WO2020140939A1 - 时间同步方法、装置、系统和存储介质 - Google Patents

时间同步方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2020140939A1
WO2020140939A1 PCT/CN2020/070094 CN2020070094W WO2020140939A1 WO 2020140939 A1 WO2020140939 A1 WO 2020140939A1 CN 2020070094 W CN2020070094 W CN 2020070094W WO 2020140939 A1 WO2020140939 A1 WO 2020140939A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time difference
tracking
time synchronization
tracking device
Prior art date
Application number
PCT/CN2020/070094
Other languages
English (en)
French (fr)
Inventor
韩柳燕
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2020140939A1 publication Critical patent/WO2020140939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular, to a time synchronization method, device, system, and storage medium.
  • the base station in order to meet the requirements of high-precision time synchronization, can be solved by installing a satellite timing receiver, or the base station can obtain time information through the transmission network. If the time signal is transmitted through the transmission network, a time server needs to be deployed upstream of the transmission network. The time server usually obtains the time source through a satellite timing receiver. The network transmission time is transmitted to the downstream using the PTP (Precision Time Synchronization Protocol) protocol. Base station.
  • PTP Precision Time Synchronization Protocol
  • FIG. 1 it is a schematic diagram of the time synchronization network structure, including GNSS (Global Navigation Satellite System), time server, transmission network and base station, where the time server and base station obtain the time through the satellite receiver, Its time accuracy is affected by satellite timing and receiver processing.
  • the satellite time is obtained by calculating the received satellite ephemeris from the receiver.
  • the sources of error include ephemeris error and ionospheric delay error.
  • the time error of an ordinary GPS (Global Positioning System) receiver relative to UTC (Coordinated Universal Time, Coordinated Universal Time) is probably within +/-100ns.
  • the accuracy of the time source required by the device needs to be improved accordingly.
  • the related technology needs to improve the accuracy of each satellite receiver site.
  • the satellite receiver needs to be realized by receiving signals of multiple modes (such as GPS, Beidou, Glonass, etc.) and improving the accuracy of the built-in clock (such as upgrading from a common crystal oscillator to a high-stability crystal oscillator). This Increased the hardware cost of the satellite receiver.
  • the requirement of the mobile communication system for time synchronization is relative time synchronization between the base stations, that is, the relative time deviation between the base stations must meet the requirements.
  • satellite receivers are deployed independently at each site, and the performance of each satellite receiver is different.
  • the performance of each receiver and the internal clock crystal of each device in the same network are different, resulting in various time acquisitions through each satellite receiver.
  • the relative error between the sites is large.
  • Embodiments of the present disclosure provide a time synchronization method, device, and storage medium to increase the accuracy of time synchronization without reducing the cost of a satellite receiver, and reduce the relative error between each time synchronization device.
  • a time synchronization method implemented by a tracking device which is applied to a time synchronization network, and the time synchronization network includes a main device and a tracking device;
  • the method includes:
  • the tracking device obtains a time synchronization adjustment value, the time synchronization adjustment value is determined according to a first time difference corresponding to the master device and a second time difference corresponding to the tracking device, the first time difference Is the time difference between the local time of the master device and the satellite time it receives, and the second time difference is the time difference between the local time of the tracking device and the satellite time it receives;
  • the tracking device adjusts the local time according to the time synchronization adjustment value.
  • the method further includes:
  • the tracking device sends a second time difference to the master device.
  • the tracking device obtains the time synchronization adjustment value, which specifically includes:
  • the tracking device receives a time synchronization adjustment value sent by the master device, and the time synchronization adjustment value is determined by the master device according to the first time difference and the second time difference.
  • the tracking device obtains the time synchronization adjustment value, which specifically includes:
  • the tracking device receives the first time difference sent by the master device
  • the tracking device determines the time synchronization adjustment value according to the first time difference and the second time difference.
  • the tracking device determines the time synchronization adjustment value according to the first time difference and the second time difference
  • the tracking device further includes:
  • the tracking device determines whether the time synchronization adjustment value is greater than a preset threshold
  • the time synchronization network contains multiple master devices
  • the method further includes:
  • the tracking device obtains the tracking priority of the master device.
  • the method before the tracking device determines the time synchronization adjustment value according to the first time difference value and the second time difference value, the method further includes:
  • the tracking device selects the first time difference corresponding to the master device with the highest priority according to the tracking priority
  • the tracking device determines the time synchronization adjustment value according to the first time difference and the second time difference, specifically including:
  • the tracking device determines the time synchronization adjustment value according to the first time difference and the second time difference corresponding to the selected master device.
  • the tracking device obtains the tracking priority of the master device, which specifically includes:
  • the tracking device receives the tracking priority sent by the master device.
  • the tracking priority of each master device is preset on the tracking device.
  • the time synchronization method provided by the embodiment of the present disclosure further includes:
  • the tracking device sends the second time difference to the master device with the highest priority according to the tracking priority.
  • the time synchronization method provided by the embodiment of the present disclosure further includes:
  • the tracking device determines that there is a communication failure with the currently selected master device, it selects the master device to be reselected from other master devices according to the tracking priority.
  • the tracking device while sending the second time difference to the master device, further includes:
  • the tracking device sends the satellite number corresponding to the second time difference to the master device.
  • the tracking device while receiving the first time difference value sent by the master device, further includes:
  • the tracking device receives the satellite number corresponding to the first time difference value sent by the master device.
  • the network management device while sending alarm information to the network management device, it also includes:
  • a time synchronization method implemented by a master device which is applied to a time synchronization network, the time synchronization network includes a master device and a tracking device;
  • the method includes:
  • the master device sends time adjustment reference information to the tracking device, and the time adjustment reference information includes a first time difference between the master device and the satellite time it receives or the master device determines the time difference The time synchronization adjustment value corresponding to the tracking device, the tracking device adjusting the local time according to the time synchronization adjustment value.
  • the master device determines the time synchronization adjustment value corresponding to the tracking device according to the following method:
  • the master device determines the first time difference between the local time and the satellite time received by itself;
  • the master device receives a second time difference value sent by the tracking device, and the second time difference value is a time difference value between the local time of the tracking device and the satellite time it receives;
  • the master device determines the time synchronization adjustment value corresponding to the tracking device according to the first time difference and the second time difference.
  • the master device after determining the time synchronization adjustment value corresponding to the tracking device, the master device further includes:
  • the method further includes:
  • the master device while sending the time adjustment reference information to the tracking device, further includes:
  • a time synchronization device provided in a tracking device which is applied to a time synchronization network, and the time synchronization network includes a main device and a tracking device, and
  • the device includes:
  • An obtaining unit configured to obtain a time synchronization adjustment value determined according to a first time difference corresponding to the master device and a second time difference corresponding to the tracking device, the first The time difference is the time difference between the local time of the master device and the satellite time it receives, and the second time difference is the time difference between the local time of the tracking device and the satellite time it receives value;
  • the adjustment unit is used to adjust the local time according to the time synchronization adjustment value.
  • a sending unit is also included, wherein:
  • the sending unit is configured to send a second time difference to the master device
  • the obtaining unit is specifically configured to receive a time synchronization adjustment value sent by the master device, and the time synchronization adjustment value is determined by the master device according to the first time difference and the second time difference .
  • the obtaining unit is specifically configured to receive a first time difference value sent by the master device; determine the time synchronization adjustment value according to the first time difference value and the second time difference value.
  • it also includes:
  • a judging unit used to judge whether the time synchronization adjustment value is greater than a preset threshold
  • the alarm unit is configured to send alarm information to the network management device when the judgment result of the judgment unit is yes; or send the time synchronization adjustment value to the master device.
  • the time synchronization network contains multiple master devices
  • the obtaining unit is also used to obtain the tracking priority of the master device before obtaining the time synchronization adjustment value.
  • the device further includes a first selection unit, wherein:
  • the first selection unit is configured to select the first time difference corresponding to the master device with the highest priority according to the tracking priority
  • the obtaining unit is specifically configured to determine the time synchronization adjustment value according to the first time difference value and the second time difference value corresponding to the selected master device.
  • the obtaining unit is configured to receive the tracking priority sent by the master device; or set the tracking priority of each master device in advance.
  • the sending unit is further configured to send the second time difference to the master device with the highest priority according to the tracking priority.
  • it also includes:
  • the second selection unit is used to determine that there is a communication failure with the currently selected master device, and then select the master device to be reselected from other master devices according to the tracking priority.
  • the sending unit is further configured to send the satellite number corresponding to the second time difference value to the master device while sending the second time difference value to the master device.
  • the obtaining unit is configured to receive the satellite number corresponding to the first time difference value sent by the master device while receiving the first time difference value sent by the master device.
  • the alarm unit is also used to send a satellite number corresponding to the alarm information to the network management device while sending the alarm information to the network management device if there are multiple satellite times.
  • a time synchronization device provided in a main device, which is applied to a time synchronization network, and the time synchronization network includes a main device and a tracking device;
  • the device includes:
  • a sending unit configured to send time adjustment reference information to the tracking device, where the time adjustment reference information includes the first time difference between the master device and the satellite time it receives or the time determined by the master device
  • it also includes:
  • a first determining unit configured to determine a first time difference between the local time and the satellite time received by itself
  • a first receiving unit configured to receive a second time difference sent by the tracking device, where the second time difference is a time difference between the local time of the tracking device and the satellite time it receives;
  • the second determining unit is configured to determine the time synchronization adjustment value corresponding to the tracking device according to the first time difference and the second time difference.
  • it also includes:
  • a first determining unit configured to determine whether the time synchronization adjustment value is greater than a preset threshold after the second determination unit determines the time synchronization adjustment value corresponding to the tracking device;
  • the first alarm unit is configured to send alarm information to the network management device when the judgment result of the first judgment unit is yes.
  • it also includes:
  • a second receiving unit configured to receive the time synchronization adjustment value sent by the tracking device after the sending unit sends the time adjustment reference information to the tracking device;
  • a second judgment unit configured to judge whether the time synchronization adjustment value is greater than a preset threshold
  • the second alarm unit is configured to send alarm information to the network management device when the judgment result of the second judgment unit is yes.
  • the sending unit is further configured to send time adjustment reference information to the tracking device when multiple satellite times exist, and send the satellite number corresponding to the time adjustment reference information to the tracking device.
  • a time synchronization system including a main device and a tracking device, wherein the main device is provided with the above-mentioned time synchronization device applied to the main device; the tracking device is provided with the tracking device Time synchronization device.
  • a computing device including at least one processor and at least one memory, wherein the memory stores a computer program, and when the program is executed by the processor, the processor is caused to execute the above Steps described in any time synchronization method.
  • a computer-readable medium which stores a computer program executable by a computing device, and when the program is run on the computing device, the computing device is caused to perform the steps described in any of the above time synchronization methods .
  • the devices in the time synchronization network are divided into a master device and a tracking device, and a high-precision clock is configured in the master device.
  • the tracking device communicates with the master device
  • Time comparison can adjust its own time error, improve the accuracy of tracking equipment, reduce the relative error between each device, and in the above process, only the main device in the time synchronization network needs to be upgraded without the need for Upgrading the hardware of the tracking device can also improve the accuracy of time synchronization, thereby reducing hardware costs.
  • Figure 1 is a schematic diagram of the structure of a time synchronization network in the related art
  • FIG. 2 is a schematic structural diagram of a time synchronization network in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an internal structure of a master device or a tracking device in an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of an implementation of a time synchronization method provided by an embodiment of the present disclosure by a tracking device in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a first implementation process for a tracking device to obtain a time synchronization adjustment value in an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a second implementation process for a tracking device to obtain a time synchronization adjustment value in an embodiment of the present disclosure
  • FIG. 7a is a schematic diagram of an implementation process of a time synchronization method implemented by a master device in an embodiment of the present disclosure
  • 7b is a schematic diagram of an implementation process in which the master device determines the time synchronization adjustment value corresponding to the tracking device in the embodiment of the present disclosure
  • FIG. 8a is a schematic diagram of a first interaction process between a main device and a tracking device in an embodiment of the present disclosure
  • FIG. 8b is a schematic diagram of a second interaction process between a main device and a tracking device in an embodiment of the present disclosure
  • 8c is a schematic diagram of a third interaction process between a main device and a tracking device in an embodiment of the present disclosure
  • 9a is a schematic structural diagram of a synchronization device provided in a tracking device in an embodiment of the present disclosure.
  • 9b is a schematic structural diagram of a synchronization device provided in a main device in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a time synchronization system in an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a computing device in an embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a time synchronization method, device, system, and storage medium.
  • Multiple or several refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can indicate: there are three cases of A alone, A and B, and B alone.
  • the character “/” generally indicates that the related object is a "or" relationship.
  • FIG. 2 it is a schematic structural diagram of a time synchronization network provided by an embodiment of the present disclosure, including a main device 21 and a tracking device 22, where the main device is configured with a satellite receiver, and some tracking devices are also configured with satellite receivers.
  • the main device may use a higher hardware configuration, for example, a high-precision atomic clock such as a cesium clock, a rubidium clock, or a satellite receiver using multi-band reception, etc.
  • the tracking device can use the original hardware receiver, and through comparison with the main device, it can adjust its own satellite receiver error, thereby improving accuracy. In this way, for the entire time synchronization network, only a small amount of main equipment has higher hardware costs, and satellite receiver sites of tracking devices can use lower hardware configurations to achieve the purpose of improving the accuracy of the entire time synchronization network.
  • FIG. 3 it is a schematic diagram of the internal structure of the master device or tracking device, including the satellite receiving card and the local clock.
  • the tracking device adjusts its own time based on the difference between the satellite time and the local time of the master device and the difference between its own satellite time and the local time. Therefore, the relative time error obtained by the satellite receiver in the network can be significantly reduced, and it can better meet the needs of the mobile communication system or other applications for relative time synchronization.
  • the tracking device may include the following steps:
  • the tracking device obtains the time synchronization adjustment value.
  • the time synchronization adjustment value is determined according to the first time difference corresponding to the master device and the second time difference corresponding to the tracking device, and the first time difference value is the local time of the master device.
  • the time difference between the satellite time received and the second time difference is the time difference between the local time of the tracking device and the satellite time received.
  • the time difference between the master device and the tracking device can directly transmit the specific difference between the satellite time and the local time, or it can be determined by the interaction
  • the reference information of the time difference for example, during the first interaction, you can send the time difference, and then send the difference between the difference between the current satellite time and the local time and the previous difference, so that, The tracking device or the master device can determine the difference between the current satellite time and the local time according to the received information.
  • the tracking device adjusts the local time according to the obtained time synchronization adjustment value.
  • the tracking device may obtain the time synchronization adjustment value in any of the following ways:
  • the time synchronization adjustment value sent by the master device is received.
  • FIG. 5 it is a schematic diagram of an implementation process for a tracking device to obtain a time synchronization adjustment value in an implementation manner, including the following steps:
  • the tracking device sends a second time difference to the master device.
  • the tracking device receives the time synchronization adjustment value sent by the master device.
  • the tracking device sends the second time difference between the satellite time received by itself and the local time to the master device, and the master device determines the first time difference based on the satellite time received by itself and its local time, Then, the time synchronization adjustment value corresponding to the tracking device is determined according to the first time difference and the second time difference.
  • the tracking device may also send the satellite time and its local time received by itself to the master device, and the master device determines the second time difference and so on.
  • the tracking device determines the time synchronization adjustment value by itself.
  • FIG. 6 it is a schematic diagram of an implementation process of a tracking device obtaining a time synchronization adjustment value in a second implementation manner, including the following steps:
  • the tracking device receives the first time difference sent by the master device.
  • the tracking device determines the time synchronization adjustment value according to the first time difference and the second time difference.
  • the tracking device determines the second time difference according to the satellite time and the local time received by itself, and determines the time synchronization adjustment value in combination with the received first time difference sent by the master device.
  • the master device may also send the satellite time and local time it receives to the tracking device, and the tracking device determines the first time difference. After obtaining the first time difference, the tracking device may determine the time synchronization adjustment value according to the adjustment difference between the first time difference and the second time difference.
  • the performance and fault monitoring of satellite receivers in related technologies mainly depend on the monitoring of information such as the number of satellites received and the strength of satellite signals.
  • Some satellite reception problems are not the number of received satellites and the strength of the signal, but the solution of the satellite signal.
  • Some problems are the interference of the GPS signal, such as the use of pseudo GPS to interfere with the normal reception of the base station and the base station to use the pseudo GPS signal Obtaining time, the related technology of this type of problem cannot be known and monitored.
  • the master device and the monitoring device can also monitor the performance and failure of the satellite receiver according to the time synchronization adjustment values determined above.
  • the master device determines the time synchronization adjustment value, if the time synchronization adjustment value is greater than a preset threshold, corresponding alarm information is generated. Further, the master device may also The alarm information is reported to the network management equipment or other management equipment.
  • the tracking device determines whether the time synchronization adjustment value is greater than a preset threshold, and if the time synchronization adjustment value is greater than the preset threshold, corresponding alarm information is generated, further The tracking device can also report the alarm information to the network management device or other management devices.
  • the determined time synchronization adjustment value may also be sent to the master device, and the master device determines whether the time synchronization adjustment value reported by the tracking device is greater than a preset threshold, If yes, corresponding alarm information is generated, and further, the master device may also report the alarm information to the network management device or other management devices.
  • multiple master devices may be configured in the time synchronization network.
  • the tracking device may first obtain the tracking priority of the master device.
  • the tracking device can obtain the tracking priority of the master device in any of the following ways: Method 1: The tracking device randomly selects a master device for tracking, and determines the time synchronization adjustment value accordingly.
  • Method 2 For each tracking device, configure the tracking priority of each master device for it in advance.
  • Method 3 The tracking device receives the tracking priority sent by the master device.
  • the tracking device when the tracking device receives the first time difference sent by the master device, it receives the tracking priority sent by the master device, that is, the master device carries its own tracking priority while sending the first time difference. , The tracking device selects the tracking of the master device with the highest priority according to the tracking priority of each master device. That is, the first time difference corresponding to the master device with the highest priority is selected, and the tracking device determines the time synchronization adjustment value according to the first time difference corresponding to the selected master device and the second time difference.
  • the tracking device may choose to send the second time difference corresponding to itself to the selected master device, for example, the tracking device may correspond to itself by carrying the destination IP address, etc.
  • the second time difference is sent to the selected master device.
  • the tracking device after determining the corresponding time synchronization adjustment value, the tracking device only needs to send the time different adjustment value to the selected master device without sending it to each master device.
  • the master device when the master device sends the first time difference to the tracking device, it needs to simultaneously pass identification information, the master device ID and the tracking priority, etc. After a time difference, one of them can be selected for processing according to the identification information.
  • the master device directly sends its determined time synchronization adjustment value to the tracking device, it also needs to pass identification information, master device ID and tracking priority, etc. at the same time, the tracking device receives the first time difference sent by multiple master devices After the value, one of them can be selected for processing based on the identification information.
  • the currently selected master device fails or cannot receive information, it can be switched to communicate with other master devices, that is, if the tracking device determines that there is a communication failure with the currently selected master device , Select the master device to be re-selected from other master devices according to the tracking priority.
  • the tracking device may choose to send the second time difference corresponding to itself to the selected master device. If it detects that the selected master device is faulty or unable to communicate, the tracking device will prioritize according to the tracking Level to reselect a master device.
  • the tracking device may receive the first time difference from multiple master devices and select one of the master devices to track. If the currently selected master device fails or cannot communicate, the tracking device Re-select a master device with priority.
  • the master device may be connected to the UTC acquisition time source. If the master device is connected to the UTC acquisition time source, the local time of the master device involved may be the local time after tracking UTC.
  • the master device and the tracking device may carry the satellite number and the time difference corresponding to the corresponding satellite in the interactive information. Specifically, for the tracking device, the tracking device sends the satellite number corresponding to the second time difference value while sending the second time difference value to the master device. For the master device, the master device carries the satellite number corresponding to the first time difference while sending the first time difference, that is, the tracking device receives the The satellite number corresponding to the first time difference.
  • the master device and the tracking device can also separately monitor the performance of different satellites, that is, the master device or the tracking device can be determined according to the satellite number and based on the first time difference and the second time difference corresponding to the satellite number Time synchronization adjustment value, if the determined time synchronization adjustment value is greater than the preset threshold, it can generate alarm information for the corresponding satellite receiver and report, that is, while sending the alarm information to the network management device, the alarm information is sent to the network management device Corresponding satellite number.
  • the devices in the time synchronization network are divided into a master device and a tracking device, and a high-precision clock is configured in the master device.
  • the tracking device can compare the time with the master device Adjust its own time error to improve the accuracy of the tracking device and reduce the relative error between each device, and in the above process, only the main device in the time synchronization network needs to be upgraded, without upgrading the tracking device hardware can also be improved
  • the accuracy of time synchronization reduces hardware costs.
  • an embodiment of the present disclosure also provides a time synchronization method and a time synchronization device implemented by the master device. Since the principle of the above device and method to solve the problem is similar to the time synchronization method implemented on the tracking device side, the above device For the implementation of the method, please refer to the implementation of the method.
  • Fig. 7a it implements a schematic diagram of the implementation process of the time synchronization method for the master device, including the following steps:
  • the master device sends time adjustment reference information to the tracking device.
  • the time adjustment reference information includes a first time difference between the master device and the satellite time it receives or a time synchronization adjustment value corresponding to the tracking device determined by the master device.
  • the tracking device adjusts the local time according to the time synchronization adjustment value.
  • the master device may determine the time synchronization adjustment value corresponding to the tracking device according to the process shown in FIG. 7b, including the following steps:
  • the master device determines the first time difference between the local time and the satellite time received by itself;
  • the master device receives the second time difference sent by the tracking device.
  • the second time difference is a time difference between the local time of the tracking device and the satellite time it receives;
  • the master device determines the time synchronization adjustment value corresponding to the tracking device according to the first time difference and the second time difference.
  • the master device after determining the time synchronization adjustment value corresponding to the tracking device, the master device further includes:
  • the method further includes:
  • the master device while sending the time adjustment reference information to the tracking device, further includes:
  • time synchronization method provided by the embodiment of the present disclosure may be implemented according to the process shown in FIG. 8a, including the following steps:
  • the master device determines the first time difference according to the satellite time and the local time received by itself.
  • the master device receives the second time difference sent by the tracking device.
  • the tracking device determines the second time difference according to the satellite time and the local time received by itself, and sends the determined second time difference to the master device.
  • step S801 and step S802 do not have a certain execution order, and step S802 may also be executed before step S801.
  • the master device determines the time synchronization adjustment value corresponding to the tracking device according to the first time difference and the second time difference.
  • the master device sends the determined time synchronization adjustment value to the tracking device.
  • the tracking device adjusts the local time according to the received time synchronization adjustment value.
  • step S806 The master device judges whether the determined time synchronization adjustment value is greater than a preset threshold. If yes, step S807 is executed. If no, the process ends.
  • step S804 and step S806 do not have a certain order of execution.
  • Step S806 may be executed before step S804, and the two steps may also be executed simultaneously, which is not limited in the embodiments of the present disclosure.
  • the above process may be implemented according to a set cycle, that is, the master device and the tracking device may execute the process shown in FIG. 8a according to the set cycle.
  • time synchronization method provided by the embodiment of the present disclosure may be implemented according to the process shown in FIG. 8b:
  • the master device determines the first time difference according to the satellite time and the local time received by itself.
  • the master device sends the determined first time difference to the tracking device.
  • the tracking device determines the second time difference according to the satellite time and the local time received by itself.
  • step S813 and step S811 do not have a certain order of execution, step S813 may be executed before step S811, and both may also be executed simultaneously, which is not limited in the embodiments of the present disclosure.
  • the tracking device determines the corresponding time synchronization adjustment value according to the first time difference and the second time difference.
  • the tracking device adjusts the local time according to the determined time synchronization adjustment value.
  • the tracking device adjusts the local time according to the received time synchronization adjustment value.
  • step S817 The tracking device determines whether the determined time synchronization adjustment value is greater than a preset threshold. If yes, step S818 is executed. If no, the process ends.
  • step S815 and step S817 do not have a certain order of execution.
  • Step S817 may be implemented before step S815, and the two steps may also be implemented simultaneously, which is not limited in the embodiments of the present disclosure.
  • the above process may be implemented according to a set cycle, that is, the master device and the tracking device may execute the process shown in FIG. 8b according to the set cycle.
  • time synchronization method provided by an embodiment of the present disclosure may be implemented according to the process shown in FIG. 8c, including the following steps:
  • the master device determines the first time difference according to the satellite time and the local time received by itself.
  • the master device sends the determined first time difference to the tracking device.
  • the tracking device determines the second time difference according to the satellite time and the local time received by itself.
  • step S823 and step S821 do not have a certain order of execution, step S823 may be executed before step S821, and both may also be executed simultaneously, which is not limited in the embodiments of the present disclosure.
  • the tracking device determines the time synchronization adjustment value corresponding to itself according to the first time difference and the second time difference.
  • the tracking device adjusts the local time according to the determined time synchronization adjustment value.
  • the tracking device adjusts the local time according to the received time synchronization adjustment value.
  • the tracking device sends the determined time synchronization adjustment value to the master device.
  • step S828 The master device determines whether the determined time synchronization adjustment value is greater than a preset threshold. If yes, step S829 is executed. If no, the process ends.
  • the above process may be implemented according to a set cycle, that is, the master device and the tracking device may execute the process shown in FIG. 8c according to the set cycle.
  • a master device configures a satellite receiver
  • the master device and the tracking device that configures the receiver compare their own received data. The difference between the satellite time and the local time interacts, which may be specifically the first embodiment or the second embodiment described above.
  • the tracking device adjusts its own time based on the difference between the satellite time of the master device and its local time, and the difference between its own satellite time and local time.
  • the master device or the tracking device uses difference comparison to monitor satellite reception performance and generates an alarm when it exceeds a preset threshold.
  • the master device and the tracking device perform satellite performance monitoring, if the satellite number and the difference corresponding to the satellite are exchanged between the two, the performance of different received satellites can be separately monitored.
  • the tracking device may receive information of multiple master devices, and select one master device to calculate the adjustment value.
  • the tracking device can switch to communicate with other master devices.
  • the main device may adopt a higher hardware configuration, such as a high-precision atomic clock such as a cesium clock or a rubidium clock, and a satellite receiver that uses multi-band reception to achieve higher accuracy.
  • the tracking device can use the original hardware receiver, and through comparison with the main device, it can adjust its own satellite receiver error, thereby improving accuracy. In this way, only a small amount of main equipment hardware cost is required for the entire network, and other satellite receiver sites can use lower hardware configurations to achieve the purpose of improving the accuracy of the entire network.
  • the tracking device adjusts its own time based on the difference between the satellite time of the master device and the local time, and the difference between its own satellite time and the local time. Therefore, the relative time error obtained by the satellite receiver in the network can be significantly reduced, and it can better meet the needs of the mobile communication system or other applications for relative time synchronization.
  • the tracking device can monitor the satellite receiving and solving situation of each device based on the difference between the satellite time of the master device and the local time, and the difference between its own satellite time and the local time. It is the centralized monitoring of the main equipment, or it can be the monitoring of the tracking equipment, which effectively compensates for the lack of failure methods of related technologies after the satellite signal is received. Moreover, after the difference of multiple satellites is interacted, it can be detected which specific satellite has a problem in receiving. Thereby improving the reliability of synchronization and operation and maintenance capabilities.
  • FIG. 9a it is a schematic structural diagram of a time synchronization device provided in a tracking device according to an embodiment of the present disclosure, including:
  • the obtaining unit 901 is configured to obtain a time synchronization adjustment value determined according to a first time difference corresponding to the master device and a second time difference corresponding to the tracking device.
  • a time difference is the time difference between the local time of the master device and the satellite time it receives
  • the second time difference is the time between the local time of the tracking device and the satellite time it receives Difference
  • the adjusting unit 902 is configured to adjust the local time according to the time synchronization adjustment value.
  • a sending unit is also included, wherein:
  • the sending unit is configured to send a second time difference to the master device
  • the obtaining unit is specifically configured to receive a time synchronization adjustment value sent by the master device, and the time synchronization adjustment value is determined by the master device according to the first time difference and the second time difference .
  • the obtaining unit is specifically configured to receive a first time difference value sent by the master device; determine the time synchronization adjustment value according to the first time difference value and the second time difference value.
  • it also includes:
  • a judging unit used to judge whether the time synchronization adjustment value is greater than a preset threshold
  • the alarm unit is configured to send alarm information to the network management device when the judgment result of the judgment unit is yes; or send the time synchronization adjustment value to the master device.
  • the time synchronization network contains multiple master devices
  • the device also includes a first selection unit, wherein:
  • the obtaining unit is further used to obtain the tracking priority of the master device before obtaining the time synchronization adjustment value;
  • the first selection unit is configured to select the first time difference corresponding to the master device with the highest priority according to the tracking priority
  • the obtaining unit is specifically configured to determine the time synchronization adjustment value according to the first time difference value and the second time difference value corresponding to the selected master device.
  • the obtaining unit is configured to receive the tracking priority sent by the master device; or set the tracking priority of each master device in advance.
  • the sending unit is further configured to send the second time difference to the master device with the highest priority according to the tracking priority.
  • it also includes:
  • the second selection unit is used to determine that there is a communication failure with the currently selected master device, and then select the master device to be reselected from other master devices according to the tracking priority.
  • the sending unit is further configured to send the satellite number corresponding to the second time difference value to the master device while sending the second time difference value to the master device.
  • the obtaining unit is configured to receive the satellite number corresponding to the first time difference value sent by the master device while receiving the first time difference value sent by the master device.
  • the alarm unit is also used to send a satellite number corresponding to the alarm information to the network management device while sending the alarm information to the network management device if there are multiple satellite times.
  • FIG. 9b it is a time synchronization device provided in the main device provided by the embodiment of this law, including:
  • the sending unit 911 is configured to send time adjustment reference information to the tracking device, where the time adjustment reference information includes a first time difference between the master device and the satellite time it receives or a value determined by the master device
  • the time synchronization adjustment value corresponding to the tracking device is adjusted by the tracking device according to the time synchronization adjustment value.
  • the time synchronization device provided in the main device may further include:
  • the first determining unit 912 is configured to determine a first time difference between the local time and the satellite time received by itself;
  • the first receiving unit 913 is configured to receive a second time difference sent by the tracking device, where the second time difference is a time difference between the local time of the tracking device and the satellite time it receives;
  • the second determining unit 914 is configured to determine the time synchronization adjustment value corresponding to the tracking device according to the first time difference and the second time difference.
  • the time synchronization device provided in the main device may further include:
  • a first determining unit configured to determine whether the time synchronization adjustment value is greater than a preset threshold after the second determination unit determines the time synchronization adjustment value corresponding to the tracking device;
  • the first alarm unit is configured to send alarm information to the network management device when the judgment result of the first judgment unit is yes.
  • the time synchronization device provided in the main device may further include:
  • a second receiving unit configured to receive the time synchronization adjustment value sent by the tracking device after the sending unit sends the time adjustment reference information to the tracking device;
  • a second judgment unit configured to judge whether the time synchronization adjustment value is greater than a preset threshold
  • the second alarm unit is configured to send alarm information to the network management device when the judgment result of the second judgment unit is yes.
  • the sending unit 911 is further configured to send the time adjustment reference information to the tracking device when multiple satellite times exist, and send the satellite number corresponding to the time adjustment reference information to the tracking device .
  • each module or unit
  • the functions of each module can be implemented in one or more software or hardware when implementing the present disclosure.
  • FIG. 10 it is a schematic structural diagram of a time synchronization system provided by an embodiment of the present disclosure, including a main device 101 and a tracking device 102, wherein the main device is provided with a time synchronization device shown in FIG. 9b; the tracking device The time synchronization device shown in Fig. 9a is provided.
  • the computing device may include at least one processor and at least one memory.
  • the memory stores program codes, and when the program codes are executed by the processor, the processor is caused to perform the steps in the time synchronization method according to various exemplary embodiments of the present disclosure described above in this specification .
  • the processor may perform step S41 shown in FIG.
  • the tracking device obtains a time synchronization adjustment value, where the time synchronization adjustment value is based on the first time difference corresponding to the master device and the tracking device Determined by the corresponding second time difference, the first time difference is the time difference between the local time of the master device and the satellite time it receives, and the second time difference is the tracking The time difference between the local time of the device and the satellite time it receives; and Step S42.
  • the tracking device adjusts the local time according to the obtained time synchronization adjustment value.
  • the computing device 110 according to this embodiment of the present disclosure is described below with reference to FIG. 11.
  • the computing device 110 shown in FIG. 11 is only an example, and should not bring any limitation to the functions and use scope of the embodiments of the present disclosure.
  • the computing device 110 is expressed in the form of a general-purpose computing device.
  • the components of the computing device 110 may include, but are not limited to, the at least one processor 111, the at least one memory 112, and a bus 113 connecting different system components (including the memory 112 and the processor 111).
  • the bus 113 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a processor, or a local bus using any of a variety of bus structures.
  • the memory 112 may include a readable medium in the form of volatile memory, such as a random access memory (RAM) 1121 and/or a cache memory 1122, and may further include a read only memory (ROM) 1123.
  • RAM random access memory
  • ROM read only memory
  • the memory 112 may further include a program/utility tool 1125 having a set of (at least one) program modules 1124.
  • program modules 1124 include but are not limited to: an operating system, one or more application programs, other program modules, and program data. These Each of the examples or some combination may include an implementation of the network environment.
  • the computing device 110 may also communicate with one or more external devices 114 (eg, keyboard, pointing device, etc.), and may also communicate with one or more devices that enable a user to interact with the computing device 110, and/or with the computing device 110 Any device (eg, router, modem, etc.) capable of communicating with one or more other computing devices. Such communication may be performed through an input/output (I/O) interface 115.
  • the computing device 110 may also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 116. As shown, the network adapter 116 communicates with other modules for the computing device 110 via the bus 113.
  • LAN local area network
  • WAN wide area network
  • public network such as the Internet
  • computing device 110 may be used in conjunction with the computing device 110, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID systems, tape drives And data backup storage system.
  • various aspects of the time synchronization method provided by the present disclosure may also be implemented in the form of a program product, which includes program code, and when the program product runs on a computer device, the program code
  • the computer device may perform step S41, the tracking device as shown in FIG.
  • time synchronization adjustment value is determined according to the first time difference corresponding to the master device and the second time difference corresponding to the tracking device, and the first time difference is A time difference between the local time of the master device and the satellite time it receives, the second time difference is a time difference between the local time of the tracking device and the satellite time it receives; and step S42 3.
  • the tracking device adjusts the local time according to the obtained time synchronization adjustment value.
  • the program product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples of readable storage media (non-exhaustive list) include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the program product for time synchronization of the embodiments of the present disclosure may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may run on a computing device.
  • CD-ROM portable compact disk read-only memory
  • the program product of the present disclosure is not limited thereto, and in this document, the readable storage medium may be any tangible medium containing or storing a program, which may be used by or in combination with an instruction execution system, apparatus, or device.
  • the readable signal medium may include a data signal that is transmitted in baseband or as part of a carrier wave, in which readable program code is carried. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with an instruction execution system, apparatus, or device.
  • the program code contained on the readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure can be written in any combination of one or more programming languages including object-oriented programming languages-such as Java, C++, etc., as well as conventional procedural Programming language-such as "C" language or similar programming language.
  • the program code may be executed entirely on the user computing device, partly on the user device, as an independent software package, partly on the user computing device and partly on the remote computing device, or entirely on the remote computing device or server To execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using Internet services Provider to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet services Provider to connect via the Internet
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of one flow or multiple blocks of a flowchart.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP, Device (DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microcontroller, microprocessor, In other electronic units or combinations thereof that perform the functions described in this disclosure.
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本公开公开了一种时间同步方法、装置、系统和存储介质。跟踪设备实施的时间同步方法,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,所述方法,包括:跟踪设备获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;所述跟踪设备根据所述时间同步调整值,调整本地时间。

Description

时间同步方法、装置、系统和存储介质
相关申请的交叉引用
本申请主张在2019年1月2日在中国提交的中国专利申请号No.201910001905.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,尤其涉及一种时间同步方法、装置、系统和存储介质。
背景技术
移动通信系统中,为了满足高精度时间同步需求,基站可以通过加装卫星授时接收机来解决,或者基站通过传输网络来获取时间信息。如果通过传输网络传输时间信号,需要在传输网络上游部署时间服务器,时间服务器通常通过卫星授时接收机来获取时间源,网络传输时间采用PTP(Precision Time Synchronization Protocol,精确时间同步协议)协议传递到下游基站。
如图1所示,其为时间同步网络结构示意图,包括GNSS(Global Navigation Satellite System,全球导航卫星系统)、时间服务器,传输网络和基站,其中,时间服务器和基站通过卫星接收机获取时间时,其时间精度受到卫星授时以及接收机处理的影响。卫星时间通过接收机解算收到的卫星星历获得,误差来源有星历误差、电离层延迟误差等。普通的GPS(全球卫星定位系统)接收机相对UTC(Coordinated Universal Time,协调世界时)的时间误差大概在+/-100ns以内。
随着业务对同步精度要求的提升,要求设备获取时间源的精度也需要相应提升。当网络精度要求提升之后,相关技术为了提升获取时间源的精度,需要对每个卫星接收机站点提升精度。按照相关技术中的提升技术,需要卫星接收机通过接收多个模式的信号(比如GPS,北斗、Glonass等)以及提高内置时钟的精度(比如从普通晶振提升至高稳晶振)等方式来实现,这增加了卫星接收机的硬件成本。而且,移动通信系统对时间同步的要求是基站之 间的相对时间同步,即各个基站之间的时间相对偏差要满足要求。相关技术中,每个站点独立部署卫星接收机,各个卫星接收机的性能存在差别,比如同一个网络内的各个接收机以及各个设备内部时钟晶振性能不同,导致通过各个卫星接收机获取时间的各个站点之间相对误差较大。
发明内容
本公开实施例提供一种时间同步方法、装置和存储介质,用以在不增加卫星接收机成本的同时,提高时间同步的精度,减少各个时间同步设备之间的相对误差。
第一方面,提供一种跟踪设备实施的时间同步方法,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备;以及
所述方法,包括:
跟踪设备获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
所述跟踪设备根据所述时间同步调整值,调整本地时间。
可选地,在跟踪设备获得时间同步调整值之前,还包括:
所述跟踪设备向所述主设备发送第二时间差值;以及
跟踪设备获得时间同步调整值,具体包括:
所述跟踪设备接收所述主设备发送的时间同步调整值,所述时间同步调整值为所述主设备根据所述第一时间差值和所述第二时间差值确定出的。
可选地,跟踪设备获得时间同步调整值,具体包括:
所述跟踪设备接收所述主设备发送的第一时间差值;
所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值。
可选地,所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值之后,还包括:
所述跟踪设备判断所述时间同步调整值是否大于预设阈值;以及
如果是,则向网管设备发送告警信息;或者将所述时间同步调整值发送给所述主设备。
可选地,所述时间同步网络中包含有多个主设备;以及
在所述跟踪设备获得时间同步调整值之前,还包括:
所述跟踪设备获得主设备的跟踪优先级。
可选地,在所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值之前,还包括:
所述跟踪设备根据所述跟踪优先级选择优先级最高的主设备对应的第一时间差值;以及
所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值,具体包括:
所述跟踪设备根据选择出的主设备对应的第一时间差值和所述第二时间差值确定所述时间同步调整值。
所述跟踪设备获得主设备的跟踪优先级,具体包括:
所述跟踪设备接收所述主设备发送的跟踪优先级;或者
在所述跟踪设备上预先设置各主设备的跟踪优先级。
可选地,本公开实施例提供的时间同步方法,还包括:
所述跟踪设备根据所述跟踪优先级向优先级最高的主设备发送所述第二时间差值。
可选地,本公开实施例提供的时间同步方法,还包括:
如果所述跟踪设备判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中重新选择跟踪的主设备。
可选地,所述卫星时间存在多个;则所述跟踪设备向所述主设备发送第二时间差值的同时,还包括:
所述跟踪设备向所述主设备发送所述第二时间差值对应的卫星号。
可选地,所述卫星时间存在多个;则跟踪设备在接收所述主设备发送的第一时间差值的同时,还包括:
所述跟踪设备接收所述主设备发送的所述第一时间差值对应的卫星号。
可选地,如果所述卫星时间存在多个;则在向网管设备发送告警信息的同时,还包括:
向所述网管设备发送所述告警信息对应的卫星号。
第二方面,提供一种主设备实施的时间同步方法,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备;以及
所述方法,包括:
所述主设备向所述跟踪设备发送时间调整参考信息,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值,由所述跟踪设备根据所述时间同步调整值,调整本地时间。
可选地,所述主设备按照以下方法确定所述跟踪设备对应的时间同步调整值:
所述主设备确定本地之间与自身接收到的卫星时间之间的第一时间差值;
所述主设备接收所述跟踪设备发送的第二时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
所述主设备根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
可选地,所述主设备在确定出所述跟踪设备对应的时间同步调整值之后,还包括:
判断所述时间同步调整值是否大于预设的阈值;
如果是,则向网管设备发送告警信息。
可选地,所述主设备向所述跟踪设备发送时间调整参考信息之后,还包括:
接收所述跟踪设备发送的时间同步调整值;
判断所述时间同步调整值是否大于预设的阈值;
如果是,则向网管设备发送告警信息。
可选地,如果存在多个卫星时间,则所述主设备向所述跟踪设备发送时间调整参考信息的同时,还包括:
向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
第三方面,提供一种设置于跟踪设备中的时间同步装置,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,以及
所述装置,包括:
获得单元,用于获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
调整单元,用于根据所述时间同步调整值,调整本地时间。
可选地,还包括发送单元,其中:
所述发送单元,用于向所述主设备发送第二时间差值;
所述获得单元,具体用于接收所述主设备发送的时间同步调整值,所述时间同步调整值为所述主设备根据所述第一时间差值和所述第二时间差值确定出的。
可选地,所述获得单元,具体用于接收所述主设备发送的第一时间差值;根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值。
可选地,还包括:
判断单元,用于判断所述时间同步调整值是否大于预设阈值;
告警单元,用于在所述判断单元的判断结果为是时,向网管设备发送告警信息;或者将所述时间同步调整值发送给所述主设备。
可选地,所述时间同步网络中包含有多个主设备;以及
所述获得单元,还用于在获得时间同步调整值之前,获得主设备的跟踪优先级。
可选地,所述装置还包括第一选择单元,其中:
所述第一选择单元,用于根据所述跟踪优先级选择优先级最高的主设备对应的第一时间差值;
所述获得单元,具体用于根据选择出的主设备对应的第一时间差值和所述第二时间差值确定所述时间同步调整值。
可选地,所述获得单元,用于接收所述主设备发送的跟踪优先级;或者 预先设置各主设备的跟踪优先级。
发送单元,还用于根据所述跟踪优先级向优先级最高的主设备发送所述第二时间差值。
可选地,还包括:
第二选择单元,用于判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中重新选择跟踪的主设备。
可选地,所述卫星时间存在多个;以及
所述发送单元,还用于在向所述主设备发送第二时间差值的同时,向所述主设备发送所述第二时间差值对应的卫星号。
可选地,所述卫星时间存在多个;
所述获得单元,用于在接收所述主设备发送的第一时间差值的同时,接收所述主设备发送的所述第一时间差值对应的卫星号。
可选地,所述告警单元,还用于如果所述卫星时间存在多个,则在向网管设备发送告警信息的同时,向所述网管设备发送所述告警信息对应的卫星号。
第四方面,提供一种设置于主设备中的时间同步装置,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备;以及
所述装置,包括:
发送单元,用于向所述跟踪设备发送时间调整参考信息,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值,由所述跟踪设备根据所述时间同步调整值,调整本地时间。
可选地,还包括:
第一确定单元,用于确定本地之间与自身接收到的卫星时间之间的第一时间差值;
第一接收单元,用于接收所述跟踪设备发送的第二时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
第二确定单元,用于根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
可选地,还包括:
第一判断单元,用于在所述第二确定单元确定出所述跟踪设备对应的时间同步调整值之后,判断所述时间同步调整值是否大于预设的阈值;
第一告警单元,用于在所述第一判断单元的判断结果为是时,向网管设备发送告警信息。
可选地,还包括:
第二接收单元,用于在所述发送单元向所述跟踪设备发送时间调整参考信息之后,接收所述跟踪设备发送的时间同步调整值;
第二判断单元,用于判断所述时间同步调整值是否大于预设的阈值;
第二告警单元,用于在所述第二判断单元的判断结果为是时,向网管设备发送告警信息。
可选地,所述发送单元,还用于如果存在多个卫星时间,则向所述跟踪设备发送时间调整参考信息的同时,向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
第五方面,提供一种时间同步系统,包括主设备和跟踪设备,其中,所述主设备中设置有上述应用于主设备中的时间同步装置;所述跟踪设备中设置有应用于跟踪设备中的时间同步装置。
第六方面,提供一种计算装置,包括至少一个处理器、以及至少一个存储器,其中,所述存储器存储有计算机程序,当所述程序被所述处理器执行时,使得所述处理器执行上述任一时间同步方法所述的步骤。
第七方面,提供一种计算机可读介质,其存储有可由计算装置执行的计算机程序,当所述程序在计算装置上运行时,使得所述计算装置执行上述任一时间同步方法所述的步骤。
本公开实施例提供的时间同步方法、装置、系统和存储介质中,将时间同步网络中的设备划分为主设备和跟踪设备,在主设备中配置高精度时钟,这样,跟踪设备通过与主设备时间的比对,可以对自身时间误差进行调整,提高跟踪设备的精度,减少了各个设备之间的相对误差,而且上述过程中,只需对时间同步网络中的主设备进行升级,而无需对跟踪设备升级硬件亦可提高时间同步的精度,从而降低了硬件成本。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为相关技术中,时间同步网络的结构示意图;
图2为本公开实施例中,时间同步网络的结构示意图;
图3为本公开实施例中,主设备或者跟踪设备的内部结构示意图;
图4为本公开实施例中,跟踪设备实施本公开实施例提供的时间同步方法的实施流程示意图;
图5为本公开实施例中,跟踪设备获得时间同步调整值的第一种实施流程示意图;
图6为本公开实施例中,跟踪设备获得时间同步调整值的第二种实施流程示意图;
图7a为本公开实施例中,主设备实施的是时间同步方法的实施流程示意图;
图7b为本公开实施例中,主设备确定跟踪设备对应的时间同步调整值的实施流程示意图;
图8a为本公开实施例中,主设备和跟踪设备之间的第一种交互流程示意图;
图8b为本公开实施例中,主设备和跟踪设备之间的第二种交互流程示意图;
图8c为本公开实施例中,主设备和跟踪设备之间的第三种交互流程示意图;
图9a为本公开实施例中,设置于跟踪设备中的同步装置的结构示意图;
图9b为本公开实施例中,设置于主设备中的同步装置的结构示意图;
图10为本公开实施例中,时间同步系统的结构示意图;
图11为本公开实施例中,计算装置的结构示意图。
具体实施方式
为了在不增加硬件成本的同时,提高时间同步的精度,本公开实施例提供了一种时间同步方法、装置、系统和存储介质。
本公开实施例中的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
在本文中提及的“多个或者若干个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以下结合说明书附图对本公开的可选实施例进行说明,应当理解,此处所描述的可选实施例仅用于说明和解释本公开,并不用于限定本公开,并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
如图2所示,其为本公开实施例提供的时间同步网络的结构示意图,包括主设备21和跟踪设备22,其中,主设备配置卫星接收机,部分跟踪设备也配置有卫星接收机。本公开实施例中,为了降低卫星接收机升级成本,具体实施时,主设备可以采用较高的硬件配置,例如,配置铯钟、铷钟等高精度原子钟,采用多频段接收的卫星接收机等,达到较高的精度。跟踪设备可以采用原有的硬件接收机,通过与主设备的比对,可以对自身卫星接收机误差进行调整,从而提高精度。这样,对于整个时间同步网络,只有少量的主设备硬件成本较高,跟踪设备的卫星接收机站点都可以采用较低的硬件配置,达到提升整个时间同步网精度的目的。
如图3所示,其为主设备或者跟踪设备的内部结构示意图,包括卫星接收卡和本地时钟。跟踪设备基于主设备的卫星时间和本地时间的差值,以及 自身卫星时间和本地时间的差值,调整自身时间。所以网络内通过卫星接收机获取的时间相对误差可以明显减小,更好的满足移动通信系统或者其他应用对相对时间同步的需求。
如图4所示,其为本公开实施例中,跟踪设备实施本公开实施例提供的时间同步方法的实施流程示意图,可以包括以下步骤:
S41、跟踪设备获得时间同步调整值。
其中,时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值。
需要说明的是,主设备与跟踪设备之间交互的时间差值(包括第一时间差值和第二时间差值)可以直接传递卫星时间和本地时间的具体差值,也可以交互能够确定出该时间差值的参考信息,例如,在第一次交互时,可以发送时间差值,在后续发送本次卫星时间和本地之间的差值与上一次差值之间的差值,这样,跟踪设备或者主设备可以根据接收到的信息确定出本次卫星时间与本地时间之间的差值。
S42、跟踪设备根据获得的时间同步调整值,调整本地时间。
其中,在步骤S41中,跟踪设备可以按照以下任一方式获得时间同步调整值:
第一种实施方式、接收主设备发送的时间同步调整值。
如图5所示,其为一种实施方式下,跟踪设备获得时间同步调整值的实施流程示意图,包括以下步骤:
S51、跟踪设备向主设备发送第二时间差值。
S52、跟踪设备接收主设备发送的时间同步调整值。
在这种实施方式下,跟踪设备将自身接收的卫星时间与本地时间之间的第二时间差值发送给主设备,主设备基于自身接收的卫星时间与其本地时间确定出第一时间差值,然后根据第一时间差值和第二时间差值确定出跟踪设备对应的时间同步调整值。
具体实施时,跟踪设备也可将自身接收的卫星时间及其本地时间发送给 主设备,有主设备确定第二时间差值等。
第二中实施方式、跟踪设备自行确定时间同步调整值。
如图6所示,其为跟踪设备在第二种实施方式下获得时间同步调整值的实施流程示意图,包括以下步骤:
S61、跟踪设备接收主设备发送的第一时间差值。
S62、跟踪设备根据第一时间差值和第二时间差值确定所述时间同步调整值。
第二种实施方式下,跟踪设备根据自身接收的卫星时间和本地时间确定第二时间差值,结合接收到的主设备发送的第一时间差值,确定出时间同步调整值。具体实施时,主设备也可将其接收到的卫星时间及其本地时间发送给跟踪设备,由跟踪设备确定第一时间差值。在获得了第一时间差值之后,跟踪设备可以根据第一时间差值和第二时间差值之间的调整差值确定时间同步调整值。
另一方面,相关技术对卫星接收机的性能和故障监控主要依赖于对收到卫星数量、卫星信号强弱等方面信息的监控。有些卫星接收出现问题不在接收卫星颗数和信号强弱部分,而是对卫星信号的解算部分,还有些问题是GPS信号出现干扰,比如用伪GPS干扰基站正常接收,让基站使用伪GPS信号获取时间,该类型问题相关技术无法获知和监控到。
有鉴于此,本公开实施例中,主设备和监控设备根据上述确定出的时间同步调整值,还可以对卫星接收机的性能和故障进行监控。
具体实施时,在上述第一种实施方式中,主设备在确定出时间同步调整值之后,如果该时间同步调整值大于预设阈值,则产生相应告警信息,进一步地,主设备还可以将该告警信息上报给网管设备或者其他管理设备。
在上述第二种实施方式中,跟踪设备在确定出时间同步调整值之后,判断时间同步调整值是否大于预设阈值,如果该时间同步调整值大于预设阈值,则产生相应告警信息,进一步地,跟踪设备还可以将该告警信息上报给网管设备或者其他管理设备。
在另一实施例中,在跟踪设备确定出时间同步调整值之后,还可以将确定出的时间同步调整值发送给主设备,主设备判断跟踪设备上报的时间同步 调整值是否大于预设阈值,如果是,则产生相应告警信息,进一步地,主设备还可以将该告警信息上报给网管设备或者其他管理设备。
采用上述任一方式,可以对跟踪设备的卫星接收性能和故障进行监控。
具体实施时,在时间同步网络中可以配置多个主设备,在这种实施方式中,跟踪设备可以先获得主设备的跟踪优先级。具体地,跟踪设备可以按照以下任一方式获得主设备的跟踪优先级:方式一、跟踪设备随机选定一个主设备进行跟踪,并据此确定时间同步调整值。方式二、针对每一跟踪设备,为其预先配置各个主设备的跟踪优先级。方式三、跟踪设备接收主设备发送的跟踪优先级。
在第三种方式中,跟踪设备接收主设备发送的第一时间差值的同时,接收主设备发送的跟踪优先级,即主设备在发送第一时间差值的同时,携带自身的跟踪优先级,跟踪设备根据各个主设备的跟踪优先级选择优先级最高的主设备跟踪。即选择优先级最高的主设备对应的第一时间差值,跟踪设备根据选择出的主设备对应的第一时间差值和所述第二时间差值确定所述时间同步调整值。
具体实施时,在上述第一种实施方式中,跟踪设备可以选择将自身对应的第二时间差值发送给选择出的主设备,例如,跟踪设备可以通过携带目的IP地址等方式,将自身对应的第二时间差值发送给选择出的主设备。
相应地,跟踪设备在确定出自身对应的时间同步调整值之后,将该时间不同调整值发送给选择出的主设备即可,无需向每一主设备发送。
在上述第二种实施方式中,主设备在向跟踪设备发送第一时间差值时,需要同时传递标识信息,主设备ID和跟踪优先级等,跟踪设备在接收到多个主设备发送的第一时间差值之后,可以根据标识信息选择其中一个进行处理。同样,如果主设备向跟踪设备直接发送其确定出的时间同步调整值,也需要同时传递标识信息,主设备ID和跟踪优先级等,跟踪设备在接收到多个主设备发送的第一时间差值之后,可以根据标识信息选择其中一个进行处理。
本公开实施例中,如果当前选择出的主设备发生故障或者无法接收到信息时,可以倒换到与其他主设备通信,即如果跟踪设备判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中 重新选择跟踪的主设备。
针对上述第一种实施方式,跟踪设备可以选择将自身对应的第二时间差值发送给选择出的主设备,如果检测到该选择出的主设备发生故障或者无法通信,则跟踪设备根据跟踪优先级重新选择一个主设备。
针对上述第二种实施方式,跟踪设备可以接收来自多个主设备的第一时间差值,并选择其中一个主设备进行跟踪,如果当前选择的主设备发生故障或者无法通信,则跟踪设备根据跟踪优先级重新选择一个主设备。
具体实施时,主设备可以连接到UTC获取时间源,如果主设备连接到UTC获取时间源,则上述涉及的主设备的本地时间可以为跟踪UTC之后的本地时间。
具体实施时,跟踪设备和主设备接收到的卫星时间可以存在多个,这种实施方式下,针对接收到的每一个卫星时间均可以计算出一个第一时间差值和一个第二时间差值,为了区分对应于不同卫星的时间差值,主设备和跟踪设备可以在交互的信息中携带卫星号以及对应于相应卫星的时间差值。具体地,对于跟踪设备来说,跟踪设备在向主设备发送第二时间差值的同时,发送该第二时间差值对应的卫星号。对于主设备来说,主设备在发送第一时间差值的同时,携带该第一时间差值对应的卫星号,即跟踪设备在接收第一时间差值的同时,接收主设备发送的所述第一时间差值对应的卫星号。
这样,主设备和跟踪设备还可以针对不同的卫星性能分别进行监控,即主设备或者跟踪设备可以根据卫星号以及基于对应于该卫星号对应的第一时间差值和第二时间差值确定出的时间同步调整值,如果确定出的时间同步调整值大于预设阈值,则可以产生针对相应卫星接收机的告警信息并上报,即在向网管设备发送告警信息的同时,向网管设备发送告警信息对应的卫星号。
本公开实施例提供的时间同步方法中,将时间同步网络中的设备划分为主设备和跟踪设备,在主设备中配置高精度时钟,这样,跟踪设备通过与主设备时间的比对,可以对自身时间误差进行调整,提高跟踪设备的精度,减少了各个设备之间的相对误差,而且上述过程中,只需对时间同步网络中的主设备进行升级,而无需对跟踪设备升级硬件亦可提高时间同步的精度,从而降低了硬件成本。
基于同一发明构思,本公开实施例中还提供了一种主设备实施的时间同步方法以及时间同步装置,由于上述装置及方法解决问题的原理与跟踪设备侧实施的时间同步方法相似,因此上述装置及方法的实施可以参见方法的实施,重复之处不再赘述。
如图7a所示,其为主设备实施的是时间同步方法的实施流程示意图,包括以下步骤:
S71、主设备向所述跟踪设备发送时间调整参考信息。
其中,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值。
S72、跟踪设备根据所述时间同步调整值,调整本地时间。
可选地,在步骤S71中,主设备可以按照图7b所示的流程确定所述跟踪设备对应的时间同步调整值,包括以下步骤:
S711、主设备确定本地之间与自身接收到的卫星时间之间的第一时间差值;
S712、主设备接收所述跟踪设备发送的第二时间差值。
所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
S713、主设备根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
可选地,所述主设备在确定出所述跟踪设备对应的时间同步调整值之后,还包括:
判断所述时间同步调整值是否大于预设的阈值;
如果是,则向网管设备发送告警信息。
可选地,所述主设备向所述跟踪设备发送时间调整参考信息之后,还包括:
接收所述跟踪设备发送的时间同步调整值;
判断所述时间同步调整值是否大于预设的阈值;
如果是,则向网管设备发送告警信息。
可选地,如果存在多个卫星时间,则所述主设备向所述跟踪设备发送时间调整参考信息的同时,还包括:
向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
为了更好地理解本公开,以下结合主设备和跟踪设备之间的交互流程对本公开的具体实施过程进行说明。
在一个实施例中,本公开实施例提供的时间同步方法可以按照图8a所示的流程实施,包括以下步骤:
S801、主设备根据自身接收到的卫星时间和本地时间确定第一时间差值。
S802、主设备接收跟踪设备发送的第二时间差值。
本步骤中,跟踪设备根据自身接收到的卫星时间和本地时间确定第二时间差值,并将确定出的第二时间差值发送给主设备。
具体实施时,步骤S801和步骤S802没有一定的执行顺序,步骤S802也可以先于步骤S801执行。
S803、主设备根据第一时间差值和第二时间差值确定跟踪设备对应的时间同步调整值。
S804、主设备将确定出的时间同步调整值发送给跟踪设备。
S805、跟踪设备根据接收到的时间同步调整值调整本地时间。
S806、主设备判断确定出的时间同步调整值是否大于预设阈值,如果是,则执行步骤S807,如果否,流程结束。
S807、生成告警信息并发送给网管设备。
需要说明的是,步骤S804和步骤S806也没有一定的先后执行顺序,步骤S806可以先于步骤S804执行,两个步骤也可以同时执行,本公开实施例对此不进行限定。
具体实施时,上述流程可以按照设定的周期实施,即主设备和跟踪设备可以按照设定的周期执行图8a所示的流程。
在另一实施例中,本公开实施例提供的时间同步方法可以按照图8b所示的流程实施:
S811、主设备根据自身接收到的卫星时间和本地时间确定第一时间差值。
S812、主设备向跟踪设备发送确定出的第一时间差值。
S813、跟踪设备根据自身接收到的卫星时间和本地时间确定第二时间差值。
具体实施时,步骤S813和步骤S811没有一定的先后执行顺序,步骤S813可以先于步骤S811执行,两者也可以同时执行,本公开实施例中对此不进行限定。
S814、跟踪设备根据第一时间差值和第二时间差值确定自身对应的时间同步调整值。
S815、跟踪设备根据确定出的时间同步调整值调整本地时间。
S816、跟踪设备根据接收到的时间同步调整值调整本地时间。
S817、跟踪设备判断确定出的时间同步调整值是否大于预设阈值,如果是,则执行步骤S818,如果否,流程结束。
S818、生成告警信息并发送给网管设备。
需要说明的是,步骤S815和步骤S817没有一定的先后执行顺序,步骤S817可以先于步骤S815实施,两个步骤也可同时实施,本公开实施例对此不进行限定。
具体实施时,上述流程可以按照设定的周期实施,即主设备和跟踪设备可以按照设定的周期执行图8b所示的流程。
在又一实施例中,本公开实施例提供的时间同步方法可以按照图8c所示的流程实施,包括以下步骤:
S821、主设备根据自身接收到的卫星时间和本地时间确定第一时间差值。
S822、主设备向跟踪设备发送确定出的第一时间差值。
S823、跟踪设备根据自身接收到的卫星时间和本地时间确定第二时间差值。
具体实施时,步骤S823和步骤S821没有一定的先后执行顺序,步骤S823可以先于步骤S821执行,两者也可以同时执行,本公开实施例中对此不进行限定。
S824、跟踪设备根据第一时间差值和第二时间差值确定自身对应的时间同步调整值。
S825、跟踪设备根据确定出的时间同步调整值调整本地时间。
S826、跟踪设备根据接收到的时间同步调整值调整本地时间。
S827、跟踪设备向主设备发送确定出的时间同步调整值。
S828、主设备判断确定出的时间同步调整值是否大于预设阈值,如果是,则执行步骤S829,如果否,流程结束。
S829、生成告警信息并发送给网管设备。
具体实施时,上述流程可以按照设定的周期实施,即主设备和跟踪设备可以按照设定的周期执行图8c所示的流程。
本公开实施例中,在时间同步网络中有主设备配置卫星接收机,时间同步网络中还有一些配置卫星接收机的跟踪设备,主设备和配置接收机的跟踪设备各自比对自己收到的卫星时间和本地时间的差值并交互,具体可以是上述第一种实施方式或者第二种实施方式。
在一个实施例中,跟踪设备基于主设备的卫星时间及其本地时间的差值,以及自身卫星时间和本地时间的差值,调整自身时间。
在另一实施例中,主设备或者跟踪设备,利用差值比对,对卫星接收性能进行监控,在大于预设阈值时产生告警。
在又一实施例中,主设备和跟踪设备进行卫星性能的监控时,如果两者之间交互每个卫星号以及该卫星对应的差值时,可以对接收到的不同卫星分别进行性能监控。
具体实施时,跟踪设备可以接收多个主设备的信息,并从中选择一个主设备进行调整值的计算。
跟踪设备当接收的主设备发生故障或者无法接收到信息时,可以倒换到与其他主设备通信。
本公开实施例提供的时间同步方法中,主设备可以采用较高的硬件配置,比如配置铯钟、铷钟等高精度原子钟,采用多频段接收的卫星接收机等,达到较高的精度。跟踪设备可以采用原有的硬件接收机,通过与主设备的比对,可以对自身卫星接收机误差进行调整,从而提高精度。这样,对于整网,只需要少量的主设备硬件成本较高,其他卫星接收机站点都可以采用较低的硬件配置,达到整网精度提升的目的。
本公开实施例提供的时间同步方法中,跟踪设备基于主设备的卫星时间 和本地时间的差值,以及自身卫星时间和本地时间的差值,调整自身时间。所以网络内通过卫星接收机获取的时间相对误差可以明显减小,更好的满足移动通信系统或者其他应用对相对时间同步的需求。
本公开实施例提供的时间同步方法中,跟踪设备基于主设备的卫星时间和本地时间的差值,以及自身卫星时间和本地时间的差值,可以对各个设备卫星接收解算情况进行监控,可以是主设备集中化监控,也可以是跟踪设备各自监控,有效的弥补了相关技术对卫星信号接收之后故障方法的缺失。而且可以在交互多个卫星的差值后,检测具体哪个卫星接收有问题。从而提升同步的可靠性以及运营维护能力。
如图9a所示,其为本公开实施例提供的设置于跟踪设备中的时间同步装置的结构示意图,包括:
获得单元901,用于获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
调整单元902,用于根据所述时间同步调整值,调整本地时间。
可选地,还包括发送单元,其中:
所述发送单元,用于向所述主设备发送第二时间差值;
所述获得单元,具体用于接收所述主设备发送的时间同步调整值,所述时间同步调整值为所述主设备根据所述第一时间差值和所述第二时间差值确定出的。
可选地,所述获得单元,具体用于接收所述主设备发送的第一时间差值;根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值。
可选地,还包括:
判断单元,用于判断所述时间同步调整值是否大于预设阈值;
告警单元,用于在所述判断单元的判断结果为是时,向网管设备发送告警信息;或者将所述时间同步调整值发送给所述主设备。
可选地,所述时间同步网络中包含有多个主设备;以及
所述装置还包括第一选择单元,其中:
所述获得单元,还用于在获得时间同步调整值之前,获得主设备的跟踪优先级;
所述第一选择单元,用于根据所述跟踪优先级选择优先级最高的主设备对应的第一时间差值;
所述获得单元,具体用于根据选择出的主设备对应的第一时间差值和所述第二时间差值确定所述时间同步调整值。
所述获得单元,用于接收所述主设备发送的跟踪优先级;或者预先设置各主设备的跟踪优先级。
发送单元,还用于根据所述跟踪优先级向优先级最高的主设备发送所述第二时间差值。
可选地,还包括:
第二选择单元,用于判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中重新选择跟踪的主设备。
可选地,所述卫星时间存在多个;以及
所述发送单元,还用于在向所述主设备发送第二时间差值的同时,向所述主设备发送所述第二时间差值对应的卫星号。
可选地,所述卫星时间存在多个;
所述获得单元,用于在接收所述主设备发送的第一时间差值的同时,接收所述主设备发送的所述第一时间差值对应的卫星号。
可选地,所述告警单元,还用于如果所述卫星时间存在多个,则在向网管设备发送告警信息的同时,向所述网管设备发送所述告警信息对应的卫星号。
如图9b所示,其为本法实施例提供的设置于主设备中的时间同步装置,包括:
发送单元911,用于向所述跟踪设备发送时间调整参考信息,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值,由所述跟踪设备根据所述时间同步调整值,调整本地时间。
可选地,设置于主设备中的时间同步装置,还可以包括:
第一确定单元912,用于确定本地之间与自身接收到的卫星时间之间的第一时间差值;
第一接收单元913,用于接收所述跟踪设备发送的第二时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
第二确定单元914,用于根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
可选地,设置于主设备中的时间同步装置,还可以包括:
第一判断单元,用于在所述第二确定单元确定出所述跟踪设备对应的时间同步调整值之后,判断所述时间同步调整值是否大于预设的阈值;
第一告警单元,用于在所述第一判断单元的判断结果为是时,向网管设备发送告警信息。
可选地,设置于主设备中的时间同步装置,还可以包括:
第二接收单元,用于在所述发送单元向所述跟踪设备发送时间调整参考信息之后,接收所述跟踪设备发送的时间同步调整值;
第二判断单元,用于判断所述时间同步调整值是否大于预设的阈值;
第二告警单元,用于在所述第二判断单元的判断结果为是时,向网管设备发送告警信息。
可选地,所述发送单元911,还用于如果存在多个卫星时间,则向所述跟踪设备发送时间调整参考信息的同时,向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
为了描述的方便,以上各部分按照功能划分为各模块(或单元)分别描述。当然,在实施本公开时可以把各模块(或单元)的功能在同一个或多个软件或硬件中实现。
如图10所示,其为本公开实施例提供的时间同步系统的结构示意图,包括主设备101和跟踪设备102,其中,主设备中设置有图9b所示的时间同步装置;所述跟踪设备中设置有图9a所示的时间同步装置。
在介绍了本公开示例性实施方式的时间同步方法和装置之后,接下来, 介绍根据本公开的另一示例性实施方式的计算装置。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
在一些可能的实施方式中,根据本公开的计算装置可以至少包括至少一个处理器、以及至少一个存储器。其中,所述存储器存储有程序代码,当所述程序代码被所述处理器执行时,使得所述处理器执行本说明书上述描述的根据本公开各种示例性实施方式的时间同步方法中的步骤。例如,所述处理器可以执行如图4中所示的步骤S41、跟踪设备获得时间同步调整值,其中,时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;和步骤S42、跟踪设备根据获得的时间同步调整值,调整本地时间。
下面参照图11来描述根据本公开的这种实施方式的计算装置110。图11显示的计算装置110仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图11所示,计算装置110以通用计算设备的形式表现。计算装置110的组件可以包括但不限于:上述至少一个处理器111、上述至少一个存储器112、连接不同系统组件(包括存储器112和处理器111)的总线113。
总线113表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器112可以包括易失性存储器形式的可读介质,例如随机存取存储器(RAM)1121和/或高速缓存存储器1122,还可以进一步包括只读存储器(ROM)1123。
存储器112还可以包括具有一组(至少一个)程序模块1124的程序/实用工具1125,这样的程序模块1124包括但不限于:操作系统、一个或者多个应 用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
计算装置110也可以与一个或多个外部设备114(例如键盘、指向设备等)通信,还可与一个或者多个使得用户能与计算装置110交互的设备通信,和/或与使得该计算装置110能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口115进行。并且,计算装置110还可以通过网络适配器116与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器116通过总线113与用于计算装置110的其它模块通信。应当理解,尽管图中未示出,可以结合计算装置110使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
在一些可能的实施方式中,本公开提供的时间同步方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在计算机设备上运行时,所述程序代码用于使所述计算机设备执行本说明书上述描述的根据本公开各种示例性实施方式的时间同步方法中的步骤,例如,所述计算机设备可以执行如图4中所示的步骤S41、跟踪设备获得时间同步调整值,其中,时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;和步骤S42、跟踪设备根据获得的时间同步调整值,调整本地时间。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的 组合。
本公开的实施方式的用于时间同步的程序产品可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在计算设备上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、C++等,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)-连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了装置的若干单元或子单元,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多 个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开范围的所有变更和修改。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号 处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (37)

  1. 一种时间同步方法,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,
    所述方法,包括:
    跟踪设备获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
    所述跟踪设备根据所述时间同步调整值,调整本地时间。
  2. 如权利要求1所述的方法,其中,在跟踪设备获得时间同步调整值之前,所述方法还包括:
    所述跟踪设备向所述主设备发送第二时间差值;以及
    跟踪设备获得时间同步调整值,具体包括:
    所述跟踪设备接收所述主设备发送的时间同步调整值,所述时间同步调整值为所述主设备根据所述第一时间差值和所述第二时间差值确定出的。
  3. 如权利要求1所述的方法,其中,跟踪设备获得时间同步调整值,具体包括:
    所述跟踪设备接收所述主设备发送的第一时间差值;
    所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值。
  4. 如权利要求3所述的方法,其中,所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值之后,所述方法还包括:
    所述跟踪设备判断所述时间同步调整值是否大于预设阈值;以及
    如果是,则向网管设备发送告警信息;或者将所述时间同步调整值发送给所述主设备。
  5. 如权利要求1~4任一项权利要求所述的方法,其中,所述时间同步网络中包含有多个主设备;以及
    在所述跟踪设备获得时间同步调整值之前,所述方法还包括:
    所述跟踪设备获得主设备的跟踪优先级。
  6. 如权利要求5所述的方法,还包括:
    在所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值之前,还包括:
    所述跟踪设备根据所述跟踪优先级选择优先级最高的主设备对应的第一时间差值;以及
    所述跟踪设备根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值,具体包括:
    所述跟踪设备根据选择出的主设备对应的第一时间差值和第二时间差值确定所述时间同步调整值。
  7. 如权利要求5所述的方法,其中,所述跟踪设备获得主设备的跟踪优先级,具体包括:
    所述跟踪设备接收所述主设备发送的跟踪优先级;或者
    在所述跟踪设备上预先设置各主设备的跟踪优先级。
  8. 如权利要求5所述的方法,还包括:
    所述跟踪设备根据所述跟踪优先级向优先级最高的主设备发送所述第二时间差值。
  9. 如权利要求5所述的方法,还包括:
    如果所述跟踪设备判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中重新选择跟踪的主设备。
  10. 如权利要求2所述的方法,其中,所述卫星时间存在多个;则所述跟踪设备向所述主设备发送第二时间差值的同时,还包括:
    所述跟踪设备向所述主设备发送所述第二时间差值对应的卫星号。
  11. 如权利要求3所述的方法,其中,所述卫星时间存在多个;则跟踪设备在接收所述主设备发送的第一时间差值的同时,还包括:
    所述跟踪设备接收所述主设备发送的所述第一时间差值对应的卫星号。
  12. 如权利要求4所述的方法,其中,如果所述卫星时间存在多个;则在向网管设备发送告警信息的同时,还包括:
    向所述网管设备发送所述告警信息对应的卫星号。
  13. 一种时间同步方法,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,
    所述方法,包括:
    所述主设备向所述跟踪设备发送时间调整参考信息,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值,由所述跟踪设备根据所述时间同步调整值,调整本地时间。
  14. 如权利要求13所述的方法,其中,所述主设备按照以下方法确定所述跟踪设备对应的时间同步调整值:
    所述主设备确定本地之间与自身接收到的卫星时间之间的第一时间差值;
    所述主设备接收所述跟踪设备发送的第二时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
    所述主设备根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
  15. 如权利要求14所述的方法,其中,所述主设备在确定出所述跟踪设备对应的时间同步调整值之后,所述方法还包括:
    判断所述时间同步调整值是否大于预设的阈值;
    如果是,则向网管设备发送告警信息。
  16. 如权利要求13所述的方法,其中,所述主设备向所述跟踪设备发送时间调整参考信息之后,所述方法还包括:
    接收所述跟踪设备发送的时间同步调整值;
    判断所述时间同步调整值是否大于预设的阈值;
    如果是,则向网管设备发送告警信息。
  17. 如权利要求14所述的方法,其中,如果存在多个卫星时间,则所述主设备向所述跟踪设备发送时间调整参考信息的同时,所述方法还包括:
    向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
  18. 一种时间同步装置,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,所述时间同步装置设置于所述跟踪设备中,
    所述装置,包括:
    获得单元,用于获得时间同步调整值,所述时间同步调整值为根据所述主设备对应的第一时间差值和所述跟踪设备对应的第二时间差值确定出的,所述第一时间差值为所述主设备的本地时间与其接收到的卫星时间之间的时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
    调整单元,用于根据所述时间同步调整值,调整本地时间。
  19. 如权利要求18所述的装置,还包括发送单元,其中:
    所述发送单元,用于向所述主设备发送第二时间差值;
    所述获得单元,具体用于接收所述主设备发送的时间同步调整值,所述时间同步调整值为所述主设备根据所述第一时间差值和所述第二时间差值确定出的。
  20. 如权利要求18所述的装置,其中,
    所述获得单元,具体用于接收所述主设备发送的第一时间差值;根据所述第一时间差值和所述第二时间差值确定所述时间同步调整值。
  21. 如权利要求20所述的装置,还包括:
    判断单元,用于判断所述时间同步调整值是否大于预设阈值;
    告警单元,用于在所述判断单元的判断结果为是时,向网管设备发送告警信息;或者将所述时间同步调整值发送给所述主设备。
  22. 如权利要求20所述的装置,其中,所述时间同步网络中包含有多个主设备;
    所述获得单元,还用于在获得时间同步调整值之前,获得主设备的跟踪优先级。
  23. 如权利要求22所述的装置,还包括第一选择单元,其中:
    所述第一选择单元,用于根据所述跟踪优先级选择优先级最高的主设备对应的第一时间差值;
    所述获得单元,具体用于根据选择出的主设备对应的第一时间差值和所述第二时间差值确定所述时间同步调整值。
  24. 如权利要求22所述的装置,其中,
    所述获得单元,用于接收所述主设备发送的跟踪优先级;或者预先设置各主设备的跟踪优先级。
  25. 如权利要求22所述的装置,其中,
    发送单元,还用于根据所述跟踪优先级向优先级最高的主设备发送所述第二时间差值。
  26. 如权利要求22所述的装置,还包括:
    第二选择单元,用于判断出与当前选择出的主设备之间存在通信故障时,则根据所述跟踪优先级选择从其他主设备中重新选择跟踪的主设备。
  27. 如权利要求19所述的装置,其中,所述卫星时间存在多个;以及
    所述发送单元,还用于在向所述主设备发送第二时间差值的同时,向所述主设备发送所述第二时间差值对应的卫星号。
  28. 如权利要求20所述的装置,其中,所述卫星时间存在多个;
    所述获得单元,用于在接收所述主设备发送的第一时间差值的同时,接收所述主设备发送的所述第一时间差值对应的卫星号。
  29. 如权利要求21所述的装置,其中,
    所述告警单元,还用于如果所述卫星时间存在多个,则在向网管设备发送告警信息的同时,向所述网管设备发送所述告警信息对应的卫星号。
  30. 一种时间同步装置,应用于时间同步网络中,所述时间同步网络包括主设备和跟踪设备,所述时间同步装置设置于所述主设备中,
    所述装置,包括:
    发送单元,用于向所述跟踪设备发送时间调整参考信息,所述时间调整参考信息包括所述主设备与其接收到的卫星时间之间的第一时间差值或者所述主设备确定出的所述跟踪设备对应的时间同步调整值,由所述跟踪设备根据所述时间同步调整值,调整本地时间。
  31. 如权利要求30所述的装置,还包括:
    第一确定单元,用于确定本地之间与自身接收到的卫星时间之间的第一时间差值;
    第一接收单元,用于接收所述跟踪设备发送的第二时间差值,所述第二时间差值为所述跟踪设备的本地时间与其接收到的卫星时间之间的时间差值;
    第二确定单元,用于根据所述第一时间差值和所述第二时间差值确定所述跟踪设备对应的时间同步调整值。
  32. 如权利要求31所述的装置,还包括:
    第一判断单元,用于在所述第二确定单元确定出所述跟踪设备对应的时间同步调整值之后,判断所述时间同步调整值是否大于预设的阈值;
    第一告警单元,用于在所述第一判断单元的判断结果为是时,向网管设备发送告警信息。
  33. 如权利要求30所述的装置,还包括:
    第二接收单元,用于在所述发送单元向所述跟踪设备发送时间调整参考信息之后,接收所述跟踪设备发送的时间同步调整值;
    第二判断单元,用于判断所述时间同步调整值是否大于预设的阈值;
    第二告警单元,用于在所述第二判断单元的判断结果为是时,向网管设备发送告警信息。
  34. 如权利要求31所述的装置,其中,
    所述发送单元,还用于如果存在多个卫星时间,则向所述跟踪设备发送时间调整参考信息的同时,向所述跟踪设备发送所述时间调整参考信息对应的卫星号。
  35. 一种时间同步系统,包括主设备和跟踪设备,其中,所述主设备中设置有权利要求30~34任一项权利要求所述的时间同步装置;所述跟踪设备中设置有权利要求18~29任一项权利要求所述的时间同步装置。
  36. 一种计算装置,包括至少一个处理器、以及至少一个存储器,其中,所述存储器存储有计算机程序,当所述程序被所述处理器执行时,使得所述处理器执行权利要求1~17任一项权利要求所述方法的步骤。
  37. 一种计算机可读介质,其存储有可由计算装置执行的计算机程序,当所述程序在计算装置上运行时,使得所述计算装置执行权利要求1~17任一项所述方法的步骤。
PCT/CN2020/070094 2019-01-02 2020-01-02 时间同步方法、装置、系统和存储介质 WO2020140939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910001905.3A CN111404627B (zh) 2019-01-02 2019-01-02 一种时间同步方法、装置、系统和存储介质
CN201910001905.3 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020140939A1 true WO2020140939A1 (zh) 2020-07-09

Family

ID=71406987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070094 WO2020140939A1 (zh) 2019-01-02 2020-01-02 时间同步方法、装置、系统和存储介质

Country Status (2)

Country Link
CN (1) CN111404627B (zh)
WO (1) WO2020140939A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511259B (zh) * 2020-12-18 2023-05-16 南方电网电力科技股份有限公司 智能终端时钟管理方法、装置、存储介质及终端设备
CN114666199A (zh) * 2020-12-24 2022-06-24 中兴通讯股份有限公司 网络故障诊断方法、装置、设备及存储介质
CN114726467B (zh) * 2021-01-04 2023-11-21 中国移动通信有限公司研究院 同步监测方法、装置、时间服务器及下游时间服务器
CN114727377A (zh) * 2021-01-04 2022-07-08 中国移动通信有限公司研究院 同步方法、装置、时间服务器及下游时间服务器
CN113176591A (zh) * 2021-05-19 2021-07-27 浙江宇视科技有限公司 监控平台的时间同步方法、装置、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549850B2 (en) * 2001-07-02 2003-04-15 Suunto Oy Receiver of a satellite positioning system and associated method
CN204389910U (zh) * 2014-12-17 2015-06-10 国家电网公司 一种用电信息采集系统主站时钟的校准系统
CN105759599A (zh) * 2014-12-17 2016-07-13 国家电网公司 一种用电信息采集系统主站时钟的校准系统及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304981B2 (en) * 2002-09-09 2007-12-04 Itt Manufacturing Enterprises Inc. Apparatus and method of flywheel time-of-day (TOD) synchronization
US9182495B2 (en) * 2011-09-21 2015-11-10 Lockheed Martin Corporation System and method for monitoring integrity of a global navigation satellite system
CN103067111A (zh) * 2011-10-24 2013-04-24 中兴通讯股份有限公司 时钟同步方法及装置
CN104113386B (zh) * 2014-07-09 2017-10-10 北京东土科技股份有限公司 一种监控以太网时钟同步的方法及装置
CN105867108A (zh) * 2016-06-20 2016-08-17 中国科学院国家授时中心 一种国家标准时间远程复现方法
CN106383355A (zh) * 2016-10-17 2017-02-08 航天恒星科技有限公司 基于高精度时间的gnss时差监测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549850B2 (en) * 2001-07-02 2003-04-15 Suunto Oy Receiver of a satellite positioning system and associated method
CN204389910U (zh) * 2014-12-17 2015-06-10 国家电网公司 一种用电信息采集系统主站时钟的校准系统
CN105759599A (zh) * 2014-12-17 2016-07-13 国家电网公司 一种用电信息采集系统主站时钟的校准系统及其方法

Also Published As

Publication number Publication date
CN111404627A (zh) 2020-07-10
CN111404627B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2020140939A1 (zh) 时间同步方法、装置、系统和存储介质
US20150087330A1 (en) Indoor position location using docked mobile devices
US9622027B2 (en) Systems and methods for network centric WLAN location of a mobile device
WO2020211586A1 (zh) 卫星通信系统参数的确定方法、装置、终端及服务设备
WO2020067964A1 (en) Wireless device positioning
WO2020067973A1 (en) Detection of neighboring satellites in wireless communication systems
EP3047692A1 (en) Devices and methods for sending or receiving assistance data
US9173183B1 (en) Method and system for determining time synchronization errors in time difference of arrival (TDOA) measurements
US20230284060A1 (en) Synchronization signal block measurement timing configuration window and measurement gap configuration for non-terrestrial networks
US20210218516A1 (en) Information processing method, communications device, system, and storage medium
US10848868B2 (en) Audio signal routing to audio devices
CN105119648A (zh) 一种北斗地基导航网络运管系统
WO2020084888A1 (ja) サーバ、衛星測位システム、及び、衛星測位方法
US9237544B2 (en) Methods and arrangements to communicate environmental information for localization
US20240114474A1 (en) Measurement gaps for synchronization signal block measurement time configuration windows in non-terrestrial networks
US9596567B2 (en) Determining a location of a target wireless device
WO2016091189A1 (zh) 一种进行定位的方法、系统和设备
US20140256354A1 (en) Mobile broadband device and assisted positioning method therefor
WO2009122482A1 (ja) 端末、ネットワーク装置、該端末と該ネットワーク装置とからなるネットワーク装置検索システム、およびネットワーク装置検索方法
WO2022219589A1 (en) Preconfigured smtc and measurement gaps in ntn
CN114731484A (zh) 一种定位方法及其装置
US20140153561A1 (en) Network testing system and operating method thereof
WO2023071360A1 (zh) 一种无线通信网络场景中的定位测量方法、装置、设备和介质
WO2023137604A1 (en) Time delay estimation of passive intermodulation
WO2024001423A1 (zh) 维测时间的确定方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20736065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20736065

Country of ref document: EP

Kind code of ref document: A1