WO2020140835A1 - 一种自适应调整振动频率的电路、甩脂机及控制方法 - Google Patents

一种自适应调整振动频率的电路、甩脂机及控制方法 Download PDF

Info

Publication number
WO2020140835A1
WO2020140835A1 PCT/CN2019/129091 CN2019129091W WO2020140835A1 WO 2020140835 A1 WO2020140835 A1 WO 2020140835A1 CN 2019129091 W CN2019129091 W CN 2019129091W WO 2020140835 A1 WO2020140835 A1 WO 2020140835A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
nmos tube
terminal
control signal
module
Prior art date
Application number
PCT/CN2019/129091
Other languages
English (en)
French (fr)
Inventor
刘元江
王国元
严雷
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020140835A1 publication Critical patent/WO2020140835A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive

Definitions

  • the present invention relates to the technical field of circuit design, and more specifically, to a circuit, fat-throwing machine, and control method for adaptively adjusting vibration frequency.
  • Fat rejection machine is an instrument for weight loss. It uses the principle of balanced lateral movement and amplitude superposition in sports science to make body fat move, consume calories, and eliminate excessive body fat accumulation. Usually, it controls the vibration of the motor in the fat-throwing machine, and drives the users who use the fat-throwing machine to vibrate to achieve the effect of fat-throwing.
  • the research found that when the vibration frequency of the motor of the fat-throwing machine reaches the resonance frequency of the user who uses the fat-throwing machine, the vibration amplitude of the user is the largest and the fat-throwing effect is the best.
  • the resonant frequency of users with different weights is different, and the vibration frequency of the motor in the existing fat-throwing machine is usually a predetermined fixed value or manually adjusted by the user. Therefore, the existing fat-throwing machine The vibration frequency of the motor cannot be adaptively adjusted for different users to achieve the best fat rejection effect.
  • An object of the embodiments of the present invention is to provide a technical solution for a circuit that adaptively adjusts the vibration frequency.
  • a circuit for adaptively adjusting vibration frequency including a control module, an output module, a motor, and a current detection module, the control module is configured to output a control signal to the output module;
  • the output module is configured to drive the motor to vibrate according to the frequency of the control signal;
  • the current detection module is configured to detect the current flowing through the motor and send the current detection result to the control module;
  • the control module is further configured to adjust the frequency of the control signal according to the current detection result to adjust the vibration frequency of the motor.
  • control module is configured to output a first control signal and a second control signal to the output module, wherein the first control signal and the second control signal have the same frequency and opposite level states;
  • the output module is further configured to drive the motor to rotate forward or reverse according to the level states of the first control signal and the second control signal.
  • the output module further includes a first output terminal and a second output terminal respectively connected to the two input terminals of the motor, and the output module is connected between the power supply terminal and the ground terminal of the circuit
  • the output module is further configured to connect the power supply terminal to the first output terminal according to the level state of the first control signal and the second control signal, and connect the ground terminal to all The second output terminal is connected, or the power supply terminal is connected to the second output terminal, and the ground terminal is connected to the first output terminal.
  • the output module includes a first NMOS tube, a second NMOS tube, a third NMOS tube, and a fourth NMOS tube, a drain of the first NMOS tube is connected to the power supply terminal, and the first NMOS tube
  • the source of the tube is connected to the drain of the second NMOS tube, the source of the second NMOS tube is connected to the ground terminal;
  • the drain of the third NMOS tube is connected to the power terminal, the The source of the third NMOS tube is connected to the drain of the fourth NMOS tube, the source of the fourth NMOS tube is connected to the ground terminal;
  • the gate of the first NMOS tube, and the fourth The gate of the NMOS tube is connected to the first control terminal for outputting the first control signal in the control module;
  • the gate of the second NMOS tube and the gate of the third NMOS tube are connected to the A second control terminal for outputting a second control signal in the control module is connected;
  • the current detection module includes a first op amp, a second op amp, a first resistor and a second resistor, the first resistor is connected in series with the first NMOS tube and the second NMOS tube Between the power terminal and the ground terminal, the second resistor is connected in series with the third NMOS tube and the fourth NMOS tube between the power terminal and the ground terminal;
  • the non-inverting input terminal and the inverting input terminal of the first op amp are respectively connected to both ends of the first resistor;
  • the non-inverting input terminal and the inverting input terminal of the second op amp are respectively connected to the two ends of the second resistor end.
  • the circuit further includes a DC power supply, the DC power supply is configured to supply power to the circuit, a positive electrode of the DC power supply is connected to the power supply terminal, and a negative electrode of the DC power supply is connected to the ground terminal .
  • the circuit further includes an input module configured to input a control instruction; the control module is configured to adjust the frequency of the control signal according to the control instruction.
  • the circuit further includes a display module, and the display module is further configured to display the frequency of the control signal.
  • a fat rejection machine including the circuit for adaptively adjusting the vibration frequency according to the first aspect of the present invention.
  • a fat rejection machine comprising:
  • the step of adjusting the vibration frequency of the motor according to the current includes:
  • the vibration frequency of the motor is adjusted to the resonance frequency.
  • control method further includes:
  • An advantageous effect of the present invention is that, through the embodiments of the present invention, the vibration frequency of the motor can be adjusted according to the current flowing through the motor detected in real time.
  • the vibration frequency of the motor can be adaptively adjusted to the resonance frequency of the user using the fat skimmer, so that the vibration amplitude of the user using the fat skimmer is the largest, To achieve the best fat rejection effect.
  • FIG. 1 is a block schematic diagram of an example of a circuit for adaptively adjusting vibration frequency according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram reflecting the relationship between the current flowing through the motor and the vibration frequency of the motor
  • FIG. 3 is a block schematic diagram of another example of a circuit for adaptively adjusting vibration frequency according to an embodiment of the present invention.
  • FIG. 4 is a circuit schematic diagram of an example of a circuit for adaptively adjusting vibration frequency according to an embodiment of the present invention
  • FIG. 5 is a flowchart of an example of a control method of a fat-throwing machine according to an embodiment of the present invention
  • FIG. 6 is a flowchart of another example of the control method of the fat-throwing machine according to the embodiment of the present invention.
  • FIG. 1 is a block schematic diagram of an example of a circuit for adaptively adjusting vibration frequency according to an embodiment of the present invention.
  • the circuit for adaptively adjusting the vibration frequency includes a control module U1, an output module U2, a motor M, and a current detection module U3.
  • the control module U1 is configured to output a control signal to the output module U2.
  • the output module U2 is configured to drive the motor M to vibrate according to the frequency of the control signal.
  • the current detection module U3 is configured to detect the current flowing through the motor M and send the current detection result to the control module U1.
  • the control module U1 is further configured to adjust the frequency of the control signal according to the current detection result to adjust the vibration frequency of the motor M.
  • the control signal may be a square wave signal including a high-level signal and a low-level signal.
  • the frequency of the control signal may specifically be the switching frequency of the high-level signal and the low-level signal in the control signal, which is the same as the vibration frequency of the motor M. By adjusting the frequency of the control signal, the vibration frequency of the motor M can be adjusted.
  • the relationship between the current flowing through the motor M and the vibration frequency of the motor M may be as shown in FIG. 2.
  • the ordinate indicates the current flowing through the motor M
  • the abscissa indicates the vibration frequency of the motor M. It can be seen from FIG. 2 that as the vibration frequency of the motor M increases, the current flowing through the motor M first increases. When the vibration frequency of the motor M increases to approach the corresponding resonance frequency f0, the current flowing through the motor M starts to decrease. When the vibration frequency of the motor M is the corresponding resonance frequency f0, the current flowing through the motor M is minimized, and when the vibration frequency of the motor M increases again, the current flowing through the motor M starts to increase again.
  • the vibration frequency of the motor corresponding to the current flowing through the motor M is the resonance frequency corresponding to the current application scenario of the circuit.
  • control module U1 may determine the resonance frequency corresponding to the current application scenario of the circuit according to the set number of sampling values of the current detection result.
  • control module U1 may be based on whether the sampling values of the continuous N current detection results satisfy the change rule of decreasing first and then increasing. If so, the frequency corresponding to the smallest current sampling value is determined as the current application scenario of the circuit Corresponding resonance frequency.
  • N is a positive integer. And make the frequency of the control signal equal to the resonance frequency, so that the motor vibrates according to the resonance frequency.
  • the initial frequency of the control signal may be preset.
  • the control module U1 may first output a control signal corresponding to the initial frequency, so that the output module U2 may control the motor M to vibrate at the initial frequency, and then increase the frequency of the control signal according to the set step size.
  • the output module U2 drives the motor M to vibrate according to the control signal of the initial frequency, the current flowing through the motor M is minimized.
  • the initial frequency may be the minimum vibration frequency set according to the application scenario.
  • the initial frequency may be a frequency that is less than a minimum resonance frequency corresponding to a user who may use the fat-throwing machine.
  • the vibration frequency of the motor can be adjusted according to the current flowing through the motor detected in real time.
  • the vibration frequency of the motor can be adaptively adjusted to the resonance frequency of the user using the fat skimmer, so that the vibration amplitude of the user using the fat skimmer is the largest, To achieve the best fat rejection effect.
  • control module U1 is configured to output the first control signal and the second control signal to the output module U2.
  • the first control signal and the second control signal have the same frequency and opposite level states. Specifically, when the first control signal is high, the second control signal is low; when the first control signal is low, the second control signal is high.
  • the output module U2 may also be configured to drive the motor M forward or reverse according to the level states of the first control signal and the second control signal.
  • the output module U2 may include a first output terminal OUT1 and a second output terminal OUT2 connected to the two input terminals of the motor, respectively.
  • the output module U2 may be connected between the power supply terminal VCC and the ground terminal GND of the circuit.
  • the output module U2 can also be set to connect the power supply terminal VCC to the first output terminal OUT1, the ground terminal GND to the second output terminal OUT2 according to the level state of the first control signal and the second control signal, or,
  • the power supply terminal VCC is connected to the second output terminal OUT2, and the ground terminal GND is connected to the first output terminal OUT1.
  • the power supply terminal VCC when the first control signal is high and the second control signal is low, the power supply terminal VCC may be connected to the first output terminal OUT1, and the ground terminal GND may be connected to the second output terminal OUT2.
  • the power supply terminal VCC When the first control signal is low and the first control signal is high, the power supply terminal VCC is connected to the second output terminal OUT2, and the ground terminal GND is connected to the first output terminal OUT1.
  • the power supply terminal VCC when the first control signal is high and the second control signal is low, the power supply terminal VCC may be connected to the second output terminal OUT2, and the ground terminal GND may be connected to the first output terminal OUT1.
  • the power supply terminal VCC When the first control signal is low and the first control signal is high, the power supply terminal VCC is connected to the first output terminal OUT1, and the ground terminal GND is connected to the second output terminal OUT2.
  • the motor M Since the motor M is connected between the first output terminal OUT1 and the second output terminal OUT2, then when the power supply terminal VCC is connected to the first output terminal OUT1 and the ground terminal GND is connected to the second output terminal OUT2, the motor M can It vibrates in the preset first direction.
  • the motor M When the power supply terminal VCC is connected to the second output terminal OUT2 and the ground terminal GND is connected to the first output terminal OUT1, the motor M may vibrate in a direction opposite to the first direction. In this way, when the first control signal and the second control signal change the level state at the corresponding frequency, the motor M can be caused to vibrate at the frequency.
  • the output module U2 may include a first NMOS transistor Q1, a second NMOS transistor Q2, a third NMOS transistor Q3, and a fourth NMOS transistor Q4. It may be that the drain of the first NMOS tube Q1 is connected to the power supply terminal VCC, the source of the first NMOS tube Q1 is connected to the drain of the second NMOS tube Q2, and the source of the second NMOS tube Q2 is connected to the ground terminal GND.
  • the drain of the third NMOS tube Q3 is connected to the power supply terminal VCC, the source of the third NMOS tube Q3 is connected to the drain of the fourth NMOS tube Q4, and the source of the fourth NMOS tube Q4 is connected to the ground terminal GND.
  • the gate of the first NMOS transistor Q1 and the gate of the fourth NMOS transistor Q4 may be connected to the first control terminal Ctrl1 for outputting the first control signal in the control module U1.
  • the gate of the second NMOS transistor Q2 and the gate of the third NMOS transistor Q3 may be connected to the second control terminal Ctrl2 in the control module U1 for outputting the second control signal.
  • the first potential point P1 between the first NMOS tube Q1 and the second NMOS tube Q2, and the second potential point P2 between the third NMOS tube Q3 and the fourth NMOS tube Q4 are respectively connected to the two input terminals of the motor M . That is, the first potential point P1 may be connected to the first output terminal OUT1, and the second potential point P2 may be connected to the second output terminal OUT2.
  • the first control terminal Ctrl1 of the control module U1 When the first control terminal Ctrl1 of the control module U1 outputs a high-level first control signal and the second control terminal Ctrl2 outputs a low-level second control signal, the first NMOS transistor Q1 and the fourth NMOS transistor Q4 are turned on. The second NMOS transistor Q2 and the third NMOS transistor Q3 are disconnected. The motor M is being connected between the power supply terminal VCC and the ground terminal GND. Then, the output module U2 can drive the motor M forward.
  • the first control terminal Ctrl of the control module U1 When the first control terminal Ctrl of the control module U1 outputs a low-level first control signal and the second control terminal Ctrl outputs a high-level second control signal, the first NMOS transistor Q1 and the fourth NMOS transistor Q4 are disconnected. The second NMOS transistor Q2 and the third NMOS transistor Q3 are turned on, and the motor M is reversely connected between the power supply terminal VCC and the ground terminal GND. Then, the output module U2 can drive the motor M to reverse.
  • the motor can be driven forward or reverse according to the level state of the control signal output by the control module, and the motor can be vibrated according to the frequency of the control signal.
  • the current detection module U3 may include a first resistor R1, a second resistor R2, a first op amp U31 and a second op amp U32, and the first resistor R1 may be the first NMOS transistor Q1, the second The NMOS transistor Q2 is connected in series between the power supply terminal VCC and the ground terminal GND; the second resistor R2 may be connected in series with the third NMOS transistor Q3 and the fourth NMOS transistor Q4 between the power supply terminal VCC and the ground terminal GND.
  • the non-inverting input terminal and the inverting input terminal of the first operational amplifier U31 are respectively connected across the first resistor R1, and the output terminal of the first operational amplifier U31 is connected to the first input terminal of the control module U1.
  • the non-inverting input terminal and the inverting input terminal of the second operational amplifier U32 are respectively connected to the two ends of the second resistor R2, and the output terminal of the second operational amplifier U32 is connected to the second input terminal of the control module U1.
  • the non-inverting input terminal of the first operational amplifier U31 may be connected to the first resistor
  • the first terminal of R1 is connected, and the inverting input terminal of the first operational amplifier U31 may be connected to the second terminal of the first resistor R1.
  • the non-inverting input terminal of the second operational amplifier U32 may be the first terminal of the second resistor R2 One end is connected, and the inverting input end of the second operational amplifier U32 may be connected to the second end of the second resistor R2.
  • connection sequence of the first resistor R1 and the first NMOS transistor Q1 and the second NMOS transistor Q2 is not limited.
  • the connection order of the second resistor R2, the third NMOS transistor Q3, and the fourth NMOS transistor Q4 is not limited.
  • the first operational amplifier U31 can detect the current flowing through the motor M when the first NMOS transistor Q1 and the fourth NMOS transistor Q4 are turned on through the first resistor R1, and transmit the current detection result to the control module U1 The first input terminal IN1.
  • the second operational amplifier U32 the current flowing through the motor M when the second NMOS transistor Q2 and the third NMOS transistor Q3 are turned on can be detected through the second resistor R2, and the current detection result is transmitted to the second of the control module U1 Input terminal IN2.
  • the control module U1 then adjusts the frequency of the control signal according to the current detection result input from the first input terminal IN1 or the second input terminal IN2.
  • the circuit may also include a DC power supply DC, which is set to other modules of the circuit (functional modules other than the DC power supply DC in the circuit include a control module U1, an output module U2, Current detection module U3) power supply. Specifically, the positive electrode of the DC power supply DC is connected to the power supply terminal VCC, and the negative electrode of the DC power supply DC is connected to the ground terminal GND.
  • a DC power supply DC which is set to other modules of the circuit (functional modules other than the DC power supply DC in the circuit include a control module U1, an output module U2, Current detection module U3) power supply.
  • the positive electrode of the DC power supply DC is connected to the power supply terminal VCC
  • the negative electrode of the DC power supply DC is connected to the ground terminal GND.
  • the circuit may further include an input module U4.
  • the input module U4 is configured to input a control instruction
  • the control module U1 is further configured to adjust the frequency of the control signal according to the control instruction.
  • the input module U4 may be composed of a key circuit, or may be implemented by a touch screen or the like.
  • the input module U4 can also be used to implement on-off control, selection of working mode, setting of working time, etc.
  • the circuit may further include a display module U5, which is configured to display the frequency of the control signal, that is, the vibration frequency of the motor M.
  • the display module U5 may be realized by a digital tube or a display screen.
  • the display module U5 can also display the working mode selected by the input module U4, the set working time, and the like.
  • the invention also provides a fat-throwing machine.
  • the fat-throwing machine may include the aforementioned circuit for adaptively adjusting the vibration frequency.
  • the fat-throwing machine of this embodiment can monitor the change of its own weight to the current flowing through the motor in real time, and make corresponding adjustments to the motor frequency according to the current change to achieve the best fat-throwing effect.
  • the invention also provides a control method of the fat-throwing machine.
  • the fat-throwing machine of this embodiment includes the aforementioned circuit for adaptively adjusting the vibration frequency.
  • control method includes:
  • Step S5100 controlling the motor to vibrate according to a preset initial frequency.
  • the initial frequency may be the minimum vibration frequency set according to the application scenario.
  • the initial frequency may be less than the minimum resonance frequency corresponding to a user who may use the fat slinger.
  • Step S5200 detecting the current flowing through the motor.
  • Step S5300 Adjust the vibration frequency of the motor according to the current.
  • step S5200 can be continued, that is, steps S5200-S5300 can be cyclically executed until the vibration frequency of the motor reaches the current corresponding resonance frequency of the fat slinger.
  • step S5300 may further include steps S5310-S5350 as shown in FIG. 6:
  • Step S5310 Acquire a continuous set number of current sampling values according to the detected current.
  • the set number may be preset in advance according to application scenarios, sampling frequency, etc.
  • the set number may be 5.
  • a current sampling value obtained by sampling the current time may be I n, then, in this step of acquiring a set number may be sampled current I n, I n-1, I n-2, I n-3, I n -4 .
  • I n-1, I n -2, I n-3, I n-4 is obtained by sampling before the current time point, and I n, I n-1, I n-2, I n-3, I The sampling time of n-4 is continuous.
  • step S5320 it is determined whether the change law of the set number of current sampling values meets the preset reference change law. If yes, step S5330 is executed; if not, step S5350 is executed.
  • the preset reference change rule may be obtained according to the relationship curve between the current flowing through the motor and the vibration frequency of the motor shown in FIG. 2. Specifically, the reference change rule in this embodiment may first decrease and then increase.
  • step S5330 the motor vibration frequency corresponding to the minimum value among the set number of current sampling values is determined as the resonance frequency corresponding to the fat slinger.
  • the resonance frequency corresponding to the fat-slimming machine may be different.
  • Step S5340 Adjust the vibration frequency of the motor to the resonance frequency.
  • a specific way to adjust the vibration frequency of the motor to the resonance frequency corresponding to the fat slinger may be: adjust the frequency of the control signal output by the control module to the resonance frequency.
  • step S5350 the vibration frequency of the motor is increased according to a preset step size.
  • the step size may be set in advance according to application scenarios or experimental data, for example.
  • the vibration frequency of the motor can be adaptively adjusted to the resonance frequency of the user using the fat skimmer based on the current detected in real time through the motor, so that the vibration amplitude of the user using the fat skimmer can be maximized , To achieve the best fat rejection effect.

Abstract

一种自适应调整振动频率的电路、甩脂机、及控制方法,其中的电路包括:控制模块(U1)、输出模块(U2)、电机(M)和电流检测模块(U3),控制模块(U1)被设置为输出控制信号至输出模块(U2);输出模块(U2)被设置为驱动电机(M)按照控制信号的频率振动;电流检测模块(U3)被设置为检测流经电机(M)的电流,并将电流检测结果发送至控制模块(U1);控制模块(U1)还被设置为根据电流检测结果调整控制信号的频率,以调整电机(M)的振动频率。

Description

一种自适应调整振动频率的电路、甩脂机及控制方法 技术领域
本发明涉及电路设计技术领域,更具体地,涉及一种自适应调整振动频率的电路、甩脂机、及控制方法。
背景技术
甩脂机是一种减肥的仪器,它采用运动科学中的平衡侧动,振幅叠加原理,让全身的脂肪运动起来,消耗热量,消除体内囤积过量的脂肪。通常是控制甩脂机内的电机振动,带动使用该甩脂机的用户振动,达到甩脂的效果。
研究发现,在甩脂机的电机的振动频率达到使用该甩脂机的用户的共振频率时,用户的振动幅度最大,甩脂效果最好。但是,体重不同的用户的共振频率不同,而现有的甩脂机中的电机的振动频率通常是预先设定好的固定值、或者是由用户手动调节的,因此,现有的甩脂机无法针对不同用户自适应调整电机的振动频率,来达到最好的甩脂效果。
发明内容
本发明实施例的一个目的是提供一种自适应调整振动频率的电路的技术方案。
根据本发明的第一方面,提供了一种自适应调整振动频率的电路,包括控制模块、输出模块、电机和电流检测模块,所述控制模块被设置为输出控制信号至所述输出模块;所述输出模块被设置为驱动所述电机按照所述控制信号的频率振动;所述电流检测模块被设置为检测流经所述电机的电流,并将电流检测结果发送至所述控制模块;所述控制模块还被设置为根据所述电流检测结果调整所述控制信号的频率,以调整所述电机的振动频率。
可选的,所述控制模块被设置为输出第一控制信号和第二控制信号至所述输出模块,其中,所述第一控制信号与第二控制信号的频率相同、且电平状态相反;所述输出模块还被设置为根据所述第一控制信号和所述第二控制信号的电平状态,驱动所述电机正转或者反转。
可选的,所述输出模块还包括分别用于与所述电机的两个输入端连接的第一输出端和第二输出端,所述输出模块连接在所述电路的电源端和接地端之间,所述输出模块还被设置为根据所述第一控制信号和所述第二控制信号的电平状态,将所述电源端与所述第一输出端连接、将所述接地端与所述第二输出端连接,或者,将所述电源端与所述第二输出端连接、将所述接地端与所述第一输出端连接。
可选的,所述输出模块包括第一NMOS管、第二NMOS管、第三NMOS管和第四NMOS管,所述第一NMOS管的漏极与所述电源端连接,所述第一NMOS管的源极与所述第二NMOS管的漏极连接,所述第二NMOS管的源极与所述接地端连接;所述第三NMOS管的漏极与所述电源端连接,所述第三NMOS管的源极与所述第四NMOS管的漏极连接,所述第四NMOS管的源极与所述接地端连接;所述第一NMOS管的栅极、及所述第四NMOS管的栅极与所述控制模块中用于输出所述第一控制信号的第一控制端连接;所述第二NMOS管的栅极、及所述第三NMOS管的栅极与所述控制模块中用于输出第二控制信号的第二控制端连接;所述第一NMOS管和所述第二NMOS管之间的第一电位点、及所述第三NMOS管和所述第四NMOS管之间的第二电位点分别与所述电机的两个输入端连接。
可选的,所述电流检测模块包括第一运放、第二运放、第一电阻和第二电阻,所述第一电阻与所述第一NMOS管、及所述第二NMOS管串联连接在所述电源端和所述接地端之间,所述第二电阻与所述第三NMOS管、及所述第四NMOS管串联连接在所述电源端和所述接地端之间;所述第一运放的同相输入端和反相输入端分别连接在所述第一电阻的两端;所述第二运放的同相输入端和反相输入端分别连接在所述第二电阻的两端。
可选的,所述电路还包括直流电源,所述直流电源被设置为向所述电路供电,所述直流电源的正极与所述电源端连接,所述直流电源的负极与 所述接地端连接。
可选的,所述电路还包括输入模块,所述输入模块被设置为输入控制指令;所述控制模块被设置为根据所述控制指令调整所述控制信号的频率。
可选的,所述电路还包括显示模块,所述显示模块还被设置为显示所述控制信号的频率。
根据本发明的第二方面,提供了一种甩脂机,包括根据本发明第一方面所述的自适应调整振动频率的电路。
根据本发明的第三方面,提供了一种根据本发明第二方面所述的甩脂机的控制方法,包括:
控制电机按照预设的初始频率振动;
检测所述电机振动过程中,流经所述电机的电流;
根据所述电流调整所述电机的振动频率。
可选的,所述根据所述电流调整所述电机的振动频率的步骤包括:
根据所述电流获取连续的设定数量的电流采样值;
判断所述设定数量的电流采样值的变化规律是否满足预设的参考变化规律,如是,则:
确定最小的电流采样值对应的振动频率,作为所述甩脂机对应的共振频率;
将所述电机的振动频率调整为所述共振频率。
可选的,所述控制方法还包括:
在所述设定数量的电流采样值的变化规律不满足所述参考变化规律的情况下,按照预设的步长增大所述电机的振动频率。
本发明的一个有益效果在于,通过本发明的实施例,可以根据实时检测到的流经电机的电流,调整电机的振动频率。这样,在本实施例的电路应用在甩脂机上的情况下,可以自适应调整电机的振动频率至使用该甩脂机的用户的共振频率,使得使用该甩脂机的用户的振动幅度最大,达到最佳甩脂效果。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为根据本发明实施例的自适应调整振动频率的电路的一个例子的方框原理图;
图2为反映流经电机的电流与电机的振动频率之间关系曲线的示意图;
图3为根据本发明实施例的自适应调整振动频率的电路的另一个例子的方框原理图;
图4为根据本发明实施例的自适应调整振动频率的电路的一个例子的电路原理图;
图5为根据本发明实施例的甩脂机的控制方法的一个例子的流程图;
图6为根据本发明实施例的甩脂机的控制方法的另一个例子的流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
<自适应调整振动频率的电路>
图1为根据本发明实施例的自适应调整振动频率的电路的一个例子的方框原理图。
根据图1所示,该自适应调整振动频率的电路包括控制模块U1、输出模块U2、电机M、及电流检测模块U3。该控制模块U1被设置为输出控制信号至输出模块U2。输出模块U2被设置为驱动电机M按照控制信号的频率振动。电流检测模块U3被设置为检测流经电机M的电流,并将电流检测结果发送至控制模块U1。控制模块U1还被设置为根据电流检测结果调整控制信号的频率,以调整电机M的振动频率。
其中,控制信号可以是包括高电平信号和低电平信号的方波信号。该控制信号的频率,具体可以是该控制信号中高电平信号和低电平信号的切换频率,与电机M的振动频率相同。通过调整控制信号的频率,就可以调整电机M的振动频率。
流经电机M的电流与电机M的振动频率之间的关系曲线可以是如图2所示。其中,纵坐标表示流经电机M的电流,横坐标表示电机M的振动频率。由图2可以看出,随着电机M的振动频率的增大,流经电机M的电流先增大。在电机M的振动频率增大至接近对应的共振频率f0时,流经电机M的电流开始减小。在电机M的振动频率为对应的共振频率f0时,流经电机M的电流减至最小,并在电机M的振动频率再增大时,流经电机M的电流又重新开始增大。
因此,根据流经电机M的电流的变化规律,可以确定当流经电机M的电流所对应的电机的振动频率是否为该电路的当前应用场景下所对应的共振频率。
具体的,控制模块U1可以根据设定数量的电流检测结果的采样值来确定该电路的当前应用场景下所对应的共振频率。
例如,控制模块U1可以是根据连续N个电流检测结果的采样值是否满足先减小后增大的变化规律,如是,则确定最小的电流采样值对应的频率,作为该电路的当前应用场景下所对应的共振频率。其中,N为正整数。并使得控制信号的频率等于该共振频率,以使电机按照该共振频率振动。
进一步地,可以是预先设置控制信号的初始频率。在该电路启动时,控制模块U1可以先输出对应初始频率的控制信号,以使输出模块U2可以控制电机M按照初始频率振动,再根据设定的步长增大控制信号的频率。并使得在输出模块U2根据初始频率的控制信号驱动电机M振动的情况下,流经电机M的电流最小。
该初始频率可以是根据应用场景设置的最小振动频率。例如,在该电路应用于甩脂机的应用场景中,该初始频率可以是小于可能会使用该甩脂机的用户对应的最小共振频率的频率。
通过本发明的实施例,可以根据实时检测到的流经电机的电流,调整电机的振动频率。这样,在本实施例的电路应用在甩脂机上的情况下,可以自适应调整电机的振动频率至使用该甩脂机的用户的共振频率,使得使用该甩脂机的用户的振动幅度最大,达到最佳甩脂效果。
在一个例子中,控制模块U1被设置为输出第一控制信号和第二控制信号至输出模块U2。其中,第一控制信号和第二控制信号的频率相同、电平状态相反。具体的,在第一控制信号为高电平时,第二控制信号为低电平;在第一控制信号为低电平时,第二控制信号为高电平。
输出模块U2还可以被设置为根据第一控制信号和第二控制信号的电平状态,驱动电机M正转或者反转。
如图3所示,该输出模块U2可以包括分别于电机的两个输入端连接的第一输出端OUT1和第二输出端OUT2。输出模块U2可以是连接在该电路的电源端VCC和接地端GND之间。输出模块U2还可以被设置为根据第一控制信号和第二控制信号的电平状态,将电源端VCC与第一输出端OUT1连接、将接地端GND与第二输出端OUT2连接,或者,将电源端VCC与第二输出端OUT2连接、将接地端GND与第一输出端OUT1连接。
例如,可以在第一控制信号为高电平、第二控制信号为低电平时,将电源端VCC与第一输出端OUT1连接、将接地端GND与第二输出端OUT2连接。在第一控制信号为低电平、第一控制信号为高电平时,将电源端VCC与第二输出端OUT2连接、将接地端GND与第一输出端OUT1连接。
再例如,还可以在第一控制信号为高电平、第二控制信号为低电平时, 将电源端VCC与第二输出端OUT2连接、将接地端GND与第一输出端OUT1连接。在第一控制信号为低电平、第一控制信号为高电平时,将电源端VCC与第一输出端OUT1连接、将接地端GND与第二输出端OUT2连接。
由于电机M连接在第一输出端OUT1和第二输出端OUT2之间,那么,在电源端VCC与第一输出端OUT1连接、接地端GND与第二输出端OUT2连接的情况下,电机M可以是朝预设的第一方向振动。在电源端VCC与第二输出端OUT2连接、接地端GND与第一输出端OUT1连接的情况下,电机M可以是朝着与第一方向相反的方向振动。这样,在第一控制信号和第二控制信号按照对应的频率改变电平状态时,可以使得电机M可以按照该频率振动。
如图4所示,该输出模块U2可以包括第一NMOS管Q1、第二NMOS管Q2、第三NMOS管Q3和第四NMOS管Q4。可以是第一NMOS管Q1的漏极与电源端VCC连接,第一NMOS管Q1的源极与第二NMOS管Q2的漏极连接,第二NMOS管Q2的源极与接地端GND连接。第三NMOS管Q3的漏极与电源端VCC连接,第三NMOS管Q3的源极与第四NMOS管Q4的漏极连接,第四NMOS管Q4的源极与接地端GND连接。
第一NMOS管Q1的栅极、及第四NMOS管Q4的栅极可以是与控制模块U1中用于输出第一控制信号的第一控制端Ctrl1连接。第二NMOS管Q2的栅极、及第三NMOS管Q3的栅极可以是与控制模块U1中用于输出第二控制信号的第二控制端Ctrl2连接。第一NMOS管Q1和第二NMOS管Q2之间的第一电位点P1、及第三NMOS管Q3和第四NMOS管Q4之间的第二电位点P2分别于电机M的两个输入端连接。即第一电位点P1可以是与第一输出端OUT1连接,第二电位点P2可以是与第二输出端OUT2连接。
在控制模块U1的第一控制端Ctrl1输出高电平的第一控制信号、第二控制端Ctrl2输出低电平的第二控制信号时,第一NMOS管Q1和第四NMOS管Q4导通,第二NMOS管Q2和第三NMOS管Q3断开。电机M正接在电源端VCC和接地端GND之间。那么,输出模块U2可以驱动电 机M正转。
在控制模块U1的第一控制端Ctrl输出低电平的第一控制信号、第二控制端Ctrl输出高电平的第二控制信号时,第一NMOS管Q1和第四NMOS管Q4断开,第二NMOS管Q2和第三NMOS管Q3导通,电机M反接在电源端VCC和接地端GND之间。那么,输出模块U2可以驱动电机M反转。
通过本实施例的输出电路,可以根据控制模块输出的控制信号的电平状态,驱动电机正转或者反转,并使得电机能够按照控制信号的频率振动。
如图4所示,电流检测模块U3可以是包括第一电阻R1、第二电阻R2、第一运放U31和第二运放U32,第一电阻R1可以是与第一NMOS管Q1、第二NMOS管Q2串联连接在电源端VCC和接地端GND之间;第二电阻R2可以是与第三NMOS管Q3和第四NMOS管Q4串联连接在电源端VCC和接地端GND之间。第一运放U31的同相输入端和反相输入端分别连接在第一电阻R1两端,第一运放U31的输出端与控制模块U1的第一输入端连接。第二运放U32的同相输入端和反相输入端分别连接在第二电阻R2两端,第二运放U32的输出端与控制模块U1的第二输入端连接。
具体的,在第一电阻R1的第一端与电源端VCC连接,第一电阻R1的第二端与接地端GND连接的情况下,第一运放U31的同相输入端可以是与第一电阻R1的第一端连接,第一运放U31的反相输入端可以是与第一电阻R1的第二端连接。在第二电阻R2的第一端与电源端VCC连接,第二电阻R2的第二端与接地端GND连接的情况下,第二运放U32的同相输入端可以是与第二电阻R2的第一端连接,第二运放U32的反相输入端可以是与第二电阻R2的第二端连接。
本实施例中对第一电阻R1与第一NMOS管Q1、第二NMOS管Q2的连接顺序不作限制。对第二电阻R2与第三NMOS管Q3、第四NMOS管Q4的连接顺序不作限制。
这样,通过第一运放U31就可以通过第一电阻R1检测在第一NMOS管Q1和第四NMOS管Q4导通的情况下流经电机M的电流,并将电流检测结果传输至控制模块U1的第一输入端IN1。通过第二运放U32就可以通 过第二电阻R2检测在第二NMOS管Q2和第三NMOS管Q3导通的情况下流经电机M的电流,并将电流检测结果传输至控制模块U1的第二输入端IN2。
控制模块U1再根据第一输入端IN1或者第二输入端IN2输入的电流检测结果调整控制信号的频率。
如图3所示,该电路还可以包括直流电源DC,该直流电源DC被设置为向该电路的其他模块(该电路中除直流电源DC以外的功能模块,包括控制模块U1、输出模块U2、电流检测模块U3)供电。具体的,该直流电源DC的正极与电源端VCC连接,直流电源DC的负极与接地端GND连接。
如图3所示,该电路还可以包括输入模块U4,输入模块U4被设置为输入控制指令,控制模块U1还被设置为根据控制指令调整控制信号的频率。
输入模块U4可以是由按键电路组成,也可以是由触摸屏等实现。该输入模块U4还可以用于实现开关机控制、工作模式的选择、工作时间的设定等。
如图3所示,该电路还可以包括显示模块U5,该显示模块U5被设置为显示控制信号的频率,即显示电机M的振动频率。
该显示模块U5可以是由数码管实现,还可以是由显示屏实现。该显示模块U5还可以显示通过输入模块U4选择的工作模式、设定的工作时间等。
<甩脂机>
本发明还提供了一种甩脂机,该甩脂机可以包括前述的自适应调整振动频率的电路。
这样,本实施例的甩脂机可以实时监控自身配重对流经电机的电流带来的变化,并根据电流变化对电机频率做出相应调整,以达到最佳的甩脂效果。
<方法>
本发明还提供了一种甩脂机的控制方法,本实施例的甩脂机包括前述的自适应调整振动频率的电路。
如图5所示,该控制方法包括:
步骤S5100,控制电机按照预设的初始频率振动。
该初始频率可以是根据应用场景设置的最小振动频率。例如,该初始频率可以是小于可能会使用该甩脂机的用户对应的最小共振频率。
步骤S5200,检测流经电机的电流。
步骤S5300,根据该电流调整电机的振动频率。
具体的,在执行完步骤S5300之后,还可以继续执行步骤S5200,即可以循环执行步骤S5200-S5300,直至电机的振动频率达到甩脂机当前对应的共振频率。
在一个例子中,步骤S5300可以进一步包括如图6所示的步骤S5310-S5350:
步骤S5310,根据检测到的电流获取连续的设定数量个电流采样值。
该设定数量可以是预设根据应用场景、采样频率等预先设定的。例如,该设定数量可以是5个。
可以是对检测到的流经电机的电流进行采样,得到电流采样值。例如,当前时刻采样得到的电流采样值可以是I n,那么,本步骤获取的设定数量个电流采样值可以是I n、I n-1、I n-2、I n-3、I n-4。其中,I n-1、I n-2、I n-3、I n-4为在当前时刻之前采样得到的,且I n、I n-1、I n-2、I n-3、I n-4的采样时刻连续。
步骤S5320,判断设定数量个电流采样值的变化规律是否满足预设的参考变化规律,如是,则执行步骤S5330;如否,则执行步骤S5350。
预设的参考变化规律可以是根据图2所示的流经电机的电流与电机的振动频率之间的关系曲线得到。具体的,本实施例中的参考变化规律可以是先减小后增大。
例如,在电流采样值I n、I n-1、I n-2、I n-3、I n-4恰好满足参考变化规律的情况下,可以是I n-1<I n-2<I n-3<I n-4,且I n>I n-1
步骤S5330,确定设定数量个电流采样值中最小值对应的电机振动频率,作为该甩脂机对应的共振频率。
例如,在I n-1<I n-2<I n-3<I n-4,且I n>I n-1的情况下,可以是确定电流采样值I n-1对应的电机振动频率,作为甩脂机对应的共振频率。
在使用甩脂机的用户不同的情况下,甩脂机对应的共振频率可能不同。
步骤S5340,将电机的振动频率调整为该共振频率。
将电机的振动频率调整为甩脂机对应的共振频率的具体方式可以为:将控制模块输出的控制信号的频率调整为该共振频率。
步骤S5350,按照预设的步长增大电机的振动频率。
其中,该步长例如可以是预先根据应用场景或者是实验数据设定的。
通过本发明的实施例,可以根据实时检测到的流经电机的电流,自适应调整电机的振动频率至使用该甩脂机的用户的共振频率,使得使用该甩脂机的用户的振动幅度最大,达到最佳甩脂效果。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种自适应调整振动频率的电路,其特征在于,包括控制模块、输出模块、电机和电流检测模块,所述控制模块被设置为输出控制信号至所述输出模块;所述输出模块被设置为驱动所述电机按照所述控制信号的频率振动;所述电流检测模块被设置为检测流经所述电机的电流,并将电流检测结果发送至所述控制模块;所述控制模块还被设置为根据所述电流检测结果调整所述控制信号的频率,以调整所述电机的振动频率。
  2. 根据权利要求1所述的电路,其特征在于,所述控制模块被设置为输出第一控制信号和第二控制信号至所述输出模块,其中,所述第一控制信号与第二控制信号的频率相同、且电平状态相反;所述输出模块还被设置为根据所述第一控制信号和所述第二控制信号的电平状态,驱动所述电机正转或者反转。
  3. 根据权利要求2所述的电路,其特征在于,所述输出模块还包括分别用于与所述电机的两个输入端连接的第一输出端和第二输出端,所述输出模块连接在所述电路的电源端和接地端之间;所述输出模块还被设置为根据所述第一控制信号和所述第二控制信号的电平状态,将所述电源端与所述第一输出端连接、将所述接地端与所述第二输出端连接,或者,将所述电源端与所述第二输出端连接、将所述接地端与所述第一输出端连接。
  4. 根据权利要求1-3中任一项所述的电路,其特征在于,所述输出模块包括第一NMOS管、第二NMOS管、第三NMOS管和第四NMOS管,所述第一NMOS管的漏极与所述电源端连接,所述第一NMOS管的源极与所述第二NMOS管的漏极连接,所述第二NMOS管的源极与所述接地端连接;所述第三NMOS管的漏极与所述电源端连接,所述第三NMOS管的源极与所述第四NMOS管的漏极连接,所述第四NMOS管的源极与所述接地端连接;所述第一NMOS管的栅极、及所述第四NMOS管的栅极与所述控 制模块中用于输出所述第一控制信号的第一控制端连接;所述第二NMOS管的栅极、及所述第三NMOS管的栅极与所述控制模块中用于输出第二控制信号的第二控制端连接;所述第一NMOS管和所述第二NMOS管之间的第一电位点、及所述第三NMOS管和所述第四NMOS管之间的第二电位点分别与所述电机的两个输入端连接。
  5. 根据权利要求4所述的电路,其特征在于,所述电流检测模块包括第一运放、第二运放、第一电阻和第二电阻,所述第一电阻与所述第一NMOS管、及所述第二NMOS管串联连接在所述电源端和所述接地端之间,所述第二电阻与所述第三NMOS管、及所述第四NMOS管串联连接在所述电源端和所述接地端之间;所述第一运放的同相输入端和反相输入端分别连接在所述第一电阻的两端;所述第二运放的同相输入端和反相输入端分别连接在所述第二电阻的两端。
  6. 根据权利要求2所述的电路,其特征在于,所述电路还包括直流电源,所述直流电源被设置为向所述电路供电,所述直流电源的正极与所述电源端连接,所述直流电源的负极与所述接地端连接。
  7. 一种甩脂机,其特征在于,包括根据权利要求1-6中任一项所述的自适应调整振动频率的电路。
  8. 根据权利要求7所述的甩脂机的控制方法,其特征在于,包括:
    控制电机按照预设的初始频率振动;
    检测所述电机振动过程中,流经所述电机的电流;
    根据所述电流调整所述电机的振动频率。
  9. 根据权利要求8所述的控制方法,其特征在于,所述根据所述电流调整所述电机的振动频率的步骤包括:
    根据所述电流获取连续的设定数量的电流采样值;
    判断所述设定数量的电流采样值的变化规律是否满足预设的参考变化规律,如是,则:
    确定最小的电流采样值对应的振动频率,作为所述甩脂机对应的共振频率;
    将所述电机的振动频率调整为所述共振频率。
  10. 根据权利要求9所述的控制方法,其特征在于,所述控制方法还包括:
    在所述设定数量的电流采样值的变化规律不满足所述参考变化规律的情况下,按照预设的步长增大所述电机的振动频率。
PCT/CN2019/129091 2019-01-03 2019-12-27 一种自适应调整振动频率的电路、甩脂机及控制方法 WO2020140835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005716.3A CN109864876A (zh) 2019-01-03 2019-01-03 一种自适应调整振动频率的电路、甩脂机及控制方法
CN201910005716.3 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140835A1 true WO2020140835A1 (zh) 2020-07-09

Family

ID=66917464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129091 WO2020140835A1 (zh) 2019-01-03 2019-12-27 一种自适应调整振动频率的电路、甩脂机及控制方法

Country Status (2)

Country Link
CN (1) CN109864876A (zh)
WO (1) WO2020140835A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109864876A (zh) * 2019-01-03 2019-06-11 歌尔股份有限公司 一种自适应调整振动频率的电路、甩脂机及控制方法
CN111449894B (zh) * 2020-03-26 2022-06-21 重庆师范大学 人体姿态操控甩脂机及电机控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332943A (ja) * 1998-05-22 1999-12-07 Ya Man Ltd 超音波美容プローブ
CN2436143Y (zh) * 2000-07-27 2001-06-27 黄涵 智能型脂肪运动机
US20050256463A1 (en) * 2004-04-21 2005-11-17 Masatoshi Masuda Cosmetic apparatus
KR100568756B1 (ko) * 2005-09-16 2006-04-07 청기의료기(주) 인체를 요동 및 온열시키는 체중감량용 의자
CN101247779A (zh) * 2005-05-04 2008-08-20 拿大弥撒有限公司 物理治疗平台组件
CN201676132U (zh) * 2010-06-02 2010-12-22 王秀康 减肥健身机
CN206566072U (zh) * 2016-12-08 2017-10-20 聚邦古方(杭州)品牌管理有限公司 一种减肥系统
CN109864876A (zh) * 2019-01-03 2019-06-11 歌尔股份有限公司 一种自适应调整振动频率的电路、甩脂机及控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117011A (zh) * 1993-06-16 1996-02-21 Ykk株式会社 自激振动部件馈送器之驱动控制方法及其装置
NZ563822A (en) * 2005-05-03 2011-01-28 Ultreo Inc Oral hygiene devices employing an acoustic waveguide
JP2011045685A (ja) * 2009-08-26 2011-03-10 Roji Pack:Kk 鼻腔内共振装置
CN201742320U (zh) * 2010-05-18 2011-02-09 嘉兴学院 频率可自动跟踪的振动装置
US10715021B2 (en) * 2012-07-20 2020-07-14 Kyushu Institute Of Technology Mobile capsule device and control method thereof
CN203217283U (zh) * 2013-03-08 2013-09-25 刘达亿 微雾化片驱动电路
CN103576858B (zh) * 2013-09-26 2016-03-09 蔡从中 用于lra马达共振跟踪检测驱动器及驱动方法
CN104746879B (zh) * 2015-03-23 2016-08-17 唐华瑞 高效建筑混凝土振捣器
KR20170019754A (ko) * 2015-08-12 2017-02-22 주식회사 엠플러스 피에조 액추에이터 구동 방법 및 장치
CN105310856A (zh) * 2015-12-04 2016-02-10 科泽科技有限公司 一种谐振健身装置
CN105708675A (zh) * 2016-01-20 2016-06-29 中国人民解放军第三军医大学第一附属医院 基于肌肉振动的电路控制装置和振动器
CN107019627B (zh) * 2016-07-05 2021-01-08 安徽瑞德医疗设备制造有限公司 脊柱脉冲治疗仪
CN108992865A (zh) * 2018-08-21 2018-12-14 广东福诺思路健康科技有限公司 一种应用振动幅度感应器的振动器及应用其的健身装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332943A (ja) * 1998-05-22 1999-12-07 Ya Man Ltd 超音波美容プローブ
CN2436143Y (zh) * 2000-07-27 2001-06-27 黄涵 智能型脂肪运动机
US20050256463A1 (en) * 2004-04-21 2005-11-17 Masatoshi Masuda Cosmetic apparatus
CN101247779A (zh) * 2005-05-04 2008-08-20 拿大弥撒有限公司 物理治疗平台组件
KR100568756B1 (ko) * 2005-09-16 2006-04-07 청기의료기(주) 인체를 요동 및 온열시키는 체중감량용 의자
CN201676132U (zh) * 2010-06-02 2010-12-22 王秀康 减肥健身机
CN206566072U (zh) * 2016-12-08 2017-10-20 聚邦古方(杭州)品牌管理有限公司 一种减肥系统
CN109864876A (zh) * 2019-01-03 2019-06-11 歌尔股份有限公司 一种自适应调整振动频率的电路、甩脂机及控制方法

Also Published As

Publication number Publication date
CN109864876A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
US9947186B2 (en) Haptic feedback controller
WO2020140835A1 (zh) 一种自适应调整振动频率的电路、甩脂机及控制方法
US10356541B2 (en) Loudspeaker diaphragm state estimation method and loudspeaker driving circuit using the same
US10820096B2 (en) Audio circuitry
KR101172646B1 (ko) 진동 스피커의 구동 제어 회로
JP5157959B2 (ja) D級増幅器
WO2020223002A1 (en) Thermal model of transducer for thermal protection and resistance estimation
US20170152912A1 (en) Vibration suppressing apparatus and vibration suppressing method thereof
US11012786B2 (en) Armature-based acoustic receiver having improved output and method
CN108693402B (zh) Lra谐振频率的检测装置
US11683653B2 (en) Monitoring circuitry
US9008336B2 (en) Condenser microphone
US20230353936A1 (en) Audio panel temperature control
JP2004325420A (ja) 交流電子負荷装置
JP2017098817A (ja) 駆動装置
US9853580B2 (en) Method of controlling start-up noise in BLDC (brushless direct current) fan motors
JPS60152197A (ja) スピ−カ装置
JP2005277489A (ja) 2次音圧傾度型エレクトレットコンデンサマイクロホン
JPH10164685A (ja) オーディオシステムにおけるスピーカドライブ回路
CN115474147A (zh) 一种性能参数的测量方法、测量装置和可读存储介质
CN106530909A (zh) 一种拍频产生演示仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907540

Country of ref document: EP

Kind code of ref document: A1