WO2024001423A1 - 维测时间的确定方法、装置和设备 - Google Patents

维测时间的确定方法、装置和设备 Download PDF

Info

Publication number
WO2024001423A1
WO2024001423A1 PCT/CN2023/088150 CN2023088150W WO2024001423A1 WO 2024001423 A1 WO2024001423 A1 WO 2024001423A1 CN 2023088150 W CN2023088150 W CN 2023088150W WO 2024001423 A1 WO2024001423 A1 WO 2024001423A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
real
measurement
register
maintenance
Prior art date
Application number
PCT/CN2023/088150
Other languages
English (en)
French (fr)
Inventor
罗鸣
朱伟
何祎
刘石
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001423A1 publication Critical patent/WO2024001423A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the field of communication technology.
  • the radio remote unit (Radio Remote Unit, RRU) will provide a clock source through an external device to perform time synchronization with the baseband processing unit (Base band unit, BBU).
  • Base band unit BBU
  • the present disclosure provides a method and device for determining dimension measurement time, a radio frequency remote device, an electronic device and a storage medium.
  • Embodiments of the present disclosure provide a method for determining dimension measurement time.
  • the method includes: obtaining the real-time running time of the first device and a pre-stored first time, where the first time is when the first device and the second device complete clock synchronization.
  • the second device communicates with the first device; based on the first time and the real-time running time, the measurement time corresponding to the measurement and maintenance information is determined, and the measurement and maintenance information is when the first device measures the communication parameters and/or Or the information obtained when the second device configures and maintains the working parameters of the first device.
  • Embodiments of the present disclosure provide a device for determining dimension measurement time, which includes: an acquisition module configured to acquire the real-time running time of the first device and a pre-stored first time, where the first time is the time between the first device and the first time.
  • the determination module is configured to determine based on the first time and
  • the real-time running time determines the maintenance time corresponding to the measurement and maintenance information.
  • the measurement and maintenance information is information obtained when the first device measures communication parameters and/or when the second device configures and maintains the working parameters of the first device.
  • Embodiments of the present disclosure provide a radio frequency remote device, which includes at least one dimension measurement time determination device; the dimension measurement time determination device is configured to perform any dimension measurement in the embodiments of the disclosure. How to determine time.
  • Embodiments of the present disclosure provide an electronic device, including: one or more processors; and a memory on which one or more computer programs are stored.
  • a Or multiple processors implement any method for determining the measurement time in the embodiments of the present disclosure.
  • Embodiments of the present disclosure provide a readable storage medium that stores a computer program.
  • the computer program is executed by a processor, any method for determining measurement time in the embodiments of the present disclosure is implemented.
  • the second device is connected to the first device through communication, and the real-time running time and pre-storage of the first device are obtained.
  • the first time where the first time is the absolute time when the first device and the second device complete clock synchronization to facilitate the processing of time information; based on the first time and the real-time running time, determine the time corresponding to the measurement maintenance information
  • the maintenance test time can obtain accurate maintenance time, so that when the first device measures communication parameters, and/or when the second device configures and maintains the working parameters of the first device, the measurement and maintenance information obtained can be compared with Accurate connection during maintenance testing time, improves the accuracy of measurement and maintenance information, facilitates accurate location of communication faults, and improves the safety of primary equipment.
  • Figure 1 shows a schematic diagram of the connection relationship between a BBU and a radio frequency antenna according to an embodiment of the present disclosure.
  • FIG. 2 shows a flowchart of a method for determining dimension measurement time according to an embodiment of the present disclosure. intention.
  • FIG. 3 shows a schematic flowchart of a calibration method of dimension measurement time according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic flowchart of a method for determining maintenance time according to an embodiment of the present disclosure.
  • FIG. 5 shows a block diagram of a device for determining maintenance time according to an embodiment of the present disclosure.
  • FIG. 6 shows a block diagram of a remote radio frequency device according to an embodiment of the present disclosure.
  • FIG. 7 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for determining dimension measurement time according to embodiments of the present disclosure.
  • the BBU completes time synchronization with different types of radio frequency antennas through the clock source provided by an external device.
  • the communication link between the BBU and the radio frequency antenna is abnormal (for example, the communication link is disconnected, etc.) )
  • the time between the BBU and the radio frequency antenna cannot be accurately synchronized, which may easily cause the collected measurement information or configuration maintenance information corresponding to the radio frequency antenna to be unable to be aligned with the real-time running time of the BBU, causing the clock of the entire communication network to be abnormal.
  • the BBU can only locate possible abnormalities in the radio frequency antenna through local analysis or unilateral speculation, which reduces the efficiency of abnormal location.
  • FIG. 1 shows a schematic diagram of the connection relationship between a BBU and a radio frequency antenna according to an embodiment of the present disclosure.
  • a variety of equipment is installed in the base station room 110: transmission device 111, first network cabinet 112, second network cabinet 113, power supply 114, backup battery 115, air conditioning equipment 116, monitoring system 117, etc.
  • the first network cabinet 112 includes a baseband processing unit (BBU) 1121.
  • the baseband processing unit 1121 is connected to a remote radio unit (RRU) 121 through optical fiber.
  • the RRU 121 is communicatively connected to the radio frequency antenna 122 (for example, the RRU 121 and the radio frequency antenna 122 connected through feeders).
  • the second network cabinet 113 includes: a distributed unit (Distributed Unit, DU) 1131 and a central unit (Centralized Unit, CU) 1132. DU 1131 and active antenna unit (Active Antenna Unit, AAU) 130 are connected through optical fiber.
  • DU distributed Unit
  • CU Centralized Unit
  • AAU active antenna unit
  • the baseband processing unit 1121 completes clock synchronization with the radio frequency antenna 122 through an external device (such as a Global Positioning System (Global Positioning System, GPS) device, etc.); the DU 1131 can also complete clock synchronization with the AAU 130 through a GPS device. Complete clock synchronization.
  • an external device such as a Global Positioning System (Global Positioning System, GPS) device, etc.
  • GPS Global Positioning System
  • the DU 1131 can also complete clock synchronization with the AAU 130 through a GPS device. Complete clock synchronization.
  • the baseband processing unit 1121 can only locate the possible existence of the radio frequency antenna 122 (or RRU 121) through unilateral local analysis or unilateral speculation. Abnormality reduces the efficiency of abnormal location. Similarly, if the communication link between DU 1131 and AAU 130 breaks down, DU 1131 can only judge possible abnormalities through unilateral local analysis or unilateral speculation, and cannot accurately locate the fault.
  • the present disclosure provides a method, device, equipment, electronic device and storage medium for determining dimension measurement time to solve the above problems.
  • FIG. 2 shows a schematic flowchart of a method for determining maintenance time according to an embodiment of the present disclosure.
  • the method for determining the maintenance time can be applied to the first device.
  • the method in the embodiment of the present disclosure includes but is not limited to the following steps.
  • Step S201 Obtain the real-time running time of the first device and the pre-stored first time.
  • the first time is the absolute time when the first device and the second device complete clock synchronization, and the second device is communicatively connected with the first device.
  • Step S202 Determine the maintenance time corresponding to the measurement maintenance information based on the first time and the real-time running time.
  • the measurement and maintenance information is information obtained when the first device measures communication parameters and/or when the second device configures and maintains the working parameters of the first device.
  • the operating parameters of the first device may include: at least one of chip voltage in the first device, clock lock information, operating parameters of the intermediate frequency module, operating parameters of the radio frequency module, and antenna parameters.
  • the first device can obtain the configuration information of the second device to configure and maintain its working parameters through one-click collection, so as to Convenient for subsequent use.
  • the second device is connected to the first device through communication, and the real-time running time of the first device and the pre-stored first time are obtained, where the first time is when the first device and the second device complete clock synchronization.
  • the absolute time corresponding to the time is determined to facilitate the processing of time information; based on the first time and real-time running time, the measurement time corresponding to the measurement maintenance information is determined, and the accurate measurement time can be obtained so that the first device can accurately measure the communication parameters.
  • the obtained measurement and maintenance information can be accurately connected with the maintenance and measurement time, thereby improving the accuracy of the measurement and maintenance information and facilitating the diagnosis of communication faults. Accurate positioning improves the safety of the first device.
  • the method before obtaining the real-time running time of the first device and the pre-stored first time in step S201, the method further includes: updating the first time every preset time interval.
  • the default duration is a duration that can be set according to actual needs.
  • the default duration is 8 hours, 9 hours, etc.
  • the above preset durations are only examples, and specific settings can be made according to actual needs. Other unspecified preset durations are also within the scope of the present disclosure and will not be described again here.
  • the updated first time can reflect the real-time counting status of the chip of the first device in different time periods, thereby improving the subsequent location accuracy of the fault duration.
  • the step S201 before performing the step S201 to obtain the real-time running time of the first device and the pre-stored first time, it also includes: determining that there is an abnormality in the communication link between the first device and the second device. In this case, the first time is updated based on the time before the first device performs a reset operation or before the first device is powered off.
  • the time before the first device performs a reset operation or before the first device loses power can be recorded more accurately, thereby improving the accuracy of locating the fault duration of the first device.
  • the reset operation is to power off and then power on the first device so that the first device can be restarted and reduce the occurrence ratio of communication failures caused by possible abnormalities in the first device.
  • Abnormalities include: the communication link between the first device and the second device is interrupted, or the first device itself is faulty and other abnormalities.
  • obtaining the counting time of the chip can determine the first equipment At which time the device performed the reset operation, thereby updating the pre-stored first time according to the counting time of the chip, so that the obtained updated first time can represent the specific time at which the first device performed the reset operation, which facilitates subsequent Accurately locate the time period when the first device may fail, so as to troubleshoot and handle possible abnormalities in the first device.
  • determining the maintenance time corresponding to the measurement maintenance information based on the first time and the real-time running time in step S202 can be implemented in the following manner.
  • FIG. 3 shows a schematic flowchart of a calibration method of dimension measurement time according to an embodiment of the present disclosure.
  • the calibration method of the dimension measurement time includes but is not limited to the following steps.
  • Step S301 Determine the calibration coefficient based on the acquired historical jitter time information.
  • Historical jitter time information may include: main frequency deviation information, or delay jitter information obtained from multiple experiments, etc.
  • Step S302 Determine the time to be calibrated based on the updated first time and real-time running time.
  • the updated first time can represent the absolute time corresponding to the moment when the first device performs the reset operation.
  • the obtained time to be calibrated can reflect the first time.
  • the length of time between when the device was reset and when measurement maintenance information is now available i.e., the time to be calibrated).
  • Step S303 Calibrate the time to be calibrated according to the calibration coefficient to obtain the measurement time.
  • the time to be calibrated and the calibration coefficient can be added or multiplied to obtain the measurement time corresponding to the measurement maintenance information.
  • Calibrating the time to be calibrated through the calibration coefficient can make the dimension measurement time more accurate, ensuring that the dimension measurement time can accurately correspond to the measurement and maintenance information, and improving the accuracy of the measurement and maintenance information.
  • the real-time running time includes: a regularly updated time and a real-time time determined by the chip in the first device based on the core counting function.
  • the regularly updated time is stored in the second register.
  • the chip in the first device is based on a core counting function.
  • the real time determined by the counting function is stored in the third register.
  • Obtaining the real-time running time of the first device in step S201 may be as follows: Formula implementation:
  • the time in the third register is accumulated into the second register; when it is determined that the first device completes the reset operation or the first device
  • the third register is cleared, and the chip in the first device starts to retime, and the retimed real-time time is stored in the third register; based on the time stored in the second register and the time stored in the third register The stored time determines the real-time running time.
  • the identification of the first device performing a reset operation is used to indicate that the first device is about to perform a reset operation, and the time in the third register needs to be recorded to ensure the continuity of time.
  • the flag of the first device actively initiating a power-down restart is used to indicate that the second device needs to power-down and restart, and the time in the third register also needs to be saved and recorded.
  • the time stored in the second register can be guaranteed. Continuity and convenient tracing of time.
  • the third register is cleared, the chip in the first device starts to re-time, and the re-timed real-time time is stored in the third register, so that the third register
  • the time in the three registers can reflect the real-time counting of the chip, and then determine the real-time running time based on the time stored in the second register and the time stored in the third register. For example, combine the time stored in the second register and the time stored in the third register. The time stored in is added to obtain the real-time running time, which can ensure the accuracy of the real-time running time.
  • determining the maintenance time corresponding to the measurement maintenance information based on the first time and the real-time running time in step S202 includes: obtaining the first time after the first device and the second device complete clock synchronization.
  • the real-time running time is used to subtract the running time of the communication link in the normal state to obtain the fault duration.
  • the fault duration can be used to characterize the length of time that the first device may fail, so as to facilitate the measurement and maintenance information of the first device. Time alignment.
  • the fault duration and the first time can be added together, so that the obtained maintenance test time can reflect the fault duration of the first equipment that may fail, because the first time is stored in advance and can represent the first time.
  • step S201 before obtaining the real-time running time of the first device and the pre-stored first time in step S201, it also includes: obtaining the first moment when the first device is powered on; obtaining the first time when the first device is powered on; The second moment when the device completes clock synchronization; determine the time deviation based on the first moment and the second moment.
  • Time offset is used to calibrate the measurement time.
  • the time deviation can be represented by the difference between the second moment and the first moment to represent the time difference from when the first device is powered on to when it completes clock synchronization with the second device, so that the time deviation It is possible to further accurately calibrate the dimension measurement time of the first device and improve the accuracy of the dimension measurement time.
  • the time offset can be added to the dimension test time, so that the dimension test time can represent the time since the first device was powered on, thereby improving the accuracy of the dimension test time.
  • the first moment when the first device is powered on can also be the moment when the first device is restarted and powered on after a fault occurs, so as to facilitate the first device to accurately estimate its maintenance time and improve Accuracy of estimated failure duration.
  • obtaining the real-time running time of the first device in step S201 includes: obtaining the time information recorded by the chip in the first device; converting the time information recorded by the chip according to the preset time conversion rules to obtain real-time operation hours.
  • the preset time conversion rules may include: converting the time information recorded by the chip between different time units, so that the obtained real-time running time can meet the usage requirements of the first device.
  • the count number for example, 1024 counting points
  • the predefined time unit represented by each counting point for example, 5 milliseconds (ms), etc.
  • the chip of the first device By using the chip of the first device to record time, the internal use of the first device (for example, calling between different programs, etc.) can be facilitated. Further, Convert the time information recorded by the chip according to the preset time conversion rules to obtain the real-time running time, which enables other devices to know the specific running time of the first device to facilitate time synchronization between other devices and the first device. , improve the accuracy of clock synchronization.
  • obtaining the time information recorded by the chip in the first device includes: recording the time during the operation of the chip according to the preset application scenario and counting bit width, and obtaining the time information recorded by the chip.
  • Preset application scenarios can include: synchronization scenarios between different network element devices, or scenarios that require precise timing, etc.
  • the network element equipment may include: at least two of remote radio equipment, a base station, a server, and a terminal.
  • the counting bit width may include the length of a binary number such as 16 bits (bit), 32 bit or 64 bit expressed in binary numbers, or may also include counting lengths of different lengths expressed in hexadecimal numbers, etc.
  • bit width is only an example, and specific settings can be made according to actual needs. Other unexplained counting bit widths are within the protection scope of the present disclosure and will not be described again here.
  • Recording the time during the operation of the chip through preset application scenarios and counting bit widths can ensure that the time information obtained can be applied to different preset application scenarios, so that the time information recorded by the chip is more accurate and meets different application scenarios. meet the usage requirements and improve counting accuracy.
  • the first time is stored in the first register, and the first register is set in memory, flash memory and solid state disk (Solid State Disk, SSD).
  • the first device is a radio frequency remote device, and the second device is a baseband processing unit BBU.
  • Remote radio equipment includes: any one of the active antenna unit AAU, remote radio unit RRU and pRRU (pico RRU).
  • the first register, the second register and the third register can also be implemented using any one of memory (flash), flash memory and SSD. For example, if it is determined that the first device supports power-off self-healing, the above three registers can be deployed in the flash memory; in an application scenario for software reset, the above three registers can be deployed in a reserved memory area.
  • a power-down type tag When it is determined that the first device supports power-down self-healing, a power-down type tag needs to be set.
  • the power-down type tag is used to identify whether the device is actively powered down or due to unpredictable reasons. Power outage caused by measured external factors.
  • the remote radio frequency device can determine based on the first time and the real-time running time of the remote radio frequency device when an abnormality occurs in the communication link between the remote radio frequency device and the BBU.
  • the dimension measurement time corresponding to the measurement and maintenance information improves the accuracy of the measurement and maintenance information.
  • the network measurement and control system before obtaining the real-time running time of the first device and the pre-stored first time in step S201, it also includes: using the Network Time Protocol (Network Time Protocol, NTP) Network Time Protocol NTP and/or The Precision Clock Synchronization Protocol (PCSP) of the network measurement and control system performs clock synchronization with the second device.
  • NTP Network Time Protocol
  • PCSP Precision Clock Synchronization Protocol
  • NTP is an application layer protocol, a protocol used to synchronize clocks between clients and servers.
  • NTP can be used to synchronize clocks between the first device and the second device to ensure that the two different types of devices can work synchronously and improve work efficiency.
  • the precision clock synchronization protocol of the network measurement and control system periodically corrects and synchronizes the clocks of all nodes in the communication network (for example, the first device and the first device, etc.) through a synchronization signal, so that the devices in the communication network can Precise synchronization improves communication efficiency.
  • FIG. 4 shows a schematic flowchart of a method for determining maintenance time according to an embodiment of the present disclosure.
  • t represents the time axis.
  • the radio frequency remote device completes different operations.
  • the radio frequency remote device ie, the above-mentioned first device
  • the radio frequency remote device is powered on and starts working.
  • the chip in the remote radio device (such as any one of ARM chip, FPGA chip and EPLD chip) starts to start the core counting function, which is used to calculate the real-time running time (i.e. local running time) to count.
  • time t 1 and time t 0 are very small (for example, t 1 -t 0 is about 100ms), and this difference can reflect the accuracy of the dimension measurement time. In specific implementation, it can be stored in different The time information in the register determines the difference to facilitate further calibration of the dimension measurement time.
  • the remote radio frequency device needs to complete the loading of the software version and synchronize the clock with the baseband processing unit. During this period of time, the remote radio frequency device and the baseband processing unit need to complete the loading of the software version.
  • the communication link is in an abnormal state.
  • time t 2 When time t 2 is reached, clock synchronization is completed between the radio remote device and the baseband processing unit. At this time, the radio remote device needs to record the absolute time Taboslute2 corresponding to time t2 (for example, store the absolute time Taboslute2 in a first register, which is set in a memory or flash memory).
  • the remote radio frequency device can use NTP and/or the precision clock synchronization protocol of the network measurement and control system to synchronize the clock with the baseband processing unit.
  • the remote radio frequency device operates normally.
  • T test-1 represents the maintenance test time corresponding to a certain measurement and maintenance information before time t 3.
  • the measurement and maintenance information includes: information when the radio frequency remote device measures communication parameters, and/or the baseband processing unit Information obtained when configuring and maintaining the working parameters of remote radio equipment.
  • T 1 represents the duration corresponding to the real-time running time recorded by the chip in the radio remote device after time t 0 .
  • T 1 t test-1 -t 0
  • T 1 can be stored in the first register.
  • t test-1 represents the time corresponding to the dimension test time.
  • T 1 is the time obtained by converting the time information recorded by the chip in the radio remote device based on the preset time conversion rules.
  • T 2 represents the duration stored in the second register after clock synchronization and when the communication link is in a normal state. For example, as shown in Figure 4, the cumulative time length of the chip in the radio frequency remote device between time t2 and time t3 .
  • X represents the verification coefficient, which is the coefficient determined by the obtained historical jittering time information (for example, the main frequency deviation information or the delayed jitter information obtained by multiple times).
  • T test-1 , T 1 , T 2 , and T aboslute2 can all use unsigned characters with a bit width of 32 bits. The number is expressed in seconds.
  • the register, first register, and second register corresponding to the core counting function of the chip in the remote radio frequency device all need to be processed to prevent overflow to prevent the accumulated number of data bits from exceeding 32 bits.
  • the above-mentioned bit width of each register (for example, 32 bit) is only an example. It can be set according to actual needs (for example, the bit width of 16 bit or 64 bit can be used).
  • the number of bits of other unspecified registers is also included in this document. It is within the scope of public protection and will not be repeated here.
  • the first register does not require periodic maintenance, reducing the additional overhead of the Central Processing Unit (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the first register can be deployed in the reserved memory area; in the application scenario for power-down self-healing, the first register can be deployed in the flash memory.
  • the power outage category flag can be used to distinguish whether it is an external power outage or a power outage initiated by software, and Process by category.
  • the communication link between the remote radio frequency device and the baseband processing unit becomes abnormal (for example, the communication link is interrupted, or the remote radio frequency device fails, etc.).
  • the remote radio frequency device Accurate clock synchronization with the baseband processing unit is not possible, but the core counting function of the chip in the remote radio device has always been in normal working condition, that is, the chip in the remote radio device maintains a continuous counting state.
  • the remote radio device when the abnormal duration of the communication link between the remote radio device and the baseband processing unit exceeds the preset time (for example, 3 seconds or 5 seconds, etc.), the remote radio device will automatically perform a reset operation, but Before performing the reset operation, the real-time running time of the chip of the remote radio frequency device will be recorded.
  • the real-time running time of the chip of the remote radio frequency device is set as the chip counting time, and the chip counting time is used to calculate the first time.
  • Taboslute2 stored in the register is cumulatively updated to obtain the first updated time, namely Taboslute4 .
  • Taboslute4 represents the absolute time corresponding to time t4 .
  • the radio remote device performs a reset operation.
  • the remote radio frequency device needs to complete operations such as loading the software version.
  • time t 5 When time t 5 is reached, operations such as loading the software version between the remote radio device and the baseband processing unit are completed, and the chip in the remote radio device begins to activate the core counting function for Count the real-time running time in remote radio equipment.
  • time t 5 and time t 4 are very small (for example, t 5 -t 4 is about 100ms), and this difference can reflect the accuracy of the dimension measurement time.
  • the difference can be determined through time information stored in different registers to facilitate further calibration of the dimension measurement time.
  • the absolute time T aboslute4 corresponding to time t 4 is recorded in the second register
  • the absolute time corresponding to time t 5 is recorded in the third register, where the time updated regularly by the first device is stored in the second register.
  • the third register stores the real-time time determined by the chip in the first device based on the core counting function; the difference between the second register and the third register can reflect the accuracy of the dimension measurement time.
  • the remote radio frequency device and the baseband processing unit perform clock synchronization.
  • the remote radio frequency device needs to record the absolute time T aboslute6 corresponding to time t 6 (for example, the absolute time T aboslute6 stored in the first register, which is set in the memory or flash memory).
  • the remote radio device can also use formula (2) to calculate the measurement and maintenance before time t 6 .
  • T test-2 represents the dimension test time corresponding to a certain measurement maintenance information after time t 4 (or time t 5 ).
  • t test-2 represents the time corresponding to the dimension test time.
  • the radio frequency remote device is determined by utilizing the core counting function of the chip in the remote radio frequency device and the absolute time pre-stored in the first register that can represent the clock synchronization between the remote radio frequency device and the baseband processing unit.
  • the maintenance and testing time of the remote device can solve the problem that when the communication link between the radio frequency remote device and the baseband processing unit is abnormal, the maintenance and testing time cannot be accurately aligned with the time of the baseband processing unit.
  • the measurement time can be applied to a variety of different radio frequency remote devices. By upgrading the software version, the time alignment between the radio frequency remote device and the baseband processing unit can be consistent, improving the accuracy of measurement and maintenance information, and facilitating communication Accurate fault location improves the safety of radio frequency remote equipment.
  • FIG. 5 shows a block diagram of a device for determining maintenance time provided by an embodiment of the present disclosure.
  • the measurement time determination device 510 includes but is not limited to the following modules.
  • the acquisition module 511 is configured to acquire the real-time running time of the first device and the pre-stored first time.
  • the first time is the absolute time when the first device and the second device complete clock synchronization, and the second device communicates with the first device. connect.
  • the determination module 512 is configured to determine the maintenance time corresponding to the measurement maintenance information based on the first time and the real-time running time.
  • the measurement maintenance information is when the first device measures the communication parameters and/or the second device measures the first device. Information obtained during configuration and maintenance of working parameters.
  • the maintenance test time determination device 510 also includes: an update module configured to perform a reset based on the first device when it is determined that there is an abnormality in the communication link between the first device and the second device. The first time to update before operation or before the first device is powered off.
  • the determination module 512 is specifically used to: determine the calibration coefficient based on the acquired historical jitter time information; determine the time to be calibrated based on the updated first time and real-time running time; and determine the time to be calibrated based on the calibration coefficient. Perform calibration and obtain the measurement time.
  • the real-time running time includes: a regularly updated time and a real-time time determined by the chip in the first device based on the core counting function.
  • the regularly updated time is stored in the second register.
  • the chip in the first device is based on a core counting function.
  • the real time determined by the counting function is stored in the third register.
  • the acquisition module 511 is specifically configured to: when it is determined to obtain the identification of the first device to perform a reset operation or the identification of the first device to actively initiate a power-down restart, accumulate the time in the third register into the second register; after determining When the first device completes the reset operation or the first device is powered off and restarted, the third register is cleared, and the chip in the first device begins to restart. Timing, the re-timed real-time time is stored in the third register; the real-time running time is determined based on the time stored in the second register and the time stored in the third register.
  • the determination module 512 is specifically used to: obtain the running time of the communication link between the first device and the second device in the normal state after the first device and the second device complete clock synchronization; according to the communication link The operation time and real-time operation time of the road in normal state are used to determine the fault duration; the maintenance test time is determined based on the fault duration and the first time.
  • the measurement time determination device 510 also includes: a time deviation determination module configured to obtain the first moment when the first device is powered on; and obtain the second time when the first device and the second device complete clock synchronization. time; determine the time deviation based on the first time and the second time, where the time deviation is used to calibrate the dimension measurement time.
  • a time deviation determination module configured to obtain the first moment when the first device is powered on; and obtain the second time when the first device and the second device complete clock synchronization. time; determine the time deviation based on the first time and the second time, where the time deviation is used to calibrate the dimension measurement time.
  • the acquisition module 511 is specifically the same as: acquiring the time information recorded by the chip in the first device; converting the time information recorded by the chip according to the preset time conversion rules to obtain real-time running time.
  • obtaining the time information recorded by the chip in the first device includes: recording the time during the operation of the chip according to the preset application scenario and counting bit width, and obtaining the time information recorded by the chip.
  • the first time is stored in a first register, and the first register is set in memory or flash memory.
  • the first device is a radio frequency remote device, and the second device is a baseband processing unit BBU.
  • the measurement time determination device 510 also includes: a clock synchronization module configured to use the Network Time Protocol NTP and/or the Precision Clock Synchronization Protocol PCSP of the Network Measurement and Control System to perform clock synchronization with the second device. Synchronize.
  • the device 510 for determining the dimension measurement time in this embodiment can implement any method for determining the dimension measurement time in the embodiment of the present disclosure.
  • a device communicates with a first device through a second device, and uses an acquisition module to acquire the real-time running time of the first device and a pre-stored first time, where the first time is between the first device and the first device.
  • the absolute time corresponding to when the two devices complete clock synchronization to facilitate the processing of time information; use the determination module to determine the measurement time corresponding to the measurement and maintenance information based on the first time and real-time running time, so as to obtain accurate maintenance information.
  • the measurement and maintenance information obtained can be accurately connected with the maintenance and measurement time, improving measurement Maintain the accuracy of information, facilitate the accurate location of communication faults, and improve the safety of primary equipment.
  • Figure 6 shows a block diagram of a radio frequency remote device provided by an embodiment of the present disclosure.
  • the radio frequency remote device 610 includes at least one measurement time determining device 611 .
  • the dimension measurement time determination device 611 is configured to execute any dimension measurement time determination method in the embodiments of the present disclosure.
  • the second device is connected to the first device through communication, and the device for determining the measurement time is used to obtain the real-time running time of the first device and the pre-stored first time, where the first time is the first time.
  • the absolute time corresponding to when the first device and the second device complete clock synchronization to facilitate the processing of time information; based on the first time and real-time running time, determine the maintenance time corresponding to the measurement and maintenance information, and obtain accurate maintenance time. So that when the first device measures communication parameters, and/or when the second device configures and maintains the working parameters of the first device, the measurement and maintenance information obtained can be accurately connected with the maintenance and measurement time, thereby improving the accuracy of the measurement and maintenance information. Accuracy facilitates the accurate location of communication faults and improves the safety of primary equipment.
  • FIG. 7 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for determining dimension measurement time according to embodiments of the present disclosure.
  • computing device 700 includes an input device 701 , an input interface 702 , a central processing unit 703 , a memory 704 , an output interface 705 , and an output device 706 .
  • the input interface 702, the central processing unit 703, the memory 704, and the output interface 705 are connected to each other through the bus 707.
  • the input device 701 and the output device 706 are connected to the bus 707 through the input interface 702 and the output interface 705 respectively, and then to other parts of the computing device 700. Component connections.
  • the input device 701 receives input information from the outside and passes it through the input interface 702
  • the input information is transmitted to the central processing unit 703; the central processing unit 703 processes the input information based on computer-executable instructions stored in the memory 704 to generate output information, temporarily or permanently stores the output information in the memory 704, and then outputs Interface 705 communicates the output information to output device 706; output device 706 outputs the output information external to computing device 700 for use by a user.
  • the computing device shown in Figure 7 may be implemented as an electronic device, and the electronic device may include: a memory configured to store a computer program; a processor configured to run the computer program stored in the memory , to perform the method for determining the measurement time described in the above embodiment.
  • the computing device shown in FIG. 7 may be implemented as a system for determining measurement time.
  • the system may include: a memory configured to store a computer program; a processor configured to run a computer program stored in the memory.
  • a computer program to execute the method for determining the dimension measurement time described in the above embodiment.
  • Embodiments of the present disclosure may be implemented by a data processor of a mobile device executing computer program instructions, such as in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or target code.
  • ISA instruction set architecture
  • Any block diagram of a logic flow in the figures of this disclosure may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the processor may be of any type appropriate to the local technology environment, such as, but not limited to, general-purpose computers, special-purpose computers, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), programmable logic devices (FGPA), and Processor based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Clocks (AREA)

Abstract

本公开提出一种维测时间的确定方法和确定装置、射频拉远设备、电子设备和存储介质。该方法包括:获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时的绝对时间,第二设备与第一设备通信连接;依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间,测量维护信息是第一设备对通信参数进行测量时的信息和/或第一设备的工作参数的配置信息。

Description

维测时间的确定方法、装置和设备 技术领域
本公开涉及通信技术领域。
背景技术
通常,射频拉远单元(Radio Remote Unit,RRU)会通过外部设备提供时钟源的方式,与基带处理单元(Base band Unite,BBU)之间进行时间同步。
但是,当RRU发生异常时,易导致RRU与BBU之间无法进行精准的时间同步,使得BBU仅能通过单侧分析或局部定位的方式,对RRU可能发生的异常进行估计;并且,还会使RRU的测量信息无法对接准确的时间信息,使BBU无法获知RRU发生异常的时段内发送的异常信息,浪费了BBU对RRU设备的测量资源,降低了RRU的安全性。
发明内容
本公开提供一种维测时间的确定方法和确定装置、射频拉远设备、电子设备和存储介质。
本公开实施例提供一种维测时间的确定方法,该方法包括:获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时的绝对时间,第二设备与第一设备通信连接;依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间,测量维护信息是第一设备对通信参数进行测量时和/或第二设备对第一设备的工作参数进行配置维护时获得的信息。
本公开实施例提供一种维测时间的确定装置,其包括:获取模块,被配置为获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时的绝对时间,第二设备与第一设备通信连接;确定模块,被配置为依据第一时间和 实时运行时间,确定与测量维护信息对应的维测时间,测量维护信息是第一设备对通信参数进行测量时和/或第二设备对第一设备的工作参数进行配置维护时获得的信息。
本公开实施例提供一种射频拉远设备,该射频拉远设备包括至少一个维测时间的确定装置;该维测时间的确定装置,被配置为执行本公开实施例中的任意一种维测时间的确定方法。
本公开实施例提供一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个计算机程序,当一个或多个计算机程序被一个或多个处理器执行,使得一个或多个处理器实现本公开实施例中的任意一种维测时间的确定方法。
本公开实施例提供了一种可读存储介质,该可读存储介质存储有计算机程序,计算机程序被处理器执行时实现本公开实施例中的任意一种维测时间的确定方法。
根据本公开实施例的维测时间的确定方法和确定装置、射频拉远设备、电子设备和存储介质,通过第二设备与第一设备通信连接,并获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时的绝对时间,以方便对时间信息的处理;依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间,能够获得精准的维测时间,以使第一设备对通信参数进行测量时,和/或,第二设备对第一设备的工作参数进行配置维护时,获得的测量维护信息可以与维测时间进行准确对接,提升测量维护信息的准确性,方便对通信故障的准确定位,提升第一设备的安全性。
关于本公开的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出根据本公开的实施例的BBU与射频天线之间的连接关系示意图。
图2示出根据本公开的实施例的维测时间的确定方法的流程示 意图。
图3示出根据本公开的实施例的维测时间的校准方法的流程示意图。
图4示出根据本公开的实施例的维测时间的确定方法的流程示意图。
图5示出根据本公开的实施例的维测时间的确定装置的组成方框图。
图6示出根据本公开的实施例的射频拉远设备的组成方框图。
图7示出能够实现根据本公开的实施例的维测时间的确定方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
通常,BBU通过外部设备提供的时钟源,完成与不同类型的射频天线之间的时间同步,但是,若BBU与射频天线之间的通信链路发生异常(例如,通信链路发生断链故障等),则BBU与射频天线之间就无法进行时间的精准同步,易导致采集到的与射频天线对应的测量信息或配置维护信息无法与BBU的实时运行时间对齐,使得整个通信网络的时钟异常,BBU只能通过局部分析或单侧的推测来定位射频天线可能存在的异常,降低了异常定位的效率。
例如,图1示出根据本公开的实施例的BBU与射频天线之间的连接关系示意图。如图1所示,基站机房110中安装有多种设备:传输装置111、第一网络机柜112、第二网络机柜113、电源114、备用电池115、空调设备116和监控系统117等。
第一网络机柜112包括基带处理单元(BBU)1121,该基带处理单元1121通过光纤与射频拉远单元(RRU)121相连接,该RRU 121与射频天线122通信连接(例如,RRU 121与射频天线122通过馈线相连接)。
第二网络机柜113包括:分布单元(Distributed Unit,DU)1131和中心单元(Centralized Unit,CU)1132。DU 1131与有源天线单元(Active Antenna Unit,AAU)130之间通过光纤连接。
需要说明的是,基带处理单元1121通过外部设备(例如,全球定位系统(Global Positioning System,GPS)设备等)与射频天线122之间完成时钟同步;DU 1131也可以通过GPS设备与AAU 130之间完成时钟同步。
若基带处理单元1121与射频天线122之间的通信链路发生断链故障,则基带处理单元1121只能通过单侧局部分析或单侧的推测来定位射频天线122(或RRU 121)可能存在的异常,降低了异常定位的效率。同样地,若DU 1131与AAU 130之间的通信链路发生断链故障,则DU 1131也只能通过单侧局部分析或单侧的推测来判断可能存在的异常,无法对故障进行精准定位。
本公开提供一种维测时间的确定方法、装置、设备、电子设备和存储介质,用以解决上述问题。
图2示出根据本公开的实施例的维测时间的确定方法的流程示意图。该维测时间的确定方法可应用于第一设备。如图2所示,本公开实施例中的方法包括但不限于以下步骤。
步骤S201,获取第一设备的实时运行时间和预先存储的第一时间。
第一时间为第一设备与第二设备完成时钟同步时的绝对时间,第二设备与第一设备通信连接。
步骤S202,依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间。
测量维护信息是第一设备对通信参数进行测量时和/或第二设备对第一设备的工作参数进行配置维护时获得信息。
例如,该第一设备的工作参数可以包括:第一设备中的芯片电压、时钟锁定信息、中频模块的工作参数、射频模块的工作参数和天线参数中的至少一种。在实际工作的过程中,第一设备可以通过一键采集的方式获取第二设备对其工作参数进行配置维护的配置信息,以 方便后续使用。
在本实施例中,通过第二设备与第一设备通信连接,并获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时对应的绝对时间,以方便对时间信息的处理;依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间,能够获得精准的维测时间,以使第一设备对通信参数进行测量时,和/或,第二设备对第一设备的工作参数进行配置维护时,获得的测量维护信息可以与维测时间进行准确对接,提升测量维护信息的准确性,方便对通信故障的准确定位,提升第一设备的安全性。
在一些具体实现中,在执行步骤S201中的获取所述第一设备的实时运行时间和预先存储的第一时间之前,还包括:每间隔预设时长,更新第一时间。
预设时长是可以根据实际需求进行设定的时长,例如,预设时长为8小时、9小时等。以上对于预设时长仅是举例说明,可根据实际需要进行具体的设定,其他未说明的预设时长也在本公开的保护范围之内,在此不再赘述。
通过每间隔预设时长就对第一时间进行更新,能够使更新后的第一时间体现不同时段内的第一设备的芯片的实时计数情况,提升后续对故障时长的定位准确性。
在一些具体实现中,在执行步骤S201中的获取第一设备的实时运行时间和预先存储的第一时间之前,还包括:在确定第一设备与第二设备之间的通信链路存在异常的情况下,依据第一设备执行复位操作前或第一设备掉电前的时间,更新第一时间。
第一设备执行复位操作前或第一设备掉电前的时间,能够更精准的对时间进行记录,提升对第一设备的故障时长的定位准确性。复位操作是第一设备进行断电后再上电,以使第一设备可以重新启动,减少第一设备因可能存在的异常而导致的通信故障的发生比例。异常包括:第一设备与第二设备之间的通信链路发生中断,或,第一设备自身存在故障等异常。
需要说明的是,获取该芯片的计数时间,能够明确第一设备具 体在哪个时刻进行了复位操作,从而依据该芯片的计数时间更新预先存储的第一时间,以使获得的更新后的第一时间能够表征第一设备具体在哪个时刻进行了复位操作,方便后续对第一设备可能发生故障的时段进行准确定位,从而对第一设备可能发生的异常进行排查和处理。
在一些具体实现中,步骤S202中的依据第一时间和实时运行时间,确定测量维护信息对应的维测时间,可以采用如下方式实现。
图3示出根据本公开的实施例的维测时间的校准方法的流程示意图。
如图3所示,该维测时间的校准方法包括但不限于如下步骤。
步骤S301,依据获取到的历史抖动时间信息,确定校准系数。
历史抖动时间信息可以包括:主频偏差信息,或,多次试验获得的时延抖动信息等。
步骤S302,依据更新后的第一时间和实时运行时间,确定待校准时间。
更新后的第一时间能够表征与第一设备进行复位操作的时刻对应的绝对时间,通过将该更新后的第一时间与实时运行时间进行加和处理,能够使获得的待校准时间体现第一设备从其复位开始,到目前获得测量维护信息的时刻之间的时长(即,待校准时间)。
步骤S303,依据校准系数对待校准时间进行校准,获得维测时间。
例如,可以将待校准时间与校准系数进行加和处理,或乘积处理,从而获得测量维护信息对应的维测时间。
通过校准系数对待校准时间进行校准,能够使维测时间更准确,以保证该维测时间能够与测量维护信息进行准确对应,提升测量维护信息的准确性。
在一些具体实现中,实时运行时间包括:定时更新的时间和第一设备中的芯片基于核计数功能确定的实时时间,定时更新的时间存储在第二寄存器中,第一设备中的芯片基于核计数功能确定的实时时间存储在第三寄存器中。
步骤S201中的获取第一设备的实时运行时间,可以采用如下方 式实现:
在确定获得第一设备执行复位操作的标识或第一设备主动发起掉电重启的标识的情况下,将第三寄存器中的时间累加至第二寄存器中;在确定第一设备完成复位操作或第一设备掉电重启的情况下,清空第三寄存器,第一设备中的芯片开始重新计时,将重新计时的实时时间存储至第三寄存器中;依据第二寄存器中存储的时间和第三寄存器中存储的时间,确定实时运行时间。
第一设备执行复位操作的标识用于表征第一设备即将进行复位操作,需要对第三寄存器中的时间进行记录,以保证时间的连续性。第一设备主动发起掉电重启的标识用于表征第二设备需要进行掉电重启,同样需要将第三寄存器中的时间进行保存记录。
通过在确定获得第一设备执行复位操作的标识或第一设备主动发起掉电重启的标识的情况下,将第三寄存器中的时间累加至第二寄存器中,能够保证第二寄存器中存储的时间的延续性,方便后的对时间的追溯。在确定第一设备完成复位操作或第一设备掉电重启的情况下,清空第三寄存器,第一设备中的芯片开始重新计时,将重新计时的实时时间存储至第三寄存器中,以使第三寄存器中的时间能够体现芯片的实时计数情况,进而基于第二寄存器中存储的时间和第三寄存器中存储的时间,确定实时运行时间,例如,将第二寄存器中存储的时间和第三寄存器中存储的时间相加,获得实时运行时间,能够保证该实时运行时间的准确性。
在一些具体实现中,步骤S202中的依据所述第一时间和所述实时运行时间,确定与测量维护信息对应的维测时间,包括:获取第一设备与第二设备完成时钟同步之后第一设备与第二设备之间的通信链路处于正常状态下的运行时长;依据通信链路处于正常状态下的运行时长和实时运行时间,确定故障时长;依据故障时长和第一时间,确定维测时间。
使用实时运行时间减去通信链路处于正常状态下的运行时长,以获得故障时长,通过该故障时长能够表征第一设备可能发生故障的时间长度,以方便对该第一设备的测量维护信息进行时间对齐。
进一步地,可将该故障时长与第一时间进行加和处理,使获得的维测时间能够体现第一设备可能发生故障的故障时长,因其中的第一时间是预先存储的、能够表征第一设备与第二设备完成时钟同步时的绝对时间,提升维测时间的准确性。
在一些具体实现中,在执行步骤S201中的获取第一设备的实时运行时间和预先存储的第一时间之前,还包括:获取第一设备上电的第一时刻;获取第一设备与第二设备完成时钟同步的第二时刻;依据第一时刻和第二时刻,确定时间偏差。
时间偏差用于对维测时间进行校准。例如,时间偏差可以采用第二时刻与第一时刻之间的差值表示,以表征第一设备从上电开始,到其完成与第二设备之间的时钟同步的时差,从而使该时间偏差能够进一步对第一设备的维测时间进行精准校准,提升维测时间的准确性。
例如,可以将该时间偏差加入到维测时间中,以使该维测时间能够表征第一设备从上电开始的时间,提升维测时间的精准性。
需要说明的是,第一设备上电的第一时刻也可以是该第一设备在发生故障之后,重新启动并上电时的时刻,以方便第一设备对其维测时间进行精准估计,提升对故障时长的推测准确性。
在一些具体实现中,步骤S201中的获取第一设备的实时运行时间,包括:获取第一设备中的芯片记录的时间信息;依据预设时间转换规则对芯片记录的时间信息进行转换,获得实时运行时间。
预设时间转换规则可以包括:将芯片记录的时间信息进行不同时间单位之间的转换,以使获得的实时运行时间能够符合第一设备的使用需求。
例如,第一设备的芯片从某个时刻开始计数,获得计数数量(例如,1024个计数点),然后,基于预先定义的每个计数点表示的时间单位(例如,5毫秒(ms)等),则可计算获得第1024个计数点对应的实时运行时间为:1024*5ms=5120ms=5.12秒(s),从而获得该第一设备的芯片记录的时间长度为5.12秒。
通过采用上述第一设备的芯片对时间进行记录的方式,能够方便第一设备内部的使用(例如,不同程序之间的调用等),进一步地, 依据预设时间转换规则对芯片记录的时间信息进行转换,获得实时运行时间,能够使其他设备可以获知该第一设备的具体运行的时长,以方便其他设备与该第一设备之间进行时间同步,提升时钟同步的准确性。
在一些具体实现中,获取第一设备中的芯片记录的时间信息,包括:依据预设应用场景和计数位宽,对芯片运行过程中的时间进行记录,获得芯片记录的时间信息。
预设应用场景可以包括:应用于不同网元设备之间的同步场景,或,应用于需要精准计时的场景等。
网元设备可以包括:射频拉远设备、基站、服务器和终端中的至少两种。计数位宽可以包括以二进制数表示的16比特(bit)、32bit或64bit等二进制数的长度,也可以包括以十六进制数表示的不同长度的计数长度等。以上对于计数位宽仅是举例说明,可根据实际需要进行具体的设定,其他未说明的计数位宽都在本公开的保护范围之内,在此不再赘述。
通过预设应用场景和计数位宽对芯片运行过程中的时间进行记录,能够保证获得的时间信息可以适用于不同的预设应用场景,以使该芯片记录的时间信息更准确,满足不同应用场景中的使用需求,提升计数准确性。
在一些具体实现中,第一时间存储在第一寄存器中,第一寄存器设置于内存、闪存和固态硬盘(Solid State Disk,SSD)中。第一设备为射频拉远设备,第二设备为基带处理单元BBU。
射频拉远设备包括:有源天线单元AAU、射频拉远单元RRU和pRRU(pico RRU)中的任意一种。第一寄存器、第二寄存器和第三寄存器均还可以采用内存(flash)、闪存和SSD中的任意一种来实现。例如,在确定第一设备支持掉电自愈的情况下,可将上述三个寄存器可以部署在闪存中;在面向软件复位的应用场景中,上述三个寄存器可以部署在保留的内存区域。
在确定第一设备支持掉电自愈的情况下,需要设置掉电类型标签,该掉电类型标签用于标识所述设备是主动掉电,还是由于不可预 测的外部因素导致的掉电。
需要说明的是,以上对于寄存器的类别仅是举例说明,可根据实际需要进行具体的设定,其他未说明的寄存器的类别也在本公开的保护范围之内,在此不再赘述。
通过将第一时间存储在第一寄存器中,使射频拉远设备在其与BBU之间的通信链路发生异常的情况下,能够基于该第一时间和射频拉远设备的实时运行时间,确定与测量维护信息对应的维测时间,提升测量维护信息的准确性。
在一些具体实现中,在执行步骤S201中的获取第一设备的实时运行时间和预先存储的第一时间之前,还包括:采用网络时间协议(Network Time Protocol,NTP)网络时间协议NTP和/或网络测量和控制系统的精密时钟同步协议(Precision Clock Synchronization Protocol,PCSP),与第二设备进行时钟同步。
NTP为应用层协议,用以使客户端和服务器之间进行时钟同步的协议。在本实施例中,可以采用NTP使第一设备与第二设备之间进行时钟同步,以保证两种不同类型的设备之间可以同步工作,提升工作效率。
网络测量和控制系统的精密时钟同步协议通过一个同步信号周期性的对通信网络中所有节点(例如,第一设备和第一设备等)的时钟进行校正同步,以使通信网络中设备之间能够精确同步,提升通信效率。
图4示出根据本公开的实施例的维测时间的确定方法的流程示意图。如图4所示,“t”表示时间轴,在时间轴上的不同的时刻处,射频拉远设备完成不同的操作。
在t0时刻,射频拉远设备上(即上述第一设备)电,开始工作。
在t1时刻,射频拉远设备中的芯片(如,ARM芯片、FPGA芯片和EPLD芯片中的任意一种)开始启动核计数功能,用于对射频拉远设备中的实时运行时间(即本地运行时间)进行计数。
t1时刻与t0时刻之间的差值很小(例如,t1-t0约为100ms),该差值能够体现维测时间的准确性。具体实现时,可通过存储在不同 的寄存器中的时间信息确定该差值,以方便对维测时间做进一步的校准。
在t1时刻至t2时刻之间,射频拉远设备需要完成软件版本的加载,并与基带处理单元之间进行时钟的同步,该段时间内,射频拉远设备与基带处理单元之间的通信链路是处于异常状态。
当到达t2时刻时,射频拉远设备与基带处理单元之间完成时钟同步。此时,射频拉远设备需要记录与t2时刻对应的绝对时间Taboslute2(例如,将该绝对时间Taboslute2存储到第一寄存器中,该第一寄存器设置于内存或闪存中)。
射频拉远设备可以采用NTP和/或网络测量和控制系统的精密时钟同步协议,与基带处理单元进行时钟同步。
需要说明的是,在射频拉远设备与基带处理单元之间完成时钟同步之后,射频拉远设备正常工作。
在一些具体实现中,射频拉远设备还可以采用公式(1)计算t3时刻之前的与某个测量维护信息对应的维测时间Ttest-1
Ttest-1=Taboslute2+(T1-T2)+X           (1)
其中,Ttest-1表示t3时刻之前的、与某个测量维护信息对应的维测时间,测量维护信息包括:射频拉远设备对通信参数进行测量时的信息,和/或,基带处理单元对射频拉远设备的工作参数进行配置维护时获得的信息。
T1表示射频拉远设备中的芯片在t0时刻之后记录的实时运行时间对应的时长。例如,T1=ttest-1-t0,T1可以存储在第一寄存器中。ttest-1表示与维测时间对应的时刻。
T1是基于预设时间转换规则对射频拉远设备中的芯片记录的时间信息进行转换获得的时间。T2表示第二寄存器中存储的、在时钟同步之后,且通信链路处于正常状态下的时长。例如,如图4所示,射频拉远设备中的芯片在t2时刻~t3时刻之间累计的时间长度。X表示校验系数,该校验系数是基于获得的历史抖动时间信息(例如,主频偏差信息或多次进行试验获得的时延抖动信息等)确定的系数。
例如,Ttest-1、T1、T2、Taboslute2均可以采用位宽为32bit的无符 号数表示,单位为秒(second)。射频拉远设备中的芯片的核计数功能对应的寄存器、第一寄存器和第二寄存器均需要进行防溢出的处理,以防止数据累计的位数超过32bit。上述对于各个寄存器的位宽(如,32bit)仅是举例说明,可根据实际需要进行具体设定(例如,可以采用16bit或64bit的位宽等),其他未说明的寄存器的位数也在本公开的保护范围之内,在此不再赘述。
在一些具体实现中,第一寄存器不需要进行周期性维护,减少了中央处理器(Central Processing Unit,CPU)的额外开销。在面向软件复位的应用场景中,第一寄存器可以部署在保留内存区;在面向掉电自愈的应用场景中,第一寄存器可以部署在闪存中。
由于自愈断电是瞬态发生的,而其他的外部断电的时间是无法被感知和补偿的,因此,可通过掉电类别标志位区分是外部掉电或软件主动发起的掉电,并分类别进行处理。
当到达t3时刻时,射频拉远设备与基带处理单元之间的通信链路出现异常(例如,通信链路中断,或,该射频拉远设备出现故障等),此时,射频拉远设备无法与基带处理单元进行精准的时钟同步,但射频拉远设备中的芯片的核计数功能一直处于正常工作状态,即射频拉远设备中的芯片保持持续计数状态不变。
需要说明的是,当射频拉远设备与基带处理单元之间的通信链路的异常时长超过预设时长(例如,3秒或5秒等)时,射频拉远设备会自动执行复位操作,但在执行复位操作之前,会将射频拉远设备的芯片的实时运行时间记录下来,例如,将该射频拉远设备的芯片的实时运行时间设置为芯片计数时间,并使用该芯片计数时间对第一寄存器中存储的Taboslute2进行累计更新,从而获得更新后的第一时间,即Taboslute4,如图4所示,Taboslute4表示与t4时刻对应的绝对时间。
在t4时刻,射频拉远设备执行复位操作。
在t4时刻~t5时刻之间,射频拉远设备需要完成软件版本的加载等操作。
当到达t5时刻时,射频拉远设备与基带处理单元之间完成软件版本的加载等操作,射频拉远设备中的芯片开始启动核计数功能,用于 对射频拉远设备中的实时运行时间进行计数。
t5时刻与t4时刻之间的差值很小(例如,t5-t4约为100ms),该差值能够体现维测时间的准确性。具体实现时,可通过存储在不同的寄存器中的时间信息确定该差值,以方便对维测时间做进一步的校准。
例如,将t4时刻对应的绝对时间Taboslute4记录在第二寄存器中,将t5时刻对应的绝对时间记录在第三寄存器中,其中,第二寄存器中存储的是第一设备定时更新的时间,第三寄存器中存储的是第一设备中的芯片基于核计数功能确定的实时时间;通过第二寄存器与第三寄存器之间的差值,能够体现维测时间的准确性。
在t5时刻至t6时刻这段时间内,由于没有完成时钟同步,因此,射频拉远设备与基带处理单元之间的通信链路处于异常状态。
在到达t6时刻时,射频拉远设备与基带处理单元之间进行时钟的同步,此时,射频拉远设备需要记录与t6时刻对应的绝对时间Taboslute6(例如,将该绝对时间Taboslute6存储到第一寄存器中,该第一寄存器设置于内存或闪存中)。
在t4时刻之后,且射频拉远设备与基带处理单元之间的通信链路处于异常状态的情况下,射频拉远设备还可以采用公式(2)计算t6时刻之前的与某个测量维护信息对应的维测时间Ttest-2
Ttest-2=Taboslute4+T′1+X               (2)
Ttest-2表示t4时刻(或t5时刻)之后、与某个测量维护信息对应的维测时间。
T′1表示在t4时刻(或t5时刻)之后、射频拉远设备中的芯片记录的与实时运行时间对应的时长,例如,T′1=ttest-2-t4(或T′1=ttest-2-t5)。ttest-2表示与维测时间对应的时刻。
在本实施例中,通过利用射频拉远设备中的芯片的核计数功能,以及预先存储在第一寄存器中的能够表征射频拉远设备与基带处理单元之间时钟同步的绝对时间,确定射频拉远设备的维测时间,能够解决射频拉远设备与基带处理单元之间的通信链路发生异常时的维测时间无法与基带处理单元的时间进行精准对齐的问题。该维测时间 的确定方法可适用于各种不同的射频拉远设备,能够通过升级软件版本的方式,使射频拉远设备与基带处理单元之间的时间对齐一致,提升测量维护信息的准确性,方便对通信故障的准确定位,提升射频拉远设备的安全性。
下面结合附图,详细介绍根据本公开实施例的装置。图5示出本公开实施例提供的维测时间的确定装置的组成方框图。
如图5所示,维测时间的确定装置510包括但不限于如下模块。
获取模块511,被配置为获取第一设备的实时运行时间和预先存储的第一时间,第一时间为第一设备与第二设备完成时钟同步时的绝对时间,第二设备与第一设备通信连接。
确定模块512,被配置为依据第一时间和实时运行时间,确定与测量维护信息对应的维测时间,测量维护信息是第一设备对通信参数进行测量时和/或第二设备对第一设备的工作参数进行配置维护时获得的信息。
在一些具体实现中,维测时间的确定装置510,还包括:更新模块,被配置为在确定第一设备与第二设备之间的通信链路存在异常的情况下,依据第一设备执行复位操作前或第一设备掉电前的时间,更新第一时间。
在一些具体实现中,确定模块512,具体用于:依据获取到的历史抖动时间信息,确定校准系数;依据更新后的第一时间和实时运行时间,确定待校准时间;依据校准系数对待校准时间进行校准,获得维测时间。
在一些具体实现中,实时运行时间包括:定时更新的时间和第一设备中的芯片基于核计数功能确定的实时时间,定时更新的时间存储在第二寄存器中,第一设备中的芯片基于核计数功能确定的实时时间存储在第三寄存器中。
获取模块511,具体用于:在确定获得第一设备执行复位操作的标识或第一设备主动发起掉电重启的标识的情况下,将第三寄存器中的时间累加至第二寄存器中;在确定第一设备完成复位操作或第一设备掉电重启的情况下,清空第三寄存器,第一设备中的芯片开始重新 计时,将重新计时的实时时间存储至第三寄存器中;依据第二寄存器中存储的时间和第三寄存器中存储的时间,确定实时运行时间。
在一些具体实现中,确定模块512,具体用于:获取第一设备与第二设备完成时钟同步之后第一设备与第二设备之间的通信链路处于正常状态下的运行时长;依据通信链路处于正常状态下的运行时长和实时运行时间,确定故障时长;依据故障时长和第一时间,确定维测时间。
在一些具体实现中,维测时间的确定装置510,还包括:时间偏差确定模块,被配置为获取第一设备上电的第一时刻;获取第一设备与第二设备完成时钟同步的第二时刻;依据第一时刻和第二时刻,确定时间偏差,其中,时间偏差用于对维测时间进行校准。
在一些具体实现中,获取模块511,具体同于:获取第一设备中的芯片记录的时间信息;依据预设时间转换规则对芯片记录的时间信息进行转换,获得实时运行时间。
在一些具体实现中,获取第一设备中的芯片记录的时间信息,包括:依据预设应用场景和计数位宽,对芯片运行过程中的时间进行记录,获得芯片记录的时间信息。
在一些具体实现中,第一时间存储在第一寄存器中,第一寄存器设置于内存或闪存中。第一设备为射频拉远设备,第二设备为基带处理单元BBU。
在一些具体实现中,维测时间的确定装置510,还包括:时钟同步模块,被配置为采用网络时间协议NTP和/或网络测量和控制系统的精密时钟同步协议PCSP,与第二设备进行时钟同步。
需要说明的是,本实施例中的维测时间的确定装置510能够实现本公开实施例中任一种维测时间的确定方法。
根据本公开实施例的设备,通过第二设备与第一设备通信连接,并使用获取模块获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时对应的绝对时间,以方便对时间信息的处理;使用确定模块依据第一时间和实时运行时间,确定测量维护信息对应的维测时间,能够获得精准的维 测时间,以使第一设备对通信参数进行测量时,和/或,第二设备对第一设备的工作参数进行配置维护时,获得的测量维护信息可以与维测时间进行准确对接,提升测量维护信息的准确性,方便对通信故障的准确定位,提升第一设备的安全性。
图6示出本公开实施例提供的射频拉远设备的组成方框图。
如图6所示,射频拉远设备610包括至少一个维测时间的确定装置611。该维测时间的确定装置611,被配置为执行本公开实施例中任一种维测时间的确定方法。
根据本公开实施例的设备,通过第二设备与第一设备通信连接,并使用维测时间的确定装置获取第一设备的实时运行时间和预先存储的第一时间,其中,第一时间为第一设备与第二设备完成时钟同步时对应的绝对时间,以方便对时间信息的处理;依据第一时间和实时运行时间,确定测量维护信息对应的维测时间,能够获得精准的维测时间,以使第一设备对通信参数进行测量时,和/或,第二设备对第一设备的工作参数进行配置维护时,获得的测量维护信息可以与维测时间进行准确对接,提升测量维护信息的准确性,方便对通信故障的准确定位,提升第一设备的安全性。
需要明确的是,本公开并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图7示出能够实现根据本公开实施例的维测时间的确定方法和装置的计算设备的示例性硬件架构的结构图。
如图7所示,计算设备700包括输入设备701、输入接口702、中央处理器703、存储器704、输出接口705、以及输出设备706。输入接口702、中央处理器703、存储器704、以及输出接口705通过总线707相互连接,输入设备701和输出设备706分别通过输入接口702和输出接口705与总线707连接,进而与计算设备700的其他组件连接。
输入设备701接收来自外部的输入信息,并通过输入接口702 将输入信息传送到中央处理器703;中央处理器703基于存储器704中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器704中,然后通过输出接口705将输出信息传送到输出设备706;输出设备706将输出信息输出到计算设备700的外部供用户使用。
在一个实施例中,图7所示的计算设备可以被实现为一种电子设备,该电子设备可以包括:存储器,被配置为存储计算机程序;处理器,被配置为运行存储器中存储的计算机程序,以执行上述实施例描述的维测时间的确定方法。
在一个实施例中,图7所示的计算设备可以被实现为一种维测时间的确定系统,该系统可以包括:存储器,被配置为存储计算机程序;处理器,被配置为运行存储器中存储的计算机程序,以执行上述实施例描述的维测时间的确定方法。
以上所述,仅为本公开的示例性实施例而已,并非用于限定本公开的保护范围。一般来说,本公开的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本公开不限于此。
本公开的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本公开附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处 理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本公开的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本公开的范围。因此,本公开的恰当范围将根据权利要求确定

Claims (15)

  1. 一种维测时间的确定方法,包括:
    获取第一设备的实时运行时间和预先存储的第一时间,其中,所述第一时间为所述第一设备与第二设备完成时钟同步时的绝对时间,所述第二设备与所述第一设备通信连接;
    依据所述第一时间和所述实时运行时间,确定与测量维护信息对应的维测时间,所述测量维护信息是所述第一设备对通信参数进行测量时和/或第二设备对所述第一设备的工作参数进行配置维护时获得的信息。
  2. 根据权利要求1所述的方法,其中,所述获取所述第一设备的实时运行时间和预先存储的第一时间之前,还包括:
    每间隔预设时长,更新所述第一时间。
  3. 根据权利要求1所述的方法,其中,所述获取所述第一设备的实时运行时间和预先存储的第一时间之前,还包括:
    在确定所述第一设备与所述第二设备之间的通信链路存在异常的情况下,依据所述第一设备执行复位操作前或所述第一设备掉电前的时间,更新所述第一时间。
  4. 根据权利要求3所述的方法,其中,所述依据所述第一时间和所述实时运行时间,确定与所述测量维护信息对应的维测时间,包括:
    依据获取到的历史抖动时间信息,确定校准系数;
    依据所述更新后的第一时间和所述实时运行时间,确定待校准时间;
    依据所述校准系数对所述待校准时间进行校准,获得所述维测时间。
  5. 根据权利要求1所述的方法,其中,所述实时运行时间包括:定时更新的时间和所述第一设备中的芯片基于核计数功能确定的实时时间,所述定时更新的时间存储在第二寄存器中,所述第一设备中的芯片基于核计数功能确定的实时时间存储在第三寄存器中;
    所述获取第一设备的实时运行时间,包括:
    在确定获得所述第一设备执行复位操作的标识或所述第一设备主动发起掉电重启的标识的情况下,将所述第三寄存器中的时间累加至所述第二寄存器中;
    在确定所述第一设备完成复位操作或所述第一设备掉电重启的情况下,清空所述第三寄存器,所述第一设备中的芯片开始重新计时,将所述重新计时的实时时间存储至所述第三寄存器中;
    依据所述第二寄存器中存储的时间和所述第三寄存器中存储的时间,确定所述实时运行时间。
  6. 根据权利要求1所述的方法,其中,所述依据所述第一时间和所述实时运行时间,确定与所述测量维护信息对应的维测时间,包括:
    获取在所述第一设备与所述第二设备完成时钟同步之后且所述第一设备与所述第二设备之间的通信链路处于正常状态下的运行时长;
    依据所述通信链路处于正常状态下的运行时长和所述实时运行时间,确定故障时长;
    依据所述故障时长和所述第一时间,确定所述维测时间。
  7. 根据权利要求1所述的方法,其中,所述获取所述第一设备的实时运行时间和预先存储的第一时间之前,还包括:
    获取所述第一设备上电的第一时刻;
    获取所述第一设备与所述第二设备完成所述时钟同步的第二时刻;
    依据所述第一时刻和所述第二时刻,确定时间偏差,其中,所 述时间偏差用于对所述维测时间进行校准。
  8. 根据权利要求1所述的方法,其中,所述获取第一设备的实时运行时间,包括:
    获取所述第一设备中的芯片记录的时间信息;
    依据预设时间转换规则对所述芯片记录的时间信息进行转换,获得所述实时运行时间。
  9. 根据权利要求8所述的方法,其中,所述获取所述第一设备中的芯片记录的时间信息,包括:
    依据预设应用场景和计数位宽,对所述芯片运行过程中的时间进行记录,获得所述芯片记录的时间信息。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述第一时间存储在第一寄存器中,所述第一寄存器设置于内存、闪存和固态硬盘驱动器中的任意一种;
    所述第一设备为射频拉远设备,所述第二设备为基带处理单元。
  11. 根据权利要求1至9中任一项所述的方法,其中,所述获取所述第一设备的实时运行时间和预先存储的第一时间之前,还包括:
    采用网络时间协议和/或网络测量和控制系统的精密时钟同步协议,与所述第二设备进行时钟同步。
  12. 一种维测时间的确定装置,包括:
    获取模块,被配置为获取第一设备的实时运行时间和预先存储的第一时间,其中,所述第一时间为所述第一设备与第二设备完成时钟同步时的绝对时间,所述第二设备与所述第一设备通信连接;
    确定模块,被配置为依据所述第一时间和所述实时运行时间,确定与测量维护信息对应的维测时间,所述测量维护信息是所述第一设备对通信参数进行测量时和/或所述第二设备对所述第一设备的工 作参数进行配置维护时获得的信息。
  13. 一种射频拉远设备,包括:至少一个维测时间的确定装置,
    其中,所述维测时间的确定装置被配置为执行如权利要求1至11中任一项所述的维测时间的确定方法。
  14. 一种电子设备,包括:
    一个或多个处理器;以及
    存储器,其上存储有一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至11中任一项所述的维测时间的确定方法。
  15. 一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的维测时间的确定方法。
PCT/CN2023/088150 2022-06-27 2023-04-13 维测时间的确定方法、装置和设备 WO2024001423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210741185.6 2022-06-27
CN202210741185.6A CN117354152A (zh) 2022-06-27 2022-06-27 维测时间的确定方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2024001423A1 true WO2024001423A1 (zh) 2024-01-04

Family

ID=89369686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088150 WO2024001423A1 (zh) 2022-06-27 2023-04-13 维测时间的确定方法、装置和设备

Country Status (2)

Country Link
CN (1) CN117354152A (zh)
WO (1) WO2024001423A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190342198A1 (en) * 2016-12-06 2019-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Latency Monitoring
CN110958070A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 一种参考时间确定方法及装置
WO2021008532A1 (zh) * 2019-07-15 2021-01-21 中兴通讯股份有限公司 有源天线单元时延对齐方法、装置及有源天线单元
CN114339599A (zh) * 2021-12-31 2022-04-12 中国电信股份有限公司 定位校准方法、定位方法、装置、存储介质和电子设备
WO2022095508A1 (zh) * 2020-11-04 2022-05-12 中兴通讯股份有限公司 下行数据传输方法、装置、存储介质及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190342198A1 (en) * 2016-12-06 2019-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Latency Monitoring
CN110958070A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 一种参考时间确定方法及装置
WO2021008532A1 (zh) * 2019-07-15 2021-01-21 中兴通讯股份有限公司 有源天线单元时延对齐方法、装置及有源天线单元
WO2022095508A1 (zh) * 2020-11-04 2022-05-12 中兴通讯股份有限公司 下行数据传输方法、装置、存储介质及电子装置
CN114339599A (zh) * 2021-12-31 2022-04-12 中国电信股份有限公司 定位校准方法、定位方法、装置、存储介质和电子设备

Also Published As

Publication number Publication date
CN117354152A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US9876596B2 (en) Method and device for detecting fault in synchronization link
US9923656B2 (en) Methods, systems, and computer readable media for testing recovered clock quality
EP4044516A1 (en) Fault locating method, apparatus and device, and storage medium
US20190086979A1 (en) Monitoring apparatus, monitoring system and monitoring method
US10169171B2 (en) Method and apparatus for enabling temporal alignment of debug information
JP2017151936A (ja) マスタ装置、スレーブ装置、情報処理装置、イベントログ収集システム、マスタ装置の制御方法、スレーブ装置の制御方法、および制御プログラム
US10496128B2 (en) Method for obtaining timestamp and computer device using the same
JP7107393B2 (ja) モニタリングシステム、および同期方法
WO2017219834A1 (zh) 监控方法、装置及看门狗系统
JP2019125916A (ja) マスタ制御装置およびこれを用いた同期通信システム
WO2018166418A1 (zh) 一种网络校时方法及装置
CN116319618A (zh) 交换机运行控制方法、装置、系统、设备及存储介质
CN113946448B (zh) 一种服务器集群的时序管理方法、装置及电子设备
WO2024001423A1 (zh) 维测时间的确定方法、装置和设备
CN106647228B (zh) 一种换流站主时钟故障判断系统
WO2021129755A1 (zh) 时钟时间同步方法、装置、设备和存储介质
CN110988599B (zh) 配电故障指示器分布式录波高精度同步方法
CN111510236B (zh) 一种高压电流监测对时系统及时间同步方法
CN114258126A (zh) 数据处理方法及其装置
JP2015059851A (ja) 時刻補正装置、時刻補正方法、および、コンピュータ・プログラム
JP2007147484A (ja) 時刻補正システム
CN102790703B (zh) 时间故障监测方法及系统
CN110098971A (zh) 一种网络链路不对称测量方法和网络节点
TWI793924B (zh) 遠端設備線上時間同步精準度的監測系統及其方法
CN115664572B (zh) 时钟同步方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829613

Country of ref document: EP

Kind code of ref document: A1