WO2020140557A1 - 毫米波ltcc滤波器 - Google Patents

毫米波ltcc滤波器 Download PDF

Info

Publication number
WO2020140557A1
WO2020140557A1 PCT/CN2019/111292 CN2019111292W WO2020140557A1 WO 2020140557 A1 WO2020140557 A1 WO 2020140557A1 CN 2019111292 W CN2019111292 W CN 2019111292W WO 2020140557 A1 WO2020140557 A1 WO 2020140557A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
closed
closed resonant
port
millimeter wave
Prior art date
Application number
PCT/CN2019/111292
Other languages
English (en)
French (fr)
Inventor
邾志民
买剑春
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020140557A1 publication Critical patent/WO2020140557A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2082Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with multimode resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER

Definitions

  • the invention relates to an antenna, in particular to a millimeter wave LTCC filter used in the field of communication electronic products.
  • the fifth generation mobile phone mobile communication standard also known as the fifth generation mobile communication technology (5G).
  • 5G networks are developing in the direction of network diversification, broadbandization, integration, and intelligence. With the popularity of various smart terminals, mobile data traffic will show explosive growth. With the gradual landing of 5G networks, the frequency band of mobile phone communications will increase substantially.
  • the millimeter wave full-band frequency band of 5G communication includes 26.5 ⁇ 29.5GHz and a relative bandwidth of 10.7%.
  • Corresponding millimeter wave radio frequency systems require good suppression performance outside the DC ⁇ 60GHz band.
  • the millimeter wave filter made by the LTCC process has higher integration, smaller device size and lower loss, but it has strict requirements for the processing of metallized vias.
  • the technical problem to be solved by the present invention is to provide a millimeter wave LTCC filter with small volume, large bandwidth and low loss.
  • the millimeter wave LTCC filter includes: a system formation, the system formation includes a first system formation and a second spaced apart sequentially from top to bottom The system stratum and the third system stratum; the adjacent two layers of the system stratum enclose a closed resonant cavity; the three layers of the system stratum sequentially enclose the first closed resonant cavity with the same peripheral size and interconnection Two closed resonant cavities; the first closed resonant cavity and the second closed resonant cavity both have a rectangular structure; metallized vias, the metallized vias each including the first A plurality of first metalized vias of a closed resonant cavity and a plurality of second metalized vias penetrating through the second closed resonant cavity; a plurality of the first metalized vias along the first closed resonant cavity
  • the second metallized vias are arranged at equal intervals along the periphery of
  • the first port includes a first headroom opening recessed inwardly from a side of the first system formation, the first headroom opening has an open end and a closed end, and the first port It also includes a first microstrip line housed in the first headroom opening and extending from the closed end of the first headroom opening to the open end of the first headroom opening and from the first microstrip line to the A second microstrip line extending outside the first system formation;
  • the second port includes a second clearance opening recessed inwardly from one side of the third system formation, the second clearance opening has an open end And a closed end, the second port further includes a third microstrip line housed in the second headroom opening and extending from the closed end of the second headroom opening to the open end of the second headroom opening and from The third microstrip line extends toward the outside of the third system formation.
  • the first port is provided on the axis of symmetry of the first system formation
  • the second port is provided on the axis of symmetry of the third system formation.
  • a plurality of the first metallized vias and a corresponding plurality of the second metallized vias are arranged directly opposite to form a concentric hole structure;
  • the apertures of the second metallized vias are equal.
  • the hole center distance between two adjacent first metallized vias is less than 2 to 2.5 times the hole diameter of the first metallized vias; the hole centers of two adjacent second metallized vias The distance is less than 2 to 2.5 times the aperture of the second metallized via.
  • the second system formation is provided with a coupling gap therethrough; the first closed resonant cavity communicates with the second closed resonant cavity through the coupling gap.
  • the coupling gap is provided on a side of the second system formation adjacent to the second port.
  • the millimeter wave LTCC filter further includes a first dielectric plate layer interposed between the first system formation and the second system formation and two adjacent system formations
  • the dielectric plate layer is made of LTCC material.
  • the millimeter-wave LTCC filter of the present invention can introduce a perturbation metallized via in each closed resonant cavity (first closed resonant cavity and second closed resonant cavity) to achieve resonance in the closed resonant cavity.
  • the excitation in the cavity starts from two degenerate modes, TM 102 and TM 201 , so that a single closed resonant cavity generates two-order resonance and introduces two transmission zeros.
  • Two closed resonant cavity generates fourth-order resonance and introduces four transmission zeros, which improves
  • the suppression performance of out-of-band spurious signals reduces the number of required cavities by half compared to traditional methods when implementing multi-order filtering; in addition, each closed resonant cavity can also excite non-resonant mode TM 101 mode, TM 101 mode and TM 102 mode and TM 201 mode cancel each other at the port.
  • Two transmission zeros are obtained outside the pass band of the LTCC filter to greatly improve the out-of-band rejection.
  • the millimeter wave LTCC filter of the invention has small volume, wide bandwidth and high out-of-band suppression.
  • FIG. 1 is a three-dimensional schematic diagram of the millimeter wave LTCC filter of the present invention
  • FIG. 2 is an exploded schematic view of a part of a three-dimensional structure of a millimeter wave LTCC filter of the present invention
  • FIG. 3 is a graph of S characteristic parameters of the millimeter wave LTCC filter of the present invention.
  • the present invention provides a millimeter-wave LTCC filter 100.
  • the millimeter-wave LTCC filter 100 includes a system ground layer 1, a metalized via 2, a perturbed metalized via 3, and a first port 4. ⁇ Transportation 5.
  • the system stratum 1 includes a first system stratum 1a, a second system stratum 1b and a third system stratum 1c which are sequentially stacked from top to bottom.
  • the first system formation 1a, the second system formation 1b, and the third system formation 1c all have the same peripheral size, for example, all have the same rectangular size.
  • Two adjacent layers of the system stratum 1 enclose a closed resonant cavity 6, and three layers of the system stratum 1 sequentially enclose a first closed resonant cavity 6a and a second closed resonant cavity 6b with the same peripheral size.
  • the first closed resonant cavity 6a and the second closed resonant cavity 6b both have a rectangular structure and communicate with each other.
  • the metallized vias 2 include a plurality of first metallized vias 21 penetrating through the first closed resonant cavity 6a and a plurality of penetrating through the second closed resonant cavity 6b along the stacking direction of the system formation 1 Second metallization via 22.
  • the plurality of first metallized vias 21 and the plurality of second metallized vias 22 are respectively arranged oppositely, that is, the metallized vias 2 of each closed resonant cavity 6 have a concentric hole structure.
  • the plurality of first metallized vias 21 and the corresponding plurality of second metallized vias 22 have a concentric hole structure.
  • the second metallized vias 22 have the same diameter.
  • the hole center distance between two adjacent first metalized vias 21 is less than 2 to 2.5 times the diameter of the first metalized via 21; two adjacent two second metalized vias 22 The hole-center distance is less than 2 to 2.5 times the diameter of the second metalized via 22.
  • the first closed resonant cavity 6a has a rectangular structure, and the plurality of first metalized vias 21 are arranged at regular intervals along the periphery of the first closed resonant cavity 6a, for example, surrounded by a rectangular structure .
  • the second closed resonant cavity 6b has a rectangular structure, and the plurality of second metalized vias 22 are arranged at regular intervals along the periphery of the second closed resonant cavity 6b, for example, surrounded by a rectangular structure.
  • the first metalized via 21 and the first closed resonant cavity 6a form a first substrate integrated waveguide unit 10, and the second metalized via 22 and the first closed resonant cavity 6a form a second base ⁇ 20 ⁇ Integrated sheet waveguide unit 20.
  • the second system stratum 1b has a coupling gap 11 penetrating therethrough; the first closed resonant cavity 6a communicates with the second closed resonant cavity 6b through the coupling gap 11, That is, coupling and communication are formed.
  • the coupling gap 11 is located in the area surrounded by the second metalized via 22.
  • the coupling gap 11 is disposed on a side of the second system formation 1b adjacent to the second port 5.
  • the perturbation metallized via 3 includes two first perturbation metals disposed in the first substrate integrated waveguide unit 10 and penetrating the first closed resonant cavity 6a along the stacking direction of the system formation 1
  • the via 31 and two second perturbation metallization vias 32 provided in the second substrate integrated waveguide unit 20 and penetrating the second closed resonant cavity 6b along the stacking direction of the system formation 1.
  • Two of the first perturbation metallized vias 31 are symmetrically arranged on the first diagonal of the first closed resonant cavity 6a with respect to the geometric center of the first closed resonant cavity 6a; two of the second The perturbation metallized vias 32 are arranged symmetrically with respect to the geometric center of the second closed resonant cavity 6b on the second diagonal of the second closed resonant cavity 6b, and the first of the first resonant cavity 6a
  • the diagonal line and the second diagonal line of the second resonant cavity 6b are orthogonally distributed.
  • the first perturbed metallized via 31 and the second perturbed metalized via 32 are introduced into the first closed resonant cavity 6a and the second closed resonant cavity 6b, respectively, which can be excited in the closed resonant cavity TM 102 and TM 201 degenerate modes, so that a single closed resonant cavity 6 generates two-order resonance and introduces two transmission zero points, two closed resonant cavity 6 generates fourth-order resonance and introduces four transmission zero points, which improves out-of-band
  • the suppression performance of spurious signals reduces the number of required cavities by half compared to traditional methods when implementing multi-stage filtering.
  • the first port 4 is disposed on one side of the first closed resonant cavity 6a to form a feed port structure.
  • the second port 5 is disposed in the second closed resonant cavity 6b to form a feed port structure.
  • the first port 4 includes a first headroom opening 41 recessed inwardly from one side of the first system formation 1a.
  • the first headroom opening 41 has an open end and a closed end.
  • the first port 4 further includes a first microstrip line 42 housed in the first headroom opening 41 and extending from the closed end of the first headroom opening 41 to the open end of the first headroom opening 42 and a self-position
  • the first microstrip line 42 extends to the second microstrip line 43 outside the first system formation 1a.
  • the second port 5 includes a second headroom opening 51 recessed inwardly from one side of the third system formation 1c, the second headroom opening 51 has an open end and a closed end, the second The port 5 further includes a third microstrip line 52 housed in the second headroom opening 51 and extending from the closed end of the second headroom opening 51 to the open end of the second headroom opening 51 and from the third The microstrip line 52 extends to the fourth microstrip line 53 outside the third system formation 1c.
  • the first port 4 is disposed on the axis of symmetry of the first system formation 1a
  • the second port 5 is disposed on the axis of symmetry of the third system formation 1c.
  • the millimeter wave LTCC filter 100 further includes a dielectric plate layer interposed between two adjacent system formations, and the dielectric plate layer is made of LTCC material.
  • FIG. 3a is the S characteristic curve of the first port of the millimeter wave LTCC filter of the present invention, that is, S11 curve
  • FIG. 3b is the S characteristic curve of the second port of the millimeter wave LTCC filter of the present invention. , which is the S21 curve.
  • the millimeter wave LTCC filter of the present invention has a reflection coefficient in the passband of less than -10dB in the frequency range of 26.38 ⁇ 29.14GHz.
  • the out-of-band suppression is greater than 30dB, and the maximum in-band insertion loss fluctuation is less than 0.3dB, which meets the requirements of the 5G millimeter wave communication system RF front end.
  • the millimeter-wave LTCC filter of the present invention can introduce a perturbation metallized via in each closed resonant cavity (first closed resonant cavity and second closed resonant cavity) to achieve resonance in the closed resonant cavity.
  • the excitation in the cavity starts from two degenerate modes, TM 102 and TM 201 , so that a single closed resonant cavity generates two-order resonance and introduces two transmission zeros.
  • Two closed resonant cavity generates fourth-order resonance and introduces four transmission zeros, which improves
  • the suppression performance of out-of-band spurious signals reduces the number of required cavities by half compared to traditional methods when implementing multi-order filtering; in addition, each closed resonant cavity can also excite non-resonant mode TM 101 mode, TM 101 mode and TM 102 mode and TM 201 mode cancel each other at the port.
  • Two transmission zeros are obtained outside the pass band of the LTCC filter to greatly improve the out-of-band rejection.
  • the millimeter wave LTCC filter of the invention has small volume, wide bandwidth and high out-of-band suppression.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种毫米波LTCC滤波器,包括系统地层、金属化过孔;设于所述第一基片集成波导单元内的两个第一微扰金属化过孔和设于所述第二基片集成波导单元内的两个第二微扰金属化过孔;两个所述第一微扰金属化过孔关于所述第一闭合谐振腔的几何中心对称设置于所述第一闭合谐振腔的第一对角线上;两个所述第二微扰金属化过孔关于所述第二闭合谐振腔的几何中心对称设置于所述第二闭合谐振腔的第二对角线上,所述第一谐振腔的所述第一对角线和所述第二谐振腔的所述第二对角线正交分布;第一端口以及第二端口。与相关技术相比,本发明毫米波LTCC滤波器体积小、带宽大且损耗小。

Description

毫米波LTCC滤波器 技术领域
本发明涉及一种天线,尤其涉及一种运用在通讯电子产品领域的毫米波LTCC滤波器。
背景技术
第五代移动电话行动通信标准,也称第五代移动通信技术(5G)。未来 5G 网络正朝着网络多元化、 宽带化、 综合化、 智能化的方向发展。随着各种智能终端的普及,移动数据流量将呈现爆炸式增长。随着5G网络的逐步落地,手机通信频段将大幅增加。
技术问题
5G通信的毫米波全频带频段包含26.5~29.5GHz,10.7%相对带宽,对应相关的毫米波射频系统要求在DC~60GHz的带外均有良好的抑制性能。LTCC工艺制成的毫米波滤波器集成度更高,器件尺寸更小,损耗更低,但对金属化过孔加工有严格要求。
因此,有必要提供一种新的毫米波LTCC滤波器解决上述问题。
技术解决方案
本发明需要解决的技术问题是提供一种体积小、带宽大且损耗小的毫米波LTCC滤波器。
为解决上述技术问题,本发明提供了一种毫米波LTCC滤波器,该毫米波LTCC滤波器包括:系统地层,所述系统地层包括由上向下依次间隔叠设的第一系统地层、第二系统地层和第三系统地层;相邻两层所述系统地层围成一个闭合谐振腔;三层所述系统地层由上向下依次围成外围尺寸相同且相互连通的第一闭合谐振腔和第二闭合谐振腔;所述第一闭合谐振腔和所述第二闭合谐振腔均呈矩形结构;金属化过孔,所述金属化过孔包括沿所述系统地层叠设方向分别贯穿所述第一闭合谐振腔的多个第一金属化过孔和贯穿所述第二闭合谐振腔的多个第二金属化过孔;多个所述第一金属化过孔沿所述第一闭合谐振腔的周缘等间隔排布;多个所述第二金属化过孔沿所述第二闭合谐振腔的周缘等间隔排布;所述第一金属化过孔与所述第一闭合谐振腔形成第一基片集成波导单元;所述第二金属化过孔与所述第一闭合谐振腔形成第二基片集成波导单元;微扰金属化过孔,所述微扰金属化过孔包括设于所述第一基片集成波导单元内且沿所述系统地层叠设方向贯穿所述第一闭合谐振腔的两个第一微扰金属化过孔和设于所述第二基片集成波导单元内且沿所述系统地层叠设方向贯穿所述第二闭合谐振腔的两个第二微扰金属化过孔;两个所述第一微扰金属化过孔关于所述第一闭合谐振腔的几何中心对称设置于所述第一闭合谐振腔的第一对角线上;两个所述第二微扰金属化过孔关于所述第二闭合谐振腔的几何中心对称设置于所述第二闭合谐振腔的第二对角线上,所述第一谐振腔的所述第一对角线和所述第二谐振腔的所述第二对角线正交分布;第一端口,所述第一端口设置于所述第一闭合谐振腔的一侧边;以及第二端口,所述第二端口设置于所述第二闭合谐振腔的与所述第一端口相对的一侧边。
优选的,所述第一端口包括自所述第一系统地层的一侧边向内凹陷开设的第一净空开口,所述第一净空开口具有一开口端和一封闭端,所述第一端口还包括收容于所述第一净空开口且自所述第一净空开口的封闭端向所述第一净空开口的开口端延伸的第一微带线及自所述第一微带线向所述第一系统地层外侧延伸的第二微带线;所述第二端口包括自所述第三系统地层的一侧边向内凹陷开设的第二净空开口,所述第二净空开口具有一开口端和一封闭端,所述第二端口还包括收容于所述第二净空开口且自所述第二净空开口的封闭端向所述第二净空开口的开口端延伸的第三微带线及自所述第三微带线向所述第三系统地层外侧延伸的第四微带线。
优选的,所述第一端口设置于所述第一系统地层的对称轴上,所述第二端口设置于所述第三系统地层的对称轴上。
优选的,多个所述第一金属化过孔和与之对应的多个所述第二金属化过孔分别正对设置形成同心孔结构;所述第一金属化过孔的孔径与所述第二金属化过孔的孔径相等。
优选的,相邻两个所述第一金属化过孔的孔心距小于2~2.5倍所述第一金属化过孔的孔径;相邻两个所述第二金属化过孔的孔心距小于2~2.5倍所述第二金属化过孔的孔径。
优选的,所述第二系统地层设有贯穿其上的耦合间隙;所述第一闭合谐振腔通过所述耦合间隙与所述第二闭合谐振腔连通。
优选的,所述耦合间隙设置于所述第二系统地层邻近所述第二端口的一侧。
优选的,所述毫米波LTCC滤波器还包括夹设于所述第一系统地层和所述第二系统地层之间的第一介质板层以及夹设于相邻两个所述系统地层之间的介质板层,所述介质板层为LTCC材料制成。
有益效果
相较于现有技术,本发明的毫米波LTCC滤波器通过在每个闭合谐振腔(第一闭合谐振腔和第二闭合谐振腔)内引入微扰金属化过孔,可在所述闭合谐振腔内激励起TM 102 和TM 201两种简并模,从而实现单个闭合谐振腔产生两阶谐振并引入两个传输零点,两个闭合谐振腔产生四阶谐振并引入四个传输零点,提高了带外杂散信号的抑制性能,在实现多阶滤波时其所需腔体数比传统方式减小一半;此外,每个闭合谐振腔还可激励起非谐振模TM 101模,TM 101模和TM 102模、TM 201模在端口相互抵消在LTCC滤波器通带外获得两个传输零点,以大大提高带外抑制。本发明的毫米波LTCC滤波器体积小,带宽宽,带外抑制度高。
附图说明
图1为本发明毫米波LTCC滤波器的立体结构示意图;
图2为本发明毫米波LTCC滤波器的部分立体结构分解示意图;
图3为本发明毫米波LTCC滤波器的S特性参数曲线图。
本发明的实施方式
下面将结合附图和实施方式对本发明作进一步说明。
请同时参阅图1-2本发明提供了一种毫米波LTCC滤波器100,该毫米波LTCC滤波器100包括系统地层1、金属化过孔2、微扰金属化过孔3、第一端口4以及第二端口5。
所述系统地层1包括由上向下依次间隔叠设的第一系统地层1a、第二系统地层1b和第三系统地层1c。本实施方式中,所述第一系统地层1a、所述第二系统地层1b和所述第三系统地层1c的外围尺寸均相同,比如均为大小相同的矩形。
相邻两层所述系统地层1围成一个闭合谐振腔6,三层所述系统地层1由上向下依次围成外围尺寸相同的第一闭合谐振腔6a和第二闭合谐振腔6b。所述第一闭合谐振腔6a和所述第二闭合谐振腔6b均呈矩形结构且相互连通。
所述金属化过孔2包括沿所述系统地层1叠设方向分别贯穿所述第一闭合谐振腔6a的多个第一金属化过孔21和贯穿所述第二闭合谐振腔6b的多个第二金属化过孔22。多个所述第一金属化过孔21和多个所述第二金属化过孔22分别正对设置,即各闭合谐振腔6的金属化过孔2呈同心孔结构。
本实施方式中,多个所述第一金属化过孔21和与之对应的多个所述第二金属化过孔22呈同心孔结构且所述第一金属化过孔21的孔径与所述第二金属化过孔22的孔径相等。
具体的,相邻两个所述第一金属化过孔21的孔心距小于2~2.5倍所述第一金属化过孔21的孔径;相邻两个所述第二金属化过孔22的孔心距小于2~2.5倍所述第二金属化过孔22的孔径。
本实施方式中,所述第一闭合谐振腔6a呈矩形结构,多个所述第一金属化过孔21沿所述第一闭合谐振腔6a的周缘等间隔排布,比如围设成矩形结构。
所述第二闭合谐振腔6b呈矩形结构,多个所述第二金属化过孔22沿所述第二闭合谐振腔6b的周缘等间隔排布,比如围设成矩形结构。
所述第一金属化过孔21与所述第一闭合谐振腔6a形成第一基片集成波导单元10,所述第二金属化过孔22与所述第一闭合谐振腔6a形成第二基片集成波导单元20。
请结合图2所示,具体的,第二系统地层设1b有贯穿其上的耦合间隙11;所述第一闭合谐振腔6a通过所述耦合间隙11与所述第二闭合谐振腔6b连通,即形成耦合连通。所述耦合间隙11位于所述第二金属化过孔22围成的区域范围内。
更优的,所述耦合间隙11设置于所述第二系统地层1b邻近所述第二端口5的一侧。
所述微扰金属化过孔3包括设于所述第一基片集成波导单元10内且沿所述系统地层1叠设方向贯穿所述第一闭合谐振腔6a的两个第一微扰金属化过孔31和设于所述第二基片集成波导单元20内且沿所述系统地层1叠设方向贯穿所述第二闭合谐振腔6b的两个第二微扰金属化过孔32。两个所述第一微扰金属化过孔31关于所述第一闭合谐振腔6a的几何中心对称设置于所述第一闭合谐振腔6a的第一对角线上;两个所述第二微扰金属化过孔32关于所述第二闭合谐振腔6b的几何中心对称设置于所述第二闭合谐振腔6b的第二对角线上,所述第一谐振腔6a的所述第一对角线和所述第二谐振腔6b的所述第二对角线正交分布。
上述结构中,第一闭合谐振腔6a和第二闭合谐振腔6b内分别引入第一微扰金属化过孔31和第二微扰金属化过孔32,可在所述闭合谐振腔内激励起TM 102 和TM 201两种简并模,从而实现单个闭合谐振腔6产生两阶谐振并引入两个传输零点,两个闭合谐振腔6产生四阶谐振并引入四个传输零点,提高了带外杂散信号的抑制性能,在实现多阶滤波时其所需腔体数比传统方式减小一半。
所述第一端口4设置于所述第一闭合谐振腔6a的一侧边,形成馈电端口结构。
所述第二端口5设置于所述第二闭合谐振腔6b内,形成馈电端口结构。
具体的,所述第一端口4包括自所述第一系统地层1a的一侧边向内凹陷开设的第一净空开口41,所述第一净空开口41具有一开口端和一封闭端,所述第一端口4还包括收容于所述第一净空开口41且自所述第一净空开口41的封闭端向所述第一净空开口42的开口端延伸的第一微带线42及自所述第一微带线42向所述第一系统地层1a外侧延伸的第二微带线43。
所述第二端口5包括自所述第三系统地层1c的一侧边向内凹陷开设的第二净空开口51,所述第二净空开口51具有一开口端和一封闭端,所述第二端口5还包括收容于所述第二净空开口51且自所述第二净空开口51的封闭端向所述第二净空开口51的开口端延伸的第三微带线52及自所述第三微带线52向所述第三系统地层1c外侧延伸的第四微带线53。
更优的,所述第一端口4设置于所述第一系统地层1a的对称轴上,所述第二端口5设置于所述第三系统地层1c的对称轴上。
本实施方式中,所述毫米波LTCC滤波器100还包括夹设于相邻两个所述系统地层之间的介质板层,所述介质板层为LTCC材料制成。
请结合图3所示,其中图3a为本发明毫米波LTCC滤波器的第一端口的S特性曲线,即S11曲线;图3b为本发明的毫米波LTCC滤波器的第二端口的S特性曲线,即S21曲线。由图3可知,本发明毫米波LTCC滤波器在于26.38~29.14GHz的频率范围内其通带内反射系数小于-10dB。引入四个传输零点(即四个微扰金属化过孔3),带外抑制大于30dB,带内最大插损波动小于0.3dB,符合5G毫米波通信系统射频前端的要求。
相较于现有技术,本发明的毫米波LTCC滤波器通过在每个闭合谐振腔(第一闭合谐振腔和第二闭合谐振腔)内引入微扰金属化过孔,可在所述闭合谐振腔内激励起TM 102 和TM 201两种简并模,从而实现单个闭合谐振腔产生两阶谐振并引入两个传输零点,两个闭合谐振腔产生四阶谐振并引入四个传输零点,提高了带外杂散信号的抑制性能,在实现多阶滤波时其所需腔体数比传统方式减小一半;此外,每个闭合谐振腔还可激励起非谐振模TM 101模,TM 101模和TM 102模、TM 201模在端口相互抵消在LTCC滤波器通带外获得两个传输零点,以大大提高带外抑制。本发明的毫米波LTCC滤波器体积小,带宽宽,带外抑制度高。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种毫米波LTCC滤波器,其特征在于,该毫米波LTCC滤波器包括:
    系统地层,所述系统地层包括由上向下依次间隔叠设的第一系统地层、第二系统地层和第三系统地层;相邻两层所述系统地层围成一个闭合谐振腔;三层所述系统地层由上向下依次围成外围尺寸相同且相互连通的第一闭合谐振腔和第二闭合谐振腔;所述第一闭合谐振腔和所述第二闭合谐振腔均呈矩形结构;
    金属化过孔,所述金属化过孔包括沿所述系统地层叠设方向分别贯穿所述第一闭合谐振腔的多个第一金属化过孔和贯穿所述第二闭合谐振腔的多个第二金属化过孔;多个所述第一金属化过孔沿所述第一闭合谐振腔的周缘等间隔排布;多个所述第二金属化过孔沿所述第二闭合谐振腔的周缘等间隔排布;所述第一金属化过孔与所述第一闭合谐振腔形成第一基片集成波导单元;所述第二金属化过孔与所述第一闭合谐振腔形成第二基片集成波导单元;
    微扰金属化过孔,所述微扰金属化过孔包括设于所述第一基片集成波导单元内且沿所述系统地层叠设方向贯穿所述第一闭合谐振腔的两个第一微扰金属化过孔和设于所述第二基片集成波导单元内且沿所述系统地层叠设方向贯穿所述第二闭合谐振腔的两个第二微扰金属化过孔;两个所述第一微扰金属化过孔关于所述第一闭合谐振腔的几何中心对称设置于所述第一闭合谐振腔的第一对角线上;两个所述第二微扰金属化过孔关于所述第二闭合谐振腔的几何中心对称设置于所述第二闭合谐振腔的第二对角线上,所述第一谐振腔的所述第一对角线和所述第二谐振腔的所述第二对角线正交分布;
    第一端口,所述第一端口设置于所述第一闭合谐振腔的一侧边;以及
    第二端口,所述第二端口设置于所述第二闭合谐振腔的与所述第一端口相对的一侧边。
  2. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,所述第一端口包括自所述第一系统地层的一侧边向内凹陷开设的第一净空开口,所述第一净空开口具有一开口端和一封闭端,所述第一端口还包括收容于所述第一净空开口且自所述第一净空开口的封闭端向所述第一净空开口的开口端延伸的第一微带线及自所述第一微带线向所述第一系统地层外侧延伸的第二微带线;所述第二端口包括自所述第三系统地层的一侧边向内凹陷开设的第二净空开口,所述第二净空开口具有一开口端和一封闭端,所述第二端口还包括收容于所述第二净空开口且自所述第二净空开口的封闭端向所述第二净空开口的开口端延伸的第三微带线及自所述第三微带线向所述第三系统地层外侧延伸的第四微带线。
  3. 根据权利要求2所述的毫米波LTCC滤波器,其特征在于,所述第一端口设置于所述第一系统地层的对称轴上,所述第二端口设置于所述第三系统地层的对称轴上。
  4. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,多个所述第一金属化过孔和与之对应的多个所述第二金属化过孔分别正对设置形成同心孔结构;所述第一金属化过孔的孔径与所述第二金属化过孔的孔径相等。
  5. 根据权利要求4所述的毫米波LTCC滤波器,其特征在于,相邻两个所述第一金属化过孔的孔心距小于2~2.5倍所述第一金属化过孔的孔径;相邻两个所述第二金属化过孔的孔心距小于2~2.5倍所述第二金属化过孔的孔径。
  6. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,所述第二系统地层设有贯穿其上的耦合间隙;所述第一闭合谐振腔通过所述耦合间隙与所述第二闭合谐振腔连通。
  7. 根据权利要求6所述的毫米波LTCC滤波器,其特征在于,所述耦合间隙设置于所述第二系统地层邻近所述第二端口的一侧。
  8. 根据权利要求1所述的毫米波LTCC滤波器,其特征在于,所述毫米波LTCC滤波器还包括夹设于相邻两个所述系统地层之间的介质板层,所述介质板层为LTCC材料制成。
PCT/CN2019/111292 2018-12-31 2019-10-15 毫米波ltcc滤波器 WO2020140557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650618.7 2018-12-31
CN201811650618.7A CN109687070A (zh) 2018-12-31 2018-12-31 毫米波ltcc滤波器

Publications (1)

Publication Number Publication Date
WO2020140557A1 true WO2020140557A1 (zh) 2020-07-09

Family

ID=66190366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111292 WO2020140557A1 (zh) 2018-12-31 2019-10-15 毫米波ltcc滤波器

Country Status (3)

Country Link
US (1) US11309682B2 (zh)
CN (1) CN109687070A (zh)
WO (1) WO2020140557A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818119B (zh) * 2018-12-31 2020-09-29 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN109687070A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN109687071B (zh) * 2018-12-31 2020-11-20 瑞声科技(南京)有限公司 毫米波ltcc滤波器
CN111276780B (zh) * 2020-02-10 2021-08-03 电子科技大学 一种基于扇形微带谐振腔的带通滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347917A (zh) * 2014-10-27 2015-02-11 华南理工大学 一种具有双层结构的双频基片集成波导带通滤波器
CN204205006U (zh) * 2014-10-27 2015-03-11 华南理工大学 一种具有双层结构的双频基片集成波导带通滤波器
CN104733817A (zh) * 2015-04-13 2015-06-24 南京邮电大学 层叠级联两腔基片集成波导双模带通滤波器
CN109687070A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860532B2 (en) * 2011-05-20 2014-10-14 University Of Central Florida Research Foundation, Inc. Integrated cavity filter/antenna system
US9780427B2 (en) * 2012-06-21 2017-10-03 Telefonaktiebolaget L M Ericsson Bandpass filter and method of fabricating the same
US9866928B2 (en) * 2014-11-21 2018-01-09 Nec Corporation Intra-transceiver optical superchannel switching via RF sub-band multiplexing technique
CN105070993B (zh) * 2015-08-19 2018-05-11 中国电子科技集团公司第二十八研究所 基于堆叠式介质集成波导的小型化双频带通滤波器
US10153531B2 (en) * 2015-09-07 2018-12-11 Vayyar Imaging Ltd. Multilayer microwave filter
CN106410336B (zh) * 2016-09-29 2019-04-09 上海航天测控通信研究所 一种堆叠式三阶基片集成波导滤波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347917A (zh) * 2014-10-27 2015-02-11 华南理工大学 一种具有双层结构的双频基片集成波导带通滤波器
CN204205006U (zh) * 2014-10-27 2015-03-11 华南理工大学 一种具有双层结构的双频基片集成波导带通滤波器
CN104733817A (zh) * 2015-04-13 2015-06-24 南京邮电大学 层叠级联两腔基片集成波导双模带通滤波器
CN109687070A (zh) * 2018-12-31 2019-04-26 瑞声科技(南京)有限公司 毫米波ltcc滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, ZEHUA ET AL.: "MEMS Bandpass Filter Based On Substrate Integrated Waveguide Structure", 2016 17TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 19 August 2016 (2016-08-19), pages 1406 - 1408, XP032974488, DOI: 20191127151745 *

Also Published As

Publication number Publication date
CN109687070A (zh) 2019-04-26
US20200212648A1 (en) 2020-07-02
US11309682B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020140557A1 (zh) 毫米波ltcc滤波器
WO2020140556A1 (zh) 毫米波ltcc滤波器
CN111883914B (zh) 基于siw馈电的具有滤波特性的介质谐振器宽带天线
CN109462000B (zh) 一种多层基片集成波导三阶滤波功分器
US8358182B2 (en) Duplexer for integration in communication terminals
KR101919456B1 (ko) 일체형 유전체 세라믹 도파관 듀플렉서
WO2020140554A1 (zh) 毫米波ltcc滤波器
CN108448211A (zh) 平板介质波导太赫兹滤波器
CN114284673B (zh) 一种基片集成波导双频带滤波巴伦
Liu et al. Substrate-integrated waveguide band-pass filter and diplexer with controllable transmission zeros and wide-stopband
CN106898851A (zh) 基于半模基片集成波导的混合电磁耦合双工器
Tang et al. Differentially SIW TE 20-mode Fed substrate integrated filtering dielectric resonator antenna for 5G millimeter wave application
US8283995B2 (en) Balanced-output triplexer
CN113113751B (zh) 一种自隔离基片集成波导平衡式滤波功分器
CN108461876B (zh) 一种基于砷化镓工艺的介质集成波导滤波器
CN210403988U (zh) 一种小型化高隔离车载射频信号分离器
CN110556617A (zh) 一种小型化高隔离车载射频信号分离器
Zhang et al. Filtering antenna based on substrate integrated waveguide and patch resonators in LTCC
WO2023216659A1 (zh) 滤波天线、通信设备及基站
US20100123528A1 (en) Balanced-output triplexer
CN114335942B (zh) 基于tsv的非对称串列形交叉耦合滤波器
CN114400425B (zh) 微波毫米波双频带滤波交叉结
US20230352805A1 (en) Electric coupling of a substrate integrated waveguide cavity resonator to a suspended substrate stripline low pass filter for introducing a notch response
Ou et al. Millimeter-Wave Dual-Band Filtering Power Divider Based on Double-Layer Circular SIW Resonator
KR100665099B1 (ko) 저온 동시소성 세라믹 공정을 이용한 밀리미터파 대역필터링 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907073

Country of ref document: EP

Kind code of ref document: A1