WO2020140554A1 - 毫米波ltcc滤波器 - Google Patents

毫米波ltcc滤波器 Download PDF

Info

Publication number
WO2020140554A1
WO2020140554A1 PCT/CN2019/111286 CN2019111286W WO2020140554A1 WO 2020140554 A1 WO2020140554 A1 WO 2020140554A1 CN 2019111286 W CN2019111286 W CN 2019111286W WO 2020140554 A1 WO2020140554 A1 WO 2020140554A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
closed resonant
rectangular
metallized
closed
Prior art date
Application number
PCT/CN2019/111286
Other languages
English (en)
French (fr)
Inventor
买剑春
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020140554A1 publication Critical patent/WO2020140554A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Definitions

  • the invention relates to an antenna, in particular to a millimeter wave LTCC filter used in the field of communication electronic products.
  • the fifth generation mobile phone mobile communication standard also known as the fifth generation mobile communication technology (5G).
  • 5G networks are developing in the direction of network diversification, broadbandization, integration, and intelligence. With the popularity of various smart terminals, mobile data traffic will show explosive growth. With the gradual landing of 5G networks, the frequency band of mobile phone communications will increase substantially.
  • the millimeter wave full-band frequency band of 5G communication includes 26.5 ⁇ 29.5GHz and a relative bandwidth of 10.7%.
  • Corresponding millimeter wave radio frequency systems require good suppression performance outside the DC ⁇ 60GHz band.
  • the millimeter wave filter made by the LTCC process has higher integration, smaller device size and lower loss, but it has strict requirements for the processing of metallized vias.
  • the technical problem to be solved by the present invention is to provide a millimeter wave LTCC filter with small volume, large bandwidth and low loss.
  • the millimeter wave LTCC filter includes: a system formation, the system formation includes a first system formation and a second spaced apart sequentially from top to bottom System strata, third system strata, fourth system strata, and fifth system strata; adjacent two layers of the system strata enclose a closed resonant cavity, and the five layers of the system strata in turn enclose the same peripheral dimensions and interconnected first A closed resonant cavity, a second closed resonant cavity, a third closed resonant cavity, and a fourth closed resonant cavity; metallized vias, the metallized vias including penetrating the first closures respectively along the systematic stacking direction A plurality of first metallized vias of the resonant cavity, a plurality of second metallized vias penetrating the second closed resonant cavity, a plurality of third metallized vias penetrating the third closed resonant
  • the first closed resonant cavity has a rectangular structure, and the plurality of first metalized vias are arranged at equal intervals along the periphery of the first closed resonant cavity;
  • the second closed resonant cavity has a rectangular structure, A plurality of the second metalized vias are arranged at equal intervals along the periphery of the second closed resonant cavity;
  • the third closed resonant cavity has a rectangular structure, and the plurality of third metalized vias are arranged along the first The peripheral edges of the three closed resonant cavities are arranged at equal intervals;
  • the fourth closed resonant cavity is in a rectangular structure, and the plurality of fourth metalized vias are arranged at regular intervals along the peripheral edge of the fourth closed resonant cavity.
  • the first probe is inserted into the first closed resonant cavity from the geometric center of the first closed resonant cavity; the second probe is inserted from the geometric center of the fourth closed resonant cavity to Inside the fourth closed resonant cavity.
  • the hole center distance between two adjacent first metallized vias is less than 2 to 2.5 times the hole diameter of the first metallized vias; the hole centers of two adjacent second metallized vias The distance is less than 2 ⁇ 2.5 times the aperture of the second metallized via; the center-to-center distance between two adjacent third metallized vias is less than 2 ⁇ 2.5 times the aperture of the third metallized via; phase The hole center distance between two adjacent fourth metallized vias is less than 2 to 2.5 times the aperture diameter of the fourth metallized vias.
  • the two opposite ends of the second system formation are respectively provided with two second rectangular through holes symmetrically arranged therethrough; the opposite ends of the third system formation are respectively provided with Symmetrically set two third rectangular through holes; the fourth system stratum has the same structure as the second system stratum, and it is provided with two symmetric two fourth rectangular through holes; the first closed resonant cavity passes through The second rectangular through-hole communicates with the second closed resonant cavity, the second closed resonant cavity communicates with the third closed resonant cavity through the third rectangular through-hole, and the third closed resonant cavity passes through The fourth rectangular through hole communicates with the fourth closed resonant cavity.
  • the two second rectangular through holes are located in the area surrounded by the second metallized vias; the two third rectangular through holes are located in the area surrounded by the third metallized vias Within the range, and the second rectangular through holes and the third rectangular through holes are arranged alternately.
  • the two second rectangular through holes are respectively located on opposite sides of the short axis of the second system formation, and the two third rectangular through holes are respectively located on opposite sides of the long axis of the third system formation .
  • the millimeter wave LTCC filter further includes a substrate layer interposed between two adjacent system formations, and the substrate layer is made of LTCC material.
  • the millimeter-wave LTCC filter of the present invention designs each closed resonant cavity to have the same peripheral size, and adjusts the aperture of the metalized vias provided in each closed resonant cavity, so that the closed resonant cavity As the equivalent size changes, the same-pitch metallized vias shrink, the size of the equivalent closed resonant cavity increases, and the self-resonant mode of the closed resonant cavity changes, thereby achieving greater bandwidth and lower losses.
  • FIG. 1 is a three-dimensional schematic diagram of the millimeter wave LTCC filter of the present invention
  • FIG. 2 is a schematic diagram of a partial stereoscopic structure of a millimeter wave LTCC filter of the present invention
  • FIG. 3 is a schematic diagram of the structure of each system stratum of the millimeter wave LTCC filter of the present invention.
  • the present invention provides a millimeter-wave LTCC filter 100.
  • the millimeter-wave LTCC filter 100 includes a system ground layer 1, a metalized via 2, a first probe 3, and a second probe 4.
  • the system formation 1 includes a first system formation 1a, a second system formation 1b, a third system formation 1c, a fourth system formation 1d, and a fifth system formation 1e which are sequentially stacked from top to bottom.
  • the outer dimensions of the first system formation 1a, the second system formation 1b, the third system formation 1c, the fourth system formation 1d and the fifth system formation 1e are the same, For example, all are rectangles of the same size.
  • the millimeter wave LTCC filter further includes a substrate layer interposed between two adjacent system formations, and the substrate layer is made of LTCC material.
  • Two adjacent layers of the system stratum 1 enclose a closed resonant cavity 5, and five layers of the system stratum 1 enclose the first closed resonant cavity 5a, the second closed resonant cavity 5b, and the The three closed resonant cavity 5c and the fourth closed resonant cavity 5d.
  • the metalized vias 2 include a plurality of first metalized vias 21 penetrating through the first closed resonant cavity 5a along the stacking direction of the system formation 1, and a plurality of penetrating through the second closed cavity 5b
  • the second metallized vias 22 penetrate a plurality of third metallized vias 23 of the third closed resonant cavity 5c, and penetrate a plurality of fourth metalized vias 24 of the fourth closed resonant cavity 5d.
  • the plurality of first metalized vias 21, the plurality of second metalized vias 22, the plurality of third metalized vias 23, and the plurality of fourth metalized vias 24 are directly opposite It is provided that the metalized vias 2 of each closed resonant cavity 5 have a concentric hole structure.
  • the diameter of the first metalized via 21 and the diameter of the fourth metalized via 24 are equal, and the diameter of the second metalized via 22 and the third metalized via The diameter of 23 is equal, and the diameter of the first metalized via 21 is smaller than the diameter of the second metalized via 22.
  • the arrangement of the above structure adjusts the size of the apertures of the metalized vias of different closed resonant cavities 5, so that the equivalent size of each closed resonant cavity 5 changes, and the metalized vias 2 of the same pitch of the same closed resonant cavity 5 shrink, which effectively closes As the size of the resonant cavity increases, the self-resonant mode of the closed resonant cavity changes, thereby achieving a larger bandwidth.
  • the hole center distance between two adjacent first metalized vias 21 is less than 2 to 2.5 times the diameter of the first metalized via 21; two adjacent two second metalized vias 22
  • the hole-to-center distance is less than 2 ⁇ 2.5 times the diameter of the second metallized via 22;
  • the hole-to-center distance between two adjacent third metallized vias 23 is less than 2 ⁇ 2.5 times the third metallized
  • the center distance between two adjacent fourth metallized vias 24 is less than 2 to 2.5 times the diameter of the fourth metallized via 24.
  • the first metalized via 21 and the first closed resonant cavity 5a form a first substrate integrated waveguide unit 10
  • the second metalized via 22 and the first closed resonant cavity 5b form a second base Integrated waveguide unit 20
  • the third metalized via 23 and the third closed resonant cavity 5c form a third substrate integrated waveguide unit 30, the fourth metalized via 24 and the fourth closed resonance
  • the cavity 5d forms a fourth substrate integrated waveguide unit 40.
  • the first closed resonant cavity 5a has a rectangular structure, and the plurality of first metalized vias 21 are arranged at regular intervals along the periphery of the first closed resonant cavity 5a, for example, surrounded by a rectangular structure .
  • the second closed resonant cavity 5b has a rectangular structure, and the plurality of second metalized vias 22 are arranged at regular intervals along the periphery of the second closed resonant cavity 5b, for example, surrounded by a rectangular structure.
  • the third closed resonant cavity 5c has a rectangular structure, and the plurality of third metalized vias 23 are arranged at equal intervals along the periphery of the third closed resonant cavity 5c, for example, surrounded by a rectangular structure.
  • the fourth closed resonant cavity 5d has a rectangular structure, and the plurality of fourth metalized vias 24 are arranged at regular intervals along the circumference of the fourth closed resonant cavity 5d, for example, surrounded by a rectangular structure.
  • the two opposite ends of the second system stratum 1b are provided with two second rectangular through holes 11 symmetrically arranged therethrough, and two second rectangular through holes 11 is located in the area surrounded by the second metalized via 22.
  • the opposite ends of the third system formation 1c are provided with two third rectangular through holes 12 symmetrically arranged therethrough, and the two third rectangular through holes 12 are located in the third metalized via Within the area enclosed by 23, the second rectangular through holes 11 and the third rectangular through holes 12 are alternately arranged.
  • the fourth system stratum 1d has the same structure as the second system stratum 1b, and it is provided with two fourth rectangular through holes 13 which are symmetrical, two of the fourth rectangular through holes 13 and two of the second The rectangular through holes 11 are directly opposite.
  • the first closed resonant cavity 5a communicates with the second closed resonant cavity 5b through the second rectangular through hole 11, and the second closed resonant cavity 5b communicates with the third through the third rectangular through hole 12
  • the closed resonant cavity 5c communicates, and the third closed resonant cavity 5c communicates with the fourth closed resonant cavity 5d through the fourth rectangular through-hole 13.
  • the two second rectangular through holes 11 are respectively located on opposite sides of the short axis of the second system formation 1b, and the second rectangular through holes 11 are along the short axis direction of the second system formation 1b Extension;
  • the two third rectangular through holes 12 are respectively located on opposite sides of the long axis of the third system formation 1c, and the third rectangular through holes 12 extend along the long axis direction of the third system formation 1c.
  • One end of the first probe 3 is inserted into the first closed resonant cavity 5a to form a feeding structure.
  • the second probe 4 is arranged symmetrically with the first probe 3, and one end of the second probe 4 is inserted into the fourth closed resonant cavity 5d to form a feeding structure.
  • the above structure can be excited by the first probe 3 and the second probe 4 in conjunction with the coaxial line to achieve greater bandwidth, less loss, and easier interconnection with the ceramic package microstrip antenna, making the millimeter wave LTCC of the present invention
  • the insertion loss of the filter is reduced from 1.8dB to 1dB compared with the prior art structure.
  • the first probe 3 is inserted into the first closed resonant cavity 5a from the geometric center of the first closed resonant cavity 5a; the second probe 4 is formed by the fourth closed resonant cavity The geometric center of 5d is inserted into the fourth closed resonant cavity 5d.
  • S11 is the port reflection coefficient of the millimeter wave LTCC filter of the present invention
  • S21 is the transmission coefficient.
  • the millimeter wave LTCC filter of the present invention has excellent performance, and the insertion loss is less than 1dB (S21 is greater than -1dB). Part of the out-of-band suppression is less than -30dB, which meets the requirements of the 5G millimeter wave communication system RF front end.
  • the millimeter-wave LTCC filter of the present invention designs each closed resonant cavity to be of equal size, and adjusts the aperture of the metalized vias provided in each closed resonant cavity, so that each closed resonant cavity is equal
  • the effective size changes, the same pitch metalized vias shrink, the size of the equivalent closed cavity increases, and the self-resonance mode of the closed cavity changes, thereby achieving the purpose of greater bandwidth and less loss, which is in line with the 5G millimeter wave communication system RF front end Claim.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种毫米波LTCC滤波器,包括系统地层、金属化过孔、第一探针和第二探针;相邻两层系统地层围成一个闭合谐振腔,每个闭合谐振腔设有多个金属化过孔且不同闭合谐振腔的金属化过孔分别正对设置形成同心孔结构;第一金属化过孔的孔径与第四金属化过孔的孔径相等,第二金属化过孔的孔径与第三金属化过孔的孔径相等,第一金属化过孔的孔径小于第二金属化过孔的孔径;第一探针的一端插入至第一闭合谐振腔内且与第一系统地层电连接,第二探针与第一探针呈同轴设置,第二探针插入至所述第四闭合谐振腔内且与所述第二系统地层电连接。与相关技术相比,本发明毫米波LTCC滤波器体积小、带宽大且损耗小。

Description

毫米波LTCC滤波器 技术领域
本发明涉及一种天线,尤其涉及一种运用在通讯电子产品领域的毫米波LTCC滤波器。
背景技术
第五代移动电话行动通信标准,也称第五代移动通信技术(5G)。未来 5G 网络正朝着网络多元化、 宽带化、 综合化、 智能化的方向发展。随着各种智能终端的普及,移动数据流量将呈现爆炸式增长。随着5G网络的逐步落地,手机通信频段将大幅增加。
技术问题
5G通信的毫米波全频带频段包含26.5~29.5GHz,10.7%相对带宽,对应相关的毫米波射频系统要求在DC~60GHz的带外均有良好的抑制性能。LTCC工艺制成的毫米波滤波器集成度更高,器件尺寸更小,损耗更低,但对金属化过孔加工有严格要求。
因此,有必要提供一种新的毫米波LTCC滤波器解决上述问题。
技术解决方案
本发明需要解决的技术问题是提供一种体积小、带宽大且损耗小的毫米波LTCC滤波器。
为解决上述技术问题,本发明提供了一种毫米波LTCC滤波器,该毫米波LTCC滤波器包括:系统地层,所述系统地层包括由上向下依次间隔叠设的第一系统地层、第二系统地层、第三系统地层、第四系统地层和第五系统地层;相邻两层所述系统地层围成一个闭合谐振腔,五层所述系统地层依次围成外围尺寸相同且相互连通的第一闭合谐振腔、第二闭合谐振腔、第三闭合谐振腔以及第四闭合谐振腔;金属化过孔,所述金属化过孔包括沿所述系统地层叠设方向分别贯穿所述第一闭合谐振腔的多个第一金属化过孔、贯穿所述第二闭合谐振腔的多个第二金属化过孔、贯穿所述第三闭合谐振腔的多个第三金属化过孔以及贯穿所述第四闭合谐振腔的多个第四金属化过孔;多个所述第一金属化过孔、多个所述第二金属化过孔、多个所述第三金属化过孔以及多个所述第四金属化过孔分别正对设置形成同心孔结构;所述第一金属化过孔的孔径与所述第四金属化过孔的孔径相等,所述第二金属化过孔的孔径与所述第三金属化过孔的孔径相等,所述第一金属化过孔的孔径小于所述第二金属化过孔的孔径;所述第一金属化过孔与所述第一闭合谐振腔形成第一基片集成波导单元,所述第二金属化过孔与所述第一闭合谐振腔形成第二基片集成波导单元,所述第三金属化过孔与所述第三闭合谐振腔形成第三基片集成波导单元,所述第四金属化过孔与所述第四闭合谐振腔形成第四基片集成波导单元;第一探针,所述第一探针的一端插入至所述第一闭合谐振腔内;以及第二探针,所述第二探针与所述第一探针呈同轴设置,所述第二探针的一端插入至所述第四闭合谐振腔内。
优选的,所述第一闭合谐振腔呈矩形结构,多个所述第一金属化过孔沿所述第一闭合谐振腔的周缘等间隔排布;所述第二闭合谐振腔呈矩形结构,多个所述第二金属化过孔沿所述第二闭合谐振腔的周缘等间隔排布;所述第三闭合谐振腔呈矩形结构,多个所述第三金属化过孔沿所述第三闭合谐振腔的周缘等间隔排布;所述第四闭合谐振腔呈矩形结构,多个所述第四金属化过孔沿所述第四闭合谐振腔的周缘等间隔排布。
优选的,所述第一探针由所述第一闭合谐振腔的几何中心插入至所述第一闭合谐振腔内;所述第二探针由所述第四闭合谐振腔的几何中心插入至所述第四闭合谐振腔内。
优选的,相邻两个所述第一金属化过孔的孔心距小于2~2.5倍所述第一金属化过孔的孔径;相邻两个所述第二金属化过孔的孔心距小于2~2.5倍所述第二金属化过孔的孔径;相邻两个所述第三金属化过孔的孔心距小于2~2.5倍所述第三金属化过孔的孔径;相邻两个所述第四金属化过孔的孔心距小于2~2.5倍所述第四金属化过孔的孔径。
优选的,所述第二系统地层的相对两端分别设有贯穿其上的呈对称设置的两个第二矩形通孔;所述第三系统地层的相对两端分别设有贯穿其上的呈对称设置的两个第三矩形通孔;所述第四系统地层与所述第二系统地层结构相同,其设有呈对称的两个第四矩形通孔;所述第一闭合谐振腔通过所述第二矩形通孔与所述第二闭合谐振腔连通,所述第二闭合谐振腔通过所述第三矩形通孔与所述第三闭合谐振腔连通,所述第三闭合谐振腔通过所述第四矩形通孔与所述第四闭合谐振腔连通。
优选的,两个所述第二矩形通孔位于所述第二金属化过孔围成的区域范围内;两个所述第三矩形通孔位于所述第三金属化过孔围成的区域范围内,且所述第二矩形通孔与所述第三矩形通孔呈交错设置。
优选的,两个所述第二矩形通孔分别位于所述第二系统地层的短轴相对两侧,两个所述第三矩形通孔分别位于所述第三系统地层的长轴相对两侧。
优选的,所述毫米波LTCC滤波器还包括夹设于相邻两所述系统地层之间的基材层,所述基材层由LTCC材料制成。
有益效果
相较于现有技术,本发明的毫米波LTCC滤波器将各闭合谐振腔设计为外围相同尺寸,并对各闭合谐振腔内设置的金属化过孔的孔径进行调节,使得各闭合谐振腔的等效尺寸变化,相同间距金属化过孔缩小,等效闭合谐振腔尺寸增大,闭合谐振腔自谐振模式改变,进而实现带宽更大,损耗更小的目的。
附图说明
图1为本发明毫米波LTCC滤波器的立体结构示意图;
图2为本发明毫米波LTCC滤波器的部分立体结构示意图;
图3为本发明毫米波LTCC滤波器的各系统地层的结构示意图;
图4为本发明毫米波LTCC滤波器的S特性参数曲线图。
本发明的实施方式
下面将结合附图和实施方式对本发明作进一步说明。
请同时参阅图1-3本发明提供了一种毫米波LTCC滤波器100,该毫米波LTCC滤波器100包括系统地层1、金属化过孔2、第一探针3以及第二探针4。
所述系统地层1包括由上向下依次间隔叠设的第一系统地层1a、第二系统地层1b、第三系统地层1c、第四系统地层1d和第五系统地层1e。本实施方式中,所述第一系统地层1a、所述第二系统地层1b、所述第三系统地层1c、所述第四系统地层1d和所述第五系统地层1e的外围尺寸均相同,比如均为大小相同的矩形。
本实施方式中,所述毫米波LTCC滤波器还包括夹设于相邻两所述系统地层之间的基材层,所述基材层由LTCC材料制成。
相邻两层所述系统地层1围成一个闭合谐振腔5,五层所述系统地层1由上向下依次围成外围尺寸相同的第一闭合谐振腔5a、第二闭合谐振腔5b、第三闭合谐振腔5c以及第四闭合谐振腔5d。
所述金属化过孔2包括沿所述系统地层1叠设方向分别贯穿所述第一闭合谐振腔5a的多个第一金属化过孔21,贯穿所述第二闭合腔体5b的多个第二金属化过孔22,贯穿所述第三闭合谐振腔5c的多个第三金属化过孔23,贯穿所述第四闭合谐振腔5d的多个第四金属化过孔24。多个所述第一金属化过孔21、多个所述第二金属化过孔22、多个所述第三金属化过孔23以及多个所述第四金属化过孔24分别正对设置,即各闭合谐振腔5的金属化过孔2呈同心孔结构。
本实施方式中,所述第一金属化过孔21的孔径与所述第四金属化过孔24的孔径相等,所述第二金属化过孔22的孔径与所述第三金属化过孔23的孔径相等,所述第一金属化过孔21的孔径小于所述第二金属化过孔22的孔径。上述结构的设置调整了不同闭合谐振腔5的金属化过孔孔径大小,使得各闭合谐振腔5的等效尺寸变化,同一闭合谐振腔5的相同间距的金属化过孔2缩小,等效闭合谐振腔尺寸增大,闭合谐振腔自谐振模式改变,从而实现更大带宽。
具体的,相邻两个所述第一金属化过孔21的孔心距小于2~2.5倍所述第一金属化过孔21的孔径;相邻两个所述第二金属化过孔22的孔心距小于2~2.5倍所述第二金属化过孔22的孔径;相邻两个所述第三金属化过孔23的孔心距小于2~2.5倍所述第三金属化过孔23的孔径;相邻两个所述第四金属化过孔24的孔心距小于2~2.5倍所述第四金属化过孔24的孔径。
所述第一金属化过孔21与所述第一闭合谐振腔5a形成第一基片集成波导单元10,所述第二金属化过孔22与所述第一闭合谐振腔5b形成第二基片集成波导单元20,所述第三金属化过孔23与所述第三闭合谐振腔5c形成第三基片集成波导单元30,所述第四金属化过孔24与所述第四闭合谐振腔5d形成第四基片集成波导单元40。
本实施方式中,所述第一闭合谐振腔5a呈矩形结构,多个所述第一金属化过孔21沿所述第一闭合谐振腔5a的周缘等间隔排布,比如围设成矩形结构。
所述第二闭合谐振腔5b呈矩形结构,多个所述第二金属化过孔22沿所述第二闭合谐振腔5b的周缘等间隔排布,比如围设成矩形结构。
所述第三闭合谐振腔5c呈矩形结构,多个所述第三金属化过孔23沿所述第三闭合谐振腔5c的周缘等间隔排布,比如围设成矩形结构。
所述第四闭合谐振腔5d呈矩形结构,多个所述第四金属化过孔24沿所述第四闭合谐振腔5d的周缘等间隔排布,比如围设成矩形结构。
请结合图3所示,具体的,所述第二系统地层1b的相对两端分别设有贯穿其上的呈对称设置的两个第二矩形通孔11,两个所述第二矩形通孔11位于所述第二金属化过孔22围成的区域范围内。
所述第三系统地层1c的相对两端分别设有贯穿其上的呈对称设置的两个第三矩形通孔12,两个所述第三矩形通孔12位于所述第三金属化过孔23围成的区域范围内,且所述第二矩形通孔11与所述第三矩形通孔12呈交错设置。
所述第四系统地层1d与所述第二系统地层1b结构相同,其设有呈对称的两个第四矩形通孔13,两个所述第四矩形通孔13与两个所述第二矩形通孔11正对设置。
所述第一闭合谐振腔5a通过所述第二矩形通孔11与所述第二闭合谐振腔5b连通,所述第二闭合谐振5b腔通过所述第三矩形通孔12与所述第三闭合谐振腔5c连通,所述第三闭合谐振腔5c通过所述第四矩形通孔13与所述第四闭合谐振腔5d连通。
更优的,两个所述第二矩形通孔11分别位于所述第二系统地层1b的短轴相对两侧,所述第二矩形通孔11沿所述第二系统地层1b的短轴方向延伸;两个所述第三矩形通孔12分别位于所述第三系统地层1c的长轴相对两侧,所述第三矩形通孔12沿所述第三系统地层1c的长轴方向延伸。
所述第一探针3的一端插入至所述第一闭合谐振腔5a内,形成馈电结构。
第二探针4与所述第一探针3呈对称设置,所述第二探针4的一端插入至所述第四闭合谐振腔5d内,形成馈电结构。上述结构可通过所述第一探针3和所述第二探针4配合同轴线激励,实现带宽更大,损耗更小,更容易和陶瓷封装微带天线互联,使得本发明毫米波LTCC滤波器的插损较现有技术结构从1.8dB降到1dB。
更优的,所述第一探针3由所述第一闭合谐振腔5a的几何中心插入至所述第一闭合谐振腔5a内;所述第二探针4由所述第四闭合谐振腔5d的几何中心插入至所述第四闭合谐振腔5d内。
请结合图4所示,S11为本发明毫米波LTCC滤波器的端口反射系数,S21为传输系数,本发明的毫米波LTCC滤波器其性能优,插损小于1dB(S21大于-1dB),大部分带外抑制小于-30dB,符合5G毫米波通信系统射频前端的要求。
相较于现有技术,本发明的毫米波LTCC滤波器将各闭合谐振腔设计为等尺寸,并对各闭合谐振腔内设置的金属化过孔的孔径进行调节,使得各闭合谐振腔的等效尺寸变化,相同间距金属化过孔缩小,等效闭合谐振腔尺寸增大,闭合谐振腔自谐振模式改变,进而实现带宽更大,损耗更小的目的,符合5G毫米波通信系统射频前端的要求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种毫米波LTCC滤波器,其特征在于,该毫米波LTCC滤波器包括:
    系统地层,所述系统地层包括由上向下依次间隔叠设的第一系统地层、第二系统地层、第三系统地层、第四系统地层和第五系统地层;相邻两层所述系统地层围成一个闭合谐振腔;五层所述系统地层由上向下依次围成外围尺寸相同且相互连通的第一闭合谐振腔、第二闭合谐振腔、第三闭合谐振腔以及第四闭合谐振腔;
    金属化过孔,所述金属化过孔包括沿所述系统地层叠设方向分别贯穿所述第一闭合谐振腔的多个第一金属化过孔、贯穿所述第二闭合谐振腔的多个第二金属化过孔、贯穿所述第三闭合谐振腔的多个第三金属化过孔以及贯穿所述第四闭合谐振腔的多个第四金属化过孔;多个所述第一金属化过孔、多个所述第二金属化过孔、多个所述第三金属化过孔以及多个所述第四金属化过孔分别正对设置形成同心孔结构;所述第一金属化过孔的孔径与所述第四金属化过孔的孔径相等,所述第二金属化过孔的孔径与所述第三金属化过孔的孔径相等,所述第一金属化过孔的孔径小于所述第二金属化过孔的孔径;所述第一金属化过孔与所述第一闭合谐振腔形成第一基片集成波导单元,所述第二金属化过孔与所述第一闭合谐振腔形成第二基片集成波导单元,所述第三金属化过孔与所述第三闭合谐振腔形成第三基片集成波导单元,所述第四金属化过孔与所述第四闭合谐振腔形成第四基片集成波导单元;
    第一探针,所述第一探针的一端插入至所述第一闭合谐振腔内系统地层;以及
    第二探针,所述第二探针与所述第一探针呈同轴设置,所述第二探针的一端插入至所述第四闭合谐振腔内。
  2. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,所述第一闭合谐振腔呈矩形结构,多个所述第一金属化过孔沿所述第一闭合谐振腔的周缘等间隔排布;所述第二闭合谐振腔呈矩形结构,多个所述第二金属化过孔沿所述第二闭合谐振腔的周缘等间隔排布;所述第三闭合谐振腔呈矩形结构,多个所述第三金属化过孔沿所述第三闭合谐振腔的周缘等间隔排布;所述第四闭合谐振腔呈矩形结构,多个所述第四金属化过孔沿所述第四闭合谐振腔的周缘等间隔排布。
  3. 根据权利要求2所述的毫米波LTCC滤波器,其特征在于,所述第一探针由所述第一闭合谐振腔的几何中心插入至所述第一闭合谐振腔内;所述第二探针由所述第四闭合谐振腔的几何中心插入至所述第四闭合谐振腔内。
  4. 根据权利要求2所述的毫米波LTCC滤波器,其特征在于,相邻两个所述第一金属化过孔的孔心距小于2~2.5倍所述第一金属化过孔的孔径;相邻两个所述第二金属化过孔的孔心距小于2~2.5倍所述第二金属化过孔的孔径;相邻两个所述第三金属化过孔的孔心距小于2~2.5倍所述第三金属化过孔的孔径;相邻两个所述第四金属化过孔的孔心距小于2~2.5倍所述第四金属化过孔的孔径。
  5. 根据权利要求2所述的毫米波LTCC滤波器,其特征在于,所述第二系统地层的相对两端分别设有贯穿其上的呈对称设置的两个第二矩形通孔;所述第三系统地层的相对两端分别设有贯穿其上的呈对称设置的两个第三矩形通孔;所述第四系统地层与所述第二系统地层结构相同,其设有呈对称的两个第四矩形通孔;所述第一闭合谐振腔通过所述第二矩形通孔与所述第二闭合谐振腔连通,所述第二闭合谐振腔通过所述第三矩形通孔与所述第三闭合谐振腔连通,所述第三闭合谐振腔通过所述第四矩形通孔与所述第四闭合谐振腔连通。
  6. 根据权利要求5所述的毫米波LTCC滤波器,其特征在于,两个所述第二矩形通孔位于所述第二金属化过孔围成的区域范围内;两个所述第三矩形通孔位于所述第三金属化过孔围成的区域范围内,且所述第二矩形通孔与所述第三矩形通孔呈交错设置。
  7. 根据权利要求6所述的毫米波LTCC滤波器,其特征在于,两个所述第二矩形通孔分别位于所述第二系统地层的短轴相对两侧,两个所述第三矩形通孔分别位于所述第三系统地层的长轴相对两侧。
  8. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,所述毫米波LTCC滤波器还包括夹设于相邻两所述系统地层之间的基材层,所述基材层由LTCC材料制成。
PCT/CN2019/111286 2018-12-31 2019-10-15 毫米波ltcc滤波器 WO2020140554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650621.9 2018-12-31
CN201811650621.9A CN109687071B (zh) 2018-12-31 2018-12-31 毫米波ltcc滤波器

Publications (1)

Publication Number Publication Date
WO2020140554A1 true WO2020140554A1 (zh) 2020-07-09

Family

ID=66191669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111286 WO2020140554A1 (zh) 2018-12-31 2019-10-15 毫米波ltcc滤波器

Country Status (3)

Country Link
US (1) US11223119B2 (zh)
CN (1) CN109687071B (zh)
WO (1) WO2020140554A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687071B (zh) 2018-12-31 2020-11-20 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN109818119B (zh) * 2018-12-31 2020-09-29 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN111755789A (zh) * 2020-06-24 2020-10-09 电子科技大学 一种基于ltcc工艺的可调滤波器馈电网络

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245204A1 (en) * 2009-03-31 2010-09-30 University Industry Cooperation Foundation Korea Aerospace University Circularly polarized antenna for satellite communication
CN104733817A (zh) * 2015-04-13 2015-06-24 南京邮电大学 层叠级联两腔基片集成波导双模带通滤波器
CN105958167A (zh) * 2016-07-01 2016-09-21 北京交通大学 垂直基片集成波导及包括该波导的垂直连接结构
CN107508047A (zh) * 2017-08-30 2017-12-22 南京信息工程大学 一种平面结构圆极化与线极化微波双向转换器
CN109687071A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626647B1 (ko) * 2003-11-06 2006-09-21 한국전자통신연구원 비아를 이용한 도파관 필터
CN201017973Y (zh) * 2006-10-17 2008-02-06 东南大学 基片集成波导多腔体级联频率选择表面
JP5512498B2 (ja) * 2010-11-29 2014-06-04 株式会社東芝 半導体装置
US8860532B2 (en) * 2011-05-20 2014-10-14 University Of Central Florida Research Foundation, Inc. Integrated cavity filter/antenna system
EP2865046A4 (en) * 2012-06-21 2015-11-25 Ericsson Telefon Ab L M PASSER FILTER AND METHOD FOR MANUFACTURING THE SAME
KR101982028B1 (ko) * 2012-09-21 2019-05-24 가부시키가이샤 무라타 세이사쿠쇼 편파 공용 안테나
US10153531B2 (en) * 2015-09-07 2018-12-11 Vayyar Imaging Ltd. Multilayer microwave filter
CN108198788A (zh) * 2017-12-13 2018-06-22 深圳市时代速信科技有限公司 一种具有高射频信号垂直互联传输性能的ltcc基板
CN108493526B (zh) * 2018-04-09 2019-06-14 广东曼克维通信科技有限公司 滤波器谐振装置以及对称折叠基片集成波导滤波器
CN108777343B (zh) * 2018-05-28 2024-01-30 东南大学 基片集成波导传输结构、天线结构及连接方法
CN109921177A (zh) * 2018-12-31 2019-06-21 瑞声科技(南京)有限公司 滤波天线器件
CN109818119B (zh) * 2018-12-31 2020-09-29 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN109687070A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN109818142A (zh) * 2018-12-31 2019-05-28 瑞声科技(南京)有限公司 一种滤波天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245204A1 (en) * 2009-03-31 2010-09-30 University Industry Cooperation Foundation Korea Aerospace University Circularly polarized antenna for satellite communication
CN104733817A (zh) * 2015-04-13 2015-06-24 南京邮电大学 层叠级联两腔基片集成波导双模带通滤波器
CN105958167A (zh) * 2016-07-01 2016-09-21 北京交通大学 垂直基片集成波导及包括该波导的垂直连接结构
CN107508047A (zh) * 2017-08-30 2017-12-22 南京信息工程大学 一种平面结构圆极化与线极化微波双向转换器
CN109687071A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器

Also Published As

Publication number Publication date
CN109687071A (zh) 2019-04-26
CN109687071B (zh) 2020-11-20
US20200212553A1 (en) 2020-07-02
US11223119B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2020140556A1 (zh) 毫米波ltcc滤波器
CN111883914B (zh) 基于siw馈电的具有滤波特性的介质谐振器宽带天线
US11139548B2 (en) Dual-mode monoblock dielectric filter and control elements
US7227428B2 (en) RF module and mode converting structure having magnetic field matching and penetrating conductor patterns
WO2020140554A1 (zh) 毫米波ltcc滤波器
WO2020140557A1 (zh) 毫米波ltcc滤波器
CN110797613B (zh) 一种十阶六陷波的介质波导滤波器
EP3780259A1 (en) Transition structure and multilayer transition structure for millimeter wave
CN109462000B (zh) 一种多层基片集成波导三阶滤波功分器
KR20120088484A (ko) 다층 기판을 이용한 안테나 구조
CN109301416B (zh) 悬置基片集成波导传输线
CN209929453U (zh) 一种新型平面集成双频带滤波器
KR101812490B1 (ko) 기판 집적형 도파관의 표면실장을 위한 전이구조 설계 및 그 제조방법
CN113764850B (zh) 一种接地共面波导-矩形波导滤波过渡结构
CN112768863A (zh) 基于hmsiw的k波段新型功率分配器及其设计方法
KR102360712B1 (ko) 이중 편파 안테나
CN105720340A (zh) 一种含有低频传输零点的紧凑型带通滤波器
CN210296585U (zh) 基于共面波导的单腔双频带微波滤波器
CN110416674B (zh) 基于共面波导的单腔双频带微波滤波器
CN107919516B (zh) 一种宽带小型化基片集成同轴线压控谐振器
WO2022007255A1 (zh) Siw天线系统及通讯终端
CN114335942B (zh) 基于tsv的非对称串列形交叉耦合滤波器
Zhang et al. Filtering antenna based on substrate integrated waveguide and patch resonators in LTCC
CN114824715B (zh) 基于矩形微同轴结构的w波段滤波功分器
US20230352805A1 (en) Electric coupling of a substrate integrated waveguide cavity resonator to a suspended substrate stripline low pass filter for introducing a notch response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907924

Country of ref document: EP

Kind code of ref document: A1