WO2020119742A1 - 块划分方法、视频编解码方法、视频编解码器 - Google Patents
块划分方法、视频编解码方法、视频编解码器 Download PDFInfo
- Publication number
- WO2020119742A1 WO2020119742A1 PCT/CN2019/124719 CN2019124719W WO2020119742A1 WO 2020119742 A1 WO2020119742 A1 WO 2020119742A1 CN 2019124719 W CN2019124719 W CN 2019124719W WO 2020119742 A1 WO2020119742 A1 WO 2020119742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- block
- component block
- current node
- division
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
Definitions
- the present application relates to the technical field of video codec, and more specifically, to a block division method, a video codec method, and a video codec.
- Digital video capabilities can be incorporated into a variety of devices, including digital TVs, digital live broadcast systems, wireless broadcasting systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, electronics Book readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio phones (so-called "smart phones"), video teleconferencing devices, video streaming devices And the like.
- Digital video devices implement video compression technologies, such as the standards defined in 15 MPEG-2, MPEG-4, ITU-TH.263, ITU-TH.264/MPEG-4 Part 10 Advanced Video Coding (AVC), video coding
- AVC Advanced Video Coding
- HEVC high efficiency video coding
- Video devices can more efficiently transmit, receive, encode, decode, and/or store digital video information by implementing such video compression techniques.
- Video compression techniques perform spatial (intra-image) prediction and/or temporal (inter-image) prediction to reduce or remove the redundancy inherent in the video 20 sequence.
- a video slice ie, a video frame or a portion of a video frame
- image blocks can also be referred to as tree blocks, coding units (CU), and/or coding nodes .
- the image block in the to-be-intra-coded (I) slice of the image is encoded using spatial prediction regarding reference samples in adjacent blocks in the same image.
- An image block in an inter-coded (P or B) slice of an image may use spatial prediction relative to reference samples in neighboring blocks in the same image or temporal prediction relative to reference samples in other reference images.
- the image may be referred to as a frame, and the reference image may be referred to as a reference frame.
- the video compression processing technology mainly divides the entire image into small blocks, and then performs intra prediction, inter prediction, transform quantization, entropy coding, and deblocking filter processing in units of these small blocks.
- the traditional scheme generally divides the image blocks according to the quadtree method (the image block is divided into four equal parts) or the binary tree method (the image block is divided into two parts equally). This division model is relatively simple.
- This application provides a block division method, a video codec method, and a video codec to improve encoding/decoding performance.
- a block division method applied in video decoding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is not met, the division mode of the current node is used to divide the first node A two-component block, wherein the size of the first component block is larger than the size of the second component block.
- a block division method applied to video decoding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, it is determined that the second component block of the current node is not divided or not used The division mode division of the current node, wherein the size of the first component block is larger than the size of the second component block.
- the method further includes: if the preset condition is satisfied, allowing the first component block to be divided by using the division mode to obtain the first component block.
- the method further includes: if the preset condition is not satisfied, allowing the division mode to be used to divide the first component block and the second component block.
- a block division method applied to video decoding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, only the division mode of the current node is allowed
- the component block is divided, wherein the current node includes the first component and the second component, and the size of the first component block is larger than the size of the second component block.
- a new division method which determines whether the second component block is divided or the division mode of the second component block according to the first component block, which makes the block division more flexible; on the other hand, in the second component block When the resolution of is smaller than that of the first component block, the division cost of the second component block of smaller size is higher than that of the first component block of larger size, and the second component block of smaller size is not further divided, or Using a division method different from that of the first component block can avoid the situation where the division cost is high.
- the determining whether the first component block satisfies the division mode includes at least one of the following: when the current node's division mode is quadtree division, determine whether the first component block is satisfied: the width of the first component block is less than or equal to the A preset threshold and/or the height of the first component block is less than or equal to the second preset threshold; in the case that the division mode of the current node is vertical binary tree division, it is determined whether the first component block meets : The width of the first component block is less than or equal to a third preset threshold; in the case that the division mode of the current node is horizontal binary tree division, determine whether the first component block satisfies: the first component block The height of is less than or equal to the fourth preset threshold; in the case that the division mode of the current node is horizontally expanded quadtree division, it is determined whether the first component block
- the scheme for processing the second component block is refined. According to the division mode of the first component block and the size of the first component block, the processing method of the second component block can be more accurately determined.
- the first component block is a luminance component block of the current node, the The second component block is a chroma component block of the current node; or, the first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a video decoding method includes: obtaining a division mode of a current node; and dividing the first component block of the current node into N first component subs according to the division mode of the current node Block, N is a positive integer greater than or equal to 2; in response to the first judgment result of the first component block satisfying the preset condition corresponding to the division mode, according to N1 of the N first component sub-blocks Decoding information of the first component sub-block and decoding information of the second component block of the current node to obtain the N1 first component sub-block and the reconstructed block of the second component block, N1 is a positive value greater than or equal to 1 Integer; or, in response to the first judgment result that the first component block satisfies the preset condition corresponding to the division mode, adopt a division mode different from the division mode of the current node
- the component block is divided into M second component sub-blocks, M is a positive integer greater than or equal to 2; according to the decoding information
- the method further includes: if the preset condition is satisfied, allowing the first component block to be divided by using the division mode to obtain the first component block.
- the method further includes: if the preset condition is not satisfied, allowing the division mode to be used to divide the first component block and the second component block.
- decoding on the basis of the new division method makes the decoding method more flexible; on the other hand, it can avoid the situation where the decoding calculation amount is too high.
- the first component block satisfies a preset condition corresponding to the division mode, including at least one of the following: division at the current node When the mode is quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to the first preset threshold and/or the height of the first component block is less than or equal to the second A preset threshold; in the case where the current node division mode is vertical binary tree division, the first component block satisfies: the width of the first component block is less than or equal to a third preset threshold; in the current When the node division mode is horizontal binary tree division, the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; the division mode of the current node is horizontally expanded quad In the case of tree division, the first component block satisfies that: the width of the first component block is less than or equal to a fifth preset threshold and
- the scheme for processing the second component block is refined. According to the division mode of the first component block and the size of the first component block, the processing method of the second component block can be more accurately determined.
- the decoding information of the second component block includes a prediction mode of the second component block; the method further includes: obtaining the first The prediction mode of the two-component block.
- the method further includes: acquiring decoding information of the second component block according to decoding information of the N1 first component subblocks.
- associating the same information of different component blocks can reduce the amount of data written to the code stream, reduce the amount of transmitted data, and improve transmission efficiency and codec efficiency.
- the decoding information of the second component block includes a prediction mode of the second component block; the decoding according to the N1 first component sub-blocks Information, acquiring decoding information of the second component block, including: acquiring the prediction mode of the second component block according to the prediction mode of the target first component subblock in the N1 first component subblocks, the The decoding information of the target first component sub-block includes the prediction mode of the target first component sub-block.
- determining the prediction mode of the second component block according to the prediction mode of the first component block can reduce the calculation amount of parsing information related to the prediction mode of the second component block in the code stream, reduce the amount of transmitted data, and improve transmission efficiency, Codec efficiency.
- the obtaining the prediction mode of the second component block includes: obtaining the prediction mode of the second component block from a code stream; or, obtaining the The prediction mode of the target first component sub-block is used as the prediction mode of the second component block.
- the decoding information of the second component block further includes the first The motion information of the two-component block
- the method further includes: acquiring the motion information of the second component block according to the motion information of the target first component sub-block, and the decoding information of the target first component sub-block further includes Motion information of the target first component sub-block.
- determining the motion information of the second component block according to the motion information of the first component block can reduce the information related to the motion information of the second component block in the code stream, reduce the amount of transmitted data, and improve the transmission efficiency and codec efficiency.
- the method before the acquiring decoding information of the second component block, the method further includes: determining the target first component sub according to target location information Piece.
- determining the target first component sub-block according to the target position information reduces the amount of parsed data and improves decoding efficiency.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), where the position of the uppermost left corner of the current node
- the coordinates are (x 0 , y 0 ), the height of the current node is H, and the width of the current node is W.
- determining the first component sub-block where the center position of the first component block is the target first component sub-block can improve decoding efficiency.
- the method before the acquiring decoding information of the second component block, the method further includes: according to a decoding order or a scanning order, the Nth The first or last first component sub-block in a component sub-block serves as the target first component sub-block.
- determining the first or last decoded or scanned first component sub-block as the target first component sub-block can improve decoding efficiency.
- the prediction mode of each of the N first component subblocks is an intra prediction mode or a non-intra prediction mode.
- the prediction modes of the N first component sub-blocks are all intra prediction modes or non-intra prediction modes, which can reduce the amount of data parsed from the code stream by the decoding end and improve decoding efficiency.
- the method further includes: using a prediction mode of any first component sub-block among the N first component sub-blocks as the N Prediction modes of the first component sub-blocks other than the first component sub-blocks among the first component sub-blocks
- the prediction modes of other first component sub-blocks can be determined only based on the prediction mode of a certain first component sub-block, which can reduce the amount of parsed data in the decoding process and improve coding efficiency.
- the method further includes: in response to the second judgment result that the first component block does not satisfy the preset condition corresponding to the division mode, adopting Dividing the second component block into N second component sub-blocks according to the division mode of the current node; according to the decoding information of the N first component sub-blocks and the decoding information of the N second component sub-blocks, Acquiring reconstruction blocks of the N first component sub-blocks and reconstruction blocks of the N second component sub-blocks.
- the division of the second component block by using a division mode different from that of the first component block can improve the flexibility of the block division manner.
- the first component block is a luminance component block of the current node, and the second component block is a chrominance component block of the current node; or, The first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a block division method applied in video coding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is not met, the division mode of the current node is used to divide the first node A two-component block, wherein the size of the first component block is larger than the size of the second component block.
- a block division method for video coding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, it is determined that the second component block of the current node is not divided or not used The division mode division of the current node, wherein the size of the first component block is larger than the size of the second component block.
- the method further includes: if the preset condition is satisfied, allowing the first component block to be divided by using the division mode to obtain the first component block.
- the method further includes: if the preset condition is not satisfied, allowing the division mode to be used to divide the first component block and the second component block.
- a block division method applied in video decoding includes: obtaining a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current node A first component block; determining whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, only the division mode of the current node is allowed
- the component block is divided, wherein the current node includes the first component and the second component, and the size of the first component block is larger than the size of the second component block.
- a new division method which determines whether the second component block is divided or the division mode of the second component block according to the first component block, which makes the block division more flexible; When the resolution of is smaller than that of the first component block, the division cost of the second component block of smaller size is higher than that of the first component block of larger size, and the second component block of smaller size is not further divided, or Using a division method different from that of the first component block can avoid the situation where the division cost is high.
- the preset condition includes at least one of the following: when the current node's division mode is quadtree division, determine whether the first component block is satisfied: the width of the first component block is less than or equal to the A preset threshold and/or the height of the first component block is less than or equal to the second preset threshold; in the case that the division mode of the current node is vertical binary tree division, it is determined whether the first component block meets : The width of the first component block is less than or equal to a third preset threshold; in the case that the division mode of the current node is horizontal binary tree division, determine whether the first component block satisfies: the first component block The height of is less than or equal to the fourth preset threshold; in the case that the division mode of the current node is horizontally expanded quadtree division, it is determined whether the first component block
- the scheme for processing the second component block is refined. According to the division mode of the first component block and the size of the first component block, the processing method of the second component block can be more accurately determined.
- the first component block is a luminance component block of the current node
- the The second component block is a chroma component block of the current node
- the first component block is a chroma component block of the current node
- the second component block is a luma component block of the current node.
- a video encoding method includes: obtaining a division mode of a current node; and according to the division mode of the current node, dividing the first component block of the current node into N first component children Block, N is a positive integer greater than or equal to 2; in response to a first judgment result that the first component block satisfies a preset condition corresponding to the division mode, encoding information of the N first component sub-blocks is generated and Coding information of the second component block of the current node; or, in response to a first judgment result that the first component block satisfies a preset condition corresponding to the division mode, adopt a division mode different from that of the current node Divided mode of the current node divides the second component block of the current node into M second component sub-blocks, M is a positive integer greater than or equal to 2; generates coding information of the N first component sub-blocks and the M The coding information of the second component sub-block.
- the method further includes: if the preset condition is satisfied, allowing the first component block to be divided by using the division mode to obtain the first component block.
- the method further includes: if the preset condition is not satisfied, allowing the division mode to be used to divide the first component block and the second component block.
- coding is based on the new division method, which makes the coding method more flexible; on the other hand, it can avoid the situation that the coding calculation amount is too high.
- the first component block satisfies a preset condition corresponding to the division mode, including at least one of the following: division at the current node When the mode is quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to the first preset threshold and/or the height of the first component block is less than or equal to the second A preset threshold; in the case where the current node division mode is vertical binary tree division, the first component block satisfies: the width of the first component block is less than or equal to a third preset threshold; in the current When the node division mode is horizontal binary tree division, the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; the division mode of the current node is horizontally expanded quad In the case of tree division, the first component block satisfies that: the width of the first component block is less than or equal to a fifth preset threshold and/
- the scheme for processing the second component block is refined. According to the division mode of the first component block and the size of the first component block, the processing method of the second component block can be more accurately determined.
- the generating the encoding information of the second component block includes: according to N1 first component subblocks of the N first component subblocks Encoding information of the second component block, N1 is a positive integer greater than or equal to 1.
- associating the same information of different component blocks can reduce the amount of data written to the code stream, reduce the amount of transmitted data, and improve transmission efficiency and codec efficiency.
- the encoding information of the second component block includes a prediction mode of the second component block; the encoding according to the N1 first component sub-blocks Information, generating encoding information of the second component block, including: acquiring the prediction mode of the target first component subblock among the N1 first component subblocks as the prediction mode of the second component block, the target The coding information of the first component sub-block includes the prediction mode of the target first component sub-block.
- determining the prediction mode of the second component block according to the prediction mode of the first component block can reduce the calculation amount of parsing information related to the prediction mode of the second component block in the code stream, reduce the amount of transmitted data, and improve transmission efficiency, Codec efficiency.
- the encoding information of the second component block further includes the first
- the method further includes: generating motion information of the second component block according to the motion information of the target first component sub-block, and the coding information of the target first component sub-block further includes Motion information of the target first component sub-block.
- determining the motion information of the second component block according to the motion information of the first component block can reduce the information related to the motion information of the second component block in the code stream, reduce the amount of transmitted data, and improve the transmission efficiency and codec efficiency.
- the method before the generating the encoding information of the second component block, the method further includes: determining the target first component according to target position information Piece.
- determining the target first component sub-block according to the target position information reduces the amount of parsed data and improves coding efficiency.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), where the top left corner position of the current node
- the coordinates are (x 0 , y 0 ), the height of the current node is H, and the width of the current node is W.
- determining the first component sub-block where the center position of the first component block is the target first component sub-block can improve coding efficiency.
- the method before the generating the encoding information of the second component block, the method further includes: according to the encoding order or the scanning order, the Nth The first or last first component sub-block in a component sub-block serves as the target first component sub-block.
- determining the first or last encoded or scanned first component sub-block as the target first component sub-block can improve coding efficiency.
- the prediction mode of each of the N first component subblocks is an intra prediction mode or a non-intra prediction mode.
- the prediction modes of the N first component sub-blocks are all intra prediction modes or non-intra prediction modes, which can reduce the amount of data parsed from the code stream by the coding end and improve coding efficiency.
- the method further includes: using a prediction mode of any first component sub-block among the N first component sub-blocks as the N Prediction modes of the first component sub-blocks other than the first component sub-blocks among the first component sub-blocks
- the prediction modes of other first component sub-blocks can be determined only based on the prediction mode of a certain first component sub-block, which can reduce the amount of parsed data in the coding process and improve coding efficiency.
- the method further includes: in response to the second judgment result of the first component block not satisfying the preset condition corresponding to the division mode, using the The dividing mode of the current node divides the second component block into N second component sub-blocks; generating coding information of the N first component sub-blocks and coding information of the N second component sub-blocks.
- the division of the second component block by using a division mode different from that of the first component block can improve the flexibility of the block division manner.
- the first component block is a luminance component block of the current node, and the second component block is a chrominance component block of the current node; or, The first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a video decoder in a ninth aspect, includes an image decoding unit for acquiring a division mode of a current node, and the division mode is used to indicate how to divide the current node to obtain the current A first component block of the node; a dividing unit, used to determine whether the first component block satisfies a preset condition corresponding to the dividing mode, and if the preset condition is not met, the dividing mode of the current node is adopted The second component block of the current node is divided, wherein the size of the first component block is larger than the size of the second component block.
- a video decoder includes: an image decoding unit for acquiring a division mode of a current node, where the division mode is used to indicate how to divide the current node to obtain the current A first component block of a node; a dividing unit, used to determine whether the first component block satisfies a preset condition corresponding to the split mode, and if the preset condition is met, determine the second component of the current node The block is not divided or divided by the division mode of the current node, wherein the size of the first component block is larger than the size of the second component block.
- the dividing unit is further configured to: if the preset condition is satisfied, allow the first component block to be divided by using the dividing mode to obtain the first component block.
- the dividing unit is further configured to: if the preset condition is not satisfied, allow the dividing mode to be used to divide the first component block and the second component block.
- a video decoder includes: an image decoding unit for acquiring a division mode of a current node, and the division mode is used to indicate how to divide the current node to obtain the The first component block of the current node; the dividing unit is used to determine whether the first component block satisfies the preset condition corresponding to the dividing mode. If the preset condition is met, only the current node’s The division mode divides the first component block of the current node, where the current node includes the first component and the second component, and the size of the first component block is larger than the size of the second component block.
- the dividing unit is specifically used for at least one of the following:
- the current node's division mode is quadtree division, determine whether the first component block satisfies: the width of the first component block is less than or equal to a first preset threshold and/or the first component block The height is less than or equal to the second preset threshold; in the case that the division mode of the current node is vertical binary tree division, it is determined whether the first component block satisfies: the width of the first component block is less than or equal to the third A preset threshold; in the case where the current node's division mode is horizontal binary tree division, determine whether the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; When the current node's division mode is horizontally expanded quadtree division, determine whether the first component block satisfies:
- the first component block is a luminance component block of the current node
- the second component block is a chroma component block of the current node; or, the first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a video decoder includes: an image decoding unit for acquiring a division mode of a current node; and a division unit for converting the current node according to the division mode of the current node
- the first component block of the node is divided into N first component sub-blocks, and N is a positive integer greater than or equal to 2; in response to a first judgment result that the first component block satisfies a preset condition corresponding to the division mode,
- the image decoding unit is further configured to: according to the decoding information of the N1 first component subblocks of the N first component subblocks and the decoding information of the second component block of the current node, obtain the N1 In the first component sub-block and the reconstructed block of the second component block, N1 is a positive integer greater than or equal to 1; in response to a first judgment result that the first component block satisfies a preset condition corresponding to the division mode,
- the dividing unit is further configured to
- the dividing unit is further configured to: if the preset condition is satisfied, allow the first component block to be divided by using the dividing mode to obtain the first component block.
- the dividing unit is further configured to: if the preset condition is not satisfied, allow the dividing mode to be used to divide the first component block and the second component block.
- the first component block satisfies a preset condition corresponding to the division mode, and includes at least one of the following: When the division mode of is quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to a first preset threshold and/or the height of the first component block is less than or equal to A second preset threshold; in the case where the current node's division mode is vertical binary tree division, the first component block satisfies: the width of the first component block is less than or equal to a third preset threshold; When the current node division mode is horizontal binary tree division, the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; the current node division mode is horizontal expansion In the case of quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to a fifth preset
- the decoding information of the second component block includes a prediction mode of the second component block; the image decoding unit is further configured to: To obtain the prediction mode of the second component block.
- the image decoding unit is further configured to: according to the decoding information of the N1 first component sub-blocks, obtain the decoding of the second component block information.
- the decoding information of the second component block includes a prediction mode of the second component block; the image decoding unit is specifically configured to: according to the A prediction mode of a target first component subblock among N1 first component subblocks, and obtaining a prediction mode of the second component block, decoding information of the target first component subblock includes the target first component subblock Prediction mode.
- the image decoding unit is specifically configured to: obtain the prediction mode of the second component block from the code stream; or obtain the target first score
- the prediction mode of the quantum block serves as the prediction mode of the second component block.
- the decoding information of the second component block further includes Motion information of the second component block; the image decoding unit is further configured to: according to the motion information of the target first component sub-block, obtain motion information of the second component block, the target first component sub-block The target decoding information further includes motion information of the target first component sub-block.
- the image decoding unit before the acquiring decoding information of the second component block, is further configured to: acquire target position information, according to the The target position information determines the target first component sub-block.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), where the current node is the uppermost left
- the coordinates of the angular position are (x 0 , y 0 ), the height of the current node is H, and the width of the current node is W.
- the image decoding unit before the acquiring decoding information of the second component block, is further configured to: according to a decoding order or a scanning order, The first or last first component sub-block among the N first component sub-blocks serves as the target first component sub-block.
- the prediction mode of each of the N first component sub-blocks is an intra prediction mode or non-intra prediction mode.
- the image decoding unit is configured to: use a prediction mode of any first component sub-block among the N first component sub-blocks, As a prediction mode of the first component sub-blocks other than the first component sub-block among the N first component sub-blocks.
- the dividing unit is further configured to: in response to a second judgment that the first component block does not satisfy a preset condition corresponding to the dividing mode As a result, the second component block is divided into N second component sub-blocks by using the division mode of the current node; the image decoding unit is further used for: according to the decoding information of the N first component sub-blocks and Decoding information of the N second component sub-blocks, acquiring the reconstructed blocks of the N first component sub-blocks and the reconstructed blocks of the N second component sub-blocks.
- the first component block is a luminance component block of the current node, and the second component block is a chrominance component block of the current node; or , The first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a video encoder includes: an image encoding unit configured to acquire a division mode of a current node, and the division mode is used to divide a first component block of the current node; division A unit, configured to determine whether the first component block satisfies a preset condition corresponding to the split mode, and if the preset condition is not met, use the split mode of the current node to split the second of the current node Component block, wherein the size of the first component block is larger than the size of the second component block.
- a video encoder includes: an image encoding unit configured to obtain a division mode of a current node, and the division mode is used to divide a first component block of the current node; division A unit, configured to determine whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, determine that the second component block of the current node does not divide or adopt the The division mode of the current node is divided, wherein the size of the first component block is larger than the size of the second component block.
- the dividing unit is further configured to: if the preset condition is satisfied, allow the first component block to be divided by using the dividing mode to obtain the first component block.
- the dividing unit is further configured to: if the preset condition is not satisfied, allow the dividing mode to be used to divide the first component block and the second component block.
- a video encoder includes: an image encoding unit for acquiring a division mode of a current node, where the division mode is used to divide a first component block of the current node; division A unit, configured to determine whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, only the first component of the current node is allowed to be adopted by the division mode of the current node
- the blocks are divided, wherein the current node includes the first component and the second component, and the size of the first component block is larger than the size of the second component block.
- the dividing unit is specifically used for at least one of the following :
- the current node's division mode is quadtree division, determine whether the first component block satisfies: the width of the first component block is less than or equal to the first preset threshold and/or the first The height of a component block is less than or equal to the second preset threshold; in the case where the current node's division mode is vertical binary tree division, determine whether the first component block satisfies: the width of the first component block is less than Or equal to a third preset threshold; in the case where the current node's division mode is horizontal binary tree division, determine whether the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold ; In the case that the division mode of the current node is a horizontally expanded quadtree division, determine whether the first component
- the first component block is the current node's A luma component block
- the second component block is a chroma component block of the current node
- the first component block is a chroma component block of the current node
- the second component block is a luma component of the current node Piece.
- a video encoder includes: an image coding unit for acquiring a division mode of a current node; and a division unit for dividing the current node according to the division mode of the current node
- the first component block of the node is divided into N first component sub-blocks, and N is a positive integer greater than or equal to 2; in response to a first judgment result that the first component block satisfies a preset condition corresponding to the division mode,
- the image encoding unit is further configured to generate encoding information of the N first component sub-blocks and encoding information of the second component block of the current node; or, in response to the first component block satisfying the A first judgment result of a preset condition corresponding to a division mode, the division unit is further used to divide the second component block of the current node into M second divisions by using a division mode different from the division mode of the current node Quantum block, M is a positive integer greater than or equal to 2; the image encoding
- the dividing unit is further configured to: if the preset condition is satisfied, allow the first component block to be divided by using the dividing mode to obtain the first component block.
- the dividing unit is further configured to: if the preset condition is not satisfied, allow the dividing mode to be used to divide the first component block and the second component block.
- the first component block satisfies a preset condition corresponding to the division mode, and includes at least one of the following: When the division mode of is quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to a first preset threshold and/or the height of the first component block is less than or equal to A second preset threshold; in the case where the current node's division mode is vertical binary tree division, the first component block satisfies: the width of the first component block is less than or equal to a third preset threshold; When the current node division mode is horizontal binary tree division, the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; the current node division mode is horizontal expansion In the case of quadtree division, the first component block satisfies that: the width of the first component block is less than or equal to a fifth preset threshold and/or the height
- the image coding unit is specifically configured to: according to coding information of N1 first component subblocks among the N first component subblocks, Generate the encoded information of the second component block, and N1 is a positive integer greater than or equal to 1.
- the encoding information of the second component block includes a prediction mode of the second component block; the image encoding unit is specifically configured to: obtain the The prediction mode of the target first component subblock among the N1 first component subblocks is used as the prediction mode of the second component block, and the coding information of the target first component subblock includes the Forecast mode.
- the encoding information of the second component block further includes The motion information of the second component block
- the image coding unit is further configured to: generate motion information of the second component block according to the motion information of the target first component sub-block, the target first component sub-block
- the target encoding information further includes motion information of the target first component sub-block.
- the image encoding unit is further configured to: acquire target position information, according to the The target position information determines the target first component sub-block.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), where the current node is at the top left
- the coordinates of the angular position are (x 0 , y 0 ), the height of the current node is H, and the width of the current node is W.
- the image encoding unit before the encoding information of the second component block is generated, is further configured to: according to the encoding order or the scanning order, The first or last first component sub-block among the N first component sub-blocks serves as the target first component sub-block.
- the prediction mode of each of the N first component subblocks is an intra prediction mode or non-intra prediction mode.
- the image encoding unit is configured to: use a prediction mode of any of the N first component sub-blocks, As a prediction mode of the first component sub-blocks other than the first component sub-block among the N first component sub-blocks.
- the dividing unit is further configured to, in response to a second judgment that the first component block does not satisfy a preset condition corresponding to the dividing mode As a result, the second component block is divided into N second component sub-blocks by using the division mode of the current node; the image coding unit is further used to generate coding information of the N first component sub-blocks and Coding information of the N second component sub-blocks.
- the first component block is a luminance component block of the current node, and the second component block is a chrominance component block of the current node; or , The first component block is a chroma component block of the current node, and the second component block is a luma component block of the current node.
- a video decoding device including a plurality of functional units for implementing any one of the methods of the first aspect to the fourth aspect.
- the video decoding device may include an image decoding unit and a division unit.
- the image decoding unit may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
- a video encoding device including a plurality of functional units for implementing any one of the methods of the fifth aspect to the eighth aspect.
- the video encoding device may include a division unit and an image encoding unit.
- the image coding unit may be composed of one or more of a prediction unit, a transformation unit, a quantization unit, and an entropy coding unit.
- an embodiment of the present application provides an apparatus for decoding video data.
- the apparatus includes: a memory for storing video data in the form of a code stream; and a video decoder for implementing the first to fourth aspects Any one of the aspects.
- an embodiment of the present application provides an apparatus for encoding video data.
- the apparatus includes: a memory for storing video data, and the video data includes one or more image blocks; a video encoder uses To implement any one of the methods of the fifth aspect to the eighth aspect.
- an embodiment of the present application provides a decoding device, including: a memory and a processor, where the processor calls program codes stored in the memory to perform any one of the first aspect to the fourth aspect Some or all steps of this method.
- the above memory is a non-volatile memory.
- the aforementioned memory and processor are coupled together.
- an embodiment of the present application provides an encoding device, including: a memory and a processor, where the processor calls program codes stored in the memory to perform any one of the fifth aspect to the eighth aspect Some or all steps of this method.
- the above memory is a non-volatile memory.
- the aforementioned memory and processor are coupled together.
- an embodiment of the present application provides a computer-readable storage medium that stores a program code, where the program code includes the first to eighth aspects Instructions for some or all steps of any method.
- an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to perform part of the method of any one of the first aspect to the eighth aspect or All steps.
- FIG. 1 is a block diagram of an example of a video encoding and decoding system 10 for implementing embodiments of the present invention.
- FIG. 2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present invention.
- FIG. 3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present invention.
- FIG. 4 is a block diagram of an example of a video coding system 40 for implementing an embodiment of the present invention.
- FIG. 5 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present invention.
- FIG. 6 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a block division for implementing an embodiment of the present invention.
- FIG. 8 is a schematic flowchart of a block division method for implementing an embodiment of the present invention.
- FIG. 9 is a schematic flowchart of a video encoding and decoding method for implementing an embodiment of the present invention.
- FIG. 10 is a schematic flowchart of a video encoding and decoding method for implementing an embodiment of the present invention.
- FIG. 11 is a schematic block diagram of a video decoder used to implement an embodiment of the present invention.
- FIG. 12 is a schematic block diagram of a video encoder used to implement an embodiment of the present invention.
- FIG. 13 is a schematic block diagram of a video decoder used to implement an embodiment of the present invention.
- FIG. 14 is a schematic block diagram of a video encoder used to implement an embodiment of the present invention.
- the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
- the corresponding method may include one step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
- the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
- Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
- picture In the field of video coding, the terms “picture”, “frame” or “image” may be used as synonyms.
- Video coding as used herein means video coding or video decoding.
- Video encoding is performed on the source side and usually includes processing (eg, by compressing) the original video picture to reduce the amount of data required to represent the video picture, thereby storing and/or transmitting more efficiently.
- Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the video picture.
- the "encoding" of video pictures involved in the embodiments should be understood as referring to the “encoding” or “decoding” of video sequences.
- the combination of the encoding part and the decoding part is also called codec (encoding and decoding).
- the video sequence includes a series of pictures, which are further divided into slices, and the slices are further divided into blocks.
- Video encoding is performed in units of blocks.
- the concept of blocks is further expanded.
- a macroblock can be further divided into multiple prediction blocks that can be used for predictive coding.
- basic concepts such as coding unit (CU), prediction unit (PU), and transform unit (TU) are used to functionally divide a variety of block units and adopt a new tree-based structure Describe it.
- the CU can be divided into smaller CUs according to the quadtree, and the smaller CU can continue to be divided to form a quadtree structure.
- the CU is the basic unit for dividing and coding the encoded image.
- PU can correspond to the prediction block and is the basic unit of predictive coding.
- the CU is further divided into multiple PUs according to the division mode.
- the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
- CU regardless of CU, PU or TU, they all belong to the concept of block (or image block) in essence.
- the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
- a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
- Each CU can be further split into one, two, or four PUs according to the PU split type.
- the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
- the CU may be divided into transform units (TU) according to other quadtree structures similar to the coding tree used for the CU.
- quad-tree and binary-tree (Quad-tree and binary tree, QTBT) split frames are used to split the coding blocks.
- the CU may have a square or rectangular shape.
- the image block to be encoded in the current encoded image may be referred to as the current block.
- the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
- the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
- the original video picture can be reconstructed, that is, the reconstructed video picture has the same quality as the original video picture (assuming no transmission loss or other data loss during storage or transmission).
- further compression is performed by, for example, quantization to reduce the amount of data required to represent the video picture, but the decoder side cannot fully reconstruct the video picture, that is, the quality of the reconstructed video picture is better than the original video picture. The quality is lower or worse.
- Several video coding standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding for applying quantization in the transform domain).
- Each picture of the video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
- the encoder side usually processes the encoded video at the block (video block) level.
- the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
- the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra prediction and inter prediction) and/or reconstruction for processing, ie, encoding subsequent blocks.
- FIG. 1 exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present invention.
- the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
- the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
- Various implementations of source device 12, destination device 14, or both may include one or more processors and memory coupled to the one or more processors.
- Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
- FIG. 1 depicts source device 12 and destination device 14 as separate devices
- device embodiments may also include both source device 12 and destination device 14 or the functionality of both, ie source device 12 or corresponding Functionality of the destination device 14 or the corresponding functionality.
- the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
- a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
- Link 13 may include one or more media or devices capable of moving encoded video data from source device 12 to destination device 14.
- link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
- the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
- the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
- RF radio frequency
- the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
- the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
- the source device 12 includes an encoder 20.
- the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
- the encoder 20, the picture source 16, the picture preprocessor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
- Picture source 16 which can include or can be any kind of picture capture device, for example, to capture real-world pictures, and/or any kind of pictures or comments (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (for example, augmented reality (AR) pictures).
- the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
- the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
- the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
- the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
- the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
- the external picture generation device for example It is an external computer graphics processor, computer or server.
- the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
- the picture can be regarded as a two-dimensional array or matrix of pixels (picture elements).
- the pixels in the array can also be called sampling points.
- the number of sampling points in the horizontal and vertical directions (or axes) of the array or picture defines the size and/or resolution of the picture.
- three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
- the picture includes corresponding red, green, and blue sampling arrays.
- each pixel is usually expressed in a brightness/chroma format or color space. For example, for a picture in YUV format, it includes the brightness component indicated by Y (sometimes also indicated by L) and the two indicated by U and V.
- the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
- the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
- the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
- the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
- the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color grading, or denoising.
- the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 in a related prediction mode (such as the prediction mode in various embodiments herein), thereby
- the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 5 or FIG. 6).
- the encoder 20 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present invention on the encoding side.
- the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
- the other device may be any device used for decoding or storage.
- the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
- the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
- the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
- the communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network.
- the link 13 is, for example, a direct wired or wireless connection.
- the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private and public networks, or any combination thereof.
- the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
- Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
- the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 5 or FIG. 6 Structural details).
- the decoder 30 may be used to execute various embodiments described below to implement the application of the chroma block prediction method described in the present invention on the decoding side.
- the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
- the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to convert the post-processed image data 33 Transmission to the display device 34.
- the display device 34 is used to receive post-processed picture data 33 to display pictures to, for example, a user or a viewer.
- the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
- the display may include a liquid crystal display (liquid crystal display, LCD), an organic light emitting diode (organic light emitting diode, OLED) display, a plasma display, a projector, a micro LED display, a liquid crystal on silicon (LCoS), Digital Light Processor (DLP) or other displays of any kind.
- FIG. 1 illustrates the source device 12 and the destination device 14 as separate devices
- device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie, the source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
- the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality may be implemented using the same hardware and/or software, or using separate hardware and/or software, or any combination thereof .
- Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary device, for example, notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
- handheld or stationary device for example, notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
- Both the encoder 20 and the decoder 30 can be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
- DSPs digital signal processors
- ASIC application-specific integrated circuits
- FPGA field-programmable gate array
- the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the techniques of the present disclosure . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
- the video encoding and decoding system 10 shown in FIG. 1 is only an example, and the technology of the present application can be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video decoding).
- data can be retrieved from local storage, streamed on the network, and so on.
- the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
- encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
- FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present invention.
- the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
- the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
- the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
- the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
- the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, and
- the structural unit 214, the buffer 216, the loop filter 220, the decoded picture buffer (DPB) 230, and the prediction processing unit 260 form the backward signal path of the encoder, where the backward signal path of the encoder corresponds The signal path for the decoder (see decoder 30 in FIG. 3).
- the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, forming a picture in a picture sequence of a video or a video sequence.
- the image block 203 may also be referred to as a current picture block or a picture block to be coded
- the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, other pictures such as the same video sequence That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
- An embodiment of the encoder 20 may include a division unit (not shown in FIG. 2) for dividing the picture 201 into a plurality of blocks such as an image block 203, usually into a plurality of non-overlapping blocks.
- the segmentation unit can be used to use the same block size and corresponding grid that defines the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
- the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
- image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
- the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of a black and white picture 201) or three sampling arrays (for example, one brightness array and two chroma arrays in the case of a color picture) or An array of any other number and/or category depending on the color format applied.
- the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
- the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
- the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (further details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
- the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
- the transform coefficient 207 may also be referred to as a transform residual coefficient, and represents a residual block 205 in the transform domain.
- the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by AVS, AVS2, and AVS3. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
- the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost and so on.
- a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, the encoder can be The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
- the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
- the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
- the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
- the degree of quantization can be modified by adjusting the quantization parameter (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
- QP quantization parameter
- a smaller quantization step size corresponds to a finer quantization
- a larger quantization step size corresponds to a coarser quantization.
- a suitable quantization step size can be indicated by a quantization parameter (QP).
- the quantization parameter may be an index of a predefined set of suitable quantization steps.
- smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
- larger quantization parameters may correspond to coarse quantization (larger quantization step size)
- the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
- quantization parameters can be used to determine the quantization step size.
- the quantization step size can be calculated based on the quantization parameter using fixed-point approximation that includes equations for division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in the fixed-point approximation of the equations for quantization step size and quantization parameter.
- the scale of inverse transform and inverse quantization may be combined.
- a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
- the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
- the inverse quantized coefficient 211 may also be referred to as the inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
- the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, inverse discrete cosine transform (DCT) or inverse discrete sine transform (DST), in the sample domain
- the inverse transform block 213 is obtained.
- the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
- the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
- a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
- the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
- an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only for storing the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
- Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
- the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
- the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
- the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
- the filtered block 221 may also be referred to as the filtered reconstructed block 221.
- the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
- Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
- the entropy coding unit outputs after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
- the decoded picture buffer (DPB) 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
- DPB 230 can be formed by any of a variety of memory devices, such as dynamic random access memory (dynamic random access (DRAM) (including synchronous DRAM (synchronous DRAM, SDRAM), magnetoresistive RAM (magnetoresistive RAM, MRAM), resistive RAM (resistive RAM, RRAM)) or other types of memory devices.
- DRAM dynamic random access
- the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
- a decoded picture buffer (DPB) 230 is used to store the filtered block 221.
- the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
- a decoded picture buffer (DPB) 230 is used to store the reconstructed block 215.
- the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
- the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
- a prediction mode eg, intra or inter prediction mode
- the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
- An embodiment of the mode selection unit 262 may be used to select a prediction mode (eg, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
- the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria .
- RDO rate distortion optimization
- the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
- the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
- the intra prediction mode set may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
- non-directional modes such as DC (or mean) mode and planar mode
- directional modes as defined in the developing H.266.
- the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DBP 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only used A part of the reference picture, for example a search window area around the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied.
- the set of inter prediction modes may include, for example, advanced motion vector (Advanced Motion Vector Prediction, AMVP) mode and merge mode.
- AMVP Advanced Motion Vector Prediction
- the set of inter prediction modes may include an improved control point-based AMVP mode according to an embodiment of the present invention, and an improved control point-based merge mode.
- intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
- the embodiments of the present invention may also apply skip mode and/or direct mode.
- the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) or extended quad-tree (EQT, Extended Quad-Tree) segmentation, or any combination thereof, and for performing predictions for each of block partitions or sub-blocks, for example, where mode selection This includes selecting the tree structure of the divided image block 203 and selecting the prediction mode applied to each of the block partitions or sub-blocks.
- QT quad-tree
- BT binary-tree
- TT triple-tree
- EQT Extended Quad-Tree
- the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
- the motion estimation unit is used to receive or acquire a picture image block 203 (current picture image block 203 of the current picture 201) and a decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
- the reconstructed block of the previously decoded picture 231 is used for motion estimation.
- the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of or form a sequence of pictures that form the video sequence.
- the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide a reference picture and/or provide a reference to a motion estimation unit (not shown in FIG. 2)
- the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called motion vector (MV).
- the motion compensation unit is used to acquire inter prediction parameters and perform inter prediction based on or using inter prediction parameters to obtain inter prediction blocks 245.
- the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
- the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
- the above inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes inter prediction parameters (such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions).
- inter prediction parameters such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions.
- the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
- the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
- the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
- Embodiments of the encoder 20 may be used to select an intra-prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203) or a minimum code rate distortion.
- a minimum residual eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
- a minimum code rate distortion eg, an intra-prediction mode that provides the prediction block 255 that is most similar to the current picture block 203
- the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
- the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes intra-prediction parameters (such as an intra-prediction mode selected for the current block prediction after traversing multiple intra-prediction modes) Instructions).
- the intra prediction parameters may not be carried in the syntax element.
- the decoding terminal 30 may directly use the default prediction mode for decoding.
- the entropy coding unit 270 is used to entropy coding algorithms or schemes (for example, variable length coding (VLC) schemes, context adaptive VLC (context adaptive VLC, CAVLC) schemes, arithmetic coding schemes, context adaptive binary arithmetic Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval entropy (probability interval entropy, PIPE) encoding or other entropy Encoding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
- VLC variable length coding
- CABAC context adaptive binary arithmetic Encoding
- SBAC syntax-based context-adaptive binary arithmetic coding
- PIPE probability interval
- the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
- the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
- video encoder 20 may be used to encode video streams.
- the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
- the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
- the encoder 20 may be used to implement the encoding method described in the following embodiments.
- the video encoder 20 can directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without processing by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
- the loop filter 220 is optional, and in the case of lossless compression coding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
- FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present invention.
- the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
- encoded picture data eg, encoded bitstream
- video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
- the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
- the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
- video decoder 30 may perform a decoding pass that is generally reciprocal to the encoding pass described with reference to video encoder 20 of FIG. 2.
- the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
- the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
- Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
- the inverse quantization unit 310 can be functionally the same as the inverse quantization unit 110
- the inverse transform processing unit 312 can be functionally the same as the inverse transform processing unit 212
- the reconstruction unit 314 can be functionally the same as the reconstruction unit 214
- the buffer 316 can be functionally
- the loop filter 320 may be functionally the same as the loop filter 220
- the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
- the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
- the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
- the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture. Data to generate a prediction block 365 for the picture block of the current video slice.
- the inter prediction unit 344 eg, motion compensation unit
- Other syntax elements generate a prediction block 365 for the video block of the current video slice.
- a prediction block may be generated from a reference picture in a reference picture list.
- the video decoder 30 may construct the reference frame lists: list 0 and list 1 using default construction techniques based on the reference pictures stored in the DPB 330.
- the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
- the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (e.g., intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
- the prediction mode e.g., intra or inter prediction
- the inter prediction slice type For example, B slice, P slice, or GPB slice
- the syntax elements received by the video decoder 30 from the bitstream include an adaptive parameter set (adaptive parameter set, APS), a sequence parameter set (SPS), and a picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
- an adaptive parameter set adaptive parameter set
- SPS sequence parameter set
- PPS picture parameter set
- the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
- the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
- the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients, so as to generate a residual block in the pixel domain.
- an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
- the reconstruction unit 314 (for example, the summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example, by adding The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
- the loop filter unit 320 (during the encoding loop or after the encoding loop) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
- the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
- the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
- the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
- the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
- the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
- video decoder 30 may be used to decode the compressed bitstream.
- the decoder 30 may generate the output video stream without the loop filter unit 320.
- the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
- the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
- the decoder 30 is used to implement the decoding method described in the embodiments below.
- video decoder 30 may be used to decode the encoded video bitstream.
- the video decoder 30 may generate an output video stream without being processed by the filter 320; or, for certain image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
- the loop filter 320 is optional; and in the case of lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
- the inter prediction unit and the intra prediction unit may be selectively enabled.
- the processing results for a certain link can be further processed and then output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the results of the corresponding link are further clipped or shift shifted.
- the motion vector of the control point of the current image block derived from the motion vector of the adjacent affine coding block, or the motion vector of the sub-block of the current image block derived can be further processed, and this application does not do this limited.
- the value range of the motion vector is constrained to be within a certain bit width. Assuming that the allowed bit width of the motion vector is bitDepth, the range of the motion vector is -2 ⁇ (bitDepth-1) ⁇ 2 ⁇ (bitDepth-1)-1, where the " ⁇ " symbol indicates a power. If bitDepth is 16, the value ranges from -32768 to 32767. If bitDepth is 18, the value ranges from -131072 to 131071.
- the value of the motion vector (such as the motion vectors MV of four 4x4 sub-blocks in an 8x8 image block) is constrained so that the maximum difference between the integer parts of the four 4x4 sub-blocks MV does not exceed N pixels, for example no more than one pixel.
- ux (vx+2 bitDepth )%2 bitDepth
- vx is the horizontal component of the motion vector of the image block or the sub-block of the image block
- vy is the vertical component of the motion vector of the image block or the sub-block of the image block
- ux and uy are intermediate values
- bitDepth represents the bit width
- the value of vx is -32769, and 32767 is obtained by the above formula. Because in the computer, the value is stored in the form of two's complement, the complement of -32769 is 1,0111,1111,1111,1111 (17 bits), the computer handles the overflow as discarding the high bit, then the value of vx If it is 0111,1111,1111,1111, it is 32767, which is consistent with the result obtained by formula processing.
- vx Clip3(-2 bitDepth-1 , 2 bitDepth-1 -1, vx)
- vx is the horizontal component of the motion vector of the image block or the sub-block of the image block
- vy is the vertical component of the motion vector of the image block or the sub-block of the image block
- x, y, and z respectively correspond to the MV clamp
- FIG. 4 is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
- the video decoding system 40 can implement a combination of various technologies in the embodiments of the present invention.
- the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
- the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
- the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
- antenna 42 may be used to transmit or receive an encoded bitstream of video data.
- the display device 45 may be used to present video data.
- the logic circuit 47 may be implemented by the processing unit 46.
- the processing unit 46 may include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
- the video decoding system 40 may also include an optional processor 43, which may similarly include application-specific integrated circuit (ASIC) logic, a graphics processor, a general-purpose processor, and the like.
- the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, and the processor 43 may be implemented by general-purpose software, an operating system, and so on.
- the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
- volatile memory for example, static random access memory (Static Random Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
- non-volatile Memory for example, flash memory, etc.
- the memory 44 may be implemented by cache memory.
- the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
- the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers and the like.
- the encoder 20 implemented by a logic circuit may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
- the graphics processing unit may be communicatively coupled to the image buffer.
- the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein.
- Logic circuits can be used to perform the various operations discussed herein.
- decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
- the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
- the graphics processing unit may be communicatively coupled to the image buffer.
- the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
- antenna 42 may be used to receive an encoded bitstream of video data.
- the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data that defines the code segmentation).
- the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
- the display device 45 is used to present video frames.
- the decoder 30 may be used to perform the reverse process.
- the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
- encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode relevant video data accordingly.
- the decoding method described in this embodiment of the present invention is mainly used in a decoding process, and this process exists in both the encoder 20 and the decoder 30.
- FIG. 5 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present invention.
- the video coding apparatus 400 is suitable for implementing the embodiments described herein.
- the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1) or a video encoder (eg, encoder 20 of FIG. 1).
- the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1 or the encoder 20 of FIG. 1 described above.
- the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor for processing data, a logic unit or a central processing unit (CPU) 430, and a transmitter unit for transmitting data (Tx) 440 and exit port 450, and a memory 460 for storing data.
- the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
- EO electro-optical
- the processor 430 is implemented by hardware and software.
- the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
- the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
- the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
- the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present invention. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
- the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
- the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
- the memory 460 includes one or more magnetic disks, tape drives, and solid state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, and storing instructions and data read during the execution of the programs.
- the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
- FIG. 6 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1 according to an exemplary embodiment.
- the device 500 can implement the technology of the present application.
- FIG. 6 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
- the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
- the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
- the memory of the decoding device stores the program code, and the processor can call the program code stored in the memory to perform various video encoding or decoding methods described in this application, especially various new decoding methods. In order to avoid repetition, they are not described in detail here.
- the processor 510 may be a central processing unit (Central Processing Unit, referred to as "CPU"), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), dedicated integrated Circuit (ASIC), ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory 530 may include a read only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
- the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
- the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to perform the video encoding or decoding method described in this application (in particular, the decoding method described in this application).
- the application program 535 may include applications 1 to N, which further include a video encoding or decoding application that performs the video encoding or decoding method described in this application (referred to as a video coding application for short).
- the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clear explanation, various buses are marked as the bus system 550 in the figure.
- the decoding device 500 may also include one or more output devices, such as a display 570.
- the display 570 may be a tactile display that combines the display with a tactile unit that operably senses touch input.
- the display 570 may be connected to the processor 510 via the bus 550.
- CTU coding tree unit (coding tree unit), an image is composed of multiple CTUs, a CTU usually corresponds to a square image area, including the brightness pixels and chrominance pixels in the image area (or may only contain brightness pixels , Or may only contain chroma pixels); CTU also contains syntax elements that indicate how to divide the CTU into at least one coding unit (CU), and a method of decoding each coding unit to obtain a reconstructed image.
- CU coding unit
- CU coding unit, usually corresponding to an A ⁇ B rectangular area, including A ⁇ B luminance pixels and its corresponding chrominance pixels, A is the width of the rectangle, B is the height of the rectangle, A and B may be the same or different
- the values of A and B are usually integer powers of 2, such as 256, 128, 64, 32, 16, 8, and 4.
- An encoding unit can decode to obtain a reconstructed image of an A ⁇ B rectangular area through decoding.
- the decoding process usually includes prediction, inverse quantization, and inverse transform to generate a predicted image and residual. The predicted image and residual are superimposed and reconstructed. image.
- Quad-tree A tree-like structure in which a node can be divided into four child nodes.
- the video coding standard adopts the CTU division method based on the quadtree: CTU as the root node, each node corresponds to a square area, that is, the square area is divided into four square areas of the same size (the length and width are divided respectively)
- the front area is half the length and width), and each area corresponds to a node, as shown in block 701 in FIG. 7.
- a node can no longer be divided (in this case, the corresponding area is a CU), or this node can be further divided into nodes at the next level in the manner of QT, BT, or EQT.
- Binary tree (BT, Binary Tree): A tree structure, a node can be divided into two child nodes. There are two ways to divide into two nodes: 1) Horizontal dichotomy, divide the area corresponding to the node into two areas of the same size, the upper and lower, each area corresponds to a node, as shown in block 702 in FIG. 7 ; Or 2) Vertical dichotomy, divide the area corresponding to the node into two areas of the same size on the left and right, each area corresponds to a node, as shown in block 703 in FIG. 7.
- a node on a binary tree structure may not be divided, or the node may be further divided into nodes at the next level according to BT or EQT.
- Extended Quad-Tree An I-shaped partition structure, a node can be divided into four sub-nodes. There are two ways to divide into three nodes: 1) Horizontal quartering, divide the area corresponding to the node into three areas: upper, middle, and lower, each area corresponds to a node, of which upper, middle left, middle right, The heights of the next three areas are 1/4, 1/2, 1/2, 1/4 of the node height, and the width of the center left and center right is 1/2, 1/2 of the node height, as shown in Figure 7 As shown in block 704; or 2) Vertical quartering, the area corresponding to the node is divided into three areas of left, middle upper, middle lower, and right, each area corresponds to a node, of which three areas are left, middle, and right The width is 1/4, 1/2, 1/2, 1/4 of the node height, and the width of the upper middle and lower is 1/2, 1/2 of the height of the node, as shown in block 705 in FIG. 7 .
- the width is 1/4, 1/2, 1/2, 1/4 of the
- Video decoding (video decoding): the process of restoring the video stream to a reconstructed image according to specific grammar rules and processing methods.
- Video encoding The process of compressing an image sequence into a code stream
- Video encoding The general term for video encoding and video decoding.
- the Chinese translation is the same as video encoding.
- VTM New codec reference software developed by JVET.
- the video coding standard divides a frame of images into non-overlapping coding tree units (CTU).
- the size of the CTU can be set to 64 ⁇ 64 (the size of the CTU can also be set to other values, such as the CTU size increased to 128 ⁇ 128 or 256 ⁇ 256, etc.).
- the 64 ⁇ 64 CTU contains a rectangular pixel lattice of 64 pixels in each column and each pixel contains a luminance component or/and a chrominance component.
- the CTU is recursively divided into several leaf nodes (leaf node).
- a node corresponds to an image area. If the node is not divided, the node is called a leaf node, and its corresponding image area forms a CU; if the node continues to be divided, the image area corresponding to the node is divided into four areas of the same size (which The length and width are each half of the divided area), each area corresponds to a node, you need to determine whether these nodes will be divided.
- Whether a node is divided is indicated by the split_cu_flag of the division flag bit corresponding to this node in the code stream.
- the quad-tree level (qtDepth) of the root node is 0, and the quad-tree level of the child node is +1 of the quad-tree level of the parent node.
- the size and shape of the node in the following refers to the size and shape of the image area corresponding to the node.
- the leaf node When a node is parsed as a leaf node, the leaf node is a CU, and further parses the coding information corresponding to the CU (including CU prediction mode, transform coefficients and other information, such as coding_unit () syntax structure), and then according to these coding information Perform decoding processing such as prediction, inverse quantization, inverse transform, and loop filtering on the CU to generate a reconstructed image corresponding to this CU.
- the quadtree structure allows the CTU to be divided into a group of CUs of suitable size according to the local characteristics of the image, for example, smooth regions are divided into larger CUs, and texture-rich regions are divided into smaller CUs.
- a CTU divided into a group of CUs corresponds to a coding tree (coding tree). Which coding tree should be used for CTU is usually determined by the encoder's rate-distortion optimization (RDO) technology.
- RDO rate-distortion optimization
- the encoder tries a variety of CTU division methods, each of which corresponds to a rate-distortion cost (RD cost); the encoder compares the RD costs of various tried division methods and finds the division method with the smallest RD cost as the CTU
- the optimal division method is used for the actual coding of the CTU.
- the various CTU division methods tried by the encoder need to comply with the division rules specified by the decoder, so that these can be correctly recognized by the decoder.
- AVS3 adds a binary tree (BT) division method and an extended quad-tree (EQT) division method on the basis of the quadtree division.
- BT binary tree
- EQT extended quad-tree
- Binary tree division divides a node into two child nodes. There are two specific ways to divide a binary tree:
- Extended quadtree division divides a node into 4 sub-nodes. There are two specific ways to expand a quadtree:
- the area corresponding to the node is divided into upper, middle and lower areas, each area corresponds to a node, wherein the heights of the upper, middle left, middle right and lower areas are the height of the node 1/4, 1/2, 1/2, 1/4, the center left and center right widths are 1/2, 1/2 of the node height, as shown in block 704 in FIG. 7;
- the area corresponding to the node is divided into three areas: left, middle upper, middle lower, and right, each area corresponds to a node, and the width of the left, middle, and right areas is the height of the node. 1/4, 1/2, 1/2, 1/4, the upper middle and lower middle width is 1/2, 1/2 of the node height, as shown in block 705 in FIG.
- AVS3 uses the QT cascade BT/EQT division method, that is, the nodes on the first-level coding tree can only be divided into child nodes using QT.
- the leaf nodes of the first-level coding tree are the root nodes of the second-level coding tree;
- the nodes on the second-level coding tree can be divided into child nodes using one of the BT or EQT division methods;
- the leaf nodes of the second-level coding tree are coding units. It should be noted that when the leaf node is BT or EQT, the leaf node can only use BT or EQT, but not QT.
- This application provides a video codec method, which is intended to provide a new block division method to improve the flexibility of video codec.
- FIG. 8 is a schematic flowchart of a block division method applied to video encoding and decoding provided by an embodiment of the present application.
- the division mode of the current node is applied to the first component block of the current node, and the division mode of the current node is used as the division mode of the first component block of the current node.
- the division mode of the current node is quadtree division
- the division mode of the first component block of the current node is quadtree division.
- the current node may be the executed unit of the codec, and may also be referred to as, for example, the current block.
- the node division modes include: quad-tree (QT) division, binary-tree (BT) division, triple-tree (TT) division or extended quad-tree (extended quad-tree) tree, EQT) and other various modes that can further divide the nodes. This application does not limit this.
- acquisition in this application is used to indicate that the device performs one or more actions such as parsing, decoding, determining, generating, obtaining, etc., which is not limited in this application.
- 802b determine whether the first component block meets the preset condition corresponding to the division mode, and if the preset condition is not met, divide the second node of the current node using the division mode of the current node Component block, wherein the size of the first component block is larger than the size of the second component block.
- the current node includes a first component block and a second component block.
- the size of the first component block is larger than the size of the second component block.
- the division mode of the current node it is determined that the first component block meets the preset condition. In this case, it is determined that the second component block is not further divided, or it is determined that the second component block is divided using a division mode other than the division mode of the current node. In the case where the first component block does not satisfy the preset condition, the second component block is further divided according to the division mode.
- the preset condition may be preset, for example, the video encoder and the video decoder may define the preset condition in advance.
- the preset condition may be configured for display, for example, the video encoder obtains the preset condition and sends the preset condition to the video decoder through the code stream; accordingly, the video decoder obtains the preset condition from the code stream condition.
- the judging whether the first component block satisfies the preset condition corresponding to the division mode may also be judging whether the current node satisfies the preset condition corresponding to the division mode; or may be judging Whether the current block satisfies the preset condition corresponding to the division mode; it may also determine whether the second component block satisfies the preset condition corresponding to the division mode; or it may determine whether the first component block is divided Whether the first component sub-block obtained later meets the preset condition corresponding to the division mode.
- This application takes the example of determining whether the first component block satisfies the preset condition corresponding to the division mode as an example, and other similar cases will not be repeated here.
- the first component block's division mode is horizontal binary tree division; if the first component block meets the preset condition 1 corresponding to the horizontal binary tree division, then the second component block Not divided or divided according to vertical binary tree.
- the first component block's division mode is vertical binary tree division; judging that the first component block meets the preset condition 2 corresponding to the vertical binary tree division, then the first The two-component block is not divided or divided according to a horizontal binary tree.
- the first component block's division mode is horizontally expanded quadtree division; it is determined that the first component block meets the pre-correspondence corresponding to the horizontally expanded quadtree division Set Condition 3, then the second component block is not divided or divided according to the vertically extended quadtree.
- the current node's division mode is vertically extended quadtree division
- the first component block's division mode is vertically expanded quadtree division
- the second component block is not divided or divided according to the horizontally expanded quadtree.
- the division mode of the first component block is quadtree division; it is determined that the first component block meets the preset condition 5 corresponding to the quadtree division, then the The two component blocks are not divided.
- the size of the current node is the same as the size of the first component block.
- the judging whether the first component block satisfies the preset condition corresponding to the division mode includes at least one of the following: when the division mode of the current node is quadtree division, Determine whether the first component block satisfies: the width of the first component block is less than or equal to the first preset threshold and/or the height of the first component block is less than or equal to the second preset threshold; When the node division mode is vertical binary tree division, determine whether the first component block satisfies: the width of the first component block is less than or equal to a third preset threshold; the division mode of the current node is horizontal In the case of binary tree division, it is determined whether the first component block satisfies: the height of the first component block is less than or equal to a fourth preset threshold; when the division mode of the current node is horizontal expansion quadtree division Next, determine whether the first component block satisfies: the width of the first component block is less than or equal to a fifth preset threshold and/or the height of the first component
- the division mode corresponding to the preset condition 1 is quadtree division, and the preset condition 1 is that the width of the first component block is less than or equal to 8, or the height of the first component block is less than or equal to 8, which means that the first preset The threshold is 8, and the second preset threshold is 8.
- the width of the first component block of the current node is 16 and the height is 8; the width of the second component block of the current node is 8 and the height is 4; the division mode of the current node is quadtree division, then the current node meets the preset Condition 1.
- the second component block of the current node may not be further divided, or not divided in a quadtree division manner, for example, according to a vertical binary tree division.
- the first preset threshold includes but is not limited to 8, for example, it may be an integer of N square of 2, where N is a positive integer greater than 2.
- the division mode corresponding to the preset condition 2 is vertical binary tree division
- the preset condition 2 is that the width of the first component block is less than or equal to 8, that is, the third preset threshold is 8.
- the width of the first component block of the current node is 8 and the height is 16, and the division mode of the current node is vertical binary tree division, then the current node meets the preset condition 2.
- the second component block of the current node may not be further divided, or may not be divided in the manner of vertical binary tree division, for example, according to the horizontal binary tree division.
- the division mode corresponding to the preset condition 3 is horizontal binary tree division
- the preset condition 3 is that the height of the first component block is less than or equal to 8, that is, the fourth preset threshold is 8.
- the width of the first component block of the current node is 16 and the height is 8; the division mode of the current node is horizontal binary tree division, then the current node meets the preset condition 3.
- the second component block of the current node may not be further divided, or may not be divided in a manner of horizontal binary tree division, such as vertical binary tree division.
- the division mode corresponding to the preset condition 4 is horizontally expanded quadtree division
- the preset condition 4 is that the width of the first component block is less than or equal to 8, or the height of the first component block is less than or equal to 16, which means The fifth preset threshold is 8, and the sixth preset threshold is 16.
- the width of the first component block of the current node is 32 and the height is 16; the division mode of the current node is horizontally expanded quadtree division, then the current node meets the preset condition 4.
- the second component block of the current node may not be further divided, or may not be divided according to a horizontally expanded quadtree division manner, for example, divided according to a vertically expanded quadtree, vertical binary tree, etc. division manner.
- the division mode corresponding to the preset condition 5 is a vertically extended quadtree division
- the preset condition 5 is that the width of the first component block is less than or equal to 16, or the width of the first component block is less than or equal to 8, which means The seventh preset threshold is 16, and the eighth preset threshold is 8.
- the width of the first component block of the current node is 16 and the height is 32; the division mode of the current node is a vertically extended quadtree division, then the current node meets the preset condition 5.
- the second component block of the current node may not be further divided, or may not be divided in a manner of vertically extending quadtree division, for example, in a manner of dividing a horizontal binary tree, a horizontally expanded quadtree, or the like.
- the first preset threshold is 8.
- the second preset threshold is 8.
- the third preset threshold is 8.
- the fourth preset threshold is 8.
- the fifth preset threshold is 8.
- the sixth preset threshold is 16.
- the seventh preset threshold is 16.
- the eighth preset threshold is 8.
- the determining that the second component block of the current node does not use the current node's division mode division includes: when the preset condition corresponding to the horizontal binary tree division is satisfied and If the preset condition corresponding to the vertical binary tree division is not satisfied, it is determined that the second component block of the current node adopts the vertical binary tree division; when the preset condition corresponding to the vertical binary tree division is satisfied and the horizontal binary tree is not satisfied In the case of the preset condition corresponding to the division, it is determined that the second component block of the current node adopts a horizontal binary tree division; when the preset condition corresponding to the horizontally expanded quadtree division is satisfied and the vertical expansion quadtree division is not satisfied In the case of corresponding preset conditions, it is determined that the second component block of the current node adopts a horizontal binary tree, a vertical binary tree, or a vertically extended quadtree partition; when the preset conditions corresponding to the vertically extended quadtree partition are satisfied And if the preset condition corresponding to the vertical binary tree division
- the first component block is a luminance component block of the current node
- the second component block is a first chrominance component block of the current node.
- the luma component block of the current node will continue to be divided into multiple luma component sub-blocks according to the division mode, and the first chroma component block of the current node will not be further divided or continue to be divided using other division modes.
- the current node may further include a second chroma component block; the second chroma component block of the current node may be divided into a plurality of second chroma component sub-blocks according to the division mode, or may not be further divided, or other The division mode is continued to be divided.
- the video encoder performs the methods 801 and 802 shown in FIG. 8 during the encoding process
- the video decoder performs the methods 801 and 802 shown in FIG. 8 during the decoding process.
- the division cost of the second component block of smaller size is higher than that of the first component block of larger size. Do not continue to divide the second component block of a smaller size, or adopt a different division method from the first component block, which can avoid the situation of high division cost and increase the flexibility of the block division method.
- FIG. 9 is a schematic flowchart of a video codec provided by an embodiment of the present application.
- the video encoder obtains a division mode of the current node, where the division mode is used to divide the first component block of the current node.
- the method further includes writing the division pattern of the current node into the code stream.
- the video encoder determines whether the first component block satisfies a preset condition corresponding to the division mode. If the preset condition is met, it is determined that the second component block of the current node is not divided. The size of the first component block is larger than the size of the second component block.
- the video encoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is not met, divides the current node using the division mode of the current node The second component block, wherein the size of the first component block is larger than the size of the second component block.
- the video encoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, only the division mode of the current node is allowed to divide the current The first component block of the node, wherein the size of the first component block is larger than the size of the second component block.
- the video encoder divides the first component block into N first component sub-blocks according to the division mode, where N is a positive integer greater than or equal to 2.
- the first component block is divided into a plurality of first component sub-blocks.
- the value of N depends on the division method of the first component block.
- the division mode for dividing the first component block may include division modes such as quadtree division, binary tree division, and extended quadtree division.
- the width of the first component block 1 is W1
- the height is H1
- the manner of dividing the first component block 1 is quadtree division, then N is 4, and the first component block 1 is divided into 4
- a first component sub-block of the same size, each first component sub-block has a width of W1/2 and a height of H1/2.
- the width of the first component 2 is W2 and the height is H2, and the manner of dividing the first component block 2 is a horizontal binary tree division, then N is 2, and the first component block 2 is divided into two
- each first component sub-block has a width of W2 and a height of H2/2.
- the width of the first component block 3 is W3 and the height is H3, and the manner of dividing the first component block 3 is vertical binary tree division, then N is 2, and the first component block 3 is divided into For two first component sub-blocks of the same size, each first component sub-block has a width of W3/2 and a height of H3.
- the width of the first component block 4 is W4 and the height is H4, and the manner of dividing the first component block 4 is horizontally expanded quadtree division, then N is 4, and the first component block 4 is Divided into four first component sub-blocks of the same size located in the upper, middle left, center right, and lower regions, the width of the four first component sub-blocks are W4, W4/2, W4/2, W4, height They are H4/4, H4/2, H4/2, and H4/4.
- the width of the first component block 5 is W5 and the height is H5, and the manner of dividing the first component block 5 is a vertically extended quadtree division, then N is 4, and the first component block 5 It is divided into four first-component sub-blocks of the same size located in the left, upper-center, lower-center, and right areas.
- the widths of these four first-component sub-blocks are W5/4, W5/2, W5/2, W5/4, the height is H5, H5/2, H5/2, H5.
- the video encoder In response to a first judgment result that the first component block satisfies the preset condition corresponding to the division mode, the video encoder generates coding information of the N first component sub-blocks and the second component block Encoding information.
- the first component block is divided into multiple first component sub-blocks and the second component block is not further divided; in order to encode the multiple first component sub-blocks and the second component block, the multiple A component sub-block is encoded to generate encoding information of the plurality of first component sub-blocks, and the second component block is encoded to generate encoding information of the second component block.
- the N first component sub-blocks correspond to the N leaf nodes of the current node
- the second component block is not further divided
- the N first component sub-blocks and the second component block are encoded as encoding units to generate The coding information of the N first component sub-blocks and the coding information of the second component block.
- the method for generating the coding information of the N first component sub-blocks can refer to the existing coding process.
- the coding information of the first component sub-block is generated according to the residual of the first component sub-block, the information of the pixel block around the first component sub-block, and the like.
- the method of generating the encoding information of the second component block can refer to the existing encoding process.
- the encoding information of the second component block can be generated according to the residual of the second component block and the pixel block surrounding the second component block. The information generates coding information for the second component block.
- the encoding information of the N first component sub-blocks and the encoding information of the second component block may be the encoding information of the N first component sub-blocks and the encoding of the second component block The information is written into the code stream.
- the encoding information includes information such as prediction mode and transform coefficients, and is used by the video decoder to perform prediction, inverse quantization, inverse transform, loop filtering, and other decoding processes based on the encoding (decoding) information.
- the prediction mode information includes: intra prediction mode or non-intra prediction mode; intra prediction mode can be one of planar mode (directar mode), direct current mode (direct mode), angle mode (angular mode); non-intra frame
- the prediction mode can be direct mode, skip mode, inter prediction mode, etc.; coding information in non-intra prediction mode can also include motion information, such as prediction direction (forward, backward, or bidirectional) , Reference frame index (reference index), motion vector (motion vector) and other information.
- the encoding information generated by the video encoder is the same as the decoding information required for decoding by the video decoder.
- the information generated by the encoding process is called encoding information, and the information generated by the decoding process is called decoding information.
- the method further includes writing the coding information of the N first component sub-blocks and the coding information of the second component block into the code stream.
- the coding information of the second component block is generated according to the coding information of N1 first component subblocks among the N first component subblocks, and N1 is a positive integer greater than or equal to 1.
- the coding information of the second component block is generated according to the coding information of the N1 first component sub-blocks of the N1 leaf nodes of the current node. That is, the coding information of the second component block is generated according to the coding information of at least one first component subblock among the N first component subblocks.
- the coding information of the second component block has a corresponding relationship with the coding information of the N1 first component sub-blocks.
- the coding information of the N1 first component sub-blocks is copied to the coding information of the second component block.
- the identification information of N1 first component sub-blocks corresponding to the second component is written in the code stream.
- the prediction mode of the N1 first component sub-blocks is used as the prediction mode of the second component block.
- the encoded information of the quantum block is used as the encoded information of the second component block.
- Correlating the same information of different component blocks can reduce the amount of data written into the code stream, reduce the amount of transmitted data, and improve transmission efficiency and codec efficiency.
- the coding information of the N1 first component sub-blocks determine to write the coding information of the second component block into the code stream or use the coding information of the N1 first component sub-blocks as the The coding information of the second component block is described.
- the coding information of the N1 first component sub-blocks may indicate the location where the coding information of the second component block is acquired, the location including the code stream, the coding information of the N1 first component sub-blocks, and so on.
- the coding information of the N1 first component sub-blocks includes information A
- the encoding information of the N1 first component sub-blocks does not include information A
- determine the encoding of the N1 first component sub-blocks The information is used as the coding information of the second component block.
- the information B in the coding information of the N1 first component sub-blocks is used as the coding information of the second component block.
- the coding information of the second component block includes the prediction mode of the second component block; and the coding information of the second component block is generated according to the coding information of the N1 first component sub-blocks Including: obtaining the prediction mode of the target first component sub-block among the N1 first component sub-blocks as the prediction mode of the second component block, the encoding information of the target first component sub-block includes the target The prediction mode of the first component sub-block.
- the prediction mode of the second component block is the same as the prediction mode of the target first component sub-block.
- the coding information of the prediction mode of the second component block does not need to be written into the code stream, and the video decoding end can directly obtain it from the coding information of the target first component sub-block.
- the prediction mode of the target first component sub-block is an intra prediction mode
- the prediction mode of the second component block is also an intra prediction mode
- the prediction mode of the target first component sub-block is a non-intra prediction mode
- the prediction mode of the target first component sub-block is acquired as the prediction mode of the second component block.
- the prediction mode of the target first component subblock is an intra prediction mode
- the coding information of the prediction mode of the second component block is written into the code stream
- the prediction mode of the target first component subblock In the case of non-intra prediction mode, the coding information of the prediction mode of the second component block does not need to be written into the code stream, and the video decoding end can directly obtain from the coding information of the target first component sub-block.
- the prediction mode of the target first component sub-block is an inter prediction mode
- the prediction mode of the second component block is also an inter prediction mode
- the encoding information of the second component block further includes motion information of the second component block
- the method further includes : Generating the motion information of the second component block according to the motion information of the target first component sub-block, and the coding information of the target first component sub-block further includes the motion information of the target first component sub-block.
- the motion information of the target first component sub-block is used as the motion information of the second component block.
- the motion information of the second component sub-block does not need to be written in the code stream, and the video decoding end can directly obtain the motion information of the target first component sub-block.
- the prediction direction forward, backward or bidirectional
- reference frame index reference index
- motion vector motion vector
- the target first component sub-block may be any first component sub-block among the N1 first component blocks.
- the video encoder can take any first component sub-block as the target first component sub-block.
- the video encoder may write the identification information of the target first component sub-block into the code stream.
- the method further includes: determining the target first component sub-block according to target location information.
- a first component sub-block is determined as the target first component sub-block.
- the target position information may be pre-configured. For example, the video encoder and the video decoder pre-agreed that the first component sub-block where the lower right corner position in the current node is the target first component sub-block. At this time, the video encoder may not write the target position information of the first component sub-block into the code stream.
- the target position information may also be configured for display. For example, the video encoder writes the target position information into the code stream, and the video decoder determines the target first component sub-block according to the target position information in the code stream.
- the target position information may be the “identification information of the target first component sub-block” appearing above, or it may be absolute coordinate, relative coordinate, pixel value and other position information within a certain first component sub-block, or it may be an encoding Order, scan order, etc.
- the form of the target location information may be arbitrary, and this application does not limit it.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), wherein the coordinates of the top left corner of the current node are (x 0 ,y 0 ), so The height of the current node is H, and the width of the current node is W.
- the first component sub-block where the center position of the current node or the center pixel is located is used as the target first component sub-block.
- the current node's division mode is quadtree division
- the first component sub-block located in the lower right corner is the target first component sub-block.
- the current node's division mode is horizontal binary tree division
- the first component sub-block located below is the target first component sub-block.
- the current node's partition mode is vertical binary tree partition, then the first component sub-block located on the right is the target first component sub-block.
- the current node's division mode is horizontally expanded quadtree division, then the first component sub-block located on the right of the middle is the target first component sub-block.
- the current node's division mode is vertically extended quadtree division, then the first component sub-block located below the middle is the target first component sub-block.
- the method further includes: according to an encoding order or a scanning order, the first or last of the N first component sub-blocks The first component sub-block serves as the target first component sub-block.
- the video encoder takes the first component sub-block of the first encoding, first scan, last encoding, or last scan as the target first component sub-block.
- the video encoder and video decoder can pre-agreed that the target first component sub-block is one of the first encoding, the first scan, the last encoding, or the last first component sub-block of the first scan, or bits can be used
- the values 0, 1 or (0, 0), (1,0), (0, 1), (1, 1), etc. stipulate the first code, the first scan, the last code, or the last scan of 4
- One of the first component sub-blocks is the target first component sub-block.
- the current node's division mode is quadtree division, then, the first component sub-block located at the upper left corner is the first component sub-block encoded or scanned first; the first located at the lower right corner
- the sub-quantum block is the first component sub-block of the last encoding or the last scan.
- the current node's division mode is horizontal binary tree division, then, the first component sub-block on the left is the first encoding or the first component of the first scan; the first component sub-block on the right The first component sub-block for the last encoding or last scan.
- the current node's division mode is vertical binary tree division
- the first component sub-block located above is the first component sub-block encoded or scanned first
- the first component sub located below The block is the first component subblock of the last encoding or the last scan.
- the current node's division mode is horizontally extended quadtree division, then the first component sub-block located at the top is the first component sub-block coded or scanned first; the one located at the bottom The first component sub-block is the first component sub-block last coded or last scanned.
- the current node's division mode is vertically extended quadtree division, then, the first component sub-block located on the left is the first component or the first component sub-block scanned first; located on the right Is the first component subblock of the last encoding or last scan.
- the prediction mode of each of the N first component sub-blocks is an intra prediction mode or a non-intra prediction mode.
- the prediction mode of one of the first component subblocks is the intra prediction mode
- the prediction modes of the N first component subblocks are all intra prediction modes
- N first In a quantum block the prediction mode of one first component sub-block is a non-intra prediction mode
- the prediction modes in the N first component sub-blocks are all non-intra prediction modes.
- the prediction modes of the N first component sub-blocks are respectively planar mode, direct current mode, angular mode, and planar mode.
- N is equal to 4
- the prediction modes of the N first component sub-blocks are direct mode (direct mode), skip mode (skip), inter prediction mode, and inter prediction mode.
- the prediction mode associated with any first component sub-block in the N first component sub-blocks is used as the prediction mode other than the first component sub-block among the N first component sub-blocks Prediction mode of other first component sub-blocks.
- the prediction modes of the N first component sub-blocks are the same. For example, if N is equal to 4, the prediction modes of the N first component sub-blocks are all planar modes. For another example, N is equal to 4, and the prediction modes of the N first component sub-blocks are all inter prediction modes.
- the video encoder sends the encoding information of the N first component sub-blocks and the encoding information of the second component block to a video decoder.
- the video decoder obtains the coding information of the N first component sub-blocks and the coding information of the second component block.
- the video decoder obtains a division mode of the current node, where the division mode is used to indicate how to divide the current node to obtain the first component block of the current node.
- the video decoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, determines that the second component block of the current node is not divided, wherein the The size of the first component block is larger than the size of the second component block.
- the video decoder judges whether the first component block satisfies the preset condition corresponding to the division mode, and if the preset condition is not met, divides the current node by using the division mode of the current node A second component block, wherein the size of the first component block is larger than the size of the second component block.
- the video decoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, only the division mode of the current node is allowed to divide the current The first component block of the node, wherein the size of the first component block is larger than the size of the second component block.
- Methods 907a, 907b, and 907c are optional steps.
- the video decoder may determine that the second component is not divided according to the information in the code stream.
- the video decoder divides the first component block into N first component sub-blocks according to the division mode, where N is a positive integer greater than or equal to 2.
- the first component block is divided into a plurality of first component sub-blocks.
- the value of N depends on the division method of the first component block.
- the video decoder may obtain decoding information carrying the division mode of the current node, and divide the first component block according to the decoding information. For example, the decoding information of the current node is obtained from the code stream, the parsing element of the decoding information is parsed to obtain the division mode of the current node, and the first component block is divided into N first component sub-blocks.
- the division mode for dividing the first component block may include division modes such as quadtree division, binary tree division, and extended quadtree division.
- the width of the first component block 1 is W1
- the height is H1
- the manner of dividing the first component block 1 is quadtree division, then N is 4, and the first component block 1 is divided into 4
- a first component sub-block of the same size, each first component sub-block has a width of W1/2 and a height of H1/2.
- the width of the first component 2 is W2 and the height is H2, and the manner of dividing the first component block 2 is a horizontal binary tree division, then N is 2, and the first component block 2 is divided into two
- each first component sub-block has a width of W2 and a height of H2/2.
- the width of the first component block 3 is W3 and the height is H3, and the manner of dividing the first component block 3 is vertical binary tree division, then N is 2, and the first component block 3 is divided into For two first component sub-blocks of the same size, each first component sub-block has a width of W3/2 and a height of H3.
- the width of the first component block 4 is W4 and the height is H4, and the manner of dividing the first component block 4 is horizontally expanded quadtree division, then N is 4, and the first component block 4 is Divided into four first component sub-blocks of the same size located in the upper, middle left, center right, and lower regions, the width of the four first component sub-blocks are W4, W4/2, W4/2, W4, height They are H4/4, H4/2, H4/2, and H4/4.
- the width of the first component block 5 is W5 and the height is H5, and the manner of dividing the first component block 5 is a vertically extended quadtree division, then N is 4, and the first component block 5 It is divided into four first-component sub-blocks of the same size located in the left, upper-center, lower-center, and right areas.
- the widths of these four first-component sub-blocks are W5/4, W5/2, W5/2, W5/4, the height is H5, H5/2, H5/2, H5.
- the video decoder obtains decoding information of N1 first component subblocks and decoding information of the second component block among the N first component subblocks, and N1 is a positive integer greater than or equal to 1.
- the first component block is divided into multiple first component sub-blocks and the second component block is not further divided; in order to decode multiple first component sub-blocks and second component blocks, the multiple Decoding at least one first component sub-block in a component sub-block to obtain decoding information of the at least one first component sub-block; decoding the second component block to obtain decoding information of the second component block.
- N first component sub-blocks correspond to N leaf nodes of the current node one by one
- the second component block is not further divided
- the N first component sub-blocks and second component blocks are decoded as decoding units to obtain The decoding information of the N first component sub-blocks and the decoding information of the second component block.
- the decoding information includes information such as prediction mode and transform coefficients, and is used by the video decoder to perform decoding processing such as prediction, inverse quantization, inverse transform, and loop filtering according to coding (decoding) information.
- the prediction mode information includes: intra prediction mode or non-intra prediction mode; intra prediction mode can be one of planar mode (planar mode), direct current mode (direct current mode), angle mode (angular mode); non-frame
- the intra prediction mode can be direct mode (skip), inter prediction mode, etc.
- the decoding information can also include motion information, such as the prediction direction (forward, backward, or bidirectional) ), reference frame index (reference index), motion vector (motion vector) and other information.
- the decoding information of the N first component sub-blocks and the decoding information of the second component block are obtained from the code stream.
- the method further includes: acquiring decoding information of the second component block according to decoding information of the N1 first component sub-blocks.
- the decoding information of the second component block is obtained according to the decoding information of the N1 first component sub-blocks of the N1 leaf nodes of the current node. That is, according to the decoding information of at least one first component sub-block among the N first component sub-blocks, the decoding information of the second component block is acquired.
- the decoding information of the second component block corresponds to the decoding information of the N1 first component sub-blocks.
- the decoding information of N1 first component sub-blocks is copied to the decoding information of the second component block.
- the identification information of N1 first component sub-blocks corresponding to the second component is written in the code stream.
- the prediction mode of the N1 first component sub-blocks is used as the prediction mode of the second component block.
- Correlating the same information of different decoding units can reduce the amount of data obtained from the code stream, reduce the amount of transmitted data, and improve the transmission efficiency and codec efficiency.
- the decoding information of the N1 first component sub-blocks it is determined to obtain the decoding information of the second component block from the code stream or use the decoding information of the N1 first component sub-blocks as the Decoding information of the second component block.
- the decoding information of the N1 first component sub-blocks may indicate the location where the decoding information of the second component block is acquired, the location including the code stream, the decoding information of the N1 first component sub-blocks, and so on.
- the decoding information of the N1 first component sub-blocks includes information A
- the decoding information of the N1 first component sub-blocks does not include information A
- determine the decoding information of the N1 first component sub-blocks As the decoding information of the second component block, for example, the information B in the decoding information of the N1 first component sub-blocks is used as the decoding information of the second component block.
- the decoding information of the second component block includes the prediction mode of the second component block; and the decoding information of the second component block is obtained according to the decoding information of the N1 first component sub-blocks Including: obtaining the prediction mode of the second component block according to the prediction mode of the target first component subblock among the N1 first component subblocks, and the decoding information of the target first component subblock includes the The prediction mode of the target first component sub-block.
- the prediction mode of the second component block is acquired. That is to say, the prediction mode of the second component block has a corresponding relationship with the prediction mode of the target first component sub-block.
- the prediction mode of N1 first component sub-blocks is copied to the prediction mode of the second component block.
- the identification information of N1 first component sub-blocks corresponding to the second component is written in the code stream.
- the prediction mode of the N1 first component sub-blocks is used as the prediction mode of the second component block.
- the acquiring the prediction mode of the second component block includes: acquiring the prediction mode of the second component block from the code stream; or acquiring the prediction mode of the target first component sub-block as the The prediction mode of the second component block.
- the prediction mode of the second component block may be obtained from the code stream according to the prediction mode of the target first component block, or the prediction mode of the second component block may be the same as the prediction mode of the target first component subblock .
- the prediction mode of the target first component sub-block is an intra prediction mode
- the prediction mode of the second component block is also an intra prediction mode.
- the video decoder can determine a prediction mode that does not need to be analyzed according to a first component sub-block prediction mode, which reduces the complexity of analysis.
- the prediction mode of the target first component sub-block is a non-intra prediction mode
- the prediction mode of the second component block is also a non-intra prediction mode.
- the video decoder can determine a prediction mode that does not need to be analyzed according to a first component sub-block prediction mode, which reduces the complexity of analysis.
- the prediction mode of the target first component sub-block is an intra prediction mode
- the prediction mode of acquiring the second component block from the code stream is determined.
- the prediction mode of the target first component sub-block is a non-intra prediction mode
- the decoding information of the second component block further includes motion information of the second component block
- the method further includes : Acquiring the motion information of the second component block according to the motion information of the target first component sub-block, and the decoding information of the target first component sub-block further includes the motion information of the target first component sub-block.
- the motion information of the target first component sub-block is used as the motion information of the second component block. That is to say, it is not necessary to obtain the motion information of the second component sub-block from the code stream, but can be directly obtained from the motion information of the target first component sub-block.
- the prediction direction forward, backward or bidirectional
- reference frame index reference index
- motion vector motion vector
- the target first component sub-block may be any first component sub-block among the N1 first component blocks.
- the target first component sub-block may not be a fixed type of first component sub-block.
- the video decoder may obtain the identification information of the target first component sub-block from the code stream.
- the method before acquiring the decoding information of the second component block, the method further includes: determining the target first component sub-block according to target location information.
- a first component sub-block is determined as the target first component sub-block.
- the target position information may be pre-configured. For example, the video encoder and the video decoder pre-agreed that the first component sub-block where the lower right corner position in the current node is the target first component sub-block. At this time, the video encoder may not write the target position information of the first component sub-block into the code stream.
- the target position information may also be configured for display. For example, the video encoder writes the target position information into the code stream, and the video decoder determines the target first component sub-block according to the target position information in the code stream.
- the target position information may be the "identification information of the target first component sub-block" appearing above, or it may be absolute coordinate, relative coordinate, pixel value and other position information within a certain first component sub-block, or it may be decoding Order, scan order, etc.
- the form of the target location information may be arbitrary, and this application does not limit it.
- the coordinates of the target position information are (x 0 +W/2, y 0 +H/2), wherein the coordinates of the top left corner of the current node are (x 0 ,y 0 ), so The height of the current node is H, and the width of the current node is W.
- the first component sub-block where the center position of the current node or the center pixel is located is used as the target first component sub-block.
- the current node's division mode is quadtree division
- the first component sub-block located in the lower right corner is the target first component sub-block.
- the current node's division mode is horizontal binary tree division
- the first component sub-block located below is the target first component sub-block.
- the current node's partition mode is vertical binary tree partition, then the first component sub-block located on the right is the target first component sub-block.
- the current node's division mode is horizontally expanded quadtree division, then the first component sub-block located on the right of the middle is the target first component sub-block.
- the current node's division mode is vertically extended quadtree division, then the first component sub-block located below the middle is the target first component sub-block.
- the method before acquiring the decoding information of the second component block, the method further includes: according to a decoding order or a scanning order, the first or last of the N first component sub-blocks The first component sub-block serves as the target first component sub-block.
- the video encoder takes the first component sub-block of the first decoding, first scan, last decoding, or last scan as the target first component sub-block.
- the video encoder and video decoder can pre-appoint the target first component sub-block as one of the first decoding, the first scan, the last decoding, or the last scan of the first component sub-blocks. Bits can also be used The values 0, 1 or (0,0), (1,0), (0,1), (1,1), etc. stipulate the first decoding, the first scan, the last decoding, or the last scan of 4 One of the first component sub-blocks is the target first component sub-block.
- the division mode of the current node is quadtree division, then, the first component sub-block located in the upper left corner is the first component sub-block decoded or scanned first; the first located in the lower right corner The sub-quantum block is the first component sub-block decoded or scanned last.
- the current node's division mode is horizontal binary tree division, then, the first component sub-block on the left is the first component sub-block decoded or scanned first; the first component sub-block on the right The first component sub-block decoded or scanned last.
- the current node's division mode is vertical binary tree division
- the first component sub-block located above is the first component sub-block decoded or scanned first
- the first component sub located below The block is the last decoded or last scanned first component sub-block.
- the division mode of the current node is a horizontally expanded quadtree division, then the first component sub-block located at the top is the first component sub-block decoded or scanned first; the one located at the bottom The first component sub-block is the first component sub-block decoded or scanned last.
- the division mode of the current node is a vertically extended quadtree division
- the first component sub-block located on the left is the first component sub-block decoded or scanned first; located on the right
- the first component sub-block of is the last decoded or last scanned first component sub-block.
- the prediction mode of each of the N first component sub-blocks is an intra prediction mode or a non-intra prediction mode.
- the prediction mode of one of the first component subblocks is the intra prediction mode
- the prediction modes of the N first component subblocks are all intra prediction modes
- N first In a quantum block the prediction mode of one first component sub-block is a non-intra prediction mode
- the prediction modes in the N first component sub-blocks are all non-intra prediction modes.
- the prediction modes of the N first component sub-blocks are respectively planar mode, direct current mode, angular mode, and planar mode.
- N is equal to 4
- the prediction modes of the N first component sub-blocks are direct mode (direct mode), skip mode (skip), inter prediction mode, and inter prediction mode.
- the prediction mode associated with any first component sub-block in the N first component sub-blocks is used as the prediction mode other than the first component sub-block among the N first component sub-blocks Prediction mode of other first component sub-blocks.
- the prediction modes of the N first component sub-blocks are the same. For example, if N is equal to 4, the prediction modes of the N first component sub-blocks are all planar modes. For another example, N is equal to 4, and the prediction modes of the N first component sub-blocks are all inter prediction modes.
- the video decoder obtains the N1 first component subblock and the reconstructed block of the second component block according to the decoding information of the N1 first component subblock and the decoding information of the second component block.
- the video decoder obtains the reconstructed blocks of the N1 first component subblocks according to the decoding information of the N1 first component subblocks; the video decoder obtains the reconstructed blocks of the second component block according to the decoding information of the second component blocks.
- FIG. 10 is a schematic flowchart of a video codec provided by an embodiment of the present application.
- the video encoder obtains a division mode of the current node, where the division mode is used to indicate how to divide the current node to obtain the first component block of the current node.
- the method further includes writing the division pattern of the current node into the code stream.
- the video encoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, determines that the second component block of the current node does not use the current node Divided by the division mode, wherein the size of the first component block is larger than the size of the second component block.
- the video encoder divides the first component block into N first component sub-blocks according to the division mode, where N is a positive integer greater than or equal to 2.
- the first component block is divided into a plurality of first component sub-blocks.
- the value of N depends on the division method of the first component block.
- the division mode for dividing the first component block may include division modes such as quadtree division, binary tree division, and extended quadtree division.
- the width of the first component block 1 is W1
- the height is H1
- the manner of dividing the first component block 1 is quadtree division, then N is 4, and the first component block 1 is divided into 4
- a first component sub-block of the same size, each first component sub-block has a width of W1/2 and a height of H1/2.
- the width of the first component 2 is W2 and the height is H2, and the manner of dividing the first component block 2 is a horizontal binary tree division, then N is 2, and the first component block 2 is divided into two
- each first component sub-block has a width of W2 and a height of H2/2.
- the width of the first component block 3 is W3 and the height is H3, and the manner of dividing the first component block 3 is vertical binary tree division, then N is 2, and the first component block 3 is divided into For two first component sub-blocks of the same size, each first component sub-block has a width of W3/2 and a height of H3.
- the width of the first component block 4 is W4 and the height is H4, and the manner of dividing the first component block 4 is horizontally expanded quadtree division, then N is 4, and the first component block 4 is Divided into four first component sub-blocks of the same size located in the upper, middle left, center right, and lower regions, the width of these four first component sub-blocks are W4, W4/2, W4/2, W4, high They are H4/4, H4/2, H4/2, and H4/4.
- the width of the first component block 5 is W5 and the height is H5, and the manner of dividing the first component block 5 is a vertically extended quadtree division, then N is 4, and the first component block 5 It is divided into four first-component sub-blocks of the same size located in the left, upper-center, lower-center, and right areas.
- the widths of these four first-component sub-blocks are W5/4, W5/2, W5/2, W5/4, the height is H5, H5/2, H5/2, H5.
- the video encoder divides the second component block into M second component sub-blocks, where M is a positive integer greater than or equal to 2.
- the first component block is divided differently from the second component block.
- the division method of the first component block is quadtree division
- the division method of the second component block is horizontal binary tree division or vertical binary tree division.
- the video encoder obtains encoding information of the N first component sub-blocks and encoding information of the M second component sub-blocks.
- the first component block is divided into multiple first component sub-blocks and the second component block is divided into multiple second component sub-blocks; in order to divide the multiple first component sub-blocks and multiple second component sub-blocks Block encoding, encoding the plurality of first component sub-blocks to obtain encoding information of the plurality of first component sub-blocks, encoding the plurality of second component sub-blocks to acquire encoding of the plurality of second component sub-blocks information.
- N first component sub-blocks and M second component sub-blocks are encoded as coding units to obtain coding information of N first component sub-blocks and M second component sub-blocks.
- the method for obtaining the coding information of the N first component sub-blocks can refer to the existing coding process.
- the coding information of the first component sub-block is obtained according to the residual of the first component sub-block, the information of the pixel block around the first component sub-block, and the like.
- the method of obtaining the encoding information of the M second component sub-blocks may refer to the existing encoding process.
- the encoding information of the second component sub-blocks may be obtained according to the residual and second component sub-blocks of the second component sub-block The information of the pixel blocks around the block acquires the coding information of the second component sub-block.
- the video encoder sends the encoding information of the N first component sub-blocks and the encoding information of the M second component sub-blocks to a video decoder.
- the video decoder receives the decoding information of the N first component sub-blocks and the decoding information of the M second component sub-blocks.
- the video decoder obtains a division mode of the current node, where the division mode is used to divide the first component block of the current node.
- the video decoder determines whether the first component block satisfies a preset condition corresponding to the division mode, and if the preset condition is met, determines that the second component block of the current node does not use the current node Divided by the division mode, wherein the size of the first component block is larger than the size of the second component block.
- Method 1008 is an optional step.
- the video decoder may determine that the second component is not divided using the current node's division mode according to the information in the code stream.
- the video decoder divides the first component block into N first component sub-blocks according to the division mode, where N is a positive integer greater than or equal to 2.
- the first component block is divided into a plurality of first component sub-blocks.
- the value of N depends on the division method of the first component block.
- the video decoder may obtain decoding information carrying the division mode of the current node, and divide the first component block according to the decoding information. For example, the decoding information of the current node is obtained from the code stream, the parsing element of the decoding information is parsed to obtain the division mode of the current node, and the first component block is divided into N first component sub-blocks.
- the division mode for dividing the first component block may include division modes such as quadtree division, binary tree division, and extended quadtree division.
- the width of the first component block 1 is W1
- the height is H1
- the manner of dividing the first component block 1 is quadtree division, then N is 4, and the first component block 1 is divided into 4
- a first component sub-block of the same size, each first component sub-block has a width of W1/2 and a height of H1/2.
- the width of the first component 2 is W2 and the height is H2, and the manner of dividing the first component block 2 is a horizontal binary tree division, then N is 2, and the first component block 2 is divided into two
- each first component sub-block has a width of W2 and a height of H2/2.
- the width of the first component block 3 is W3 and the height is H3, and the manner of dividing the first component block 3 is vertical binary tree division, then N is 2, and the first component block 3 is divided into For two first component sub-blocks of the same size, each first component sub-block has a width of W3/2 and a height of H3.
- the width of the first component block 4 is W4 and the height is H4, and the manner of dividing the first component block 4 is horizontally expanded quadtree division, then N is 4, and the first component block 4 is Divided into four first component sub-blocks of the same size located in the upper, middle left, center right, and lower regions, the width of the four first component sub-blocks are W4, W4/2, W4/2, W4, height They are H4/4, H4/2, H4/2, and H4/4.
- the width of the first component block 5 is W5 and the height is H5, and the manner of dividing the first component block 5 is a vertically extended quadtree division, then N is 4, and the first component block 5 It is divided into four first-component sub-blocks of the same size located in the left, upper-center, lower-center, and right areas.
- the widths of these four first-component sub-blocks are W5/4, W5/2, W5/2, W5/4, the height is H5, H5/2, H5/2, H5.
- the video decoder divides the second component block into M second component sub-blocks, where M is a positive integer greater than or equal to 2.
- the first component block is divided differently from the second component block.
- the division method of the first component block is quadtree division
- the division method of the second component block is horizontal binary tree division or vertical binary tree division.
- the video decoder obtains decoding information of N2 first component subblocks among the N first component subblocks and decoding information of at least one second component subblock among the M second component subblocks, N2 is a positive integer greater than or equal to 1.
- the first component block is divided into multiple first component sub-blocks and the second component block is divided into multiple second component sub-blocks; in order to divide the multiple first component sub-blocks and multiple second component sub-blocks
- the block decodes to obtain decoding information of the plurality of first component sub-blocks and decoding information of the plurality of second component sub-blocks.
- N first component sub-blocks and M second component sub-blocks are decoded as decoding units to obtain decoding information of N first component sub-blocks and M second component sub-blocks.
- the video decoder obtains the N2 first component sub-blocks and the at least one second component according to the decoding information of the N2 first component sub-blocks and the decoding information of the at least one second component sub-block The reconstruction block of the quantum block.
- the video decoder obtains the reconstructed blocks of the N2 first component subblocks according to the decoding information of the N2 first component subblocks; the video decoder obtains the decoded information of at least one second component subblock out of the M second component subblocks A reconstruction block of the at least one second component sub-block.
- FIGS. 11 and 12 , FIG. 13 and FIG. 14 respectively introduce the video decoder and the video encoder of the embodiment of the present application.
- the video decoder shown in FIG. 11 can execute the block division method applied in the video decoding of the embodiment of the present application 12
- the video encoder shown in FIG. 12 can perform various steps in the block division method applied in video encoding according to the embodiment of the present application
- the video decoder shown in FIG. 13 can perform video decoding according to the embodiment of the present application.
- the video encoder shown in FIG. 14 can execute each step in the video encoding method of the embodiment of the present application.
- the following description is appropriately omitted when introducing the video encoder and the video decoder of the embodiments of the present application.
- FIG. 11 is a schematic block diagram of a video decoder according to an embodiment of the present application.
- the video decoder 1100 shown in FIG. 11 includes:
- the image decoding unit 1101 is configured to obtain a division mode of the current node, and the division mode is used to indicate how to divide the current node to obtain the first component block of the current node;
- the dividing unit 1102 is configured to determine whether the first component block meets a preset condition corresponding to the dividing mode, and if the preset condition is met, determine that the second component block of the current node is not divided or not used The division mode of the current node is divided, wherein the size of the first component block is larger than the size of the second component block.
- the above image decoding unit 1101 may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
- the above-described image decoding unit 1101 may be composed of a prediction processing unit, an inverse quantization unit, an inverse transform processing unit, and an entropy decoding unit in the decoder 30 in FIG. 3.
- FIG. 12 is a schematic block diagram of a video encoder according to an embodiment of the present application.
- the video encoder 1200 shown in FIG. 12 includes:
- the image coding unit 1201 is configured to obtain a division mode of the current node, and the division mode is used to divide the first component block of the current node;
- the dividing unit 1202 is configured to determine whether the first component block meets a preset condition corresponding to the dividing mode, and if the preset condition is met, determine that the second component block of the current node is not divided or not used The division mode of the current node is divided, wherein the size of the first component block is larger than the size of the second component block.
- the above-mentioned image coding unit 1201 may be composed of one or more units of a prediction unit, a transformation unit, a quantization unit, and an entropy coding unit.
- the above-mentioned image encoding unit 1201 may be composed of a prediction processing unit, a transformation processing unit, a quantization unit, and an entropy encoding unit in the encoder 12 in FIG. 2.
- FIG. 13 is a schematic block diagram of a video decoder according to an embodiment of the present application.
- the video decoder 1300 shown in FIG. 13 includes:
- the image decoding unit 1301 is configured to obtain a division mode of the current node, and the division mode is used to divide the first component block of the current node;
- the dividing unit 1302 is configured to determine whether the first component block meets a preset condition corresponding to the dividing mode, and if the preset condition is met, determine that the second component block of the current node is not divided or not used A division mode division of the current node, wherein the size of the first component block is larger than the size of the second component block;
- the dividing unit 1302 is further configured to divide the first component block into N first component sub-blocks according to the dividing mode, where N is a positive integer greater than or equal to 2;
- the image decoding unit 1301 is further used to obtain decoding information of the N1 first component subblocks and the second component of the N first component subblocks
- the decoding information of the block, N1 is a positive integer greater than or equal to 1
- the image decoding unit 1301 is further configured to obtain the decoding information according to the decoding information of the N1 first component sub-blocks and the decoding information of the second component block N1 first component sub-blocks and reconstruction blocks of the second component block;
- the division unit 1302 is further used to divide the second component block into M second component sub-blocks, where M is greater than or equal to A positive integer of 2; the image decoding unit 1301 is further used to obtain the decoding information of the N2 first component subblocks of the N first component subblocks and at least one of the M second component subblocks Decoding information of the second component sub-block, N2 is a positive integer greater than or equal to 1; the image decoding unit 1301 is further configured to decode the N2 first component sub-blocks and the at least one second component sub-block Decoding information to obtain the reconstructed blocks of the N2 first component sub-blocks and the at least one second component sub-block.
- the above-mentioned image decoding unit 1301 may be composed of one or more units of an entropy decoding unit, a prediction unit, an inverse transform unit, and an inverse quantization unit.
- the above-described image decoding unit 1301 may be composed of a prediction processing unit, an inverse quantization unit, an inverse transform processing unit, and an entropy decoding unit in the decoder 30 in FIG. 3.
- FIG. 14 is a schematic block diagram of a video encoder according to an embodiment of the present application.
- the video encoder 1400 shown in FIG. 14 includes:
- the image encoding unit 1401 is configured to obtain a division mode of the current node, and the division mode is used to divide the first component block of the current node;
- the dividing unit 1402 is configured to determine whether the first component block meets a preset condition corresponding to the dividing mode, and if the preset condition is met, determine that the second component block of the current node is not divided or not used A division mode division of the current node, wherein the size of the first component block is larger than the size of the second component block;
- the dividing unit 1402 is further configured to divide the first component block into N first component sub-blocks according to the dividing mode, where N is a positive integer greater than or equal to 2;
- the image encoding unit 1401 is further configured to acquire encoding information of the N first component sub-blocks and encoding information of the second component block;
- the division unit 1402 is further configured to divide the second component block into M second component sub-blocks, where M is greater than or equal to A positive integer of 2; the image encoding unit 1401 is further used to obtain encoding information of the N first component sub-blocks and encoding information of the M second component sub-blocks.
- the above-mentioned image encoding unit 1401 may be composed of one or more units of a prediction unit, a transformation unit, a quantization unit, and an entropy encoding unit.
- the above-mentioned image encoding unit 1401 may be composed of a prediction processing unit, a transformation processing unit, a quantization unit, and an entropy encoding unit in the encoder 12 in FIG. 2.
- the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored or transmitted as one or more instructions or codes on a computer-readable medium and executed by a hardware-based processing unit.
- the computer-readable medium may include a computer-readable storage medium, which corresponds to a tangible medium such as a data storage medium or a communication medium including, for example, any medium that facilitates transfer of a computer program from one place to another according to a communication protocol .
- a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium, such as a signal or carrier wave.
- Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure.
- the computer program product may include a computer-readable medium.
- such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, flash memory, or may be used to store instructions or data structures Any other media that can be accessed by the computer and required program code.
- any connection is properly termed a computer-readable medium.
- coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave to transmit commands from a website, server, or other remote source
- coaxial cables, fiber optic cables, twisted pairs, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of media.
- the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
- magnetic discs and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), flexible magnetic discs, and Blu-ray discs, where magnetic discs are usually magnetic The data is reproduced, and the optical disc reproduces the data optically with a laser. Combinations of the above should also be included within the scope of computer-readable media.
- processors such as one or more digital signal processors (DSPs), general-purpose microprocessors, application-specific integrated circuits , ASIC), field programmable logic arrays (field programmable logic arrays, FPGA) or other equivalent integrated or discrete logic circuits.
- DSPs digital signal processors
- ASIC application-specific integrated circuits
- FPGA field programmable logic arrays
- processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
- the functionality described herein may be provided within dedicated hardware and/or software modules for encoding and decoding, or incorporated in a composite codec.
- the techniques can be fully implemented in one or more circuits or logic elements.
- the technology of the present application may be implemented in various devices or apparatuses including a wireless handset, an integrated circuit (IC), or an IC set (for example, a chipset).
- IC integrated circuit
- This application describes various components, modules or units in order to emphasize the functional aspects of the device for performing the disclosed technology, but does not necessarily need to be implemented by different hardware units.
- the various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or provided by a collection of interoperable hardware units, including those as described above One or more processors.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本申请提供了一种应用于视频解码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。本申请提供了应用于视频编码中的块划分方法、视频解码方法、视频编码方法、视频解码器、视频编码器,以提高编码/解码性能。
Description
本申请要求于2018年12月15日提交中国专利局、申请号为201811537890.4、申请名称为“视频编码器、视频解码器及相应方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2019年3月29日提交中国专利局、申请号为201910246994.8、申请名称为“块划分方法、视频编解码方法、视频编解码器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及视频编解码技术领域,并且更具体地,涉及块划分方法、视频编解码方法、视频编解码器。
数字视频能力可并入到多种多样的装置中,包含数字电视、数字直播系统、无线广播系统、个人数字助理(personal digital assistant,PDA)、膝上型或桌上型计算机、平板计算机、电子图书阅读器、数码相机、数字记录装置、数字媒体播放器、视频游戏装置、视频游戏控制台、蜂窝式或卫星无线电电话(所谓的“智能电话”)、视频电话会议装置、视频流式传输装置及其类似者。数字视频装置实施视频压缩技术,例如,在由15MPEG-2、MPEG-4、ITU-TH.263、ITU-TH.264/MPEG-4第10部分高级视频编码(AVC)定义的标准、视频编码标准H.265/高效视频编码(high efficiency video coding,HEVC)标准以及此类标准的扩展中所描述的视频压缩技术。
视频装置可通过实施此类视频压缩技术来更有效率地发射、接收、编码、解码和/或存储数字视频信息。视频压缩技术执行空间(图像内)预测和/或时间(图像间)预测以减少或去除视频20序列中固有的冗余。对于基于块的视频编码,视频条带(即,视频帧或视频帧的一部分)可分割成若干图像块,所述图像块也可被称作树块、编码单元(CU)和/或编码节点。使用关于同一图像中的相邻块中的参考样本的空间预测来编码图像的待帧内编码(I)条带中的图像块。图像的待帧间编码(P或B)条带中的图像块可使用相对于同一图像中的相邻块中的参考样本的空间预测或相对于其它参考图像中的参考样本的时间预测。图像可被称作帧,且参考图像可被称作参考帧。
视频压缩处理技术主要是先把整幅图像划分为各个小块,然后以这些小块为单位进行帧内预测、帧间预测、变换量化、熵编码以及消块滤波处理等。
在视频压缩处理过程中,传统方案一般是按照四叉树的方式(将图像块等分成四份)或者二叉树的方式(将图像块等分成两份)对图像块进行划分。这种划分模式比较单一。
发明内容
本申请提供一种块划分方法、视频编解码方法、视频编解码器,以提高编码/解码性能。
第一方面,提供了一种应用于视频解码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
第二方面,提供了一种应用于视频解码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
可选的,所述方法还包括:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述方法还包括:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
第三方面,提供了一种应用于视频解码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式对当前节点的第一分量块进行划分,其中,所述当前节点包括所述第一分量和第二分量,所述第一分量块的尺寸大于所述第二分量块的尺寸。
可见,一方面,提供了一种新的划分方式,依据第一分量块决定第二分量块是否划分或第二分量块的划分模式,使得块划分更加灵活;另一方面,在第二分量块的分辨率小于第一分量块的情况下,较小尺寸的第二分量块的划分代价比较大尺寸的第一分量块的划分代价高,将较小尺寸的第二分量块不继续划分,或者采用与第一分量块不同的划分方式,可以避免划分代价高的情况出现。
结合第一方面、第二方面或第三方面,在第一方面、第二方面或第三方面的某些实现方式中,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
可见,细化了处理第二分量块的方案,依据第一分量块的划分模式以及第一分量块的尺寸,能够更加准确地判断第二分量块的处理方式。
结合第一方面、第二方面或第三方面,在第一方面、第二方面或第三方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第四方面,提供了一种视频解码方法,该方法包括:获取当前节点的划分模式;根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,根据所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述当前节点的第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块,N1为大于等于1的正整数;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;根据所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块,N2为大于等于1的正整数。
可选的,所述方法还包括:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述方法还包括:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
可见,一方面,在新的划分方式基础上解码,使得解码方式更加灵活;另一方面,可以避免解码计算量过高的情况出现。
结合第四方面,在第四方面的某些实现方式中,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
可见,细化了处理第二分量块的方案,依据第一分量块的划分模式以及第一分量块的尺寸,能够更加准确地判断第二分量块的处理方式。
结合第四方面,在第四方面的某些实现方式中,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述方法还包括:从码流中获取所述第二分量块的预测模式。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:根据所述N1个第 一分量子块的解码信息,获取所述第二分量块的解码信息。
可见,将不同分量块的相同信息关联起来,可以减少写入码流的数据量,减少传输数据量,提高传输效率、编解码效率。
结合第四方面,在第四方面的某些实现方式中,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息,包括:根据所述N1个第一分量子块中的目标第一分量子块的预测模式,获取所述第二分量块的预测模式,所述目标第一分量子块的解码信息包括所述目标第一分量子块的预测模式。
可见,依据第一分量块的预测模式确定第二分量块的预测模式,可以减少在码流中解析与第二分量块的预测模式相关的信息的计算量,减少传输数据量,提高传输效率、编解码效率。
结合第四方面,在第四方面的某些实现方式中,所述获取所述第二分量块的预测模式,包括:从码流中获取所述第二分量块的预测模式;或者,获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
结合第四方面,在第四方面的某些实现方式中,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的解码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,获取所述第二分量块的运动信息,所述目标第一分量子块的解码信息进一步包括所述目标第一分量子块的运动信息。
可见,依据第一分量块的运动信息确定第二分量块的运动信息,可以减少码流中与第二分量块的运动信息相关的信息,减少传输数据量,提高传输效率、编解码效率。
结合第四方面,在第四方面的某些实现方式中,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
可见,根据目标位置信息确定目标第一分量子块,减少了解析数据量,提高解码效率。
结合第四方面,在第四方面的某些实现方式中,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
可见,将第一分量块中心位置所在的第一分量子块确定为目标第一分量子块,可以提高解码效率。
结合第四方面,在第四方面的某些实现方式中,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据解码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
可见,将第一个或最后一个解码或扫描的第一分量子块确定为目标第一分量子块,可以提高解码效率。
结合第四方面,在第四方面的某些实现方式中,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
可见,N个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式,可以减少解码端从码流中解析的数据量,提高解码效率。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:将与所述N个第一 分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
可见,仅依据某个第一分量子块的预测模式即可以确定其他第一分量子块的预测模式,可以减少解码过程中的解析数据量,提高编码效率。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;根据所述N个第一分量子块的解码信息以及所述N个第二分量子块的解码信息,获取所述N个第一分量子块的重建块以及所述N个第二分量子块的重建块。
可见,采用与第一分量块不同的划分模式划分第二分量块,可以提高块划分方式的灵活性。
结合第四方面,在第四方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第五方面,提供了一种应用于视频编码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
第六方面,提供了一种应用于视频编码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
可选的,所述方法还包括:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述方法还包括:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
第七方面,提供了一种应用于视频解码中的块划分方法,该方法包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式对当前节点的第一分量块进行划分,其中,所述当前节点包括所述第一分量和第二分量,所述第一分量块的尺寸大于所述第二分量块的尺寸。
可见,一方面,提供了一种新的划分方式,依据第一分量块决定第二分量块是否划分或第二分量块的划分模式,使得块划分更加灵活;另一方面,在第二分量块的分辨率小于第一分量块的情况下,较小尺寸的第二分量块的划分代价比较大尺寸的第一分量块的划分代价高,将较小尺寸的第二分量块不继续划分,或者采用与第一分量块不同的划分方式,可以避免划分代价高的情况出现。
结合第五方面、第六方面或第七方面,在第五方面、第六方面或第七方面的某些实现方式中,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
可见,细化了处理第二分量块的方案,依据第一分量块的划分模式以及第一分量块的尺寸,能够更加准确地判断第二分量块的处理方式。
结合第五方面、第六方面或第七方面,在第五方面、第六方面或第七方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第八方面,提供了一种视频编码方法,该方法包括:获取当前节点的划分模式;根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,生成所述N个第一分量子块的编码信息以及所述当前节点的第二分量块的编码信息;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;生成所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
可选的,所述方法还包括:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述方法还包括:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
可见,一方面,在新的划分方式基础上编码,使得编码方式更加灵活;另一方面,可以避免编码计算量过高的情况出现。
结合第八方面,在第八方面的某些实现方式中,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况 下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
可见,细化了处理第二分量块的方案,依据第一分量块的划分模式以及第一分量块的尺寸,能够更加准确地判断第二分量块的处理方式。
结合第八方面,在第八方面的某些实现方式中,所述生成所述第二分量块的编码信息,包括:根据所述N个第一分量子块中的N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,N1为大于等于1的正整数。
可见,将不同分量块的相同信息关联起来,可以减少写入码流的数据量,减少传输数据量,提高传输效率、编解码效率。
结合第八方面,在第八方面的某些实现方式中,所述第二分量块的编码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,包括:获取所述N1个第一分量子块中的目标第一分量子块的预测模式作为所述第二分量块的预测模式,所述目标第一分量子块的编码信息包括所述目标第一分量子块的预测模式。
可见,依据第一分量块的预测模式确定第二分量块的预测模式,可以减少在码流中解析与第二分量块的预测模式相关的信息的计算量,减少传输数据量,提高传输效率、编解码效率。
结合第八方面,在第八方面的某些实现方式中,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的编码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,生成所述第二分量块的运动信息,所述目标第一分量子块的编码信息进一步包括所述目标第一分量子块的运动信息。
可见,依据第一分量块的运动信息确定第二分量块的运动信息,可以减少码流中与第二分量块的运动信息相关的信息,减少传输数据量,提高传输效率、编解码效率。
结合第八方面,在第八方面的某些实现方式中,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
可见,根据目标位置信息确定目标第一分量子块,减少了解析数据量,提高编码效率。
结合第八方面,在第八方面的某些实现方式中,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
可见,将第一分量块中心位置所在的第一分量子块确定为目标第一分量子块,可以提高编码效率。
结合第八方面,在第八方面的某些实现方式中,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据编码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
可见,将第一个或最后一个编码或扫描的第一分量子块确定为目标第一分量子块,可以提高编码效率。
结合第八方面,在第八方面的某些实现方式中,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
可见,N个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式,可以减少编码端从码流中解析的数据量,提高编码效率。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
可见,仅依据某个第一分量子块的预测模式即可以确定其他第一分量子块的预测模式,可以减少编码过程中的解析数据量,提高编码效率。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;生成所述N个第一分量子块的编码信息以及所述N个第二分量子块的编码信息。
可见,采用与第一分量块不同的划分模式划分第二分量块,可以提高块划分方式的灵活性。
结合第八方面,在第八方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第九方面,提供了一种视频解码器,该视频解码器包括:图像解码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
第十方面,提供了一种视频解码器,该视频解码器包括:图像解码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
可选的,所述划分单元还用于:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述划分单元还用于:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
第十一方面,提供了一种视频解码器,该视频解码器包括:图像解码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式对当前节点的第一分量块进行划分,其中,所述当前节点包括所述第一分量和第二分量,所述第一分量块的尺寸大于所述第二分量块的尺寸。
结合第九方面、第十方面或第十一方面,在第九方面、第十方面或第十一方面的某些 实现方式中,所述划分单元具体用于下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
结合第九方面、第十方面或第十一方面,在第九方面、第十方面或第十一方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第十二方面,提供了一种视频解码器,该视频解码器包括:图像解码单元,用于获取当前节点的划分模式;划分单元,用于根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述图像解码单元还用于:根据所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述当前节点的第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块,N1为大于等于1的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述划分单元还用于:采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像解码单元还用于:根据所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块,N2为大于等于1的正整数。
可选的,所述划分单元还用于:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述划分单元还用于:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
结合第十二方面,在第十二方面的某些实现方式中,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第 一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
结合第十二方面,在第十二方面的某些实现方式中,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述图像解码单元还用于:从码流中获取所述第二分量块的预测模式。
结合第十二方面,在第十二方面的某些实现方式中,所述图像解码单元还用于:根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息。
结合第十二方面,在第十二方面的某些实现方式中,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述图像解码单元具体用于:根据所述N1个第一分量子块中的目标第一分量子块的预测模式,获取所述第二分量块的预测模式,所述目标第一分量子块的解码信息包括所述目标第一分量子块的预测模式。
结合第十二方面,在第十二方面的某些实现方式中,所述图像解码单元具体用于:从码流中获取所述第二分量块的预测模式;或者获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
结合第十二方面,在第十二方面的某些实现方式中,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的解码信息进一步包括所述第二分量块的运动信息;所述图像解码单元还用于:根据所述目标第一分量子块的运动信息,获取所述第二分量块的运动信息,所述目标第一分量子块的目标解码信息进一步包括所述目标第一分量子块的运动信息。
结合第十二方面,在第十二方面的某些实现方式中,在所述获取所述第二分量块的解码信息之前,所述图像解码单元还用于:获取目标位置信息,根据所述目标位置信息,确定所述目标第一分量子块。
结合第十二方面,在第十二方面的某些实现方式中,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
结合第十二方面,在第十二方面的某些实现方式中,在所述获取所述第二分量块的解码信息之前,所述图像解码单元还用于:根据解码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
结合第十二方面,在第十二方面的某些实现方式中,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
结合第十二方面,在第十二方面的某些实现方式中,所述图像解码单元用于:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
结合第十二方面,在第十二方面的某些实现方式中,所述划分单元还用于:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;所述图像解码单元还用于:根据所述N个第一分量子块的解码信息以及所述N个第二分量子块的解码信息,获取所述N个第一分量子块的重建块以及所述N个第二分量子块的重建块。
结合第十二方面,在第十二方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第十三方面,提供了一种视频编码器,该视频编码器包括:图像编码单元,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
第十四方面,提供了一种视频编码器,该视频编码器包括:图像编码单元,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
可选的,所述划分单元还用于:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述划分单元还用于:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
第十五方面,提供了一种视频编码器,该视频编码器包括:图像编码单元,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式对当前节点的第一分量块进行划分,其中,所述当前节点包括所述第一分量和第二分量,所述第一分量块的尺寸大于所述第二分量块的尺寸。
结合第十三方面、第十四方面或第十五方面,在第十三方面、第十四方面或第十五方面的某些实现方式中,所述划分单元具体用于下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
结合第十三方面、第十四方面或第十五方面,在第十三方面、第十四方面或第十五方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第十六方面,提供了一种视频编码器,该视频编码器包括:图像编码单元,用于获取当前节点的划分模式;划分单元,用于根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述当前节点的第二分量块的编码信息;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述划分单元还用于,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
可选的,所述划分单元还用于:若满足所述预设条件,允许采用所述划分模式对所述第一分量块进行划分得到所述的第一分量块。
可选的,所述划分单元还用于:若不满足所述预设条件,允许采用所述划分模式对所述第一分量块和第二分量块进行划分。
结合第十六方面,在第十六方面的某些实现方式中,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
结合第十六方面,在第十六方面的某些实现方式中,所述图像编码单元具体用于:根据所述N个第一分量子块中的N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,N1为大于等于1的正整数。
结合第十六方面,在第十六方面的某些实现方式中,所述第二分量块的编码信息包括所述第二分量块的预测模式;所述图像编码单元具体用于:获取所述N1个第一分量子块中的目标第一分量子块的预测模式作为所述第二分量块的预测模式,所述目标第一分量子块的编码信息包括所述目标第一分量子块的预测模式。
结合第十六方面,在第十六方面的某些实现方式中,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的编码信息进一步包括所述第二分量块的运动信息,所述图像编码单元还用于:根据所述目标第一分量子块的运动信息,生成所述第二分量块的运动信息,所述目标第一分量子块的目标编码信息进一步包括所述目标第一分量子块的运动信息。
结合第十六方面,在第十六方面的某些实现方式中,在所述生成所述第二分量块的编码信息之前,所述图像编码单元还用于:获取目标位置信息,根据所述目标位置信息,确定所述目标第一分量子块。
结合第十六方面,在第十六方面的某些实现方式中,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
结合第十六方面,在第十六方面的某些实现方式中,在所述生成所述第二分量块的编码信息之前,所述图像编码单元还用于:根据编码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
结合第十六方面,在第十六方面的某些实现方式中,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
结合第十六方面,在第十六方面的某些实现方式中,所述图像编码单元用于:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
结合第十六方面,在第十六方面的某些实现方式中,所述划分单元还用于,响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述N个第二分量子块的编码信息。
结合第十六方面,在第十六方面的某些实现方式中,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
第十七方面,提供了一种视频解码装置,该视频解码装置包括用于实施第一方面至第四方面中的任意一种方法的若干个功能单元。
例如,该视频解码装置可以包括图像解码单元和划分单元。
其中,图像解码单元可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。
第十八方面,提供了一种视频编码装置,该视频编码装置包括用于实施第五方面至第八方面中的任意一种方法的若干个功能单元。
例如,该视频编码装置可以包括划分单元和图像编码单元。
其中,图像编码单元可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。
第十九方面,本申请实施例提供一种用于解码视频数据的设备,所述设备包括:存储器,用于存储码流形式的视频数据;视频解码器,用于实施第一方面至第四方面中的任意一种方法。
第二十方面,本申请实施例提供一种用于编码视频数据的设备,所述设备包括:存储器,用于存储视频数据,所述视频数据包括一个或多个图像块;视频编码器,用于实施第五方面至第八方面中的任意一种方法。
第二十一方面,本申请实施例提供一种解码设备,包括:存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面至第四方面中的任意一种方法的部分或全部步骤。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第二十二方面,本申请实施例提供一种编码设备,包括:存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第五方面至第八方面中的任意一种方法的部分或全部步骤。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第二十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面至第八方面中的任意一种方法的部分或全部步骤的指令。
第二十四方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面至第八方面中的任意一种方法的部分或全部步骤。
应当理解的是,本申请的第九至第二十四方面中的技术方案与本申请的第一方面至第八方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
图1是用于实现本发明实施例的视频编码及解码系统10实例的框图。
图2是用于实现本发明实施例的编码器20实例结构的框图。
图3是用于实现本发明实施例的解码器30实例结构的框图。
图4是用于实现本发明实施例的视频译码系统40实例的框图。
图5是用于实现本发明实施例的视频译码设备400实例的框图。
图6是用于实现本发明实施例的另一种编码装置或解码装置实例的框图。
图7是用于实现本发明实施例的一种块划分的示意图。
图8是用于实现本发明实施例的一种块划分方法的示意性流程图。
图9是用于实现本发明实施例的一种视频编解码方法的示意性流程图。
图10是用于实现本发明实施例的一种视频编解码方法的示意性流程图。
图11是用于实现本发明实施例的一种视频解码器的示意性框图。
图12是用于实现本发明实施例的一种视频编码器的示意性框图。
图13是用于实现本发明实施例的一种视频解码器的示意性框图。
图14是用于实现本发明实施例的一种视频编码器的示意性框图。
下面结合本发明实施例中的附图对本发明实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本发明实施例的具体方面或可使用本发明实施例的具体方面的附图。应理解,本发明实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多 个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。本文中使用的视频编码表示视频编码或视频解码。视频编码在源侧执行,通常包括处理(例如,通过压缩)原始视频图片以减少表示该视频图片所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构视频图片。实施例涉及的视频图片“编码”应理解为涉及视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码)。
视频序列包括一系列图像(picture),图像被进一步划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,宏块可进一步划分成多个可用于预测编码的预测块(partition)。或者,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成变换单元(transform unit,TU)。在视频压缩技术最新的发展中,使用四叉树和二叉树(Quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形形状。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始视频图片,即经重构视频图片具有与原始视频图 片相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示视频图片所需的数据量,而解码器侧无法完全重构视频图片,即经重构视频图片的质量相比原始视频图片的质量较低或较差。
H.261的几个视频编码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本发明实施例所应用的系统架构。参见图1,图1示例性地给出了本发明实施例所应用的视频编码及解码系统10的示意性框图。如图1所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本发明实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图5或图6描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在编码侧的应用。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其 它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图5或图6描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本发明所描述的色度块预测方法在解码侧的应用。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图2,图2示出用于实现本发明实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列 和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为AVS,AVS2,AVS3指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过量化参数(quantization parameter,QP)指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如AVS,AVS2,AVS3的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sine transform,DST),以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经解码图片缓冲器(decoded picture buffer,DPB)230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB 230可由多种存储器设备中的任一个形成,例如动态随机存储器(dynamic random access memory,DRAM)(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM)、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB 230和缓冲器216。在某一实例中,经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经解码图片缓冲器(decoded picture buffer,DPB)230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DBP230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(Advanced Motion Vector Prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本发明实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本发明实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)或者扩展四叉树(EQT,Extended Quad-Tree)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构 块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经 编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
具体的,在本发明实施例中,编码器20可用于实现后文实施例中描述的编码方法。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理,相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本发明实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择 的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB 330中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本发明的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以 在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本发明实施例中,解码器30用于实现后文实施例中描述的解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频位流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之后,对相应环节的处理结果进一步进行Clip或移位shift等操作。
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)~2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768~32767。如bitDepth为18,则取值范围为-131072~131071。又例如,对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量MV)的取值进行约束,使得所述四个4x4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。
可以通过以下两种方式进行约束,使其在一定的位宽内:
方式1,将运动矢量溢出的高位去除:
ux=(vx+2
bitDepth)%2
bitDepth
vx=(ux>=2
bitDepth-1)?(ux-2
bitDepth):ux
uy=(vy+2
bitDepth)%2
bitDepth
vy=(uy>=2
bitDepth-1)?(uy-2
bitDepth):uy
其中,vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量,ux和uy为中间值;bitDepth表示位宽。
例如vx的值为-32769,通过以上公式得到的为32767。因为在计算机中,数值是以二进制的补码形式存储的,-32769的二进制补码为1,0111,1111,1111,1111(17位),计算机对于溢出的处理为丢弃高位,则vx的值为0111,1111,1111,1111,则为32767,与通过公式处理得到的结果一致。
方法2,将运动矢量进行Clipping,如以下公式所示:
vx=Clip3(-2
bitDepth-1,2
bitDepth-1-1,vx)
vy=Clip3(-2
bitDepth-1,2
bitDepth-1-1,vy)
其中vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量;其中,x、y和z分别对应MV钳位过程Clip3的三个输入值,所述Clip3的定义为,表示将z的值钳位到区间[x,y]之间:
参见图4,图4是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本发明实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图4所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路(application-specific integrated circuit,ASIC)逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本发明实施例中对于参考编码器20所描述的实例,解码器30可以用于执行 相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本发明实施例描述的解码方法主要用于解码过程,此过程在编码器20和解码器30均存在。
参见图5,图5是本发明实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1的解码器30)或视频编码器(例如图1的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1的解码器30或图1的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本发明实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图6,图6是根据一示例性实施例的可用作图1中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图6为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的解码的方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或 者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的解码方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
下面详细阐述本申请实施例的方案:
关键术语定义
CTU:编码树单元(coding tree unit),一幅图像由多个CTU构成,一个CTU通常对应于一个方形图像区域,包含这个图像区域中的亮度像素和色度像素(或者也可以只包含亮度像素,或者也可以只包含色度像素);CTU中还包含语法元素,这些语法元素指示如何将CTU划分成至少一个编码单元(coding unit,CU),以及解码每个编码单元得到重建图像的方法。
CU:编码单元,通常对应于一个A×B的矩形区域,包含A×B亮度像素和它对应的色度像素,A为矩形的宽,B为矩形的高,A和B可以相同也可以不同,A和B的取值通常为2的整数次幂,例如256、128、64、32、16、8、4。一个编码单元可通过解码处理解码得到一个A×B的矩形区域的重建图像,解码处理通常包括预测、反量化、反变换等处理,产生预测图像和残差,预测图像和残差叠加后得到重建图像。
四叉树(QT,Quad-Tree):一种树状结构,一个节点可划分为四个子节点。视频编码标准采用基于四叉树的CTU划分方式:CTU作为根节点,每个节点对应于一个方形的区域,即把这个方形区域划分成四个大小相同的方形区域(其长、宽各为划分前区域长、宽的一半),每个区域对应于一个节点,如图7中的块701所示。一个节点可以不再划分(此时它对应的区域为一个CU),或者将这个节点按QT、BT或EQT的方式继续划分成下一层级的节点。
二叉树(BT,Binary Tree):一种树状结构,一个节点可划分成两个子节点。划分成两个节点的方式有两种:1)水平二分,将节点对应的区域划分成上、下两个相同大小的区域,每个区域对应于一个节点,如图7中的块702所示;或者2)竖直二分,将节点对应的区域划分成左、右两个大小相同的区域,每个区域对应于一个节点,如图7中的块703所示。采用二叉树的编码方法中,一个二叉树结构上的节点可以不划分,或者把此节点按BT或EQT的方式继续划分成下一层级的节点。
扩展四叉树(EQT,Extended Quad-Tree):一种工字划分结构,一个节点可划分成四个子 节点。划分成三个节点的方式有两种:1)水平四分,将节点对应的区域划分成上、中、下三个区域,每个区域对应于一个节点,其中上、中左、中右、下三个区域的高分别为节点高的1/4、1/2、1/2、1/4,中左和中右宽度为节点高度的1/2、1/2,如图7中的块704所示;或者2)竖直四分,将节点对应的区域划分成左、中上、中下、右三个区域,每个区域对应于一个节点,其中左、中、右三个区域的宽分别为节点高的1/4、1/2、1/2、1/4,中上和中下宽度为节点高度的1/2、1/2,如图7中的块705所示。采用扩展四叉树的编码方法中,一个扩展四叉树结构上的节点可以不划分,或者把此节点按BT或EQT的方式继续划分成下一层级的节点。
视频解码(video decoding):将视频码流按照特定的语法规则和处理方法恢复成重建图像的处理过程。
视频编码(video encoding):将图像序列压缩成码流的处理过程;
视频编码(video coding):video encoding和video decoding的统称,中文译名和video encoding相同。
VTM:JVET组织开发的新式编解码器参考软件。
视频编码标准把一帧图像分割成互不重叠的编码树单元(CTU),CTU的大小可设置为64×64(CTU的大小也可设置为其它值,如CTU大小增大为128×128或256×256等)。64×64的CTU包含由64列、每列64个像素的矩形像素点阵,每个像素包含亮度分量或/和色度分量。
使用基于四叉树(quad-tree,简称QT)的CTU划分方法,将CTU作为四叉树的根节点(root),按照四叉树的划分方式,将CTU递归划分成若干个叶节点(leaf node)。一个节点对应于一个图像区域,节点如果不划分,则节点称为叶节点,它对应的图像区域形成一个CU;如果节点继续划分,则节点对应的图像区域划分成四个相同大小的区域(其长和宽各为被划分区域的一半),每个区域对应一个节点,需要分别确定这些节点是否还会划分。一个节点是否划分由码流中这个节点对应的划分标志位split_cu_flag指示。根节点的四叉树层级(qtDepth)为0,子节点的四叉树层级为父节点的四叉树层级+1。为表述简洁,下文中节点的大小和形状即指节点对应的图像区域的大小和形状。
更具体的,对64×64的CTU节点(四叉树层级为0),根据它对应的split_cu_flag,可选择不划分,成为1个64×64的CU,或者选择划分为4个32×32的节点(四叉树层级为1)。这四个32×32的节点中的每一个节点,又可以根据它对应的split_cu_flag,选择继续划分或者不划分;如果一个32×32的节点继续划分,则产生四个16×16的节点(四叉树层级为2)。以此类推,直到所有节点都不再划分,这样一个CTU就被划分成一组CU。CU的最小尺寸(size)在SPS中标识,例如8×8为最小CU。在上述递归划分过程中,如果一个节点的尺寸等于最小CU尺寸(minimum CU size),这个节点默认为不再划分,同时也不需要在码流中包含它的划分标志位。
当解析到一个节点为叶节点后,此叶节点为一个CU,进一步解析CU对应的编码信息(包括CU的预测模式、变换系数等信息,例如coding_unit()语法结构体),然后按照这些编码信息对CU进行预测、反量化、反变换、环路滤波等解码处理,产生这个CU对应的重建图像。四叉树结构使得CTU能够根据图像局部特点划分成合适大小的一组CU,例如平滑区域划分成较大的CU,而纹理丰富区域划分为较小的CU。
一种CTU划分成一组CU的划分方式对应于一个编码树(coding tree)。CTU应当采用何种编码树则通常通过编码器的率失真优化(rate distortion optimization,RDO)技术来确定。编码器尝试多种CTU划分方式,每一种划分方式对应于一个率失真代价(RD cost);编码器比较各种尝试过的划分方式的RD cost,找到RD cost最小的划分方式,作为该CTU最优的划分方式,用于该CTU的实际编码。编码器尝试的各种CTU划分方式均需要符合解码器规定的划分规则,这些才能够被解码器正确识别。
AVS3在四叉树划分的基础上,增加了二叉树(binary tree,简称BT)划分方式和扩展四叉树(Extended Quad-Tree,简称EQT)划分方式。
二叉树划分将一个节点划分成2个子节点,具体的两叉树划分方式有两种:
1)水平二分:将节点对应的区域划分成上、下两个相同大小的区域(即宽不变,高变为划分前区域的一半),每个区域对应于一个节点;如图7中的块702所示。
2)竖直二分:将节点对应的区域划分成左、右两个相同大小的区域(即高不变,宽变为划分前区域的一半);如图7中的块703所示。
扩展四叉树划分将一个节点划分成4个子节点,具体的扩展四叉树划分方式有两种:
1)水平四分,将节点对应的区域划分成上、中、下三个区域,每个区域对应于一个节点,其中上、中左、中右、下三个区域的高分别为节点高的1/4、1/2、1/2、1/4,中左和中右宽度为节点高度的1/2、1/2,如图7中的块704所示;
2)竖直四分,将节点对应的区域划分成左、中上、中下、右三个区域,每个区域对应于一个节点,其中左、中、右三个区域的宽分别为节点高的1/4、1/2、1/2、1/4,中上和中下宽度为节点高度的1/2、1/2,如图7中的块705所示。
AVS3中使用了QT级联BT/EQT的划分方式,即第一级编码树上的节点只能使用QT划分成子节点,第一级编码树的叶节点为第二级编码树的根节点;第二级编码树上的节点可使用BT或EQT划分方式中的一种划分为子节点;第二级编码树的叶节点为编码单元。需要注意的是,当叶节点为BT或EQT划分方式时,其叶节点只能使用BT或EQT划分方式,而不能使用QT的方式。
本申请提供了一种视频编解码方法,意在提供一种新的块划分方式,以提高视频编解码的灵活性。
图8为本申请实施例提供的一种应用于视频编、解码中的块划分方法的示意性流程图。
801,获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块。
换句话说,将当前节点的划分模式应用在当前节点的第一分量块上,当前节点的划分模式作为当前节点的第一分量块的划分模式。例如,当前节点的划分模式为四叉树划分,那么当前节点的第一分量块的划分模式即为四叉树划分。
可选的,当前节点可以是编解码器的被执行单元,还可以被称为例如当前块等。
其中,节点的划分模式包括:四叉树(quad-tree,QT)划分、二进制树(binary-tree,BT)划分、三叉树(triple-tree,TT)划分或者扩展四叉树(extended quad-tree,EQT)划分等各种可以将节点进一步划分的多种模式。本申请对此不作限定。
为了便于描述,本申请中的“获取”用于表示设备执行如解析、解码、确定、产生、得 到等一个或多个动作,本申请对此不作限定。
802a,判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
或者,802b,判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
或者,802c,判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式划分所述当前节点的第一分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
换句话说,当前节点包括第一分量块和第二分量块,第一分量块的尺寸比第二分量块的尺寸大,根据当前节点的划分模式,判断该第一分量块满足预设条件的情况下,确定该第二分量块不被进一步划分,或者确定该第二分量块采用除当前节点的划分模式以外的其他划分模式进行划分。而在第一分量块不满足该预设条件的情况下,所述第二分量块按照该划分模式被进一步划分。
该预设条件可以是预先设置的,例如,视频编码器以及视频解码器可以预先定义该预设条件。该预设条件可以是显示配置的,例如,视频编码器获取该预设条件,并通过码流将该预设条件发送至视频解码器;相应的,视频解码器从码流中获取该预设条件。
类似的,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,还可以是判断所述当前节点是否满足与所述划分模式对应的预设条件;还可以是判断当前块是否满足于所述划分模式对应的预设条件;还可以是判断所述第二分量块是否满足于所述划分模式对应的预设条件;还可以是判断将所述第一分量块划分后获得的第一分量子块是否满足与所述划分模式对应的预设条件。本申请以判断所述第一分量块是否满足与所述划分模式对应的预设条件为例进行说明,类似的其他情况在此不再赘述。
在一个示例中,当前节点的划分模式为水平二叉树划分,那么第一分量块的划分模式为水平二叉树划分;判断第一分量块满足与水平二叉树划分对应的预设条件1,那么第二分量块不划分或按照竖直二叉树划分。
在一个示例中,当前节点的划分模式为竖直二叉树划分,那么第一分量块的划分模式为竖直二叉树划分;判断第一分量块满足与竖直二叉树划分对应的预设条件2,那么第二分量块不划分或按照水平二叉树划分。
在一个示例中,当前节点的划分模式为水平扩展四叉树划分,那么第一分量块的划分模式为水平扩展四叉树划分;判断第一分量块满足与水平扩展四叉树划分对应的预设条件3,那么第二分量块不划分或按照竖直扩展四叉树划分。
在一个示例中,当前节点的划分模式为竖直扩展四叉树划分,那么第一分量块的划分模式为竖直扩展四叉树划分;判断第一分量块满足与竖直扩展四叉树划分对应的预设条件4,那么第二分量块不划分或按照水平扩展四叉树划分。
在一个示例中,当前节点的划分模式为四叉树划分,那么第一分量块的划分模式为四叉树划分;判断第一分量块满足与四叉树划分对应的预设条件5,那么第二分量块不划分。
可选的,所述当前节点的尺寸与所述第一分量块的尺寸相同。
可选的,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
特别的,“小于或等于”意味着可以是“小于”、可以是“等于”、还可以是“小于等于”。
例如,与预设条件1对应的划分模式为四叉树划分,预设条件1为第一分量块的宽小于等于8,或者第一分量块的高小于等于8,也就是说第一预设阈值为8,第二预设阈值为8。当前节点的第一分量块的宽为16、高为8;当前节点的第二分量块的宽为8,高为4;当前节点的划分模式为四叉树划分,那么当前节点满足该预设条件1。当前节点的第二分量块可以不再被进一步划分,或者不按照四叉树划分的方式进行划分,例如按照竖直二叉树划分。所述第一预设阈值包括但不限于8,例如可以是2的N方的整数,其中N为大于2的正整数。
再例如,与预设条件2对应的划分模式为竖直二叉树划分,预设条件2为第一分量块的宽小于等于8,也就是说第三预设阈值为8。当前节点的第一分量块的宽为8、高为16,当前节点的划分模式为竖直二叉树划分,那么当前节点满足该预设条件2。当前节点的第二分量块可以不再被进一步划分,或者不按照竖直二叉树划分的方式进行划分,例如按照水平二叉树划分。
再例如,与预设条件3对应的划分模式为水平二叉树划分,预设条件3为第一分量块的高小于等于8,也就是说第四预设阈值为8。当前节点的第一分量块的宽为16、高为8;当前节点的划分模式为水平二叉树划分,那么当前节点满足该预设条件3。当前节点的第二分量块可以不再被进一步划分,或者不按照水平二叉树划分的方式进行划分,例如按照竖直二叉树划分。
再例如,与预设条件4对应的划分模式为水平扩展四叉树划分,预设条件4为第一分量块的宽小于等于8,或者第一分量块的高小于等于16,也就是说第五预设阈值为8,第六预设阈值为16。当前节点的第一分量块的宽为32、高为16;当前节点的划分模式为水平扩展四叉树划分,那么当前节点满足该预设条件4。当前节点的第二分量块可以不再被进一步划分,或者不按照水平扩展四叉树划分的方式进行划分,例如按照竖直扩展四叉树、竖直二叉树等划分方式进行划分。
再例如,与预设条件5对应的划分模式为竖直扩展四叉树划分,预设条件5为第一分量块的宽小于等于16,或者第一分量块的宽小于等于8,也就是说第七预设阈值为16,第八预设阈值为8。当前节点的第一分量块的宽为16、高为32;当前节点的划分模式为 竖直扩展四叉树划分,那么当前节点满足该预设条件5。当前节点的第二分量块可以不再被进一步划分,或者不按照竖直扩展四叉树划分的方式进行划分,例如按照水平二叉树、水平扩展四叉树等划分方式进行划分。
可选的,所述第一预设阈值为8。
可选的,所述第二预设阈值为8。
可选的,所述第三预设阈值为8。
可选的,所述第四预设阈值为8。
可选的,所述第五预设阈值为8。
可选的,所述第六预设阈值为16。
可选的,所述第七预设阈值为16。
可选的,所述第八预设阈值为8。
可选的,若满足所述预设条件,则所述确定所述当前节点的第二分量块不采用所述当前节点的划分模式划分,包括:在满足与水平二叉树划分对应的预设条件且不满足与竖直二叉树划分对应的预设条件的情况下,确定所述当前节点的第二分量块采用竖直二叉树划分;在满足与竖直二叉树划分对应的预设条件且不满足与水平二叉树划分对应的预设条件的情况下,确定所述当前节点的第二分量块采用水平二叉树划分;在满足与水平扩展四叉树划分对应的预设条件且不满足与竖直扩展四叉树划分对应的预设条件的情况下,确定所述当前节点的第二分量块采用水平二叉树、竖直二叉树或竖直扩展四叉树划分;在满足与竖直扩展四叉树划分对应的预设条件且不满足与水平扩展四叉树划分对应的预设条件的情况下,确定所述当前节点的第二分量块采用水平二叉树、竖直二叉树或水平扩展四叉树划分。
可选的,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的第一色度分量块。换句话说,当前节点的亮度分量块将按照划分模式被继续划分成多个亮度分量子块,当前节点的第一色度分量块不被进一步划分或采用其他划分模式被继续划分。当前节点还可以进一步包括第二色度分量块;当前节点的第二色度分量块可以按照划分模式被划分为多个第二色度分量子块,也可以不被进一步划分,也可以采用其他划分模式被继续划分。
可选的,视频编码器在编码过程中执行如图8所示的方法801、802,视频解码器在解码过程中执行如图8所示的方法801、802。
在第二分量块的分辨率小于第一分量块的情况下,较小尺寸的第二分量块的划分代价比较大尺寸的第一分量块的划分代价高。将较小尺寸的第二分量块不继续划分,或者采用与第一分量块不同的划分方式,可以避免划分代价高的情况出现,增添了块划分方式的灵活性。
图9为本申请实施例提供的一种视频编解码的示意性流程图。
901,视频编码器获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块。
可选的,所述方法还包括,将所述当前节点的划分模式写入码流中。
902a,视频编码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分,其中所述第一分量块的尺 寸大于所述第二分量块的尺寸。
或者,902b,视频编码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
或者,902c,视频编码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式划分所述当前节点的第一分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。图9所示的方法901、902a、902b、902c的详细描述参考图8所示的方法801、802a、802b、802c的描述,相应的,方法901、902a、902b、902c不再详细赘述。
903,视频编码器根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数。
换句话说,按照当前节点的划分模式,将第一分量块划分为多个第一分量子块。其中,N的取值取决于所述第一分量块的划分方式。
可选的,划分所述第一分量块的划分模式可以有:四叉树划分、二叉树划分、扩展四叉树划分等划分方式。
例如,所述第一分量块1的宽为W1、高为H1,划分所述第一分量块1的方式为四叉树划分,那么N为4,所述第一分量块1被划分为4个大小相同的第一分量子块,每个第一分量子块的宽为W1/2,高为H1/2。
再例如,所述第一分量2的宽为W2、高为H2,划分所述第一分量块2的方式为水平二叉树划分,那么N为2,所述第一分量块2被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W2,高均为H2/2。
再例如,所述第一分量块3的宽为W3、高为H3,划分所述第一分量块3的方式为竖直二叉树划分,那么N为2,所述第一分量块3被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W3/2,高均为H3。
再例如,所述第一分量块4的宽为W4、高为H4,划分所述第一分量块4的方式为水平扩展四叉树划分,那么N为4,所述第一分量块4被划分为位于上、中左、中右、下区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W4、W4/2、W4/2、W4,高分别为H4/4、H4/2、H4/2、H4/4。
再例如,所述第一分量块5的宽为W5、高为H5,划分所述第一分量块5的方式为竖直扩展四叉树划分,那么N为4,所述第一分量块5被划分为位于左、中上、中下、右区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W5/4、W5/2、W5/2、W5/4,高分别为H5、H5/2、H5/2、H5。
904,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,视频编码器生成所述N个第一分量子块的编码信息以及所述第二分量块的编码信息。
换句话说,第一分量块被划分为多个第一分量子块而第二分量块不被进一步划分;为了对多个第一分量子块和第二分量块进行编码,对该多个第一分量子块进行编码生成该多个第一分量子块的编码信息,对该第二分量块进行编码,生成该第二分量块的编码信息。
例如,N个第一分量子块与当前节点的N个叶节点一一对应,第二分量块不被进一步划分,将N个第一分量子块和第二分量块作为编码单元进行编码,生成N个第一分量子 块的编码信息以及第二分量块的编码信息。
生成N个第一分量子块的编码信息的方式可以参照现有的编码过程。例如,根据第一分量子块的残差、第一分量子块周围的像素块的信息等生成第一分量子块的编码信息。类似的,生成第二分量块的编码信息的方式可以参照现有的编码过程,例如,生成第二分量块的编码信息可以根据第二分量块的残差、第二分量块周围的像素块的信息生成第二分量块的编码信息。
可选的,所述生成所述N个第一分量子块的编码信息以及所述第二分量块的编码信息,可以是将N个第一分量子块的编码信息以及第二分量块的编码信息写入码流中。
编码信息包括预测模式、变换系数等信息,用于视频解码器根据编(解)码信息进行预测、反量化、反变换、环路滤波等解码处理。其中,预测模式信息包括:帧内预测模式或非帧内预测模式;帧内预测模式可以为平面模式(planar mode)、直流模式(direct mode)、角度模式(angular mode)之一;非帧内预测模式可以是直接模式(direct mode)、跳过模式(skip)、帧间预测模式等;非帧内预测模式下编码信息还可以包括运动信息,例如预测方向(前向、后向或双向)、参考帧索引(reference index)、运动矢量(motion vector)等信息。
应理解,视频编码器生成的编码信息与视频解码器解码所需的解码信息相同,为了便于描述,将编码过程产生的信息称为编码信息,将解码过程产生的信息称为解码信息。
可选的,所述方法还包括,将N个第一分量子块的编码信息和第二分量块的编码信息写入码流中。
可选的,根据所述N个第一分量子块中的N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,N1为大于等于1的正整数。
换句话说,根据当前节点的N1个叶节点的N1个第一分量子块的编码信息,生成第二分量块的编码信息。也就是说,根据N个第一分量子块中的至少一个第一分量子块的编码信息,生成第二分量块的编码信息。第二分量块的编码信息与N1个第一分量子块的编码信息有对应关系。
例如,将N1个第一分量子块的编码信息拷贝至第二分量块的编码信息。再例如,在码流中写入与第二分量对应的N1个第一分量子块的标识信息。再例如,将N1个第一分量子块的预测模式作为第二分量块的预测模式。再例如,判断N1个第一分量子块的编码信息的内容是否满足预设条件,若满足,则向码流中输入第二分量块的编码信息;若不满足,则将N1个第一分量子块的编码信息作为第二分量块的编码信息。
将不同分量块的相同信息关联起来,可以减少写入码流的数据量,减少传输数据量,提高传输效率、编解码效率。
可选的,根据所述N1个第一分量子块的编码信息,确定将所述第二分量块的编码信息写入码流中或将所述N1个第一分量子块的编码信息作为所述第二分量块的编码信息。
换句话说,该N1个第一分量子块的编码信息可以指示获取第二分量块的编码信息的位置,该位置包括码流、N1个第一分量子块的编码信息等。
例如,在所述N1个第一分量子块的编码信息中包含信息A的情况下,根据该N1个第一分量子块的编码信息,确定将该第二分量块的编码信息写入码流中;在所述N1个第一分量子块的编码信息中不包含信息A的情况下,根据该N1个第一分量子块的编码信息, 确定将所述N1个第一分量子块的编码信息作为所述第二分量块的编码信息,如将所述N1个第一分量子块的编码信息中的信息B作为所述第二分量块的编码信息。
可选的,所述第二分量块的编码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,包括:获取所述N1个第一分量子块中的目标第一分量子块的预测模式作为所述第二分量块的预测模式,所述目标第一分量子块的编码信息包括所述目标第一分量子块的预测模式。
换句话说,第二分量块的预测模式和目标第一分量子块的预测模式相同。第二分量块的预测模式的编码信息无需写入码流中,视频解码端可以直接从目标第一分量子块的编码信息中获取。
例如,目标第一分量子块的预测模式为帧内预测模式,那么第二分量块的预测模式也为帧内预测模式。
可选的,在所述目标第一分量子块的预测模式为非帧内预测模式的情况下,获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
也就是说,在目标第一分量子块的预测模式为帧内预测模式的情况下,将第二分量块的预测模式的编码信息写入码流中;在目标第一分量子块的预测模式为非帧内预测模式的情况下,第二分量块的预测模式的编码信息无需写入码流中,视频解码端可以直接从目标第一分量子块的编码信息中获取。
例如,目标第一分量子块的预测模式为帧间预测模式,那么第二分量块的预测模式也为帧间预测模式。
可选的,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的编码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,生成所述第二分量块的运动信息,所述目标第一分量子块的编码信息进一步包括所述目标第一分量子块的运动信息。
换句话说,第二分量块的预测模式为非帧内预测模式的情况下,将目标第一分量子块的运动信息作为第二分量块的运动信息。也就是说,第二分量子块的运动信息无需写入码流,视频解码端可以直接从目标第一分量子块的运动信息中获取。
例如,将目标第一分量子块的编码信息中的预测方向(前向、后向或双向)、参考帧索引(reference index)、运动矢量(motion vector)等信息作为第二分量块的运动信息。
可选的,目标第一分量子块可以是N1个第一分量块中的任一第一分量子块。
也就是说,视频编码器可以任取一个第一分量子块作为该目标第一分量子块。
可选的,视频编码器可以将该目标第一分量子块的标识信息写入码流中。
可选的,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
换句话说,在当前节点的范围内,根据目标位置信息,确定一个第一分量子块作为目标第一分量子块。
该目标位置信息可以是预先配置的,例如,视频编码器和视频解码器预先约定了当前节点中最右下角位置所在的第一分量子块为目标第一分量子块。此时,视频编码器可以不将第一分量子块的目标位置信息写入码流中。该目标位置信息还可以是显示配置的,例如视频编码器将目标位置信息写入码流中,视频解码器根据码流中的目标位置信息,确定目 标第一分量子块。
目标位置信息可以是上文中出现的“目标第一分量子块的标识信息”,还可以是绝对坐标、相对坐标、像素值等位于某个第一分量子块内的位置信息,还可以是编码顺序、扫描顺序等。目标位置信息的形式可以是任意的,本申请对此不作限定。
可选的,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
换句话说,将当前节点的中心位置或中心像素点所在的第一分量子块作为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为四叉树划分,那么位于右下角的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为水平二叉树划分,那么位于下方的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为竖直二叉树划分,那么位于右边的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为水平扩展四叉树划分,那么位于中部右边的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为竖直扩展四叉树划分,那么位于中部下方的第一分量子块为所述目标第一分量子块。
可选的,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据编码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
换句话说,视频编码器将第一个编码、第一个扫描、最后一个编码或最后一个扫描的第一分量子块作为目标第一分量子块。视频编码器和视频解码器可以预先约定目标第一分量子块为第一个编码、第一个扫描、最后一个编码或最后一个扫描的4个第一分量子块中的一个,也可以用比特值0、1或(0,0)、(1,0)、(0,1)、(1,1)等形式约定第一个编码、第一个扫描、最后一个编码或最后一个扫描的4个第一分量子块中的一个为目标第一分量子块。
在一个示例中,当前节点的划分模式为四叉树划分,那么,位于左上角的第一分量子块为第一个编码或第一个扫描的第一分量子块;位于右下角的第一分量子块为最后一个编码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为水平二叉树划分,那么,位于左边的第一分量子块为第一个编码或第一个扫描的第一分量子块;位于右边的第一分量子块为最后一个编码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为竖直二叉树划分,那么,位于上方的第一分量子块为第一个编码或第一个扫描的第一分量子块;位于下方的第一分量子块为最后一个编码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为水平扩展四叉树划分,那么,位于最上方的第一分量子块为第一个编码或第一个扫描的第一分量子块;位于最下方的第一分量子块为最后一个编码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为竖直扩展四叉树划分,那么,位于最左边的第一分量子块为第一个编码或第一个扫描的第一分量子块;位于最右边的第一分量子块为最后一个编码或最后一个扫描的第一分量子块。
可选的,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
换句话说,N个第一分量子块中有一个第一分量子块的预测模式为帧内预测模式,那么N个第一分量子块的预测模式均为帧内预测模式;N个第一分量子块中有一个第一分量子块的预测模式为非帧内预测模式,那么N个第一分量子块中的预测模式均为非帧内预测模式。
例如,N等于4,N个第一分量子块的预测模式分别为平面模式(planar mode)、直流模式(direct current mode)、角度模式(angular mode)、平面模式。再例如,N等于4,N个第一分量子块的预测模式分别为直接模式(direct mode)、跳过模式(skip)、帧间预测模式、帧间预测模式。
可选的,将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
换句话说,N个第一分量子块的预测模式相同。例如,N等于4,N个第一分量子块的预测模式均为平面模式(planar mode)。再例如,N等于4,N个第一分量子块的预测模式均为帧间预测模式。
905,视频编码器将所述N个第一分量子块的编码信息以及所述第二分量块的编码信息发送至视频解码器。相应的,视频解码器获取所述N个第一分量子块的编码信息以及所述第二分量块的编码信息。
906,视频解码器获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块。
907a,视频解码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
或者907b,视频解码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
或者,907c,视频解码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则仅允许采用所述当前节点的划分模式划分所述当前节点的第一分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
方法907a、907b、907c为可选步骤。视频解码器可以根据码流中的信息确定第二分量不划分。
图9所示的方法906、907a、907b、907c的详细描述参考图8所示的方法801、802a、802b、802c的描述,相应的,方法906、907a、907b、907c不再详细赘述。
908,视频解码器根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数。
换句话说,按照当前节点的划分模式,将第一分量块划分为多个第一分量子块。其中, N的取值取决于所述第一分量块的划分方式。
视频解码器可以获取携带有该当前节点的划分模式的解码信息,根据该解码信息划分该第一分量块。例如,从码流中获取当前节点的解码信息,通过解析解码信息的语法元素,获取所述当前节点的划分模式,将该第一分量块划分为N个第一分量子块。
可选的,划分所述第一分量块的划分模式可以有:四叉树划分、二叉树划分、扩展四叉树划分等划分方式。
例如,所述第一分量块1的宽为W1、高为H1,划分所述第一分量块1的方式为四叉树划分,那么N为4,所述第一分量块1被划分为4个大小相同的第一分量子块,每个第一分量子块的宽为W1/2,高为H1/2。
再例如,所述第一分量2的宽为W2、高为H2,划分所述第一分量块2的方式为水平二叉树划分,那么N为2,所述第一分量块2被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W2,高均为H2/2。
再例如,所述第一分量块3的宽为W3、高为H3,划分所述第一分量块3的方式为竖直二叉树划分,那么N为2,所述第一分量块3被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W3/2,高均为H3。
再例如,所述第一分量块4的宽为W4、高为H4,划分所述第一分量块4的方式为水平扩展四叉树划分,那么N为4,所述第一分量块4被划分为位于上、中左、中右、下区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W4、W4/2、W4/2、W4,高分别为H4/4、H4/2、H4/2、H4/4。
再例如,所述第一分量块5的宽为W5、高为H5,划分所述第一分量块5的方式为竖直扩展四叉树划分,那么N为4,所述第一分量块5被划分为位于左、中上、中下、右区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W5/4、W5/2、W5/2、W5/4,高分别为H5、H5/2、H5/2、H5。
909,视频解码器获取所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述第二分量块的解码信息,N1为大于等于1的正整数。
换句话说,第一分量块被划分为多个第一分量子块而第二分量块不被进一步划分;为了对多个第一分量子块和第二分量块进行解码,对该多个第一分量子块中的至少一个第一分量子块进行解码,获取该至少一个第一分量子块的解码信息;对该第二分量块进行解码,获取该第二分量块的解码信息。
例如,N个第一分量子块与当前节点的N个叶节点一一对应,第二分量块不被进一步划分,将N个第一分量子块和第二分量块作为解码单元进行解码,获取N个第一分量子块的解码信息以及第二分量块的解码信息。
解码信息包括预测模式、变换系数等信息,用于视频解码器根据编(解)码信息进行预测、反量化、反变换、环路滤波等解码处理。其中,预测模式信息包括:帧内预测模式或非帧内预测模式;帧内预测模式可以为平面模式(planar mode)、直流模式(direct current mode)、角度模式(angular mode)之一;非帧内预测模式可以是直接模式(direct mode)、跳过模式(skip)、帧间预测模式等;非帧内预测模式下解码信息还可以包括运动信息,例如预测方向(前向、后向或双向)、参考帧索引(reference index)、运动矢量(motion vector)等信息。
可选的,从码流中获取N个第一分量子块的解码信息和第二分量块的解码信息。
可选的,所述方法还包括:根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息。
换句话说,根据当前节点的N1个叶节点的N1个第一分量子块的解码信息,获取第二分量块的解码信息。也就是说,根据N个第一分量子块中的至少一个第一分量子块的解码信息,获取第二分量块的解码信息。第二分量块的解码信息与N1个第一分量子块的解码信息有对应关系。
例如,将N1个第一分量子块的解码信息拷贝至第二分量块的解码信息。再例如,在码流中写入与第二分量对应的N1个第一分量子块的标识信息。再例如,将N1个第一分量子块的预测模式作为第二分量块的预测模式。再例如,判断N1个第一分量子块的解码信息的内容是否满足预设条件,若满足,则从码流中获取第二分量块的解码信息;若不满足,则将N1个第一分量子块的解码信息作为第二分量块的解码信息。
将不同解码单元的相同信息关联起来,可以减少从码流中获取的数据量,减少传输数据量,提高传输效率、编解码效率。
可选的,根据所述N1个第一分量子块的解码信息,确定从码流中获取所述第二分量块的解码信息或将所述N1个第一分量子块的解码信息作为所述第二分量块的解码信息。
换句话说,该N1个第一分量子块的解码信息可以指示获取第二分量块的解码信息的位置,该位置包括码流、N1个第一分量子块的解码信息等。
例如,在所述N1个第一分量子块的解码信息中包含信息A的情况下,根据该N1个第一分量子块的解码信息,确定从码流中获取该第二分量块的解码信息;在所述N1个第一分量子块的解码信息中不包含信息A的情况下,根据该N1个第一分量子块的解码信息,确定将所述N1个第一分量子块的解码信息作为所述第二分量块的解码信息,如将所述N1个第一分量子块的解码信息中的信息B作为所述第二分量块的解码信息。
可选的,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息,包括:根据所述N1个第一分量子块中的目标第一分量子块的预测模式,获取所述第二分量块的预测模式,所述目标第一分量子块的解码信息包括所述目标第一分量子块的预测模式。
换句话说,根据目标第一分量子块的预测模式,获取第二分量块的预测模式。也就是说,第二分量块的预测模式与目标第一分量子块的预测模式有对应关系。
例如,将N1个第一分量子块的预测模式拷贝至第二分量块的预测模式。再例如,在码流中写入与第二分量对应的N1个第一分量子块的标识信息。再例如,将N1个第一分量子块的预测模式作为第二分量块的预测模式。再例如,判断N1个第一分量子块的预测模式是否满足预设条件,若满足,则从码流中获取第二分量块的预测模式;若不满足,则将N1个第一分量子块的预测模式作为第二分量块的预测模式。
可选的,所述获取所述第二分量块的预测模式,包括:从码流中获取所述第二分量块的预测模式;或者获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
换句话说,可以根据目标第一分量块的预测模式,确定是从码流中获取第二分量块的预测模式,或者第二分量块的预测模式可以和目标第一分量子块的预测模式相同。
例如,目标第一分量子块的预测模式为帧内预测模式,那么第二分量块的预测模式也为帧内预测模式。也就是说,视频解码器可以依据一个第一分量子块预测模式,确定不需要解析的预测模式,减少了解析的复杂度。
再例如,目标第一分量子块的预测模式为非帧内预测模式,那么第二分量块的预测模式也为非帧内预测模式。也就是说,视频解码器可以依据一个第一分量子块预测模式,确定不需要解析的预测模式,减少了解析的复杂度。
再例如,在目标第一分量子块的预测模式为帧内预测模式的情况下,确定从码流中获取第二分量块的预测模式。
再例如,在目标第一分量子块的预测模式为非帧内预测模式的情况下,确定从码流中获取第二分量块的预测模式。
可选的,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的解码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,获取所述第二分量块的运动信息,所述目标第一分量子块的解码信息进一步包括所述目标第一分量子块的运动信息。
换句话说,第二分量块的预测模式为非帧内预测模式的情况下,将目标第一分量子块的运动信息作为第二分量块的运动信息。也就是说,无需从码流中获取第二分量子块的运动信息,可以直接从目标第一分量子块的运动信息中获取。
例如,将目标第一分量子块的解码信息中的预测方向(前向、后向或双向)、参考帧索引(reference index)、运动矢量(motion vector)等信息作为第二分量块的运动信息。
可选的,目标第一分量子块可以是N1个第一分量块中的任一第一分量子块。
也就是说,目标第一分量子块可以不是固定的某一类型的第一分量子块。
可选的,视频解码器可以从码流中获取将该目标第一分量子块的标识信息。
可选的,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
换句话说,在当前节点的范围内,根据目标位置信息,确定一个第一分量子块作为目标第一分量子块。
该目标位置信息可以是预先配置的,例如,视频编码器和视频解码器预先约定了当前节点中最右下角位置所在的第一分量子块为目标第一分量子块。此时,视频编码器可以不将第一分量子块的目标位置信息写入码流中。该目标位置信息还可以是显示配置的,例如视频编码器将目标位置信息写入码流中,视频解码器根据码流中的目标位置信息,确定目标第一分量子块。
目标位置信息可以是上文中出现的“目标第一分量子块的标识信息”,还可以是绝对坐标、相对坐标、像素值等位于某个第一分量子块内的位置信息,还可以是解码顺序、扫描顺序等。目标位置信息的形式可以是任意的,本申请对此不作限定。
可选的,所述目标位置信息的坐标为(x
0+W/2,y
0+H/2),其中,所述当前节点最左上角位置的坐标为(x
0,y
0),所述当前节点的高为H,所述当前节点的宽为W。
换句话说,将当前节点的中心位置或中心像素点所在的第一分量子块作为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为四叉树划分,那么位于右下角的第一分量子块 为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为水平二叉树划分,那么位于下方的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为竖直二叉树划分,那么位于右边的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为水平扩展四叉树划分,那么位于中部右边的第一分量子块为所述目标第一分量子块。
在一个示例中,当前节点的划分模式为竖直扩展四叉树划分,那么位于中部下方的第一分量子块为所述目标第一分量子块。
可选的,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据解码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
换句话说,视频编码器将第一个解码、第一个扫描、最后一个解码或最后一个扫描的第一分量子块作为目标第一分量子块。视频编码器和视频解码器可以预先约定目标第一分量子块为第一个解码、第一个扫描、最后一个解码或最后一个扫描的4个第一分量子块中的一个,也可以用比特值0、1或(0,0)、(1,0)、(0,1)、(1,1)等形式约定第一个解码、第一个扫描、最后一个解码或最后一个扫描的4个第一分量子块中的一个为目标第一分量子块。
在一个示例中,当前节点的划分模式为四叉树划分,那么,位于左上角的第一分量子块为第一个解码或第一个扫描的第一分量子块;位于右下角的第一分量子块为最后一个解码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为水平二叉树划分,那么,位于左边的第一分量子块为第一个解码或第一个扫描的第一分量子块;位于右边的第一分量子块为最后一个解码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为竖直二叉树划分,那么,位于上方的第一分量子块为第一个解码或第一个扫描的第一分量子块;位于下方的第一分量子块为最后一个解码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为水平扩展四叉树划分,那么,位于最上方的第一分量子块为第一个解码或第一个扫描的第一分量子块;位于最下方的第一分量子块为最后一个解码或最后一个扫描的第一分量子块。
在一个示例中,当前节点的划分模式为竖直扩展四叉树划分,那么,位于最左边的第一分量子块为第一个解码或第一个扫描的第一分量子块;位于最右边的第一分量子块为最后一个解码或最后一个扫描的第一分量子块。
可选的,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
换句话说,N个第一分量子块中有一个第一分量子块的预测模式为帧内预测模式,那么N个第一分量子块的预测模式均为帧内预测模式;N个第一分量子块中有一个第一分量子块的预测模式为非帧内预测模式,那么N个第一分量子块中的预测模式均为非帧内预测模式。
例如,N等于4,N个第一分量子块的预测模式分别为平面模式(planar mode)、直流模式(direct current mode)、角度模式(angular mode)、平面模式。再例如,N等于4,N个第一分量子块的预测模式分别为直接模式(direct mode)、跳过模式(skip)、帧间预测模式、帧间预测模式。
可选的,将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
换句话说,N个第一分量子块的预测模式相同。例如,N等于4,N个第一分量子块的预测模式均为平面模式(planar mode)。再例如,N等于4,N个第一分量子块的预测模式均为帧间预测模式。
910,视频解码器根据所述N1个第一分量子块的解码信息以及所述第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块。
视频解码器根据N1个第一分量子块的解码信息获取N1个第一分量子块的重建块;视频解码器根据第二分量块的解码信息获取所述第二分量块的重建块。
图10为本申请实施例提供的一种视频编解码的示意性流程图。
1001,视频编码器获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块。
可选的,所述方法还包括,将所述当前节点的划分模式写入码流中。
1002,视频编码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
图10所示的方法1001、1002的详细描述参考图8所示的方法801、802的描述,相应的,方法1001、1002不再详细赘述。
1003,视频编码器根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数。
换句话说,按照当前节点的划分模式,将第一分量块划分为多个第一分量子块。其中,N的取值取决于所述第一分量块的划分方式。
可选的,划分所述第一分量块的划分模式可以有:四叉树划分、二叉树划分、扩展四叉树划分等划分方式。
例如,所述第一分量块1的宽为W1、高为H1,划分所述第一分量块1的方式为四叉树划分,那么N为4,所述第一分量块1被划分为4个大小相同的第一分量子块,每个第一分量子块的宽为W1/2,高为H1/2。
再例如,所述第一分量2的宽为W2、高为H2,划分所述第一分量块2的方式为水平二叉树划分,那么N为2,所述第一分量块2被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W2,高均为H2/2。
再例如,所述第一分量块3的宽为W3、高为H3,划分所述第一分量块3的方式为竖直二叉树划分,那么N为2,所述第一分量块3被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W3/2,高均为H3。
再例如,所述第一分量块4的宽为W4、高为H4,划分所述第一分量块4的方式为水平扩展四叉树划分,那么N为4,所述第一分量块4被划分为位于上、中左、中右、下区 域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W4、W4/2、W4/2、W4,高分别为H4/4、H4/2、H4/2、H4/4。
再例如,所述第一分量块5的宽为W5、高为H5,划分所述第一分量块5的方式为竖直扩展四叉树划分,那么N为4,所述第一分量块5被划分为位于左、中上、中下、右区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W5/4、W5/2、W5/2、W5/4,高分别为H5、H5/2、H5/2、H5。
1004,视频编码器将所述第二分量块划分为M个第二分量子块,M为大于等于2的正整数。
换句话说,第一分量块的划分方式与第二分量块的划分方式不同。
例如,在第一分量块的划分方式为四叉树划分的情况下,第二分量块的划分方式为水平二叉树划分或竖直二叉树划分。
1005,视频编码器获取所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
换句话说,第一分量块被划分为多个第一分量子块且第二分量块被划分为多个第二分量子块;为了对多个第一分量子块和多个第二分量子块进行编码,对该多个第一分量子块进行编码获取该多个第一分量子块的编码信息,对该多个第二分量子块进行编码获取该多个第二分量子块的编码信息。
例如,将N个第一分量子块和M个第二分量子块作为编码单元进行编码,获取N个第一分量子块的编码信息以及M个第二分量子块的编码信息。
获取N个第一分量子块的编码信息的方式可以参照现有的编码过程。例如,根据第一分量子块的残差、第一分量子块周围的像素块的信息等获取第一分量子块的编码信息。类似的,获取M个第二分量子块的编码信息的方式可以参照现有的编码过程,例如,获取第二分量子块的编码信息可以根据第二分量子块的残差、第二分量子块周围的像素块的信息获取第二分量子块的编码信息。
1006,视频编码器将所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息发送至视频解码器。相应的,视频解码器接收N个第一分量子块的解码信息以及所述M个第二分量子块的解码信息。
1007,视频解码器获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块。
1008,视频解码器判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
方法1008为可选步骤。视频解码器可以根据码流中的信息确定第二分量不采用当前节点的划分模式划分。
图10所示的方法1007、1008的详细描述参考图8所示的方法801、802的描述,相应的,方法1007、1008不再详细赘述。
1009,视频解码器根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数。
换句话说,按照当前节点的划分模式,将第一分量块划分为多个第一分量子块。其中, N的取值取决于所述第一分量块的划分方式。
视频解码器可以获取携带有该当前节点的划分模式的解码信息,根据该解码信息划分该第一分量块。例如,从码流中获取当前节点的解码信息,通过解析解码信息的语法元素,获取所述当前节点的划分模式,将该第一分量块划分为N个第一分量子块。
可选的,划分所述第一分量块的划分模式可以有:四叉树划分、二叉树划分、扩展四叉树划分等划分方式。
例如,所述第一分量块1的宽为W1、高为H1,划分所述第一分量块1的方式为四叉树划分,那么N为4,所述第一分量块1被划分为4个大小相同的第一分量子块,每个第一分量子块的宽为W1/2,高为H1/2。
再例如,所述第一分量2的宽为W2、高为H2,划分所述第一分量块2的方式为水平二叉树划分,那么N为2,所述第一分量块2被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W2,高均为H2/2。
再例如,所述第一分量块3的宽为W3、高为H3,划分所述第一分量块3的方式为竖直二叉树划分,那么N为2,所述第一分量块3被划分为2个大小相同的第一分量子块,每个第一分量子块的宽均为W3/2,高均为H3。
再例如,所述第一分量块4的宽为W4、高为H4,划分所述第一分量块4的方式为水平扩展四叉树划分,那么N为4,所述第一分量块4被划分为位于上、中左、中右、下区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W4、W4/2、W4/2、W4,高分别为H4/4、H4/2、H4/2、H4/4。
再例如,所述第一分量块5的宽为W5、高为H5,划分所述第一分量块5的方式为竖直扩展四叉树划分,那么N为4,所述第一分量块5被划分为位于左、中上、中下、右区域的4个大小相同的第一分量子块,这4个第一分量子块的宽分别为W5/4、W5/2、W5/2、W5/4,高分别为H5、H5/2、H5/2、H5。
1010,视频解码器将所述第二分量块划分为M个第二分量子块,M为大于等于2的正整数。
换句话说,第一分量块的划分方式与第二分量块的划分方式不同。
例如,在第一分量块的划分方式为四叉树划分的情况下,第二分量块的划分方式为水平二叉树划分或竖直二叉树划分。
1011,视频解码器获取所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,N2为大于等于1的正整数。
换句话说,第一分量块被划分为多个第一分量子块且第二分量块被划分为多个第二分量子块;为了对多个第一分量子块和多个第二分量子块进行解码,获取该多个第一分量子块的解码信息以及该多个第二分量子块的解码信息。
例如,将N个第一分量子块和M个第二分量子块作为解码单元进行解码,获取N个第一分量子块的解码信息以及M个第二分量子块的解码信息。
1012,视频解码器根据所述N2个第一分量子块的解码信息以及所述至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块。
视频解码器根据N2个第一分量子块的解码信息获取N2个第一分量子块的重建块;视频解码器根据M个第二分量子块中的至少一个第二分量子块的解码信息获取所述至少一个第二分量子块的重建块。
上文结合附图对本申请实施例的应用于视频解码中的块划分方法、应用于视频编码中的块划分方法、视频解码方法和视频编码方法进行了详细的介绍,下面结合图11、图12、图13、图14分别对本申请实施例的视频解码器和视频编码器进行介绍,应理解,图11所示的视频解码器能够执行本申请实施例的应用于视频解码中的块划分方法中的各个步骤,图12所示的视频编码器能够执行本申请实施例的应用于视频编码中的块划分方法中的各个步骤,图13所示的视频解码器能够执行本申请实施例的视频解码方法中的各个步骤,图14所示的视频编码器能够执行本申请实施例的视频编码方法中的各个步骤。为了避免不必要的重复,下面在介绍本申请实施例的视频编码器和视频解码器时适当省略重复的描述。
图11是本申请实施例的视频解码器的示意性框图。图11所示的视频解码器1100包括:
图像解码单元1101,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;
划分单元1102,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
上述图像解码单元1101可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。例如,上述图像解码单元1101可以由图3中的解码器30中的预测处理单元、逆量化单元和逆变换处理单元和熵解码单元组成。
图12是本申请实施例的视频编码器的示意性框图。图12所示的视频编码器1200包括:
图像编码单元1201,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;
划分单元1202,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
上述图像编码单元1201可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。例如,上述图像编码单元1201可以图2中的编码器12中的预测处理单元、变换处理单元、量化单元和熵编码单元组成。
图13是本申请实施例的视频解码器的示意性框图。图13所示的视频解码器1300包括:
图像解码单元1301,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;
划分单元1302,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸;
所述划分单元1302还用于根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数;
在所述第二分量块不划分的情况下,所述图像解码单元1301还用于获取所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述第二分量块的解码信息,N1为大于等于1的正整数;所述图像解码单元1301还用于根据所述N1个第一分量子块的解码信息以及所述第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块;
在所述第二分量块不采用所述当前节点的划分模式划分的情况下,所述划分单元1302还用于将所述第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像解码单元1301还用于获取所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,N2为大于等于1的正整数;所述图像解码单元1301还用于根据所述N2个第一分量子块的解码信息以及所述至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块。
上述图像解码单元1301可以由熵解码单元、预测单元、反变换单元和反量化单元中的一种或者多种单元组成。例如,上述图像解码单元1301可以由图3中的解码器30中的预测处理单元、逆量化单元和逆变换处理单元和熵解码单元组成。
图14是本申请实施例的视频编码器的示意性框图。图14所示的视频编码器1400包括:
图像编码单元1401,用于获取当前节点的划分模式,所述划分模式用于划分所述当前节点的第一分量块;
划分单元1402,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸;
所述划分单元1402还用于根据所述划分模式,将所述第一分量块划分为N个第一分量子块,N为大于等于2的正整数;
在所述第二分量块不划分的情况下,所述图像编码单元1401还用于获取所述N个第一分量子块的编码信息以及所述第二分量块的编码信息;
在所述第二分量块不采用所述当前节点的划分模式划分的情况下,所述划分单元1402还用于将所述第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像编码单元1401还用于获取所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
上述图像编码单元1401可以由预测单元、变换单元、量化单元和熵编码单元中的一种或者多种单元组成。例如,上述图像编码单元1401可以图2中的编码器12中的预测处理单元、变换处理单元、量化单元和熵编码单元组成。
在一个或一个以上实例中,所描述功能可以硬件、软件、固件或其任何组合来实施。如果在软件中实施,那么所述功能可作为一或多个指令或代码在计算机可读介质上存储或传输,并且由基于硬件的处理单元执行。计算机可读介质可以包含计算机可读存储介质,其对应于例如数据存储介质或通信介质的有形介质,通信介质例如根据通信协议包含有助 于将计算机程序从一处传送到另一处的任何介质。以此方式,计算机可读介质通常可对应于(1)非暂时性的有形计算机可读存储介质,或(2)通信介质,例如,信号或载波。数据存储介质可以是可由一或多个计算机或一或多个处理器存取以检索用于实施本发明中描述的技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可包含计算机可读介质。
借助于实例而非限制,此类计算机可读存储介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储设备、闪存,或可用以存储呈指令或数据结构形式的所需程序代码且可由计算机存取的任何其它介质。并且,任何连接可适当地称为计算机可读介质。举例来说,如果使用同轴电缆、光纤缆线、双绞线、数字订户线(digital subscriber line,DSL)或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输指令,则同轴电缆、光纤缆线、双绞线、DSL或例如红外线、无线电及微波等无线技术包含在介质的定义中。但是,应理解,所述计算机可读存储介质及数据存储介质并不包括连接、载波、信号或其它暂时性介质,而是实际上针对于非暂时性有形存储介质。如本文中所使用,磁盘和光盘包含压缩光盘(compact disc,CD)、激光光盘、光学光盘、数字多功能光盘(digital versatile disc,DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘用激光以光学方式再现数据。以上各项的组合也应包含于计算机可读介质的范围内。
指令可以由一或多个处理器执行,所述一或多个处理器例如是一或多个数字信号处理器(digital signal processor,DSP)、通用微处理器、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑阵列(field programmable logic arrays,FPGA)或其它等效的集成或离散逻辑电路。因此,如本文中所使用的术语“处理器”可指代上述结构或适用于实施本文中所描述的技术的任何其它结构中的任一者。另外,在一些方面中,本文中所描述的功能性可在用于编码和解码的专用硬件和/或软件模块内提供,或并入在合成编解码器中。并且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可以在包含无线手持机、集成电路(integrated circuit,IC)或IC集合(例如,芯片组)的多种设备或装置中实施。本申请描述各种组件、模块或单元是为了强调用于执行所揭示的技术的设备的功能方面,但未必需要通过不同硬件单元实现。确切地,如上文所描述,各种单元可结合合适的软件和/或固件组合在编解码器硬件单元中,或由互操作硬件单元的集合来提供,所述硬件单元包含如上文所描述的一或多个处理器。
Claims (68)
- 一种应用于视频解码中的块划分方法,其特征在于,包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 一种应用于视频解码中的块划分方法,其特征在于,包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 根据权利要求1或2所述的方法,其特征在于,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种解码方法,其特征在于,包括:获取当前节点的划分模式;根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,根据所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述当前节点的第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块,N1为大于等于1的正整数;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;根据所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块,N2为大于等于1的正整数。
- 根据权利要求5所述的方法,其特征在于,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求5或6所述的方法,其特征在于,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述方法还包括:从码流中获取所述第二分量块的预测模式。
- 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息。
- 根据权利要求8所述的方法,其特征在于,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息,包括:根据所述N1个第一分量子块中的目标第一分量子块的预测模式,获取所述第二分量块的预测模式,所述目标第一分量子块的解码信息包括所述目标第一分量子块的预测模式。
- 根据权利要求9所述的方法,其特征在于,所述获取所述第二分量块的预测模式,包括:从码流中获取所述第二分量块的预测模式;或者,获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
- 根据权利要求9或10所述的方法,其特征在于,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的解码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,获取所述第二分量块的运动信息,所述目标第一分量子块的解码信息进一步包括所述目标第一分量子块的运动信息。
- 根据权利要求9至11中任一项所述的方法,其特征在于,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
- 根据权利要求12所述的方法,其特征在于,所述目标位置信息的坐标为(x 0+W/2,y 0+H/2),其中,所述当前节点最左上角位置的坐标为(x 0,y 0),所述当前节点的高为H,所述当前节点的宽为W。
- 根据权利要求9至11中任一项所述的方法,其特征在于,在所述获取所述第二分量块的解码信息之前,所述方法还包括:根据解码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
- 根据权利要求5至14中任一项所述的方法,其特征在于,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
- 根据权利要求5至15中任一项所述的方法,其特征在于,所述方法还包括:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
- 根据权利要求5至16中任一项所述的方法,其特征在于,所述方法还包括:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;根据所述N个第一分量子块的解码信息以及所述N个第二分量子块的解码信息,获取所述N个第一分量子块的重建块以及所述N个第二分量子块的重建块。
- 根据权利要求5至17中任一项所述的方法,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种应用于视频编码中的块划分方法,其特征在于,包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 一种应用于视频编码中的块划分方法,其特征在于,包括:获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 根据权利要求19或20所述的方法,其特征在于,所述判断所述第一分量块是否满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求19至21中任一项所述的方法,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种编码方法,其特征在于,包括:获取当前节点的划分模式;根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,生成所述N个第一分量子块的编码信息以及所述当前节点的第二分量块的编码信息;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;生成所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
- 根据权利要求23所述的方法,其特征在于,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈 值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求23或24所述的方法,其特征在于,所述生成所述第二分量块的编码信息,包括:根据所述N个第一分量子块中的N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,N1为大于等于1的正整数。
- 根据权利要求25所述的方法,其特征在于,所述第二分量块的编码信息包括所述第二分量块的预测模式;所述根据所述N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,包括:获取所述N1个第一分量子块中的目标第一分量子块的预测模式作为所述第二分量块的预测模式,所述目标第一分量子块的编码信息包括所述目标第一分量子块的预测模式。
- 根据权利要求26所述的方法,其特征在于,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的编码信息进一步包括所述第二分量块的运动信息,所述方法还包括:根据所述目标第一分量子块的运动信息,生成所述第二分量块的运动信息,所述目标第一分量子块的编码信息进一步包括所述目标第一分量子块的运动信息。
- 根据权利要求26或27所述的方法,其特征在于,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据目标位置信息,确定所述目标第一分量子块。
- 根据权利要求28所述的方法,其特征在于,所述目标位置信息的坐标为(x 0+W/2,y 0+H/2),其中,所述当前节点最左上角位置的坐标为(x 0,y 0),所述当前节点的高为H,所述当前节点的宽为W。
- 根据权利要求26或27所述的方法,其特征在于,在所述生成所述第二分量块的编码信息之前,所述方法还包括:根据编码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
- 根据权利要求23至30中任一项所述的方法,其特征在于,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
- 根据权利要求23至31中任一项所述的方法,其特征在于,所述方法还包括:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
- 根据权利要求23至32中任一项所述的方法,其特征在于,所述方法还包括:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;生成所述N个第一分量子块的编码信息以及所述N个第二分量子块的编码信息。
- 根据权利要求23至33中任一项所述的方法,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种视频解码器,其特征在于,包括:图像解码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 一种视频解码器,其特征在于,包括:图像解码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 根据权利要求35或36所述的视频解码器,其特征在于,所述划分单元具体用于下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求35至37中任一项所述的视频解码器,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种视频解码器,其特征在于,包括:图像解码单元,用于获取当前节点的划分模式;划分单元,用于根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述图像解码单元还用于:根据所述N个第一分量子块中的N1个第一分量子块的解码信息以及所述当前节点的第二分量块的解码信息,获取所述N1个第一分量子块以及所述第二分量块的重建块,N1为大于等于1的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述划分单元还用于:采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像解码单元还用于:根据所述N个第一分量子块中的N2个第一分量子块的解码信息以及所述M个第二分量子块中的至少一个第二分量子块的解码信息,获取所述N2个第一分量子块以及所述至少一个第二分量子块的重建块,N2为大于等于1的正整数。
- 根据权利要求39所述的视频解码器,其特征在于,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求39或40所述的视频解码器,其特征在于,所述第二分量块的解码信息包括所述第二分量块的预测模式;所述图像解码单元还用于:从码流中获取所述第二分量块的预测模式。
- 根据权利要求39或40所述的视频解码器,其特征在于,所述图像解码单元还用于:根据所述N1个第一分量子块的解码信息,获取所述第二分量块的解码信息。
- 根据权利要求42所述的视频解码器,其特征在于,所述第二分量块的解码信息 包括所述第二分量块的预测模式;所述图像解码单元具体用于:根据所述N1个第一分量子块中的目标第一分量子块的预测模式,获取所述第二分量块的预测模式,所述目标第一分量子块的解码信息包括所述目标第一分量子块的预测模式。
- 根据权利要求43所述的视频解码器,其特征在于,所述图像解码单元具体用于:从码流中获取所述第二分量块的预测模式;或者,获取所述目标第一分量子块的预测模式作为所述第二分量块的预测模式。
- 根据权利要求43或44所述的视频解码器,其特征在于,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的解码信息进一步包括所述第二分量块的运动信息;所述图像解码单元还用于:根据所述目标第一分量子块的运动信息,获取所述第二分量块的运动信息,所述目标第一分量子块的解码信息进一步包括所述目标第一分量子块的运动信息。
- 根据权利要求43至45中任一项所述的视频解码器,其特征在于,在所述获取所述第二分量块的解码信息之前,所述图像解码单元还用于:根据目标位置信息,确定所述目标第一分量子块。
- 根据权利要求46所述的视频解码器,其特征在于,所述目标位置信息的坐标为(x 0+W/2,y 0+H/2),其中,所述当前节点最左上角位置的坐标为(x 0,y 0),所述当前节点的高为H,所述当前节点的宽为W。
- 根据权利要求43至45中任一项所述的视频解码器,其特征在于,在所述获取所述第二分量块的解码信息之前,所述图像解码单元还用于:根据解码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
- 根据权利要求39至48中任一项所述的视频解码器,其特征在于,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
- 根据权利要求39至49中任一项所述的视频解码器,其特征在于,所述图像解码单元还用于:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
- 根据权利要求39至50中任一项所述的视频解码器,其特征在于,所述划分单元还用于:响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;所述图像解码单元还用于:根据所述N个第一分量子块的解码信息以及所述N个第二分量子块的解码信息,获取所述N个第一分量子块的重建块以及所述N个第二分量子块的重建块。
- 根据权利要求39至51中任一项所述的视频解码器,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种视频编码器,其特征在于,包括:图像编码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若不满足所述预设条件,则采用所述当前节点的划分模式划分所述当前节点的第二分量块,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 一种视频编码器,其特征在于,包括:图像编码单元,用于获取当前节点的划分模式,所述划分模式用于指示如何对所述当前节点进行划分得到所述当前节点的第一分量块;划分单元,用于判断所述第一分量块是否满足与所述划分模式对应的预设条件,若满足所述预设条件,则确定所述当前节点的第二分量块不划分或不采用所述当前节点的划分模式划分,其中所述第一分量块的尺寸大于所述第二分量块的尺寸。
- 根据权利要求53或54所述的视频编码器,其特征在于,所述划分单元具体用于下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,判断所述第一分量块是否满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求53至55中任一项所述的视频编码器,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
- 一种视频编码器,其特征在于,包括:图像编码单元,用于获取当前节点的划分模式;划分单元,用于根据所述当前节点的划分模式,将所述当前节点的第一分量块划分为N个第一分量子块,N为大于等于2的正整数;响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述当前节点的第二分量块的编码信息;或者,响应于所述第一分量块满足与所述划分模式对应的预设条件的第一判断结果,所述划分单元还用于,采用与所述当前节点的划分模式不同的划分模式将所述当前节点的第二分量块划分为M个第二分量子块,M为大于等于2的正整数;所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述M个第二分量子块的编码信息。
- 根据权利要求57所述的视频编码器,其特征在于,所述所述第一分量块满足与所述划分模式对应的预设条件,包括下述至少一种:在所述当前节点的划分模式为四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第一预设阈值和/或所述第一分量块的高小于或等于第二预设阈值;在所述当前节点的划分模式为竖直二叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第三预设阈值;在所述当前节点的划分模式为水平二叉树划分的情况下,所述第一分量块满足:所述第一分量块的高小于或等于第四预设阈值;在所述当前节点的划分模式为水平扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第五预设阈值和/或所述第一分量块的高小于或等于第六预设阈值;在所述当前节点的划分模式为竖直扩展四叉树划分的情况下,所述第一分量块满足:所述第一分量块的宽小于或等于第七预设阈值和/或所述第一分量块的高小于或等于第八预设阈值。
- 根据权利要求57或58所述的视频编码器,其特征在于,所述图像编码单元具体用于:根据所述N个第一分量子块中的N1个第一分量子块的编码信息,生成所述第二分量块的编码信息,N1为大于等于1的正整数。
- 根据权利要求59所述的视频编码器,其特征在于,所述第二分量块的编码信息包括所述第二分量块的预测模式;所述图像编码单元具体用于:获取所述N1个第一分量子块中的目标第一分量子块的预测模式作为所述第二分量块的预测模式,所述目标第一分量子块的编码信息包括所述目标第一分量子块的预测模式。
- 根据权利要求60所述的视频编码器,其特征在于,在所述第二分量块的预测模式为非帧内预测模式的情况下,所述第二分量块的编码信息进一步包括所述第二分量块的运动信息;所述图像编码单元还用于:根据所述目标第一分量子块的运动信息,生成所述第二分量块的运动信息,所述目标第一分量子块的编码信息进一步包括所述目标第一分量子块的运动信息。
- 根据权利要求60或61所述的视频编码器,其特征在于,在所述生成所述第二分量块的编码信息之前,所述图像编码单元还用于:根据目标位置信息,确定所述目标第一分量子块。
- 根据权利要求62所述的视频编码器,其特征在于,所述目标位置信息的坐标为(x 0+W/2,y 0+H/2),其中,所述当前节点最左上角位置的坐标为(x 0,y 0),所述当前节点的高为H,所述当前节点的宽为W。
- 根据权利要求60或61所述的视频编码器,其特征在于,在所述生成所述第二分 量块的编码信息之前,所述图像编码单元还用于:根据编码顺序或扫描顺序,将所述N个第一分量子块中第一个或最后一个的第一分量子块作为所述目标第一分量子块。
- 根据权利要求57至64中任一项所述的视频编码器,其特征在于,所述N个第一分量子块中的每个第一分量子块的预测模式均为帧内预测模式或非帧内预测模式。
- 根据权利要求57至65中任一项所述的视频编码器,其特征在于,所述图像编码单元用于:将与所述N个第一分量子块中的任一第一分量子块的预测模式,作为所述N个第一分量子块中除所述任一第一分量子块以外的其他第一分量子块的预测模式。
- 根据权利要求57至66中任一项所述的视频编码器,其特征在于,所述划分单元还用于,响应于所述第一分量块不满足与所述划分模式对应的预设条件的第二判断结果,采用所述当前节点的划分模式将所述第二分量块划分为N个第二分量子块;所述图像编码单元还用于,生成所述N个第一分量子块的编码信息以及所述N个第二分量子块的编码信息。
- 根据权利要求57至67中任一项所述的视频编码器,其特征在于,所述第一分量块为所述当前节点的亮度分量块,所述第二分量块为当前节点的色度分量块;或者,所述第一分量块为所述当前节点的色度分量块,所述第二分量块为当前节点的亮度分量块。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811537890.4 | 2018-12-15 | ||
CN201811537890 | 2018-12-15 | ||
CN201910246994.8 | 2019-03-29 | ||
CN201910246994.8A CN111327894B (zh) | 2018-12-15 | 2019-03-29 | 块划分方法、视频编解码方法、视频编解码器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020119742A1 true WO2020119742A1 (zh) | 2020-06-18 |
Family
ID=71075340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/124719 WO2020119742A1 (zh) | 2018-12-15 | 2019-12-12 | 块划分方法、视频编解码方法、视频编解码器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020119742A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102685487A (zh) * | 2011-03-16 | 2012-09-19 | 华为技术有限公司 | 图像编解码方法、图像编解码设备及网络系统 |
CN102970526A (zh) * | 2011-08-31 | 2013-03-13 | 华为技术有限公司 | 一种获得变换块尺寸的方法和模块 |
CN103096090A (zh) * | 2013-02-20 | 2013-05-08 | 广州柯维新数码科技有限公司 | 一种用于视频压缩中的编码块划分的方法 |
CN103517070A (zh) * | 2013-07-19 | 2014-01-15 | 清华大学 | 图像的编解码方法和装置 |
WO2014137268A1 (en) * | 2013-03-07 | 2014-09-12 | Telefonaktiebolaget L M Ericsson (Publ) | Video transcoding |
CN104363450A (zh) * | 2014-11-27 | 2015-02-18 | 北京奇艺世纪科技有限公司 | 一种帧内编码模式决策方法及装置 |
CN104902276A (zh) * | 2015-05-15 | 2015-09-09 | 腾讯科技(北京)有限公司 | 变换单元划分方法及装置 |
CN107566848A (zh) * | 2016-06-30 | 2018-01-09 | 华为技术有限公司 | 编解码的方法及装置 |
-
2019
- 2019-12-12 WO PCT/CN2019/124719 patent/WO2020119742A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102685487A (zh) * | 2011-03-16 | 2012-09-19 | 华为技术有限公司 | 图像编解码方法、图像编解码设备及网络系统 |
CN102970526A (zh) * | 2011-08-31 | 2013-03-13 | 华为技术有限公司 | 一种获得变换块尺寸的方法和模块 |
CN103096090A (zh) * | 2013-02-20 | 2013-05-08 | 广州柯维新数码科技有限公司 | 一种用于视频压缩中的编码块划分的方法 |
WO2014137268A1 (en) * | 2013-03-07 | 2014-09-12 | Telefonaktiebolaget L M Ericsson (Publ) | Video transcoding |
CN103517070A (zh) * | 2013-07-19 | 2014-01-15 | 清华大学 | 图像的编解码方法和装置 |
CN104363450A (zh) * | 2014-11-27 | 2015-02-18 | 北京奇艺世纪科技有限公司 | 一种帧内编码模式决策方法及装置 |
CN104902276A (zh) * | 2015-05-15 | 2015-09-09 | 腾讯科技(北京)有限公司 | 变换单元划分方法及装置 |
CN107566848A (zh) * | 2016-06-30 | 2018-01-09 | 华为技术有限公司 | 编解码的方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111327904B (zh) | 图像重建方法和装置 | |
WO2020125595A1 (zh) | 视频译码器及相应方法 | |
WO2020114394A1 (zh) | 视频编解码方法、视频编码器和视频解码器 | |
US11849109B2 (en) | Image prediction method, apparatus, and system, device, and storage medium | |
WO2020135467A1 (zh) | 帧间预测方法、装置以及相应的编码器和解码器 | |
CN111355959A (zh) | 一种图像块划分方法及装置 | |
WO2020224476A1 (zh) | 一种图像划分方法、装置及设备 | |
WO2020147514A1 (zh) | 视频编码器、视频解码器及相应方法 | |
WO2020143684A1 (zh) | 图像预测方法、装置、设备、系统及存储介质 | |
WO2020259353A1 (zh) | 语法元素的熵编码/解码方法、装置以及编解码器 | |
CN111327894B (zh) | 块划分方法、视频编解码方法、视频编解码器 | |
WO2020114508A1 (zh) | 视频编解码方法及装置 | |
WO2020135371A1 (zh) | 一种标志位的上下文建模方法及装置 | |
WO2020114393A1 (zh) | 变换方法、反变换方法以及视频编码器和视频解码器 | |
WO2020134817A1 (zh) | 预测模式确定方法、装置及编码设备和解码设备 | |
WO2020135615A1 (zh) | 视频图像解码方法及装置 | |
WO2020114509A1 (zh) | 视频图像解码、编码方法及装置 | |
CN111669583A (zh) | 图像预测方法、装置、设备、系统及存储介质 | |
WO2020119742A1 (zh) | 块划分方法、视频编解码方法、视频编解码器 | |
WO2020125761A1 (zh) | 一种图像块划分方法及装置 | |
WO2020108168A1 (zh) | 一种视频图像预测方法及装置 | |
WO2020135409A1 (zh) | 视频解码方法、装置及解码设备 | |
WO2020135368A1 (zh) | 一种帧间预测的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19894742 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19894742 Country of ref document: EP Kind code of ref document: A1 |