WO2020140598A1 - 一种振动状态可视化检测装置、制作方法及应用 - Google Patents

一种振动状态可视化检测装置、制作方法及应用 Download PDF

Info

Publication number
WO2020140598A1
WO2020140598A1 PCT/CN2019/114582 CN2019114582W WO2020140598A1 WO 2020140598 A1 WO2020140598 A1 WO 2020140598A1 CN 2019114582 W CN2019114582 W CN 2019114582W WO 2020140598 A1 WO2020140598 A1 WO 2020140598A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene layer
vibration
detection device
vibration state
visual detection
Prior art date
Application number
PCT/CN2019/114582
Other languages
English (en)
French (fr)
Inventor
韩志武
王跃桥
侯涛
刘富
刘云
赵宇锋
宋阳
游子跃
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2020140598A1 publication Critical patent/WO2020140598A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis

Definitions

  • the present disclosure relates to the field of vibration detection, and in particular to a vibration state visualization detection device, manufacturing method, and application.
  • the main shaft refers to the shaft that receives power from the engine or motor and transmits it to other parts.
  • the good running status of the main shaft has a crucial impact on the equipment. Therefore, it is very important to monitor the main shaft in real time when the equipment is under load. Significance. For example, when the tool of the machine tool is worn seriously, the spindle will have abnormal vibration, and the tool should be replaced for the instrument in time to ensure its normal operation and prevent unnecessary economic losses.
  • the monitoring of vibration mainly uses an acceleration sensor, but this kind of sensor cannot find the abnormal vibration of the spindle through intuitive observation.
  • the purpose of the present disclosure is to provide a vibration state visualization detection device, manufacturing method and application, which aim to solve the problems of the existing vibration sensor with low sensitivity, inaccurate and unintuitive monitoring results.
  • a vibration state visual detection device includes a super-sensitive vibration sensor and an electrochromic device electrically connected in parallel to each other; the super-sensitive vibration sensor, when sensing external mechanical vibration, according to the intensity of the mechanical vibration, The resistance will change, which in turn causes a change in the terminal voltage of the super-sensitive vibration sensor; the electrochromic device produces different shades of colors according to the size of the terminal voltage.
  • the vibration state visual detection device wherein the electrochromic device comprises, in order from bottom to top, a first elastomer substrate, a non-transparent conductive layer, an electrolyte, a first graphene layer, and a second elastomer substrate.
  • the first graphene layer is formed on the lower surface of the second elastomer substrate.
  • the non-transparent conductive layer is made of colored conductive material.
  • the vibration state visual detection device wherein the hypersensitive vibration sensor includes a third elastomer substrate formed on the upper surface of the second elastomer substrate, the upper surface of the third elastomer substrate has a number of parallel Slits, the upper surface of the third elastomer substrate including the slits are all provided with a second graphene layer, and an electrode is provided on each end of the second graphene layer parallel to the slit .
  • one of the two electrodes is electrically connected to the non-transparent conductive layer, and the other is electrically connected to the first graphene layer.
  • the vibration state visualization detection device wherein the first elastomer substrate and/or the second elastomer substrate and/or the third elastomer substrate are made of PDMS.
  • the electrolyte is an electrolyte containing diethylmethyl-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide ion.
  • the first graphene layer is composed of multiple layers of graphene.
  • a method for manufacturing the vibration state visual detection device as described above includes the following:
  • the structure I includes, from bottom to top, the first graphene layer, the second elastomer substrate, the third elastomer substrate, the second graphene layer and two electrode;
  • fabricating a structure II including, in order from bottom to top, the first elastomer substrate and the non-transparent conductive layer;
  • the manufacturing method of the vibration state visual detection device wherein the assembly of the structure I and the structure II includes:
  • the non-transparent conductive layer is opposite to the first graphene layer, a cavity is formed in the middle, and the cavity contains an electrolyte; finally, one of the two electrodes is electrically connected to the non-transparent conductive layer Connected, the other is electrically connected to the first graphene layer
  • the manufacturing method of the vibration state visual detection device includes the following:
  • Step A Prepare a copper mold with parallel slits, fabricate a second graphene layer on the slit surface of the copper mold, and fabricate on the second graphene layer parallel to both ends of the slit An electrode, and finally making a third elastomer substrate on the second graphene layer;
  • Step B Prepare a nickel substrate, fabricate a first graphene layer on the nickel substrate, and embed a first electrode lead on the first graphene layer;
  • Step C Prepare a first elastomer substrate, fabricate a non-transparent conductive layer on the surface of the first elastomer substrate, and embed a second electrode lead on the non-transparent conductive layer;
  • Step D Prepare a second elastomer substrate and laminate the second elastomer substrate to the surface of the first graphene layer in step B;
  • Step E Assemble the surface of the second elastomer base of the structure obtained in step D and the surface of the third elastomer base in step A.
  • the manufacturing method of the vibration state visualization detection device further includes the following:
  • Step F using an etching solution to remove the copper mold and the nickel substrate in the structure obtained in step E;
  • Step G The structure obtained in step C and the structure obtained in step F are encapsulated, and a cavity is formed in the middle, wherein the non-transparent conductive layer is opposite to the first graphene layer, and the cavity contains With electrolyte.
  • Step H Connect the first electrode lead and the second electrode lead to the two electrodes on the second graphene layer, respectively.
  • the manufacturing method of the vibration state visual detection device wherein the first graphene layer and/or the second graphene layer are manufactured by a chemical vapor deposition method.
  • the corrosive liquid is a ferric chloride solution.
  • the super-sensitive vibration sensor is attached or embedded on the main shaft to be monitored, and the super-sensitive vibration sensor and the electrochromic device are connected in parallel
  • a resistor of a certain value is connected in series on the main road, and a fixed voltage is externally connected at both ends of the entire circuit.
  • the vibration of the main shaft is judged according to the shade of the color displayed by the electrochromic device.
  • the present disclosure provides a vibration state visual detection device as described above.
  • the present disclosure senses external mechanical vibration through a super-sensitive vibration sensor, and exhibits different degrees of non-transparent conduction by the electrochromic device according to the magnitude of the vibration intensity Layer color to realize real-time visual monitoring of spindle vibration status.
  • FIG. 1 is a structural diagram of a preferred vibration state visualization detection device provided by the present disclosure.
  • FIG. 2 is a circuit schematic diagram of the visual detection device of the present disclosure.
  • Embodiment 3 is a structural view of a copper mold in Embodiment 1 of the present disclosure.
  • Example 4 is an effect diagram of manufacturing a second graphene layer and an electrode in Example 1 of the present disclosure.
  • FIG. 5 is an effect diagram of manufacturing a first graphene layer and a first electrode in Example 1 of the present disclosure.
  • Example 6 is an effect diagram of manufacturing a first elastomer and a Cu conductive layer in Example 1 of the present disclosure.
  • FIG. 7 is an effect diagram of transferring the first graphene layer to the second elastomer in Embodiment 1 of the present disclosure.
  • FIG. 8 is an effect of assembling and connecting the second graphene layer of FIG. 4 and the second elastomer of FIG. 7.
  • FIG. 9 is an assembly structure after removing a copper mold and Ni by using an etchant in Embodiment 1 of the present disclosure.
  • Example 10 is a structural diagram of a vibration state visualization detection device prepared in Example 1 of the present disclosure.
  • FIG. 11 is an equivalent resistance model diagram of the vibration state visual detection device of the present disclosure.
  • the present disclosure provides a vibration state visual detection device, manufacturing method, and application.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
  • the terms “upper”, “lower”, “both sides”, etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings.
  • the disclosure and simplified description do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as limiting the present disclosure.
  • the terms “first” and “second” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the present disclosure provides a preferred embodiment of a vibration state visual detection device. As shown in FIG. 1, it includes a super-sensitive vibration sensor 1 and an electrochromic device 2 electrically connected in parallel to each other; the circuit principle is shown in FIG.
  • the parallel circuit is externally connected with a certain value of resistance Rb, and the super-sensitive vibration sensor 1 is used to sense external mechanical vibration, and the resistance Rx will change according to the difference of the mechanical vibration intensity, thereby causing the terminal voltage of the super-sensitive vibration sensor to change;
  • the color changer 2 (the resistance value is a fixed value Ra) produces different colors according to the magnitude of the terminal voltage.
  • the present disclosure senses external mechanical vibration through a super-sensitive vibration sensor, and displays different shades of color by the electrochromic device according to the vibration intensity, so as to realize real-time visual monitoring of the vibration state of the spindle.
  • a preferred vibration state visual detection device which can be referred to FIG. 1 in detail, includes a super-sensitive vibration sensor 1 and an electrochromic device 2.
  • the electrochromic device 2 includes, in order from bottom to top, a first elastomer substrate 21 and a non-transparent conductive A layer 22, an electrolyte 23, a first graphene layer 24 and a second elastomer substrate 25, the first graphene layer 24 is formed on the lower surface of the second elastomer substrate 25;
  • the non-transparent conductive layer 22 can be made of a colored conductive material, such as an alloy material composed of one or more of Al, Fe, Cu, Ag, and Au, preferably Cu, and Cu is red, More early warning.
  • the electrolytic solution 23 may be an electrolytic solution containing diethylmethyl-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide ion.
  • the first elastomer substrate 21, the second elastomer substrate 25, and the third elastomer substrate 14 can all be made of PDMS (polydimethylsiloxane). PDMS is easy to combine with other materials, non-toxic, odorless, transparent, and good.
  • the first graphene layer 24 is composed of multiple layers of graphene, and the single-layer graphene has a small optical absorption and a visible light transmittance of 97.7%. It is difficult to effectively block the penetration of light, which will cause the electrochromic device to directly The background color is exposed. Therefore, multi-layer graphene is selected. Within the thickness of several layers of graphene, the absorption rate increases by approximately 2.3% for each additional layer of graphene thickness.
  • the super-sensitive vibration sensor 1 includes a third elastomer substrate 14 formed on the upper surface of the second elastomer substrate 25.
  • the upper surface of the third elastomer substrate 14 has a number of parallel slits, the first The upper surfaces of the three elastomer substrates 14 including the slits are all provided with a second graphene layer 11, and the upper surface of the second graphene layer 11 has several parallel slits 12; the second graphene layer 11
  • An electrode 13 is provided on both ends of the slit 12 parallel to the upper side; one of the two electrodes 13 is electrically connected to the non-transparent conductive layer 22 and the other is electrically connected to the first graphene layer 24 connection.
  • the organism has formed many ingenious structures in the long evolutionary process.
  • the radial distribution of seam receptors at the tarsal joints of Peter's scorpion can detect and locate the movement of a grain of sand within 20 cm around the surface of the soft sand grain with a high attenuation factor, or Insect activity in an underground cave at a distance of 50 cm around it generates vibration with an amplitude of 1 nm.
  • the present disclosure proposes the above-mentioned high-sensitivity vibration state visualization detection device. Connected, that is, the super-sensitive vibration sensor is connected in parallel with the electrochromic device. When it is applied, it is connected to the circuit in series with the fixed-value resistor.
  • the super-sensitive vibration sensor and the electrochromic device are divided into the same voltage.
  • the resistance of the super-sensitive vibration sensor changes according to the different strengths of the vibration signal, which causes the same change in voltage between the super-sensitive vibration sensor and the electrochromic device. That is, the super-sensitive vibration sensor senses the vibration state of the main shaft
  • the signal is transmitted to the color changer, so that it displays the color of the non-transparent conductive layer to different degrees according to the magnitude of the voltage signal, and performs vibration visual warning and feedback.
  • the device not only can realize the visual detection of micro vibration, but also has the characteristics of fast response and high sensitivity.
  • the present disclosure also provides a preferred embodiment of a method for manufacturing the above-mentioned vibration state visual detection device, including the following steps:
  • the structure I includes, from bottom to top, the first graphene layer 24, the second elastomer substrate 25, the third elastomer substrate 14, the second graphene layer 11 and Two of the electrodes 13;
  • the structure II includes, in order from bottom to top, the base of the first elastomer 21 and the non-transparent conductive layer 22;
  • the non-transparent conductive layer 22 is opposite to the first graphene layer 24, and a cavity is formed in the middle, and the cavity contains an electrolyte 23; Of the electrodes 13, one is electrically connected to the non-transparent conductive layer 22, and the other is electrically connected to the first graphene layer 24.
  • Step A Prepare a copper mold with parallel slits, fabricate a second graphene layer 11 on the slit surface of the copper mold, and parallel the two ends of the slit on the second graphene layer 11 Each electrode 13 is fabricated, and finally a third elastomer substrate 14 is fabricated on the second graphene layer 11.
  • a copper mold with a scorpion slot reverse structure can be processed through microelectronic technology, and then the second graphene layer 11 can be made on the slit surface of the copper mold, which can be made by chemical vapor deposition. Then, electrodes 13 are made on both ends of the second graphene layer 11 respectively. The side where the electrode 13 is located on the second graphene layer is parallel to the slit. Finally, a third elastomer substrate 14 is made on the second graphene layer 11.
  • Step B Prepare a nickel substrate, fabricate a first graphene layer 24 on the nickel substrate, and embed a first electrode lead 3 on the first graphene layer 24.
  • Step C Prepare a first elastomer substrate 21, fabricate a non-transparent conductive layer 22 on the surface of the first elastomer substrate 21, and embed a second electrode lead 4 on the non-transparent conductive layer 22;
  • Step D Prepare a second elastomer substrate 25, and laminate the second elastomer substrate 25 to the surface of the first graphene layer 24 in the step B;
  • Step E Assemble the surface of the second elastomer substrate 25 of the structure obtained in the step D and the surface of the third elastomer substrate in the step A;
  • Step F using an etching solution to remove the copper mold and the nickel substrate in the structure obtained in step E;
  • the etching solution is ferric chloride solution, which can be oxidized into cations by Cu mold and Ni substrate and dissolved in the solution to be removed.
  • Step G The structure obtained in step C and the structure obtained in step F are encapsulated, and a cavity is formed in the middle, wherein the non-transparent conductive layer 22 is opposite to the first graphene layer 24, and the cavity ⁇ electrolyte 23 ⁇
  • Step H Connect the first electrode lead 3 and the second electrode lead 4 to the two electrodes 13 on the second graphene layer 11 respectively.
  • the present disclosure also provides an application of the vibration state visual detection device as described above.
  • the vibration state visual detection device of the bionic super-sensitive mechanism is attached or embedded on the main shaft to be monitored, and the super-sensitive vibration sensor is A resistor of a certain value is connected in series on the main circuit of the parallel circuit of the electrochromic device, and a fixed voltage is externally connected at both ends of the entire circuit. According to the color of the non-transparent conductive layer presented in the electrochromic device, taking copper as an example, whether it appears red To determine the vibration intensity of the spindle.
  • the super-sensitive vibration sensor of the present disclosure is essentially a force-resistive piezoresistive strain measuring sensor.
  • R1 and R2 will change. Because graphene itself also has a sensitive strain response, Ri will also change with the severity of vibration.
  • the vibration amplitude of the main shaft is very small, the contact between the two walls of the crack of the super sensitive vibration sensor is good, and the seamless position of the super sensitive vibration sensor should also become very small, that is, the resistance value of R1, R2, Ri Very small, the overall resistance of the ultra-sensitive vibration sensor is very small; when the spindle running state is abnormal, the vibration amplitude is increased, and the distance between the two walls of each crack of the ultra-sensitive vibration sensor increases, making the graphene conductive layer attached to the slit wall Gradually separated, even if the resistance value of R1 and R2 increases, the seamless part of the PDMS film attached to the graphene conductive layer itself will strain with the increase of the vibration amplitude, causing the Ri resistance to increase, that is, the overall resistance of the hypersensitive vibration sensor With the increase of R1, R2, Ri resistance increases.
  • the biomimetic strain structure has high sensitivity, fast response time, good durability and other excellent properties, and because PDMS and the few layers of graphene transferred on it have high light transmittance, the ultra-sensitive vibration sensor of the scorpion slit susceptor is always It is in a transparent state, so the super-sensitive vibration sensor located on the upper layer can reveal the color of the electrochromic sensor located on the lower layer.
  • the vibration amplitude of the main shaft is very small, and the resistance value of the super-sensitive vibration sensor is very small.
  • the voltages obtained by the two electrodes of the super-sensitive vibration sensor and the electrochromic device in the circuit are very small. After polarization, it gathers at the graphene-electrolyte interface.
  • the graphene layer in the electrochromator hardly undergoes an ion insertion process.
  • the graphene layer still maintains a good absorption rate for light.
  • the overall electrochromator is black and opaque.
  • the upper vibration sensor is always transparent, so the whole device is black and opaque, that is, the device is black when the spindle is running well.
  • the vibration amplitude is increased, and the degree of crack joint of the upper super-sensitive vibration sensor changes.
  • the overall resistance value increases with the increase of the resistance values of R1, R2, and Ri, so that the voltage across the two ends increases.
  • the voltage of the two electrodes of the electrochromic device increases, the ions inserted into the graphene layer increase, and more inter-band electronic transitions in the graphene layer are blocked, so that its light absorption rate decreases, and the graphene layer gradually becomes transparent.
  • the color-changing structure exhibits the inherent red color of the underlying Cu electrode metal.
  • the whole visual self-test device of the main shaft vibration state based on the mechanism of bionic super-sensing becomes red. Feedback the vibration state of the spindle to the operator with intuitive color changes.
  • the observed electrochromic effect is not due to the chemical reaction oxidizing the graphene electrode, but because the electrolyte ion insertion process changes the light absorption rate of the graphene layer.
  • a copper mold with a scorpion slit reverse structure is processed by microelectronic technology.
  • the copper substrate has a size of 1cm ⁇ 2cm ⁇ 25 ⁇ m, and a parallel slit is provided on the top.
  • the height of the parallel slit is 20 ⁇ m and the pitch is 90 ⁇ m
  • the separation wall thickness between the slits is 4 ⁇ m
  • a thin layer of graphene 11 (second graphene layer) with a thickness of about 1nm is deposited on the slit surface of the copper mold by chemical vapor deposition, and is parallel to the thin layer of graphene
  • An electrode 13 is made at each end of the slit, as shown in FIG. 4, and finally a 225 ⁇ m thick PDMS glue (third elastomer substrate 14) is spin-coated on the side where the graphene layer is deposited, without curing, and ready for use.
  • a thin layer 24 (first graphene layer) of 8-9 nm thick is also deposited on the rectangular nickel thin film of 1 cm ⁇ 2 cm ⁇ 25 ⁇ m by chemical vapor deposition, and the first electrode is embedded on the graphene layer Lead 3, as shown in Figure 5.
  • step (4) Lightly press the PDMS film surface of the structure obtained in step (4) to the PDMS adhesive surface of the structure of step (1), put it in a vacuum drying oven for 60 minutes to expel the bubbles in the PDMS adhesive, and then press 120 Hot baking at °C for 40min to completely cure the PDMS glue, as shown in Figure 8.
  • step 6 Place the structure prepared in step 6 on the upper layer, and the PDMS carrier copper-clad film prepared in step 3 on the lower layer, and then encapsulate into a package with a cavity of 250 ⁇ m thickness, as shown in FIG. 10, inside the cavity Fill 50 ⁇ L of diethylmethyl-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte, and finally connect the first electrode lead and the second electrode lead with the second graphite The two electrodes on the alkene layer are connected, and the vibration state visual detection device is completed.
  • the present disclosure is based on the research of the highly sensitive vibration sensing mechanism of the scorpion slit susceptor, based on microelectronics, chemical vapor deposition, wet etching, electrochromic display and other technologies, a vibration state visualization is proposed Detection device, manufacturing method and application.
  • the device can sense the vibration state of the main shaft, and control the color changer to display the color of the non-transparent conductive layer to different degrees according to the vibration state, so as to realize real-time visual monitoring of the vibration state of the main shaft.
  • the present disclosure overcomes the defects in the prior art that the traditional vibration sensor is too large to install easily, the signal-to-noise ratio of the monitoring signal is low, the sensitivity is low, and the monitoring result is not easy to feedback directly to the operator. It has fast response, high sensitivity, easy installation, and visualization Features such as vibration signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种振动状态可视化检测装置、制作方法及应用,振动状态可视化检测装置包括相互并联电连接的超敏振动传感器(1)与电致变色器(2);超敏振动传感器(1)感知到外部的机械振动,根据机械振动的强度的不同,电阻会发生改变,进而引起超敏振动传感器(1)的端电压的改变;电致变色器(2)根据端电压的大小产生深浅不同的颜色。通过超敏振动传感器(1)感知外部的机械振动,并根据振动强度大小由电致变色器(2)展现出不同程度的非透明导电层的颜色,以实现对主轴振动状态实时可视化监测。

Description

一种振动状态可视化检测装置、制作方法及应用 技术领域
本公开涉及振动检测领域,尤其涉及一种振动状态可视化检测装置、制作方法及应用。
背景技术
主轴指从发动机或电动机接受动力并将它传给其它机件的轴,主轴运行状态良好与否对仪器设备有着至关重要的影响,因此在仪器设备负载运行状态下对主轴进行实时监测具有十分重要的意义。例如机床刀具磨损严重时,主轴会出现异常振动,及时给仪器设备更换刀具,可以保证其正常运行,防止不必要的经济损失。
目前对振动的监测主要是使用加速度传感器,但是这种传感器无法进行通过直观的观察来发现主轴振动异常。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种振动状态可视化检测装置、制作方法及应用,旨在解决现有的振动传感器灵敏度不高、监测结果不准确和不直观的问题。
本公开的技术方案如下:
一种振动状态可视化检测装置,包括相互并联电连接的超敏振动传感器与电致变色器;所述超敏振动传感器,当感知到外部的机械振动时,根据所述机械振动的强度的不同,电阻会发生改变,进而引起所述超敏振动传感器的端电压的改变;所述电致变色器,根据所述端电压的大小产生深浅不同的颜色。
所述的振动状态可视化检测装置,其中,所述电致变色器从下至上依次包括:第一弹性体基底、非透明导电层、电解液、第一石墨烯层和第二弹性体基底,所述第一石墨烯层形成于所述第二弹性体基底的下表面。
所述的振动状态可视化检测装置,其中,所述非透明导电层采用有颜色的导 体材料制作。
所述的振动状态可视化检测装置,其中,所述超敏振动传感器包括形成在所述第二弹性体基底的上表面的第三弹性体基底,所述第三弹性体基底的上表面有若干平行的狭缝,所述第三弹性体基底的上表面包括狭缝的表面均设置有第二石墨烯层,所述第二石墨烯层上平行于所述狭缝的两端各设置有一个电极。
所述的振动状态可视化检测装置,其中,两个所述电极中,一个与所述非透明导电层电连接,另一个与所述第一石墨烯层电连接。
所述的振动状态可视化检测装置,其中,所述第一弹性体基底和/或所述第二弹性体基底和/或所述第三弹性体基底采用PDMS制作而成。
所述的振动状态可视化检测装置,其中,所述电解液为包含二乙基甲基-(2-甲氧乙基)铵基双(三氟甲磺酰基)酰亚胺离子的电解液。
所述的振动状态可视化检测装置,其中,所述第一石墨烯层由多层石墨烯组成。
一种如上所述的振动状态可视化检测装置的制作方法,包括如下:
制作结构Ⅰ,所述结构Ⅰ从下至上依次包括:所述第一石墨烯层、所述第二弹性体基底、所述第三弹性体基底、所述第二石墨烯层以及两个所述电极;
制作结构Ⅱ,所述结构Ⅱ从下至上依次包括:所述第一弹性体基底和所述非透明导电层;
将所述结构Ⅰ和所述结构Ⅱ组装。
所述的振动状态可视化检测装置的制作方法,其中,所述将所述结构Ⅰ和所述结构Ⅱ组装,包括:
所述非透明导电层与所述第一石墨烯层相对,中间形成一空腔,所述空腔中容置有电解液;最后将两个所述电极中,一个与所述非透明导电层电连接,另一个与所述第一石墨烯层电连接
所述的振动状态可视化检测装置的制作方法,包括如下:
步骤A、准备一具有平行狭缝的铜模具,在所述铜模具的狭缝面制作第二石墨烯层,并在所述第二石墨烯层上平行于所述狭缝的两端各制作一个电极,最后在所述第二石墨烯层上制作第三弹性体基底;
步骤B、准备一镍基底,在所述镍基底上制作第一石墨烯层,并在所述第一 石墨烯层上嵌入第一电极引线;
步骤C、准备第一弹性体基底,在所述第一弹性体基底的表面制作非透明导电层,并在所述非透明导电层上嵌入第二电极引线;
步骤D、准备第二弹性体基底,将所述第二弹性体基底层压至所述步骤B中的第一石墨烯层的表面;
步骤E、将所述步骤D得到的结构的第二弹性体基底所在面与所述步骤A中的第三弹性体基底所在面组装在一起。
所述的振动状态可视化检测装置的制作方法,其中,还包括如下:
步骤F、采用腐蚀液去除所述步骤E得到的结构中的所述铜模具和所述镍基底;
步骤G、将所述步骤C得到的结构与所述步骤F得到的结构封装,中间形成一空腔,其中,所述非透明导电层与所述第一石墨烯层相对,所述空腔中容置有电解液。
步骤H、将所述第一电极引线和所述第二电极引线分别与所述第二石墨烯层上的两个电极相连接。
所述的振动状态可视化检测装置的制作方法,其中,所述第一石墨烯层和/或所述第二石墨烯层采用化学气相沉积的方法制作而成。
所述的振动状态可视化检测装置的制作方法,其中,所述步骤F中,所述腐蚀液为三氯化铁溶液。
一种如上所述的振动状态可视化检测装置的应用,将所述超敏振动传感器贴附或嵌入待监测的主轴上,并在所述超敏振动传感器与所述电致变色器的并联电路的干路上串联一定值电阻,在整个电路两端外接固定电压,根据所述电致变色器显示的颜色的深浅来判断所述主轴的振动大小。
有益效果:本公开提供了一种如上所述的振动状态可视化检测装置,本公开通过超敏振动传感器感知外部的机械振动,并根据振动强度大小由电致变色器展现出不同程度的非透明导电层的颜色,以实现对主轴振动状态实时可视化监测。
附图说明
图1为本公开提供的一种较佳的振动状态可视化检测装置结构图。
图2为本公开的可视化检测装置的电路原理图。
图3为本公开实施例1中的铜模具结构图。
图4为本公开实施例1中制作第二石墨烯层和电极的效果图。
图5为本公开实施例1中制作第一石墨烯层和第一电极的效果图。
图6为本公开实施例1中制作第一弹性体和Cu导电层的效果图。
图7为本公开实施例1中将第一石墨烯层转移至第二弹性体上的效果图。
图8为将图4的第二石墨烯层与图7的第二弹性体组装连接后的效果。
图9为本公开实施例1中采用腐蚀剂去除铜模具以及Ni后的组装体结构。
图10为本公开实施例1制备的振动状态可视化检测装置结构图。
图11为本公开的振动状态可视化检测装置的等效电阻模型图。
具体实施方式
本公开提供了一种振动状态可视化检测装置、制作方法及应用,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需要说明的是,在本公开的描述中,术语“上”、“下”、“两侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
本公开提供了一种振动状态可视化检测装置的较佳实施例,如图1所示,包括相互并联电连接的超敏振动传感器1与电致变色器2;电路原理如图2所示,整个并联电路外接一定值电阻Rb,超敏振动传感器1用于感知外部的机械振动,并根据机械振动强度的不同,电阻Rx会发生改变,进而引起所述超敏振动传感器的端电压的改变;电致变色器2(阻值为定值Ra)根据所述端电压的大小产生深浅不同的颜色。本公开通过超敏振动传感器感知外部的机械振动,并根据振动强度大小由电致变色器展现出深浅不同的颜色,以实现对主轴振动状态实时可视化监测。
传统的加速度传感器,由于尺寸过大迫使其安装位置与待监测点距离较远,监测信号包含大量噪声,存在灵敏度不高、监测结果不准确的问题,为解决该问题,本公开提供了一种较佳的振动状态可视化检测装置,具体的可参照图1,包括超敏振动传感器1与电致变色器2,电致变色器2从下至上依次包括:第一弹性体基底21、非透明导电层22、电解液23、第一石墨烯层24和第二弹性体基底25,所述第一石墨烯层24形成于所述第二弹性体基底25的下表面;
其中,非透明导电层22可以采用有颜色的导体材料制作,例如Al、Fe、Cu、Ag、Au中的一种或多种组成的合金材料制作而成,最好选用Cu,Cu为红色,更有预警性。电解液23可以是包含二乙基甲基-(2-甲氧乙基)铵基双(三氟甲磺酰基)酰亚胺离子的电解液。第一弹性体基底21、第二弹性体基底25和第三弹性体基底14均可以采用PDMS(聚二甲基硅氧烷)制作,PDMS易与其他材料结合,无毒无味透明度高,具有良好的化学稳定性,具有优良的物理特性比如高抗剪切能力,低的杨氏模量使其具备高弹性,容易传递机械振动。较佳地,第一石墨烯层24由多层石墨烯组成,单层石墨烯光学吸收小,可见光的透过率为97.7%,很难有效阻隔光的穿透,会使得电致变色器直接暴露出底色。因此选用多层石墨烯,在几层石墨烯厚度范围内,石墨烯厚度每增加一层,吸收率大致增加2.3%。
所述超敏振动传感器1包括形成在所述第二弹性体基底25的上表面的第三弹性体基底14,所述第三弹性体基底14的上表面有若干平行的狭缝,所述第三弹性体基底14的上表面包括狭缝的表面均设置有第二石墨烯层11,所述第二石墨烯层11的上表面具有若干平行的狭缝12;所述第二石墨烯层11上平行于所述狭缝12的两端各设置有一个电极13;两个所述电极13中,一个与所述非透明导电层22电连接,另一个与所述第一石墨烯层24电连接。
生物在漫长的进化过程中形成了很多巧妙的结构,彼得异蝎跗骨关节处放射状分布的缝感受器能在高衰减因子的松软沙粒表面探测定位到周围20cm范围内一粒沙的移动,或其周围50cm处地下洞穴内昆虫活动产生振幅为1nm的振动,本公开基于此,提出了上述高灵敏度的振动状态可视化检测装置,将超敏振动传感器两端电极通过引线与电致变色器上下电极相连接,即超敏振动传感器与电致变色器并联,应用时,与定值电阻通过串联的方式接入电路之中,其中超敏振动传感器与电致变色器两极分得相同大小的电压,超敏振动传感器的阻值根据振动 信号的不同强度而变化,致使超敏振动传感器与电致变色器两端分得电压发生相同的变化,即超敏振动传感器通过感知主轴的振动状态,以电压信号传递给变色器,使其根据电压信号的大小而显示出不同程度的非透明导电层的颜色,进行振动可视化预警反馈。本装置不仅能对微振动实现可视化检测,而且具有响应快、灵敏度高的特点。
本公开还提供了一种上述的振动状态可视化检测装置的制作方法较佳实施例,包括如下步骤:
制作结构Ⅰ,所述结构Ⅰ从下至上依次包括:所述第一石墨烯层24、所述第二弹性体基底25、所述第三弹性体基底14、所述第二石墨烯层11以及两个所述电极13;
制作结构Ⅱ,所述结构Ⅱ从下至上依次包括:所述第一弹性体21基底和所述非透明导电层22;
将所述结构Ⅰ和所述结构Ⅱ组装,所述非透明导电层22与所述第一石墨烯层24相对,中间形成一空腔,所述空腔中容置有电解液23;最后将两个所述电极13中,一个与所述非透明导电层22电连接,另一个与所述第一石墨烯层24电连接。
进一步具体的制备步骤包括如下:
步骤A、准备一具有平行狭缝的铜模具,在所述铜模具的狭缝面制作第二石墨烯层11,并在所述第二石墨烯层11上平行于所述狭缝的两端各制作一个电极13,最后在所述第二石墨烯层11上制作第三弹性体基底14。
具体的,可以通过微电子技术加工出具有蝎子缝反结构的铜模具,然后在铜模具的狭缝面制作第二石墨烯层11,可以采用化学气相沉积的方法制作。再在第二石墨烯层11的两端分别制作电极13,第二石墨烯层上电极13所在的边平行于狭缝,最后在第二石墨烯层11上制作第三弹性体基底14。
步骤B、准备一镍基底,在所述镍基底上制作第一石墨烯层24,并在所述第一石墨烯层24上嵌入第一电极引线3。
步骤C、准备第一弹性体基底21,在所述第一弹性体基底21的表面制作非透明导电层22,并在所述非透明导电层22上嵌入第二电极引线4;
步骤D、准备第二弹性体基底25,将所述第二弹性体基底25层压至所述步 骤B中的第一石墨烯层24的表面;
步骤E、将所述步骤D得到的结构的第二弹性体基底25所在面与所述步骤A中的第三弹性体基底所在面组装在一起;
步骤F、采用腐蚀液去除所述步骤E得到的结构中的所述铜模具和所述镍基底;
优选的,所述腐蚀液为三氯化铁溶液,可以将Cu模具和Ni基底氧化成阳离子并溶入溶液中而去除。
步骤G、将所述步骤C得到的结构与所述步骤F得到的结构封装,中间形成一空腔,其中,所述非透明导电层22与所述第一石墨烯层24相对,所述空腔中容置有电解液23。
步骤H、将所述第一电极引线3和所述第二电极引线4分别与所述第二石墨烯层11上的两个电极13相连接。
本公开还提供了一种如上所述的振动状态可视化检测装置的应用,将仿生超敏感知机理的振动状态可视化检测装置贴附或嵌入待监测的主轴上,并在所述超敏振动传感器与所述电致变色器的并联电路的干路上串联一定值电阻,在整个电路两端外接固定电压,可以根据电致变色器中呈现的非透明导电层的颜色,以铜为例,是否呈现红色来判断主轴的振动强度。
本公开的超敏振动传感器实质上是一种力致电阻式的压阻式应变测量传感器,如图11所示,其接触壁的接触电阻随裂缝接合程度而改变,整体电阻R=2Ri+R1||R2,其中,Ri为透明石墨烯薄层的电阻,R1、R2为裂缝接触区域石墨烯薄层的电阻。裂缝接合程度改变时,R1、R2会发生变化,由于石墨烯本身也具备灵敏的应变响应,导致Ri也会跟随振动的剧烈程度而改变。当主轴振动状态良好的情况下,主轴的振动幅度很小,超敏振动传感器裂缝两壁之间接触良好,超敏振动传感器无缝处的应也变很小,即R1、R2、Ri阻值很小,超敏振动传感器的整体阻值很小;当主轴运行状态出现异常时,振动幅度加剧,超敏振动传感器每条裂缝两壁之间的距离增加,使缝壁附着的石墨烯导电层逐渐分离,即使R1、R2阻值增加,其中附着石墨烯导电层的PDMS薄膜无缝处本身也随着振动幅度的增强而发生应变,使Ri阻值增大,即超敏振动传感器整体阻值随R1、R2、Ri阻值增加而增加。该仿生应变结构具有高灵敏度、反应时间迅速、耐久 度良好等优异性能,并且由于PDMS以及其上转移的少层石墨烯均具有很高的透光率,仿蝎子缝感受器的超敏振动传感器始终为透明状态,因此位于上层的超敏振动传感器能够将位于下层的电致变色器颜色显露出来。
当主轴振动状态良好的情况下,主轴的振动幅度很小,超敏振动传感器的阻值很小,超敏振动传感器与电致变色器两极在电路中分得的电压很小,电解质中阴阳离子极化后聚集在石墨烯-电解质界面,电致变色器中的石墨烯层几乎不发生离子插入过程,石墨烯层仍然对光保有良好的吸收率,电致变色器整体为黑色不透明状态,由于上层振动传感器始终透明,所以装置整体为黑色不透明状态,即主轴运行状态良好的情况下装置为黑色。当主轴运行状态出现异常时,振动幅度加剧,上层超敏振动传感器的裂缝接合程度发生改变,其整体阻值随R1、R2、Ri阻值增加而增加,使得其两端分得电压升高,电致变色器两极电压升高,插入石墨烯层的离子增多,石墨烯层中更多的带间电子跃迁被阻断,使得其对光的吸收率减小,石墨烯层逐渐变得透明使变色结构呈现出底层Cu电极金属固有的红色。即当主轴振动状态发生异常时,基于仿生超敏感知机理的主轴振动状态可视化自检装置整体变为红色。以直观的颜色变化反馈给操作人员主轴的振动状态。观察到的电致变色效应不是因为化学反应氧化石墨烯电极,而是因为电解质离子插入过程改变了石墨烯层对光的吸收率。
下面通过实施例对本公开进行详细说明。
实施例1
(1)通过微电子技术加工出具有蝎子缝反结构的铜模具,如图2所示,铜基板尺寸1cm×2cm×25μm,上面设置有平行狭缝,平行狭缝的高度为20μm,间距为90μm,狭缝间的隔离壁厚4μm,在铜模具的狭缝面通过化学气相沉积法沉积1nm左右厚度的石墨烯薄层11(第二石墨烯层),并在石墨烯薄层上平行于狭缝的两端各制作一个电极13,如图4所示,最后在沉积有石墨烯层的一面甩涂225μm厚的PDMS胶(第三弹性体基底14),不用固化,待用。
(2)在1cm×2cm×25μm的矩形镍薄膜上同样使用化学气相沉积的方法沉积8-9nm厚的石墨烯薄层24(第一石墨烯层),并在石墨烯层上嵌入第一电极引线3,如图5所示。
(3)制备1cm×2cm×75μm的PDMS薄膜载体21(第一弹性体基底),在 PDMS薄膜载体的表面上蒸发一层100nm厚的Cu金属层,并在Cu金属层的侧表面嵌入电极引线4(第二电极引线),如图6所示。
(4)制备1cm×2cm×75μm的PDMS薄膜载体25(第二弹性体基底),通过层压工艺将步骤(2)制备的镍薄膜表面沉积的石墨烯层24(第一石墨烯层)转移到PDMS薄膜载体25上,如图7所示。
(5)将步骤(4)得到的结构的PDMS薄膜面轻压到步骤(1)的结构的PDMS胶面上,放入真空干燥箱中保持60min,以排出PDMS胶中的气泡,然后在120℃下热烘40min,使PDMS胶部分彻底固化,如图8所示。
(6)保护好电极即电极引线,将步骤5得到的结构置于三氯化铁腐蚀液中并用腐蚀液冲洗,以去除上、下表面的铜和镍层,最后用去离子水反复冲洗并吹干,得到如图9所示的薄膜总厚度大约为300μm的结构。
(7)将步骤6制得的结构置于上层,步骤3制得的PDMS载体覆铜薄膜置于下层,然后封装成具有250μm厚度的空腔的封装体,如图10所示,空腔内填充50μL二乙基甲基-(2-甲氧乙基)铵基双(三氟甲磺酰基)酰亚胺离子液体作为电解质,最后将第一电极引线和第二电极引线分别与第二石墨烯层上的两个电极相连接,振动状态可视化检测装置制作完成。
综上所述,本公开是在蝎子缝感受器的高灵敏振动感知机理的研究基础上,基于微电子、化学气相沉积、湿法刻蚀、电致变色显示等技术,提出了一种振动状态可视化检测装置、制作方法及应用,该装置可感知主轴的振动状态,并根据振动状态控制变色器展现出不同程度的非透明导电层的颜色,以实现对主轴振动状态实时可视化监测。本公开克服了现有技术中由于传统振动传感器尺寸过大不易安装、监测信号信噪比低、灵敏度低及监测结果不易直观反馈给操作人员等缺陷,具有响应快、灵敏度高、安装方便、可视化振动信号等特点。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (15)

  1. 一种振动状态可视化检测装置,其特征在于,包括相互并联电连接的超敏振动传感器与电致变色器;
    所述超敏振动传感器,当感知到外部的机械振动时,根据所述机械振动的强度的不同,电阻会发生改变,进而引起所述超敏振动传感器的端电压的改变;
    所述电致变色器,根据所述端电压的大小产生深浅不同的颜色。
  2. 根据权利要求1所述的振动状态可视化检测装置,其特征在于,所述电致变色器从下至上依次包括:第一弹性体基底、非透明导电层、电解液、第一石墨烯层和第二弹性体基底,所述第一石墨烯层形成于所述第二弹性体基底的下表面。
  3. 根据权利要求2所述的振动状态可视化检测装置,其特征在于,所述非透明导电层采用有颜色的导体材料制作。
  4. 根据权利要求2所述的振动状态可视化检测装置,其特征在于,所述超敏振动传感器包括形成在所述第二弹性体基底的上表面的第三弹性体基底,所述第三弹性体基底的上表面有若干平行的狭缝,所述第三弹性体基底的上表面包括狭缝的表面均设置有第二石墨烯层,所述第二石墨烯层上平行于所述狭缝的两端各设置有一个电极。
  5. 根据权利要求4所述的振动状态可视化检测装置,其特征在于,两个所述电极中,一个与所述非透明导电层电连接,另一个与所述第一石墨烯层电连接。
  6. 根据权利要求4所述的振动状态可视化检测装置,其特征在于,所述第一弹性体基底和/或所述第二弹性体基底和/或所述第三弹性体基底采用PDMS制作而成。
  7. 根据权利要求2所述的振动状态可视化检测装置,其特征在于,所述电解液为包含二乙基甲基-(2-甲氧乙基)铵基双(三氟甲磺酰基)酰亚胺离子的电解液。
  8. 根据权利要求2所述的振动状态可视化检测装置,其特征在于,所述第一石墨烯层由多层石墨烯组成。
  9. 一种如权利要求2-8任一所述的振动状态可视化检测装置的制作方法,其特征在于,包括如下:
    制作结构Ⅰ,所述结构Ⅰ从下至上依次包括:所述第一石墨烯层、所述第二弹性体基底、所述第三弹性体基底、所述第二石墨烯层以及两个所述电极;
    制作结构Ⅱ,所述结构Ⅱ从下至上依次包括:所述第一弹性体基底和所述非透明导电层;
    将所述结构Ⅰ和所述结构Ⅱ组装。
  10. 根据权利要求9所述的振动状态可视化检测装置的制作方法,其特征在于,所述将所述结构Ⅰ和所述结构Ⅱ组装,包括:
    所述非透明导电层与所述第一石墨烯层相对,中间形成一空腔,所述空腔中容置有电解液;将两个所述电极中,一个与所述非透明导电层电连接,另一个与所述第一石墨烯层电连接。
  11. 根据权利要求9所述的振动状态可视化检测装置的制作方法,其特征在于,包括如下:
    步骤A、准备一具有平行狭缝的铜模具,在所述铜模具的狭缝面制作第二石墨烯层,并在所述第二石墨烯层上平行于所述狭缝的两端各制作一个电极,最后在所述第二石墨烯层上制作第三弹性体基底;
    步骤B、准备一镍基底,在所述镍基底上制作第一石墨烯层,并在所述第一石墨烯层上嵌入第一电极引线;
    步骤C、准备第一弹性体基底,在所述第一弹性体基底的表面制作非透明导电层,并在所述非透明导电层上嵌入第二电极引线;
    步骤D、准备第二弹性体基底,将所述第二弹性体基底层压至所述步骤B中的第一石墨烯层的表面;
    步骤E、将所述步骤D得到的结构的第二弹性体基底所在面与所述步骤A中的第三弹性体基底所在面组装在一起。
  12. 根据权利要求11所述的振动状态可视化检测装置的制作方法,其特征在于,还包括如下:
    步骤F、采用腐蚀液去除所述步骤E得到的结构中的所述铜模具和所述镍基底;
    步骤G、将所述步骤C得到的结构与所述步骤F得到的结构封装,中间形成一空腔,其中,所述非透明导电层与所述第一石墨烯层相对,所述空腔中容置有电解液;
    步骤H、将所述第一电极引线和所述第二电极引线分别与所述第二石墨烯层 上的两个电极相连接。
  13. 根据权利要求11所述的振动状态可视化检测装置的制作方法,其特征在于,所述第一石墨烯层和/或所述第二石墨烯层采用化学气相沉积的方法制作而成。
  14. 根据权利要求12所述的振动状态可视化检测装置的制作方法,其特征在于,所述步骤F中,所述腐蚀液为三氯化铁溶液。
  15. 一种如权利要求1-8任一所述的振动状态可视化检测装置的应用,将所述超敏振动传感器贴附或嵌入待监测的主轴上,并在所述超敏振动传感器与所述电致变色器的并联电路的干路上串联一定值电阻,在整个电路两端外接固定电压,根据所述电致变色器显示的颜色的深浅来判断所述主轴的振动大小。
PCT/CN2019/114582 2018-12-30 2019-10-31 一种振动状态可视化检测装置、制作方法及应用 WO2020140598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811643359.5 2018-12-30
CN201811643359.5A CN109752077B (zh) 2018-12-30 2018-12-30 一种振动状态可视化检测装置、制作方法及应用

Publications (1)

Publication Number Publication Date
WO2020140598A1 true WO2020140598A1 (zh) 2020-07-09

Family

ID=66404618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114582 WO2020140598A1 (zh) 2018-12-30 2019-10-31 一种振动状态可视化检测装置、制作方法及应用

Country Status (2)

Country Link
CN (1) CN109752077B (zh)
WO (1) WO2020140598A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752077B (zh) * 2018-12-30 2020-05-19 吉林大学 一种振动状态可视化检测装置、制作方法及应用
CN110085018A (zh) * 2019-06-06 2019-08-02 吉林大学 一种振动信号无线采集装置及无线采集系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048301A1 (de) * 2009-10-05 2011-04-07 Schaeffler Technologies Gmbh & Co. Kg Sensor
CN104375350A (zh) * 2014-10-31 2015-02-25 合肥博一环保科技有限公司 一种多功能可控电致变色器件及其制作方法
CN106980088A (zh) * 2016-01-15 2017-07-25 吴鋆杰 一种小巧便携的电池电量检测装置
CN108628052A (zh) * 2018-04-25 2018-10-09 江西沃格光电股份有限公司 电致变色模组及电致变色玻璃
CN108779113A (zh) * 2016-03-10 2018-11-09 佳能株式会社 有机化合物、电致变色器件、电致变色装置、光学过滤器、图像拾取装置、透镜单元和窗构件
CN109752077A (zh) * 2018-12-30 2019-05-14 吉林大学 一种振动状态可视化检测装置、制作方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048301A1 (de) * 2009-10-05 2011-04-07 Schaeffler Technologies Gmbh & Co. Kg Sensor
CN104375350A (zh) * 2014-10-31 2015-02-25 合肥博一环保科技有限公司 一种多功能可控电致变色器件及其制作方法
CN106980088A (zh) * 2016-01-15 2017-07-25 吴鋆杰 一种小巧便携的电池电量检测装置
CN108779113A (zh) * 2016-03-10 2018-11-09 佳能株式会社 有机化合物、电致变色器件、电致变色装置、光学过滤器、图像拾取装置、透镜单元和窗构件
CN108628052A (zh) * 2018-04-25 2018-10-09 江西沃格光电股份有限公司 电致变色模组及电致变色玻璃
CN109752077A (zh) * 2018-12-30 2019-05-14 吉林大学 一种振动状态可视化检测装置、制作方法及应用

Also Published As

Publication number Publication date
CN109752077B (zh) 2020-05-19
CN109752077A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US10816418B2 (en) Three-layer self-healing flexible strain sensor and preparation method thereof
Tang et al. A highly aligned nanowire‐based strain sensor for ultrasensitive monitoring of subtle human motion
Duan et al. A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials
US7854173B2 (en) Strain sensor
Park et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays
WO2020140598A1 (zh) 一种振动状态可视化检测装置、制作方法及应用
CN103344374B (zh) 隐藏式mems压力传感器敏感芯片及其制作方法
US8544337B2 (en) Piezoelectric chromic impact sensor
CN104024996B (zh) 触摸面板和带触摸面板的显示装置
CN105136873B (zh) 一种集成传感器及其制备方法
CN108180927B (zh) 一种全柔性自供能传感器及其制作方法
CN105264468B (zh) 压力检测显示装置和电子设备
JP5588466B2 (ja) タッチパネルの配線構造
TW201142415A (en) Display device with a touch device
CN209131870U (zh) 压力传感器
CN107748025A (zh) 一种石墨烯/六方氮化硼异质结构压力传感器及制备方法
CN104062059A (zh) 一种mems压阻式压力传感器及其制造方法
CN105987784B (zh) 高真空光纤f-p压力传感器
CN110793682A (zh) 一种悬浮式阵列孔石墨烯mems微压传感器芯片及其制备方法
CN105136352A (zh) 一种电容式压力传感器及其制备方法
CN105300573B (zh) 一种梁膜结构压电传感器及其制作方法
KR101077577B1 (ko) 양면전극 형태의 미세 압력센서의 제조방법
CN114812375A (zh) 一种pvdf基碳纤维复合压电传感器及其制备方法
CN210347515U (zh) 一种液体泄露检测传感器
CN109504302B (zh) 一种建筑幕墙的安全防护膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907183

Country of ref document: EP

Kind code of ref document: A1