的。
例如,上述候选划分方式集合可以是编码端和解码端预先约定好的,对所有的待编码块和待解码块都适用的划分方式集合。
通过预先设置候选划分方式集合,能够减少码流中携带的信息,减少码流传输过程中占用的带宽。
结合第一方面,在第一方面的某些实现方式中,解析码流,获取候选划分方式集合指示信息,所述候选划分方式集合指示信息用于指示所述当前解码块对应的候选划分方式集合。
上述候选划分方式集合指示信息的具体表现形式也可以是索引值。
当候选划分方式集合指示信息用索引值来表示时,不同的索引值可以对应不同的候选 划分方式集合,解码端通过解析码流获取到划分方式集合指示信息时相当于获取到了一个索引值,接下来就可以根据获取到的索引值从多个备选的候选划分方式集合中确定出当前待解码块对应的候选划分方式集合。
结合第一方面,在第一方面的某些实现方式中,所述目标划分方式指示信息包括八叉树划分方向信息,或者,所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
应理解,当目标划分方式指示信息仅包含八叉树划分方向信息时,目标划分方式为八叉树划分,这时可以根据八叉树划分方向信息来确定目标划分方式是水平八叉树划分还是垂直八叉树划分。
应理解,在本申请中,八叉树划分后得到的子图像块的融合信息也可以直接简称为融合信息。
上述八叉树划分后得到的子图像块的融合信息可以用于指示八叉树划分得到的子图像块的融合情况。
在具体实现时,可以对八叉树划分得到的子图像块进行编号,融合信息可以用于指示进行合并处理的子图像块的编号。
当目标划分方式指示信息包括八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息时,目标划分方式为对八叉树划分得到的子图像块进行融合的划分方式。在这种情况下,不仅需要根据八叉树划分方向信息确定八叉树划分方向,还需要根据八叉树划分后得到的子图像块的融合信息来确定八叉树划分得到的子图像块进行融合的融合情况,进而确定目标划分方式的具体形式。
结合第一方面,在第一方面的某些实现方式中,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线的保留情况。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线中被保留的划分线。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线中被删除的划分线。
本申请中,通过划分线标识位指示划分线的保留情况,能够灵活的指示八叉树划分得到的子图像块的各种融合情况。
第二方面,提供了一种视频编码方法,该方法包括:确定对当前待编码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;根据所述目标划分方式将所述当前待编码块划分成多个待编码子块;对所述多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流;将所述目标划分方式对应的目标划分方式指示信息写入到所述码流。
本申请中,通过采用八叉树划分方式或者八叉树划分得到的子图像块进行融合的划分方式对当前待编码块进行划分,能够适用于图像纹理比较复杂的情况,进而能够提高编解码性能。
结合第二方面,在第二方面的某些实现方式中,所述确定对当前待编码块进行划分的目标划分方式,包括:从所述当前待编码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:将候选划分方式集合指示信息写入所述码流,所述候选划分方式集合指示信息用于指示所述当前编码块对应的候选划分方式集合。
可选地,当前待编码块对应的候选划分方式集合是预先设置好的。
例如,上述候选划分方式集合可以是编码端和解码端预先约定好的,对所有的待编码块和待解码块都适用的划分方式集合。
通过预先设置候选划分方式集合,能够减少码流中携带的信息,减少码流传输过程中占用的带宽。
结合第二方面,在第二方面的某些实现方式中,所述目标划分方式指示信息包括八叉树划分方向信息,或者,所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
结合第二方面,在第二方面的某些实现方式中,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线的保留情况。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线中被保留的划分线。
可选地,上述标识位的取值用于指示八叉树划分得到的子图像块之间的全部划分线中被删除的划分线。
第三方面,提供了一种视频解码装置,该视频解码装置包括用于实施第一方面的任意一种方法的若干个功能单元。
例如,该视频解码装置可以包括图像解码单元和划分单元。
其中,图像解码单元可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。
第四方面,提供了一种视频编码装置,该视频编码装置包括用于实施第二方面的任意一种方法的若干个功能单元。
例如,该视频编码装置可以包括划分单元和图像编码单元。
其中,图像编码单元可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。
第五方面,提供了一种视频解码器,该视频解码器包括:图像解码单元,用于解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式对应的目标划分方式指示信息;划分单元,用于根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;所述划分单元还用于根据所述目标划分方式 将所述当前待解码块划分成多个待解码子块;所述图像解码单元还用于根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
结合第五方面,在第五方面的某些实现方式中,所述划分单元用于:根据所述目标划分方式指示信息,以及所述目标划分方式指示信息与所述当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系,从所述当前待解码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
结合第五方面,在第五方面的某些实现方式中,所述图像解码单元还用于:解析码流,获取候选划分方式集合指示信息,所述候选划分方式集合指示信息用于指示所述当前解码块对应的候选划分方式集合。
结合第五方面,在第五方面的某些实现方式中,所述目标划分方式指示信息包括八叉树划分方向信息,或者,所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
结合第五方面,在第五方面的某些实现方式中,所述划分单元用于:所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
第六方面,提供了一种视频编码器,该视频编码器包括:划分单元,用于确定对当前待编码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;所述划分单元还用于根据所述目标划分方式将所述当前待编码块划分成多个待编码子块;图像编码单元,用于对所述多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流;所述图像编码单元还用于将所述目标划分方式对应的目标划分方式指示信息写入到所述码流。
结合第五方面,在第五方面的某些实现方式中,所述划分单元用于:从所述当前待编码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
结合第五方面,在第五方面的某些实现方式中,所述图像编码单元还用于:将候选划分方式集合指示信息写入所述码流,所述候选划分方式集合指示信息用于指示所述当前编码块对应的候选划分方式集合。
结合第五方面,在第五方面的某些实现方式中,所述目标划分方式指示信息包括八叉树划分方向信息,或者,所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
结合第五方面,在第五方面的某些实现方式中,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
第七方面,本申请实施例提供一种用于解码视频数据的设备,所述设备包括:存储器,用于存储码流形式的视频数据;视频解码器,用于实施第一方面的任意一种方法。
第八方面,本申请实施例提供一种用于编码视频数据的设备,所述设备包括:存储器,用于存储视频数据,所述视频数据包括一个或多个图像块;视频编码器,用于实施第二方 面的任意一种方法。
第九方面,本申请实施例提供一种解码设备,包括:存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面的任意一种方法的部分或全部步骤。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第十方面,本申请实施例提供一种编码设备,包括:存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第二方面的任意一种方法的部分或全部步骤。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面或者第二方面中的任意一种方法的部分或全部步骤的指令。
第十二方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面或者第二方面中的任意一种方法的部分或全部步骤。
应当理解的是,本申请的第三至第十二方面中的技术方案分别与本申请的第一方面和第二方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
可以看到,本申请实施例通过采用八叉树划分方式或者八叉树划分得到的子图像块进行融合的划分方式对当前待解码块进行划分,能够适用于图像纹理比较复杂的情况,进而能够提高编解码性能。
附图说明
图1是用于实现本申请实施例的视频编码系统实例的示意性框图;
图2是用于实现本申请实施例的视频编码器实例的示意性结构框图;
图3是用于实现本申请实施例的视频解码器实例的示意性结构框图;
图4是用于实现本申请实施例的视频译码系统实例的示意性结构框图;
图5是用于实现本申请实施例的视频译码设备实例的示意性结构框图;
图6是用于实现本申请实施例的编码装置或者解码装置实例的示意性框图;
图7是本申请实施例的视频解码方法的示意性流程图;
图8是按照水平八叉树划分和垂直八叉树划分得到的图像块的示意图;
图9是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图10是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图11是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图12是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图13是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图14是对八叉树划分得到的子图像块进行融合得到的图像块的示意图;
图15是按照水平八叉树划分方式进行划分得到的图像块的示意图;
图16是本申请实施例的视频编码方法的示意性流程图;
图17是本申请实施例的视频编码方法中划分图像块的示意性流程图;
图18是本申请实施例的视频解码器的示意性框图;
图19是本申请实施例的视频编码器的示意性框图。
具体实施方式
下面结合本本申请实施例中的附图对本申请实施例进行描述。
以下描述中,参考形成本申请一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。
例如,应理解,结合所描述方法的揭示内容可以同样适用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可能应用于现有的视频编码标准中(如H.264、HEVC等标准),还可能应用于未来的视频编码标准中(如H.266标准)。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macroblock,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在高性能视频编码(high efficiency video coding,HEVC)标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU 和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如,在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1,图1示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、可擦写可编程只读存储器(erasable programmable read-only  memory,EPROM)、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺 寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的色度块预测方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述的色度块预测方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例 如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1中将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本申请的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的 编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,
DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO) 滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同 的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(advanced motion vector prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本申请实施例中,编码器20可用于实现后文实施例中描述的视频编码方法。
应当理解的是,本申请中的视频编码器可以只包括视频编码器20中的部分模块,例如,本申请中的视频编码器可以包括图像解码单元和划分单元。其中,图像解码单元可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。
另外,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选 的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息, 以解码当前视频条带的视频块。在本申请的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的视频解码法。
应当理解的是,本申请中的视频编码器可以只包括视频编码器30中的部分模块,例如,本申请中的视频编码器可以包括划分单元和图像编码单元。其中,图像编码单元可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。
另外,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
参见图4,图4是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图4所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(static random access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行 相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
参见图5,图5是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图6,图6是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图6为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的图像块的划分方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(central processing unit,CPU),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何 其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
下面结合图7对本申请实施例的视频解码方法进行详细的介绍。
图7是本申请实施例的视频解码方法的示意性流程图。图7所示的方法可以由上文中图3所示的解码器30执行,图7所示的方法包括步骤1001至步骤1004,下面对步骤1001至步骤1004进行详细的介绍。
1001、解析码流,以获取当前待解码块的编码数据和对待解码块进行划分的目标划分方式对应的目标划分方式指示信息。
当前待解码块的编码数据可以是解码当前待解码块的过程中需要的各种信息或者数据,例如,当前待解码块的编码数据可以包括当前待解码块的残差数据以及当前待解码块的其它编码信息。
1002、根据目标划分方式指示信息确定对当前待解码块进行划分的目标划分方式。
上述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式。
八叉树划分方式可以是指对图像块分别从水平方向和垂直方向进行划分,得到8个大小相同的子图像块的划分方式。
根据划分方向的差异,可以将八叉树划分方式分为水平八叉树划分和垂直八叉树划分两种。
其中,水平八叉树划分是指在水平方向上对图像块进行三次划分,而在垂直方向上对图像块仅进行一次划分的划分方式(水平八叉树划分方式中对图像块在水平方向上的划分次数多于对图像块在垂直方向上的划分次数)。
垂直八叉树划分是指在垂直方向上对图像块进行三次划分,而在水平方向上对图像块仅进行一次划分的划分方式(垂直八叉树划分方式中对图像块在垂直方向上的划分次数多于对图像块在水平方向上的划分次数)。
例如,如图8所示,采用水平八叉树划分方式得到的图像块如201所示,采用垂直八叉树划分方式得到的图像块如202所示。其中,在对图像块201和图像块202进行划分时,产生10条划分线,这10条划分线分别为划分线1至划分线10。
一般来说,在对图像块进行八叉树划分时可以根据图像块的本身的特性(例如,图像块的大小、纹理等等)或者编码代价等来确定采用水平八叉树划分方式还是垂直八叉树划分方式对图像块进行划分。
例如,当图像块在水平方向上的纹理相差较大时,可以采用垂直八叉树划分方式对图 像块进行划分,以在水平方向上将图像块划分成更多的子图像块;而当图像块在垂直方向上的纹理相差较大时,可以采用水平八叉树划分方式对图像块进行划分,以在垂直方向上将图像块划分成更多的子图像块。
上述对八叉树划分得到的子图像块进行融合的划分方式是指对八叉树划分得到的部分相邻的子图像块进行合并的划分方式。
应理解,当采用上述融合的划分方式对相邻的子图像块进行处理时,可以对八叉树划分得到的任意两个相邻的子图像块进行合并,也可以对八叉树划分得到的N(N为大于2的整数)个以上的相邻的子图像块进行合并。
其中,N个相邻的子图像块可以是指N个两两相邻的子图像块,例如,需要对相邻的子图像块1,子图像块2和子图像块3进行合并处理,那么,子图像块1可以和子图像块2相邻,子图像块2可以和子图像块3相邻,子图像块2和子图像块3既可以相邻也可以不相邻。
如图8所示,通过水平八叉树划分方式或者垂直八叉树划分方式可以将图像块划分成8个子图像块,那么,可以将这8个子图像块中的部分相邻的子图像块进行合并,从而得到新的子图像块。
另外,将部分相邻的子图像块进行合并相当于将部分相邻的子图像块之间的划分线删除,从而实现子图像块之间的合并。
例如,如图9所示,对图像块201采用水平八叉树划分方式进行划分可以得到8个子图像(分别为子图像块A至子图像块H),该8个子图像块之间的划分线包括划分线1至划分线10。在图9中,为了实现对图像块201的进一步划分,可以将划分线1,4和7删掉,得到图像块201A,为了得到规则的子图像块,还可以将图像块201A中的划分线8删掉,得到图像块201B,最终得到的图像块201B包含5个子图块,通过对201中的子图像块进行融合处理,使得图像块201中由原来有8个图像块转换成了图像块201B中的5个图像块。
另外,图9中所示的划分方式还相当于将子图像块A、子图像块B、子图像块E和子图像块F这4个相邻的子图像块合并,从而得到包含5个子图像块的图像块201B。
通过对图像块201中的部分相邻的子图像块进行合并处理有多种具体的实现方式,如图10所示,通过对图像块201中的部分相邻的子图像块进行合并处理,能够得到图像块301至图像块305。
下面结合图10对图像块301至图像块305的获得方式进行详细说明。
图像块301是对子图像块A和子图像块E进行合并得到的(相当于将划分线7删掉);
图像块302是分别对子图像块A和子图像块B进行合并处理,以及对子图像块E和子图像块F进行合并得到的(相当于将划分线1和4删掉);
图像块303是对子图像块A、子图像块E、子图像块F和子图像块G进行合并处理得到的(相当于将划分线4、5和7删掉);
图像块304是对子图像块B、子图像块C、子图像块F和子图像块G进行合并处理得到的(相当于将划分线2、5、8和9删掉);
图像块305是对子图像块A和子图像块E进行合并处理,对子图像块B、子图像块C和子图像块D进行合并处理,以及对子图像块F、子图像块G和子图像块H进行合并处 理得到的(相当于将划分线2、3、5和6删掉)。
类似的,通过对图像块201中的部分相邻的子图像块进行合并处理,还能够得到图11中所示的图像块306至图像块310,以及图12中所示的图像块311至图像块314。
下面结合图11对图像块306至图像块310的获得方式进行详细说明。
图像块306是分别对子图像块A、子图像块B和子图像块C进行合并处理,以及对子图像块E、子图像块F和子图像块G进行合并处理得到的(相当于将划分线1、2、4和5删掉);
图像块307是对子图像块B、子图像块C和子图像块D以及子图像块F、子图像块G和子图像块H进行合并处理得到的(相当于将划分线2、3、5、6、8、9和10删掉);
图像块308是对子图像块A、子图像块B和子图像块C以及子图像块E、子图像块F和子图像块G行合并处理得到的(相当于将划分线1、2、4、5、7、8和9删掉);
图像块309是对子图像块E、子图像块F、子图像块G和子图像块H进行合并处理得到的(相当于将划分线4、5和6删掉);
图像块310是分别对子图像块B、子图像块C和子图像块D进行合并处理,以及对子图像块F、子图像块G和子图像块H进行合并处理得到的(相当于将划分线2、3、5和6删掉)。
下面结合图12对图像块311至图像块314的获得方式进行详细说明。
图像块311是分别对子图像块A和子图像块E进行合并处理,以及对子图像块C、子图像块D、子图像块G和子图像块H进行合并处理得到的(相当于将划分线3、6、7、9和10删掉);
图像块312是对子图像块B和子图像块C进行合并处理得到的(相当于将划分线2删掉);
图像块313是分别对子图像块B和子图像块C进行合并处理,以及对子图像块F和子图像块G进行合并处理得到的(相当于将划分线2和5删掉);
图像块314是分别对子图像块A和子图像块E进行合并处理,以及对子图像块C和子图像块G进行合并处理得到的(相当于将划分线7和9删掉)。
同样也可以按照图9至图12中的类似的方式对垂直八叉树划分得到的图像块202进行划分,划分结果如图13和图14所示。
如图13和图14所示,通过对图像块202中的部分相邻的子图像块进行合并处理,得到的图像块可以包括图像块401至图像块408(具体划分方式与图9至图12中的划分方式类似,这里不再详细描述)。
应理解,上述图9至图14只是对图像块进行划分的一些具体实现方式,本申请中的图像划分方式并不限于图9至图14中所示的划分方式,只要是基于八叉树划分或者基于八叉树划分得到的子图像块进行融合的划分方式都在本申请的保护范围内。
1003、根据目标划分方式将当前待解码块划分成多个待解码子块。
1004、根据当前待解码块的编码数据对多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
例如,经过步骤1002之后,确定目标划分方式为水平八叉树划分方式,那么,如图15所示,可以按照水平八叉树方式对待解码图像块进行划分,得到8个待解码子图像块 (分别为A至H),如果待解码子块A至H均不需要进一步划分,那么,接下来就可以对待解码子图像块A至H进行解码,得到解码后的子图像块。
本申请中,通过采用八叉树划分方式或者八叉树划分得到的子图像块进行融合的划分方式对当前待解码块进行划分,能够适用于图像纹理比较复杂的情况,进而能够提高编解码性能。
可选地,作为一个实施例,根据目标划分方式指示信息确定对当前待解码块进行划分的目标划分方式,包括:根据目标划分方式指示信息,以及目标划分方式指示信息与当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系,从当前待解码块对应的候选划分方式集合中确定出目标划分方式,其中,候选划分方式集合包括八叉树划分方式和对八叉树划分得到的子图像块进行融合的划分方式。
应理解,每个目标划分方式指示信息可以对应候选划分方式集合中的一种划分方式,其中,目标划分方式指示信息具体表现形式可以是一个索引值,也就是说,候选划分方式集合中的每种划分方式可以对应一个索引值。解码端获取到了目标划分方式指示信息之后相当于获取到了一个索引值,接下来就可以根据获取到的索引值从候选划分方式集合中确定出当前待解码图像块对应的目标划分方式。
例如,候选划分方式集合包括4种划分方式,这4种划分方式对应的索引值如表1所示,那么,当目标划分方式指示信息具体为索引值1时,根据表1中所示的对应的关系,可以确定目标划分方式为垂直八叉树划分。
表1
索引值 候选划分方式
0 水平八叉树划分
1 垂直八叉树划分
2 将水平八叉树划分得到的图像块中的最上侧的2个子图像块合并
3 将水平八叉树划分得到的图像块中的最上侧的4个子图像块合并
应理解,对于不同的解码块来说,候选划分方式集合可以是相同的,这样当解码端进行解码时都是从同一个候选划分方式集合中确定出目标划分方式。而在某些情况下,为了实现更灵活地的划分,还可以根据图像块的特性选择与其匹配的候选划分方式集合,然后再从该候选划分方式集合中确定出目标划分方式。
可选地,当前待解码块对应的候选划分方式集合是预先设置好的。
例如,上述候选划分方式集合可以是编码端和解码端预先约定好的,对所有的待编码块和待解码块都适用的划分方式集合。
通过预先设置候选划分方式集合,能够减少码流中携带的信息,减少码流传输过程中占用的带宽。
可选地,作为一个实施例,图7所示的方法还包括:解析码流,获取候选划分方式集合指示信息,候选划分方式集合指示信息用于指示当前解码块对应的候选划分方式集合。
具体地,候选划分方式集合指示信息具体表现形式可以是索引值表示,例如,候选划分方式集合指示信息与候选划分方式集合之间的对应关系可以如表2所示。
表2
索引值 候选划分方式集合
0 候选划分方式集合1
1 候选划分方式集合2
2 候选划分方式集合3
3 候选划分方式集合4
当解码端通过解析码流得到候选划分方式集合指示信息表示的索引值为2时,可以通过表2所示的关系确定当前待解码块对应的是候选划分方式集合3,接下来,就可以根据目标划分方式指示信息从候选划分方式集合3中确定目标划分方式了。
在本申请中,除了根据目标划分方式指示信息,以及目标划分方式指示信息与当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系来确定目标划分方式之外,还可以直接目标划分方式指示信息来直接确定目标划分方式。
可选地,目标划分方式指示信息包括八叉树划分方向信息,或者,目标划分方式指示信息包括八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
应理解,当目标划分方式指示信息仅包括八叉树划分方向信息时,目标划分方式为八叉树划分,这时可以根据八叉树划分方向信息来具体确定目标划分方式为水平八叉树划分还是垂直八叉树划分。
例如,当目标划分方式指示信息仅包括八叉树划分方向信息,并且八叉树划分方向信息指示的划分方向是水平八叉树划分时,那么,可以直接确定出目标划分方式为水平八叉树划分。
另外,当目标划分方式是对八叉树划分得到的子图像块进行融合的划分方式时,目标划分方式指示信息除了包括八叉树划分方向信息之外,还需要包括八叉树划分得到的子图像块的融合信息,这样,当解码端根据八叉树划分方向信息确定八叉树划分方向之后,能够再结合融合信息来确定目标划分方式。
当目标划分方式指示信息包括八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息时,目标划分方式为对八叉树划分得到的子图像块进行融合的划分方式。在这种情况下,不仅需要根据八叉树划分方向信息确定八叉树划分方向,还需要根据八叉树划分后得到的子图像块的融合信息来确定八叉树划分得到的子图像块进行融合的融合情况,进而确定目标划分方式的具体形式。
例如,当目标划分方式指示信息中的八叉树划分方向信息指示的是水平八叉树划分,并且融合信息指示的是对水平八叉树划分得到的最上方的两个子图像块进行融合时,解码端可以确定根据目标划分方式对图像块进行划分得到的图像块如图10中的图像块301所示。
可选地,上述融合信息包含划分线标识位,该划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
上述标识位的取值可以具体指示八叉树划分得到的子图像块之间的全部划分线是否被删除或者保留,或者,上述标识位的取值也可以仅指示融合过程中被删除的划分线,或者,上述标识位的取值也可以仅指示融合过程中被保留的划分线。
应理解,八叉树划分得到的子图像块之间的全部划分线中的每一个划分线可以对应一 个标识位,该标志位的取值用于指示对应的划分线的保留情况。
例如,如图9所示,当对图像块201中的部分子图像块进行融合得到图像块201B,每条划分线对应一个标识位,那么,图像块201B对应的划分方式的标识位的取值为0110110011,表示在对子图像块进行融合的过程中,第1条、第4条、第7条和第8条划分线被删除。
本申请中,通过划分线标识位指示划分线的保留情况,能够灵活的指示八叉树划分得到的子图像块的各种融合情况。
上文结合图7从解码端的角度对本申请实施例的视频解码方法进行了详细的介绍,下面结合16从编码端的角度对本申请实施例的视频编码方法进行详细的介绍。
图16是本申请实施例的视频编码方法的示意性流程图。图16所示的方法包括步骤2001至步骤2004,下面对这些步骤进行详细的介绍。
2001、确定对当前待编码块进行划分的目标划分方式。
其中,目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式。
可选地,确定对当前待编码块进行划分的目标划分方式,包括:根据所述当前待编码块的尺寸确定所述目标划分方式。
例如,在当前待编码块的尺寸小于预设的尺寸时可以选择一种划分方式作为目标划分方式,而在当前待编码块的尺寸小于预设的尺寸时可以选择另外一种划分方式作为目标划分方式。
或者,也可以根据当前待编码块的纹理特性直接选择某种划分方式作为目标划分方式。
可选地,确定对当前待编码块进行划分的目标划分方式,包括:从当前待编码块对应的候选划分方式集合中确定出目标划分方式,其中,候选划分方式集合包括八叉树划分方式和对八叉树划分得到的子图像块进行融合的划分方式。
应理解,从当前待编码块对应的候选划分方式集合中确定出目标划分方式,可以根据编码代价从当前待编码块对应的候选划分方式集合中确定出目标划分方式。具体地,可以确定当前编码块对应的候选划分方式集合中的每种划分方式对应的编码代价,然后从中选择编码代价最小的划分方式作为目标划分方式。
上述图7所示的视频解码方法中对目标划分方式以及候选划分方式集合的限定仍然适用于图16所示的视频编码方法中的目标划分方式和候选划分方式集合。
2002、根据目标划分方式将当前待编码块划分成多个待编码子块。
步骤2002中将当前待编码块划分成多个待编码子块的过程与图7所示的方法中的步骤1003中将当前待解码块划分成多个待解码子块的方式类似,这里不再详细赘述。
2003、对多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流。
应理解,步骤2003中不需要继续划分的待解码子块进行编码具体可以包括对这些不需要继续划分的待编码子块进行变换、量化以及熵编码等操作,以得到编码码流。
2004、将目标划分方式对应的目标划分方式指示信息写入到码流。
本申请中,通过采用八叉树划分方式或者八叉树划分得到的子图像块进行融合的划分方式对当前待编码块进行划分,能够适用于图像纹理比较复杂的情况,进而能够提高编解 码性能。
可选地,作为一个实施例,图16所示的方法还包括:将候选划分方式集合指示信息写入所述码流,所述候选划分方式集合指示信息用于指示所述当前编码块对应的候选划分方式集合。
可选地,当前待编码块对应的候选划分方式集合是预先设置好的。
例如,上述候选划分方式集合可以是编码端和解码端预先约定好的,对所有的待编码块和待解码块都适用的划分方式集合。
通过预先设置候选划分方式集合,能够减少码流中携带的信息,减少码流传输过程中占用的带宽。
具体地,候选划分方式集合指示信息可以用索引值表示,例如,候选划分方式集合指示信息与候选划分方式集合之间的对应关系可以如上文中的表2所示。
例如,如表2所示,在当前编码块对应候选划分方式集合3时,可以将候选划分方式集合3对应的索引值2写入到码流中,这样当解码端解析到索引值为2时,就可以根据表2所示的关系确定当前解码块对应的候选划分方式集合为候选划分方式集合3。
可选地,作为一个实施例,所述目标划分方式指示信息包括八叉树划分方向信息,或者,所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
当目标划分方式指示信息仅包括八叉树划分方向信息时,目标划分方式为八叉树划分,这时可以根据八叉树划分方向信息来具体确定目标划分方式具体为水平八叉树划分还是垂直八叉树划分。
而当目标划分方式是对八叉树划分得到的子图像块进行融合的划分方式时,目标划分方式指示信息除了包括八叉树划分方向信息之外,还需要包括八叉树划分得到的子图像块的融合信息,这样,当解码端根据八叉树划分方向信息确定八叉树划分方向之后,能够再结合融合信息来确定目标划分方式。
可选地,作为一个实施例,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
上述标识位的取值可以具体指示八叉树划分得到的子图像块之间的全部划分线是否被删除或者保留,或者,上述标识位的取值也可以仅指示融合过程中被删除的划分线,或者,上述标识位的取值也可以仅指示融合过程中被保留的划分线。
八叉树划分得到的子图像块之间的全部划分线中的每一个划分线可以对应一个标识位,该标志位的取值用于指示对应的划分线的保留情况。
为了更好地理解本申请实施例中的图像块的划分过程,下面结合图17以编码端为例,对本申请实施例的视频编码方法中的图像块的划分过程进行介绍。图17所示的过程可以由编码端设备执行,图17所示的过程包括步骤3001至步骤3006,下面对步骤3001至步骤3006进行介绍。
3001、获取当前块。
当前块可以是待编码块。
3002、按照八叉树对方式当前块进行划分。
在步骤3002中既可以按照水平八叉树方式对当前块进行划分,也可以按照垂直八叉 树方式对当前块进行划分,划分得到的结果可以如图8中的201或者202所示。
3003、对八叉树划分得到的划分线进行衍生处理,得到多种块划分方式。
应理解,在步骤3003中对八叉树划分得到的划分线进行衍生处理,具体可以是指对八叉树划分得到的划分线进行删减处理,从而实现将八叉树划分得到的部分子图像块进行融合。因此,步骤3003中的对八叉树划分得到的划分线进行衍生处理相当于上文中所指的对八叉树划分得到的子图像块进行融合。
例如,当步骤3002中采用水平八叉树方式对当前块进行划分时,通过步骤3003处理后得到的划分结果可以如图10至图12中的301至314,接下来,可以从301至314中选择出一种划分方式作为最优的块划分方式。
3004、从多种块划分方式中选择出最优的块划分方式。
在步骤3004中,可以根据率失真大小来确定最优的块划分方式,具体地,可以计算步骤3003中得到多种块划分方式中的每种块划分方式得到的图像块对应的率失真代价,然后从中选择率失真代价最小的块划分方式作为最优的块划分方式。
例如,步骤3003中得到的多种划分方式对应的划分结果分别是301至314,那么,可以通过计算率失真代价从301至314中选择出一种作为最优的块划分方式。
再如,步骤3003中一共有3种块划分方式(A,B和C),每种块划分方式对应的率失真代价如表3所示。
表3
块划分方式 率失真代价
A X
B Y
C Z
假设,率失真代价满足X>Y>Z,那么,块划分方式C对应的率失真代价最低,可以将块划分方式C作为最优的块划分方式。
3005、确定是否需要继续划分。
具体地,在步骤3005中,需要确定最优的块划分方式划分得到的图像块是否需要继续划分。如果需要继续划分的话,可以获取图像块中需要继续划分的子图像块,并将该子图像块作为当前块,继续执行步骤3001至步骤3004,而如果步骤3005中确定不需要继续划分的话,则执行步骤3006,块划分结束。
在具体确定是否需要继续划分时,可以根据当前块的纹理分布,编码需求等来确定。
应理解,在块划分结束后,还可以将最终的块划分结果信息写入到码流中,使得解码端能够通过解析码流获取块划分结果。
3006、块划分结束。
上文结合附图对本申请实施例的视频解码方法和视频编码方法进行了详细的介绍,下面结合图18和图19分别对本申请实施例的视频解码器和视频编码器进行介绍,应理解,图18所示的视频解码器能够执行本申请实施例的视频解码方法中的各个步骤,图19所示的视频编码器能够执行本申请实施例的视频编码方法中的各个步骤。为了避免不必要的重复,下面在介绍本申请实施例的视频编码器和视频解码器时适当省略重复的描述。
图18是本申请实施例的视频解码器的示意性框图。图18所示的视频解码器4000包 括:
图像解码单元4001,用于解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式对应的目标划分方式指示信息;
划分单元4002,用于根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
所述划分单元4002还用于根据所述目标划分方式将所述当前待解码块划分成多个待解码子块;
所述图像解码单元4001还用于根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
上述图像解码单元4003可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。例如,上述图像解码单元4003可以由图3中的解码器30中的预测处理单元、逆量化单元和逆变换处理单元和熵解码单元组成。
图19是本申请实施例的视频解码器的示意性框图。图19所示的视频编码器5000包括:
划分单元5001,用于确定对当前待编码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
所述划分单元5001还用于根据所述目标划分方式将所述当前待编码块划分成多个待编码子块;
图像编码单元5002,用于对所述多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流;
所述图像编码单元5002还用于将所述目标划分方式对应的目标划分方式指示信息写入到所述码流。
上述图像编码单元5002可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。例如,上述图像编码单元5002可以图2中的编码器20中的预测处理单元、变换处理单元、量化单元和熵编码单元组成。
在一个或一个以上实例中,所描述功能可以硬件、软件、固件或其任何组合来实施。如果在软件中实施,那么所述功能可作为一或多个指令或代码在计算机可读介质上存储或传输,并且由基于硬件的处理单元执行。计算机可读介质可以包含计算机可读存储介质,其对应于例如数据存储介质或通信介质的有形介质,通信介质例如根据通信协议包含有助于将计算机程序从一处传送到另一处的任何介质。以此方式,计算机可读介质通常可对应于(1)非暂时性的有形计算机可读存储介质,或(2)通信介质,例如,信号或载波。数据存储介质可以是可由一或多个计算机或一或多个处理器存取以检索用于实施本发明中描述的技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可包含计算机可读介质。
借助于实例而非限制,此类计算机可读存储介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储设备、闪存,或可用以存储呈指令或数据结构形式的所需程序代码且可由计算机存取的任何其它介质。并且,任何连接可适当地称为计算机可读介质。举例来说,如果使用同轴电缆、光纤缆线、双绞线、数字 订户线(digital subscriber line,DSL)或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输指令,则同轴电缆、光纤缆线、双绞线、DSL或例如红外线、无线电及微波等无线技术包含在介质的定义中。但是,应理解,所述计算机可读存储介质及数据存储介质并不包括连接、载波、信号或其它暂时性介质,而是实际上针对于非暂时性有形存储介质。如本文中所使用,磁盘和光盘包含压缩光盘(compact disc,CD)、激光光盘、光学光盘、数字多功能光盘(digital versatile disc,DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘用激光以光学方式再现数据。以上各项的组合也应包含于计算机可读介质的范围内。
指令可以由一或多个处理器执行,所述一或多个处理器例如是一或多个数字信号处理器(digital signal processor,DSP)、通用微处理器、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑阵列(field programmable logic arrays,FPGA)或其它等效的集成或离散逻辑电路。因此,如本文中所使用的术语“处理器”可指代上述结构或适用于实施本文中所描述的技术的任何其它结构中的任一者。另外,在一些方面中,本文中所描述的功能性可在用于编码和解码的专用硬件和/或软件模块内提供,或并入在合成编解码器中。并且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可以在包含无线手持机、集成电路(integrated circuit,IC)或IC集合(例如,芯片组)的多种设备或装置中实施。本申请描述各种组件、模块或单元是为了强调用于执行所揭示的技术的设备的功能方面,但未必需要通过不同硬件单元实现。确切地,如上文所描述,各种单元可结合合适的软件和/或固件组合在编解码器硬件单元中,或由互操作硬件单元的集合来提供,所述硬件单元包含如上文所描述的一或多个处理器。

Claims (21)

  1. 一种视频解码方法,其特征在于,包括:
    解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式对应的目标划分方式指示信息;
    根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
    根据所述目标划分方式将所述当前待解码块划分成多个待解码子块;
    根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,包括:
    根据所述目标划分方式指示信息,以及所述目标划分方式指示信息与所述当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系,从所述当前待解码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    解析码流,获取候选划分方式集合指示信息,所述候选划分方式集合指示信息用于指示所述当前解码块对应的候选划分方式集合。
  4. 如权利要求1所述的方法,其特征在于,所述目标划分方式指示信息包括八叉树划分方向信息,或者,
    所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
  5. 如权利要求4所述的方法,其特征在于,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
  6. 一种视频编码方法,其特征在于,包括:
    确定对当前待编码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
    根据所述目标划分方式将所述当前待编码块划分成多个待编码子块;
    对所述多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流;
    将所述目标划分方式对应的目标划分方式指示信息写入到所述码流。
  7. 如权利要求6所述的方法,其特征在于,所述确定对当前待编码块进行划分的目标划分方式,包括:
    从所述当前待编码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    将候选划分方式集合指示信息写入所述码流,所述候选划分方式集合指示信息用于指示所述当前编码块对应的候选划分方式集合。
  9. 如权利要求6所述的方法,其特征在于,所述目标划分方式指示信息包括八叉树划分方向信息,或者,
    所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
  10. 如权利要求9所述的方法,其特征在于,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
  11. 一种视频解码器,其特征在于,包括:
    图像解码单元,用于解析码流,以获取当前待解码块的编码数据和对所述待解码块进行划分的目标划分方式对应的目标划分方式指示信息;
    划分单元,用于根据所述目标划分方式指示信息确定对所述当前待解码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
    所述划分单元还用于根据所述目标划分方式将所述当前待解码块划分成多个待解码子块;
    所述图像解码单元还用于根据所述当前待解码块的编码数据对所述多个待解码子块中不需要进一步划分的待解码子块进行解码,得到解码后的子图像块。
  12. 如权利要求11所述的视频解码器,其特征在于,所述划分单元用于:
    根据所述目标划分方式指示信息,以及所述目标划分方式指示信息与所述当前待解码块对应的候选划分方式集合中的划分方式之间的对应关系,从所述当前待解码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
  13. 如权利要求12所述的视频解码器,其特征在于,所述图像解码单元还用于:
    解析码流,获取候选划分方式集合指示信息,所述候选划分方式集合指示信息用于指示所述当前解码块对应的候选划分方式集合。
  14. 如权利要求11所述的视频解码器,其特征在于,所述目标划分方式指示信息包括八叉树划分方向信息,或者,
    所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
  15. 如权利要求14所述的视频解码器,其特征在于,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
  16. 一种视频编码器,其特征在于,包括:
    划分单元,用于确定对当前待编码块进行划分的目标划分方式,其中,所述目标划分方式为八叉树划分方式或者对八叉树划分得到的子图像块进行融合的划分方式;
    所述划分单元还用于根据所述目标划分方式将所述当前待编码块划分成多个待编码 子块;
    图像编码单元,用于对所述多个待编码子块中不需要进一步划分的待编码子块进行编码,得到码流;
    所述图像编码单元还用于将所述目标划分方式对应的目标划分方式指示信息写入到所述码流。
  17. 如权利要求16所述的视频编码器,其特征在于,所述划分单元用于:
    从所述当前待编码块对应的候选划分方式集合中确定出所述目标划分方式,其中,所述候选划分方式集合包括所述八叉树划分方式和所述对八叉树划分得到的子图像块进行融合的划分方式。
  18. 如权利要求17所述的视频编码器,其特征在于,所述图像编码单元还用于:
    将候选划分方式集合指示信息写入所述码流,所述候选划分方式集合指示信息用于指示所述当前编码块对应的候选划分方式集合。
  19. 如权利要求16所述的视频编码器,其特征在于,所述目标划分方式指示信息包括八叉树划分方向信息,或者,
    所述目标划分方式指示信息包括所述八叉树划分方向信息和八叉树划分后得到的子图像块的融合信息。
  20. 如权利要求19所述的视频编码器,其特征在于,所述融合信息包含划分线标识位,所述划分线标识位的取值用于指示八叉树划分得到的子图像块之间的划分线在融合时的保留情况。
  21. 一种视频编解码设备,包括:
    存储器;
    处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求1-10中任一项所述的方法。
PCT/CN2019/122710 2018-12-04 2019-12-03 视频编解码方法、视频编码器和视频解码器 WO2020114394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811476154.2 2018-12-04
CN201811476154.2A CN111277828B (zh) 2018-12-04 2018-12-04 视频编解码方法、视频编码器和视频解码器

Publications (1)

Publication Number Publication Date
WO2020114394A1 true WO2020114394A1 (zh) 2020-06-11

Family

ID=70974455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122710 WO2020114394A1 (zh) 2018-12-04 2019-12-03 视频编解码方法、视频编码器和视频解码器

Country Status (2)

Country Link
CN (1) CN111277828B (zh)
WO (1) WO2020114394A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278260A (zh) * 2022-07-15 2022-11-01 重庆邮电大学 基于空时域特性的vvc快速cu划分方法及存储介质
CN116828180A (zh) * 2023-08-29 2023-09-29 北京中星微人工智能芯片技术有限公司 视频编码方法、装置、电子设备和计算机可读介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770338B (zh) * 2020-07-22 2022-05-13 腾讯科技(深圳)有限公司 编码单元的索引值确定方法、装置、设备及存储介质
CN112584143B (zh) * 2020-12-02 2022-09-06 浙江大华技术股份有限公司 一种视频编码方法、装置、系统及计算机可读存储介质
CN113613004A (zh) * 2021-09-14 2021-11-05 百果园技术(新加坡)有限公司 图像编码方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811731A (zh) * 2014-01-03 2015-07-29 上海天荷电子信息有限公司 多层次子块匹配图像压缩方法
WO2018065302A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and apparatus for binary-tree split mode coding
WO2018088805A1 (ko) * 2016-11-08 2018-05-17 주식회사 케이티 비디오 신호 처리 방법 및 장치
CN108605130A (zh) * 2015-11-27 2018-09-28 联发科技股份有限公司 用于视频和图像编码的熵编解码和上下文建模的方法和装置
CN108702507A (zh) * 2016-12-26 2018-10-23 日本电气株式会社 视频编码方法、视频解码方法、视频编码设备、视频解码设备以及程序

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100695142B1 (ko) * 2004-03-08 2007-03-14 삼성전자주식회사 적응적 2의 n 제곱 진트리 생성방법 및 이를 이용한 3차원 체적 데이터 부호화/복호화 방법 및 장치
CN101840565B (zh) * 2010-04-19 2011-09-21 浙江大学 一种基于gpu的八叉树并行构建方法
US8494290B2 (en) * 2011-05-05 2013-07-23 Mitsubishi Electric Research Laboratories, Inc. Method for coding pictures using hierarchical transform units
CN103999490B (zh) * 2011-11-28 2018-05-08 汤姆逊许可公司 可终止的基于空间树的位置编码和解码的方法和装置
CN103517070B (zh) * 2013-07-19 2017-09-29 清华大学 图像的编解码方法和装置
US20180192076A1 (en) * 2015-06-16 2018-07-05 Sharp Kabushiki Kaisha Image decoding device image coding device
WO2018123315A1 (ja) * 2016-12-26 2018-07-05 日本電気株式会社 映像符号化方法、映像復号方法、映像符号化装置、映像復号装置及びプログラム
CN108737819B (zh) * 2018-05-20 2021-06-11 北京工业大学 一种基于四叉树二叉树结构的灵活编码单元划分方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811731A (zh) * 2014-01-03 2015-07-29 上海天荷电子信息有限公司 多层次子块匹配图像压缩方法
CN108605130A (zh) * 2015-11-27 2018-09-28 联发科技股份有限公司 用于视频和图像编码的熵编解码和上下文建模的方法和装置
WO2018065302A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and apparatus for binary-tree split mode coding
WO2018088805A1 (ko) * 2016-11-08 2018-05-17 주식회사 케이티 비디오 신호 처리 방법 및 장치
CN108702507A (zh) * 2016-12-26 2018-10-23 日本电气株式会社 视频编码方法、视频解码方法、视频编码设备、视频解码设备以及程序

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JACKIE MA ET AL: "Description of Core Experiment: Partitioning", JOINT VIDEO EXPLORATION TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, no. J1021, 20 April 2018 (2018-04-20), San Diego, US, pages 1 - 30, XP030151313 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278260A (zh) * 2022-07-15 2022-11-01 重庆邮电大学 基于空时域特性的vvc快速cu划分方法及存储介质
CN116828180A (zh) * 2023-08-29 2023-09-29 北京中星微人工智能芯片技术有限公司 视频编码方法、装置、电子设备和计算机可读介质
CN116828180B (zh) * 2023-08-29 2023-11-17 北京中星微人工智能芯片技术有限公司 视频编码方法、装置、电子设备和计算机可读介质

Also Published As

Publication number Publication date
CN111277828A (zh) 2020-06-12
CN111277828B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2020114394A1 (zh) 视频编解码方法、视频编码器和视频解码器
CN111355951B (zh) 视频解码方法、装置及解码设备
US11849109B2 (en) Image prediction method, apparatus, and system, device, and storage medium
WO2020125595A1 (zh) 视频译码器及相应方法
US11924438B2 (en) Picture reconstruction method and apparatus
US20220094947A1 (en) Method for constructing mpm list, method for obtaining intra prediction mode of chroma block, and apparatus
CN111385572B (zh) 预测模式确定方法、装置及编码设备和解码设备
WO2020143589A1 (zh) 视频图像解码、编码方法及装置
WO2020135467A1 (zh) 帧间预测方法、装置以及相应的编码器和解码器
US11516470B2 (en) Video coder and corresponding method
WO2020253681A1 (zh) 融合候选运动信息列表的构建方法、装置及编解码器
US11902506B2 (en) Video encoder, video decoder, and corresponding methods
WO2020259353A1 (zh) 语法元素的熵编码/解码方法、装置以及编解码器
WO2020114393A1 (zh) 变换方法、反变换方法以及视频编码器和视频解码器
WO2020224476A1 (zh) 一种图像划分方法、装置及设备
WO2020135615A1 (zh) 视频图像解码方法及装置
WO2020135371A1 (zh) 一种标志位的上下文建模方法及装置
WO2020134817A1 (zh) 预测模式确定方法、装置及编码设备和解码设备
CN111294603B (zh) 视频编解码方法及装置
CN113170147B (zh) 视频编码器、视频解码器、及对应方法
WO2020119742A1 (zh) 块划分方法、视频编解码方法、视频编解码器
WO2020108168A1 (zh) 一种视频图像预测方法及装置
WO2020143292A1 (zh) 一种帧间预测方法及装置
WO2020125761A1 (zh) 一种图像块划分方法及装置
WO2020119525A1 (zh) 一种帧间预测的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893854

Country of ref document: EP

Kind code of ref document: A1