WO2020141734A1 - 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체 - Google Patents

키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체 Download PDF

Info

Publication number
WO2020141734A1
WO2020141734A1 PCT/KR2019/016905 KR2019016905W WO2020141734A1 WO 2020141734 A1 WO2020141734 A1 WO 2020141734A1 KR 2019016905 W KR2019016905 W KR 2019016905W WO 2020141734 A1 WO2020141734 A1 WO 2020141734A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
aryl
compound
nmr
Prior art date
Application number
PCT/KR2019/016905
Other languages
English (en)
French (fr)
Inventor
장석복
박윤수
Original Assignee
기초과학연구원
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원, 한국과학기술원 filed Critical 기초과학연구원
Publication of WO2020141734A1 publication Critical patent/WO2020141734A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Definitions

  • the present invention relates to a method for preparing a chiral gamma-lactam compound and a novel metal complex therefor, more specifically, using a metal complex containing a chiral ethylenediamine ligand as a catalyst, prochiral 1,4,2-dioxazole
  • Chiral (chiral) compound is a compound having a specific optical activity, is an important compound used in the pharmaceutical industry and fine chemicals, is a very important compound in the trend of increasing the share of the global pharmaceutical market.
  • Chiral cyclic amides are important molecular skeletons that exhibit a variety of biological activities.
  • the 5-membered lactam with a ⁇ -chiral center continues to be recognized as a functional core core in both effective clinical drugs, including natural products and anticancer drugs.
  • the demand for chiral gamma-lactam compounds is also increasing.
  • ruthenium catalysts with chiral porphyrins enable enantioselective synthesis of chiral sulfamidates.
  • chiral catalysts have been reported comprising amino acids or carboxamidate-based ligands, ruthenium-oxazolines, iridium-metalsalen complexes, and dirhodium complexes with metalloenzymes.
  • the present inventors tried to solve the above problems, using a prochiral 1,4,2-dioxazol-5-one compound as a carbonyl nitrene precursor that is strong and has excellent reactivity, and has a specific functional group
  • a metal complex containing a chiral ethylenediamine ligand is used as a catalyst
  • chiral gamma with excellent enantioselectivity by suppressing the formation of by-products by stabilizing the intermediate metal-carbonylnitrile through asymmetric CH amidation under mild conditions -It was found that a lactam compound was prepared, and the present invention was completed.
  • the present invention aims to provide a method for preparing chiral gamma-lactam compounds from prochiral 1,4,2-dioxazol-5-one compounds that can be usefully used as intermediates for the production of various natural products and pharmaceuticals Is done.
  • the present invention aims to provide a novel metal complex as a catalyst for preparing a chiral gamma-lactam compound from a prochiral 1,4,2-dioxazol-5-one compound.
  • the present invention provides a prochiral 1,4,2-dioxazol-5-one compound represented by Chemical Formula 2 in the presence of a metal complex represented by Chemical Formula 1 and a base.
  • Amidation provides a method for preparing a chiral gamma-lactam compound represented by Formula 3 below.
  • M is iridium (III), rhodium (III) or cobalt (III);
  • X 1 is halogen
  • R 1 to R 5 are each independently hydrogen or C1-C20 alkyl
  • R a and R b are each independently C1-C20 alkyl, C1-C20 alkoxy, C6-C20 aryl, C6-C20 aryloxy or -NR c R d , and alkyl, alkoxy, aryl of R a and R b and Aryloxy may be further substituted with one or more selected from C1-C20 alkyl, halogen, C1-C20 alkoxy, nitro and halo C1-C20 alkyl;
  • R c and R d are each independently hydrogen or C1-C20 alkyl
  • R 7 and R 8 are each independently C1-C20 alkyl or C6-C20 aryl, or R 7 and R 8 may be connected to each other to form a ring, and alkyl and aryl of R 7 and R 8 are C1- It may be further substituted with one or more selected from C20 alkyl, halogen, C1-C20 alkoxy, nitro and halo C1-C20 alkyl.)
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido;
  • R 22 and R 23 are each independently hydrogen or C1-C20 alkyl, and the alkyl of R 23 may be further substituted with C6-C20 aryl or phthalimido;
  • R 21 to R 23 may be connected to adjacent substituents to form a ring.
  • R 7 and R 8 may be connected to C 3 -C 7 alkylene to form an alicyclic ring.
  • the metal complex may be a metal complex represented by the following Chemical Formula 1-1.
  • X 1 is halogen
  • R 1 to R 5 are each independently hydrogen or C1-C20 alkyl
  • R 9 is C 1 -C 20 alkyl or C 6 -C 20 aryl, wherein the aryl of R 9 may be further substituted with one or more selected from C 1 -C 20 alkyl, halogen, C 1 -C 20 alkoxy and halo C 1 -C 20 alkyl;
  • R 7 and R 8 are each independently C6-C20 aryl, or R 7 and R 8 may be connected to C3-C7 alkylene to form an alicyclic ring, and the aryl of R 7 and R 8 is C1- It may be further substituted with one or more selected from C20 alkyl and haloC1-C20 alkyl.
  • the metal complex may be a metal complex represented by Formula 1-2 below.
  • X 1 is halogen
  • R 1 to R 5 are each independently C1-C10 alkyl
  • R 9 is C 1 -C 10 alkyl or C 6 -C 12 aryl, wherein the aryl of R 9 may be further substituted with one or more selected from C 1 -C 10 alkyl, halogen, C 1 -C 10 alkoxy and halo C 1 -C 10 alkyl;
  • R 10 and R 11 are each independently C1-C10 alkyl
  • c and d are each independently an integer from 0 to 5.
  • the metal complex may be used in an amount of 0.01 to 0.1 mol with respect to 1 mol of the prochiral 1,4,2-dioxazol-5-one compound.
  • the base may be used in an amount of 0.01 to 0.1 mol based on 1 mol of the prochiral 1,4,2-dioxazol-5-one compound.
  • the base is NaBAr F 4 (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), AgSbF 6 (Silver hexafluoroantimonate(V)), AgNTf 2 (Silver bis(trifluoromethanesulfonyl)imide), AgBF 4 ( Silver tetrafluoroborate), AgPF 6 (Silver hexafluorophosphate), AgOTf Silver trifluoromethanesulfonate), AgOAc (Silver acetate), or the like.
  • the amidation may be performed at 20 to 60 °C.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-1 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-1.
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-2 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound of Formula 3-2.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-3 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-3.
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido;
  • R 22a is C6-C20 aryl.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-4 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-4.
  • L 1 is C3-C7 alkylene with or without fused ring
  • R 23 is hydrogen or C1-C20 alkyl, and the alkyl of R 23 may be further substituted with C6-C20 aryl or phthalimido.
  • the present invention provides a metal complex represented by the following formula (4).
  • X 2 is halogen
  • R 31 to R 35 are each independently hydrogen or C1-C20 alkyl
  • R 36 is C 6 -C 20 aryl substituted with one or more selected from C 1 -C 20 alkoxy and halogen, or C 6 -C 20 aryl with C 1 -C 20 alkyl substituted;
  • R 37 and R 38 are each independently C6-C20 aryl, and the aryl of R 37 and R 38 may be further substituted with one or more selected from C1-C20 alkyl and haloC1-C20 alkyl;
  • R 36 is C6-C20 aryl substituted with C1-C20 alkyl
  • R 37 and R 38 are each independently C6-C20 aryl substituted with one or more selected from C1-C20 alkyl and halo C1-C20 alkyl. .
  • the metal complex may be represented by the following formula 4-1.
  • X 2 is halogen
  • R 31 to R 35 are each independently C1-C10 alkyl
  • R 36 is C1-C10 alkoxy substituted C6-C12 aryl or halogen substituted C6-C12 aryl.
  • the metal complex may be represented by the following formula 4-2.
  • X 2 is halogen
  • R 31 to R 35 are each independently C1-C10 alkyl
  • R 36 is C1-C10 alkyl substituted C6-C12 aryl
  • R 39 and R 40 are each independently C 1 -C 10 alkyl
  • e and f are each independently an integer of 1 to 3.
  • the metal complex may be one or more selected from the following structures.
  • the method for preparing a chiral gamma-lactam compound of the present invention provides excellent enantiomeric properties from prochiral 1,4,2-dioxazol-5-one compounds using a metal complex containing a chiral ethylenediamine ligand as a catalyst under mild conditions.
  • the chiral gamma-lactam compound having selectivity can be efficiently synthesized in a short step, and mass production of the chiral gamma-lactam compound is possible, which is commercially available.
  • a metal complex incorporating a chiral ethylenediamine ligand is employed as a catalyst for the amidation reaction of a prochiral 1,4,2-dioxazol-5-one compound. It is possible to effectively suppress the decomposition of carbonylnitrene, an intermediate produced during the reaction, and the formation of by-product isocyanate.
  • the chiral gamma-lactam compound prepared according to the production method of the present invention can be very usefully applied as an intermediate and synthetic unit in various fields such as various natural products and pharmaceuticals.
  • the metal complex of the present invention is very useful as a catalyst for preparing a chiral gamma-lactam compound from a prochiral 1,4,2-dioxazol-5-one compound.
  • alkyl refers to a monovalent straight chain or ground saturated hydrocarbon radical consisting only of carbon and hydrogen atoms.
  • the alkyl may have 1 to 20 carbon atoms.
  • the alkyl may have 1 to 10 carbon atoms.
  • the alkyl may have 1 to 7 carbon atoms.
  • Examples of such alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, nonyl, decyl, dodecyl, tetradecyl, and the like.
  • alkoxy in the present specification means an -O-alkyl radical, where “alkyl” is as defined above. Specific examples include, but are not limited to, methoxy, ethoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, and the like.
  • aryl refers to an aromatic ring monovalent organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, suitably 4 to 7, preferably 5 or 6 ring atoms for each ring. It may include a single or fused ring system including, and may include a form in which a plurality of aryl is connected by a single bond.
  • the ring reactor may have 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.
  • aryloxy in the present specification means a -O-aryl radical, where "aryl” is as defined above.
  • aryloxy radicals include, but are not limited to, phenoxy, naphthoxy, and the like.
  • halo or “halogen” in this specification refers to a halogen group element, and includes, for example, fluoro, chloro, bromo and iodo.
  • haloalkyl in this specification means an alkyl radical substituted with at least one halogen, where “alkyl” is as defined above.
  • alkyl is as defined above.
  • haloalkyl radicals include, but are not limited to, fluoromethyl, trifluoromethyl, bromomethyl, perfluoroethyl, and the like.
  • cycloalkyl as used herein is a non-aromatic carbocyclic monovalent radical consisting of one or more rings, and may include all saturated or unsaturated monocyclic, polycyclic or spirocyclic forms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, bicyclo[3.1.0]hexyl, bicyclo[4.1.0]heptyl (bicyclo[ 4.1.0]heptyl), bicyclo[2.2.1]heptyl, adamantly, decalinyl, and the like, but are not limited thereto.
  • alkenyl in this specification may be partially saturated with a straight chain or ground unsaturated hydrocarbon monovalent radical containing at least one double bond between two or more carbon atoms. Specifically, ethenyl, propenyl, prop-1-en-2yl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl , 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, isoprenyl, geranyl, 5-tetradecenyl, and the like.
  • alkynyl in this specification may be partially saturated with a straight chain or ground unsaturated hydrocarbon monovalent radical containing at least one triple bond between two or more carbon atoms. Specifically, but not limited to ethynyl (ethynyl), propynyl (propynyl), butynyl (butynyl) 1,3-butadiynyl (1,3-Butadiynyl) and the like.
  • alkylene in the present specification means a divalent straight chain or ground saturated hydrocarbon divalent group composed of only carbon and hydrogen atoms, specifically methylene, ethylene, propylene, isopropylene, butylene, isobutylene, t-butyl Styrene, pentylene, hexylene, octylene, nonylene, and the like.
  • the present invention relates to a method for preparing a chiral gamma-lactam compound and a novel metal complex therefor, more specifically, using a metal complex containing a chiral ethylenediamine ligand as a catalyst, prochiral 1,4,2-dioxazole
  • the present invention provides a prochiral 1,4,2-dioxazol-5-one compound represented by Chemical Formula 2 in the presence of a metal complex represented by Chemical Formula 1 and a base.
  • Amidation provides a method for preparing a chiral gamma-lactam compound represented by Formula 3 below.
  • M is iridium (III), rhodium (III) or cobalt (III);
  • X 1 is halogen
  • R 1 to R 5 are each independently hydrogen or C1-C20 alkyl
  • R a and R b are each independently C1-C20 alkyl, C1-C20 alkoxy, C6-C20 aryl, C6-C20 aryloxy or -NR c R d , and alkyl, alkoxy, aryl of R a and R b and Aryloxy may be further substituted with one or more selected from C1-C20 alkyl, halogen, C1-C20 alkoxy, nitro and halo C1-C20 alkyl;
  • R c and R d are each independently hydrogen or C1-C20 alkyl
  • R 7 and R 8 are each independently C1-C20 alkyl or C6-C20 aryl, or R 7 and R 8 may be connected to each other to form a ring, and alkyl and aryl of R 7 and R 8 are C1- It may be further substituted with one or more selected from C20 alkyl, halogen, C1-C20 alkoxy, nitro and halo C1-C20 alkyl.)
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido;
  • R 22 and R 23 are each independently hydrogen or C1-C20 alkyl, and the alkyl of R 23 may be further substituted with C6-C20 aryl or phthalimido;
  • R 21 to R 23 may be connected to adjacent substituents to form a ring.
  • the method for preparing a chiral gamma-lactam compound of the present invention employs a different ligand from a conventional catalyst, that is, a metal complex incorporating a chiral ethylenediamine ligand as a catalyst, and prochiral 1,4,2-di under mild conditions.
  • a chiral gamma-lactam compound having high enantioselectivity can be easily prepared through a nitrogenation reaction that converts the carbon-hydrogen bond of the oxazol-5-one compound into a carbon-nitrogen bond, that is, amidation.
  • the metal complex used as a catalyst in the method for preparing a chiral gamma-lactam compound of the present invention has excellent catalytic activity compared to a conventional catalyst by introducing a different ligand from the conventional catalyst, that is, a chiral ethylenediamine ligand, and has a mirror image.
  • the property selectivity is also remarkably improved so that a chiral gamma-lactam compound can be easily prepared from a prochiral 1,4,2-dioxazol-5-one compound with high selectivity and yield.
  • the metal complex of Formula 1 may be an iridium (III) complex.
  • R 7 and R 8 may be connected to C 3 -C 7 alkylene to form an alicyclic ring.
  • R 21 to R 23 may be connected to each other to form a fused ring, and an example of the formed fused ring is adamantane.
  • the metal complex may be a metal complex represented by the following Chemical Formula 1-1.
  • X 1 is halogen
  • R 1 to R 5 are each independently hydrogen or C1-C20 alkyl
  • R 9 is C 1 -C 20 alkyl or C 6 -C 20 aryl, wherein the aryl of R 9 may be further substituted with one or more selected from C 1 -C 20 alkyl, halogen, C 1 -C 20 alkoxy and halo C 1 -C 20 alkyl;
  • R 7 and R 8 are each independently C6-C20 aryl, or R 7 and R 8 may be connected to C3-C7 alkylene to form an alicyclic ring, and the aryl of R 7 and R 8 is C1- It may be further substituted with one or more selected from C20 alkyl and haloC1-C20 alkyl.
  • the metal complex may be a metal complex represented by the following Chemical Formula 1-2.
  • X 1 is halogen
  • R 1 to R 5 are each independently C1-C10 alkyl
  • R 9 is C 1 -C 10 alkyl or C 6 -C 12 aryl, wherein the aryl of R 9 may be further substituted with one or more selected from C 1 -C 10 alkyl, halogen, C 1 -C 10 alkoxy and halo C 1 -C 10 alkyl;
  • R 10 and R 11 are each independently C1-C10 alkyl
  • c and d are each independently an integer from 0 to 5.
  • X 1 in the metal complex of Formula 1-2 is halogen;
  • R 1 to R 5 are each independently C1-C7 alkyl;
  • R 9 is C1-C7 alkylC6-C12 aryl;
  • R 10 and R 11 are each independently C1-C7 alkyl;
  • c and d may each independently be an integer of 1 to 5, more preferably an integer of 1 to 3.
  • the metal complex may be exemplified by the following structure, but is not limited thereto.
  • the amount of the base is not particularly limited, but in terms of suppressing the formation of by-products, the base is preferably 1 mol of the prochiral 1,4,2-dioxazol-5-one compound It can be used in an amount of 0.01 to 0.1 moles, more preferably 0.04 to 0.1 moles, and when a base is used in the above range, formation of by-products can be significantly suppressed.
  • the base include NaBAr F 4 (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), AgSbF 6 (Silver hexafluoroantimonate(V)), AgNTf 2 (Silver bis(trifluoromethanesulfonyl)imide), AgBF 4 ( Silver tetrafluoroborate), AgPF 6 (Silver hexafluorophosphate), AgOTf Silver trifluoromethanesulfonate), AgOAc (Silver acetate), etc., can be used alone or in combination of two or more.
  • the base may be preferably one or two or more selected from NaBAr F 4 , AgSbF 6 , AgNTf 2 and AgBF 4 , and more preferably one or two or more selected from NaBAr F 4 and AgNTf 2 .
  • the metal complex is used as a catalyst for the amidation reaction, and the amount of use is not particularly limited, but preferably 1 mol of the prochiral 1,4,2-dioxazol-5-one compound It may be used in an amount of 0.01 to 0.1 mol, more preferably 0.004 to 0.1 mol.
  • a metal complex is used in the above range, a chiral gamma-lactam compound having higher enantioselectivity can be prepared.
  • the base and metal complex can be used in the same amount in terms of preparing a chiral gamma-lactam compound having high enantioselectivity and effectively inhibiting the formation of byproducts.
  • the amidation reaction may be carried out under mild conditions, preferably 20 to 60 °C, more preferably 30 to 50 °C.
  • the reaction time of the amidation reaction may vary depending on the reactant, the amount of the reactant, the type of the solvent, and the amount of the solvent, and is not particularly limited.
  • the amidation reaction may be performed under an organic solvent, and there is no need to limit the organic solvent as long as it does not react with the reactants.
  • organic solvent for example, dichloromethane, dichloroethane, tetrachloroethane, acetonitrile, nitromethane, toluene, benzene as the organic solvent
  • the mixture may be used alone or in combination of two or more, and one or more selected from dichloromethane, dichloroethane and tetrachloroethane may be used as the amidation reaction solvent in consideration of the solubility of reactants and ease of removal.
  • the chiral gamma-lactam compound prepared by the present invention may have an enantiomeric ratio (er) value of 80:20 to >99:1.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Chemical Formula 2-1, from which The prepared chiral gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-1.
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido.
  • R 21 is C1-C20 alkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, aryl of R 21 , Alkenyl or alkynyl is further substituted with any one or more selected from C1-C20 alkyl, halogen, halo C1-C20 alkyl, nitro, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl and phthalimido Can be.
  • prochiral 1,4,2-dioxazol-5-one compound of Formula 2-1 may be exemplified by the following structure.
  • chiral gamma-lactam compound of Formula 3-1 prepared from the prochiral 1,4,2-dioxazol-5-one compound of Formula 2-1 may be exemplified by the following structure.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-2 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound of Formula 3-2.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-3 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-3.
  • R 21 is C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, cycloalkyl, aryl, alkenyl or alkynyl of R 21 is C1 -C20alkyl, halogen, haloC1-C20alkyl, nitro, cyano, C3-C20cycloalkyl, C6-C20aryl, C2-C20alkenyl and phthalimido;
  • R 22a is C6-C20 aryl.
  • R 21 is C1-C20 alkyl, C6-C20 aryl, C2-C20 alkenyl or C2-C20 alkynyl, and alkyl, aryl of R 21 , Alkenyl or alkynyl is further substituted with any one or more selected from C1-C20 alkyl, halogen, halo C1-C20 alkyl, nitro, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl and phthalimido Can be; R 22a may be C6-C20 aryl.
  • prochiral 1,4,2-dioxazol-5-one compound of Chemical Formula 2-3 may be exemplified by the following structure.
  • chiral gamma-lactam compound of Formula 3-3 prepared from the prochiral 1,4,2-dioxazol-5-one compound of Formula 2-3 may be exemplified by the following structure.
  • the prochiral 1,4,2-dioxazol-5-one compound is a prochiral 1,4,2-dioxazol-5-one compound of Formula 2-4 below, and the chiral
  • the gamma-lactam compound may be a chiral gamma-lactam compound represented by the following Chemical Formula 3-4.
  • L 1 is C3-C7 alkylene with or without fused ring
  • R 23 is hydrogen or C1-C20 alkyl, and the alkyl of R 23 may be further substituted with C6-C20 aryl or phthalimido.
  • L 1 is C3-C5 alkylene with or without fused ring, specifically , , , , , , , or ego;
  • R 23 may be hydrogen or C 1 -C 20 alkyl substituted with phthalimido.
  • prochiral 1,4,2-dioxazol-5-one compound of Formula 2-4 may be exemplified by the following structure.
  • chiral gamma-lactam compound of Formula 3-4 prepared from the prochiral 1,4,2-dioxazol-5-one compound of Formula 2-4 may be exemplified by the following structure.
  • the method for preparing a chiral gamma-lactam compound of the present invention is a chiral ethylenediamine ligand having a specific functional group under very mild conditions, i.e., one terminal amine is present as an amino group, and the other terminal amine is bound to a metal (III) but carbonyl Or a sulfonyl functional group is bonded, the carbon atom constituting ethylene is a substituted or unsubstituted alkyl or aryl group is bonded to each other or by using a metal complex containing a ligand having a structure of a ring to form a prochiral 1, It is possible to efficiently synthesize chiral gamma-lactam compounds with high enantioselectivity that can be usefully used as intermediates for the production of various natural products and pharmaceuticals from 4,2-dioxazol-5-one compounds in one step. This is a very effective method.
  • the method for preparing the chiral gamma-lactam compound of the present invention uses a specific metal complex as a catalyst, and thus, a precursor having a prochiral type structure of hydrocarbons rich in nature, prochiral 1,4,2-dioxazole- Stabilizes the carbonyl nitrene, an intermediate produced during the amidation reaction of 5-on compounds, and inhibits its decomposition and the formation of by-products, thereby making the chiral gamma-lactam compound, which is a raw material for pharmaceuticals or chemicals, a high mirror image under mild conditions. Isomers can be synthesized selectively.
  • the present invention provides a novel metal complex represented by the following Chemical Formula 4, which can be usefully used as a catalyst for preparing chiral gamma-lactams having excellent activity and chemical selectivity:
  • X 2 is halogen
  • R 31 to R 35 are each independently hydrogen or C1-C20 alkyl
  • R 36 is C 6 -C 20 aryl substituted with one or more selected from C 1 -C 20 alkoxy and halogen, or C 6 -C 20 aryl with C 1 -C 20 alkyl substituted;
  • R 37 and R 38 are each independently C6-C20 aryl, and the aryl of R 37 and R 38 may be further substituted with one or more selected from C1-C20 alkyl and haloC1-C20 alkyl;
  • R 36 is C6-C20 aryl substituted with C1-C20 alkyl
  • R 37 and R 38 are each independently C6-C20 aryl substituted with one or more selected from C1-C20 alkyl and halo C1-C20 alkyl. .
  • the metal complex of Chemical Formula 4 is a catalyst for the preparation of a chiral gamma-lactam compound, which has excellent catalytic activity, and unlike conventional catalysts, amidates prochiral 1,4,2-dioxazol-5-one compounds under mild conditions. Chiral gamma-lactams with high enantioselectivity can be prepared.
  • the metal complex may be a metal complex represented by the following Chemical Formula 4-1.
  • X 2 is halogen
  • R 31 to R 35 are each independently C1-C10 alkyl
  • R 36 is C1-C10 alkoxy substituted C6-C12 aryl or halogen substituted C6-C12 aryl.
  • the metal complex may be a metal complex represented by the following Chemical Formula 4-2.
  • X 2 is halogen
  • R 31 to R 35 are each independently C1-C10 alkyl
  • R 36 is C1-C10 alkyl substituted C6-C12 aryl
  • R 39 and R 40 are each independently C 1 -C 10 alkyl
  • e and f are each independently an integer of 1 to 3.
  • X 2 is chloro or bromo, more preferably chloro;
  • R 31 to R 35 are each independently C 1 -C 7 alkyl, more preferably C 1 -C 4 alkyl;
  • R 36 is C6-C12 aryl substituted with C1-C7 alkyl, more preferably phenyl, biphenyl or naphthyl substituted with C1-C4 alkyl;
  • R 39 and R 40 are each independently C 1 -C 7 alkyl, more preferably C 1 -C 4 alkyl;
  • e and f may each independently be an integer of 2 or 3, more preferably an integer of 3.
  • the metal complex may be a metal complex represented by the following Chemical Formula 4-3.
  • Ts is tosyl; R 31 to R 35 are each independently C1-C4 alkyl; R 41 to R 46 are each independently C1-C4 alkyl.
  • the metal complex of Chemical Formula 4 can be used as a catalyst capable of easily preparing a chiral gamma-lactam compound having high enantioselectivity from a prochiral 1,4,2-dioxazol-5-one compound. have.
  • the metal complex of Chemical Formula 4 may be specifically exemplified by the following structure, but is not limited thereto.
  • High resolution mass spectrum was obtained using an Agilent technologies 6220 TOF LC/MS spectrometer (ESI) or JEOL JMS-AX 505WA (FAB). High resolution mass spectra were obtained from the Korea Basic Science Institute (Daegu) using the EI or FAB method, and also from the KAIST Research Analysis Center using the Electrospray ionization (ESI) method. Melting point (mp) was measured using Buchi Melting Point M-565. High pressure liquid chromatography (HPLC) analysis was performed at 32° C. using a Shimadzu Prominence HPLC system consisting of an LC20A pump and an SPD-M20A photodiode array detector. Optical rotation was confirmed using a Jasco P-2000 Polarimeter equipped with a temperature controller.
  • HPLC high pressure liquid chromatography
  • D-Proline, D- tert- leucine, (1 S ,2 S )-2-amino-1,2-diphenylethan-1-ol, D-prolinamide and N - ⁇ (1 S ,2 S )-2-amino -1,2-diphenylethyl ⁇ -4-methylbenzenesulfonamide was purchased from Sigma-Aldrich, TCI chemical company, and Strem, and used without further purification.
  • Iridium complex Ir10 was obtained using N - ⁇ (1 S ,2 S )-2-amino-1,2-dimesitylethyl ⁇ -4-methylbenzenesulfonamide as a ligand.
  • Iridium complex Ir7 was obtained using N - ⁇ (1 S ,2 S )-2-amino-1,2-diphenylethyl ⁇ -4-methoxybenzenesulfonamide as a ligand.
  • Iridium complex Ir8 was obtained using N - ⁇ (1 S ,2 S )-2-amino-1,2-diphenylethyl ⁇ -4-fluorobenzenesulfonamide as a ligand.
  • Iridium complex Ir5 was obtained using N - ⁇ (1 S ,2 S )-2-Aminocyclohexyl ⁇ -4-methylbenzenesulfonamide as a ligand.
  • Iridium complex Ir6 was obtained using N - ⁇ (1 S ,2 S )-2-amino-1,2-diphenylethyl ⁇ -4-methylbenzenesulfonamide as a ligand.
  • Iridium complex Ir9 was obtained using N - ⁇ (1 S ,2 S )-2-amino-1,2-diphenylethyl ⁇ -methylsulfonamide as a ligand.
  • Iridium complex Ir-A was obtained using D-Proline as the amino acid.
  • Iridium complex Ir-B was obtained using D- tert- leucine as an amino acid.
  • Iridium complex Ir-C was obtained by reacting in the same manner as in Example 1, except that (1 S ,2 S )-2-amino-1,2-diphenylethan-1-ol (0.50 mmol) was used as the ligand. .
  • reaction mixture was washed 3 times with CH 2 Cl 2 , cooled to 0° C., and 3N HCl aqueous solution was added and stirred. After 1 hour, DCM was added and extracted. The obtained organic layer was washed with water, dried over anhydrous MgSO 4 and filtered. The filtrate was concentrated under reduced pressure and then purified by flash chromatography (eluent: n -hexane/EtOAc) to obtain an olefin compound.
  • Triethylphosphonoacetate (3.70 g, 1.65 eq) was added to a round bottom flask containing NaH (60% dispersion in mineral oil, 600 mg, 1.5 eq) and anhydrous THF (25 mL) at 0° C., then warmed to room temperature, diphenyl acetone (2.10 g, 10 mmol) was added dropwise. After the reaction mixture was stirred for 12 hours, water was poured and extracted with DCM. The combined organic layers were washed with brine, dried over MgSO 4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (n-hexane/EtOAc) to obtain olefin compound Ethyl 3-benzyl-4-phenylbut-2-enoate.
  • 6-aminohexanoic acid (20 mmol), phthalic anhydride (3.0 g, 20 mmol), TEA (0.28 mL, 2.0 mmol) and toluene (20 mL) were added to a two-neck round bottom flask equipped with a Dean-Stark distiller, The mixture was refluxed at 130° C. for 4 hours. After cooling to room temperature, the solvent was removed under reduced pressure, DCM (150 mL) was added, and washed with an aqueous HCl solution (0.5-1.0 M, 100 mL ⁇ 2) and brine (100 mL).
  • the obtained organic layer was dried over anhydrous MgSO 4 , filtered through a celite pad, and washed with DCM (30 mL) to obtain 6-(1,3-Dioxoisoindolin-2-yl)hexanoic acid.
  • the carboxylic acid compound, oxalyl chloride (2.0 eq), DMF (dimethylformamide) (2 drops) and DCM (0.33 M) were mixed at 0°C. After stirring at room temperature for 2 hours, it was concentrated to obtain an acid chloride compound. The obtained acid chloride compound was used directly in the next reaction without further purification.
  • HPLC High Performance Liquid Chromatography
  • Table 1 shows the reaction results of different catalysts under the same reaction conditions.
  • NaBAr F 4 sodium tetrakis ⁇ 3,5-bis(trifluoromethyl)phenyl ⁇ borate
  • the terminal nitrogen atom has a structure in which methyl is substituted instead of a hydrogen atom, and the yield of by-products increases with the number of substitutions of methyl, and the desired chiral gamma-lactam It can be seen that the enantiomeric ratio (er) of the compound is significantly reduced.
  • HPLC High Performance Liquid Chromatography
  • Table 2 shows the results of the presence or absence of a catalyst, the type of base and solvent, or the reaction temperature and reaction time.
  • NaBAr F 4 sodium tetrakis ⁇ 3,5-bis(trifluoromethyl)phenyl ⁇ borate
  • Example III Preparation of various chiral compounds using chiral gamma-lactam compounds
  • Metal complex Ir10 (65 mg, 4 mol%), sodium tetrakis ⁇ 3,5-bis(trifluoromethyl)phenyl ⁇ borate (NaBAr F 4 , 71 mg, 4 mol%) and anhydrous TCE (10 mL) under argon atmosphere 50 It was added to a mL round-bottom flask. After stirring at room temperature for 5 minutes, 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (2.0 mmol, 410 mg) was added directly and stirred vigorously at 50° C. for 24 hours.
  • reaction mixture was washed with CH 2 Cl 2 (10 mL), filtered through a celite pad, and then purified by flash chromatography (eluent: n-hexane/EtOAc) to 4-(2-Oxo-5. -phenylpyrrolidin-1-yl)benzonitrile was obtained.
  • 5-Phenylpyrrolidin-2-one (1) (98:2 er, 16 mg, 0.1 mmol) was placed in a reaction vial, followed by Lawesson's reagent (20 mg, 0.05 mmol) and anhydrous toluene (0.5 mL) under an argon atmosphere. ) was added and stirred at 80° C. for 6 hours. Deionized water was added to the reaction mixture, extracted three times with EtOAc, and dried under reduced pressure. The residue was purified by flash chromatography (eluent: n-hexane/EtOAc) to obtain 5-Phenylpyrrolidine-2-thione.
  • N-Benzyl-5-phenylpyrrolidin-2-one 25 mg, 0.1 mmol was added to the reaction vial, then LiAlH 4 (16 mg, 0.5 mmol) and anhydrous THF (0.5 mL) were added under an argon atmosphere and stirred at room temperature for 6 hours. After completion of stirring, the reaction mixture was washed with EtOAc, and quenched by adding 3 drops of deionized water. Water was removed with MgSO 4 , filtered through a celite pad, and the solvent was removed under reduced pressure to give N -Benzyl-2-phenylpyrrolidine.
  • 5-Phenylpyrrolidin-2-one (1) (98:2 er, 16 mg, 0.1 mmol) was mixed with 6N hydrochloric acid (0.6 mL) and heated at 100° C. for 12 hours. After cooling to room temperature, the solvent was removed under reduced pressure. After the addition of EtOAc (1 mL), the reaction mixture was suspended by sonication and stirred at room temperature for 1 hour. The solid product was filtered while washing with MeOH to obtain 4-Amino-4-phenylbutanoic acid hydrochloride.
  • the chiral gamma-lactam compound prepared from the prochiral 1,4,2-dioxazol-5-one compound using the metal complex of the present invention as a catalyst is a chiral N without deterioration of optical purity. It can be seen that it can be very useful in the production of synthetic intermediates and raw materials such as pharmaceuticals and natural products such as arylated lactams, thioamides, chiral pyrrolidines, and unnatural gamma-amino acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 신규 금속 착체에 관한 것으로, 본 발명의 키랄 감마-락탐 화합물의 제조방법은 키랄 에틸렌디아민 리간드를 포함하는 금속 착체를 촉매로 이용한 온화한 조건 하 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 우수한 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 효율적으로 제조할 수 있다.

Description

키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체
본 발명은 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 신규 금속 착체에 관한 것으로, 보다 상세하게는 키랄 에틸렌디아민 리간드를 포함하는 금속 착체를 촉매로 이용하여 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 키랄 감마-락탐 화합물을 우수한 거울상이성질선택성으로 효율적으로 제조하는 방법 및 이를 위한 신규 금속 착체에 관한 것이다.
키랄(chiral) 화합물은 특정 광학 활성을 갖는 화합물로서, 제약업계 및 정밀화학 분야에서 이용되는 중요한 화합물이며, 전 세계 의약품 시장에서 차지하는 비중이 날로 증가하는 추세에 있는 매우 중요한 화합물이다.
키랄 사이클릭 아미드(chiral cyclic amide)는 다양한 생물학적 활성을 나타내는 중요한 분자 골격이다. 대부분의 항생제에 존재하는 β-락탐과 더불어, γ-키랄 중심을 갖는 5원 락탐은 천연물 및 항암제를 포함한 효과적인 임상 약물 모두에서 기능적 핵심 코어로서 지속적으로 인식되고 있다. 또한, 키랄 감마-락탐 화합물에 대한 수요 역시 지속적으로 증가하고 있는 추세이다.
Figure PCTKR2019016905-appb-img-000001
Figure PCTKR2019016905-appb-img-000002
이러한 구조적 기본단위를 구성하기 위한 효율적이고 선택적인 방법을 개발하기 위한 수많은 연구에도 불구하고, 키랄성 결합(chirality bond)을 형성하기 위한 합성 연구는 찾아보기 어려웠다.
최근에 이르러서야, 키랄 중심의 직접적인 형성을 위한 다수의 비대칭 합성법(asymmetric synthesis)이 개발되었다. 대표적인 예로는 알릴 알콜의 거울상이성질선택적 고리화(enantioselective cyclization), 불포화 락탐의 수소화 및 N-피리딜 락탐의 C-H 활성화 등이 있다. 그러나 종래 합성법들은 모두 기질에 여러 작용기를 미리 도입시켜야만 하기 때문에, 촉매화학에서 가장 중요하게 주장하는 반응 내의 원자 경제성(atom economy) 및 비용 효율성 측면에서 비효율적이다.
한편, 지난 20년 동안 많은 연구 그룹에서 C-H 아미드화(C-H amidation) 반응을 통해 설파미데이트(sulfamidate), 설폰아미드(sulfonamide) 및 카바메이트(carbamate)와 같은 키랄 아자시클릭(azacyclic) 화합물의 합성법을 보고했다.
Figure PCTKR2019016905-appb-img-000003
Che 그룹에 의하여 키랄 포피린을 갖는 루테늄 촉매가 키랄 설파미데이트의 거울상이성질선택적 합성을 가능케 함이 처음으로 발견되었다. 이 후, 아미노산 또는 카복사미데이트-기반 리간드, 루테늄-옥사졸린, 이리듐-금속살렌 착체, 및 금속효소(metalloenzyme)를 가진 디로듐(dirhodium) 착체를 포함하는 키랄 촉매가 보고되었다.
그러나, 이미노아이오디난(iminoiodinane) 및 유기 아자이드와 같은 관련 나이트렌(nitrene) 전구체의 용이한 접근성과 견고성, 및 반응성이 높은 금속-나이트레노이드(metal-nitrenoid) 중간체로부터 부반응 경로의 부재로 인하여, 설포닐- 또는 카바메이트-기반의 기질에 대한 고리화에 대부분 한정되어 있었다.
반면, 키랄 락탐, 특히 키랄 감마-락탐 화합물을 합성하기 위한 카복사미드의 비대칭 C-H 아미드화는 견고하지만 반응성이 뛰어난 카보닐나이트렌 전구체의 미개발 및 핵심 금속-나이트레노이드 중간체의 이소시아네이트로의 원치않는 분해로 인하여 아직까지 찾아보기 어렵다.
또한, 키랄 감마-락탐 화합물을 제조할 수 있는 금속 촉매에 대한 연구 역시 아직은 미비한 실정이다.
따라서, 의약 및 화학분야에서 매우 중요한 핵심 중간체인 키랄 감마-락탐 화합물을 자연계에 풍부한 탄화수소 화합물로부터 높은 선택성 및 수율로 효율적으로 제조하는 방법의 개발이 절실히 요구되고 있다.
이에 본 발명자들은 상기와 같은 문제점을 해결하고자 노력하던 중, 견고하면서 반응성이 뛰어난 카보닐나이트렌 전구체로 프로키랄 1,4,2-디옥사졸-5-온 화합물을 사용하고, 특정 작용기를 가지는 키랄 에틸렌디아민 리간드를 포함하는 금속 착체를 촉매로 사용하는 경우 온화한 조건 하에서 비대칭 C-H 아미드화를 통해 중간체인 금속-카보닐나이트렌을 안정화시켜 부산물의 형성을 억제하여 우수한 거울상이성질선택성을 가진 키랄 감마-락탐 화합물이 제조됨을 발견하고, 본 발명을 완성하였다.
본 발명은 다양한 천연물, 의약품의 제조를 위한 중간체로 유용하게 이용될 수 있는 키랄 감마-락탐 화합물을 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 키랄 감마-락탐 화합물을 제조하기 위한 촉매로, 신규 금속 착체를 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 금속 착체 및 염기의 존재 하에 하기 화학식 2로 표시되는 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물을 아미드화하여 하기 화학식 3으로 표시되는 키랄(chiral) 감마-락탐 화합물을 제조하는 방법을 제공한다.
[화학식 1]
Figure PCTKR2019016905-appb-img-000004
(상기 화학식 1에서,
M은 이리듐(III), 로듐(III) 또는 코발트(III)이며;
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 6은 -C(=O)-R a 또는 -S(=O) 2-R b이며;
R a 및 R b는 각각 독립적으로 C1-C20알킬, C1-C20알콕시, C6-C20아릴, C6-C20아릴옥시 또는 -NR cR d이며, 상기 R a 및 R b의 알킬, 알콕시, 아릴 및 아릴옥시는 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R c 및 R d는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 7 및 R 8은 각각 독립적으로 C1-C20알킬 또는 C6-C20아릴이거나, 상기 R 7과 R 8은 서로 연결되어 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 알킬 및 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
[화학식 2]
Figure PCTKR2019016905-appb-img-000005
[화학식 3]
Figure PCTKR2019016905-appb-img-000006
(상기 화학식 2 및 3에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R 22 및 R 23은 각각 독립적으로 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있고;
상기 R 21 내지 R 23은 인접한 치환기와 연결되어 고리를 형성할 수 있다.)
일 실시예에 있어서, 상기 화학식 1에서 R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성할 수 있다.
일 실시예에 있어서, 상기 금속 착체는 하기 화학식 1-1로 표시되는 금속 착체일 수 있다.
[화학식 1-1]
Figure PCTKR2019016905-appb-img-000007
(상기 화학식 1-1에서,
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 9는 C1-C20알킬 또는 C6-C20아릴이며, 상기 R 9의 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R 7 및 R 8은 각각 독립적으로 C6-C20아릴이거나, 상기 R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
일 실시예에 있어서, 상기 금속 착체는 하기 화학식 1-2로 표시되는 금속 착체일 수 있다.
[화학식 1-2]
Figure PCTKR2019016905-appb-img-000008
(상기 화학식 1-2에서,
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 C1-C10알킬이며;
R 9는 C1-C10알킬 또는 C6-C12아릴이며, 상기 R 9의 아릴은 C1-C10알킬, 할로겐, C1-C10알콕시 및 할로C1-C10알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R 10 및 R 11는 각각 독립적으로 C1-C10알킬이며;
c 및 d는 각각 독립적으로 0 내지 5의 정수이다.)
일 실시예에 있어서, 상기 금속 착체는 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰로 사용될 수 있다.
일 실시예에 있어서, 상기 염기는 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰로 사용될 수 있다. 일 예로, 상기 염기는 NaBAr F 4 (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), AgSbF 6 (Silver hexafluoroantimonate(V)), AgNTf 2 (Silver bis(trifluoromethanesulfonyl)imide), AgBF 4 (Silver tetrafluoroborate), AgPF 6 (Silver hexafluorophosphate), AgOTf Silver trifluoromethanesulfonate), AgOAc (Silver acetate) 등에서 선택되는 하나 또는 둘 이상일 수 있다.
일 실시예에 있어서, 상기 아미드화는 20 내지 60℃에서 수행될 수 있다.
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-1의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-1의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-1]
Figure PCTKR2019016905-appb-img-000009
[화학식 3-1]
Figure PCTKR2019016905-appb-img-000010
(상기 화학식 2-1 및 3-1에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있다.)
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-2의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-2의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-2]
Figure PCTKR2019016905-appb-img-000011
[화학식 3-2]
Figure PCTKR2019016905-appb-img-000012
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-3의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-3의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-3]
Figure PCTKR2019016905-appb-img-000013
[화학식 3-3]
Figure PCTKR2019016905-appb-img-000014
(상기 화학식 2-3 및 3-3에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며;
R 22a은 C6-C20아릴이다.)
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-4의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-4의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-4]
Figure PCTKR2019016905-appb-img-000015
[화학식 3-4]
Figure PCTKR2019016905-appb-img-000016
(상기 화학식 2-4 및 3-4에서,
L 1은 융합고리를 포함하거나 포함하지 않는 C3-C7알킬렌이고;
R 23은 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있다.)
또한, 본 발명은 하기 화학식 4로 표시되는 금속 착체를 제공한다.
[화학식 4]
Figure PCTKR2019016905-appb-img-000017
(상기 화학식 4에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 36는 C1-C20알콕시 및 할로겐으로부터 선택되는 하나 이상으로 치환된C6-C20아릴, 또는 C1-C20알킬이 치환된 C6-C20아릴이며;
R 37 및 R 38은 각각 독립적으로 C6-C20아릴이며, 상기 R 37 및 R 38의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
단, R 36이 C1-C20알킬이 치환된 C6-C20아릴인 경우 R 37 및 R 38은 각각 독립적으로 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 치환된 C6-C20아릴이다.)
일 실시예에 있어서, 상기 금속 착체는 하기 화학식 4-1로 표시될 수 있다.
[화학식 4-1]
Figure PCTKR2019016905-appb-img-000018
(상기 화학식 4-1에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
R 36는 C1-C10알콕시가 치환된 C6-C12아릴 또는 할로겐이 치환된 C6-C12아릴이다.)
일 실시예에 있어서, 상기 금속 착체는 하기 화학식 4-2로 표시될 수 있다.
[화학식 4-2]
Figure PCTKR2019016905-appb-img-000019
(상기 화학식 4-2에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
R 36는 C1-C10알킬이 치환된 C6-C12아릴이며;
R 39 및 R 40는 각각 독립적으로 C1-C10알킬이며;
e 및 f는 각각 독립적으로 1 내지 3의 정수이다.)
일 실시예에 있어서, 상기 금속 착체는 하기 구조에서 선택되는 하나 이상일 수 있다.
Figure PCTKR2019016905-appb-img-000020
본 발명의 키랄 감마-락탐 화합물의 제조방법은 온화한 조건 하에서 키랄 에틸렌디아민 리간드를 포함하는 금속 착체를 촉매로 사용하여 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 우수한 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 짧은 단계로 효율적으로 합성할 수 있으며, 키랄 감마-락탐 화합물의 대량생산이 가능케하여 상업적으로 이용가능성이 높다.
또한, 본 발명의 키랄 감마-락탐 화합물의 제조방법은 키랄 에틸렌디아민 리간드를 도입한 금속 착체를 프로키랄 1,4,2-디옥사졸-5-온 화합물의 아미드화 반응의 촉매로 채용함으로써 아미드화 반응 중 생성되는 중간체인 카보닐나이트렌(carbonylnitrene)의 분해 및 이로 인한 부산물인 이소시아네이트(isocyanate)의 형성을 효과적으로 억제할 수 있다.
본 발명의 제조방법에 따라 제조된 키랄 감마-락탐 화합물은 다양한 천연물, 의약품 등의 다양한 분야의 중간체 및 합성단위체로 매우 유용하게 적용할 수 있다.
또한, 본 발명의 금속 착체는 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 키랄 감마-락탐 화합물을 제조하기 위한 촉매로 매우 유용하다.
이하, 본 발명에 대하여 보다 구체적으로 설명한다. 이 때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서 내 용어 “알킬”은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미한다. 상기 알킬은 1 내지 20개의 탄소원자를 가질 수 있다. 상기 알킬은 1 내지 10개의 탄소원자를 가질 수 있다. 상기 알킬은 1 내지 7개의 탄소원자를 가질 수 있다. 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 노닐, 데실, 도데실, 테트라데실 등을 포함하지만 이에 한정되지는 않는다.
본 명세서 내 용어 “알콕시”는 -O-알킬 라디칼을 의미하는 것으로, 여기서 ‘알킬’은 상기 정의한 바와 같다. 구체적인 예로는 메톡시, 에톡시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함되지만 이에 한정되지는 않는다.
본 명세서 내 용어 “아릴”은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 방향족 고리 1가의 유기 라디칼을 의미하는 것으로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함할 수 있으며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함할 수 있다. 고리 원자로 6 내지 20개의 탄소원자, 바람직하게는 6 내지 12개의 탄소원자를 가질 수 있다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐, 플루오레닐 등을 포함하지만, 이에 한정되지는 않는다.
본 명세서 내 용어 “아릴옥시”는 -O-아릴 라디칼을 의미하는 것으로, 여기서 ‘아릴’은 상기 정의한 바와 같다. 이러한 아릴옥시 라디칼의 예는 페녹시, 나프톡시 등을 포함하지만 이에 한정되지는 않는다.
본 명세서 내 용어 “할로” 또는 “할로겐”은 할로겐족 원소를 나타내며, 예컨대, 플루오로, 클로로, 브로모 및 요오도를 포함한다.
본 명세서 내 용어 “할로알킬”은 적어도 하나의 할로겐으로 치환된 알킬 라디칼을 의미하는 것으로, 여기서 ‘알킬’은 상기 정의한 바와 같다. 이러한 할로알킬 라디칼의 예는 플루오로메틸, 트리플루오로메틸, 브로모메틸, 퍼플루오로에틸 등을 포함하지만 이에 한정되지는 않는다.
본 명세서 내 용어 “시클로알킬”은 하나 이상의 고리로 구성된 비방향족 카보사이클릭 1가 라디칼로, 포화 또는 불포화된 단일고리, 다중고리 또는 스피로고리 형태를 모두 포함할 수 있다. 구체적인 예로는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 노보닐(norbornyl), 바이시클로[3.1.0]헥실(bicyclo[3.1.0]hexyl), 바이시클로[4.1.0]헵틸(bicyclo[4.1.0]heptyl), 바이시클로[2.2.1]헵틸(bicyclo[2.2.1]heptyl), 아다만틸(adamantly), 데칼리닐(decalinyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 명세서 내 용어 “알케닐”은 두 개 이상의 탄소 원자들 사이에 하나 이상의 이중 결합을 포함하는 직쇄 또는 분쇄의 불포화 탄화수소 1가 라디칼로, 부분적으로 포화될 수 있다. 구체적으로 에테닐, 프로펜일, 프로프-1-엔-2일, 1-부테닐, 2-부테닐, 이소부틸레닐, 1-펜테닐, 2-펜테닐, 3-메틸-1-부테닐, 2-메틸-2-부테닐, 2,3-디메틸-2-부테닐, 이소프레닐, 제라닐(geranyl), 5-테트라데세닐 등을 포함하지만 이에 한정되지는 않는다.
본 명세서 내 용어 “알키닐”은 두 개 이상의 탄소 원자들 사이에 하나 이상의 삼중 결합을 포함하는 직쇄 또는 분쇄의 불포화 탄화수소 1가 라디칼로, 부분적으로 포화될 수 있다. 구체적으로 에티닐(ethynyl), 프로피닐(propynyl), 부티닐(butynyl) 1,3-부타디이닐(1,3-Butadiynyl) 등을 포함하지만 이에 한정되지는 않는다.
본 명세서 내 용어 “알킬렌”은 탄소 및 수소 원자만으로 구성된 2가의 직쇄 또는 분쇄 포화 탄화수소 2가 기를 의미하는 것으로, 구체적으로 메틸렌, 에틸렌, 프로필렌, 이소프로필렌, 부틸렌, 이소부틸렌, t-부틸렌, 펜틸렌, 헥실렌, 옥틸렌, 노닐렌 등을 포함하지만 이에 한정되지는 않는다.
본 발명은 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 신규 금속 착체에 관한 것으로, 보다 상세하게는 키랄 에틸렌디아민 리간드를 포함하는 금속 착체를 촉매로 이용하여 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 우수한 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 효율적으로 제조하는 방법 및 이를 위한 신규 금속 착체에 관한 것이다.
본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 1로 표시되는 금속 착체 및 염기의 존재 하에 하기 화학식 2로 표시되는 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물을 아미드화하여 하기 화학식 3으로 표시되는 키랄(chiral) 감마-락탐 화합물을 제조하는 방법을 제공한다.
[화학식 1]
Figure PCTKR2019016905-appb-img-000021
(상기 화학식 1에서,
M은 이리듐(III), 로듐(III) 또는 코발트(III)이며;
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 6은 -C(=O)-R a 또는 -S(=O) 2-R b이며;
R a 및 R b는 각각 독립적으로 C1-C20알킬, C1-C20알콕시, C6-C20아릴, C6-C20아릴옥시 또는 -NR cR d이며, 상기 R a 및 R b의 알킬, 알콕시, 아릴 및 아릴옥시는 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R c 및 R d는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 7 및 R 8은 각각 독립적으로 C1-C20알킬 또는 C6-C20아릴이거나, 상기 R 7과 R 8은 서로 연결되어 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 알킬 및 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
[화학식 2]
Figure PCTKR2019016905-appb-img-000022
[화학식 3]
Figure PCTKR2019016905-appb-img-000023
(상기 화학식 2 및 3에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며;
R 22 및 R 23은 각각 독립적으로 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있고;
상기 R 21 내지 R 23은 인접한 치환기와 연결되어 고리를 형성할 수 있다.)
본 발명의 키랄 감마-락탐 화합물의 제조방법은 종래의 촉매와는 상이한 리간드, 즉 키랄 에틸렌디아민 리간드를 도입한 금속 착체를 촉매로 채용하여 온화한 조건 하에서 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물의 탄소-수소 결합을 탄소-질소 결합으로 바꾸는 질소화 반응, 즉 아미드화를 통해 높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 용이하게 제조할 수 있다. 또한, 키랄 에틸렌디아민 리간드를 도입한 금속 착체를 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물의 아미드화 반응의 촉매로 채용함으로써 아미드화 반응 중 생성되는 중간체인 카보닐나이트렌(carbonylnitrene)의 분해 및 이로 인한 부산물인 이소시아네이트(isocyanate)의 형성을 효과적으로 억제할 수 있다.
본 발명의 키랄 감마-락탐 화합물의 제조방법에서 촉매로 사용되는 상기 금속 착체는 종래의 촉매와는 상이한 리간드, 즉 키랄 에틸렌디아민 리간드를 도입함으로써 종래의 촉매와 대비하여 촉매활성이 우수하며, 거울상이성질선택성 또한 현저하게 향상되어 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물로부터 키랄 감마-락탐 화합물을 높은 선택성 및 수율로 용이하게 제조할 수 있다.
나아가, 본 발명의 키랄 감마-락탐 화합물의 제조방법에 따르면, 상기 금속 착체를 촉매로 하여 온화한 조건 하에서 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물을 아미드화 반응시킴으로서 다양한 분야의 원료물질, 중간체 등으로 매우 유용하게 사용되는 키랄 감마-락탐 화합물의 대량생산이 가능케하는 장점을 가진다.
일 실시예에 있어서, 상기 화학식 1의 금속 착체는 이리듐(III) 착체일 수 있다.
일 실시예에 있어서, 상기 화학식 1의 금속 착체에서, R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성할 수 있다.
일 실시예에 있어서, 상기 화학식 1의 금속 착체에서, R 21 내지 R 23은 서로 연결되어 융합 고리를 형성할 수 있으며, 형성된 융합 고리의 일 예로는 아다만탄 등이 있다.
향상된 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 제조하기 위한 측면에서, 상기 금속 착체는 하기 화학식 1-1로 표시되는 금속 착체일 수 있다.
[화학식 1-1]
Figure PCTKR2019016905-appb-img-000024
(상기 화학식 1-1에서,
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 9는 C1-C20알킬 또는 C6-C20아릴이며, 상기 R 9의 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R 7 및 R 8은 각각 독립적으로 C6-C20아릴이거나, 상기 R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 제조함과 동시에 부산물의 형성을 효과적으로 억제하기 위한 측면에서, 상기 금속 착체는 하기 화학식 1-2로 표시되는 금속 착체일 수 있다.
[화학식 1-2]
Figure PCTKR2019016905-appb-img-000025
(상기 화학식 1-2에서,
X 1는 할로겐이며;
R 1 내지 R 5는 각각 독립적으로 C1-C10알킬이며;
R 9는 C1-C10알킬 또는 C6-C12아릴이며, 상기 R 9의 아릴은 C1-C10알킬, 할로겐, C1-C10알콕시 및 할로C1-C10알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
R 10 및 R 11는 각각 독립적으로 C1-C10알킬이며;
c 및 d는 각각 독립적으로 0 내지 5의 정수이다.)
높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 고수율로 제조함과 동시에 부산물의 형성을 효과적으로 억제하기 위한 측면에서, 상기 화학식 1-2의 금속 착체에서 X 1는 할로겐이며; R 1 내지 R 5는 각각 독립적으로 C1-C7알킬이며; R 9는 C1-C7알킬C6-C12아릴이며; R 10 및 R 11는 각각 독립적으로 C1-C7알킬이며; c 및 d는 각각 독립적으로 1 내지 5의 정수, 보다 바람직하게는 1 내지 3의 정수일 수 있다.
일 실시예에 있어서, 상기 금속 착체는 하기 구조로 예시될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019016905-appb-img-000026
일 실시예에 있어서, 상기 염기의 사용량은 특별히 제한되지는 않으나, 부산물의 형성을 억제하는 측면에서 바람직하게는 상기 염기를 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰, 보다 바람직하게는 0.04 내지 0.1몰로 사용할 수 있으며, 상기 범위로 염기를 사용하는 경우 부산물의 형성을 현저하게 억제할 수 있다.
상기 염기의 구체적인 예로는 NaBAr F 4 (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), AgSbF 6 (Silver hexafluoroantimonate(V)), AgNTf 2 (Silver bis(trifluoromethanesulfonyl)imide), AgBF 4 (Silver tetrafluoroborate), AgPF 6 (Silver hexafluorophosphate), AgOTf Silver trifluoromethanesulfonate), AgOAc (Silver acetate) 등이 있으며, 이들 단독 또는 둘 이상을 혼합하여 사용할 수 있다. 상기 염기는 바람직하게 NaBAr F 4, AgSbF 6, AgNTf 2 및 AgBF 4 에서 선택되는 하나 또는 둘 이상일 수 있으며, 보다 바람직하게는 NaBAr F 4 및 AgNTf 2 에서 선택되는 하나 또는 둘 이상일 수 있다.
일 실시예에 있어서, 상기 금속 착체는 아미드화 반응의 촉매로 사용되며, 사용량은 특별히 제한되지는 않으나, 바람직하게는 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰, 보다 바람직하게는 0.004 내지 0.1 몰로 사용될 수 있다. 상기 범위로 금속 착체를 사용하는 경우 보다 높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 제조할 수 있다.
일 실시예에 있어서, 상기 염기 및 금속 착체는 높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 제조함과 동시에 부산물의 형성을 효과적으로 억제하기 위한 측면에서 동량으로 사용될 수 있다.
일 실시예에 있어서, 상기 아미드화 반응은 온화한 조건 하에서 수행될 수 있으며, 바람직하게는 20 내지 60℃, 보다 바람직하게는 30 내지 50℃에서 수행될 수 있다. 상기 아미드화 반응의 반응시간은 반응물질, 반응물질의 양, 용매의 종류 및 용매의 양에 따라 달라질 수 있으며, 특별히 제한되지는 않는다.
일 실시예에 있어서, 상기 아미드화 반응은 유기용매 하에서 이루어질 수 있으며, 상기 반응물질들과 반응하지 않는 것이라면 유기용매에 제한을 둘 필요는 없다. 일예로, 상기 유기용매로 다이클로로메탄 (dichloromethane), 다이클로로에탄 (dichloroethane), 테트라클로로에탄 (tetrachloroethane), 아세토나이트릴 (acetonitrile), 니트로메탄 (nitromethane), 톨루엔 (toluene), 벤젠 (benzene) 등을 단독 또는 둘 이상 혼합하여 사용할 수 있으며, 반응물의 용해성 및 제거의 용이성을 고려하여 다이클로로메탄, 다이클로로에탄 및 테트라클로로에탄으로부터 선택된 하나 이상을 아미드화 반응 용매로 사용할 수 있다.
일 실시예에 있어서, 본 발명에 의해 제조된 키랄 감마-락탐 화합물은 80:20 내지 >99:1의 거울상이성질체 비(enantiomeric ratio, er) 값을 가질 수 있다.
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-1의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 이로부터 제조된 키랄 감마-락탐 화합물은 하기 화학식 3-1의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-1]
Figure PCTKR2019016905-appb-img-000027
[화학식 3-1]
Figure PCTKR2019016905-appb-img-000028
(상기 화학식 2-1 및 3-1에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있다.)
일 실시예에 있어서, 상기 화학식 2-1 및 3-1에서, R 21은 C1-C20알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있다.)
구체적으로, 상기 화학식 2-1의 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000029
또한, 상기 화학식 2-1의 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조된 상기 화학식 3-1의 키랄 감마-락탐 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000030
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-2의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-2의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-2]
Figure PCTKR2019016905-appb-img-000031
[화학식 3-2]
Figure PCTKR2019016905-appb-img-000032
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-3의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-3의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-3]
Figure PCTKR2019016905-appb-img-000033
[화학식 3-3]
Figure PCTKR2019016905-appb-img-000034
(상기 화학식 2-3 및 3-3에서,
R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며;
R 22a은 C6-C20아릴이다.)
일 실시예에 있어서, 상기 화학식 2-3 및 3-3에서, R 21은 C1-C20알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며; R 22a은 C6-C20아릴일 수 있다.
구체적으로, 상기 화학식 2-3의 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000035
또한, 상기 화학식 2-3의 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조된 상기 화학식 3-3의 키랄 감마-락탐 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000036
일 실시예에 있어서, 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-4의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-4의 키랄 감마-락탐 화합물일 수 있다.
[화학식 2-4]
Figure PCTKR2019016905-appb-img-000037
[화학식 3-4]
Figure PCTKR2019016905-appb-img-000038
(상기 화학식 2-4 및 3-4에서,
L 1은 융합고리를 포함하거나 포함하지 않는 C3-C7알킬렌이고;
R 23은 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있다.)
일 실시예에 있어서, 상기 화학식 2-4 및 3-4에서, L 1은 융합고리를 포함하거나 포함하지 않는 C3-C5알킬렌, 구체적으로는
Figure PCTKR2019016905-appb-img-000039
,
Figure PCTKR2019016905-appb-img-000040
,
Figure PCTKR2019016905-appb-img-000041
,
Figure PCTKR2019016905-appb-img-000042
,
Figure PCTKR2019016905-appb-img-000043
,
Figure PCTKR2019016905-appb-img-000044
,
Figure PCTKR2019016905-appb-img-000045
,
Figure PCTKR2019016905-appb-img-000046
,
Figure PCTKR2019016905-appb-img-000047
또는
Figure PCTKR2019016905-appb-img-000048
이고; R 23은 수소 또는 프탈이미도로 치환된 C1-C20알킬일 수 있다.
구체적으로, 상기 화학식 2-4의 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000049
또한, 상기 화학식 2-4의 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조된 상기 화학식 3-4의 키랄 감마-락탐 화합물은 하기 구조로 예시될 수 있다.
Figure PCTKR2019016905-appb-img-000050
본 발명의 키랄 감마-락탐 화합물을 제조하는 방법은 매우 온화한 조건에서 특정 작용기를 가지는 키랄 에틸렌디아민 리간드, 즉 한쪽 말단 아민은 아미노 기로 존재하고, 다른 쪽 말단 아민은 금속(III)과 결합하되 카보닐 또는 설포닐 작용기가 결합되며, 에틸렌을 구성하는 탄소 원자는 치환되거나 치환되지 않은 알킬이나 아릴 기가 결합되거나 서로 연결되어 고리를 형성한 구조의 리간드를 포함하는 금속 착체를 촉매로 이용하여 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 다양한 천연물, 의약품의 제조를 위한 중간체로 유용하게 이용될 수 있는 높은 거울상이성질선택성을 가진 키랄 감마-락탐 화합물을 원스텝으로 효율적으로 합성할 수 있는 매우 효과적인 방법이다.
따라서, 본 발명의 키랄 감마-락탐 화합물을 제조하는 방법은 특정 금속 착체를 촉매로 이용하고 있어 자연에 풍부한 탄화수소의 프로키랄형 구조를 갖는 전구물질인 프로키랄 1,4,2-디옥사졸-5-온 화합물의 아미드화 반응시 생성되는 중간체인 카보닐나이트렌을 안정화시켜 이의 분해 및 이로 인한 부산물의 형성을 억제하여 의약품이나 화학소재의 원료가 되는 키랄 감마-락탐 화합물을 온화한 조건에서 높은 거울상이성질선택적으로 합성할 수 있다.
또한, 본 발명은 활성 및 화학적 선택성이 우수한 키랄 감마-락탐 제조용 촉매로 유용하게 사용될 수 있는 하기 화학식 4로 표시되는 신규 금속 착체를 제공한다:
[화학식 4]
Figure PCTKR2019016905-appb-img-000051
(상기 화학식 4에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 수소 또는 C1-C20알킬이며;
R 36는 C1-C20알콕시 및 할로겐으로부터 선택되는 하나 이상으로 치환된C6-C20아릴, 또는 C1-C20알킬이 치환된 C6-C20아릴이며;
R 37 및 R 38은 각각 독립적으로 C6-C20아릴이며, 상기 R 37 및 R 38의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
단, R 36이 C1-C20알킬이 치환된 C6-C20아릴인 경우 R 37 및 R 38은 각각 독립적으로 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 치환된 C6-C20아릴이다.)
상기 화학식 4의 금속 착체는 키랄 감마-락탐 화합물의 제조용 촉매로 촉매활성이 우수하며, 기존의 촉매와 달리 온화한 조건 하에서 프로키랄 1,4,2-디옥사졸-5-온 화합물을 아미드화하여 높은 거울상이성질선택성을 가지는 키랄 감마-락탐을 제조할 수 있다.
우수한 거울상이성질선택적으로 키랄 감마-락탐 화합물을 제조하기 위한 측면에서, 상기 금속 착체는 하기 화학식 4-1로 표시되는 금속착체일 수 있다.
[화학식 4-1]
Figure PCTKR2019016905-appb-img-000052
(상기 화학식 4-1에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
R 36는 C1-C10알콕시가 치환된 C6-C12아릴 또는 할로겐이 치환된 C6-C12아릴이다.)
우수한 거울상이성질선택성을 가지는 키랄 감마-락탐 화합물을 제조하기 위한 보다 바람직한 측면에서, 상기 금속 착체는 하기 화학식 4-2로 표시되는 금속착체일 수 있다.
[화학식 4-2]
Figure PCTKR2019016905-appb-img-000053
(상기 화학식 4-2에서,
X 2는 할로겐이며;
R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
R 36는 C1-C10알킬이 치환된 C6-C12아릴이며;
R 39 및 R 40는 각각 독립적으로 C1-C10알킬이며;
e 및 f는 각각 독립적으로 1 내지 3의 정수이다.)
높은 거울상이성질 선택성을 가진 키랄 감마-락탐 화합물을 고수율로 제조하기 위한 측면에서, 바람직한 상기 화학식 4-2의 금속 착체는 X 2가 클로로 또는 브로모, 더욱 바람직하게는 클로로이며; R 31 내지 R 35는 각각 독립적으로 C1-C7알킬, 더욱 바람직하게는 C1-C4알킬이며; R 36는 C1-C7알킬이 치환된 C6-C12아릴, 더욱 바람직하게는 C1-C4알킬이 치환된 페닐, 바이페닐 또는 나프틸이며; R 39 및 R 40는 각각 독립적으로 C1-C7알킬, 더욱 바람직하게는 C1-C4알킬이며; e 및 f는 각각 독립적으로 2 또는 3의 정수, 더욱 바람직하게는 3의 정수일 수 있다.
높은 거울상이성질 선택성을 가진 키랄 감마-락탐 화합물을 고수율로 제조함과 동시에 부산물의 형성을 현저히 억제하기 위한 측면에서, 상기 금속 착체는 하기 화학식 4-3으로 표시되는 금속 착체일 수 있다.
[화학식 4-3]
Figure PCTKR2019016905-appb-img-000054
(상기 화학식 4-3에서, Ts는 토실(tosyl)이고; R 31 내지 R 35는 각각 독립적으로 C1-C4알킬이며; R 41 내지 R 46은 각각 독립적으로 C1-C4알킬이다.)
상기 화학식 4의 금속 착체는 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 높은 거울상이성질선택성(enantioselectivity)을 가진 키랄 감마-락탐 화합물을 용이하게 제조할 수 있는 촉매로 사용될 수 있다.
상기 화학식 4의 금속 착체는 구체적으로 하기 구조로 예시될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019016905-appb-img-000055
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
(준비 및 화학분석)
달리 명시하지 않는 한, 상업적으로 입수 가능한 모든 시약 및 용매는 추가 정제없이 사용하였다. TCE, DCM 및 THF을 탈기시키고, 활성화된 4Å 분자체 상에서 건조시켰다.
1H NMR 스펙트럼은 Agilent Technologies DD2 (600 MHz) 또는 Bruker AVHD-400 (400 MHz)를 이용하여 얻었고, 13C NMR 스펙트럼은 Agilent Technologies DD2 (150 MHz) 또는 Bruker AVHD-400 (100 MHz)를 이용하여 얻었다. 19F NMR 스펙트럼은 Agilent Technologies DD2 (564 MHz)를 이용하여 얻었으며, 화학적 이동(chemical shifts)은 C 6H 5CF 3 ( 19F, -63.72 ppm)에 대하여 ppm으로 나타내었다. 적외선(IR) 스펙트럼은 Bruker Alpha FT-IR Spectrometer를 이용하여 얻었다. 고분해능 질량스펙트럼(HRMS)은 Agilent technologies 6220 TOF LC/MS 분광기(ESI) 또는 JEOL JMS-AX 505WA(FAB)를 이용하여 얻었다. 고 분해 질량 스펙트럼은 EI 또는 FAB 방법을 사용하여 한국기초과학연구원(대구)에서 얻었으며, 또한 ESI(Electrospray ionization) 방법을 사용하여 KAIST 연구 분석 센터에서 얻었다. 융점(m.p.)은 Buchi Melting Point M-565를 이용하여 측정하였다. HPLC(High pressure liquid chromatography) 분석은 LC20A 펌프와 SPD-M20A 포토다이오드 어레이 검출기로 구성된 Shimadzu Prominence HPLC 시스템을 사용하여 32 ℃에서 수행되었다. 광학 회전은 온도 제어기가 장착된 Jasco P-2000 Polarimeter를 사용하여 확인하였다.
리간드
D-Proline, D- tert-leucine, (1 S,2 S)-2-amino-1,2-diphenylethan-1-ol, D-prolinamide 및 N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-methylbenzenesulfonamide은 Sigma-Aldrich, TCI chemical company, 및 Strem에서 구입하고, 추가 정제없이 사용하였다.
N-{(1 S,2 S)-2-Aminocyclohexyl}-4-methylbenzenesulfonamide, N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-methylsulfonamide, N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-methoxybenzenesulfonamide, N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-fluorobenzenesulfonamide 및 N-{(1 S,2 S)-2-amino-1,2-dimesitylethyl}-4-methylbenzenesulfonamide는 이전에 보고된 방법[J. Org. Chem. 2011, 76, 396-402; Tetrahedron 2009, 65, 5782-5786; Chem. Commun., 2011, 47, 4911-4913]에 따라 합성하여 사용하였다.
실시예 I : 금속 착체의 제조
Figure PCTKR2019016905-appb-img-000056
[Cp*IrCl 2] 2 (Cp*: pentamethylcyclopentadienyl) (200 mg, 0.25 mmol, 1 eq), 리간드 (0.50 mmol, 2 eq), TEA (triethylamine, 101 mg, 1.00 mmol, 4 eq) 및 DCM (dichloromethane, 10 mL)를 혼합하고, 실온에서 30분간 교반시켰다. 교반 완료 후, 반응혼합물을 플래쉬 크로마토그래피(용리액: DCM/MeOH = 20/1 v/v) 로 정제하여 목적하는 Ir 착체를 수득하였다.
[실시예 1] 이리듐 착체 Ir10의 제조
Figure PCTKR2019016905-appb-img-000057
리간드로 N-{(1 S,2 S)-2-amino-1,2-dimesitylethyl}-4-methylbenzenesulfonamide을 사용하여 이리듐 착체 Ir10을 얻었다.
주황색 고체 (218 mg, 93 %, 0.289 mmol scale); m.p. 176-178 ℃ (decomp.); 1H NMR (599 MHz, CD 2Cl 2) δ 7.25 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 6.1 Hz, 2H), 6.77 (s, 1H), 6.53 (s, 1H), 6.28 (s, 1H), 6.15 (s, 1H), 5.35-5.33 (m, 1H), 5.19 (appt, J = 12.2 Hz, 1H), 4.57-4.47 (m, 1H), 3.99 (d, J = 10.2 Hz, 1H), 2.74 (s, 3H), 2.50 (s, 3H), 2.23 (s, 3H), 2.13 (s, 3H), 2.01 (s, 3H), 1.77 (s, 15H), 1.69 (s, 3H), 1.56 (s, 3H); 13C NMR (101 MHz, CD 2Cl 2, one carbon merged to others) δ 141.64, 139.77, 138.92, 138.34, 138.27, 136.64, 136.31, 132.20, 131.92, 131.65, 130.57, 129.82, 128.81, 127.99, 127.89, 86.18 ( C 5Me 5), 64.90, 61.72, 22.70, 22.00, 21.41, 21.03, 20.90, 20.80, 20.42, 10.06 (C 5 Me 5); IR (cm -1) 2956, 2916, 2852, 1739, 1611, 1454, 1376, 1129, 1084, 896, 666, 571, 549; HRMS (EI) m/z calcd. for C 37H 48ClIrN 2O 2S [M] +: 812.2754, found: 812.2752.
[실시예 2] 이리듐 착체 Ir7의 제조
Figure PCTKR2019016905-appb-img-000058
리간드로 N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-methoxybenzenesulfonamide을 사용하여 이리듐 착체 Ir7을 얻었다.
주황색 고체 (77 mg, 80 %, 0.13 mmol scale); 1H NMR (599 MHz, CD 2Cl 2) δ 7.37 (d, J = 8.9 Hz, 2H), 7.18-7.11 (m, 3H), 6.91-6.80 (m, 5H), 6.65 (d, J = 6.9 Hz, 2H), 6.54 (d, J = 8.9 Hz, 2H), 4.39 (appt, J = 12.1 Hz, 1H), 4.31-4.21 (m, 2H), 3.72 (s, 3H), 3.69-3.63 (m, 1H), 1.79 (s, 15H); 13C NMR (151 MHz, CD 2Cl 2) δ 160.96, 139.62, 139.31, 136.75, 130.51, 129.42, 129.11, 129.00, 127.63, 127.12, 112.96, 86.08, 74.41, 70.04, 55.80, 9.84; HRMS (ESI) m/z calcd. for C 31H 36ClIrN 2O 3S [M-Cl] +: 709.2076, found: 709.2096.
[실시예 3] 이리듐 착체 Ir8의 제조
Figure PCTKR2019016905-appb-img-000059
리간드로 N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-fluorobenzenesulfonamide을 사용하여 이리듐 착체 Ir8을 얻었다.
주황색 고체 (221 mg, 85 %); m.p. 239-241 ℃ (decomp.); 1H NMR (599 MHz, CD 2Cl 2) δ 7.43 (dd, J = 8.6, 5.4 Hz, 2H), 7.22-7.12 (m, 3H), 6.94-6.86 (m, 3H), 6.83 (appt, J = 7.5 Hz, 2H), 6.71 (appt, J = 8.6 Hz, 2H), 6.65 (d, J = 7.5 Hz, 2H), 4.39 (appt, J = 12.1 Hz, 1H), 4.35-4.25 (m, 2H), 3.70 (appt, J = 11.1, 1H), 1.80 (s, 15H); 13C NMR (150 MHz, CD 2Cl 2) δ 163.56 (d, J = 248.8 Hz), 141.08 (d, J = 3.1 Hz), 139.18, 139.13, 130.96 (d, J = 8.8 Hz), 129.44, 129.12, 129.04, 127.72, 127.60, 127.25, 114.46 (d, J = 114.5 Hz), 86.11 ( C 5Me 5), 74.19, 69.93, 9.83 (C 5 Me 5); 19F NMR (564 MHz, CD 2Cl 2) δ -112.4; IR (cm -1) 1739, 1579, 1489, 1147, 908, 649, 552; HRMS (EI) m/z calcd. for C 30H 33ClFIrN 2O 2S [M] +: 732.1565, found: 732.1562.
[실시예 4] 이리듐 착체 Ir5의 제조
Figure PCTKR2019016905-appb-img-000060
리간드로 N-{(1 S,2 S)-2-Aminocyclohexyl}-4-methylbenzenesulfonamide을 사용하여 이리듐 착체 Ir5을 얻었다.
주황색 고체 (100 mg, 62 %, 0.13 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 7.83 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.05 (d, J = 10.3 Hz, 1H), 3.63-3.42 (m, 1H), 2.63-2.53 (m, 1H), 2.36 (s, 3H), 2.37-2.27 (m, 1H), 2.27-2.14 (m, 1H), 2.02 (d, J = 11.8 Hz, 1H), 1.67 (s, 15H), 1.50 (d, J = 13.4 Hz, 1H), 1.37 (d, J = 13.3 Hz, 1H), 1.29-1.15 (m, 1H), 1.12-1.04 (m, 1H), 0.97-0.81 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 146.07, 141.95, 130.32, 129.33, 87.11, 68.01, 65.77, 37.66, 35.45, 26.77, 26.74, 22.90, 11.08.
[실시예 5] 이리듐 착체 Ir6의 제조
Figure PCTKR2019016905-appb-img-000061
리간드로 N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-4-methylbenzenesulfonamide을 사용하여 이리듐 착체 Ir6을 얻었다.
주황색 고체 (290 mg, 80 %); 1H NMR (400 MHz, CD 2Cl 2) δ 7.33 (d, J = 8.0 Hz, 2H), 7.23-7.10 (m, 3H), 6.94-6.77 (m, 7H), 6.66 (d, J = 7.1 Hz, 2H), 4.42 (appt, J = 12.0 Hz, 1H), 4.28 (d, J = 10.9 Hz, 1H), 4.20 (d, J= 10.4 Hz, 1H), 3.68 (ddd, J = 13.8, 10.9, 3.0 Hz, 1H), 2.24 (s, 3H), 1.80 (s, 15H); 13C NMR (101 MHz, CD 2Cl 2) δ 141.81, 140.11, 139.53, 139.29, 129.44, 129.13, 129.04, 128.65, 128.36, 127.63, 127.61, 127.01, 86.08, 74.41, 69.92, 21.44, 9.85.
[실시예 6] 이리듐 착체 Ir9의 제조
Figure PCTKR2019016905-appb-img-000062
리간드로 N-{(1 S,2 S)-2-amino-1,2-diphenylethyl}-methylsulfonamide을 사용하여 이리듐 착체 Ir9를 얻었다.
주황색 고체 (290 g, 89 %); 1H NMR (400 MHz, CD 2Cl 2) δ 7.27-7.17 (m, 3H), 7.17-7.09 (m, 3H), 7.08-7.03 (m, 2H), 7.02-6.96 (m, 2H), 4.52-4.36 (m, 2H), 4.34-4.16 (m, 1H), 3.85-3.71 (m, 1H), 2.28 (s, 3H), 1.72 (s, 15H); 13C NMR (101 MHz, CD 2Cl 2) δ 141.32, 139.18, 129.26, 129.20, 129.17, 128.46, 127.80, 127.71, 86.02 ( C 5Me 5), 73.93, 69.79, 44.16, 9.68 (C 5 Me 5).
비교제조예 1-2 : 이리듐 착체의 제조
Figure PCTKR2019016905-appb-img-000063
[Cp*IrCl 2] 2 (Cp*: pentamethylcyclopentadienyl) (200 mg, 0.25 mmol), 아미노산 (0.50 mmol), K 2CO 3 (80 mg, 0.58 mmol) 및 MeCN (acetonitrile, 5 mL)을 혼합하고 실온에서 24시간동안 교반시켰다. 교반 완료 후, 감압 하에서 용매를 제거하고, 잔류물을 DCM (10 mL) 중에 현탁시켰다. 현탁액을 셀라이트 패드를 통해 여과시키고, 추가의 DCM (40 mL)으로 더 세정하였다. 합한 황색 여액을 5.0 mL로 농축시키고, 과량의 건조 펜탄 (30 mL)으로 층분리시켰다. 침전물을 모으고, 감압 하에 건조시켜 목적하는 이리듐 착체 Ir-A 또는 Ir-B를 수득하였다.
[비교제조예 1] 이리듐 착체 Ir-A의 제조
Figure PCTKR2019016905-appb-img-000064
아미노산으로 D-Proline을 사용하여 이리듐 착체 Ir-A을 얻었다.
황색 고체 (155 mg, 65 %); 1H NMR (599 MHz, CD 2Cl 2) δ 4.53-4.30 (m, 1H), 3.98-3.85 (m, 1H), 3.65-3.52 (m, 1H), 3.01-2.84 (m, 1H), 2.28-2.14 (m, 1H), 2.01-1.86 (m, 2H), 1.65 (s, 15H); 13C NMR (101 MHz, CD 2Cl 2) δ 184.52, 84.62, 62.84, 55.40, 29.47, 27.55, 9.46.
[비교제조예 2] 이리듐 착체 Ir-B의 제조
Figure PCTKR2019016905-appb-img-000065
아미노산으로 D- tert-leucine을 사용하여 이리듐 착체 Ir-B를 얻었다.
황색 고체 (227 mg, 92 %); 1H NMR (599 MHz, CDCl 3) δ 5.33 (appt, J = 8.4 Hz, 1H), 3.78 (appt, J = 10.8 Hz, 1H), 2.97 (dd, J = 11.3, 6.7 Hz, 1H), 1.70 (s, 15H), 1.10 (s, 9H), Minor isomer: 4.36-4.25 (m, 1H), 4.00-3.87 (m, 1H), 3.18-3.08 (m, 1H), 1.69 (s, 15H), 1.09 (s, 9H); 13C NMR (151 MHz, CDCl 3) δ 178.94, 84.27, 65.45, 35.33, 27.07, 9.32, Minor isomer: 83.98, 61.99, 34.64, 27.03, 9.19.
[비교제조예 3] 이리듐 착체 Ir-C의 제조
Figure PCTKR2019016905-appb-img-000066
리간드로 (1 S,2 S)-2-amino-1,2-diphenylethan-1-ol (0.50 mmol)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 반응시켜 이리듐 착체 Ir-C를 수득하였다.
주황색 고체 (201 mg, 70 %); m.p. 164-166 ℃ (decomp.); 1H NMR (599 MHz, CDCl 3) δ 7.24-7.18 (m, 3H), 7.07-6.97 (m, 7H), 4.85 (d, J = 9.8 Hz, 1H), 4.41 (appt, J = 11.3 Hz, 1H), 4.30 (d, J = 10.0 Hz, 1H), 3.21-3.04 (m, 1H), 1.78 (s, 15H); 13C NMR (151 MHz, CDCl 3, one carbon merged to others) δ 143.27, 139.13, 128.72, 128.21, 127.54, 127.41, 126.70, 85.10, 83.05, 73.72, 9.10; IR (cm -1) 3203, 3025, 2914, 1492, 1376, 1023, 698, 579; HRMS (EI) m/z calcd. for C 24H 29ClIrNO [M+H] +: 576.1645, found: 576.1644.
[비교제조예 4] 이리듐 착체 Ir-D의 제조
Figure PCTKR2019016905-appb-img-000067
[Cp*IrCl 2] 2 (Cp*: pentamethylcyclopentadienyl) (350 mg, 0.44 mmol), D-prolinamide (100 mg, 0.88 mmol), TEA (93 mg, 0.92 mmol) 및 DCM (8 mL)를 실온에서 12시간동안 교반시켰다. 상기 반응혼합물에 20% NaCl 수용액을 가하고, DCM (10 mL × 2)으로 추출하고, Na 2SO 4으로 건조시키고, 감압 하에서 용매를 제거하였다. 생성된 고체를 THF/diisopropyl ether (1/1 v/v)의 혼합용매 (5 mL)에 재용해시키고, 실온에서 1시간동안 교반시켰다. 오렌지색 침전물을 모으고, 감압 하에 건조시켜 이리듐 착체 Ir-D를 수득하였다.
주황색 고체 (301 mg, 72 %); 1H NMR (400 MHz, CD 2Cl 2) δ 4.96 (br, 1H), 4.86 (br, 1H), 3.83 (q, J = 8.0 Hz, 1H), 3.58-3.45 (m, 1H), 3.00-2.64 (m, 1H), 2.45-2.22 (m, 1H), 2.22-2.08 (m, 1H), 1.98-1.85 (m, 2H), 1.71 (s, 15H); 13C NMR (101 MHz, CD 2Cl 2) δ 184.03, 84.92, 63.26, 55.04, 29.00, 27.61, 9.45; IR (cm -1) 3119, 2967, 291, 1740, 1583, 1446, 1378, 1032, 923; HRMS (EI) m/z calcd. for C 15H 24ClIrN 2O [M+H] +: 477.1285, found: 477.1281.
[비교제조예 5] 이리듐 착체 Ir-E의 제조
Figure PCTKR2019016905-appb-img-000068
4-Methyl- N-{(1 S,2 S)-2-(methylamino)-1,2-diphenylethyl}benzenesulfonamide는 기보고된 방법( J. Am. Chem. Soc., 2016,  138 (35), pp 11299-11305)에 따라 합성하여 사용하였다.
[Cp*IrCl 2] 2 (Cp*: pentamethylcyclopentadienyl) (100 mg, 0.13 mmol), 4-Methyl- N-{(1 S,2 S)-2-(methylamino)-1,2-diphenylethyl}benzenesulfonamide (96 mg, 0.25 mmol), TEA (50 mg, 0.5 mmol) 및 DCM (5 mL)를 혼합하고, 실온에서 30분간 교반시켰다. 교반 완료 후, 반응혼합물을 플래쉬 크로마토그래피(용리액: DCM/MeOH = 20/1 v/v)로 정제하고, 디클로로메탄/펜탄으로부터 재결정시켜 목적하는 화합물 Ir-E를 수득하였다.
주황색 고체 (150 mg, 85 %); m.p. 219-221 ℃; 1H NMR (599 MHz, CD 2Cl 2) δ 7.53 (d, J = 7.9 Hz, 2H), 7.24-7.14 (m, 3H), 7.01-6.91 (m, 5H), 6.83-6.73 (m, 2H), 6.70 (d, J = 7.5 Hz, 2H), 4.41-4.30 (m, 2H), 3.60 (appt, J = 11.4 Hz, 1H), 2.62 (d, J = 6.2 Hz, 3H), 2.29 (s, 3H), 1.74 (s, 15H); 13C NMR (151 MHz, CD 2Cl 2) δ 141.61, 140.71, 136.62, 129.29, 129.12, 128.82, 128.77, 128.59, 128.52, 128.12, 127.73, 126.97, 86.78, 82.62, 70.37, 41.28, 21.54, 10.17; IR (cm -1) 3029, 3031, 2918, 2856, 1739, 1454, 1271, 1135, 928, 699, 580, 546; HRMS (EI) m/z calcd. for C 32H 38ClIrN 2O 2S [M] +: 742.1972, found: 742.1969.
[비교제조예 6] 이리듐 착체 Ir-F의 제조
Figure PCTKR2019016905-appb-img-000069
N-{(1 S,2 S)-2-(dimethylamino)-1,2-diphenylethyl}-4-methylbenzenesulfonamide는 기보고된 방법(Org. Biomol. Chem., 2011, 9, 3290-3294)에 따라 합성하여 사용하였다.
[Cp*IrCl 2] 2 (Cp*: pentamethylcyclopentadienyl) (76 mg, 0.095 mmol), N-{(1 S,2 S)-2-(dimethylamino)-1,2-diphenylethyl}-4-methylbenzenesulfonamide (75 mg, 0.19 mmol), K 2CO 3 (43 mg, 0.31 mmol) 및 DCM (5 mL)를 혼합하고, 실온에서 12시간동안 교반시켰다. 교반 완료 후, 반응혼합물을 플래쉬 크로마토그래피(용리액: DCM/MeOH = 1/20 v/v)로 정제하고, 클로로포름/펜탄으로부터 재결정시켜 목적하는 화합물 Ir-F를 수득하였다.
주황색 고체 (86 mg, 60 %); m.p. 135-137 ℃ (decomp.); 1H NMR (400 MHz, CDCl 3, -10℃) δ 7.66 (d, J = 8.1 Hz, 2H), 7.47-7.35 (m, 2H), 7.34-7.26 (m, 1H), 7.19 (appt, J = 7.4 Hz, 1H), 7.13-7.05 (m, 1H), 7.03-6.88 (m, 3H), 6.86-6.70 (m, 4H), 5.36 (d, J = 10.9 Hz, 1H), 5.29 (d, J = 11.1 Hz, 1H), 3.21 (s, 3H), 2.77 (s, 3H), 2.24 (s, 3H), 1.47 (s, 15H); 13C NMR (101 MHz, CDCl 3, -10 ℃) δ 142.73, 140.25, 139.87, 134.68, 130.39, 130.11, 129.80, 128.84, 128.33, 127.57, 126.70, 125.72, 86.86 ( C 5Me 5), 78.09, 67.36, 48.91, 47.70, 21.47, 9.74 (C 5 Me 5); IR (cm -1) 3028, 2913, 1739, 1453, 1375, 1262, 1135, 942, 698, 548; HRMS (ESI) m/z calcd. for C 33H 40IrN 2O 2S [M-Cl] +: 721.2440, found: 721.2463.
출발물질
4-(4-Chlorophenyl)butanoic acid, 4-( p-tolyl)butanoic acid, 4-{4-( tert-butyl)phenyl}butanoic acid, 4-{4-(trifluoromethyl)phenyl}butanoic acid, 4-(naphthalen-2-yl)butanoic acid, 5-cyclohexylpentanoic acid, 6-phenylhexanoic acid, 6-aminohexanoic acid, 5-phenylpentanoic acid, 5-methylhexanoic acid, myristic acid, oleic acid, elaidic acid, 및 2-{1-(aminomethyl)cyclopentyl}acetic acid는 Sigma-Aldrich, Alfa, Enamine 또는 TCI chemical company로부터 구입하여 추가정제없이 사용하였다. 4-(4-Iodophenyl)butanoic acid는 기보고된 방법(Tetrahedron 60 (2004) 6945-6958)에 따라 합성하여 사용하였다.
제조예 I: 카복실산 화합물의 제조
제조예 1-4: 알데히드 화합물로부터 카복실산 화합물의 제조
Figure PCTKR2019016905-appb-img-000070
아르곤(Ar) 대기 하에서 (2-carboxyethyl)triphenylphosphonium bromide (2.41 g, 6 mmol) 및 건조 THF (tetrahydrofuran) (18mL)를 100 mL 둥근 바닥 플라스크에 투입한 후 0℃로 냉각시키고, NaHMDS (sodium bis(trimethylsilyl)amide, 2.29 g, 12.5 mmol)를 첨가하였다. 0℃에서 15분간 교반시킨 후 치환된 벤즈알데히드 화합물 (5 mmol)을 첨가하고 상온에서 밤새 교반시켰다. 교반이 완료되면 감압 하에 농축시키고, 잔류물을 2N NaOH 수용액으로 처리하였다. 반응혼합물을 CH 2Cl 2로 3회 세척하고, 0℃로 냉각한 후 3N HCl 수용액을 첨가하고 교반시켰다. 1시간 후, DCM을 가하여 추출하였다. 얻어진 유기층을 물로 씻어준 다음, 무수 MgSO 4로 건조시키고 여과시켰다. 여액을 감압 농축시킨 후 플래쉬 크로마토그래피(eluent: n-hexane/EtOAc)로 정제하여 올레핀 화합물을 수득하였다.
올레핀 화합물, 10mol% Pd/C 및 에탄올 (0.1 M)의 용액을 수소 가스(1 atm)로 퍼지하고 밤새 교반시켰다. 이어서, 반응혼합물을 셀라이트 패드를 통해 여과하고, 용매를 감압 하에 제거하여 목적하는 카복실산 화합물을 수득하였다.
출발물질을 달리한 것을 제외하고는 상기와 동일한 방법으로 하기 올레핀 화합물 및 카복실산 화합물을 제조하였다.
[제조예 1] ( E)-4-(3,5-Dimethylphenyl)but-3-enoic acid의 제조
Figure PCTKR2019016905-appb-img-000071
황색 오일 (290 mg, 30 %, 5 mmol scale); 1H NMR (400 MHz, CDCl 3) δ 7.00 (s, 2H), 6.89 (s, 1H), 6.46 (d, J = 15.9 Hz, 1H), 6.26 (dt, J= 15.9, 7.1 Hz, 1H), 3.29 (dd, J= 7.1, 1.4 Hz, 2H), 2.30 (s, 6H); 13C NMR (101 MHz, CD 2Cl 2) δ 177.99, 138.15, 136.66, 134.26, 129.56, 124.35, 120.48, 77.48, 77.16, 76.84, 38.16, 21.38.
[제조예 2] 4-(3,5-Dimethylphenyl)butanoic acid의 제조
Figure PCTKR2019016905-appb-img-000072
Colorless oil (285 mg, 99 %, 1.47 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 12.5-10.6 (br, 1H), 6.84 (s, 1H), 6.81 (s, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.38 (t, J = 7.5 Hz, 2H), 2.29 (s, 6H), 1.95 (p, J = 7.6 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 179.67, 141.26, 138.04, 127.82, 126.46, 35.00, 33.49, 26.37, 21.39.
[제조예 3] ( E)-4-( o-Tolyl)but-3-enoic acid의 제조
Figure PCTKR2019016905-appb-img-000073
고체 (500 mg, 28 %, 10 mmol scale); 1H NMR (400 MHz, CDCl 3) δ 7.68-7.51 (m, 1H), 7.19-7.13 (m, 3H), 6.74 (d, J = 15.7 Hz, 1H), 6.18 (dt, J = 15.7, 7.1 Hz, 1H), 3.34 (dd, J= 7.1, 1.6 Hz, 2H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl 3) δ 178.23, 135.92, 135.42, 132.04, 130.38, 127.74, 126.24, 125.88, 122.24, 38.46, 19.91.
[제조예 4] 4-( o-Tolyl)butanoic acid의 제조
Figure PCTKR2019016905-appb-img-000074
흰색 고체 (400 mg, 87 %); 1H NMR (599 MHz, CDCl 3) δ 7.20-7.02 (m, 4H), 2.66 (t, J = 7.4 Hz, 2H), 2.43 (t, J= 7.3 Hz, 2H), 2.31 (s, 3H), 1.93 (p, J= 7.5 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 179.73, 139.55, 136.10, 130.43, 129.09, 126.34, 126.12, 33.71, 32.56, 25.14, 19.35.
[제조예 5] 3-benzyl-4-phenylbutanoic acid의 제조
Figure PCTKR2019016905-appb-img-000075
Ethyl 3-benzyl-4-phenylbut-2-enoate의 제조
0℃에서 NaH (60% dispersion in mineral oil, 600 mg, 1.5 eq) 및 무수 THF (25 mL)를 함유하는 둥근 바닥 플라스크에 triethylphosphonoacetate (3.70 g, 1.65 eq)를 첨가 한 다음, 실온으로 가온시키고, diphenyl acetone (2.10 g, 10 mmol)을 적가하였다. 반응혼합물을 12시간동안 교반시킨 후 물을 붓고, DCM으로 추출하였다. 유기층을 합한 후 브린(brine)으로 세척하고, MgSO 4로 건조시키고, 여과하고, 감압 하에 농축시켰다. 잔류물을 플래쉬 크로마토그래피(n-헥산/EtOAc)로 정제하여 올레핀 화합물인 Ethyl 3-benzyl-4-phenylbut-2-enoate을 수득하였다.
Colorless oil (720 mg, 25 %); 1H NMR (400 MHz, CDCl 3) δ 7.31-7.22 (m, 4H), 7.22-7.15 (m, 4H), 7.06 (d, J = 7.2 Hz, 1H), 5.70 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.95 (s, 2H), 3.30 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl 3) δ 166.70, 159.95, 138.88, 137.85, 129.49, 129.21, 128.72, 128.65, 126.81, 126.47, 118.54, 60.05, 43.55, 36.88, 14.44.
3-benzyl-4-phenylbutanoic acid의 제조
Ethyl 3-benzyl-4-phenylbut-2-enoate (720 mg, 2.57 mmol), Pd/C (270 mg, 10 mol%) 및 에탄올 (0.1 M)의 용액을 수소 가스 (1 atm)로 퍼지하고, 밤새 교반시켰다. 이어서, 상기 반응혼합물을 셀라이트 패드를 통해 여과시킨 후 용매를 감압 하에서 제거하여 원하는 에스테르 화합물을 수득하였다. 추가정제없이 바로 다음 반응에 사용하였다.
상기 수득된 에스테르 화합물에 에탄올 (6 mL)과 H 2O (4 mL) 중의 KOH (413 mg, 4 eq)을 첨가하였다. 상기 반응혼합물을 4시간동안 70 ℃로 가열하고, 실온에서 pH가 2가 될 때까지 1N HCl을 서서히 첨가하였다. 에탄올을 감압 하에 제거하고, 수용액을 EtOAc (3 회)로 추출하였다. 브린(brine)으로 세척한 후, 유기층을 분리하고 MgSO 4로 건조시킨 후, 용매를 제거하여 카복실산 화합물인 3-benzyl-4-phenylbutanoic acid을 수득하였다.
흰색 고체 (653 mg, 99 % combined yield for two steps); 1H NMR (599 MHz, CDCl 3) δ 7.29 (appt, J = 7.5 Hz, 4H), 7.35-7.23 (m, 6H), 2.72-2.66 (m, 2H), 2.66-2.59 (m, 2H), 2.49 (hept, J = 7.0 Hz, 1H), 2.27 (d, J = 6.6 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 178.87, 139.98, 129.42, 128.53, 126.35, 40.18, 39.00, 37.49.
[제조예 6] 6-(1,3-Dioxoisoindolin-2-yl)hexanoic acid의 제조
Figure PCTKR2019016905-appb-img-000076
Dean-Stark 증류기가 장착된 two-neck round bottom flask에 6-aminohexanoic acid (20 mmol), 무수 프탈산 (3.0 g, 20 mmol), TEA (0.28 mL, 2.0 mmol) 및 톨루엔 (20 mL)을 넣고, 130℃에서 4시간동안 환류교반시켰다. 상온으로 식힌 다음 용매를 감압 하에 제거하고, DCM (150 mL)를 가하고, HCl 수용액 (0.5-1.0 M, 100 mL × 2) 및 브린 (100 mL)로 세척하였다. 얻어진 유기층을 무수 MgSO 4로 건조시키고, 셀라이트 패드를 통해 여과하고, DCM (30 mL)으로 세척하여 6-(1,3-Dioxoisoindolin-2-yl)hexanoic acid 을 수득하였다.
흰색 고체 (4.96 g, 95 %); 1H NMR (599 MHz, DMSO-d 6) δ 11.98 (s, 1H), 8.02-7.64 (m, 4H), 3.55 (t, J = 7.1 Hz, 2H), 2.18 (t, J = 7.4 Hz, 2H), 1.58 (p, J = 7.4 Hz, 2H), 1.50 (p, J = 7.5 Hz, 2H), 1.27 (p, J= 8.0 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 174.37, 167.93, 134.36, 131.60, 122.99, 37.26, 33.44, 27.68, 25.77, 24.04.
[제조예 7] 2-[1-{(1,3-Dioxoisoindolin-2-yl)methyl}cyclopentyl]acetic acid 의 제조
Figure PCTKR2019016905-appb-img-000077
6-aminohexanoic acid 대신 2-{1-(aminomethyl)cyclopentyl}acetic acid hydrochloride (20 mmol)을 사용한 것을 제외하고는 제조예 6과 동일한 방법으로 반응시켜 2-[1-{(1,3-Dioxoisoindolin-2-yl)methyl}cyclopentyl]acetic acid을 수득하였다.
흰색 고체 (650 mg, 88 %, 2.58 mmol scale); m.p. 101-103 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.91-7.82 (m, 2H), 7.78-7.70 (m, 2H), 3.81 (s, 2H), 2.45 (s, 2H), 1.85-1.75 (m, 2H), 1.75-1.65 (m, 4H), 1.62-1.52 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 176.26, 169.66, 134.29, 132.03, 123.57, 46.65, 44.69, 42.10, 35.91, 24.11; IR (cm -1) 2945, 2870, 1768, 1701, 1616, 1421, 1336, 875, 712; HRMS (EI) m/z calcd. for C 16H 17NO 4 [M] +: 287.1158, found: 287.1160.
제조예 II: 하이드록삼산(hydroxamic acid) 화합물의 제조
방법 A.
Figure PCTKR2019016905-appb-img-000078
카복실산 화합물, oxalyl chloride (2.0 eq), DMF (dimethylformamide) (2 방울) 및 DCM (0.33 M)을 0℃에서 혼합하였다. 실온에서 2시간동안 교반시킨 후, 농축시켜 산 클로라이드 화합물을 수득하였다. 얻어진 산 클로라이드 화합물은 별도의 정제 과정 없이 바로 다음 반응에 사용되었다.
EtOAc (0.5 M)과 물 (0.25 M)을 2:1의 부피비로 혼합한 후 K 2CO 3 (2.0 eq)를 첨가하고, Hydroxylamine hydrochloride (1.2 eq)를 가하고 0℃로 냉각시켰다. 0℃에서 상기 얻어진 산 클로라이드 화합물을 적가하였다. 적가가 완료되면, 실온으로 가온하고 12시간동안 교반시켰다. 상 분리 후 수층을 EtOAc로 2회 추출하였다. 유기층을 MgSO 4로 건조시키고, 여과하고, 감압 하에 증발시켰다. 조 생성물을 재결정(DCM + 몇 방울의 메탄올/n-펜탄) 또는 실리카 크로마토그래피(용리액 : DCM/메탄올 = 30 : 1 ~ 10 : 1)에 의해 정제하여 목적하는 하이드록삼산 화합물을 수득하였다.
방법 B.
Figure PCTKR2019016905-appb-img-000079
건조된 THF (0.33 M)에 카복실산 화합물 (1.0 eq)을 첨가하고, 여기에 CDI (1,1'-carbonyldiimidazole, 1.5 eq)을 한번에 첨가한 후 실온에서 1시간동안 교반시켰다. 분말화 hydroxylamine hydrochloride (2 eq)를 첨가하고, 16시간동안 교반시켰다. 반응혼합물을 5% KHSO 4 수용액 (30 mL)로 희석하고 EtOAc (2 × 30 mL)로 추출하였다. 유기층을 브린(brine)으로 씻고, MgSO 4로 건조시키고, 여과하고, 감압 하에 농축시켜 잔류물을 얻었다. 얻어진 잔류물을 실리카 겔 컬럼 크로마토그래피(용리액 : DCM/methanol = 30:1 ~ 10:1)로 정제하여 목적하는 히드록사믹 산 화합물을 수득하였다.
[제조예 8] 4-(4-Chlorophenyl)- N-hydroxybutanamide의 제조
Figure PCTKR2019016905-appb-img-000080
방법 A (3 mmol scale)로 제조; 흰색 고체 (550 mg, 86 %); m.p. 81-83 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.36 (br, 1H), 8.70 (br, 1H), 7.33 (d, J= 8.4 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 2.55 (t, J =7.5 Hz, 2H), 1.96 (t, J = 7.4 Hz, 2H), 1.77 (p, J = 7.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d 6) δ 168.76, 140.67, 130.39, 130.20, 128.22, 33.79, 31.60, 26.77; IR (cm -1) 3198, 3036, 2899, 1621, 1491, 1078, 798, 592; HRMS (EI) m/z calcd. for C 10H 12ClNO 2 [M] +: 213.0557, found: 213.0559.
[제조예 9] N-Hydroxy-4-(4-iodophenyl)butanamide의 제조
Figure PCTKR2019016905-appb-img-000081
방법 A (1.48 mmol scale)로 제조; 흰색 고체 (380 mg, 84 %); m.p. 144-146 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.35 (br, 1H), 8.69 (br, 1H), 7.62 (d, J= 7.8 Hz, 2H), 7.01 (d, J= 7.8 Hz, 2H), 2.52-2.50 (m, 2H), 1.94 (t, J= 7.5 Hz, 2H), 1.75 (p, J= 7.6 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 168.72, 141.44, 136.97, 130.83, 91.28, 33.93, 31.57, 26.6; IR (cm -1) 3025, 3033, 2898, 1620, 1483, 1081, 1005, 817, 478; HRMS (EI) m/z calcd. for C 10H 12INO 2 [M] +: 304.9913, found: 304.9915.
[제조예 10] N-Hydroxy-4-( p-tolyl)butanamide의 제조
Figure PCTKR2019016905-appb-img-000082
방법 A (4 mmol scale)로 제조; 흰색 고체 (690 mg, 89 %); m.p. 100-102 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.34 (br, 1H), 8.68 (br, 1H), 7.14-6.99 (m, 4H), 2.52-2.49 (m, 2H), 2.25 (s, 3H), 1.95 (t, J = 7.4 Hz, 1H), 1.75 (p, J = 7.4 Hz, 1H); 13C NMR (101 MHz, DMSO-d 6) δ 168.90, 138.52, 134.63, 128.87, 128.18, 34.18, 31.76, 27.06, 20.62; IR (cm -1) 3197, 3026, 2908, 2855, 1622, 1074, 806, 482; HRMS (EI) m/z calcd. for C 11H 15NO 2 [M] +: 193.1103, found: 119.1105.
[제조예 11] 4-{4-( tert-Butyl)phenyl}- N-hydroxybutanamide의 제조
Figure PCTKR2019016905-appb-img-000083
방법 A (2 mmol scale)로 제조; 흰색 고체 (386 mg, 82 %); m.p. 78-80 ℃; 1H NMR (400 MHz, DMSO-d 6, two protons merged to the solvent residual peaks) δ 10.35 (br, 1H), 8.68 (br, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.3 Hz, 2H), 1.96 (t, J = 7.4 Hz, 2H), 1.76 (p, J = 7.5 Hz, 2H), 1.26 (s, 9H); 13C NMR (101 MHz, DMSO-d 6) δ 168.89, 147.98, 138.54, 127.94, 125.00, 34.08, 34.05, 31.84, 31.22, 26.96; IR (cm -1) 3234, 3143, 3061, 3019, 2958, 1898, 2862, 1619, 1078, 563; HRMS (EI) m/z calcd. for C 14H 21NO 2 [M] +: 235.1572, found: 235.1573.
[제조예 12] N-Hydroxy-4-{4-(trifluoromethyl)phenyl}butanamide의 제조
Figure PCTKR2019016905-appb-img-000084
방법 A (2 mmol scale)로 제조; 흰색 고체 (400 mg, 81 %); m.p. 92-94 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.35 (br, 1H), 8.68 (br, 1H), 7.61 (d, J= 7.9 Hz, 2H), 7.39 (d, J= 7.9 Hz, 2H), 2.62 (t, J= 7.6 Hz, 2H), 1.94 (t, J= 7.4 Hz, 2H), 1.79 (p, J= 7.5 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 168.66, 146.63, 129.12, 126.63 (q, J= 31.9 Hz), 125.10 (q, J= 3.9 Hz), 124.44 (q, J= 271.8 Hz), 34.25, 31.57, 26.50; 19F NMR (564 MHz, DMSO-d 6) δ -60.75; IR (cm -1) 3214, 3040, 2929, 2871, 1626, 1322, 1109, 1065, 805, 586; HRMS (EI) m/z calcd. for C 11H 12F 3NO 2 [M] +: 247.0820, found: 247.0823.
[제조예 13] 4-(3-Bromophenyl)- N-hydroxybutanamide의 제조
Figure PCTKR2019016905-appb-img-000085
방법 A (2 mmol scale)로 제조; 흰색 고체 (402 mg, 78 %); m.p. 98-100 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.37 (s, 1H), 8.70 (s, 1H), 7.44-7.35 (m, 2H), 7.30-7.10 (m, 2H), 2.55 (t, J = 7.6 Hz, 2H), 1.95 (t, J = 7.4 Hz, 2H), 1.77 (p, J = 7.8 Hz, 2H); 13C NMR(101 MHz, DMSO-d 6) δ 168.75, 144.61, 131.06, 130.47, 128.73, 127.49, 121.66, 34.07, 31.61, 26.70; IR (cm -1) 3170, 3056, 2925, 1627, 1555, 971, 767, 665; HRMS (EI) m/z calcd. for C 10H 12BrNO 2 [M] +: 257.0051, found: 257.0054.
[제조예 14] 4-(3,5-Dimethylphenyl)- N-hydroxybutanamide의 제조
Figure PCTKR2019016905-appb-img-000086
방법 A (1.46 mmol scale)로 제조; 흰색 고체 (240 mg, 79 %); m.p. 94-96 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.34 (br, 1H), 8.67 (br, 1H), 6.79 (s, 1H), 6.77 (s, 2H), 2.46 (t, J = 7.7 Hz, 2H), 1.95 (t, J = 7.4 Hz, 2H), 1.75 (p, J = 7.5 Hz, 2H); 13C NMR (101 MHz, DMSO-d 6) δ 168.90, 141.46, 137.11, 127.21, 126.10, 34.49, 31.84, 26.98, 20.92; IR (cm -1) 3251, 3011, 2952, 2911, 2858, 1617, 1458, 1077, 1052, 954, 840, 702, 528; HRMS (EI) m/z calcd. for C 12H 17NO 2 [M] +: 207.1259, found: 207.1261.
[제조예 15] N-Hydroxy-4-( o-tolyl)butanamide의 제조
Figure PCTKR2019016905-appb-img-000087
방법 A (2 mmol scale)로 제조; 흰색 고체 (330 mg, 85 %); m.p. 78-80 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.63 (br, 1H), 8.95 (br, 1H), 7.41-7.30 (m, 4H), 3.60 (s, 3H), 2.78 (t, J = 7.4 Hz), 2.27 (t, J = 7.3 Hz, 1H), 1.98 (p, J = 7.5 Hz, 1H); 13C NMR (151 MHz, DMSO-d 6, two carbons merged to others) δ 168.89, 139.83, 135.44, 129.95, 128.63, 125.83, 2.01, 25.74, 18.79; IR (cm -1) 3232, 3020, 2954, 2923, 2864, 1620, 1455, 1071, 939, 737, 545; HRMS (EI) m/zcalcd. for C 12H 17NO 2 [M] +: 207.1259, found: 207.1261.
[제조예 16] 4-(2-Chlorophenyl)- N-hydroxybutanamide의 제조
Figure PCTKR2019016905-appb-img-000088
방법 A (2 mmol scale)로 제조; 흰색 고체 (307 mg, 72 %); m.p. 86-88 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.39 (br, 1H), 8.71 (br, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.36-7.14 (m, 3H), 2.67 (t, J = 7.8 Hz, 2H), 2.00 (t, J = 7.5 Hz, 2H), 1.78 (p, J = 7.5 Hz, 2H); 13C NMR (101 MHz, DMSO-d 6) δ 168.68, 138.97, 132.86, 130.67, 129.23, 127.88, 127.29, 32.30, 31.82, 25.31; IR (cm -1) 3166, 3036, 2973, 2868, 1654, 1428, 1069, 744, 594; HRMS (EI) m/z calcd. for C 10H 12ClNO 2 [M] +: 213.0557, found: 213.0560.
[제조예 17] N-Hydroxy-4-(naphthalen-2-yl)butanamide의 제조
Figure PCTKR2019016905-appb-img-000089
방법 A (1.11 mmol scale)로 제조; 흰색 고체 (219 mg, 75 %); m.p. 126-128 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.36 (br, 1H), 8.69 (br, 1H), 7.89-7.80 (m, 3H), 7.68 (s, 1H), 7.52-7.42 (m, 2H), 7.37 (dd, J = 8.4, 1.7 Hz, 1H), 2.73 (t, J = 7.6 Hz, 2H), 2.01 (t, J = 7.4 Hz, 2H), 1.89 (p, J = 7.5 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 168.84, 139.26, 133.15, 131.58, 127.72, 127.42, 127.28, 126.11, 125.91, 125.16, 34.68, 31.75, 26.74; IR (cm -1) 3167, 3017, 2915, 2853, 1651, 1548, 1361, 1070, 823, 741, 472; HRMS (EI) m/z calcd. for C 14H 15NO 2 [M] +: 229.1103, found: 229.1107.
[제조예 18] 5-Cyclohexyl-N-hydroxypentanamide의 제조
Figure PCTKR2019016905-appb-img-000090
방법 A (5 mmol scale)로 제조; 흰색 고체 (917 mg, 92 %); m.p. 56-58 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.31 (s, 1H), 8.64 (s, 1H), 1.92 (t, J = 7.4 Hz, 2H), 1.68-1.57 (m, 5H), 1.44 (p, J = 7.4 Hz, 2H), 1.27-1.04 (m, 8H), 0.88-0.77 (m, 2H); 13C NMR (151 MHz, DMSO-d 6, one carbon merged to others) δ 169.08, 36.92, 36.57, 32.83, 32.28, 26.19, 25.82, 25.39; IR (cm -1) 3258, 2918, 2848, 1620, 1542, 1445, 540, 483; HRMS (FAB) m/z calcd. for C 11H 21NO 2 [M+H] +: 200.1651, found: 200.1647.
[제조예 19] N-Hydroxy-6-phenylhexanamide의 제조
Figure PCTKR2019016905-appb-img-000091
방법 A (5 mmol scale)로 제조; 흰색 고체 (922 mg, 89 %); 1H NMR (599 MHz, DMSO-d 6) δ 10.33 (br, 1H), 8.66 (br, 1H), 7.26 (appt, J = 7.5 Hz, 2H), 7.20-7.14 (m, 3H), 2.55 (t, J = 7.7 Hz, 2H), 1.93 (t, J = 7.4 Hz, 2H), 1.59-1.46 (m, 4H), 1.25 (p, J = 7.7 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 169.04, 142.21, 128.24, 128.20, 125.59, 35.04, 32.18, 30.70, 28.22, 24.94.
[제조예 20] 6-(1,3-Dioxoisoindolin-2-yl)- N-hydroxyhexanamide의 제조
Figure PCTKR2019016905-appb-img-000092
방법 B (5 mmol scale)로 제조; 흰색 고체 (1.28 g, 93 %); m.p. 123-125 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.32 (br, 1H), 8.66 (br, 1H), 7.93-7.75 (m, 4H), 3.54 (t, J = 7.1 Hz, 2H), 1.92 (t, J= 7.4 Hz, 2H), 1.57 (p, J = 7.4 Hz, 2H), 1.50 (p, J= 7.5 Hz, 2H), 1.23 (p, J = 7.8 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 168.95, 167.91, 134.36, 131.58, 122.98, 37.29, 32.04, 27.71, 25.85, 24.67; IR (cm -1) 3248, 2929, 2861, 1711, 1614, 1395, 1047, 720, 530; HRMS (EI) m/z calcd. for C 14H 16N 2O 4 [M] +: 276.1110, found: 276.1112.
[제조예 21] N-Hydroxy-5-phenylpentanamide의 제조
Figure PCTKR2019016905-appb-img-000093
방법 A (5 mmol scale)로 제조; 흰색 고체 (889 mg, 92 %); 1H NMR (599 MHz, DMSO-d 6) δ 10.36 (s, 1H), 8.72 (s, 1H), 7.27 (appt, J = 7.5 Hz, 2H), 7.17 (d, J = 7.6 Hz, 3H), 2.55 (t, J = 7.1 Hz, 2H), 1.97 (t, J = 6.8 Hz, 2H), 1.58-1.46 (m, 4H); 13C NMR (151 MHz, DMSO-d 6) δ 169.00, 142.06, 128.26, 128.22, 125.63, 34.82, 32.11, 30.56, 24.78.
[제조예 22] N-Hydroxy-5-methylhexanamide의 제조
Figure PCTKR2019016905-appb-img-000094
방법 A (5 mmol scale)로 제조; 흰색 고체 (603 mg, 83 %); m.p. 74-76 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.31 (br, 1H), 8.64 (br, 1H), 1.91 (t, J= 7.4 Hz, 2H), 1.54-1.44 (m, 3H), 1.11 (q, J= 7.1 Hz, 2H), 0.84 (d, J= 6.6 Hz, 6H); 13C NMR (151 MHz, DMSO-d 6) δ 169.07, 37.86, 32.45, 27.17, 22.94, 22.39; IR (cm -1) 3197, 2965, 2936, 2868, 1624, 1544, 1121, 1063, 657, 607; HRMS (FAB) m/z calcd. for C 7H 15NO 2 [M+H] +: 146.1181, found: 146.1183.
[제조예 23] N-Hydroxytetradecanamide의 제조
Figure PCTKR2019016905-appb-img-000095
방법 A (5 mmol scale)로 제조; 흰색 고체 (1.13 g, 93 %); m.p.88-90 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.31 (br, 1H), 8.64 (br, 0H), 1.92 (t, J= 7.3 Hz, 2H), 1.54-1.41 (m, 2H), 1.33-1.12 (m, 20H), 0.85 (t, J = 6.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d 6, three carbons merged to others) δ 169.11, 32.26, 31.31, 29.07, 29.04, 28.97, 28.77, 28.73, 28.61, 25.13, 22.11; IR (cm -1) 3249, 3063, 2954, 2846, 1660, 1620, 1470, 717, 511.
[제조예 24] N-Hydroxyoleamide의 제조
Figure PCTKR2019016905-appb-img-000096
방법 A (5 mmol scale)로 제조; 흰색 고체 (1.27 g, 86 %); m.p. 66-68 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.31 (br, 1H), 8.64 (br, 1H), 5.38-5.26 (m, 2H), 1.98 (q, J = 6.5 Hz, 4H), 1.92 (t, J = 7.4 Hz, 2H), 1.46 (p, J = 7.3 Hz, 2H), 1.31-1.20 (m, 20H), 0.85 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, DMSO-d 6, one carbon merged to others) δ 169.04, 129.60, 129.58, 32.23, 31.25, 29.10, 29.07, 28.80, 28.65, 28.60, 28.57, 28.53, 26.59, 26.55, 25.09, 22.06, 13.90; IR (cm -1) 3280, 2916, 2848,1664, 1462, 1067, 978, 726; HRMS (EI) m/z calcd. for C 18H 35NO 2 [M] +: 297.2668, found: 297.2664.
[제조예 25] ( E)- N-Hydroxyoctadec-9-enamide의 제조
Figure PCTKR2019016905-appb-img-000097
방법 A (5 mmol scale)로 제조; 흰색 고체 (1.27 g, 86 %); m.p. 90-92 ℃; 1H NMR (400 MHz, DMSO-d 6) δ 10.32 (br, 1H), 8.64 (br, 1H), 5.43-5.29 (m, 2H), 2.03-1.81 (m, 6H), 1.46 (p, J = 7.2 Hz, 2H), 1.33-1.17 (m, 20H), 0.85 (t, J = 6.7 Hz, 3H); 13C NMR (101 MHz, DMSO-d 6, three carbons merged to others) δ 169.08, 130.07, 130.05, 32.25, 31.96, 31.28, 29.01, 28.82, 28.70, 28.59, 28.50, 28.43, 25.12, 22.10, 13.95; IR (cm -1) 3249, 2913, 2847, 1659, 1468, 1065, 963, 718; HRMS (FAB) m/z calcd. for C 18H 35NO 2 [M+H] +: 298.2746, found: 298.2748.
[제조예 26] 3-Benzyl- N-hydroxy-4-phenylbutanamide의 제조
Figure PCTKR2019016905-appb-img-000098
방법 A (2.4 mmol scale)로 제조; 흰색 고체 (550 mg, 84 %); m.p. 89-91 ℃; 1H NMR (599 MHz, DMSO-d 6) δ 10.41 (br, 1H), 8.74 (br, 1H), 7.29 (appt, J= 7.6 Hz, 4H), 7.19 (appt, J = 7.4 Hz, 2H), 7.13 (d, J= 7.5 Hz, 4H), 2.54-2.43 (m, 4H), 2.37 (hept, J= 6.6 Hz, 1H), 1.84 (d, J= 6.8 Hz, 2H); 13C NMR (151 MHz, DMSO-d 6) δ 168.27, 140.10, 128.98, 128.25, 125.89, 38.83, 38.43, 35.79; IR (cm -1) 3220, 3026, 2912, 1626, 747, 738, 504; HRMS (EI) m/z calcd. for C 17H 19NO 2 [M] +: 269.1416, found: 269.1419.
[제조예 27] 2-[1-{(1,3-Dioxoisoindolin-2-yl)methyl}cyclopentyl]- N-hydroxyacetamide의 제조
Figure PCTKR2019016905-appb-img-000099
방법 B (0.21 mmol scale)로 제조; 흰색 고체 (455 mg, 72 %); 1H NMR (599 MHz, CD 3OD) δ 7.91-7.84 (m, 2H), 7.84-7.79 (m, 2H), 3.73 (s, 2H), 2.20 (s, 2H), 1.76-1.59 (m, 8H); 13C NMR(151 MHz, CD 3OD, one carbonyl missing) δ 170.91, 135.46, 133.30, 124.19, 48.45, 46.57, 41.39, 35.88, 25.01.
제조예 III: 3-치환된-1,4,2-디옥사졸-5-온(3-substituted-1,4,2-dioxazol-5-one) 화합물의 제조
Figure PCTKR2019016905-appb-img-000100
실온에서 DCM (50 mL)에 하이드록삼산 화합물 (5.0 mmol)를 녹인 후 CDI (0.81 g, 5.0 mmol)을 한꺼번에 첨가하였다. 30분간 교반시킨 후, 1N HCl (30 mL)로 켄칭시키고, 디클로로메탄 (50 mL × 3)으로 추출하고, 무수 MgSO 4로 건조시키고, 용매를 감압 하에 제거하였다. 조 혼합물을 실리카 패드를 통해 여과시키고, 디클로로메탄으로 세척하였다. 여액을 감압 하에 농축시켜 목적하는 3-치환된 1,4,2-디옥사졸-5-온 화합물을 수득하였다.
출발물질을 달리한 것을 제외하고는 상기와 같은 방법으로 하기의 화합물을 제조하였다.
[제조예 28] 3-(3-Phenylpropyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000101
무색의 액체 (0.82 g, 80 %); 1H NMR (600 MHz, CDCl 3) δ 7.32 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 2.75 (t, J = 7.4 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.07 (p, J = 7.4 Hz, 2H); 13C NMR (150 MHz, CDCl 3) δ 166.4, 154.0, 139.7, 128.6, 128.4, 126.5, 34.5, 25.9, 24.0; IR (cm -1) 3207, 2913, 1827, 1634, 1452, 980; HRMS (EI) m/z calcd. for C 11H 11NO 3 [M] +: 205.0739, found: 205.0737.
[제조예 29] 3-{3-(4-fluorophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000102
무색의 액체 (0.41 g, 90 %); 1H NMR (600 MHz, CD 2Cl 2) δ 7.22-7.12 (m, 2H), 7.07-6.95 (m, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 2.03 (p, J = 7.5 Hz, 2H); 13C NMR (150 MHz, CD 2Cl 2) δ 166.6, 161.5 (d, J = 243.4 Hz), 154.1, 135.9 (d, J = 3.1 Hz), 129.9 (d, J = 7.8 Hz), 115.2 (d, J = 21.3 Hz), 33.7, 26.0, 24.0; 19F NMR (564 MHz, CD 2Cl 2) δ -117.7 (m); IR (cm -1) 2934, 1870, 1825, 1508, 1218, 1150, 981; HRMS (EI) m/z calcd. for C 11H 10FNO 3 [M] +: 223.0645, found: 223.0646.
[제조예 30] 3-{3-(4-Chlorophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000103
흰색 고체 (516 mg, 94 %, 2.3 mmol scale); m.p. 37-39 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.28 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 2.71 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.04 (p, J = 7.5 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.38, 154.14, 138.37, 132.51, 129.91, 128.95, 34.01, 25.92, 24.08; IR (cm -1) 2926, 1899, 1866, 1828, 1788, 1633, 1492, 1392, 1353, 1217, 1094, 991, 801, 757, 516; HRMS (EI) m/z calcd. for C 11H 10ClNO 3 [M] +: 239.0349, found: 239.0352.
[제조예 31] 3-(3-(4-Bromophenyl)propyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000104
흰색 고체 (1.3 g, 93 %); 1H NMR (400 MHz, CDCl 3) δ 7.44 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 2.70 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.04 (p, J = 7.4 Hz, 2H); 13C NMR (150 MHz, CDCl 3) δ 166.2, 154.0, 138.7, 131.8, 130.1, 120.4, 33.9, 25.7, 23.9; IR (cm -1) 2925, 1867, 1826, 1631, 1152, 985; HRMS (EI) m/z calcd. for C 11H 10BrNO 3 [M] +: 282.9844, found: 282.9843.
[제조예 32] 3-{3-(4-Iodophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000105
흰색 고체 (350 mg, 78%, 1.5 mmol scale); m.p. 57-59 ℃; 1H NMR (400 MHz, CDCl 3) δ 7.63 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 2.69 (t, J = 7.5 Hz, 1H), 2.61 (t, J = 7.5 Hz, 1H), 2.04 (p, J = 7.5 Hz, 2H); 13C NMR (101 MHz, CDCl 3) δ 166.36, 154.14, 139.55, 137.89, 130.63, 91.83, 34.16, 25.82, 24.09; IR (cm -1) 2923, 1897, 1828, 1631, 1152, 989, 793, 758, 503; HRMS (EI) m/z calcd. for C 11H 10INO 3 [M] +: 330.9705, found: 330.9707.
[제조예 33] 3-[3-{4-(Trifluoromethyl)phenyl}propyl]-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000106
무색의 액체 (401 mg, 92 %, 1.6 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 7.57 (d, J = 7.9 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.08 (p, J = 7.5 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.36, 154.14, 144.25, 128.89, 128.89 (q, J = 32.2 Hz), 125.63 (q, J = 3.7 Hz), 124.33 (q, J = 271.8 Hz), 34.36, 25.61, 24.03; 19F NMR (564 MHz, CDCl 3) δ -62.45; IR (cm -1) 1871, 1827, 1322, 1156, 1108, 1066, 980, 761; HRMS (EI) m/z calcd. for C 12H 10F 3NO 3 [M] +: 273.0613, found: 273.0610.
[제조예 34] 3-{3-(4-nitrophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000107
흰색 고체 (1.0 g, 81 %); 1H NMR (600 MHz, CDCl 3) δ 8.18 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 2.86 (t, J = 7.7 Hz, 2H), 2.67 (t, J = 7.4 Hz, 2H), 2.12 (p, J = 7.5 Hz, 2H); 13C NMR (150 MHz, CDCl 3) δ 165.9, 153.8, 147.5, 146.9, 129.2, 124.0, 34.4, 25.4, 24.1; IR (cm -1) 1828, 1536, 1346, 1152, 990, 948; HRMS (EI) m/z calcd. for C 11H 10N 2O 5 [M] +: 250.0590, found: 250.0592.
[제조예 35] 3-{3-( p-Tolyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000108
흰색 고체 (720 mg, 96 %, 3.4mmol scale); m.p. 42-44 ℃; 1H NMR (400 MHz, CDCl 3) δ 7.12 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.33 (s, 3H), 2.04 (p, J = 7.4 Hz, 2H); 13C NMR (101 MHz, CDCl 3) δ 166.63, 154.25, 136.80, 136.24, 129.47, 128.47, 34.24, 26.11, 24.13, 21.14; IR (cm -1) 2921, 1898, 1866, 1829, 1630, 1515, 1393, 1153, 990, 802, 750, 530; HRMS (EI) m/z calcd. for C 12H 13NO 3 [M] +: 219.0895, found: 219.0898.
[제조예 36] 3-[3-{4-( tert-Butyl)phenyl}propyl]-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000109
흰색 고체 (237mg, 91 %, 1.0 mmol scale); m.p. 47-49 ℃; 1H NMR (400 MHz, CDCl 3) δ 7.34 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 2.72 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 2.07 (p, J = 7.4 Hz, 2H), 1.32 (s, 9H); 13C NMR (101 MHz, CDCl 3) δ 166.64, 154.23, 149.58, 136.78, 128.28, 125.68, 34.55, 34.15, 31.49, 25.97, 24.21; IR (cm -1) 2957, 2864, 1882, 1867, 1821, 1761, 1653, 1163, 1149, 1000, 752, 543; HRMS (EI) m/z calcd. for C 15H 19NO 3 [M] +: 261.1365, found: 261.1362.
[제조예 37] 3-{3-(3-Bromophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000110
무색의 액체 (498 mg, 88 %, 2 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 7.36 (d, J = 8.0 Hz, 1H), 7.34 (s, 1H), 7.18 (appt, J = 7.8 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.71 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.05 (p, J = 7.5 Hz, 2H); IR (cm -1) 1870, 1823, 1146, 978, 778, 760, 693; HRMS (EI) m/z calcd. for C 11H 10BrNO 3 [M] +: 282.9844, found: 282.9844.
[제조예 38] 3-{3-(3,5-Dimethylphenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000111
흰색 고체 (221 mg, 94 %, 1.0 mmol scale); m.p. 34-36 ℃; 1H NMR (400 MHz, CDCl 3) δ 6.87 (s, 1H), 6.79 (s, 2H), 2.66 (t, J = 7.4 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.04 (p, J = 7.5 Hz, 2H); 13C NMR (101 MHz, CDCl 3) δ 166.67, 154.27, 139.82, 138.34, 128.27, 126.42, 34.55, 26.03, 24.23, 21.38; IR (cm -1) 2919, 1869, 1825, 1635, 1606, 1146, 978, 760, 701; HRMS (EI) m/z calcd. for C 13H 15NO 3 [M] +: 233.1052, found: 233.1049.
[제조예 39] 3-{3-( o-Tolyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000112
흰색 고체 (260 mg, 84 %, 1.4 mmol scale); m.p. 44-46 ℃; 1H NMR (400 MHz, CDCl 3) δ 7.21-7.05 (m, 4H), 2.74 (t, J = 7.5 Hz, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.32 (s, 3H), 2.03 (p, J = 7.5 Hz, 1H); 13C NMR (101 MHz, CDCl 3) δ 166.58, 154.22, 138.15, 136.03, 130.69, 129.06, 126.81, 126.31, 32.14, 24.74, 24.49, 19.38; IR (cm -1) 2955, 1880, 1818, 1750, 1631, 1160, 986, 757, 456; HRMS (EI) m/z calcd. for C 12H 13NO 3 [M] +: 219.0895, found: 219.0896.
[제조예 40] 3-{3-(2-Chlorophenyl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000113
황색 오일 (208 mg, 87 %, 1.0 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 7.37 (d, J = 7.6 Hz, 1H), 7.25-7.12 (m, 3H), 2.87 (t, J = 7.5 Hz, 2H), 2.72-2.60 (m, 2H), 2.08 (p, J = 7.5, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.46, 154.19, 137.68, 134.10, 130.64, 129.95, 128.26, 127.19, 32.50, 24.47, 24.31; IR (cm -1) 1870, 1825, 1146, 979, 751; HRMS (EI) m/z calcd. for C 11H 10ClNO 3 [M] +: 239.0349, found: 239.0347.
[제조예 41] 3-{3-(Naphthalen-2-yl)propyl}-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000114
흰색 고체 (157 mg, 96 %, 0.64 mmol scale); m.p. 46-48 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.86-7.77 (m, 3H), 7.63 (s, 1H), 7.52-7.42 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 2.91 (t, J = 7.4 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.16 (p, J = 7.4 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.57, 154.22, 137.36, 133.70, 132.41, 128.58, 127.82, 127.60, 126.98, 126.92, 126.40, 125.76, 34.83, 25.91, 24.17; IR (cm -1) 1870, 1819, 1629, 1155, 1134, 986, 935, 820, 754, 473; HRMS (EI) m/z calcd. for C 15H 13NO 3 [M] +: 255.0895, found: 255.0897.
[제조예 42] 3-(4-Cyclohexylbutyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000115
무색의 액체 (419 mg, 93 %, 2.0 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 2.62 (t, J = 7.6 Hz, 2H), 1.75-1.61 (m, 7H), 1.40 (p, J = 7.9 Hz, 2H), 1.27-1.09 (m, 6H), 0.86 (q, J = 10.4 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.88, 154.36, 37.52, 36.84, 33.43, 26.76, 26.46, 26.14, 24.96, 24.90; IR (cm -1) 2920, 2849, 1867, 1826, 1636, 1448, 1146, 978, 978, 761; HRMS (FAB) m/z calcd. for C 12H 19NO 3 [M+H] +: 226.1443, found: 226.1444.
[제조예 43] 3-(5-Phenylpentyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000116
무색의 액체 (720 mg, 91 %); 1H NMR (599 MHz, CDCl 3) δ 7.29 (t, J = 7.7 Hz, 1H), 7.23-7.14 (m, 3H), 2.66-2.59 (m, 4H), 1.75 (p, J = 7.6 Hz, 2H), 1.68 (p, J = 7.7 Hz, 2H), 1.45 (p, J = 7.7 Hz, 2H); 13C NMR (151 MHz, CDCl 3) δ 166.72, 154.30, 142.06, 128.52, 128.48, 126.03, 35.64, 30.81, 28.36, 24.82, 24.52; IR (cm -1) 2934, 2858, 1862, 1825, 1635, 1149, 980, 747, 698; HRMS (EI) m/z calcd. for C 13H 15NO 3 [M] +: 233.1052, found: 233.1056.
[제조예 44] 2-{5-(5-Oxo-1,4,2-dioxazol-3-yl)pentyl}isoindoline-1,3-dione의 제조
Figure PCTKR2019016905-appb-img-000117
흰색 고체 (670 mg, 95 %, 3.0 mmol scale); m.p. 83-85 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.84 (dd, J = 5.4, 3.0 Hz, 1H), 7.72 (dd, J = 5.4, 3.0 Hz, 1H), 3.70 (t, J = 7.1 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 1.79 (p, J = 7.4 Hz, 2H), 1.74 (p, J = 7.4 Hz, 2H), 1.51-1.42 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 168.57, 166.49, 154.27, 134.16, 132.19, 123.42, 37.42, 28.04, 25.93, 24.78, 24.07; IR (cm -1) 2930, 1892, 1860, 1771, 1714, 1393, 1372, 982, 721, 712; HRMS (EI) m/z calcd. for C 15H 14N 2O 5 [M] +: 302.0903, found: 302.0906.
[제조예 45] 3-(4-Methylpentyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000118
무색의 액체 (630 mg, 89 %, 4.1 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 2.60 (t, J = 7.6 Hz, 2H), 1.72 (p, J = 7.7 Hz, 2H), 1.63-1.55 (m, 1H), 1.32-1.22 (m, 2H), 0.90 (d, J = 6.7 Hz, 6H); 13C NMR (151 MHz, CDCl 3) δ 166.85, 154.35, 37.99, 27.71, 25.13, 22.60, 22.44; IR (cm -1) 2957, 1867, 1827, 1636, 1366, 1148, 980, 761; HRMS (FAB) m/z calcd. for C 8H 13NO 3 [M+H] +: 172.0974, found: 172.0973.
[제조예 46] 3-(4-Phenylbutyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000119
무색의 액체 (604 mg, 92 %, 3.0 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 7.30 (appt, J = 7.5 Hz, 2H), 7.21 (appt, J = 7.4 Hz, 1H), 7.18 (d, J = 7.4 Hz, 2H), 2.67 (t, J = 6.7 Hz, 2H), 2.64 (t, J = 7.0 Hz, 2H), 1.81-1.71 (m, 4H); 13C NMR (151 MHz, CDCl 3) δ 166.61, 154.26, 141.31, 128.60, 128.45, 126.22, 35.26, 30.46, 24.76, 24.10; IR (cm -1) 1870, 1825, 1149, 980, 759, 748, 699; HRMS (EI) m/z calcd. for C 12H 13NO 3 [M] +: 219.0895, found: 219.0895.
[제조예 47] 3-[{(3r,5r,7r)-adamantan-1-yl}methyl]-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000120
흰색 고체 (1.13 g, 96 %); 1H NMR (600 MHz, CDCl 3) δ 2.36 (s, 2H), 2.01 (s, 3H), 1.72 (d, J = 12.2 Hz, 3H), 1.65-1.58 (m, 9H); 13C NMR (150 MHz, CDCl 3) δ 165.0, 154.3, 42.1, 38.8, 36.3, 33.2, 28.3; IR (cm -1) 2903, 2885, 2848, 1813, 1152, 985; HRMS (EI) m/z calcd. for C 13H 17NO 3 [M] +: 235.1208, found:235.1206.
[제조예 48] 3-Tridecyl-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000121
Colorless resin (792 mg, 98 %, 3.0 mmol scale); 1H NMR (400 MHz, CDCl 3) δ 2.62 (t, J = 7.5 Hz, 2H), 1.72 (p, J = 7.5 Hz, 2H), 1.44-1.36 (m, 2H), 1.33-1.21 (m, 18H), 0.88 (t, J = 6.7 Hz, 3H); 13C NMR (101 MHz, CDCl 3, one carbon merged to others) δ 166.88, 154.38, 32.06, 29.78, 29.73, 29.65, 29.49, 29.44, 29.07, 28.85, 24.90, 24.67, 22.84, 14.26; IR (cm -1) 2922, 2853, 1869, 1820, 1146, 979, 762; HRMS (FAB) m/z calcd. for C 15H 27NO 3 [M+H] +: 270.2069, found: 270.2067.
[제조예 49] ( Z)-3-(Heptadec-8-en-1-yl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000122
무색의 액체 (901 mg, 93 %, 3.0 mmol scale); 1H NMR (599 MHz, CDCl 3) δ 5.45-5.30 (m, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.06-1.96 (m, 4H), 1.71 (p, J = 7.6 Hz, 2H), 1.44-1.36 (m, 2H), 1.37-1.21 (m, 18H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl 3, one carbon merged to others) δ 166.84, 154.35, 130.33, 129.68, 32.05, 29.90, 29.73, 29.66, 29.47, 29.05, 28.98, 28.83, 27.38, 27.23, 24.89, 24.65, 22.82, 14.24; IR (cm -1) 3004, 2923, 2853, 1870, 1820, 1146, 979, 761; HRMS (EI) m/z calcd. for C 19H 33NO 3 [M] +: 323.2460, found: 323.2458.
[제조예 50] ( E)-3-(Heptadec-8-en-1-yl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000123
Colorless resin (267 mg, 91 %, 0.91 mmol scale); 1H NMR (400 MHz, CD 2Cl 2) δ 5.47-5.32 (m, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.05-1.91 (m, 4H), 1.70 (p, J = 7.4 Hz, 2H), 1.41-1.23 (m, 20H), 0.88 (t, J = 6.8, 3H); 13C NMR (101 MHz, CD 2Cl 2, two carbons merged to others) δ 167.60, 154.93, 131.12, 130.68, 33.16, 33.05, 32.48, 30.24, 30.06, 29.90, 29.74, 29.35, 29.22, 25.28, 25.05, 23.26, 14.46; IR (cm -1) 2922, 2853, 1869, 1820, 1464, 1146, 977, 762; HRMS (EI) m/z calcd. for C 19H 33NO 3 [M] +: 323.2460, found: 323.2463.
[제조예 51] 3-(5-phenylpent-4-yn-1-yl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000124
무색의 오일 (1.0 g, 88 %); 1H NMR (400 MHz, CD 2Cl 2) δ 7.42-7.36 (m, 2H), 7.32-7.27 (m, 3H), 2.84 (t, J = 7.5 Hz, 2H), 2.58 (t, J = 6.7 Hz, 2H), 2.02 (p, J = 7.0 Hz, 2H); 13C NMR (150 MHz, CD 2Cl 2) δ 166.5, 154.2, 131.4, 128.3, 127.9, 123.3, 87.4, 82.0, 23.8, 23.5, 18.5; IR (cm -1) 1870, 1823, 1634, 1146, 979, 754, 691; HRMS (EI) m/z calcd. for C 13H 11NO 3 [M] +: 229.0739, found: 229.0741.
[제조예 52] ( E)-3-(5-Phenylpent-4-en-1-yl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000125
무색의 오일 (0.36 g, 96 %, 2.6 mmol scale); 1H NMR (600 MHz, CDCl 3) δ 7.35 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.23 (t, J = 7.1 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.15 (dt, J = 15.7, 6.9 Hz, 1H), 2.68 (t, J = 7.4 Hz, 2H), 2.35 (q, J = 7.0 Hz, 2H), 1.93 (q, J = 7.3 Hz, 2H); 13C NMR (150 MHz, CDCl 3) δ 166.5, 154.1, 137.0, 132.0, 128.6, 127.7, 127.4, 126.0, 31.8, 24.1, 24.1; IR (cm -1) 1868, 1824, 1633, 1146, 965, 740; HRMS (EI) m/z calcd. for C 13H 13NO 3 [M] +: 231.0895, found: 231.0896.
[제조예 53] 3-(2-Benzyl-3-phenylpropyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000126
무색의 오일 (480 mg, 94 %, 1.7 mmol scale); 1H NMR (400 MHz, CDCl 3) δ 7.36 (appt, J = 7.4 Hz, 4H), 7.29 (d, J = 7.3 Hz, 2H), 7.21 (d, J = 7.7 Hz, 4H), 2.92-2.81 (m, 2H), 2.70-2.62 (m, 2H), 2.61-2.51 (m, 3H); 13C NMR (101 MHz, CDCl 3) δ 165.92, 154.01, 138.73, 129.24, 128.80, 126.88, 40.40, 39.00, 28.45; IR (cm -1) 1872, 1825, 1143, 980, 751, 739,698; HRMS (EI) m/z calcd. for C 18H 17NO 3 [M] +: 295.1208, found: 295.1205.
[제조예 54] 3-((2,3-Dihydro-1 H-inden-2-yl)methyl)-1,4,2-dioxazol-5-one의 제조
Figure PCTKR2019016905-appb-img-000127
무색의 오일 (0.43 g, 40 %); 1H NMR (600 MHz, CDCl 3) δ 7.24-7.19 (m, 2H), 7.19-7.14 (m, 2H), 3.21 (dd, J = 15.6, 7.8 Hz, 2H), 2.91 (hept, J = 7.8, 7.2 Hz, 1H), 2.78 (d, J = 7.4 Hz, 2H), 2.75 (dd, J = 15.6, 6.4 Hz, 2H); 13C NMR (150 MHz, CDCl 3) δ 165.9, 154.0, 141.3, 126.8, 124.6, 38.7, 35.5, 30.3; IR (cm -1) 1878, 1820, 1353, 1143, 990, 744; HRMS (EI) m/z calcd. for C 12H 11NO 3 [M] +: 217.0739, found: 217.0740.
[제조예 55] 2-((1-((5-Oxo-1,4,2-dioxazol-3-yl)methyl)cyclohexyl)methyl)isoindoline-1,3-dione의 제조
Figure PCTKR2019016905-appb-img-000128
흰색 고체 (0.36 g, 52 %, 2.0 mmol scale); 1H NMR (400 MHz, CDCl 3) δ 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 3.76 (s, 2H), 2.72 (s, 2H), 1.74-1.63 (m, 2H), 1.52-1.42 (m, 8H); 13C NMR (100 MHz, CDCl 3) δ 169.2, 165.2, 154.1, 134.4, 131.8, 123.6, 45.4, 38.7, 33.5, 32.0, 25.4, 21.4; IR (cm -1) 2922, 1824, 1707, 1390, 984, 711; HRMS (EI) m/z calcd. for C 18H 18N 2O 5 [M] +: 342.1216, found: 342.1212.
[제조예 56] 2-[[1-{(5-Oxo-1,4,2-dioxazol-3-yl)methyl}cyclopentyl]methyl]isoindoline-1,3-dione의 제조
Figure PCTKR2019016905-appb-img-000129
흰색 고체 (50 mg, 90 %, 0.17 mmol scale); m.p. 105-107 ℃; 1H NMR (599 MHz, CD 2Cl 2) δ 7.92-7.81 (m, 2H), 7.79-7.68 (m, 2H), 3.75 (s, 2H), 2.75 (s, 2H), 1.92-1.74 (m, 4H), 1.73-1.65 (m, 2H), 1.61-1.51 (m, 2H); 13C NMR (151 MHz, CD 2Cl 2) δ 169.76, 166.15, 154.74, 134.84, 132.47, 123.87, 47.30, 44.96, 36.15, 33.91, 24.61; IR (cm -1) 1836, 1773, 1708, 1631, 1390, 1341, 1155, 991, 918, 712, 529; HRMS (EI) m/z calcd. for C 17H 16N 2O 5 [M] +: 328.1059, found: 328.1057.
실시예 II : 프로키랄 디옥사졸-온 화합물로부터 키랄 감마-락탐 화합물의 제조
[실시예 7] 5-Phenylpyrrolidin-2-one (1)의 제조
Figure PCTKR2019016905-appb-img-000130
아르곤 분위기 하에서 금속착체 Ir10 (8.1 mg, 5 mol%), sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (NaBAr F 4, 8.9 mg, 5 mol%) 및 무수 TCE (1,1,2,2-tetrachloroethane) (0.4 mL)를 반응 바이알에 투입하고 교반시켰다. 다른 바이알에 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (0.2 mmol) 및 TCE (0.2 mL)를 가하고, 실온에서 5분간 교반시킨 후, 상기 반응 바이알로 옮기고, 추가로 TCE (0.2 mL × 2)를 사용하여 완전히 옮겼다. 반응혼합물을 35℃에서 24시간동안 격렬하게 교반시킨 후 감압 하에 용매를 제거하고, 플래쉬 크로마토그래피(eluent: n-Hexane/10 % methanol in EtOAc = 4:1)로 정제하여 키랄 락탐 화합물 (1)을 수득하였다.
5-Phenylpyrrolidin-2-one (1)
Figure PCTKR2019016905-appb-img-000131
흰색 고체 (31 mg, 96 %); 1H NMR (400 MHz, CDCl 3) δ 7.43-7.34 (m, 2H), 7.34-7.27 (m, 3H), 6.20 (br, 1H), 4.75 (t, J= 7.1 Hz, 1H), 2.63-2.52 (m, 1H), 2.52-2.35 (m, 2H), 2.04-1.92 (m, 1H); 13C NMR (101 MHz, CDCl 3) δ 178.59, 142.59, 129.06, 128.08, 125.77, 58.22, 31.54, 30.41; Specific Rotation[α] D 25 -58.2±0.2( c1.0, CHCl 3), lit.( J. Org. Chem., 2008,  73 (17), pp 6657-6665) -51( c0.97, CH 2Cl 2); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 210 nm, t R1(major) = 9.84 min, t R2(minor) = 11.58 min, >99:1 er.
출발물질, 반응온도, 촉매 또는 염기를 달리하여 실시예 7과 동일한 방법으로 다양한 구조의 키랄 감마-락탐 화합물을 제조하였으며, 제조된 키랄 감마-락탐 화합물의 합성데이터를 하기에 기재하였다.
[실시예 8] 5-(4-Fluorophenyl)pyrrolidin-2-one (2)의 제조
Figure PCTKR2019016905-appb-img-000132
흰색 고체 (30 mg, 85 %); 1H NMR (400 MHz, CDCl 3) δ 7.30-7.23(m, 2H), 7.14-7.00 (m, 2H), 6.17 (br, 1H), 4.74 (t, J = 7.1 Hz, 1H), 2.64-2.51 (m, 1H), 2.50-2.36 (m, 1H), 2.01-1.87 (m, 1H); 13C NMR (101 MHz, CDCl 3) δ 178.5, 162.5 (d, J = 246.3 Hz), 138.3 (d, J = 3.2 Hz), 127.5 (d, J = 8.1 Hz), 116.0 (d, J = 21.6 Hz), 57.6, 31.7, 30.4; 19F NMR (376 MHz, CDCl 3) δ -114.3; Specific Rotation[α] D 25 -66.2±1.7(c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 23.30 min, t R2(minor) = 36.31 min, 99:1 er.
[실시예 9] 5-(4-Chlorophenyl)pyrrolidin-2-one (3)의 제조
Figure PCTKR2019016905-appb-img-000133
흰색 고체 (37 mg, 95 %); 1H NMR (599 MHz, CDCl 3) δ 7.32 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.97 (br, 1H), 4.72 (t, J = 7.2 Hz, 1H), 2.62-2.50 (m, 1H), 2.49-2.33 (m, 2H), 1.95-1.84 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.90, 141.19, 133.69, 129.15, 127.11, 57.65, 31.32, 30.39; Specific Rotation[α] D 25 -52.6±1.2 ( c0.5, CHCl 3), lit.( J. Org. Chem., 2013,  78 (8), pp 3647-3654) +46.0 for the ( R) isomer ( c0.6, CH 2Cl 2, 97% ee); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 23.12 min, t R2(major) = 41.61 min, 99:1 er.
[실시예 10] 5-(4-Bromophenyl)pyrrolidin-2-one (4)의 제조
Figure PCTKR2019016905-appb-img-000134
흰색 고체 (47 mg, 98 %); 1H NMR (599 MHz, CDCl 3) δ 7.49 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.31 (br, 1H), 4.72 (t, J= 7.1 Hz, 1H), 2.63-2.52(m, 1H), 2.52-2.36 (m, 2H), 1.99-1.89 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.53, 141.68, 132.21, 127.50, 121.91, 57.67, 31.43, 30.28; Specific Rotation[α] D 25 -48.5±1.2( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 25.32 min, t R2(minor) = 48.27 min, 98:2 er.
[실시예 11] 5-(4-Iodophenyl)pyrrolidin-2-one (5)의 제조
Figure PCTKR2019016905-appb-img-000135
흰색 고체 (53 mg, 92 %); m.p. 187-189 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.67 (d, J = 7.9 Hz, 2H), 7.05 (br, 1H), 7.03 (d, J = 7.9 Hz, 2H), 4.68 (t, J = 7.2 Hz, 1H), 2.59-2.49 (m, 1H), 2.47-2.33 (m, 2H), 1.94-1.82 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.94, 142.41, 138.03, 127.68, 93.24, 57.77, 31.23, 30.38; IR (cm -1) 3022, 3085, 2877, 1709, 1664, 1291, 1254, 1002, 803, 480; HRMS (EI) m/z calcd. C 10H 10INO [M] +: 286.9807,found: 286.9809; Specific Rotation[α] D 25 -33.6±0.9( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 26.50 min, t R2(major) =52.36 min, 99:1 er.
[실시예 12] 5-{4-(Trifluoromethyl)phenyl}pyrrolidin-2-one (6)의 제조
Figure PCTKR2019016905-appb-img-000136
흰색 고체 (38 mg, 83 %); m.p. 139-141 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.63 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.01 (br, 1H), 4.83 (t, J = 7.1 Hz, 1H), 2.67-2.55 (m, 1H), 2.53-2.36 (m, 2H), 1.99-1.91 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.91, 146.75, 130.36 (q, J = 32.4 Hz), 126.11, 126.08 (q, J = 3.7 Hz), 124.10 (q, J = 272.0 Hz), 57.81, 31.27, 30.49; 19F NMR (564 MHz, CDCl 3) δ -62.61; IR (cm -1) 3198, 3099, 2946, 2882, 1703, 1119, 1013, 739, 489; HRMS (EI) m/z calcd. for C 11H 10F 3NO [M] +: 229.0714, found: 229.0711; Specific Rotation[α] D 25 -56.2±0.4( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 12.60 min, t R2(major) = 26.55 min, 99:1 er.
[실시예 13] 5-(4-Nitrophenyl)pyrrolidin-2-one (7)의 제조
Figure PCTKR2019016905-appb-img-000137
반응온도 50 ℃, 촉매 Ir10 (10 mol%) 및 NaBAr F 4 (10 mol%)를 사용; 흰색 고체 (21 mg, 51 %); 1H NMR (599 MHz, CDCl 3) δ 8.25 (d, J = 8.9 Hz, 1H), 7.49 (d, J = 8.7 Hz, 1H), 6.02 (s, 1H), 4.87 (t, J = 7.2 Hz, 1H), 2.71-2.61 (m, 1H), 2.57-2.40 (m, 1H), 2.01-1.91 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.74, 150.01, 147.79, 126.58, 124.42, 57.58, 31.20, 30.17; Specific Rotation[α] D 25 -38.3±0.3( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 254 nm, t R1(minor) = 13.45 min, t R2(major) = 22.5 min, 91:9 er.
[실시예 14] 5-( p-Tolyl)pyrrolidin-2-one (8)의 제조
Figure PCTKR2019016905-appb-img-000138
흰색 고체 (28 mg, 80 %); 1H NMR (400 MHz, CDCl 3) δ 7.24-7.09 (m, 4H), 6.27 (br, 1H), 4.71 (t, J = 7.1 Hz, 1H), 2.63-2.49 (m, 1H), 2.49-2.38 (m, 2H), 2.34 (s, 3H), 2.03-1.87 (m, 1H); 13C NMR (101 MHz, CDCl 3) δ 178.60, 139.58, 137.81, 129.67, 125.72, 58.03, 31.58, 30.51, 21.18; Specific Rotation[α] D 25 -43.0±0.2( c1.30, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 210 nm, t R1(major) = 10.25 min, t R2(minor) =12.18 min, 97:3 er.
[실시예 15] 5-{4-( tert-Butyl)phenyl}pyrrolidin-2-one (9)의 제조
Figure PCTKR2019016905-appb-img-000139
흰색 고체 (42 mg, 97 %); 1H NMR (400 MHz, CDCl 3) δ 7.38 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 6.69 (br, 1H), 4.72 (t, J = 7.1 Hz, 1H), 2.59-2.46 (m, 1H), 2.46-2.32 (m, 2H), 2.04-1.91 (m, 1H), 1.31 (s, 9H); 13C NMR (101 MHz, CDCl 3) δ 178.79, 150.95, 139.52, 125.85, 125.48, 57.96, 34.62, 31.40, 30.56; Specific Rotation[α] D 25 -43.8±0.1( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 14.27 min, t R2(major) = 35.97 min, 99:1 er.
[실시예 16] 5-(3-Bromophenyl)pyrrolidin-2-one (10)의 제조
Figure PCTKR2019016905-appb-img-000140
흰색 고체 (45 mg, 94 %); m.p. 165-167 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.51-7.39 (m, 2H), 7.21-7.19 (m, 2H), 6.40 (br, 1H), 4.83-4.65 (m, 1H), 2.66-2.54 (m, 1H), 2.54-2.36 (m, 2H), 2.02-1.89 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.64, 145.07, 131.20, 130.69, 128.97, 124.41, 123.19, 57.66, 31.37, 29.82; IR (cm -1) 3178, 3086, 1682, 1650, 1262, 786, 764, 694, 486, 432; HRMS (EI) m/z calcd. for C 10H 10BrNO [M] +: 238.9946, found: 238.9941; Specific Rotation[α] D 25 -43.9±1.4( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 21.97 min, t R2(major) = 36.78 min, 99:1 er.
[실시예 17] 5-(3,5-Dimethylphenyl)pyrrolidin-2-one (11)의 제조
Figure PCTKR2019016905-appb-img-000141
흰색 고체 (31 mg, 82 %); m.p. 177-179 ℃; 1H NMR (599 MHz, CDCl 3) δ 6.93 (s, 1H), 6.90 (s, 2H), 6.10 (br, 1H), 4.67 (t, J = 7.1 Hz, 1H), 2.59-2.51 (m, 1H), 2.51-2.44 (m, 1H), 2.44-2.36 (m, 1H), 2.31 (s, 6H) 2.00-1.91 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.5, 142.6, 138.7, 129.6, 123.5, 58.1, 31.5, 30.4, 21.4; IR (cm -1) 3167, 2945, 2885, 1685, 1656, 1334, 1261, 852, 791, 702, 485; HRMS (EI) m/z calcd. for C 12H 15NO [M] +: 189.1154, found: 189.1155; Specific Rotation[α] D 25 -48.0( c1.0, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 0.5 mL/min, 210 nm, t R1(major) = 12.69 min, t R2(minor) = 13.73 min, 99:1 er.
[실시예 18] 5-( o-Tolyl)pyrrolidin-2-one (12)의 제조
Figure PCTKR2019016905-appb-img-000142
반응온도 50 ℃, 촉매 Ir10 (10 mol%) 및 NaBAr F 4 (10 mol%)를 사용; 흰색 고체 (31 mg, 47 %); m.p. 93-95 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.34 (d, J = 7.6 Hz, 1H), 7.23 (appt, J = 7.2 Hz, 1H), 7.21-7.14 (m, 2H), 6.21 (br, 1H), 4.99 (t, J = 6.8 Hz, 1H), 2.68-2.57 (m, 1H), 2.49-2.36 (m, 2H), 2.34 (s, 3H), 1.91-1.84 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.74, 140.60, 134.57, 130.92, 127.63, 126.75, 124.13, 54.69, 29.99, 29.72, 19.10; IR (cm -1) 3428, 3181, 1660, 1347, 1085, 791, 751, 448; HRMS (EI) m/z calcd. for C 11H 13NO [M] +: 175.0997, found: 175.0996; Specific Rotation[α] D 25 -72.4±2.4( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 5.01 min, t R2(minor) = 5.83 min, 85:5 er.
[실시예 19] 5-(2-Chlorophenyl)pyrrolidin-2-one (13)의 제조
Figure PCTKR2019016905-appb-img-000143
반응온도 50 ℃, 촉매 Ir10 (10 mol%) 및 NaBAr F 4 (10 mol%)를 사용; 흰색 고체 (16 mg, 41 %); m.p. 99-101 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.39 (appt, J = 7.7 Hz, 2H), 7.30 (appt, J = 7.5 Hz, 1H), 7.28-7.21 (m, 1H), 6.13 (br, 1H), 5.21-5.13 (m, 1H), 2.77-2.68 (m, 1H), 2.50-2.35 (m, 2H), 2.01-1.89 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 178.78, 139.98, 132.43, 130.13, 129.04, 127.52, 125.90, 54.83, 29.74, 29.27; HRMS(EI) m/z calcd. for C 10H 10ClNO [M] +: 195.0451, found: 195.04514; Specific Rotation[α] D 25 -37.4±2.0( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 5.01 min, t R2(minor) = 5.83 min, 80:20 er.
[실시예 20] 5-(Naphthalen-2-yl)pyrrolidin-2-one (14)의 제조
Figure PCTKR2019016905-appb-img-000144
흰색 고체 (32 mg, 76 %); 1H NMR (599 MHz, CDCl 3) δ 7.89-7.80 (m, 3H), 7.73 (s, 1H), 7.53-7.45 (m, 2H), 7.40 (dd, J = 8.5, 1.8 Hz, 1H), 6.51 (br, 1H), 4.90 (t, J = 7.1 Hz, 1H), 2.71-2.57 (m, 1H), 2.55-2.39 (m, 2H), 2.12-1.98 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.74, 139.93, 133.39, 133.14, 129.10, 127.95, 127.83, 126.65, 126.27, 124.42, 123.72, 58.28, 31.24, 30.35; Specific Rotation[α] D 25 -28.5±1.8( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 7.48 min, t R2(major) = 64.16 min, 93:7 er.
[실시예 21] 5-(Cyclohexylmethyl)pyrrolidin-2-one (15)의 제조
Figure PCTKR2019016905-appb-img-000145
흰색 고체 (22 mg, 61 %); m.p. 97-99 ℃; 1H NMR (599 MHz, CDCl 3) δ 6.14 (br, 1H), 3.73 (p, J = 6.7 Hz, 1H), 2.39-2.19 (m, 3H), 1.74-1.61 (m, 6H), 1.46-1.40 (m, 1H), 1.36-1.10 (m, 5H), 0.96-0.86 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 178.21, 52.15, 44.68, 34.98, 33.73, 33.31, 30.27, 28.04, 26.52, 26.28, 26.25; IR (cm -1) 3348, 3174, 3089, 2973, 2849, 1686, 1461, 1288, 797, 652, 523; HRMS (EI) m/z calcd. for C 11H 19NO [M] +: 181.1467, found: 181.1464; Specific Rotation[α] D 25 +10.7±1.1( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 85:15, 1.0 mL/min, 210 nm, t R1(minor) = 16.56 min, t R2(major) = 30.02 min, 96:4 er.
[실시예 22] 5-Phenethylpyrrolidin-2-one (16)의 제조
Figure PCTKR2019016905-appb-img-000146
흰색 고체 (28 mg, 73 %); 1H NMR (400 MHz, CDCl 3) δ 7.29 (appt, J = 7.3 Hz, 2H), 7.23-7.11 (m, 3H), 6.84 (br, 1H), 3.86-3.54 (m, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.40-2.22 (m, 3H), 1.94-1.70 (m, 2H); 13C NMR (101 MHz, CDCl 3) δ 178.65, 141.10, 128.69, 128.45, 126.29, 54.17, 38.57, 32.47, 30.64, 27.46; Specific Rotation[α] D 25 +20.5±1.2( c1.0, CHCl 3), lit.( J. Am. Chem. Soc., 2013,  135 (18), pp 6814-6817) -22.2 for the ( S) isomer ( c1.35, CHCl 3, 82% ee); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 0.5 mL/min, 210 nm, t R1(major) = 18.59 min, t R2(minor) = 21.32 min, 95:5 er.
[실시예 23] 2-{2-(5-Oxopyrrolidin-2-yl)ethyl}isoindoline-1,3-dione (17)의 제조
Figure PCTKR2019016905-appb-img-000147
촉매 Ir10 (10 mol%)를 사용; 흰색 고체 (39 mg, 75 %); m.p. 119-121 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.86-7.81 (m, 2H), 7.74-7.70 (m, 2H), 6.58 (br, 1H), 3.82-3.70 (m, 2H), 3.58 (p, J = 5.7 Hz, 1H), 2.42-2.34 (m, 1H), 2.34-2.24 (m, 2H), 1.93-1.85 (m, 1H), 1.85-1.70 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 178.09, 168.56, 134.30, 132.00, 123.53, 51.54, 35.66, 34.81, 29.88, 27.12; IR (cm -1) 3197, 3090, 2919, 2851, 1707, 1685, 1438, 1257, 1071, 797, 721; HRMS (EI) m/z calcd. for C 14H 14N 2O 3 [M] +: 258.1004, found: 258.1006; Specific Rotation[α] D 25 +71.4±0.4( c0.5, CHCl 3); HPLC Analysis. CHIRALCEL OJ-H, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 42.21 min, t R2(major) = 46.83 min, 97:3 er.
[실시예 24] 5-Benzylpyrrolidin-2-one (18)의 제조
Figure PCTKR2019016905-appb-img-000148
촉매 Ir10 (10 mol%)를 사용; Cololess resin (30 mg, 86 %); 1H NMR (599 MHz, CDCl 3) δ 7.31 (t, J = 7.5 Hz, 2H), 7.24 (appt, J = 7.4 Hz, 1H), 7.17 (d, J = 7.3 Hz, 2H), 6.02 (br, 1H), 3.88 (p, J = 6.5 Hz, 1H), 2.83 (dd, J = 13.4, 5.7 Hz, 1H), 2.73 (dd, J = 13.5, 8.0 Hz, 1H), 2.36-2.27 (m, 2H), 2.29-2.20 (m, 1H), 1.89-1.79 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 177.99, 137.63, 129.13, 128.90, 126.96, 55.79, 43.11, 30.19, 27.03; IR (cm -1) 3219, 2925, 1681, 1603, 1261, 699; HRMS (EI) m/z calcd. for C 11H 13NO [M] +: 175.0997, found: 175.0999; Specific Rotation[α] D 25 +60.9±0.6( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 36.14 min, t R2(major) = 44.16 min, 96:4 er.
[실시예 25] 5-Isopropylpyrrolidin-2-one (19)의 제조
Figure PCTKR2019016905-appb-img-000149
촉매 Ir10 (10 mol%)를 사용; 흰색 고체 (20 mg, 79 %); 1H NMR (599 MHz, CDCl 3) δ 6.38 (br, 1H), 3.38 (q, J = 6.9 Hz, 1H), 2.37-2.26 (m, 2H), 2.22-2.13 (m, 1H), 1.81-1.72 (m, 1H), 1.69-1.58 (m, 1H), 0.94 (d, J =6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H); 13C NMR (151 MHz, CDCl 3) δ 178.61, 60.66, 33.65, 30.66, 24.86, 18.90, 18.20; Specific Rotation[α] D 25 -11.7±0.8( c0.5, CHCl 3) lit.( Org. Lett., 2007,  9 (6), pp 1001-1004) -16.5 ( c2.0, CH 2Cl 2); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 85:15, 1.0 mL/min, 210 nm, t R1(minor) = 12.17 min, t R2(major) = 15.94 min, 97:3 er.
[실시예 26] Octahydro-3a,7:5,9-dimethanocycloocta[b]pyrrol-2( 3H)-one (20)의 제조
Figure PCTKR2019016905-appb-img-000150
흰색 고체 (20 mg, 52 %); 1H NMR (599 MHz, CDCl 3) δ 6.21 (br, 1H), 3.45(s, 1H), 2.10-1.98 (m, 3H), 1.92-1.76 (m, 6H), 1.75-1.67 (m, 3H), 1.65 (d, J = 12.0 Hz, 1H), 1.58 (d, J = 12.8 Hz, 1H), 1.39 (d, J = 11.9 Hz, 1H); 13C NMR (151 MHz, CDCl 3) δ 179.38, 64.17, 46.44, 40.15, 38.69, 37.28, 37.17, 37.06, 36.86, 29.61, 29.09, 27.46; Specific Rotation[α] D 25 +4.1±0.4( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 5.17 min, t R2(minor) = 5.86 min, 83:17 er.
[실시예 27] 5-Decylpyrrolidin-2-one (21)의 제조
Figure PCTKR2019016905-appb-img-000151
흰색 고체 (28 mg, 62 %); m.p. 65-67 ℃; 1H NMR (599 MHz, CDCl 3) δ 6.20 (br, 1H), 3.62 (p, J = 6.6 Hz, 1H), 2.39-2.27 (m, 2H), 2.27-2.19 (m, 1H), 1.74-1.66 (m, 1H), 1.56-1.48 (m, 1H), 1.49-1.40 (m, 1H), 1.32-1.21 (m, 16H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl 3, one carbon merged to others) δ 178.43, 54.80, 36.89, 32.01, 30.51, 29.68, 29.66, 29.61, 29.42, 27.44, 25.97, 22.78, 14.21; IR (cm -1) 3176, 3089, 2955, 2916, 2850, 1704, 1654, 1469, 798, 455; HRMS(EI) m/z calcd. for C 14H 27NO [M] +: 225.2093, found: 225.2094; Specific Rotation[α] D 25 -6.9±0.3( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 5.68 min, t R2(minor) = 6.68 min, 94:6 er.
[실시예 28] ( Z)-5-(Tetradec-5-en-1-yl)pyrrolidin-2-one (22)의 제조
Figure PCTKR2019016905-appb-img-000152
반응온도 50 ℃, 촉매 Ir10 (10 mol%)를 사용; 무색의 액체 (39 mg, 70 %); 1H NMR (599 MHz, CDCl 3) δ 6.59 (br, 1H), 5.39-5.27 (m, 2H), 3.61 (p, J = 6.6 Hz, 1H), 2.41-2.27 (m, 2H), 2.27-2.18 (m, 1H), 2.08-1.94 (m, 4H), 1.73-1.63 (m, 1H), 1.59-1.48 (m, 1H), 1.49-1.40 (m, 1H), 1.35-1.22(m, 16H), 0.86 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl 3) δ 178.41, 130.53, 129.29, 54.72, 36.76, 32.01, 30.38, 29.85, 29.67, 29.63, 29.44, 29.42, 27.40, 27.36, 27.10, 25.56, 22.78, 14.21; IR (cm -1) 3198, 3003, 2921, 2852, 1693, 1460, 722; HRMS (EI) m/z calcd. for C 18H 33NO [M] +: 279.2562, found: 279.2561; Specific Rotation[α] D 25 +6.1±0.3( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 216 nm, t R1(major) = 4.17 min, t R2(minor) = 4.63 min, 95:5 er.
[실시예 29] ( E)-5-(Tetradec-5-en-1-yl)pyrrolidin-2-one (23)의 제조
Figure PCTKR2019016905-appb-img-000153
반응온도 50 ℃, 촉매 Ir10 (10 mol%)를 사용; Colorless resin (31 mg, 55 %); 1H NMR (599 MHz, CDCl 3) δ 6.12 (s, 1H), 5.47-5.27 (m, 2H), 3.61 (p, J = 6.6 Hz, 1H), 2.38-2.27 (m, 2H), 2.28-2.18 (m, 1H), 2.01-1.93 (m, 4H), 1.74-1.65 (m, 1H), 1.57-1.48 (m, 1H), 1.50-1.41 (m, 1H), 1.37-1.23 (m, 16H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl 3) δ 178.25, 131.12, 129.75, 54.67, 36.73, 32.72, 32.48, 32.03, 30.31, 29.75, 29.61, 29.53, 29.45, 29.32, 27.46, 25.42, 22.81, 14.24; IR (cm -1) 3445, 3185, 3089, 2957, 2918, 2849, 1677, 1463, 963, 777, 656; HRMS (EI) m/z calcd. for C 18H 33NO [M] +: 279.2562, found: 279.2565; Specific Rotation[α] D 25 -9.3±0.7( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 220 nm, t R1(major) = 4.33 min, t R2(minor) = 4.94 min, 92:8 er.
[실시예 30] 5-(Phenylethynyl)pyrrolidin-2-one (24)의 제조
Figure PCTKR2019016905-appb-img-000154
흰색 고체 (25 mg, 67 %); 1H NMR (400 MHz, CDCl 3) δ 7.46-7.37 (m, 2H), 7.37-7.27 (m, 3H), 6.39 (br, 1H), 4.62 (s, 1H), 2.58-2.44 (m, 2H), 2.41-2.23 (m, 2H); 13C NMR (101 MHz, CDCl 3) δ 178.00, 131.79, 128.72, 128.45, 122.31, 88.08, 84.11, 45.47, 30.04, 29.29; Specific Rotation[α] D 25 +10.4±0.1( c0.1, CHCl 3); HPLCAnalysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 21.01 min, t R2(minor) = 32.31 min, 86:14 er.
[실시예 31] ( E)-5-Styrylpyrrolidin-2-one (25)의 제조
Figure PCTKR2019016905-appb-img-000155
반응온도 50 ℃, 촉매 Ir10 (10 mol%) 및 NaBAr F 4 (10 mol%)를 사용; 흰색 고체 (15 mg, 40 %); 1H NMR (599 MHz, CDCl 3) δ 7.37 (d, J = 7.7 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.29-7.26 (m, 1H), 6.55 (d, J = 15.8 Hz, 1H), 6.13 (dd, J = 15.8, 7.4 Hz, 1H), 5.63 (br, 1H), 4.34 (q, J = 7.4,1H), 2.50-2.33 (m, 3H), 2.01-1.90 (m, 1H); 13C NMR (101 MHz, CDCl 3) δ 178.11, 136.09, 131.44, 129.93, 128.86, 128.25, 126.65, 56.56, 30.01, 28.70; Specific Rotation[α] D 25 +3.1±5.0( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 35.7 min, t R2(major) = 106.19 min, 87:13 er.
[실시예 32] anti-4-Benzyl-5-phenylpyrrolidin-2-one (26)의 제조
Figure PCTKR2019016905-appb-img-000156
흰색 고체 (45 mg, 90 %); m.p. 114-116 ℃; 1H NMR(400 MHz, CDCl 3) δ 7.26-7.15 (m, 5H), 7.16-7.06 (m, 3H), 7.01 (d, J = 7.0 Hz, 2H), 6.63 (s, 1H), 4.31 (d, J = 5.3 Hz, 1H), 2.82 (dd, J= 13.6, 6.0 Hz, 1H), 2.63 (dd, J = 13.6, 8.2 Hz, 1H), 2.51-2.34 (m, 2H), 2.07 (dd, J =16.2, 6.7 Hz, 1H); 13C NMR (101 MHz, CDCl 3) δ 177.59, 141.54, 138.98, 128.98, 128.89, 128.63, 128.01,126.59, 126.09, 63.31, 46.55, 39.56, 36.31; IR (cm -1) 3248, 2955, 2913, 1691, 1285, 1023, 698, 475; HRMS (EI) m/z calcd. for C 17H 17NO [M] +: 251.1310, found: 251.1313; Specific Rotation[α] D 25 -4.0±0.5( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 6.01 min, t R2(minor) = 7.04 min, 97:3 er.
[실시예 33] syn-3,3a,4,8b-Tetrahydroindeno[1,2-b]pyrrol-2( 1H)-one (27)의 제조
Figure PCTKR2019016905-appb-img-000157
흰색 고체 (34 mg, 98 %); 1H NMR (599 MHz, CDCl 3) δ 7.40 (br, 1H), 7.30-7.17 (m, 4H), 5.02 (d, J = 6.7 Hz, 1H), 3.32-3.24 (m, 2H), 2.82 (q, J = 8.1 Hz, 1H), 2.70 (dd, J = 17.3, 8.8 Hz, 1H), 2.19 (dd, J = 17.5, 4.4 Hz, 1H); 13C NMR (151 MHz, CDCl 3) δ 178.00, 142.49, 141.72, 128.68, 127.34, 125.38, 124.94, 63.62, 38.60, 37.77, 37.52; Specific Rotation[α] D 25 +55.1±0.3( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(major) = 7.02 min, t R2(minor) = 15.54 min, 97:3 er.
[실시예 34] 2-{(2-Oxooctahydro-3aH-indol-3a-yl)methyl}isoindoline-1,3-dione (28)의 제조
Figure PCTKR2019016905-appb-img-000158
흰색 고체 (59 mg, 99 %); 1H NMR (400 MHz, CDCl 3) δ 7.84 (dd, J= 5.4, 3.1Hz, 2H), 7.72 (dd, J= 5.4, 3.1 Hz, 2H), 6.29 (br, 1H), 3.76 (s, 2H), 3.55 (s, 1), 2.46 (d, J= 16.4 Hz, 1H), 1.98 (d, J= 16.4Hz, 1H), 1.92-1.80 (m, 1H), 1.77-1.65 (m, 1H), 1.61-1.37 (m, 6H); 13C NMR (101 MHz, CDCl 3) δ 177.04, 168.94, 134.34, 131.87, 123.58, 55.53, 43.45, 43.00, 42.48, 30.72, 26.30, 21.19, 19.91; Specific Rotation[α] D 25 -19.9±0.6( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 210 nm, t R1(minor) = 23.28 min, t R2(major) = 29.67 min, 88:12 er.
[실시예 35] 2-[{ syn-2-Oxohexahydrocyclopenta[b]pyrrol-3a( 1H)-yl}methyl]isoindoline-1,3-dione (29)의 제조
Figure PCTKR2019016905-appb-img-000159
흰색 고체 (25 mg, 88 %, 0.1 mmol scale); m.p. 192-194 ℃; 1H NMR (599 MHz, CDCl 3) δ 7.89-7.80 (m, 2H), 7.79-7.69 (m, 2H), 6.28 (s, 1H), 4.05 (d, J = 5.0 Hz, 1H), 3.81 (d, J =14.0 Hz, 1H), 3.75 (d, J = 14.0 Hz, 1H), 2.69 (d, J = 17.8 Hz, 1H), 2.22 (d, J =17.8 Hz, 1H), 1.79-1.64 (m, 6H); 13C NMR (151 MHz, CDCl 3) δ 176.79, 169.17, 134.40, 131.83, 123.64, 62.53, 51.43, 45.15, 41.72, 38.39, 34.06, 23.85; IR (cm -1) 3293, 2967, 2931, 1772, 1706, 1695, 1651, 1420, 1338, 1262, 975, 713, 530; HRMS (EI) m/z calcd. for C 16H 16N 2O 3 [M] +: 284.1161, found: 284.1159; Specific Rotation[α] D 25 -15.1±1.1( c0.5, CHCl 3); HPLC Analysis. CHIRALCELOJ-H, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 210 nm, t R1(minor) = 43.07 min, t R2(major) = 51.55 min, 96:4 er.
[실시예 36-40 및 비교예 1-6] 키랄 감마-락탐 화합물의 제조
촉매 구조에 따른 키랄 감마-락탐 화합물의 제조 여부를 알아보기 위하여 하기와 같이 실험하였다.
Figure PCTKR2019016905-appb-img-000160
아르곤 분위기 하에서 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (20.6 mg, 0.1 mmol) 및 TCE-d 2 (0.5 mL)를 반응 바이알에 투입하고, 이어서 하기의 촉매 (4 mol%)와 NaBAr F 4 (3.5 mg, 4 mol%)를 첨가하였다. 반응혼합물을 50℃에서 12시간동안 격렬하게 교반시켰다. 반응 수율은 1,1,2-트리클로로에탄을 내부표준으로 사용하여 1H NMR로 측정하였고, 거울상이성질체 비(e.r.)는 HPLC(High Performance Liquid Chromatography) 분석(CHIRALPAK IA-3 column, 32℃, hexane: i-PrOH = 95:5, flow rate = 1.0mL/min, UV = 210 nm)으로 결정하였다.
동일한 반응 조건 하에서 오직 촉매만 달리한 반응 결과를 하기 표 1에 나타내었다.
촉매 키랄 감마-락탐 화합물 (1) 화합물 A의 수율 (%)
수율 (%) e.r.
실시예 36 Ir10 >95 98:2 <5
실시예 37 Ir6 31 98:2 <5
실시예 38 Ir9 12 96:4 <5
실시예 39 Ir8 19 94:6 <5
실시예 40 Ir7 25 91:9 <5
비교예 1 Ir-D 40 59:41 35
비교예 2 Ir-C 39 51:49 22
비교예 3 Ir-B 24 51:49 24
비교예 4 Ir-A 19 53:47 28
비교예 5 Ir-E 12 81:19 15
비교예 6 Ir-F 12 40:60 50
NaBAr F 4 : sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate
TCE-d 2 : 1,1,2,2- tetrachloroethane-d 2
Figure PCTKR2019016905-appb-img-000161
Figure PCTKR2019016905-appb-img-000162
상기 표 1로부터, 본 발명의 금속 착체를 이용한 실시예 36 내지 40의 경우 높은 거울상이성질선택성을 가지는 키랄 감마-락탐 화합물 (1)을 생성하였을 뿐만 아니라, 부산물인 화합물 A의 형성을 현저하게 억제하였음을 알 수 있다.
그러나, 비교예 1 내지 4와 같이 N,O-리간드 및 D-prolinamide 리간드를 가지는 이리듐 착체를 아미드화 촉매로 사용하는 경우 키랄 감마-락탐 화합물 (1)의 거울상이성질체 비(e.r.)가 51:49 내지 59:41로, ee 값이 2% 내지 18%로, 광학 순도가 매우 낮을 뿐만 아니라, 중간체인 카보닐나이트렌이 쉽해 분해되어 부산물인 이소시아네이트 (화합물 A)로 다량 전환되는 것을 알 수 있다.
또한, 키랄 에틸렌디아민 리간드를 가지는 Ir-E 및 Ir-F의 경우 말단 질소원자에 수소 원자 대신 메틸이 결합된 구조로, 메틸의 치환 개수에 따라 부산물의 수율이 증가하며, 목적하는 키랄 감마-락탐 화합물의 거울상이성질체 비(e.r.)가 현저하게 감소됨을 알 수 있다.
이상으로부터, 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조된 키랄 감마-락탐 화합물의 거울상이성질선택성은 촉매인 금속 착체의 리간드 구조에 영향을 받음을 알 수 있다.
[실시예 41-44 및 비교예 7 내지 9] 키랄 감마-락탐 화합물의 제조
반응조건에 따른 키랄 감마-락탐 화합물의 제조 여부를 알아보기 위하여 하기와 같이 실험하였다.
Figure PCTKR2019016905-appb-img-000163
아르곤 분위기 하에서 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (20.6 mg, 0.1 mmol) 및 용매 (0.5 mL)를 반응 바이알에 투입하고, 이어서 촉매와 염기를 첨가하였다. 반응혼합물을 35℃에서 24시간 또는 50℃에서 12시간동안 격렬하게 교반시켰다. 반응 수율은 1,1,2-트리클로로에탄을 내부표준으로 사용하여 1H NMR로 측정하였고, 거울상이성질체 비(enantiomeric ratio; e.r.)는 HPLC(High Performance Liquid Chromatography) 분석(CHIRALPAK IA-3 column, 32 ℃, hexane: iPrOH = 95:5, flow rate = 1.0mL/min, UV = 210 nm)으로 결정하였다.
촉매의 유무, 염기 및 용매의 종류 또는 반응온도 및 반응시간에 따른 결과를 하기 표 2에 나타내었다.
촉매 (mol%) 염기 (mol%) 용매 반응온도 (℃) 반응시간 (h) 키랄 감마-락탐 화합물 (1) 화합물 A의 수율(%)
수율 (%) e.r.
실시예 41 Ir10 (4 mol%) NaBAr F 4 (4 mol%) TCE-d 2 35 24 >95 >99:1 <5
실시예 42 Ir10 (4 mol%) AgNTf 2 (4 mol%) TCE-d 2 35 24 90 99:1 <5
실시예 43 Ir10 (4 mol%) NaBAr F 4 (4 mol%) DCE-d 4 35 24 78 97:3 <5
실시예 44 Ir10 (4 mol%) NaBAr F 4 (4 mol%) TCE 35 24 >95 99:1 <5
비교예 7 - NaBAr F 4 (4 mol%) TCE-d 2 35 24 <5 - <5
비교예 8 Ir10 (4 mol%) - TCE-d 2 35 24 <5 - 73
비교예 9 Ir10 (4 mol%) - TCE-d 2 50 12 <5 - 73
NaBAr F 4 : sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate
AgNTf 2 : Silver bis(trifluoromethanesulfonyl)imide
TCE-d 2 : 1,1,2,2- tetrachloroethane-d 2
DCE-d 4 : 1,2-dichloroethane-d 4
TCE : 1,1,2,2- tetrachloroethane
Figure PCTKR2019016905-appb-img-000164
실시예 III : 키랄 감마-락탐 화합물을 이용한 다양한 키랄 화합물의 제조
[실시예 45] 4-(2-Oxo-5-phenylpyrrolidin-1-yl)benzonitrile의 제조
Figure PCTKR2019016905-appb-img-000165
5-Phenylpyrrolidin-2-one (1)의 제조
아르곤 분위기 하에서 금속착체 Ir10 (65 mg, 4 mol%), sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (NaBAr F 4, 71 mg, 4 mol%) 및 무수 TCE (10 mL)를 50 mL round-bottom flask에 투입하였다. 실온에서 5분간 교반시킨 후, 3-(3-phenylpropyl)-1,4,2-dioxazol-5-one (2.0 mmol, 410 mg)을 직접 가하고, 50℃에서 24시간동안 격렬하게 교반시켰다. 교반 완료 후, 감압 하에서 용매를 제거하고, 실리카 크로마토그래피(eluent: n-hexane/10 % methanol in EtOAc = 1:4)로 정제하여 5-Phenylpyrrolidin-2-one (1)을 수득하였다(수율 94%, 98:2 er).
4-(2-Oxo-5-phenylpyrrolidin-1-yl)benzonitrile의 제조
대기 하, Pd 2(dba) 3 (5.8 mg, 0.01 mmol), Xantphos (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, 17.3 mg, 0.03 mmol), 5-Phenylpyrrolidin-2-one (1) (98:2 er, 39 mg, 0.24 mmol) 및 4-bromobenzonitrile (36 mg, 0.2 mmol)을 반응 바이알에 첨가하였다. 이어서, 아르곤 분위기 하에서 Cs 2CO 3 (91 mg, 0.28 mmol)과 1,4-dioxane (0.6 mL)을 첨가한 후 105 ℃로 12시간동안 가열하였다. 반응완료 후, 반응혼합물을 CH 2Cl 2 (10 mL)으로 세척하고 셀라이트 패드를 통해 여과시킨 뒤, 플래쉬 크로마토그래피(용리액: n-헥산/EtOAc)로 정제하여 4-(2-Oxo-5-phenylpyrrolidin-1-yl)benzonitrile을 수득하였다.
Colorless resin (52 mg, 99 %); 1H NMR (599 MHz, CDCl 3) δ 7.60 (d, J = 8.9 Hz, 2H), 7.48 (d, J = 8.9 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.28-7.22(m, 1H), 7.16 (d, J = 7.3 Hz, 2H), 5.33-5.20 (m, 1H), 2.79-2.71 (m, 1H), 2.70-2.56 (m, 2H), 2.06-1.98 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 175.33, 142.26, 140.28, 132.75, 129.33, 128.17, 125.58, 121.20, 118.78, 107.36, 63.33, 31.20, 29.09; IR (cm -1) 2223, 1700, 1601, 1506, 1370, 1298, 1281, 836, 700, 543, 493; HRMS (EI) m/z calcd. for C 17H 14N 2O [M] +: 262.1106, found: 262.1107; Specific Rotation[α] D 25 -7.4±0.3( c0.5, CHCl 3); HPLC Analysis. CHIRALPAK IA-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 254 nm, t R1(minor) = 11.79 min, t R2(major) = 13.20 min, 98:2 er.
[실시예 46] 5-Phenylpyrrolidine-2-thione의 제조
Figure PCTKR2019016905-appb-img-000166
대기 하, 5-Phenylpyrrolidin-2-one (1) (98:2 er, 16 mg, 0.1 mmol)을 반응 바이알에 넣고, 이어서 아르곤 대기 하에서 Lawesson's reagent (20 mg, 0.05 mmol)과 무수 톨루엔 (0.5 mL)을 가하고 80℃에서 6시간동안 교반시켰다. 반응혼합물에 탈이온수를 가하고 EtOAc로 3회 추출하고, 감압 하에 건조시켰다. 잔류물을 플래쉬 크로마토그래피(용리액: n-헥산/EtOAc)로 정제하여 5-Phenylpyrrolidine-2-thione을 수득하였다.
흰색 고체(17 mg, 96 %); 1H NMR (599 MHz, CDCl 3) δ 8.20 (s, 1H), 7.37 (t, J = 7.4 Hz, 2H), 7.34-7.30 (m, 1H), 7.25 (d, J = 7.0 Hz, 2H), 4.99 (t, J = 7.4 Hz, 1H), 3.12-3.03 (m, 1H), 3.01-2.89 (m, 1H), 2.70-2.60 (m, 1H), 2.16-2.02 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 206.35, 140.33, 129.22, 128.59, 126.05, 65.85, 43.27, 33.57; Specific Rotation[α] D 25 -90.9±0.5( c0.5, CHCl 3), lit.( J. Am. Chem. Soc., 2012,  134 (42), pp 17605-17612) -25.2°( c0.25, CH 2Cl 2, 80% ee); HPLC Analysis. CHIRALPAK IC-3, 32 ℃, hexane: i-PrOH = 90:10, 1.0 mL/min, 254 nm, t R1(minor) = 11.07 min, t R2(major) = 21.09 min, 99:1 er.
[실시예 47] N-Benzyl-2-phenylpyrrolidine 의 제조
Figure PCTKR2019016905-appb-img-000167
N-Benzyl-5-phenylpyrrolidin-2-one의 제조
대기 하, 5-Phenylpyrrolidin-2-one (1) (98:2 er, 16 mg, 0.1 mmol)을 반응 바이알에 넣고, 이어서 아르곤 대기 하에서 무수 THF (0.5 mL)을 가하고, -30℃로 냉각시키고, NaH (4 mg, 0.15 mmol)를 첨가하였다. 이어서, THF (0.5 mL) 중의 벤질 브로마이드 (21 mg, 0.12 mmol)를 상기 반응혼합물에 투입하고, 실온에서 24시간동안 교반시켰다. 교반이 완료되면, 포화 NaHCO 3 수용액을 붓고, Et 2O로 3회 추출하고, 유기층을 감압 하에 건조시켰다. 잔류물을 플래쉬 크로마토그래피(용리액: n-헥산/EtOAc)로 정제하여 N-Benzyl-5-phenylpyrrolidin-2-one을 수득하였다.
흰색 고체(25 mg, 99 %); 1H NMR (599 MHz, CDCl 3) δ 7.37 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.29-7.22 (m, 3H), 7.13 (d, J = 7.4 Hz, 2H), 7.07 (d, J = 6.9 Hz, 2H), 5.11 (d, J = 14.6 Hz, 1H), 4.40 (dd, J = 8.2, 5.5 Hz, 1H), 3.47 (d, J = 14.6 Hz, 1H), 2.64 (ddd, J = 16.3, 9.8, 6.0 Hz, 1H), 2.49 (ddd, J = 16.9, 9.9, 6.6 Hz, 1H), 2.45-2.34 (m, 1H), 1.94-1.84 (m, 1H); 13C NMR (151 MHz, CDCl 3) δ 175.55, 140.93, 136.47, 129.15, 128.68, 128.65, 128.24, 127.64, 126.86, 61.43, 44.47, 30.42, 28.37; Specific Rotation[α] D 25 +37.2±0.8( c0.5, CHCl 3).
N -Benzyl-2-phenylpyrrolidine 의 제조
대기 하, N-Benzyl-5-phenylpyrrolidin-2-one (25 mg, 0.1 mmol)을 반응 바이알에 넣고, 이어서 아르곤 대기 하에서 LiAlH 4 (16 mg, 0.5 mmol) 및 무수 THF (0.5 mL)을 가하고, 실온에서 6시간동안 교반시켰다. 교반 완료 후, 반응혼합물을 EtOAc로 세척하고, 3방울의 탈이온수를 첨가하여 켄칭시켰다. 물을 MgSO 4로 제거하고, 셀라이트 패드를 통해 여과시킨 뒤, 용매를 감압 하에 제거하여 N-Benzyl-2-phenylpyrrolidine을 수득하였다.
흰색 고체 (24 mg, 99%); 1H NMR (599 MHz, CDCl 3) δ7.49 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.34-7.20 (m, 6H), 3.87 (d, J = 13.1 Hz, 1H), 3.38 (t, J = 8.2 Hz, 1H), 3.11 (t, J = 8.7 Hz, 1H), 3.05 (d, J = 13.1 Hz, 1H), 2.27-2.16 (m, 2H), 1.95-1.84 (m, 1H), 1.84-1.71 (m, 2H); 13C NMR (151 MHz, CDCl 3) δ 144.03, 139.89, 128.81, 128.55, 128.21, 127.69, 127.11, 126.79, 69.76, 58.25, 53.47, 35.36, 22.46; Specific Rotation[α] D 25 -96.9±0.7( c0.5, CHCl 3); HPLC Analysis. CHIRALCEL OJ-H, 32 ℃, hexane: i-PrOH = 95:5, 1.0 mL/min, 210 nm, t R1(minor) = 5.56 min, t R2(major) = 7.98 min, 97:3 er.
[실시예 48] 4-Amino-4-phenylbutanoic acid hydrochloride의 제조
Figure PCTKR2019016905-appb-img-000168
5-Phenylpyrrolidin-2-one (1) (98:2 er, 16 mg, 0.1 mmol)을 6N 염산(0.6 mL)에 혼합한 후 100℃에서 12시간동안 가열하였다. 실온으로 냉각시킨 후, 용매를 감압 하에 제거하였다. EtOAc (1 mL)를 첨가한 후, 반응혼합물을 초음파 처리에 의해 현탁시키고, 실온에서 1시간동안 교반시켰다. 고체 생성물을 MeOH로 세척하면서 여과하여 4-Amino-4-phenylbutanoic acid hydrochloride을 수득하였다.
흰색 고체 (21 mg, 97 %); 1H NMR (599 MHz, CD 3OD) δ 7.49-7.41 (m, 5H), 4.35 (dd, J = 9.4, 5.4 Hz, 1H), 2.36-2.29 (m, 1H), 2.24-2.13 (m, 3H); 13C NMR (151 MHz, CD 3OD) δ 175.56, 137.45, 130.58, 130.49, 128.46, 56.11, 30.84, 30.55; Specific Rotation[α] D 25 +21.3±0.2( c0.5, H 2O), lit.( Org. Lett., 2008,  10 (4), pp 537-540) -39.4 for the ( R) isomer ( c0.2, CD 3OD); HPLC Analysis. CROWNPAK CR-I(+), HClO 4(aq, pH =1.5):MeCN = 80:20, 0.5 mL/min, 210 nm, t R1(major) = 3.21 min, t R2(minor) = 5.13 min, 99:1 er.
상기 실시예 45 내지 48로부터, 본 발명의 금속 착체를 촉매로 이용하여 프로키랄 1,4,2-디옥사졸-5-온 화합물로부터 제조된 키랄 감마-락탐 화합물은 광학순도의 저하 없이 키랄 N-아릴화 락탐, 티오아미드, 키랄 피롤리딘 및 비천연 감마-아미노산과 같은 의약 및 천연물 등의 합성의 중간체 및 원료물질의 제조에 매우 유용하게 사용될 수 있음을 알 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (16)

  1. 하기 화학식 1로 표시되는 금속 착체 및 염기의 존재 하에 하기 화학식 2로 표시되는 프로키랄(prochiral) 1,4,2-디옥사졸-5-온 화합물을 아미드화하여 하기 화학식 3으로 표시되는 키랄(chiral) 감마-락탐 화합물을 제조하는 방법.
    [화학식 1]
    Figure PCTKR2019016905-appb-img-000169
    (상기 화학식 1에서,
    M은 이리듐(III), 로듐(III) 또는 코발트(III)이며;
    X 1는 할로겐이며;
    R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
    R 6은 -C(=O)-R a 또는 -S(=O) 2-R b이며;
    R a 및 R b는 각각 독립적으로 C1-C20알킬, C1-C20알콕시, C6-C20아릴, C6-C20아릴옥시 또는 -NR cR d이며, 상기 R a 및 R b의 알킬, 알콕시, 아릴 및 아릴옥시는 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
    R c 및 R d는 각각 독립적으로 수소 또는 C1-C20알킬이며;
    R 7 및 R 8은 각각 독립적으로 C1-C20알킬 또는 C6-C20아릴이거나, 상기 R 7과 R 8은 서로 연결되어 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 알킬 및 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시, 니트로 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
    [화학식 2]
    Figure PCTKR2019016905-appb-img-000170
    [화학식 3]
    Figure PCTKR2019016905-appb-img-000171
    (상기 화학식 2 및 3에서,
    R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며;
    R 22 및 R 23은 각각 독립적으로 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있고;
    상기 R 21 내지 R 23은 인접한 치환기와 연결되어 고리를 형성할 수 있다.)
  2. 제 1항에 있어서,
    상기 R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성하는 것인, 키랄 감마-락탐 화합물의 제조방법.
  3. 제 1항에 있어서,
    상기 금속 착체는 하기 화학식 1-1로 표시되는 금속 착체인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 1-1]
    Figure PCTKR2019016905-appb-img-000172
    (상기 화학식 1-1에서,
    X 1는 할로겐이며;
    R 1 내지 R 5는 각각 독립적으로 수소 또는 C1-C20알킬이며;
    R 9는 C1-C20알킬 또는 C6-C20아릴이며, 상기 R 9의 아릴은 C1-C20알킬, 할로겐, C1-C20알콕시 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
    R 7 및 R 8은 각각 독립적으로 C6-C20아릴이거나, 상기 R 7과 R 8은 C3-C7알킬렌으로 연결되어 지환족 고리를 형성할 수 있으며, 상기 R 7 및 R 8의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있다.)
  4. 제 3항에 있어서,
    상기 금속 착체는 하기 화학식 1-2로 표시되는 금속 착체인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 1-2]
    Figure PCTKR2019016905-appb-img-000173
    (상기 화학식 1-2에서,
    X 1는 할로겐이며;
    R 1 내지 R 5는 각각 독립적으로 C1-C10알킬이며;
    R 9는 C1-C10알킬 또는 C6-C12아릴이며, 상기 R 9의 아릴은 C1-C10알킬, 할로겐, C1-C10알콕시 및 할로C1-C10알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
    R 10 및 R 11는 각각 독립적으로 C1-C10알킬이며;
    c 및 d는 각각 독립적으로 0 내지 5의 정수이다.)
  5. 제 1항에 있어서,
    상기 금속 착체는 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰로 사용되는 것인, 키랄 감마-락탐 화합물의 제조방법.
  6. 제 1항에 있어서,
    상기 염기는 상기 프로키랄 1,4,2-디옥사졸-5-온 화합물 1몰에 대하여 0.01 내지 0.1몰로 사용되는 것인, 키랄 감마-락탐 화합물의 제조방법.
  7. 제 6항에 있어서,
    상기 염기는 NaBAr F 4 (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), AgSbF 6 (Silver hexafluoroantimonate(V)), AgNTf 2 (Silver bis(trifluoromethanesulfonyl)imide), AgBF 4 (Silver tetrafluoroborate), AgPF 6 (Silver hexafluorophosphate), AgOTf Silver trifluoromethanesulfonate) 및 AgOAc (Silver acetate) 에서 선택되는 하나 또는 둘 이상인, 키랄 감마-락탐 화합물의 제조방법.
  8. 제 1항에 있어서,
    상기 아미드화는 20 내지 60℃에서 수행되는 것인, 키랄 감마-락탐 화합물의 제조방법.
  9. 제 1항에 있어서,
    상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-1의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-1의 키랄 감마-락탐 화합물인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 2-1]
    Figure PCTKR2019016905-appb-img-000174
    [화학식 3-1]
    Figure PCTKR2019016905-appb-img-000175
    (상기 화학식 2-1 및 3-1에서,
    R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있다.)
  10. 제 1항에 있어서,
    상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-2의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-2의 키랄 감마-락탐 화합물인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 2-2]
    Figure PCTKR2019016905-appb-img-000176
    [화학식 3-2]
    Figure PCTKR2019016905-appb-img-000177
  11. 제 1항에 있어서,
    상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-3의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-3의 키랄 감마-락탐 화합물인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 2-3]
    Figure PCTKR2019016905-appb-img-000178
    [화학식 3-3]
    Figure PCTKR2019016905-appb-img-000179
    (상기 화학식 2-3 및 3-3에서,
    R 21은 C1-C20알킬, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 또는 C2-C20알키닐이고, 상기 R 21의 알킬, 시클로알킬, 아릴, 알케닐 또는 알키닐은 C1-C20알킬, 할로겐, 할로C1-C20알킬, 니트로, 시아노, C3-C20시클로알킬, C6-C20아릴, C2-C20알케닐 및 프탈이미도로부터 선택되는 어느 하나 이상으로 더 치환될 수 있으며;
    R 22a은 C6-C20아릴이다.)
  12. 제 1항에 있어서,
    상기 프로키랄 1,4,2-디옥사졸-5-온 화합물은 하기 화학식 2-4의 프로키랄 1,4,2-디옥사졸-5-온 화합물이고, 상기 키랄 감마-락탐 화합물은 하기 화학식 3-4의 키랄 감마-락탐 화합물인, 키랄 감마-락탐 화합물의 제조방법:
    [화학식 2-4]
    Figure PCTKR2019016905-appb-img-000180
    [화학식 3-4]
    Figure PCTKR2019016905-appb-img-000181
    (상기 화학식 2-4 및 3-4에서,
    L 1은 융합고리를 포함하거나 포함하지 않는 C3-C7알킬렌이고;
    R 23은 수소 또는 C1-C20알킬이고, 상기 R 23의 알킬은 C6-C20아릴 또는 프탈이미도로 더 치환될 수 있다.)
  13. 하기 화학식 4로 표시되는 금속 착체:
    [화학식 4]
    Figure PCTKR2019016905-appb-img-000182
    (상기 화학식 4에서,
    X 2는 할로겐이며;
    R 31 내지 R 35는 각각 독립적으로 수소 또는 C1-C20알킬이며;
    R 36는 C1-C20알콕시 및 할로겐으로부터 선택되는 하나 이상으로 치환된C6-C20아릴, 또는 C1-C20알킬이 치환된 C6-C20아릴이며;
    R 37 및 R 38은 각각 독립적으로 C6-C20아릴이며, 상기 R 37 및 R 38의 아릴은 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 더 치환될 수 있으며;
    단, R 36이 C1-C20알킬이 치환된 C6-C20아릴인 경우 R 37 및 R 38은 각각 독립적으로 C1-C20알킬 및 할로C1-C20알킬로부터 선택되는 하나 이상으로 치환된 C6-C20아릴이다.)
  14. 제 13항에 있어서,
    하기 화학식 4-1로 표시되는 금속 착체:
    [화학식 4-1]
    Figure PCTKR2019016905-appb-img-000183
    (상기 화학식 4-1에서,
    X 2는 할로겐이며;
    R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
    R 36는 C1-C10알콕시가 치환된 C6-C12아릴 또는 할로겐이 치환된 C6-C12아릴이다.)
  15. 제 13항에 있어서,
    하기 화학식 4-2로 표시되는 금속 착체:
    [화학식 4-2]
    Figure PCTKR2019016905-appb-img-000184
    (상기 화학식 4-2에서,
    X 2는 할로겐이며;
    R 31 내지 R 35는 각각 독립적으로 C1-C10알킬이며;
    R 36는 C1-C10알킬이 치환된 C6-C12아릴이며;
    R 39 및 R 40는 각각 독립적으로 C1-C10알킬이며;
    e 및 f는 각각 독립적으로 1 내지 3의 정수이다.)
  16. 제 13항에 있어서,
    하기 구조에서 선택되는 금속 착체:
    Figure PCTKR2019016905-appb-img-000185
PCT/KR2019/016905 2018-12-31 2019-12-03 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체 WO2020141734A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180174064A KR102590897B1 (ko) 2018-12-31 2018-12-31 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체
KR10-2018-0174064 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020141734A1 true WO2020141734A1 (ko) 2020-07-09

Family

ID=71406677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016905 WO2020141734A1 (ko) 2018-12-31 2019-12-03 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체

Country Status (2)

Country Link
KR (1) KR102590897B1 (ko)
WO (1) WO2020141734A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503487A (zh) * 2009-03-04 2009-08-12 中国石油天然气股份有限公司 一种含ivb族金属烯烃聚合催化剂及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376058B2 (ja) 2010-06-30 2013-12-25 富士通株式会社 システム制御装置、情報処理システム及び情報処理システムのデータ退避及び復元方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503487A (zh) * 2009-03-04 2009-08-12 中国石油天然气股份有限公司 一种含ivb族金属烯烃聚合催化剂及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GIOVANNA BRANCATELLI; DROMMI DARIO; FEMINÒ GIUSY; SAPORITA MARIA; BOTTARI GIOVANNI; FARAONE FELICE: "Basicity and bulkiness effects of 1,8-diaminonaphthalene, 8-aminoquinoline and their alkylated derivatives on the different efficiencies of eta5-C5H5 and eta5-C5Me5 ruthenium precalalysts in allylic etherification reactions", NEW JOURNAL OF CHEMISTRY, vol. 34, no. 12, 1 January 2010 (2010-01-01), pages 2853 - 2860, XP055621601, ISSN: 1144-0546, DOI: 10.1039/c0nj00338g *
PER-ANDERS ENQUIST; PETER NILSSON; PER SJÖBERG; MATS LARHED: "ESI-MS Detection of Proposed Reaction Intermediates i n the Air-Promoted and Ligand-Modulated Oxidative Heck Reaction", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 71, 30 November 2006 (2006-11-30), pages 8779 - 8786, XP055621612, ISSN: 0022-3263, DOI: :10.1021/jo061437d *
SEUNG YOUN HONG; JUNSOO SON; DONGWOOK KIM; SUKBOK CHANG: "Ir(III)-Catalyzed Stereoselective Haloamidation of Alkynes Enabled by Ligand Participation", JOURNAL OF THE AMERICAM SOCIETY, vol. 140, no. 39, 14 September 2018 (2018-09-14), pages 1 2359 - 12363, XP055621644, ISSN: 0002-7863, DOI: 10.1021/jacs.8b08134 *
YOUN SEUNG; HONG; PARK YOONSU; HWANG YEONGYU; KIM YEONG BUM; BAIK MU-HYUN; CHANG SUKBOK: "Selective formation of g-lactams via C-H amidation enabled by tailored iridium catalysts", SCIENCE, vol. 359, 6379, 2 March 2018 (2018-03-02), pages 1016 - 1021, XP055621616, DOI: 10.1126/science.aap7503 *

Also Published As

Publication number Publication date
KR20200082952A (ko) 2020-07-08
KR102590897B1 (ko) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2017065473A1 (en) Oxadiazole amine derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2017018805A1 (en) 1,3,4-oxadiazole sulfamide derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2015137750A1 (en) Novel compounds as histone deacetylase 6 inhibitors and pharmaceutical compositions comprising the same
WO2018066872A1 (ko) 3-페닐-2,3,4,8,9,10-헥사히드로피라노[2,3-f]크로멘 유도체 및 이의 광학 이성질체 합성 방법
WO2016190630A1 (en) Heterocyclicalkyl derivative compounds as selective histone deacetylase inhibitors and pharmaceutical compositions comprising the same
EP3681877A1 (en) Pyrazole derivative compound and use thereof
WO2020242204A1 (ko) Jak 저해제 화합물, 및 이를 포함하는 의약 조성물
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
AU2021225683B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
AU2021226297B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
AU2021255176B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2020141734A1 (ko) 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체
WO2019135600A1 (ko) 신규한 금속 착체, 이의 제조방법 및 이를 이용하는 감마-락탐 화합물의 제조방법
EP2283000A2 (en) 3- or 4-substituted piperidine compounds
WO2021246611A1 (ko) 2차 또는 3차 아마이드로부터 1차 아마이드 화합물의 제조 방법
WO2017150903A1 (en) Sulfamate derivative compounds, processes for preparing them and their uses
WO2016076479A1 (en) Method of preparing silylative-reduced n-heterocyclic compound using organoboron catalyst
WO2021141165A1 (ko) 아미노알콜-보론-바이놀 복합체 및 이를 이용한 광학활성 아미노알콜 유도체의 제조방법
WO2019135604A1 (ko) 락탐 화합물의 제조방법 및 이로부터 제조된 락탐 화합물
WO2017204554A2 (ko) 보란촉매 존재 하에 퓨란 유도체로부터 실란 유도체의 제조방법
WO2024085386A1 (ko) 광촉매 반응을 이용한 알카이닐 아미노산 에스터 유도체 제조방법 및 이의 용도
WO2024005526A1 (ko) Nadph 산화효소 2 저해제로서의 신규 화합물 및 이를 포함하는 약학조성물
WO2019190117A1 (ko) 2-시아노피리미딘-4-일 카르바메이트 혹은 유레아 유도체 또는 이의 염 및 이를 포함하는 약학 조성물
WO2015137680A1 (ko) 뇌졸중 및 전신색전증 치료 또는 예방용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907930

Country of ref document: EP

Kind code of ref document: A1