WO2020143077A1 - 光强分布的建模方法、装置、电子设备及存储介质 - Google Patents

光强分布的建模方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020143077A1
WO2020143077A1 PCT/CN2019/072371 CN2019072371W WO2020143077A1 WO 2020143077 A1 WO2020143077 A1 WO 2020143077A1 CN 2019072371 W CN2019072371 W CN 2019072371W WO 2020143077 A1 WO2020143077 A1 WO 2020143077A1
Authority
WO
WIPO (PCT)
Prior art keywords
light intensity
intensity distribution
scene
distribution
compensation plane
Prior art date
Application number
PCT/CN2019/072371
Other languages
English (en)
French (fr)
Inventor
何毅
林妩媚
廖志杰
刘卫静
邢廷文
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Publication of WO2020143077A1 publication Critical patent/WO2020143077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the technical field of lithography illumination uniformity compensation, in particular to a method, device, electronic device and storage medium for modeling light intensity distribution.
  • Integrating more and more transistor circuit components on silicon chips has always been the goal pursued by the international microelectronics industry. Therefore, reducing the minimum line width of integrated circuits is an important means to improve storage capacity.
  • the core component of the lithography machine is the projection exposure optical system.
  • the most important components of the system are the illumination system and the projection objective system.
  • Providing uniform illumination for the mask surface is the main function of the lithography lighting system. Good uniform illumination performance reduces the lithography process factor and improves the resolution of the entire lithography system; otherwise, the uneven distribution of the illumination will make the silicon wafer surface
  • the thickness of the exposure line is uneven, which seriously affects the quality of lithography.
  • lithography With the continuous shortening of lithography wavelength and the shrinking of feature size, lithography has higher and higher requirements on the uniformity of the illumination system. It has been impossible or difficult to achieve uniformity using only traditional uniform light devices and uniform light principles Claim. In addition, the devices in the lighting system will continue to wear over time, reducing its uniform light performance and introducing new non-uniformities. Therefore, in order to meet the requirements of the lithography system for illumination uniformity and to compensate for the non-uniformity introduced by different factors in the system, it is necessary to add an illumination uniformity compensation device to the system.
  • the main purpose of the present invention is to provide a method, device, electronic equipment and storage medium for modeling the light intensity distribution, which can provide an effective basis for the design and simulation of the uniformity compensation device in the lithography lighting system.
  • a first aspect of the embodiments of the present invention provides a method for modeling light intensity distribution, including:
  • Obtain input parameters which include the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane;
  • the output light intensity distribution of the viewing scene is determined.
  • a second aspect of an embodiment of the present invention provides a light intensity distribution modeling device, including:
  • An acquisition module for acquiring input parameters including the input light intensity distribution of the visual scene and the pupil energy distribution of the compensation plane;
  • a first determining module configured to determine the light intensity distribution of the compensation plane according to the input light intensity distribution of the viewing scene and the pupil energy distribution of the compensation plane;
  • the second determining module is configured to determine the output light intensity distribution of the viewing scene according to the light intensity distribution and the pupil energy distribution of the compensation plane.
  • a third aspect of the embodiments of the present invention provides an electronic device, including:
  • Memory, processor, and computer program stored on the memory and executable on the processor, characterized in that, when the processor executes the program, the light intensity distribution modeling method provided in the first aspect of the embodiments of the present invention is implemented .
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the light intensity distribution modeling method provided by the first aspect of the embodiments of the present invention is implemented .
  • the light intensity distribution modeling method, device, electronic device, and storage medium provided by the present invention obtain input parameters, and the input parameters include the input light intensity distribution of the visual scene and the pupil plane energy distribution of the compensation plane , According to the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane, determine the light intensity distribution of the compensation plane. According to the light intensity distribution of the compensation plane and the pupil energy distribution, determine the output light intensity distribution of the scene, which can be light
  • the design and simulation of the uniformity compensation device in the engraved lighting system provide an effective basis.
  • FIG. 1 is a schematic flowchart of a method for modeling light intensity distribution according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optical path structure of an illumination uniformity compensation system provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light intensity distribution modeling device according to another embodiment of the present invention.
  • FIG. 4 shows a hardware structure diagram of an electronic device.
  • FIG. 1 is a schematic flowchart of a method for modeling a light intensity distribution according to an embodiment of the present invention.
  • the method can be applied to electronic devices.
  • the electronic devices include mobile phones and tablet computers (Portable Android (PAD)). , notebook computers and personal digital assistants (Personal Digital Assistant, PDA), etc., the method mainly includes the following steps:
  • FIG. 2 is a schematic diagram of an optical path structure of an illumination uniformity compensation system according to an embodiment of the present invention.
  • the illumination uniformity compensation optical system includes a viewing surface 10, a compensation plane 20, and a pupil 30 on the compensation plane.
  • the system beam propagates from the compensation plane 20 to the scene 10 in the negative direction of the Z axis.
  • the intensity distribution of a field of view on the scene 10 mapped to the compensation plane 20 is the pupil 30 of the field of view on the compensation plane 20.
  • the illumination uniformity compensation device is placed on the compensation plane 20, the system beam can obtain a uniform illumination intensity distribution on the viewing surface 10 after passing through the compensation device.
  • the light intensity distribution of the visual scene includes the shape and size of the visual field spot of the illumination system and the light intensity information at different positions in the spot.
  • the pupil energy distribution of the compensation plane 20 is mapped to a light intensity distribution on the compensation plane 20 by a field of view on the scene, which includes the shape of the spot of the pupil 30 and the light intensity information at different positions within the spot.
  • the input light intensity distribution of the view scene be L 1
  • the light intensity distribution of the compensation plane is I 2
  • the output light intensity distribution of the view scene is I 1 ′
  • the pupil energy distribution is P.
  • the compensation plane light intensity distribution I 2 is calculated.
  • the light intensity distribution on the compensation plane 20 is obtained by superimposing the light intensity distributions of all the field of view points on the scene 10 mapped to the pupil 30 on the compensation plane 20. Since the illumination system is a telecentric system, the chief rays of the light beams at each field of view in the vicinity of the scene 10 are parallel to the optical axis. Therefore, the shapes and sizes of pupils corresponding to each field point in the scene 10 are completely consistent.
  • the light intensity distribution on the compensation plane 20 can be calculated by the convolution calculation of the input light intensity distribution on the viewing surface 10, that is, the light intensity distribution I 2 of the compensation plane 20 can be expressed as follows:
  • S103 Determine the output light intensity distribution of the scene according to the light intensity distribution of the compensation plane and the pupil energy distribution.
  • step S103 is the reverse process of step S102.
  • the methods of Fourier transform and inverse transform are used to implement the inverse operation of convolution. Specific steps are as follows:
  • the Fourier transform calculation is used to calculate the Fourier spectral distributions of F ⁇ I 2 ⁇ and F ⁇ P ⁇ , respectively;
  • the convolution of the two functions can be expressed in the frequency domain as the product of the respective Fourier spectral distribution.
  • the formula is as follows:
  • the error after modeling of the illumination uniformity compensation system is determined, so that the error is ⁇ I, then:
  • input parameters are obtained, and the input parameters include the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane, and the compensation plane is determined according to the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane According to the light intensity distribution of the compensation plane and the pupil energy distribution, the output light intensity distribution of the viewing scene can be determined, which can provide an effective basis for the design and simulation of the uniformity compensation device in the lithography lighting system.
  • FIG. 3 is a schematic structural diagram of a light intensity distribution modeling device according to another embodiment of the present invention.
  • the device can be applied to electronic devices.
  • the electronic devices include: mobile phones and tablet computers (Portable Android Device, PAD ), notebook computers and personal digital assistants (Personal Digital Assistant, PDA), etc.
  • the device includes:
  • the acquisition module 201 the first determination module 202, and the second determination module 203.
  • the obtaining module 201 is used to obtain input parameters, which include the input light intensity distribution of the viewing scene and the pupil energy distribution of the compensation plane.
  • the light intensity distribution of the scene includes the shape and size of the spot of the illumination system and the light intensity information at different positions in the spot.
  • the pupil energy distribution of the compensation plane is a field of view on the scene mapped to the intensity distribution on the compensation plane, which includes the shape of the pupil spot and the intensity information at different positions within the spot.
  • the first determining module 202 is configured to determine the light intensity distribution of the compensation plane according to the input light intensity distribution of the viewing scene and the pupil energy distribution of the compensation plane.
  • the input light intensity distribution of the view scene be I 1
  • the light intensity distribution of the compensation plane is I 2
  • the output light intensity distribution of the view scene is I 1 ′
  • the pupil energy distribution is P.
  • the compensation plane light intensity distribution I 2 is calculated.
  • the light intensity distribution on the compensation plane is obtained by superimposing the light intensity distributions of all the visual field points on the view plane mapped to the pupils on the compensation plane. Since the illumination system is a telecentric system, the chief rays of the light beams at each field of view near the scene are parallel to the optical axis, so the shape, size and distribution of the pupils corresponding to each field of view on the scene are completely consistent. The mutual position of each field point and its corresponding pupil on the scene is also consistent. This process can be described mathematically by convolution. Therefore, the light intensity distribution I 2 on the compensation plane can be calculated by convolution with the input light intensity distribution I 1 on the viewing surface, that is, the light intensity distribution I 2 on the compensation plane can be expressed as the following formula:
  • the second determination module 203 is configured to determine the output light intensity distribution of the scene according to the light intensity distribution and the pupil energy distribution of the compensation plane.
  • the output light intensity distribution of the viewing scene is determined according to the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane.
  • Reverse process In the embodiments of the present invention, the methods of Fourier transform and inverse transform are used to implement the inverse operation of convolution. Specific steps are as follows:
  • the Fourier transform operation is used to calculate the Fourier spectral distribution of F ⁇ I 2 ⁇ and F ⁇ P ⁇ , respectively;
  • the convolution of the two functions can be expressed in the frequency domain as the product of the respective Fourier spectral distribution.
  • the formula is as follows:
  • the device also includes:
  • the third determination module 204 is used to determine the error after modeling of the illumination uniformity compensation system based on the output intensity distribution I 1 ′ of the scene and the input intensity distribution I 1 of the scene, so that the error is ⁇ I, then:
  • input parameters are obtained, and the input parameters include the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane, and the compensation plane is determined according to the input light intensity distribution of the scene and the pupil energy distribution of the compensation plane According to the light intensity distribution of the compensation plane and the pupil energy distribution, the output light intensity distribution of the viewing scene can be determined, which can provide an effective basis for the design and simulation of the uniformity compensation device in the lithography lighting system.
  • FIG. 4 shows a hardware structure diagram of an electronic device.
  • the processor executes the program the method for modeling the light intensity distribution described in the embodiment shown in FIG. 1 is implemented.
  • the electronic device further includes:
  • the aforementioned memory 31, processor 32 input device 33 and output device 34 are connected via a bus 35.
  • the input device 33 may specifically be a camera, a touch panel, a physical button, a mouse, or the like.
  • the output device 34 may specifically be a display screen.
  • the memory 31 may be a high-speed random access memory (RAM, Random Access Memory) memory, or may be a non-volatile memory (non-volatile memory), such as a disk memory.
  • the memory 31 is used to store a set of executable program codes, and the processor 32 is coupled to the memory 31.
  • an embodiment of the present invention further provides a computer-readable storage medium.
  • the computer-readable storage medium may be provided in the terminal in each of the foregoing embodiments.
  • the computer-readable storage medium may be the foregoing FIG. 4
  • the memory in the embodiment.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by the processor, the light intensity distribution modeling method described in the foregoing embodiments shown in FIGS. 1 to 2 is implemented.
  • the computer storable medium may also be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • Program code medium may also be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the above-described embodiments are only schematic.
  • the division of the modules is only a division of logical functions.
  • there may be another division manner for example, multiple modules or components may be combined or may Integration into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication link may be through some interfaces, and the indirect coupling or communication link of the module may be in electrical, mechanical, or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Image Processing (AREA)

Abstract

一种光强分布的建模方法、建模装置、电子设备及存储介质,应用于光刻照明均匀性补偿技术领域,包括:获取输入参数,输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布(S101),根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布(S102),根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布(S103)。该方法可为光刻照明系统内均匀性补偿装置的设计和仿真提供有效依据。

Description

光强分布的建模方法、装置、电子设备及存储介质 技术领域
本发明涉及光刻照明均匀性补偿技术领域,尤其涉及一种光强分布的建模方法、装置、电子设备及存储介质。
背景技术
把越来越多的晶体管电路元件集成在硅片上,一直是国际微电子工业界不懈追求的目标。因此,减小集成电路最小线宽尺寸是提高存储能力的重要手段。在加工制造集成电路的设备很多,光刻机是目前技术最成熟的设备。光刻机的核心部件是投影曝光光学系统,该系统最重要的组成部分是照明系统和投影物镜系统。为掩膜面提供均匀照明是光刻照明系统的主要功能,良好的照明均匀性能降低光刻工艺因子,提高整个光刻系统的分辨率;反之,照明的不均匀性分布会使得硅片面上曝光线条的粗细不均匀,严重影响光刻质量。
随着光刻波长的不断缩短,特征尺寸的不断缩小,光刻对照明系统的均匀性要求越来越高,仅使用传统的匀光器件和匀光原理已经达不到或很难达到均匀性要求。此外,照明系统内器件会随着时间不断磨损,降低其匀光性能,引入新的非均匀性。因此,为了满足光刻系统对照明均匀性的要求,补偿系统内不同因素引入的非均匀性,需要在系统中增加照明均匀性补偿装置。
发明内容
本发明的主要目的在于提供一种光强分布的建模方法、装置、电子 设备及存储介质,可为光刻照明系统内均匀性补偿装置的设计和仿真提供有效依据。
为实现上述目的,本发明实施例第一方面提供一种光强分布的建模方法,包括:
获取输入参数,所述输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布;
根据所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,确定所述补偿平面的光强分布;
根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布。
本发明实施例第二方面提供一种光强分布的建模装置,包括:
获取模块,用于获取输入参数,所述输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布;
第一确定模块,用于根据所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,确定所述补偿平面的光强分布;
第二确定模块,用于根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布。
本发明实施例第三方面提供了一种电子设备,包括:
存储器,处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现本发明实施例第一方面提供的光强分布的建模方法。
本发明实施例第四方面提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第一方面提供的光强分布的建模方法。
从上述本发明实施例可知,本发明提供的光强分布的建模方法、装置、电子设备及存储介质,获取输入参数,输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布,根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布,根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布,可为光刻照明系统内均匀性补偿装置的设计和仿真提供有效依据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的光强分布的建模方法的流程示意图;
图2为本发明一实施例提供的照明均匀性补偿系统的光路结构示意图;
图3为本发明另一实施例提供的光强分布的建模装置的结构示意图;
图4示出了一种电子设备的硬件结构图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明一实施例提供的光强分布的建模方法的流程示意图,该方法可应用于电子设备中,电子设备包括:手机、平板电脑(Portable Android Device,PAD),笔记本电脑以及个人数字助理(Personal Digital Assistant,PDA)等,该方法主要包括以下步骤:
S101、获取输入参数,该输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布;
请参阅图2,图2为本发明一实施例提供的照明均匀性补偿系统的光路结构示意图。该照明均匀性补偿光学系统包括视场面10、补偿平面20和补偿平面上的光瞳30。系统光束沿Z轴负向从补偿平面20传播至视场面10,视场面10上一个视场点映射至补偿平面20上的光强分布为该视场点在补偿平面20上的光瞳30,在补偿平面20上放置照明均匀性补偿装置时,系统光束经过该补偿装置后在视场面10上即可得到均匀的照明光强分布。
其中,视场面光强分布包括照明系统视场光斑形状大小及光斑内不同位置处的光强信息。
补偿平面20的光瞳能量分布为视场面上一个视场点映射至补偿平面20上光强分布,其包括光瞳30的光斑形状大小及光斑内不同位置处的光强信息。
S102、根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布;
令视场面的输入光强分布为L 1,补偿平面的光强分布为I 2,视场面的输出光强分布为I 1′,光瞳能量分布为P。通过卷积算法,计算得到补偿平面光强分布I 2。如图2所示,补偿平面20上的光强分布由视场面10上所有视场点映射至补偿平面20上的光瞳30的光强分布叠加而得到。由于照明系统为远心系统,视场面10附近各视场点的光束其主光线均平行于光轴,因此,视场面10上各视场点对应的光瞳形状、大小,分布完全一致。视场面10上各视场点与其对应光瞳P的相互位置也一致,这个过程在数学上可以用卷积来描述。因此补偿平面20上的光强分布可以通过视场面10上的输入光强分布进行卷积计算得到,即补偿平面20的光强分布I 2可以表示为下式:
I 2=I 1*P
S103、根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布。
可理解的,步骤S103是步骤S102的逆过程。在本发明实施例中,采用傅里叶变换及逆变换的方法来实现卷积的逆运算。具体步骤如下:
首先,根据补偿平面20光强分布I 2和光瞳30的能量分布P,采用傅里叶变换运算,计算得到其傅里叶频谱分布分别为F{I 2}和F{P};
然后,根据卷积的傅里叶变换性质:两个函数的卷积,在频域上可以表示为各自傅里叶频谱分布的乘积,其公式如下:
Figure PCTCN2019072371-appb-000001
因此,将上述计算得到的F{I 2}和F{P}相除,即可得到视场面10的光强分布的傅里叶频谱F{I′ 1},其表达式:
F{I′ 1}=F{I 2}/F{P};
最后,将上述计算得到的F{I′ 1}进行逆傅里叶变换运算,得到视场面10的输出光强分布I 1′。
更多的,为了检验本发明实施例中的光强分布的建模方法的准确性,在根据补偿平面20的光强分布和光瞳30的能量分布,确定视场面10的输出光强分布之后,还可根据视场面10的输出光强分布I 1′和视场面10的输入光强分布I 1,确定照明均匀性补偿系统建模之后的误差,令误差为ΔI,则:
ΔI=I′ 1-I 1
在本发明实施例中,获取输入参数,输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布,根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布,根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布,可为光刻照明系统内均匀性补偿装置的设计和仿真提供有效依据。
请参阅图3,图3为本发明另一实施例提供的光强分布的建模装置的结构示意图,该装置可应用于电子设备中,电子设备包括:手机、平板电脑(Portable Android Device,PAD),笔记本电脑以及个人数字助理(Personal Digital Assistant,PDA)等,该装置包括:
获取模块201、第一确定模块202和第二确定模块203。
获取模块201,用于获取输入参数,输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布。
视场面光强分布包括照明系统视场光斑形状大小及光斑内不同位置处的光强信息。
补偿平面光瞳能量分布为视场面上一个视场点映射至补偿平面上光强分布,其包括光瞳的光斑形状大小及光斑内不同位置处的光强信 息。
第一确定模块202,用于根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布。
令视场面的输入光强分布为I 1,补偿平面的光强分布为I 2,视场面的输出光强分布为I 1′,光瞳能量分布为P。通过卷积算法,计算得到补偿平面光强分布I 2。补偿平面上的光强分布由视场面上所有视场点映射至补偿平面上的光瞳的光强分布叠加而得到。由于照明系统为远心系统,视场面附近各视场点的光束其主光线均平行于光轴,因此视场面上各视场点对应的光瞳形状、大小,分布完全一致。视场面上各视场点与其对应光瞳的相互位置也一致,这个过程在数学上可以用卷积来描述。因此补偿平面上的光强分布I 2可以通过视场面上的输入光强分布I 1进行卷积计算得到,即补偿平面的光强分布I 2可以表示为下式:
I 2=I 1*P
第二确定模块203,用于根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布。
可理解的,根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布是根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布的逆过程。在本发明实施例中,采用傅里叶变换及逆变换的方法来实现卷积的逆运算。具体步骤如下:
首先,根据补偿平面光强分布I 2和光瞳能量分布P,采用傅里叶变换运算,计算得到其傅里叶频谱分布分别为F{I 2}和F{P};
然后,根据卷积的傅里叶变换性质:两个函数的卷积,在频域上可以表示为各自傅里叶频谱分布的乘积,其公式如下:
Figure PCTCN2019072371-appb-000002
因此,将上述计算得到的F{I 2}和F{P}相除,即可得到视场面光强分布的傅里叶频谱F{I′ 1},其表达式:
F{I′ 1}=F{I 2}/F{P};
最后,将上述计算得到的F{I′ 1}进行逆傅里叶变换运算,得到视场面光强分布I 1′。
更多的,该装置还包括:
第三确定模块204,用于根据视场面的输出光强分布I 1′和视场面的输入光强分布I 1,确定照明均匀性补偿系统建模之后的误差,令误差为ΔI,则:
ΔI=I′ 1-I 1
在本发明实施例中,获取输入参数,输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布,根据视场面的输入光强分布和补偿平面的光瞳能量分布,确定补偿平面的光强分布,根据补偿平面的光强分布和光瞳能量分布,确定视场面的输出光强分布,可为光刻照明系统内均匀性补偿装置的设计和仿真提供有效依据。
请参见图4,图4示出了一种电子设备的硬件结构图。
本实施例中所描述的电子设备,包括:
存储器31、处理器32及存储在存储器31上并可在处理器上运行的计算机程序,处理器执行该程序时实现前述图1所示实施例中描述的光强分布的建模方法。
进一步地,该电子设备还包括:
至少一个输入设备33;至少一个输出设备34。
上述存储器31、处理器32输入设备33和输出设备34通过总线35连接。
其中,输入设备33具体可为摄像头、触控面板、物理按键或者鼠标等等。输出设备34具体可为显示屏。
存储器31可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器31用于存储一组可执行程序代码,处理器32与存储器31耦合。进一步地,本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的终端中,该计算机可读存储介质可以是前述图4所示实施例中的存储器。该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述图1~图2所示实施例中描述的光强分布的建模方法。进一步地,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的多个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信链接可以是通过一些接口,模块的间接耦合或通信链接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于 一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的光强分布的建模方法、装置、电子设备及存储介质的描述,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种光强分布的建模方法,其特征在于,包括:
    获取输入参数,所述输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布;
    根据所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,确定所述补偿平面的光强分布;
    根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布。
  2. 根据权利要求1所述的建模方法,其特征在于,所述根据所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,确定所述补偿平面的光强分布包括:
    将所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,通过卷积算法,计算得出所述补偿平面的光强分布。
  3. 根据权利要求1或2所述的建模方法,其特征在于,所述根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布包括:
    令所述视场面的输入光强分布为I 1,所述补偿平面的光强分布为I 2,所述视场面的输出光强分布为I 1′,光瞳能量分布为P,则
    F{I′ 1}=F{I 2}/F{P};
    对所述F{I′ 1}进行傅里叶逆变换,得到所述视场面的输出光强分布为I 1′。
  4. 根据权利要求3所述的建模方法,其特征在于,所述根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布 之后,还包括:
    根据所述视场面的输出光强分布和所述视场面的输入光强分布,确定照明均匀性补偿系统建模之后的误差。
  5. 一种光强分布的建模装置,其特征在于,包括:
    获取模块,用于获取输入参数,所述输入参数包括视场面的输入光强分布和补偿平面的光瞳能量分布;
    第一确定模块,用于根据所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,确定所述补偿平面的光强分布;
    第二确定模块,用于根据所述补偿平面的光强分布和光瞳能量分布,确定所述视场面的输出光强分布。
  6. 根据权利要求5所述的建模装置,其特征在于,所述第一确定模块具体用于将所述视场面的输入光强分布和所述补偿平面的光瞳能量分布,通过卷积算法,计算得出所述补偿平面的光强分布。
  7. 根据权利要求5或6所述的建模装置,其特征在于,所述第二确定模块具体用于令所述视场面的输入光强分布为I 1,所述补偿平面的光强分布为I 2,所述视场面的输出光强分布为I 1′,光瞳能量分布为P,则:
    F{I′ 1}=F{I 2}/F{P};
    对所述F{I′ 1}进行傅里叶逆变换,得到所述视场面的输出光强分布为I 1′。
  8. 根据权利要求7所述的建模装置,其特征在于,所述装置还包括:
    第三确定模块,用于根据所述视场面的输出光强分布和所述视场面的输入光强分布,确定照明均匀性补偿系统建模之后的误差。
  9. 一种电子设备,包括:存储器,处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现权利要求1至4中的任一项所述的光强分布的建模方法中的各个步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1至4中的任一项所述的光强分布的建模方法中的各个步骤。
PCT/CN2019/072371 2019-01-07 2019-01-18 光强分布的建模方法、装置、电子设备及存储介质 WO2020143077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910011353.4 2019-01-07
CN201910011353.4A CN109657402B (zh) 2019-01-07 2019-01-07 一种光强分布的建模方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020143077A1 true WO2020143077A1 (zh) 2020-07-16

Family

ID=66118939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072371 WO2020143077A1 (zh) 2019-01-07 2019-01-18 光强分布的建模方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN109657402B (zh)
WO (1) WO2020143077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024138416A1 (zh) * 2022-12-28 2024-07-04 中国科学院光电技术研究所 照明补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552776B1 (en) * 1998-10-30 2003-04-22 Advanced Micro Devices, Inc. Photolithographic system including light filter that compensates for lens error
CN101226343A (zh) * 2008-01-29 2008-07-23 芯硕半导体(中国)有限公司 一种采用灰度补偿制提高光刻曝光能量均匀性的方法
CN102540736A (zh) * 2010-12-10 2012-07-04 上海微电子装备有限公司 用于大视场拼接照明的均匀性补偿装置
CN102722090A (zh) * 2012-06-08 2012-10-10 中国科学院光电技术研究所 一种照明均匀性补偿装置
CN107290935A (zh) * 2016-03-31 2017-10-24 上海微电子装备(集团)股份有限公司 一种光强调制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489387B2 (en) * 2006-11-30 2009-02-10 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method
KR101960153B1 (ko) * 2008-12-24 2019-03-19 가부시키가이샤 니콘 조명 광학계, 노광 장치 및 디바이스의 제조 방법
CN102331688B (zh) * 2011-10-25 2013-06-26 中国科学院光电技术研究所 一种光瞳均匀性补偿装置
CN107885038A (zh) * 2016-09-30 2018-04-06 上海微电子装备(集团)股份有限公司 照明均匀性校正装置、校正方法以及一种曝光投影系统
CN106768396A (zh) * 2016-12-23 2017-05-31 电子科技大学 一种基于微分相衬成像还原定量相位图像的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552776B1 (en) * 1998-10-30 2003-04-22 Advanced Micro Devices, Inc. Photolithographic system including light filter that compensates for lens error
CN101226343A (zh) * 2008-01-29 2008-07-23 芯硕半导体(中国)有限公司 一种采用灰度补偿制提高光刻曝光能量均匀性的方法
CN102540736A (zh) * 2010-12-10 2012-07-04 上海微电子装备有限公司 用于大视场拼接照明的均匀性补偿装置
CN102722090A (zh) * 2012-06-08 2012-10-10 中国科学院光电技术研究所 一种照明均匀性补偿装置
CN107290935A (zh) * 2016-03-31 2017-10-24 上海微电子装备(集团)股份有限公司 一种光强调制方法

Also Published As

Publication number Publication date
CN109657402B (zh) 2021-02-26
CN109657402A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US8863045B1 (en) Optical proximity correction method based on hybrid simulation model
US12057301B2 (en) Arcing protection method, processing tool and fabrication system
US20210296303A1 (en) Layout modification method for exposure manufacturing process
CN114609857A (zh) 光学临近效应修正方法及系统和掩膜版
US20210389663A1 (en) Method and device for optical proximity effect correction
WO2020087874A1 (zh) 回流焊的仿真优化方法、系统、计算机存储介质及设备
US8975195B2 (en) Methods for optical proximity correction in the design and fabrication of integrated circuits
JP2015135874A5 (zh)
CN108009316B (zh) Opc修正方法
US7984392B2 (en) Matching method for designing layout patterns on a photomask from inverse lithography
KR20110117404A (ko) 균일한 광 근접 효과 보정을 이용하는 반도체 소자의 제조 방법
US8458631B2 (en) Cycle time reduction in data preparation
WO2020143077A1 (zh) 光强分布的建模方法、装置、电子设备及存储介质
TWI557584B (zh) 設計半導體裝置的方法、準備積體電路裝置佈局的方法及電腦可讀取儲存媒體
CN104166304B (zh) 修正辅助图案的方法
US9047658B2 (en) Method of optical proximity correction
US9305132B1 (en) Approximate calculation of 2D matrix entries via GPU
US10372836B2 (en) Integrated circuit buffering solutions considering sink delays
TW201430484A (zh) 光學鄰近修正方法
US20150185697A1 (en) Method of static scaling of image in holographic lithography
US20150070681A1 (en) Pattern generating method, pattern forming method, and pattern generating program
US9262820B2 (en) Method and apparatus for integrated circuit design
US11934106B2 (en) Optical proximity correction device and method
CN113671804B (zh) 确定掩模扰动信号的方法、设备和计算机可读存储介质
US8283093B2 (en) Optical proximity correction process

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909610

Country of ref document: EP

Kind code of ref document: A1