WO2020143294A1 - 大面积纳米光刻系统及其方法 - Google Patents

大面积纳米光刻系统及其方法 Download PDF

Info

Publication number
WO2020143294A1
WO2020143294A1 PCT/CN2019/116321 CN2019116321W WO2020143294A1 WO 2020143294 A1 WO2020143294 A1 WO 2020143294A1 CN 2019116321 W CN2019116321 W CN 2019116321W WO 2020143294 A1 WO2020143294 A1 WO 2020143294A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece table
error
interference
control system
area
Prior art date
Application number
PCT/CN2019/116321
Other languages
English (en)
French (fr)
Inventor
浦东林
陈林森
朱鹏飞
朱鸣
邵仁锦
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2020143294A1 publication Critical patent/WO2020143294A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically

Definitions

  • the invention relates to the technical field of interference lithography, in particular to a large-area nanolithography system and a method thereof.
  • Nanostructures generally refer to tiny structures with a size below 100 nm, and more broadly can refer to structures with a size below 500 nm.
  • the current technical methods are as follows:
  • Electron beam direct writing It is a nano-patterning processing technology with high resolution and high flexibility.
  • the controllable graphical preparation of nanostructures is preferred to use electron beam direct writing lithography.
  • the current two major Electron beam direct writing equipment high-resolution Gaussian beam direct writing equipment, requires several hours of preparation time in the area of millimeters, and the actual material/device application ability is poor; high energy deformable beam direct writing equipment is currently mainly used in semiconductors
  • the preparation of the reticle, the format is 6-8 inches, it takes several hours when preparing the microstructure pattern, and the direct writing of the nanostructure is still a problem for the deformed beam.
  • Semiconductor lithography technology At present, semiconductor lithography has reached 10nm-level technology nodes on silicon wafers through Double Pattern, PSM, photoresist nonlinearity and other technologies, but its high resolution is reflected in the characteristics of key layers, which is different from nanometers. The dense structural characteristics of materials/devices cannot be well matched.
  • the semiconductor masking technology requires a reticle as a graphic template. Graphic design and data processing and other supporting technologies are optimized for semiconductors and only support 8-12 inches.
  • Holographic interference lithography technology It is a convenient method to achieve regular micro-nano structures.
  • Traditional holographic interference uses optical platforms, lasers, low aberration collimating optical systems and other conditions to form a large area on one or more cross-exposures on photosensitive materials.
  • Micro-nano structures which are usually periodic or chirped structures, have low designability, and can be used in certain fields such as DFB lasers.
  • Digital holographic interference technology is a type of interference lithography technology that combines computer graphics processing and precision control. Domestic Suzhou University and Su Daweige have accumulated a series of key technologies in this field.
  • the United States MIT has also developed scanning interference lithography technology, digital holographic interference
  • the technology tries to break through the problems of single pattern and limited size of the traditional holographic interference, but the stitching accuracy between light fields brought by its digital technology is the key issue of its limited application.
  • nano-processing technologies such as focused ion beam (FIB), probe direct writing (SPL), etc.
  • FIB focused ion beam
  • SPL probe direct writing
  • self-assembly technology which uses a number of atoms, ions, molecules
  • the present invention provides a large-area nanolithography system, which can realize high-speed splicing between interference light fields and achieve the purpose of high-precision preparation of large-area nanostructures.
  • a large-area nanolithography system includes a workpiece table, a position feedback system, an interference optical system and a control system.
  • the workpiece table is provided with a lithography substrate to be etched; the position feedback system is used to measure and calculate the error of the workpiece table;
  • the interference optical system is used to generate an interference exposure field and perform interference lithography on the lithography substrate.
  • the interference optical system includes diffractive optics; the control system is electrically connected to the workpiece stage, the position feedback system and the interference optical system; The control system controls the movement of the diffractive optics to compensate for the error of the workpiece table.
  • the errors of the workpiece table include coordinate positioning errors, heading angle errors, yaw angle errors, and pitch angle errors.
  • the control system controls the diffractive optics to translate along the vertical optical axis to compensate for the workpiece Stage coordinate positioning error; the control system controls the diffractive optics to rotate about the optical axis to compensate for the heading error of the workpiece stage; the control system controls the diffractive optics to move along the optical axis to compensate for the workpiece Table yaw angle and/or pitch angle error.
  • the above-mentioned position feedback system includes a light source, an image acquisition module, a reference grating and a two-dimensional grating, the reference grating is set on the workpiece stage, the reference grating and the lithography substrate are fixedly set, the two The dimension grating is arranged above the reference grating, and the illumination of the light source forms a recognizable moiré pattern between the two-dimensional grating and the reference grating.
  • the image acquisition module recognizes the moiré pattern and changes the moiré pattern Perform quantitative analysis to calculate the error of the workpiece table.
  • the above position feedback system further includes a plurality of first lenses and a first beam splitter
  • the image acquisition module is disposed above the two-dimensional grating
  • the plurality of first lenses is disposed on the image acquisition module
  • the first beam splitter is disposed between the plurality of first lenses
  • the light source is disposed on one side of the first beam splitter
  • the light emitted by the light source is directed toward the first beam splitter
  • the two-dimensional grating and the reference grating is disposed.
  • the above-mentioned position feedback system includes a first laser, a first interferometric module, a second interferometric module, and a plurality of semi-transparent mirrors.
  • the first laser passes through the plurality of semi-transparent mirrors
  • a laser source is provided for the first interferometric measurement module and the second interferometric measurement module, the first interferometric measurement module and the second interferometric measurement module are disposed on the peripheral side of the workpiece table, the control system and the first laser,
  • the first interferometric module and the second interferometric module are electrically connected, and the control system calculates the coordinate positioning error, heading angle error, yaw angle error, and pitch angle error of the workpiece table according to the differential interferometric optical path; define this
  • the width direction of the workpiece table is the first direction
  • the length direction of the workpiece table is defined as the second direction
  • the first direction is perpendicular to the second direction
  • the first interferometric measurement module emits a measurement optical
  • the interference optical system further includes a second laser, a second lens, a third lens, a second beam splitter, and a miniature objective lens, the second lens and the third lens form a 4F imaging system, the diffraction
  • the optical device is disposed between the second lens and the third lens, and the laser light emitted by the second laser sequentially passes through the second lens, the diffractive optical device, the third lens, the second beam splitter, and the miniature objective lens, And an interference exposure field is formed on the lithographic substrate.
  • the interference optical system further includes a beam shaper and a detection optical path, the beam shaper is disposed between the second laser and the second lens, and the detection optical path is disposed on the second beam splitter On the transmitted light path.
  • the present invention also provides a large-area nanolithography method that utilizes the above-described large-area nanolithography system.
  • the method includes:
  • the interference optical system for performing interference lithography on the lithographic substrate using the interference optical system, the interference optical system including diffractive optics;
  • a control system is provided, which is electrically connected to the workpiece table, the position feedback system and the interference optical system, respectively; the control system is used to control the motion of the diffractive optical device to compensate for the error of the workpiece table.
  • the errors of the workpiece table include coordinate positioning errors, heading angle errors, yaw angle errors, and pitch angle errors.
  • the control system is used to control the translation of the diffractive optical device along the direction perpendicular to the optical axis. To compensate the coordinate positioning error of the workpiece table; use the control system to control the diffractive optics to rotate around the optical axis to compensate for the heading angle error of the workpiece table; use the control system to control the diffractive optics to move along the optical axis , To compensate the yaw angle and/or pitch angle error of the workpiece table.
  • a reference grating is provided on the workpiece table, and the reference grating and the lithographic substrate are fixedly arranged, and a two-dimensional grating is provided above the reference grating;
  • the image acquisition module is used to identify the moiré pattern, and the change of the moiré pattern is quantitatively analyzed to calculate the coordinate positioning error, heading angle error, yaw angle error and pitch angle error of the workpiece table.
  • a first interferometric module and a second interferometric module are provided on the peripheral side of the workpiece table, and the coordinate positioning error and heading angle error of the workpiece table are calculated by the control system according to the differential interferometric optical path , Yaw angle error and pitch angle error.
  • the workpiece table of the large-area nanolithography system of the present invention is provided with a lithography substrate to be etched; a position feedback system is used to measure and calculate the error of the workpiece table; an interference optical system is used to generate an interference exposure field for lithography
  • the substrate performs interference lithography.
  • the interference optical system includes diffractive optical devices; the control system is electrically connected to the workpiece table, position feedback system and interference optical system; the control system controls the movement of the diffractive optical device to compensate for the error of the workpiece table .
  • the large-area nano-lithography system of the present invention can realize high-speed splicing between interference light fields and achieve the purpose of high-precision preparation of large-area nanostructures.
  • FIG. 1 is a schematic structural diagram of a large-area nanolithography system according to a first embodiment of the present invention.
  • FIGS. 2a and 2c are schematic diagrams of the workpiece table of the present invention when an error occurs during the movement process.
  • 3a to 3c are schematic diagrams of different adjustment states of the diffractive optical device of the present invention.
  • 4a to 4c are schematic diagrams of different errors that occur during the lithography process of the present invention.
  • 5a to 5c are schematic diagrams for detecting errors through moiré patterns.
  • FIG. 6 is a schematic structural diagram of a position feedback system according to a second embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a large-area nanolithography system according to a first embodiment of the present invention.
  • the large-area nanolithography system 100 includes a workpiece stage 10, a position feedback system 20, an interference optical system 30 and a control system 40.
  • FIGS. 2a and 2c are schematic diagrams of the workpiece table of the present invention when an error occurs during the movement process.
  • the worktable 10 is provided with a lithographic substrate 11 to be etched, and the worktable 10 can be moved in two directions to satisfy the splicing function of nanostructures.
  • the width direction of the workpiece table 10 is defined as the first direction X
  • the length direction of the workpiece table 10 is defined as the second direction Y
  • the height direction of the workpiece table 10 is defined as the third direction Z, wherein the first direction X is perpendicular to the second direction Y
  • the third direction Z is perpendicular to the first direction X and the second direction Y.
  • the two-axis workpiece table 10 is selected, that is, the workpiece table 10 can move along the first direction X and the second direction Y.
  • the errors include coordinate positioning, heading angle (Yaw), yaw angle (Roll), pitch angle (Pitch), and orthogonal errors, among which the workpiece table 10
  • the coordinates (as shown in Figure 2a) will cause the phase difference error of the figure
  • the heading angle of the workpiece table 10 (as shown in Figure 2b) will cause the angle error of the graphic stitching
  • the yaw and pitch angle errors of the workpiece table 10 (As shown in Figure 2c) will cause periodic errors of graphics, these errors will affect the stitching accuracy of graphics.
  • the position feedback system 20 includes a light source 21, an image acquisition module 22, a reference grating 23 a, a two-dimensional grating 23 b, a plurality of first lenses 24 and a first beam splitter 25.
  • the reference grating 23a is disposed on the workpiece table 10, and the reference grating 23a and the lithography substrate 11 are fixedly disposed, that is, the relative position of the reference grating 23a and the lithography substrate 11 does not change during the movement of the workpiece table 10.
  • the two-dimensional grating 23b is provided above the reference grating 23a, and the distance between the two-dimensional grating 23b and the reference grating 23a is less than 1 mm.
  • Illumination of the light source 21 forms a recognizable moiré pattern between the two-dimensional grating 23b and the reference grating 23a
  • the image acquisition module 22 recognizes the moiré pattern, and quantitatively analyzes the moiré pattern to calculate the coordinate positioning error and heading of the workpiece table 10 Angle error, yaw angle error and pitch angle error.
  • the image acquisition module 22 is disposed above the two-dimensional grating 23b, a plurality of first lenses 24 is disposed between the image acquisition module 22 and the two-dimensional grating 23b, the first dichroic mirror 25 is disposed between the plurality of first lenses 24, the light source 21 is disposed on one side of the first beam splitter 25, and the light emitted by the light source 21 passes through the first beam splitter 25 to the two-dimensional grating 23b and the reference grating 23a.
  • the reference grating 23a and the two-dimensional grating 23b need not reach the nanometer scale.
  • a grating with a period of 20 ⁇ m can be subdivided by the interpolation of the Moiré pattern to achieve detection resolution below 10 nm. rate.
  • the change in the two-dimensional moiré pattern formed between the reference grating 23a and the two-dimensional grating 23b corresponds to the change in the relative position between the two gratings.
  • the relative translation of the reference grating 23a and the two-dimensional grating 23b will cause the moiré pattern Corresponding translation;
  • the parallelism between the reference grating 23a and the two-dimensional grating 23b changes, and the period of the moiré fringe changes;
  • the angle between the reference grating 23a and the two-dimensional grating 23b changes, and the moiré pattern rotates.
  • the change in the Moiré pattern is a combination of the above situations, and the image acquisition module 22 needs to decompose and calculate the change to determine the change data of the coordinates, heading angle, yaw angle, and pitch angle.
  • the Moiré principle is the basis of the data calculation method. Its specific values are related to parameters such as the grating, the optical system, and the image acquisition module 22. The specific calculation method is not described in the present invention.
  • the interference optical system 30 includes a second laser 31, a beam shaper 32, a second lens 33, a third lens 34, a diffractive optics 35 (Diffractive Optical Elements; DOE), a second beam splitter 36, a miniature Objective lens 37 and detection light path 38.
  • the beam shaper 32 is disposed between the second laser 31 and the second lens 33, and the laser light emitted by the second laser 31 passes through the beam shaper 32 to form a flat-top beam.
  • the second lens 33 and the third lens 34 form a 4F imaging system
  • the diffractive optical device 35 is disposed between the second lens 33 and the third lens 34
  • the detection optical path 38 is disposed on the transmission optical path of the second beam splitter 36
  • the second laser The laser light emitted by 31 passes through the beam shaper 32, the second lens 33, the diffractive optics 35, the third lens 34, the second beam splitter 36, and the miniature objective lens 37 in sequence, and forms an interference exposure field on the lithographic substrate 11.
  • the structured light field from the modulation end of the diffractive optical device 35 to the surface of the lithographic substrate 11 is a miniaturization interference process.
  • the scaling ratio is preferably 10 to 200 times, and the translation adjustment ratio of the output surface is 1/(scaling multiple*2)
  • the ratio of the orientation angle adjustment is 1, and the ratio of the period adjustment is determined by the parameters of the 4F system composed of the second lens 33 and the third lens 34 and the scaling ratio.
  • the second laser 31 may be a gas laser, a solid-state laser, an excimer laser, for example, for a structure above 100 nm, a near ultraviolet band (NUV) helium-cadmium laser (325 nm), a YAG solid-state laser (355 nm), an excimer laser may be selected (308nm), etc.; for microstructures below 100nm, a shorter wavelength deep ultraviolet (DUV) light source 21, such as a 266nm solid-state laser, an excimer laser (248nm, 197nm, 157nm), etc., is required.
  • NUV near ultraviolet band
  • DUV deep ultraviolet
  • the diffractive optical device 35 has a multi-degree-of-freedom movement function, specifically moving along the optical axis 101 in the direction, rotating around the optical axis 101, and translating perpendicular to the optical axis 101, the diffractive optical device 35 moves axially, and interferes with the optical field
  • Periodic changes are formed on the surface of the lithographic substrate 11, for example, the diffractive optical device 35 rotates around the optical axis 101, and the orientation angle of the interference optical field changes; the diffractive optical device 35 translates perpendicularly to the optical axis 101, and the structure distribution in the interference optical field also Pan accordingly.
  • 3a to 3c are schematic diagrams of different adjustment states of the diffractive optical device of the present invention.
  • 4a to 4c are schematic diagrams of different errors that occur during the lithography process of the present invention.
  • 5a to 5c are schematic diagrams for detecting errors through moiré patterns.
  • the control system 40 is electrically connected to the workpiece table 10, the position feedback system 20 and the interference optical system 30, specifically, the control system 40 is respectively connected to the workpiece table 10, the light source 21, the image acquisition module 22,
  • the diffractive optical device 35 and the detection optical path 38 are electrically connected.
  • the control system 40 controls the motion of the diffractive optics 35 to compensate for the error of the workpiece table 10.
  • FIG. 4a is the last image that has been lithographically completed, and Figure 2 is the next image with coordinate positioning errors.
  • Fig. 5a shows coordinate positioning error detected by Moiré pattern.
  • Fig. 3a shows that the control system 40 controls the translation of the diffractive optics 35 along the direction perpendicular to the optical axis 101 to compensate for the coordinate positioning error of the workpiece table 10.
  • Figure 1 in Figure 4b is the last image that has been lithographically completed.
  • Figure 2 is the next image with heading angle error.
  • Figure 5b shows the heading angle error detected by the Moiré pattern.
  • Figure 3b shows The control system 40 controls the diffractive optics 35 to rotate around the optical axis 101 to compensate for the heading angle error of the workpiece table 10; Figure 1 in FIG.
  • FIG. 4c is the last lithographic image, and Figure 2 is the next horizontal An image of the swing angle and/or pitch angle error.
  • FIG. 5c shows the yaw angle and/or pitch angle error detected by the Moiré pattern.
  • FIG. 3c shows the control system 40 controlling the diffractive optics 35 along the optical axis 101. In the direction to compensate for the yaw angle and/or pitch angle error of the workpiece table 10.
  • the control system 40 is, for example, a computer, but it is not limited thereto.
  • the large-area nanolithography system 100 of the present invention calculates the position information of the workpiece table 10 through the position feedback system 20, and forms a closed-loop control by adjusting the diffractive optics 35 of the interference optical system 30.
  • the error between the current position and the theoretical position of the lithographic substrate 11 can meet the required coordinate measurement accuracy range of 0.1nm ⁇ 300nm, preferably 1nm ⁇ 100nm; the measurement accuracy of the heading angle, yaw angle and pitch angle is 0.1 ⁇ 10arcsec ; Its changing resolution and accuracy can meet the requirements of compensating the above errors.
  • the diffractive optical device 35 adjusts the steps of compensation and exposure to achieve high-speed splicing between the interference light fields, achieving the purpose of high-precision preparation of large-area nanostructures, and can effectively solve the light field splicing problem of digital holographic interference lithography.
  • FIG. 6 is a schematic structural diagram of a position feedback system according to a second embodiment of the present invention. As shown in FIG. 6, the structure of the large-area nanolithography system 100 of this embodiment is substantially the same as the structure of the large-area nanolithography system 100 of the first embodiment. The difference lies in the structure of the position feedback system 20.
  • the position feedback system 20 includes a first laser 26, a first interferometric module 27, a second interferometric module 28 and a plurality of semi-transparent mirrors 29.
  • the first laser 26 provides a laser source for the first interferometric module 27 and the second interferometric module 28 through a plurality of semi-transparent mirrors 29.
  • the first interferometric module 27 and the second interferometric module 28 are disposed on the workpiece table 10
  • the control system 40 is electrically connected to the first laser 26, the first interferometric module 27, and the second interferometric module 28, respectively.
  • the control system 40 calculates the coordinate positioning error and heading angle of the workpiece table 10 according to the differential interferometric optical path Error, yaw angle error and pitch angle error.
  • the first interferometric measuring module 27 emits a measuring optical path along the first direction X
  • the second interferometric measuring module 28 emits a measuring optical path along the second direction Y.
  • the present invention also relates to a large-area nanolithography method that utilizes the above-described large-area nanolithography system 100.
  • the method includes:
  • a workpiece stage 10 is provided, and a lithographic substrate 11 to be etched is provided on the workpiece stage 10.
  • Step 2 Provide a position feedback system 20, and use the position feedback system 20 to calculate the error of the workpiece table 10.
  • the position feedback system 20 includes a light source 21, an image acquisition module 22, a reference grating 23a, a two-dimensional grating 23b, a plurality of first lenses 24, and a first beam splitter.
  • the reference grating 23a is provided on the work stage 10, and the reference grating 23a and the lithography substrate 11 are fixedly arranged, that is, the relative positions of the reference grating 23a and the lithography substrate 11 do not change during the movement of the work stage 10.
  • the two-dimensional grating 23b is provided above the reference grating 23a, and the distance between the two-dimensional grating 23b and the reference grating 23a is less than 1 mm.
  • Illumination of the light source 21 forms a recognizable moiré pattern between the two-dimensional grating 23b and the reference grating 23a
  • the image acquisition module 22 recognizes the moiré pattern, and quantitatively analyzes the moiré pattern to calculate the error of the workpiece table 10, where the error includes Coordinate positioning error, heading angle error, yaw angle error and pitch angle error.
  • the image acquisition module 22 is disposed above the two-dimensional grating 23b, a plurality of first lenses 24 is disposed between the image acquisition module 22 and the two-dimensional grating 23b, the first dichroic mirror 25 is disposed between the plurality of first lenses 24, the light source 21 is disposed on one side of the first beam splitter 25, and the light emitted by the light source 21 passes through the first beam splitter 25 to the two-dimensional grating 23b and the reference grating 23a.
  • the position feedback system 20 includes a first laser 26, a first interferometric module 27, a second interferometric module 28, and multiple semi-transparent mirrors 29.
  • the first laser 26 provides a laser source for the first interferometric module 27 and the second interferometric module 28 through a plurality of semi-transparent mirrors 29.
  • the first interferometric module 27 and the second interferometric module 28 are disposed on the workpiece table 10
  • the control system 40 is electrically connected to the first laser 26, the first interferometric module 27, and the second interferometric module 28, respectively.
  • the control system 40 calculates the coordinates, heading angle, and transverse of the workpiece table 10 according to the differential interferometric optical path Swing angle and pitch angle.
  • the first interferometric measuring module 27 emits a measuring optical path along the first direction X
  • the second interferometric measuring module 28 emits a measuring optical path along the second direction Y.
  • an interference optical system 30 is provided, and interference lithography is performed on the lithographic substrate 11 by using the interference optical system 30.
  • the interference optical system 30 includes a diffractive optical device 35 (Diffractive Optical Elements; DOE).
  • the interference optical system 30 further includes a second laser 31, a beam shaper 32, a second lens 33, a third lens 34, a second beam splitter 36, a miniature objective 37, and a detection optical path 38.
  • the beam shaper 32 is disposed between the second laser 31 and the second lens 33, and the laser light emitted by the second laser 31 passes through the beam shaper 32 to form a flat-top beam.
  • the second lens 33 and the third lens 34 form a 4F imaging system
  • the diffractive optical device 35 is disposed between the second lens 33 and the third lens 34
  • the detection optical path 38 is disposed on the transmission optical path of the second beam splitter 36
  • the second laser The laser light emitted by 31 passes through the beam shaper 32, the second lens 33, the diffractive optics 35, the third lens 34, the second beam splitter 36, and the miniature objective lens 37 in sequence, and forms an interference exposure field on the lithographic substrate 11.
  • step 4 a control system 40 is provided, which is electrically connected to the workpiece table 10, the position feedback system 20 and the interference optical system 30 respectively; the control system 40 is used to control the movement of the diffractive optical device 35 to compensate for the error of the workpiece table 10.
  • control system 40 is used to control the translation of the diffractive optics 35 along the direction perpendicular to the optical axis 101 to compensate for the coordinate positioning error of the workpiece table 10; the control system 40 is used to control the diffractive optics 35 to rotate about the optical axis 101 to Compensate the heading angle error of the workpiece table 10; use the control system 40 to control the diffractive optics 35 to move in the direction of the optical axis 101 to compensate for the yaw angle and/or pitch angle error of the workpiece table 10.
  • the workpiece table 10 of the large-area nanolithography system 100 of the present invention is provided with a lithography substrate 11 to be etched; the position feedback system 20 is used to measure and calculate the error of the workpiece table 10; and the interference optical system 30 is used to generate interference exposure Field, to perform interference lithography on the lithographic substrate 11, the interference optical system 30 includes diffractive optics 35; the control system 40 is electrically connected to the workpiece stage 10, position feedback system 20 and interference optical system 30, respectively; the control system 40 controls diffraction The optical device 35 moves to compensate for the error of the workpiece table 10.
  • the large-area nanolithography system 100 of the present invention can realize high-speed splicing between interference light fields, and achieve the purpose of high-precision preparation of large-area nanostructures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种大面积纳米光刻系统(100)及一种大面积纳米光刻方法。大面积纳米光刻系统(100)包括工件台(10)、位置反馈系统(20)、干涉光学系统(30)和控制系统(40),工件台(10)上设有待光刻的光刻基片(11);位置反馈系统(20)用于测量和计算工件台(10)的误差;干涉光学系统(30)用于产生干涉曝光场,对光刻基片(11)进行干涉光刻,干涉光学系统(30)包括衍射光学器件(35);控制系统(40)分别与工件台(10)、位置反馈系统(20)和干涉光学系统(30)电性连接;控制系统(40)控制衍射光学器件(35)的运动,用以补偿工件台(10)的误差。大面积纳米光刻系统(100)能达到大面积纳米结构高精度制备。

Description

大面积纳米光刻系统及其方法
本申请要求了申请日为2019年01月10日,申请号为201910024456.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及干涉光刻技术领域,特别涉及一种大面积纳米光刻系统及其方法。
背景技术
纳米结构(nanostructure)通常是指尺寸在100nm以下的微小结构,更加广泛的可以指尺度在500nm以下的结构。纳米结构的图形化制备,当前技术手段主要如下:
电子束直写:是具有高分辨率,高灵活特性的纳米图形化加工技术,通常在科学研究情况下,纳米结构的可控图形化制备首选采用电子束直写光刻,然而,当前两大类电子束直写设备,高分辨率的高斯束直写设备,在毫米幅面的面积下需要数小时的制备时间,实际材料/器件应用能力差;高能变形束直写设备,当前主要应用于半导体掩模版制备,幅面在6-8英寸,在制备微米结构图形时需要数小时,纳米结构直写对于变形束依然是难题。
半导体套刻技术:当前半导体光刻通过Double Pattern、PSM、光刻胶非线性等技术,在硅片上已经达到10nm级别的技术节点,然而其高分辨率体现在关键层的特征上,与纳米材料/器件的密集结构特征需求不能很好匹配,另外,半导体套刻技术需要掩模版作为图形模板,图形设计和数据处理等配套技术都为半导体做优化,且仅支持8-12英寸幅面。
全息干涉光刻技术:是实现规则微纳米结构的便捷手段,传统全息干涉利用光学平台、激光器、低像差准直光学系统等条件,在光敏材料上一次或 多次交叉曝光形成较大面积的微纳结构,通常结构为周期性或者啁啾结构,结构可设计性低,可以在DFB激光器等某些特定的领域应用。数字全息干涉技术是结合计算机图形处理、精密控制的一类干涉光刻技术,国内苏州大学、苏大维格在该领域积累了一系列关键技术,美国MIT也开发了扫描干涉光刻技术,数字全息干涉技术力图突破传统全息干涉的图形单一、幅面受限的问题,但是其数字技术带来的光场之间的拼接精度是其应用受限的关键问题。
其他纳米加工技术,如聚焦离子束(FIB)、探针直写(SPL)等,加工效率低,只能在微小区域进行图形化加工;如自组装技术,利用若干原子、离子、分子之间弱作用力,同时自发的发生关联并集合在一起形成一个紧密而又有序的整体,局限是结构的可设计性差,不能成为通用型的纳米加工技术。
综上,对于大面积纳米结构的高精度图形化制备还没有适用性较好的解决方案,数字化全息干涉光刻技术,如能有效解决结构的微区调控和高精度拼接问题,将有极大的应用价值。
发明内容
有鉴于此,本发明提供一种大面积纳米光刻系统,能实现干涉光场之间的高进度拼接,达到大面积纳米结构高精度制备的目的。
一种大面积纳米光刻系统,包括工件台、位置反馈系统、干涉光学系统和控制系统,工件台上设有待光刻的光刻基片;位置反馈系统用于测量和计算工件台的误差;干涉光学系统用于产生干涉曝光场,对光刻基片进行干涉光刻,干涉光学系统包括衍射光学器件;控制系统分别与该工件台、该位置反馈系统和该干涉光学系统电性连接;该控制系统控制该衍射光学器件的运动,用以补偿该工件台的误差。
在本发明的实施例中,上述工件台的误差包括坐标定位误差、航向角误差、横摆角误差和俯仰角误差,该控制系统控制该衍射光学器件沿垂直光轴 方向平移,用以补偿工件台坐标定位误差;该控制系统控制该衍射光学器件绕着光轴旋转,用以补偿该工件台航向角误差;该控制系统控制该衍射光学器件沿着光轴的方向移动,用以补偿该工件台横摆角和/或俯仰角误差。
在本发明的实施例中,上述位置反馈系统包括光源、图像获取模块、基准光栅和二维光栅,该基准光栅设置在该工件台上,该基准光栅与该光刻基片固定设置,该二维光栅设置在该基准光栅的上方,该光源照明使该二维光栅与该基准光栅之间形成可识别的莫尔图案,该图像获取模块识别该莫尔图案,并将该莫尔图案的变化进行量化分析计算出该工件台的误差。
在本发明的实施例中,上述位置反馈系统还包括多块第一透镜和第一分光镜,该图像获取模块设置于该二维光栅的上方,该多块第一透镜设置于该图像获取模块与该二维光栅之间,该第一分光镜设置与该多块第一透镜之间,该光源设置于该第一分光镜的一侧,该光源发出的光通过该第一分光镜射向该二维光栅和该基准光栅。
在本发明的实施例中,上述位置反馈系统包括第一激光器、第一干涉测量模块、第二干涉测量模块和多块半透半反射镜,该第一激光器通过该多块半透半反射镜为该第一干涉测量模块和该第二干涉测量模块提供激光源,该第一干涉测量模块和该第二干涉测量模块设置于该工件台的周侧,该控制系统分别与该第一激光器、该第一干涉测量模块和该第二干涉测量模块电性连接,该控制系统根据差分干涉测量光路计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差;定义该工件台的宽度方向为第一方向,定义该工件台的长度方向为第二方向,该第一方向垂直于该第二方向;该第一干涉测量模块沿着第一方向发出测量光路,该第二干涉测量模块沿着第二方向发出测量光路。
在本发明的实施例中,上述干涉光学系统还包括第二激光器、第二透镜、第三透镜、第二分光镜和微缩物镜,该第二透镜与该第三透镜形成4F成像系统,该衍射光学器件设置于该第二透镜与该第三透镜之间,该第二激光器发 出的激光依次经过该第二透镜、该衍射光学器件、该第三透镜、该第二分光镜和该微缩物镜,并在该光刻基片上形成干涉曝光场。
在本发明的实施例中,上述干涉光学系统还包括光束整形器和检测光路,该光束整形器设置于该第二激光器与该第二透镜之间,该检测光路设置于该第二分光镜的透射光路上。
本发明还提供一种大面积纳米光刻方法,该大面积纳米光刻方法利用上述的大面积纳米光刻系统,该方法包括:
提供工件台,并在该工件台上设置待光刻的光刻基片;
提供位置反馈系统,利用该位置反馈系统测量和计算该工件台的误差;
提供干涉光学系统,利用该干涉光学系统对该光刻基片进行干涉光刻,该干涉光学系统包括衍射光学器件;以及
提供控制系统,该控制系统分别与该工件台、该位置反馈系统和该干涉光学系统电性连接;利用该控制系统控制该衍射光学器件的运动,用以补偿该工件台的误差。
在本发明的实施例中,该工件台的误差包括坐标定位误差、航向角误差、横摆角误差和俯仰角误差,利用该控制系统控制该衍射光学器件沿着垂直光轴的方向平移,用以补偿该工件台坐标定位误差;利用该控制系统控制该衍射光学器件绕着光轴旋转,用以补偿该工件台航向角误差;利用该控制系统控制该衍射光学器件沿着光轴的方向移动,用以补偿该工件台横摆角和/或俯仰角误差。
在本发明的实施例中,在该工件台上设置基准光栅,并使该基准光栅与该光刻基片固定设置,在该基准光栅的上方设置二维光栅;
利用光源照射使该二维光栅与该基准光栅之间形成可识别的莫尔图案;
利用图像获取模块识别该莫尔图案,并将该莫尔图案的变化进行量化分析计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。
在本发明的实施例中,在该工件台的周侧设置第一干涉测量模块和第二 干涉测量模块,利用该控制系统根据差分干涉测量光路计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。
本发明的的大面积纳米光刻系统的工件台上设有待光刻的光刻基片;位置反馈系统用于测量和计算工件台的误差;干涉光学系统用于产生干涉曝光场,对光刻基片进行干涉光刻,干涉光学系统包括衍射光学器件;控制系统分别与工件台、位置反馈系统和干涉光学系统电性连接;控制系统控制衍射光学器件的运动,用以补偿该工件台的误差。本发明大面积纳米光刻系统能实现干涉光场之间的高进度拼接,达到大面积纳米结构高精度制备的目的。
附图说明
图1是本发明第一实施例的大面积纳米光刻系统的结构示意图。
图2a和图2c是本发明的工件台在移动过程出现误差时的示意图。
图3a至图3c是本发明的衍射光学器件不同调整状态的示意图。
图4a至图4c是本发明的光刻过程中出现的不同误差的示意图。
图5a至图5c是通过莫尔图形检测误差的示意图。
图6是本发明第二实施例的位置反馈系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地描述。
第一实施例
图1是本发明第一实施例的大面积纳米光刻系统的结构示意图。如图1所示,大面积纳米光刻系统100包括工件台10、位置反馈系统20、干涉光学系统30和控制系统40。
图2a和图2c是本发明的工件台在移动过程出现误差时的示意图。如图2a至图2c所示,工件台10上设有待光刻的光刻基片11,工件台10可沿着两个方向移动,用以满足纳米结构的拼接功能。定义工件台10的宽度方向为 第一方向X,定义工件台10的长度方向为第二方向Y,定义工件台10的高度方向为第三方向Z,其中第一方向X垂直于第二方向Y,第三方向Z垂直于第一方向X和第二方向Y。本发明选用两轴工件台10,即工件台10可沿着第一方向X和第二方向Y移动。当工件台10在移动过程中,工件台10会出现误差,该误差包括坐标定位、航向角(Yaw)、横摆角(Roll)、俯仰角(Pitch)和正交等误差,其中工件台10的坐标(如图2a所示)会造成图形的位相差误差,工件台10的航向角(如图2b所示)会造成图形拼接的角度误差,工件台10的横摆角和俯仰角误差(如图2c所示)会造成图形的周期误差,这些误差均会影响图形的拼接精度。
如图1所示,位置反馈系统20包括光源21、图像获取模块22、基准光栅23a、二维光栅23b、多块第一透镜24和第一分光镜25。基准光栅23a设置在工件台10上,基准光栅23a与光刻基片11固定设置,也就是说,在工件台10移动的过程中基准光栅23a与光刻基片11的相对位置不发生改变。二维光栅23b设置在基准光栅23a的上方,二维光栅23b与基准光栅23a之间的间距小于1mm。光源21照明使二维光栅23b与基准光栅23a之间形成可识别的莫尔图案,图像获取模块22识别莫尔图案,并将莫尔图案进行量化分析计算出工件台10的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。图像获取模块22设置于二维光栅23b的上方,多块第一透镜24设置于图像获取模块22与二维光栅23b之间,第一分光镜25设置与多块第一透镜24之间,光源21设置于第一分光镜25的一侧,光源21发出的光通过第一分光镜25射向二维光栅23b和基准光栅23a。
在本实施例中,为了达到纳米尺度的检测分辨率,基准光栅23a与二维光栅23b无需达到纳米尺度,优选周期为20μm的光栅,通过莫尔图形的插值细分,可以达到10nm以下检测分辨率。
基准光栅23a与二维光栅23b之间形成的二维莫尔图形变化与两光栅之间的相对位置变化具有对应关系,例如,基准光栅23a与二维光栅23b相对 平移,会使莫尔图形产生相应的平移;基准光栅23a与二维光栅23b之间的平行度变化,莫尔条纹的周期会产生变化;基准光栅23a与二维光栅23b之间角度变化,莫尔图形会产生转动。在实际中,莫尔图形的变化是上述几种情况的组合,图像获取模块22需要对其变化进行分解和计算,以确定坐标、航向角、横摆角和俯仰角的变化数据。莫尔原理是数据计算方法的依据,其具体数值与光栅、光学系统、图像获取模块22等参数有关,具体计算方法不在本发明中描述。
如图1所示,干涉光学系统30包括第二激光器31、光束整形器32、第二透镜33、第三透镜34、衍射光学器件35(Diffractive Optical Flements;DOE)、第二分光镜36、微缩物镜37和检测光路38。光束整形器32设置于第二激光器31与第二透镜33之间,第二激光器31发出的激光经过光束整形器32后形成平顶光束。第二透镜33与第三透镜34形成4F成像系统,衍射光学器件35设置于第二透镜33与第三透镜34之间,检测光路38设置于第二分光镜36的透射光路上,第二激光器31发出的激光依次经过光束整形器32、第二透镜33、衍射光学器件35、第三透镜34、第二分光镜36和微缩物镜37,并在光刻基片11上形成干涉曝光场。衍射光学器件35的调制端到光刻基片11表面的结构光场是一个微缩干涉过程,微缩的比例优选为10~200倍,输出面的平移调节的比例为1/(微缩倍数*2),取向角调节的比例为1,周期调节的比例由第二透镜33和第三透镜34组成的4F系统的参数和微缩比例共同确定。第二激光器31可选用气体激光器、固体激光器、准分子激光器,例如,对于100nm以上的结构,可选近紫外波段(NUV)的氦镉激光器(325nm)、YAG固体激光器(355nm)、准分子激光器(308nm)等;对于100nm以下微结构,需采用波长更短的深紫外(DUV)光源21,如266nm固体激光器、准分子激光器(248nm、197nm、157nm)等。
在本实施例中,衍射光学器件35具有多自由度移动功能,具体是沿光轴101向方向移动、绕光轴101旋转、垂直光轴101平移,衍射光学器件35轴 向运动,干涉光场在光刻基片11表面形成周期的变化,例如衍射光学器件35绕光轴101旋转,干涉光场方位取向角度变化;衍射光学器件35在垂直光轴101平移,干涉光场中的结构分布也做相应的平移。
图3a至图3c是本发明的衍射光学器件不同调整状态的示意图。图4a至图4c是本发明的光刻过程中出现的不同误差的示意图。图5a至图5c是通过莫尔图形检测误差的示意图。请参照图3a至图5c,控制系统40分别与工件台10、位置反馈系统20和干涉光学系统30电性连接,具体地,控制系统40分别与工件台10、光源21、图像获取模块22、衍射光学器件35、检测光路38电性连接。控制系统40控制衍射光学器件35的运动,用以补偿工件台10的误差,例如,图4a中图①是上一幅已光刻完成的图像,图②是下一幅存在坐标定位误差的图像,图5a所示是通过莫尔图形检测到坐标定位误差,图3a所示是控制系统40控制衍射光学器件35沿着垂直光轴101的方向平移,用以补偿工件台10存在的坐标定位误差;图4b中图①是上一幅已光刻完成的图像,图②是下一幅存在航向角误差的图像,图5b所示是通过莫尔图形检测到航向角误差,图3b所示是控制系统40控制衍射光学器件35绕着光轴101旋转,用以补偿工件台10的航向角误差;图4c中图①是上一幅已光刻完成的图像,图②是下一幅存在横摆角和/或俯仰角误差的图像,图5c所示是通过莫尔图形检测到横摆角和/或俯仰角误差,图3c所示是控制系统40控制衍射光学器件35沿着光轴101的方向移动,用以补偿工件台10横摆角和/或俯仰角误差。在本实施例中,控制系统40例如为计算机,但并不以此为限。
本发明的大面积纳米光刻系统100通过位置反馈系统20计算工件台10的位置信息,并通过调整干涉光学系统30的衍射光学器件35形成闭环控制,在工件台10运行过程中,可以准确分析出光刻基片11当前位置与理论位置的误差,能满足要求的坐标测量精度范围为0.1nm~300nm,优选为1nm~100nm;航向角、横摆角和俯仰角的测量精度为0.1~10arcsec;其变化的分辨率和精度可以达到补偿上述误差的要求。对光刻基片11进行曝光,工件台10在运 行过程中,干涉光学系统30与光刻基片11之间步进运动,重复工件台10的坐标、航向角、横摆角和俯仰角检测、衍射光学器件35调整补偿、曝光的步骤,实现干涉光场之间的高进度拼接,达到大面积纳米结构高精度制备的目的,能够有效解决数字全息干涉光刻的光场拼接问题。
第二实施例
图6是本发明第二实施例的位置反馈系统的结构示意图。如图6所示,本实施例的大面积纳米光刻系统100与第一实施例的大面积纳米光刻系统100的结构大致相同,不同点在于位置反馈系统20的结构不同。
具体地,如图4所示,位置反馈系统20包括第一激光器26、第一干涉测量模块27、第二干涉测量模块28和多块半透半反射镜29。第一激光器26通过多块半透半反射镜29为第一干涉测量模块27和第二干涉测量模块28提供激光源,第一干涉测量模块27和第二干涉测量模块28设置于工件台10的周侧,控制系统40分别与第一激光器26、第一干涉测量模块27和第二干涉测量模块28电性连接,控制系统40根据差分干涉测量光路计算出工件台10的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。第一干涉测量模块27沿着第一方向X发出测量光路,第二干涉测量模块28沿着第二方向Y发出测量光路。
第三实施例
本发明还涉及一种大面积纳米光刻方法,该大面积纳米光刻方法利用上述的大面积纳米光刻系统100,该方法包括:
步骤一,提供工件台10,并在工件台10上设置待光刻的光刻基片11。
步骤二,提供位置反馈系统20,利用位置反馈系统20计算工件台10的误差。
在本实施例中,位置反馈系统20包括光源21、图像获取模块22、基准光栅23a、二维光栅23b、多块第一透镜24和第一分光。基准光栅23a设置在工件台10上,基准光栅23a与光刻基片11固定设置,也就是说,在工件 台10移动的过程中基准光栅23a与光刻基片11的相对位置不发生改变。二维光栅23b设置在基准光栅23a的上方,二维光栅23b与基准光栅23a之间的间距小于1mm。光源21照明使二维光栅23b与基准光栅23a之间形成可识别的莫尔图案,图像获取模块22识别莫尔图案,并将莫尔图案进行量化分析计算出工件台10的误差,其中误差包括坐标定位误差、航向角误差、横摆角误差和俯仰角误差。图像获取模块22设置于二维光栅23b的上方,多块第一透镜24设置于图像获取模块22与二维光栅23b之间,第一分光镜25设置与多块第一透镜24之间,光源21设置于第一分光镜25的一侧,光源21发出的光通过第一分光镜25射向二维光栅23b和基准光栅23a。
在另一较佳的实施例中,位置反馈系统20包括第一激光器26、第一干涉测量模块27、第二干涉测量模块28和多块半透半反射镜29。第一激光器26通过多块半透半反射镜29为第一干涉测量模块27和第二干涉测量模块28提供激光源,第一干涉测量模块27和第二干涉测量模块28设置于工件台10的周侧,控制系统40分别与第一激光器26、第一干涉测量模块27和第二干涉测量模块28电性连接,控制系统40根据差分干涉测量光路计算出工件台10的坐标、航向角、横摆角和俯仰角。第一干涉测量模块27沿着第一方向X发出测量光路,第二干涉测量模块28沿着第二方向Y发出测量光路。
步骤三,提供干涉光学系统30,利用干涉光学系统30对光刻基片11进行干涉光刻,干涉光学系统30包括衍射光学器件35(Diffractive Optical Elements;DOE)。
在本实施例中,干涉光学系统30还包括第二激光器31、光束整形器32、第二透镜33、第三透镜34、第二分光镜36、微缩物镜37和检测光路38。光束整形器32设置于第二激光器31与第二透镜33之间,第二激光器31发出的激光经过光束整形器32后形成平顶光束。第二透镜33与第三透镜34形成4F成像系统,衍射光学器件35设置于第二透镜33与第三透镜34之间,检测光路38设置于第二分光镜36的透射光路上,第二激光器31发出的激光依次 经过光束整形器32、第二透镜33、衍射光学器件35、第三透镜34、第二分光镜36和微缩物镜37,并在光刻基片11上形成干涉曝光场。
步骤四,提供控制系统40,控制系统40分别与工件台10、位置反馈系统20和干涉光学系统30电性连接;利用控制系统40控制衍射光学器件35运动,用以补偿工件台10的误差。
具体地,利用控制系统40控制衍射光学器件35沿着垂直光轴101的方向平移,用以补偿工件台10坐标定位误差;利用控制系统40控制衍射光学器件35绕着光轴101旋转,用以补偿工件台10航向角误差;利用控制系统40控制衍射光学器件35沿着光轴101的方向移动,用以补偿工件台10横摆角和/或俯仰角误差。
本发明的大面积纳米光刻系统100的工件台10上设有待光刻的光刻基片11;位置反馈系统20用于测量和计算工件台10的误差;干涉光学系统30用于产生干涉曝光场,对光刻基片11进行干涉光刻,干涉光学系统30包括衍射光学器件35;控制系统40分别与工件台10、位置反馈系统20和干涉光学系统30电性连接;控制系统40控制衍射光学器件35运动,用以补偿工件台10的误差。本发明大面积纳米光刻系统100能实现干涉光场之间的高进度拼接,达到大面积纳米结构高精度制备的目的。
本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (11)

  1. 一种大面积纳米光刻系统,其特征在于,包括工件台、位置反馈系统、干涉光学系统和控制系统,其中:
    该工件台上设有待光刻的光刻基片;
    该位置反馈系统用于测量和计算该工件台的误差;
    该干涉光学系统用于产生干涉曝光场,对该光刻基片进行干涉光刻,该干涉光学系统包括衍射光学器件;
    该控制系统分别与该工件台、该位置反馈系统和该干涉光学系统电性连接;该控制系统控制该衍射光学器件的运动,用以补偿该工件台的误差。
  2. 如权利要求1所述的大面积纳米光刻系统,其特征在于,该工件台的误差包括坐标定位误差、航向角误差、横摆角误差和俯仰角误差,该控制系统控制该衍射光学器件沿垂直光轴方向平移,用以补偿工件台坐标定位误差;该控制系统控制该衍射光学器件绕着光轴旋转,用以补偿该工件台航向角误差;该控制系统控制该衍射光学器件沿着光轴的方向移动,用以补偿该工件台横摆角和/或俯仰角误差。
  3. 如权利要求2所述的大面积纳米光刻系统,其特征在于,该位置反馈系统包括光源、图像获取模块、基准光栅和二维光栅,该基准光栅设置在该工件台上,该基准光栅与该光刻基片固定设置,该二维光栅设置在该基准光栅的上方,该光源照明使该二维光栅与该基准光栅之间形成可识别的莫尔图案,该图像获取模块识别该莫尔图案,并将该莫尔图案的变化进行量化分析计算出该工件台的误差。
  4. 如权利要求3所述的大面积纳米光刻系统,其特征在于,该位置反馈系统还包括多块第一透镜和第一分光镜,该图像获取模块设置于该二维光栅的上方,该多块第一透镜设置于该图像获取模块与该二维光栅之间,该第一分光镜设置与该多块第一透镜之间,该光源设置于该第一分光镜的一侧,该光源发出的光通过该第一分光镜射向该二维光栅和该基准光栅。
  5. 如权利要求2所述的大面积纳米光刻系统,其特征在于,该位置反馈系统包括第一激光器、第一干涉测量模块、第二干涉测量模块和多块半透半反射镜,该第一激光器通过该多块半透半反射镜为该第一干涉测量模块和该第二干涉测量模块提供激光源,该第一干涉测量模块和该第二干涉测量模块设置于该工件台的周侧,该控制系统分别与该第一激光器、该第一干涉测量模块和该第二干涉测量模块电性连接,该控制系统根据差分干涉测量光路计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差;定义该工件台的宽度方向为第一方向,定义该工件台的长度方向为第二方向,该第一方向垂直于该第二方向;该第一干涉测量模块沿着第一方向发出测量光路,该第二干涉测量模块沿着第二方向发出测量光路。
  6. 如权利要求1至5任意一项所述的大面积纳米光刻系统,其特征在于,该干涉光学系统还包括第二激光器、第二透镜、第三透镜、第二分光镜和微缩物镜,该第二透镜与该第三透镜形成4F成像系统,该衍射光学器件设置于该第二透镜与该第三透镜之间,该第二激光器发出的激光依次经过该第二透镜、该衍射光学器件、该第三透镜、该第二分光镜和该微缩物镜,并在该光刻基片上形成干涉曝光场。
  7. 如权利要求6所述的大面积纳米光刻系统,其特征在于,该干涉光学系统还包括光束整形器和检测光路,该光束整形器设置于该第二激光器与该第二透镜之间,该检测光路设置于该第二分光镜的透射光路上。
  8. 一种大面积纳米光刻方法,其特征在于,该大面积纳米光刻方法利用权利要求1至7任意一项所述的大面积纳米光刻系统,该方法包括:
    提供工件台,并在该工件台上设置待光刻的光刻基片;
    提供位置反馈系统,利用该位置反馈系统测量和计算该工件台的误差;
    提供干涉光学系统,利用该干涉光学系统对该光刻基片进行干涉光刻,该干涉光学系统包括衍射光学器件;以及
    提供控制系统,该控制系统分别与该工件台、该位置反馈系统和该干涉 光学系统电性连接;利用该控制系统控制该衍射光学器件的运动,用以补偿该工件台的误差。
  9. 如权利要求8所述的大面积纳米光刻方法,其特征在于,该工件台的误差包括坐标定位误差、航向角误差、横摆角误差和俯仰角误差,利用该控制系统控制该衍射光学器件沿着垂直光轴的方向平移,用以补偿该工件台坐标定位误差;利用该控制系统控制该衍射光学器件绕着光轴旋转,用以补偿该工件台航向角误差;利用该控制系统控制该衍射光学器件沿着光轴的方向移动,用以补偿该工件台横摆角和/或俯仰角误差。
  10. 如权利要求9所述的大面积纳米光刻方法,其特征在于,在该工件台上设置基准光栅,并使该基准光栅与该光刻基片固定设置,在该基准光栅的上方设置二维光栅;
    利用光源照射使该二维光栅与该基准光栅之间形成可识别的莫尔图案;
    利用图像获取模块识别该莫尔图案,并将该莫尔图案的变化进行量化分析计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。
  11. 如权利要求9所述的大面积纳米光刻方法,其特征在于,在该工件台的周侧设置第一干涉测量模块和第二干涉测量模块,利用该控制系统根据差分干涉测量光路计算出该工件台的坐标定位误差、航向角误差、横摆角误差和俯仰角误差。
PCT/CN2019/116321 2019-01-10 2019-11-07 大面积纳米光刻系统及其方法 WO2020143294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910024456.4A CN111427237B (zh) 2019-01-10 2019-01-10 大面积纳米光刻系统及其方法
CN201910024456.4 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143294A1 true WO2020143294A1 (zh) 2020-07-16

Family

ID=71521956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116321 WO2020143294A1 (zh) 2019-01-10 2019-11-07 大面积纳米光刻系统及其方法

Country Status (2)

Country Link
CN (1) CN111427237B (zh)
WO (1) WO2020143294A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728002A (zh) * 2004-07-27 2006-02-01 Asml荷兰有限公司 光刻装置及用于校准该光刻装置的方法
CN101976020A (zh) * 2010-10-12 2011-02-16 苏州苏大维格光电科技股份有限公司 一种光刻装置和光刻方法
US20110297084A1 (en) * 2002-02-14 2011-12-08 Massachusetts Institute Of Technology Apparatus for Direct Fabrication of Nanostructures
CN102566340A (zh) * 2012-02-07 2012-07-11 中国科学院光电技术研究所 一种基于相移莫尔条纹的数字无掩模光刻对准装置
CN102955365A (zh) * 2011-08-22 2013-03-06 上海微电子装备有限公司 一种干涉曝光装置及方法
CN103279014A (zh) * 2013-06-14 2013-09-04 苏州苏大维格光电科技股份有限公司 纳米图形化衬底制备装置与方法
CN207965204U (zh) * 2018-04-09 2018-10-12 苏州大学 一种制备米量级光栅的扫描曝光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253209A (ja) * 2008-04-10 2009-10-29 Canon Inc 露光装置及びデバイス製造方法
CN102096349B (zh) * 2010-12-31 2012-05-30 中国科学院光电技术研究所 一种用于接近式纳米光刻双光栅自动对准系统
CN105814402B (zh) * 2013-11-27 2018-11-06 苏州大学 连续可调结构光照明的超分辨显微成像方法与系统
CN105445834B (zh) * 2015-10-26 2017-09-01 苏州大学 一种大尺寸衍射光栅的制作方法及曝光装置
CN106932173B (zh) * 2017-04-06 2019-01-04 哈尔滨工业大学 高精度大口径光栅五自由度拼接精度的测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297084A1 (en) * 2002-02-14 2011-12-08 Massachusetts Institute Of Technology Apparatus for Direct Fabrication of Nanostructures
CN1728002A (zh) * 2004-07-27 2006-02-01 Asml荷兰有限公司 光刻装置及用于校准该光刻装置的方法
CN101976020A (zh) * 2010-10-12 2011-02-16 苏州苏大维格光电科技股份有限公司 一种光刻装置和光刻方法
CN102955365A (zh) * 2011-08-22 2013-03-06 上海微电子装备有限公司 一种干涉曝光装置及方法
CN102566340A (zh) * 2012-02-07 2012-07-11 中国科学院光电技术研究所 一种基于相移莫尔条纹的数字无掩模光刻对准装置
CN103279014A (zh) * 2013-06-14 2013-09-04 苏州苏大维格光电科技股份有限公司 纳米图形化衬底制备装置与方法
CN207965204U (zh) * 2018-04-09 2018-10-12 苏州大学 一种制备米量级光栅的扫描曝光装置

Also Published As

Publication number Publication date
CN111427237A (zh) 2020-07-17
CN111427237B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
TWI692634B (zh) 用於檢測裝置之照明源、檢測裝置及檢測方法
US10061192B2 (en) Method and apparatus for correcting errors on a wafer processed by a photolithographic mask
JP5275210B2 (ja) リソグラフィ装置
JP4486976B2 (ja) リソグラフィ装置およびデバイス製造方法
JP4854499B2 (ja) リトグラフィー投影装置の較正方法
TWI408771B (zh) 可移動支撐,位置控制系統,微影裝置及可交換物件位置之控制方法
CN101846890B (zh) 并行光刻直写系统
TWI396057B (zh) 微影裝置,平台系統及平台控制方法
KR20100047182A (ko) 위치 계측 시스템, 노광 장치, 위치 계측 방법, 노광 방법 및 디바이스 제조 방법, 그리고 공구 및 계측 방법
TWI417679B (zh) 微影裝置及圖案化元件
JP2007258707A (ja) リソグラフィ装置および二重露光オーバレイ制御を用いたデバイス製造方法
JP2015535953A (ja) 定量的レチクル歪み測定システム
Chan et al. Development and applications of a laser writing lithography system for maskless patterning
JP5130122B2 (ja) リソグラフィ装置
JP4310308B2 (ja) リソグラフィ装置及びデバイス製造方法
JP4729065B2 (ja) 座標変換を伴う駆動システムを有するリソグラフィ装置および方法
TWI532076B (zh) 圖案化器件、於一基板上產生一標記之方法及器件製作方法
JP4881426B2 (ja) マーカの形成方法、マーカを有する基板及びデバイス製造方法
NL2014267A (en) Lithographic apparatus and method.
JP5006889B2 (ja) 粗ウェーハ位置合わせ用マーク構造及びこのようなマーク構造の製造方法
WO2020143294A1 (zh) 大面积纳米光刻系统及其方法
JP6243927B2 (ja) リソグラフィ装置及びデバイス製造方法
TWI616732B (zh) 具有感測器之設備及執行目標量測之方法
JP4902685B2 (ja) ステージシステム、当該ステージシステムを含むリソグラフィ装置、およびデバイス製造方法
TWI618989B (zh) 物件定位系統、微影裝置、物件定位方法及元件製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908444

Country of ref document: EP

Kind code of ref document: A1