WO2020140316A1 - Robot, système et procédé d'inspection intelligente de la sécurité d'un revêtement de fabrication - Google Patents
Robot, système et procédé d'inspection intelligente de la sécurité d'un revêtement de fabrication Download PDFInfo
- Publication number
- WO2020140316A1 WO2020140316A1 PCT/CN2019/075903 CN2019075903W WO2020140316A1 WO 2020140316 A1 WO2020140316 A1 WO 2020140316A1 CN 2019075903 W CN2019075903 W CN 2019075903W WO 2020140316 A1 WO2020140316 A1 WO 2020140316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- inspection
- information
- data
- robot
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011248 coating agent Substances 0.000 title abstract 2
- 238000000576 coating method Methods 0.000 title abstract 2
- 238000007689 inspection Methods 0.000 claims abstract description 174
- 238000001514 detection method Methods 0.000 claims abstract description 78
- 239000000428 dust Substances 0.000 claims abstract description 52
- 239000002341 toxic gas Substances 0.000 claims abstract description 46
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 230000000007 visual effect Effects 0.000 claims abstract description 6
- 239000003973 paint Substances 0.000 claims description 46
- 230000004927 fusion Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 20
- 238000010276 construction Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000013480 data collection Methods 0.000 claims description 12
- 238000007418 data mining Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 6
- 238000013527 convolutional neural network Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 5
- 231100000331 toxic Toxicity 0.000 claims description 3
- 230000002588 toxic effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UCYSNLDFMOTJGI-UHFFFAOYSA-N CC1C(CC2(CCC3)C(CCC4)CC4C3(C)C2)CCC1 Chemical compound CC1C(CC2(CCC3)C(CCC4)CC4C3(C)C2)CCC1 UCYSNLDFMOTJGI-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the invention relates to the technical field of inspection and inspection, in particular to an intelligent inspection robot, system and method for paint production safety.
- the paint production industry is a chemical industry.
- the production of paints belongs to the production process of hazardous chemicals.
- the raw materials are mostly all kinds of dangerous chemicals.
- the current inspection of the workshop of the paint industry is obviously inadequate, safety accidents in the production process occur frequently, and automatic inspection cannot be carried out during the production process of the paint. Need to consume more human resources.
- a sensor needs to be provided to detect the temperature, toxic gas concentration, and dust concentration in the workshop.
- the existing detection method is to install the sensor in the workshop as much as possible, and the position distribution of the sensor needs to be considered, and the sensor is exposed for a long time. In the workshop environment, it is easy to damage, resulting in increased costs. At the same time, the existing detection methods cannot predict and analyze the collected temperature information, toxic gas concentration, and dust concentration.
- the object of the present invention is to provide a safe and intelligent inspection robot, system and method for paint production.
- the inspection robot can perform automatic inspection and obstacle avoidance, reduce the use of manpower, save costs, and at the same time inspect the robot
- the sensor is installed on it, which can detect the temperature, toxic gas concentration and dust concentration in the workshop under the driving of the inspection sensor, and perform predictive analysis to ensure the safety of the workshop.
- the present invention provides a safe and intelligent inspection robot for paint production, including a visual system for automatic navigation and obstacle avoidance, a sensor detection system for detecting the temperature of the workshop, the concentration of toxic gases and dust concentration, and A prediction system for predicting and analyzing temperature, toxic gas concentration, and dust concentration, the sensor detection system is connected to the prediction system;
- the visual system includes a data collection module for collecting point cloud data of the inspection environment, and a construction inspection
- a map construction module for an environmental three-dimensional map, a path planning module for planning inspection paths, a target recognition and positioning module for identifying and locating target objects, and a control module for data processing, the data collection module is constructed separately from the map
- the module, the path planning module and the target positioning recognition module are connected, and the control module is data-connected to the map construction module, the path planning module and the target recognition positioning module, respectively.
- the vision system further includes a transmission module for data transmission, and the control module receives the data transmitted by the map construction module, the path planning module, and the target recognition positioning module through the transmission module.
- the sensor detection system includes a dust detection module, a toxic gas detection module, a temperature detection module, a signal processing module, and a data fusion module.
- the signal processing module converts the information detected by the dust detection module, toxic gas detection module, and temperature detection module It is converted into electrical signals and transmitted to the data fusion module, which is connected to the prediction system.
- the prediction system includes a prediction module based on data mining and an information display module for displaying temperature prediction information, dust prediction information, and toxic gas prediction information.
- the prediction module is connected to the sensor detection system and the information display module, respectively.
- the power detection module for detecting whether the power is too low, and the power detection module is connected to the path planning module.
- an alarm system which is respectively connected to the power detection module and the prediction system.
- the present invention also proposes a paint production safety and intelligent inspection system, which includes the paint production safety and intelligent inspection robot as described above, and also includes an intelligent cooling and exhaust system for removing workshop exhaust gas and reducing heat,
- the intelligent cooling exhaust system is connected to the prediction system.
- it also includes a charging position set on the inspection route of the inspection robot, and when the power of the inspection robot is low, it moves to the charging position for charging.
- the present invention also proposes a safe and intelligent inspection method for paint production, including the following steps:
- An object recognition algorithm based on convolutional neural network fusion of three-dimensional features is used to process the collected point cloud data, identify and locate the target object, and feed back the positioning information to the three-dimensional map;
- the inspection robot collects temperature information, toxic gas concentration information and dust concentration information in the inspection environment during the inspection process, and uses data mining-based algorithms to predict temperature information, toxic gas concentration information and dust concentration information.
- the one or more technical solutions provided in the embodiments of the present invention have at least the following beneficial effects: by collecting inspection environment information, constructing a three-dimensional map of the inspection environment, planning the best inspection path of the inspection, and waiting for The detected target is displayed on the three-dimensional map after positioning, which can enable the inspection robot to perform inspection according to the set inspection path, realize automatic inspection and obstacle avoidance, reduce the use of manpower, and at the same time collect the inspection during the inspection process
- the temperature information, toxic gas concentration information and dust concentration information in the inspection environment, and predictive analysis of the collected information are used to predict the changes after these information to ensure the safety of the inspection environment.
- FIG. 1 is a schematic diagram of an embodiment of a safe and intelligent inspection machine for paint production of the present invention
- FIG. 2 is a schematic diagram of an embodiment of a paint production safety intelligent inspection system of the present invention
- FIG. 3 is a flowchart of an embodiment of a safe and intelligent inspection method for paint production according to the present invention.
- the paint production industry is a chemical industry.
- the production of paints belongs to the production process of hazardous chemicals.
- the raw materials are mostly all kinds of dangerous chemicals.
- certain substances are likely to generate heat due to the physical, chemical and biochemical reactions that occur inside.
- the accumulation of heat makes the temperature of combustibles higher and higher. When the temperature reaches a certain level, the combustible gas or toxic gas just reaches When it is thick, a combustion or explosion accident will occur, which reflects the unsafety of the paint production; the operator must be by the equipment when performing manual operations.
- the toxic gas is easy to cause personal injury, and it is not easy to detect during the operation
- the hidden dangers can not be avoided during the outbreak, threatening the life safety of the operator; a large amount of mineral powder is used in the production process, and long-term exposure will endanger the health.
- the dust hazard is mainly in the batching position. If the dust concentration in the air is too high, or The air penetrates into the equipment pipeline through the crack, forming a flammable mixture and causing an explosion. Therefore, enterprises should pay great attention to production safety in order to ensure the normal operation and production efficiency of the entire production workshop;
- the traditional safety detection method is in the workshop Install as many sensors as possible. In this way, the position distribution of the sensors needs to be considered, and the sensors are exposed to the workshop environment for a long time, which is easy to damage, resulting in increased costs.
- the present invention provides a safe and intelligent inspection robot, system and method for paint production.
- the inspection robot can automatically plan the inspection route, avoid obstacles in the inspection environment, reduce the use of manpower, and save costs
- the sensor is set on the inspection robot.
- the inspection robot can collect temperature information, toxic gas concentration information and dust concentration information in the inspection environment, and predict and analyze these information. If the parameter has a trend higher than the normal range within a certain period of time, you can notify the staff to deal with it accordingly.
- an embodiment of the present invention provides a safe and intelligent inspection robot for paint production, including a visual system for automatic navigation and obstacle avoidance, and a sensor for detecting the temperature of the workshop, the concentration of toxic gas and the concentration of dust A system and a prediction system for predicting and analyzing temperature, toxic gas concentration and dust concentration, the sensor detection system is connected to the prediction system;
- the vision system includes a data collection module 11 for collecting point cloud data of the inspection environment A map construction module 12 for constructing a three-dimensional map of the inspection environment, a path planning module 13 for planning an inspection path, a target recognition and positioning module 14 for identifying and positioning target objects, and a control module 15 for data processing,
- the data collection module 11 is respectively connected to the map construction module 12, the path planning module 13 and the target positioning recognition module, and the control module 15 is respectively connected to the map construction module 12, the path planning module 13 and the target recognition positioning module 14.
- the inspection robot can realize automatic inspection, obstacle avoidance and other functions through the vision system, which can reduce the use of manpower and reduce costs.
- the temperature of each place in the inspection environment can be collected Information, toxic gas concentration information, and dust concentration information, etc., to carry out predictive analysis of these collected information to predict future trends. If the relevant parameter data has a trend higher than the normal range within a certain period of time, you can notify the staff to carry out Handle accordingly.
- the data collection module 11 is composed of an RGBD camera, used to collect point cloud data of the inspection environment, and the RGBD camera can control the rotation angle to achieve 360-degree data collection of the inspection environment.
- the map construction module 12 uses point cloud fusion Technology, construct a three-dimensional map of the inspection environment based on the point cloud data collected by the data collection module 11,
- the path planning module 13 uses the artificial potential field method to calculate the distance to the obstacle based on the point cloud data collected by the data collection module 11, And plan the best path to reach the target position
- the target recognition and positioning module 14 uses an object recognition algorithm based on convolutional neural network fusion of three-dimensional features to identify and locate the target object, and feedback the positioning information to the three-dimensional map to inspect
- the robot can move to the corresponding target according to the corresponding inspection path, to achieve a fully automatic inspection process, without manual participation, reducing the use of manpower.
- the sensor detection system includes multiple sensors for collecting different information, such as temperature information, toxic gas concentration information, dust concentration information, etc., the sensor is set on the surface of the inspection robot, in the process of inspection robot inspection Collect all kinds of information, and then transfer the collected data to the forecasting system.
- the forecasting system performs predictive analysis to predict the future development trend of each parameter. When a certain parameter data has a trend higher than the normal range within a certain period of time At the time, you can notify the staff to take corresponding treatment to ensure the safety of the inspection environment, such as exhaust and cooling.
- another embodiment of the present invention also provides a safe and intelligent inspection robot for paint production
- the vision system further includes a transmission module 16 for data transmission
- the control module 15 receives the map through the transmission module 16 The data transmitted by the building module 12, the path planning module 13, and the target recognition positioning module 14.
- the transmission module 16 is connected to the control module 15 for transmitting the data transmitted by the map construction module 12, the path planning module 13 and the target recognition positioning module 14, and the control module 15 sends driving information according to the received data to control The inspection robot performs inspection according to the planned path.
- the sensor detection system includes a dust detection module 21, a toxic gas detection module 22, a temperature detection module 23, a signal processing module 24, and The data fusion module 25, the signal processing module 24 converts the information detected by the dust detection module 21, the toxic gas detection module 22, and the temperature detection module 23 into electrical signals, and transmits them to the data fusion module 25, the data fusion module 25 Connect with prediction system.
- the data detected by the dust detection module 21, the toxic gas detection module 22, and the temperature detection module 23 are first transmitted to the signal processing module 24 for preprocessing, and then the preprocessed information is processed by the data fusion module 25 For data fusion, the information after data fusion is transmitted to the prediction system for prediction and analysis.
- the dust detection module 21 mainly includes a new micro chip, a dust sensitive probe, a single chip microcomputer module, an electronic processing unit, a micro battery, a low-battery alarm module, a self-checking module of its own state, and its working principle is: 1) light scattering method; 2) LED emission The light meets the dust and generates reflected light; 3) The receiving sensor monitors the light intensity of the reflected light and outputs a signal; 4) The dust concentration is determined by the intensity of the light intensity. Based on the above principle, four sensitive probes are installed. When the dust particles pass near the probe , A weak electric quantity is sensed by the dust sensitive probe and transmitted to the electronic processing unit. The electronic processing unit converts the dust-related signals into electrical signals, which are processed again by the single-chip module, and finally can be displayed on the led digital tube in the form of values.
- the new microchip of the dust detection module 21 can receive the signal from the dust sensitive probe about the change of the dust concentration in the production workshop and send it to the signal processing module 24. If the signal processing module 24 receives abnormal signals, the new microchip The signal data will be automatically saved, and the low-battery alarm module will activate the breathing lamp of the micro-battery in the dust detection module 21 when the battery is low, prompting to charge, and at the same time the inspection robot can return to the charging position by itself to charge;
- the self-checking module of its own state can also realize self-checking, self-calibration and self-diagnostic functions. Ordinary sensors need to be regularly checked and calibrated to ensure that it has sufficient accuracy during normal use.
- the toxic gas detection module 22 includes a high-performance sensitive element module, a high-brightness LED display module, a basic circuit structure module, an explosion-proof connection thread module, a single-chip microcomputer module, an analog voltage/current and serial port module, a micro battery, a new type semiconductor chip, and a low battery alarm Module, self-state self-inspection module, this module can detect a variety of toxic gases, the working process of the toxic gas detection module 22 is: the detection probe obtains the concentration data signal of toxic gases (including volatile organic compounds) in the workshop, and through the single-chip microcomputer The module converts it into a digital signal, and then the new semiconductor chip transmits the toxic gas concentration information to the signal processing module 24.
- the data can also be displayed on the high-brightness LED display module.
- the signal processing module 24 is abnormal, The chip will automatically save the signal data.
- the micro battery of the toxic gas detection module 22 is low, the inspection robot can return to the charging position to charge itself.
- the toxic gas detection module 22 of this embodiment is less affected by environmental interference and costs more Low, suitable for mass production, long life, small size, accuracy of 0.03%, after debugging, you can work efficiently.
- the temperature detection module 23 includes an accurate temperature measurement module, a single-chip module, a drive circuit module and a display circuit module, a new chip module, a micro battery, a low-battery early warning module, and a self-test module.
- the module accurately and timely senses the temperature change data signal of the workshop in the production of paint.
- the single-chip module the sensed temperature change signal can be converted into a digital signal, and the temperature change can be visually displayed on the led module, which is convenient According to the inspection of the staff, the new chip module uploads the data signal about the temperature change to the signal processing module 24.
- the low-battery warning module sends an early-warning signal when the micro battery is low, and the inspection robot can automatically return to the charging position for charging.
- Each module in the temperature detection module 23 of the embodiment efficiently and orderly executes its respective functions, the working temperature is between -10 degrees Celsius and 80 degrees Celsius, and is suitable for use in the robot body.
- the design is small, easy to maintain, and has stable performance.
- the resolution accuracy is 0.01 degrees Celsius.
- the signal processing module 24 can perform preprocessing such as amplification, filtering and A/D conversion on the received information, and then transmit it to the data fusion module 25.
- the data fusion module 25 can perform data fusion on the received information, including three levels, 1 Data level fusion: for the data collected by the sensor detection module, depending on the sensor type, the same type of data fusion; 2 feature level fusion: extract the feature vector contained in the collected data to reflect the attributes of the monitored physical quantity, which is oriented to monitoring Object feature fusion; 3 Decision layer fusion: According to the data features obtained by feature level fusion, certain discrimination, classification and simple logical operations are performed, and higher-level decisions are made according to application requirements. It is an advanced fusion. Data fusion module 25 Related algorithms will be used to achieve the fusion of massive data information from various sensors, and the fusion will be sent to the prediction system.
- the prediction system includes a prediction module 31 based on data mining and displays temperature prediction information, dust prediction information, and toxic gas prediction
- the information display module 32 of the information, the prediction module 31 is respectively connected to the sensor detection system and the information display module 32.
- the prediction module 31 receives the information sent by the data fusion module 25, uses a data mining-based algorithm to predict and analyze temperature information, dust concentration information, and toxic gas concentration information, and uses artificial intelligence, machine learning, and patterns Recognition, statistics, database, visualization technology and related algorithms and other technologies, highly automated analysis, synthesis, training, induction and reasoning of the received data to predict the future development trend of each type of detection information, and in the form of charts
- the information display module 32 shows it clearly and clearly.
- the staff can be notified to perform the corresponding processing, and the prediction module 31 based on data mining can play
- the role of preventing accidents to a great extent reduces the probability of safety accidents, reduces costs, and has strong reliability. It maximizes the role of paint production safety monitoring and ensures the efficient production of paint.
- another embodiment of the present invention also provides a paint production safety intelligent inspection robot, which further includes a power detection module 4 for detecting whether the power is too low, the power detection module 4 is connected to the path planning module 13 .
- the power detection module 4 can be used to detect whether the battery power of the inspection robot is sufficient to support the power for one week of inspection, so the power detection module 4 is also connected to the path planning module 13.
- another embodiment of the present invention also provides a safe and intelligent inspection robot for paint production, which further includes an alarm system 5, which is respectively connected to the electricity detection module 4 and the prediction system.
- the alarm system 5 includes a low battery alarm module, a sensor alarm module, and a voice output module.
- the low battery alarm module is connected to the power detection module 4 and the sensor alarm module is connected to the prediction module 31.
- the alarm is generated by the low battery alarm module, and the voice output module generates a sound for alarm, and the sensor alarm module can receive the information sent by the prediction module 31.
- the prediction module 31 issues an alarm signal
- the sensor detection module can alarm and simultaneously Send control signals to the subsequent exhaust cooling system for cooling and exhaust treatment of the inspection environment.
- the voice output module includes a noise sensor and a volume control module 15.
- the volume value in the voice output unit is increased, or when it is lower than the second threshold, the volume value in the output unit is decreased.
- a safe and intelligent inspection robot for paint production which includes a vision system, a sensor detection system, a prediction system, a power detection module 4 and an alarm system 5.
- the vision system includes a data collection module 11 , Map construction module 12, path planning module 13, target recognition positioning module 14, control module 15 and transmission module 16,
- the sensor detection system includes a dust detection module 21, a toxic gas detection module 22, a temperature detection module 23, a signal processing module 24 and
- the prediction system includes a prediction module 31 and an information display module 32
- the data acquisition module 11 is connected to the map construction module 12, the path planning module 13, and the target recognition and positioning module 14, respectively, and the control module 15 is respectively connected to the map through the transmission module 16
- the building module 12, the path planning module 13, and the target recognition and positioning module 14 are connected
- the signal processing module 24 is connected to the dust detection module 21, the toxic gas detection module 22, the temperature detection module 23, and the data fusion module 25, respectively
- the power collection module is respectively connected to the alarm
- the system 5 and the path planning module 13
- the inspection robot can collect data on the inspection environment through the vision system, construct a three-dimensional map of the inspection environment and plan out the inspection path and identify and locate the target object, and then the inspection robot can according to different target objects
- the inspection is carried out according to the set inspection path without manual participation, which reduces the use of manpower and costs.
- various information on the inspection route can be collected through the sensor detection system, including temperature information, toxic gas concentration information and dust concentration information, etc.
- the prediction module 31 will make a trend prediction, predicting a period of time in the future If a certain parameter is higher than the normal range within a certain period of time predicted, the alarm system 5 can be used to notify the staff to perform corresponding processing.
- the inspection robot of this embodiment is also provided with The power detection module 4 can detect whether the inspection robot has enough power. When the power is not enough for the inspection robot to conduct a week of inspection, an alarm can be generated to prompt the need for charging. Multiple charging piles can be set on the inspection path to allow The inspection robot can automatically return to the charging pile for charging.
- another embodiment of the present invention also provides a paint production safety and intelligent inspection system, which includes the paint production safety and intelligent inspection robot in any of the embodiments described above, and also includes Intelligent cooling exhaust system 6 for workshop exhaust gas and reducing heat, the intelligent cooling exhaust system 6 is connected to a prediction system.
- the prediction system can send an alarm signal to the intelligent cooling exhaust system 6, the intelligent exhaust cooling system will send a signal to the intelligent exhaust fan and cooling device, and after receiving the signal, the intelligent exhaust fan and cooling device will switch to the low level In the wind exhaust mode or low-level cooling mode, when the prediction system still sends an alarm signal, the intelligent exhaust cooling system will send a signal to the exhaust device and the cooling device. After receiving the signal, the intelligent exhaust fan and cooling device switch to the emergency response mode. Under normal circumstances, through the intelligent exhaust cooling system to eliminate exhaust fumes and reduce heat, enhance air flow, the cooling device can inject fresh air into the room, and the pressure inside the room will increase, and the turbid gas inside will be filtered and discharged outside. So as to achieve the purpose of cooling and ventilation.
- another embodiment of the present invention also provides a safe and intelligent inspection system for paint production, which further includes a charging position provided on an inspection route of the inspection robot, and the inspection robot moves to the charging position when the battery power is low Charging.
- the charging position may be a charging pile
- the inspection robot may automatically return to the charging pile for charging when the power is insufficient
- the charging pile may be set on the inspection path to facilitate charging of the inspection robot.
- another embodiment of the present invention also provides a safe and intelligent inspection method for paint production, including the following steps:
- An object recognition algorithm based on convolutional neural network fusion of three-dimensional features is used to process the collected point cloud data, identify and locate the target object, and feed back the positioning information to the three-dimensional map;
- a three-dimensional map, inspection path, and target object of the inspection environment can be obtained, and different inspection paths can be set for different target objects
- an object recognition algorithm based on convolutional neural network fusion of three-dimensional features is used.
- the specific steps are: take the three-dimensional features of the target object as input, train the model features of the target object to be recognized, and use the Softmax classifier As an output, identify the target object in the inspection process, and accurately locate the three-dimensional coordinates of the target object relative to the data collection module 11 according to the mapping relationship between the target object and the data collection module 11, and match the two
- the characteristics of the key points of the author determine the position of the target object in the stereo map, and highlight the target object in the stereo map.
- another embodiment of the present invention also provides a safe and intelligent inspection method for paint production.
- the inspection robot collects temperature information, toxic gas concentration information, and dust concentration information in the inspection environment during the inspection process, and The algorithm based on data mining is used to predict temperature information, toxic gas concentration information and dust concentration information.
- the inspection robot can collect temperature information, toxic gas concentration information and dust concentration information during the inspection process, and then the prediction system can perform predictive analysis based on the above information to predict the trend of various parameters in the future, If there is an increasing trend of parameters and it is higher than the normal range within a certain period of time, an alarm will be given and the staff can handle it accordingly.
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automation & Control Theory (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manipulator (AREA)
- General Factory Administration (AREA)
Abstract
L'invention concerne un robot, un système et un procédé d'inspection intelligente de la sécurité de fabrication d'un revêtement. Le robot d'inspection comprend un système visuel permettant de réaliser une navigation automatique et un évitement d'obstacle, un système de détection de capteur permettant de détecter la température, la concentration en gaz toxique et la concentration en poussière dans un atelier, et un système de prédiction permettant d'effectuer une analyse prédictive sur la température, la concentration en gaz toxique et la concentration en poussière. Le robot d'inspection peut réaliser une collecte d'informations dans un environnement d'inspection, peut construire une carte tridimensionnelle de l'environnement d'inspection, peut afficher un objet cible sur la carte tridimensionnelle et peut planifier un trajet optimal de l'inspection. Le robot d'inspection peut sélectionner, en fonction de différents objets cibles, différents trajets d'inspection pour l'inspection, sans nécessiter d'intervention manuelle ; en outre, le robot d'inspection peut collecter, pendant un processus d'inspection, des informations de température, des informations de concentration en gaz toxique et des informations de concentration en poussière de l'intérieur de l'environnement d'inspection et utilise le système de prédiction pour effectuer une analyse prédictive afin de prédire une tendance de variation de chaque paramètre dans une période de temps futur, de manière à assurer la sécurité de l'environnement d'inspection.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910000701.8A CN109752300A (zh) | 2019-01-02 | 2019-01-02 | 一种涂料生产安全智能巡检机器人、系统及方法 |
CN201910000701.8 | 2019-01-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140316A1 true WO2020140316A1 (fr) | 2020-07-09 |
Family
ID=66405086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/075903 WO2020140316A1 (fr) | 2019-01-02 | 2019-02-22 | Robot, système et procédé d'inspection intelligente de la sécurité d'un revêtement de fabrication |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109752300A (fr) |
WO (1) | WO2020140316A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112362821A (zh) * | 2020-11-24 | 2021-02-12 | 南京工业大学 | 一种布置在胶囊制作车间的空气质量巡检机器人及方法 |
CN112484734A (zh) * | 2020-12-08 | 2021-03-12 | 中国矿业大学 | 基于特征提取自适应神经网络和co2的室内人员定位方法 |
CN113720394A (zh) * | 2021-09-08 | 2021-11-30 | 苏州融萃特种机器人有限公司 | 一种智能探测机器人及其搜查方法 |
CN113739850A (zh) * | 2021-09-03 | 2021-12-03 | 浙江国净净化科技有限公司 | 一种基于数据自动处理的巡检采样机器人 |
CN115062940A (zh) * | 2022-06-07 | 2022-09-16 | 北京市博汇科技股份有限公司 | 一种基于数字孪生的发射台智能可视化巡检方法及系统 |
CN115562212A (zh) * | 2022-10-24 | 2023-01-03 | 新特能源股份有限公司 | 一种基于机器学习的化工安全生产预警系统 |
CN116448276A (zh) * | 2022-01-07 | 2023-07-18 | 宝山钢铁股份有限公司 | 一种电炉钢水测温取样机器人测点位置控制方法 |
CN116993166A (zh) * | 2023-09-25 | 2023-11-03 | 北京帮安迪信息科技股份有限公司 | 一种园区安全风险监测方法 |
CN117405178A (zh) * | 2023-12-15 | 2024-01-16 | 成都电科星拓科技有限公司 | 一种自动化检测室内环境参数的移动监测平台及方法 |
EP4327878A2 (fr) | 2017-05-01 | 2024-02-28 | Juno Therapeutics, Inc. | Combinaison d'une thérapie cellulaire et d'un composé immunomodulateur |
CN118211741A (zh) * | 2024-05-21 | 2024-06-18 | 山东道万电气有限公司 | 一种基于多路巡检数据的巡检机器人智能调度管理方法 |
CN118819209A (zh) * | 2024-09-20 | 2024-10-22 | 湖州盛世华骏新型材料股份有限公司 | 一种醋丙乳液制备温度调节方法及系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110209552B (zh) * | 2019-05-29 | 2023-09-22 | 北京百度网讯科技有限公司 | 一种设备管理方法和装置 |
CN110246235B (zh) * | 2019-06-18 | 2021-10-08 | 广州供电局有限公司 | 一种基于Hololens混合现实技术的配电房现场巡检方法及系统 |
CN110442127B (zh) * | 2019-07-15 | 2022-06-17 | 广州杰赛科技股份有限公司 | 智能巡检方法、设备和装置 |
CN110370284A (zh) * | 2019-08-07 | 2019-10-25 | 北京凌天世纪控股股份有限公司 | 一种防爆自主巡检机器人的自动化控制系统 |
CN110456001A (zh) * | 2019-08-14 | 2019-11-15 | 中国工商银行股份有限公司 | 检测方法、检测装置和电子设备 |
CN110909653B (zh) * | 2019-11-18 | 2022-03-15 | 南京七宝机器人技术有限公司 | 一种室内机器人自动标定配电室屏柜的方法 |
CN112034108A (zh) * | 2020-09-16 | 2020-12-04 | 上海市环境科学研究院 | 区域污染情况的分析装置、方法及计算机可读存储介质 |
CN112332541B (zh) * | 2020-10-29 | 2024-07-12 | 国网山西省电力公司检修分公司 | 一种用于变电站的监测系统和方法 |
CN112904844A (zh) * | 2021-01-14 | 2021-06-04 | 广东核电合营有限公司 | 核电站智能巡检方法及系统 |
CN113617575B (zh) * | 2021-07-30 | 2022-07-29 | 北京戴纳实验科技有限公司 | 一种自动防爆喷涂房控制系统 |
CN113376331A (zh) * | 2021-08-16 | 2021-09-10 | 广东科凯达智能机器人有限公司 | 一种气体检测机器人系统和预警方法 |
CN114330761A (zh) * | 2021-10-26 | 2022-04-12 | 中国核电工程有限公司 | 一种核电厂设备定位、导航智慧终端系统及其应用方法 |
CN115541031A (zh) * | 2022-09-28 | 2022-12-30 | 新特能源股份有限公司 | 一种多晶硅配电室的温度检测方法及装置 |
CN115830578B (zh) * | 2023-02-23 | 2023-05-23 | 北京金石视觉数字科技有限公司 | 物品巡检方法、装置和电子设备 |
CN116959118A (zh) * | 2023-08-24 | 2023-10-27 | 广州为乐信息科技有限公司 | 一种实验安全操作监测分析及规范系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823465A (zh) * | 2012-11-17 | 2014-05-28 | 安徽蓝德集团股份有限公司 | 一种无线自动巡检报警车 |
US20160195613A1 (en) * | 2015-01-05 | 2016-07-07 | Robert M. Knox | Dual Mode Undercarriage Vehicle Inspection System |
JP2017133838A (ja) * | 2016-01-25 | 2017-08-03 | 三菱電機株式会社 | 設備管理データ抽出装置および設備管理データ抽出方法 |
CN206598277U (zh) * | 2016-08-31 | 2017-10-31 | 杭州申昊科技股份有限公司 | 一种巡检机器人 |
JP2017223467A (ja) * | 2016-06-13 | 2017-12-21 | 三菱自動車工業株式会社 | 車両の運転支援装置 |
CN108171796A (zh) * | 2017-12-25 | 2018-06-15 | 燕山大学 | 一种基于三维点云的巡检机器人视觉系统及控制方法 |
CN108189043A (zh) * | 2018-01-10 | 2018-06-22 | 北京飞鸿云际科技有限公司 | 一种应用于高铁机房的巡检方法及巡检机器人系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2879190Y (zh) * | 2005-12-22 | 2007-03-14 | 辽宁工程技术大学 | 多传感器瓦斯突出预测仪 |
CN103995509B (zh) * | 2014-05-13 | 2017-06-20 | 北京华科数能科技发展有限公司 | 用于禽舍环境监测的机器人及其监测方法和系统 |
CN104345020A (zh) * | 2014-10-24 | 2015-02-11 | 海安能度软件科技有限公司 | 粉尘检测报警系统 |
CN205484275U (zh) * | 2016-03-24 | 2016-08-17 | 无锡泓瑞航天科技有限公司 | 大空间有害气体自动巡检装置 |
CN106598052A (zh) * | 2016-12-14 | 2017-04-26 | 南京阿凡达机器人科技有限公司 | 一种基于环境地图的机器人安防巡检方法及其机器人 |
CN106780822A (zh) * | 2017-01-09 | 2017-05-31 | 安徽杰瑞信息科技有限公司 | 一种用于工厂的智能巡检系统 |
CN106873677A (zh) * | 2017-03-01 | 2017-06-20 | 连京华 | 一种禽舍环境巡检及调控系统 |
CN107167139A (zh) * | 2017-05-24 | 2017-09-15 | 广东工业大学 | 一种变电站巡检机器人视觉定位导航方法及系统 |
CN207139822U (zh) * | 2017-09-12 | 2018-03-27 | 北京中油瑞飞信息技术有限责任公司 | 数据中心巡检机器人 |
CN108908372A (zh) * | 2018-08-13 | 2018-11-30 | 四川桑瑞思环境技术工程有限公司 | 一种巡检系统 |
-
2019
- 2019-01-02 CN CN201910000701.8A patent/CN109752300A/zh active Pending
- 2019-02-22 WO PCT/CN2019/075903 patent/WO2020140316A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823465A (zh) * | 2012-11-17 | 2014-05-28 | 安徽蓝德集团股份有限公司 | 一种无线自动巡检报警车 |
US20160195613A1 (en) * | 2015-01-05 | 2016-07-07 | Robert M. Knox | Dual Mode Undercarriage Vehicle Inspection System |
JP2017133838A (ja) * | 2016-01-25 | 2017-08-03 | 三菱電機株式会社 | 設備管理データ抽出装置および設備管理データ抽出方法 |
JP2017223467A (ja) * | 2016-06-13 | 2017-12-21 | 三菱自動車工業株式会社 | 車両の運転支援装置 |
CN206598277U (zh) * | 2016-08-31 | 2017-10-31 | 杭州申昊科技股份有限公司 | 一种巡检机器人 |
CN108171796A (zh) * | 2017-12-25 | 2018-06-15 | 燕山大学 | 一种基于三维点云的巡检机器人视觉系统及控制方法 |
CN108189043A (zh) * | 2018-01-10 | 2018-06-22 | 北京飞鸿云际科技有限公司 | 一种应用于高铁机房的巡检方法及巡检机器人系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4327878A2 (fr) | 2017-05-01 | 2024-02-28 | Juno Therapeutics, Inc. | Combinaison d'une thérapie cellulaire et d'un composé immunomodulateur |
CN112362821A (zh) * | 2020-11-24 | 2021-02-12 | 南京工业大学 | 一种布置在胶囊制作车间的空气质量巡检机器人及方法 |
CN112484734A (zh) * | 2020-12-08 | 2021-03-12 | 中国矿业大学 | 基于特征提取自适应神经网络和co2的室内人员定位方法 |
CN113739850B (zh) * | 2021-09-03 | 2024-01-19 | 浙江国净净化科技有限公司 | 一种基于数据自动处理的巡检采样机器人 |
CN113739850A (zh) * | 2021-09-03 | 2021-12-03 | 浙江国净净化科技有限公司 | 一种基于数据自动处理的巡检采样机器人 |
CN113720394A (zh) * | 2021-09-08 | 2021-11-30 | 苏州融萃特种机器人有限公司 | 一种智能探测机器人及其搜查方法 |
CN113720394B (zh) * | 2021-09-08 | 2023-10-31 | 苏州融萃特种机器人有限公司 | 一种智能探测机器人及其搜查方法 |
CN116448276A (zh) * | 2022-01-07 | 2023-07-18 | 宝山钢铁股份有限公司 | 一种电炉钢水测温取样机器人测点位置控制方法 |
CN115062940A (zh) * | 2022-06-07 | 2022-09-16 | 北京市博汇科技股份有限公司 | 一种基于数字孪生的发射台智能可视化巡检方法及系统 |
CN115562212A (zh) * | 2022-10-24 | 2023-01-03 | 新特能源股份有限公司 | 一种基于机器学习的化工安全生产预警系统 |
CN116993166A (zh) * | 2023-09-25 | 2023-11-03 | 北京帮安迪信息科技股份有限公司 | 一种园区安全风险监测方法 |
CN117405178A (zh) * | 2023-12-15 | 2024-01-16 | 成都电科星拓科技有限公司 | 一种自动化检测室内环境参数的移动监测平台及方法 |
CN117405178B (zh) * | 2023-12-15 | 2024-03-15 | 成都电科星拓科技有限公司 | 一种自动化检测室内环境参数的移动监测方法 |
CN118211741A (zh) * | 2024-05-21 | 2024-06-18 | 山东道万电气有限公司 | 一种基于多路巡检数据的巡检机器人智能调度管理方法 |
CN118819209A (zh) * | 2024-09-20 | 2024-10-22 | 湖州盛世华骏新型材料股份有限公司 | 一种醋丙乳液制备温度调节方法及系统 |
CN118819209B (zh) * | 2024-09-20 | 2025-01-21 | 湖州盛世华骏新型材料股份有限公司 | 一种醋丙乳液制备温度调节方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109752300A (zh) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140316A1 (fr) | Robot, système et procédé d'inspection intelligente de la sécurité d'un revêtement de fabrication | |
CN107831387A (zh) | 一种电力站设备运行状况智能监测方法 | |
CN106774322B (zh) | 一种光伏电站巡检系统及其运行方法 | |
CN107437080A (zh) | 一种综合管廊动态智能巡检系统 | |
CN113478500B (zh) | 一种基于智能巡检机器人的船舶机舱多源数据收集系统 | |
CN102494723A (zh) | 一种无人值守环境试验系统和方法 | |
CN113086549A (zh) | 一种火电厂输煤皮带多智能体协同监测系统 | |
CN114137302B (zh) | 一种电能计量器具检定全过程监控系统 | |
CN114298340A (zh) | 隧道电缆巡检方法及装置、存储介质及电子设备 | |
CN105655920A (zh) | 一种多功能陆空两用电力无人机 | |
CN117444992A (zh) | 油气场站防爆机器人智能巡检系统及巡检目标识别方法 | |
CN116754022A (zh) | 电缆隧道的在线检测应急预警方法及系统 | |
CN117310093A (zh) | 基于物联网的大气环境监测系统 | |
CN108093210A (zh) | 一种变压器油位告警系统及其告警方法 | |
CN115741746A (zh) | 一种智能巡检系统及其巡检方法 | |
CN119439925A (zh) | 一种塑料编织袋生产过程安全监控系统 | |
CN205721190U (zh) | 一种集成多传感器的管道爬行智能检测设备 | |
CN118861971A (zh) | 一种基于第一视角视频的电表箱智能识别方法 | |
CN119217395A (zh) | 一种变电站机器人巡检系统及其巡检方法 | |
CN118579470A (zh) | 带式输送机智慧巡检系统 | |
CN111983344A (zh) | 一种智能电力巡检机器人系统 | |
CN118822268A (zh) | 一种基于数字孪生的实验室控制管理系统 | |
CN110296325B (zh) | 一种基于包袋法原理的泄漏实时监测装置及其监测方法 | |
CN111179535A (zh) | 井盖下智能监测系统 | |
CN116012784A (zh) | 基于ai机器人识别的采煤过程巡检方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19907684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19907684 Country of ref document: EP Kind code of ref document: A1 |