WO2020138947A1 - 추가 기능을 갖는 led 조명 장치 - Google Patents

추가 기능을 갖는 led 조명 장치 Download PDF

Info

Publication number
WO2020138947A1
WO2020138947A1 PCT/KR2019/018458 KR2019018458W WO2020138947A1 WO 2020138947 A1 WO2020138947 A1 WO 2020138947A1 KR 2019018458 W KR2019018458 W KR 2019018458W WO 2020138947 A1 WO2020138947 A1 WO 2020138947A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting diode
wavelength
range
Prior art date
Application number
PCT/KR2019/018458
Other languages
English (en)
French (fr)
Inventor
배희호
윤영민
이아영
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to KR1020217016643A priority Critical patent/KR102679696B1/ko
Priority to JP2021537170A priority patent/JP7485674B2/ja
Priority to MX2021007827A priority patent/MX2021007827A/es
Priority to CN201980051260.2A priority patent/CN112567168A/zh
Priority to EP19905053.5A priority patent/EP3904751A4/en
Publication of WO2020138947A1 publication Critical patent/WO2020138947A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0624Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0636Irradiating the whole body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0661Radiation therapy using light characterised by the wavelength of light used ultraviolet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present disclosure relates to a lighting device using an LED, and more particularly, to an LED lighting device having an additional function.
  • the light emitting diode is an inorganic light source, and is widely used in various fields such as a display device, a vehicle lamp, and general lighting.
  • the light emitting diode has a long life and low power consumption, and thus is rapidly replacing the existing light source.
  • sunlight shows a broad wavelength spectrum over the ultraviolet, visible and infrared regions.
  • the human body has survived by adapting to sunlight, and accordingly uses light having a wide wavelength range over a wide wavelength range of sunlight.
  • general lighting is limited to a visible light region and does not provide light in a wavelength range other than visible light.
  • ordinary people living under an illumination light source cannot absorb light having a wavelength beneficial to the human body other than visible light.
  • Embodiments of the present disclosure provide a lighting device, a light emitting diode package and a lighting system having additional functions in addition to the lighting function that provides visible light.
  • Embodiments of the present disclosure provide energy-efficient lighting devices, light emitting diode packages, and lighting systems while providing similar visible light to sunlight.
  • Embodiments of the present disclosure provide a lighting device having an additional function using simple structured unit light sources.
  • An illumination device includes at least one light emitting unit including a single light emitting diode and a wavelength converter for converting the wavelength of light emitted from the light emitting diode, wherein the light emitting unit emits white light.
  • the light emitting unit emits white light.
  • it emits light suitable for producing vitamin D, light suitable for sterilizing pathogenic microorganisms, or light suitable for producing cell active substances.
  • a lighting device includes a combination of at least two light emitting units of a first light emitting unit, a second light emitting unit, and a third light emitting unit, wherein the first light emitting unit has a peak wavelength of about 286 nm to It includes a first light emitting diode and a first wavelength converter that emits light within a range of about 304nm, and emits a portion of the light generated by the first light emitting diode to the outside, and the second light emitting unit has a peak wavelength in a range of about 400nm to 420nm And a second light emitting diode and a second wavelength converter that emit light within the light emitting part of the light generated by the second light emitting diode to the outside, and the third light emitting unit has a peak wavelength of about 286 nm to about 470 nm.
  • It includes a third light emitting diode and a third wavelength converter that emits, wherein the third wavelength converter includes a wavelength conversion material having a central wavelength in the range of about 685 ⁇ 705nm, 790 ⁇ 840nm, or 875 ⁇ 935nm.
  • a lighting device includes: a first light emitting diode having a peak wavelength in a range from about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; And a wavelength converter for converting the wavelength of light emitted from the first light emitting diode, and emits white light and light suitable for producing vitamin D and light suitable for producing a cell active material.
  • a lighting device includes: a first light emitting diode having a peak wavelength in a range from about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; A third light emitting diode having a peak wavelength in the range of about 685-705 nm, 790-840 nm, or 875-935 nm; And a wavelength converter for converting the wavelength of the light emitted from the first light emitting diode, emitting white light by a combination of the first light emitting diode and the wavelength converter, and in the second and third light emitting diodes. The generated light is emitted outside.
  • a light emitting diode package includes: a first light emitting diode having a peak wavelength in a range of about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; And a wavelength converter for converting the wavelength of light emitted from the first light emitting diode, and emits white light and light suitable for producing vitamin D and light suitable for producing a cell active material.
  • a light emitting diode package includes: a first light emitting diode having a peak wavelength in a range of about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; A third light emitting diode having a peak wavelength in the range of about 685-705 nm, about 790-840 nm, or about 875-935 nm; And a wavelength converter for converting the wavelength of the light emitted from the first light emitting diode, emitting white light by a combination of the first light emitting diode and the wavelength converter, and in the second and third light emitting diodes. The generated light is emitted outside.
  • embodiments of the present disclosure provide a lighting system including the lighting device.
  • FIG. 1 is a schematic plan view for describing a lighting device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view taken along line A-A of FIG. 1.
  • 3 is a graph for showing the efficiency of vitamin D production in the human body according to the wavelength.
  • FIG. 5 shows a spectrum of a white light source using a conventional blue light emitting diode.
  • FIG. 6 is a schematic cross-sectional view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view for describing a light emitting unit according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view taken along line B-B of FIG. 8.
  • FIG. 10 is a graph for describing representative spectra of a lighting device according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view taken along line C-C of FIG. 11.
  • 13 is a graph for showing cell function activity efficiency according to wavelength.
  • FIG. 14 is a schematic plan view of a lighting device according to another embodiment of the present disclosure.
  • 15 is a schematic cross-sectional view taken along line D-D of FIG. 14;
  • 16 is a schematic plan view for describing a lighting device according to an embodiment of the present disclosure.
  • 17 is a schematic cross-sectional view taken along line E-E of FIG. 16.
  • 21 is a graph showing the efficiency of vitamin D production in the human body according to the wavelength.
  • 22 is a graph for showing cell function activity efficiency according to wavelength.
  • FIG. 23 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 24 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • 25 is a schematic cross-sectional view taken along the line F-F of FIG. 24;
  • 26 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 27 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • FIG. 28 is a schematic cross-sectional view for describing a light emitting unit according to another embodiment of the present disclosure.
  • 29 is a schematic plan view for describing a light emitting unit according to another embodiment of the present disclosure.
  • An illumination device includes at least one light emitting unit including a single light emitting diode and a wavelength converter for converting the wavelength of light emitted from the light emitting diode, wherein the light emitting unit emits white light.
  • the light emitting unit emits white light.
  • it emits light suitable for producing vitamin D, light suitable for sterilizing pathogenic microorganisms, or light suitable for producing cell active substances.
  • a single light emitting diode can be used to emit white light and emit ultraviolet rays necessary for vitamin D synthesis, thereby providing a lighting device having additional functions without complicating the structure.
  • the light emitting diode may emit ultraviolet light having a peak wavelength in a range from about 286 nm to about 304 nm. More specifically, the light emitting diode may emit ultraviolet light having a peak wavelength in a range of about 291 nm to about 301 nm. Vitamin D can be efficiently synthesized by emitting ultraviolet rays in this range.
  • the wavelength converter may include a blue phosphor, a green phosphor, and a red phosphor.
  • White light may be implemented using the phosphors.
  • the light emitting diode may emit visible light having a peak wavelength within a range of about 400 nm to 420 nm, and the wavelength converter may include a blue phosphor, a green phosphor, and a red phosphor.
  • the wavelength converter may include a blue phosphor, a green phosphor, and a red phosphor.
  • the cell active material may be nitrogen oxide (NO) produced by cytochrome c oxidase activity in the mitochondria.
  • NO improves human health by affecting pain relief and improving blood circulation.
  • the light of the second light-emitting diode absorbed by the intracellular mitochondria causes the mitochondria to generate more ATP and promotes metabolism.
  • the wavelength converter may emit light having a central wavelength within a range of about 685 to 705 nm, about 790 to 840 nm, or about 875 to 935 nm.
  • the energy absorption rate of cytochrome c oxidase is relatively higher.
  • cytochrome c oxidase shows the highest absorption rate in the range of 790-840 nm, and the next highest absorption rate in the range of 875-935 nm.
  • the wavelength converter may have a central wavelength within at least 790 to 840 nm or within 875 to 935 nm.
  • the wavelength conversion material may include a phosphor or a quantum dot. Quantum dots have a particularly narrow half-width and are therefore suitable for the production of cellular active substances.
  • the irradiance of light emitted from a wavelength conversion material having a light having a center wavelength in the range of about 685 to 705 nm, 790 to 840 nm, or 875 to 935 nm may be 570 W/m 2 or less.
  • the light emitting diode may emit ultraviolet light in the range of about 286 nm to about 304 nm, or visible light in the range of 400 to 420 nm.
  • the lighting device may further include a circuit board on which the light emitting unit is mounted.
  • a plurality of light emitting units may be mounted on the circuit board, and these light emitting units may be connected to each other in series, parallel or anti-parallel.
  • the at least one light emitting unit may include at least two types of different light emitting units, and the different light emitting units each emit white light, and are also suitable for vitamin D production. Different light can be emitted, either light suitable for sterilizing microorganisms, or light suitable for producing cell active substances.
  • the at least one light emitting unit may include at least three different types of light emitting units, and the different light emitting units emit white light, and light and pathogenicity suitable for vitamin D production. It can emit light suitable for sterilizing microorganisms, or light suitable for producing cell active substances.
  • a lighting device includes a combination of at least two light emitting units of a first light emitting unit, a second light emitting unit, and a third light emitting unit, wherein the first light emitting unit has a peak wavelength of about 286 nm to It includes a first light emitting diode and a first wavelength converter that emits light within a range of about 304nm, and emits a portion of the light generated by the first light emitting diode to the outside, and the second light emitting unit has a peak wavelength in a range of about 400nm to 420nm And a second light emitting diode and a second wavelength converter that emit light within the light emitting part of the light generated by the second light emitting diode to the outside, and the third light emitting unit has a peak wavelength of about 286 nm to about 470 nm.
  • It includes a third light emitting diode and a third wavelength converter that emits, wherein the third wavelength converter includes a wavelength conversion material having a central wavelength in the range of about 685 ⁇ 705nm, 790 ⁇ 840nm, or 875 ⁇ 935nm.
  • the wavelength conversion material having a central wavelength within the range of about 685 to 705 nm, about 790 to 840 nm, or about 875 to 935 nm may be a quantum dot.
  • the quantum dot is capable of emitting high intensity converted light with a narrow half-width, which is suitable for emitting light of a specific wavelength.
  • the first wavelength converter and the second wavelength converter may include a blue phosphor, a green phosphor, and a red phosphor
  • the third wavelength converter may further include a green phosphor and a red phosphor.
  • the first light emitting unit, the second light emitting unit and the third light emitting unit may be driven independently of each other.
  • Each of the first light emitting unit, the second light emitting unit and the third light emitting unit may emit white light.
  • the third light emitting diode may emit light having a peak wavelength in a range of about 400 nm to 420 nm.
  • a lighting device includes: a first light emitting diode having a peak wavelength in a range from about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; And a wavelength converter for converting the wavelength of light emitted from the first light emitting diode, and emits white light and light suitable for producing vitamin D and light suitable for producing a cell active material.
  • the lighting device In addition to realizing white light, it is possible to emit light suitable for generating ultraviolet rays and cell active substances necessary for the production of vitamin D, thereby providing a lighting device that provides beneficial light to the human body similar to sunlight. Moreover, since the lighting device according to the present embodiment emits light using a light emitting diode, it can emit light even in an ultraviolet region that is insufficient for sunlight, and may emit light more suitable for vitamin D production than sunlight. .
  • the white light may be implemented by the first light emitting diode and the wavelength converter. Furthermore, the first light emitting diode may have a peak wavelength within a range of about 400 nm to about 420 nm.
  • the wavelength converter may include a blue phosphor, and the white light has a peak by the first light emitting diode and a peak by the blue phosphor, and a peak by the first light emitting diode and a peak by the blue phosphor. Can be located at different wavelengths.
  • the lighting device may include a plurality of light emitting units spaced apart from each other, and each light emitting unit includes the first light emitting diode and the wavelength converter covering the first light emitting diode.
  • the light emitting units may implement white light having the same or different color temperature from each other.
  • white light may be implemented by a combination of the light emitting units.
  • the wavelength converter may include a blue phosphor, a green phosphor, and a red phosphor.
  • the wavelength converter may include a green phosphor and a red phosphor without a blue phosphor or an orange phosphor.
  • the second light emitting diode emits light suitable for vitamin D synthesis.
  • the second light emitting diode may emit ultraviolet light having a peak wavelength in the range of about 291 nm to about 301 nm.
  • Vitamin D can be efficiently synthesized by emitting ultraviolet rays in this range.
  • the second light emitting diode may be spaced apart from the wavelength converter. By preventing the light emitted from the second light emitting diode from entering the wavelength converter, it is possible to prevent the light emitted from the second light emitting diode from being wavelength converted. Accordingly, light loss due to wavelength conversion of light emitted from the second light emitting diode can be prevented, and furthermore, the color temperature of the lighting device can be easily adjusted.
  • the cell active material may be nitrogen oxide (NO) produced by cytochrome c oxidase activity in the mitochondria.
  • NO improves human health by affecting pain relief and improving blood circulation.
  • light suitable for producing the cell active substance is absorbed into the mitochondria in the cell, allowing the mitochondria to generate more ATP and promoting metabolism.
  • the wavelength converter may include a wavelength converting material that converts wavelengths into light having a peak wavelength within a range of about 685 to 705 nm, 790 to 840 nm, or 875 to 935 nm.
  • the energy absorption rate of cytochrome c oxidase is relatively higher.
  • cytochrome c oxidase shows the highest absorption rate in the range of 790-840 nm, and the next highest absorption rate in the range of 875-935 nm.
  • the wavelength converter may have a peak wavelength within at least 790 to 840 nm or within 875 to 935 nm.
  • the wavelength conversion material may include a phosphor or a quantum dot. Quantum dots have a particularly narrow half-width and are therefore suitable for the production of cellular active substances.
  • the lighting device may further include a third light emitting diode, and the third light emitting diode emits light having a peak wavelength within a range of about 685 to 705 nm, about 790 to 840 nm, or about 875 to 935 nm. can do.
  • the irradiance of light emitted from the wavelength conversion material having a peak wavelength light in the range of about 685 to 705 nm, about 790 to 840 nm, or about 875 to 935 nm may be 570 W/m 2 or less.
  • the light generated by the first light emitting diode is emitted to the outside of the lighting device to sterilize pathogenic microorganisms.
  • the lighting device may further include a fourth light emitting diode that emits light suitable for sterilizing pathogenic microorganisms.
  • the fourth light emitting diode may be spaced apart from the wavelength converter.
  • the fourth light emitting diode may have a peak wavelength in the range of about 400 nm to about 420 nm, furthermore, a peak wavelength of about 400 nm to about 410 nm, and further, a peak wavelength of about 405 nm.
  • the lighting device may further include a circuit board on which the first to third light emitting diodes are mounted.
  • a lighting device includes: a first light emitting diode having a peak wavelength in a range from about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; A third light emitting diode having a peak wavelength in the range of about 685-705 nm, about 790-840 nm, or about 875-935 nm; And a wavelength converter for converting the wavelength of the light emitted from the first light emitting diode, emitting white light by a combination of the first light emitting diode and the wavelength converter, and in the second and third light emitting diodes. The generated light is emitted outside.
  • the inclusion of the second and third light emitting diodes together with the first light emitting diode can help the body synthesize vitamin D and generate cell active substances.
  • the lighting device may further include a fourth light emitting diode that is spaced from the wavelength converter and has a peak wavelength in a range of about 400 nm to about 420 nm.
  • the light generated by the fourth light emitting diode can be used to sterilize pathogenic microorganisms.
  • a light emitting diode package includes: a first light emitting diode having a peak wavelength in a range of about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; And a wavelength converter for converting the wavelength of light emitted from the first light emitting diode, and emits white light and light suitable for producing vitamin D and light suitable for producing a cell active material.
  • a light emitting diode package includes: a first light emitting diode having a peak wavelength in a range of about 300 nm to about 470 nm; A second light emitting diode that emits ultraviolet light with a peak wavelength in the range of about 286 nm to about 304 nm; A third light emitting diode having a peak wavelength in the range of about 685-705 nm, about 790-840 nm, or about 875-935 nm; And a wavelength converter for converting the wavelength of the light emitted from the first light emitting diode, emitting white light by a combination of the first light emitting diode and the wavelength converter, and in the second and third light emitting diodes. The generated light is emitted outside.
  • a lighting system includes a lighting device disposed in an indoor space, the lighting device being one of the lighting devices described above.
  • FIG. 1 is a schematic plan view for explaining a lighting device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view taken along the cutting line A-A of FIG. 1.
  • the lighting device may include a circuit board 11, a light emitting unit 21, and a molding part 31.
  • the circuit board 11 may have a circuit pattern for supplying power to the light emitting units 21.
  • the circuit board 11 may be a printed circuit board, for example, a metal-PCB.
  • the circuit board 11 on which the light emitting unit 21 is mounted may be disposed in the lighting device as a light emitting module.
  • the light emitting unit 21 is a unit light source for realizing white light, and at least one is mounted on the circuit board 11.
  • the plurality of light emitting units 21 may be electrically connected to each other in various ways, for example, may be connected in series, parallel, or parallel.
  • the light emitting unit 21 includes a light emitting diode 21a and a wavelength conversion layer 21b.
  • the light emitting diode 21a may emit UVB ultraviolet rays, and specifically emit light having a central wavelength within a range from about 286 nm to about 304 nm, more specifically from about 291 nm to about 301 nm. Can. When ultraviolet light in this range is irradiated to the human body, vitamin D can be efficiently synthesized.
  • the light emitting diode 21a is an inorganic light emitting diode formed using, for example, a group III nitride semiconductor, and a known light emitting diode chip may be used, and its structure such as flip chip type, vertical type or horizontal type is not particularly limited.
  • the wavelength converter 21b converts the wavelength of the light emitted from the light emitting diode 21a.
  • the wavelength converter 21b may cover the light emitting diode 21a.
  • the wavelength converters 21b may cover the light emitting diodes 21a, respectively.
  • the present disclosure is not limited to this, and the light emitting diodes 21a may be covered together with one wavelength converter 21b.
  • the molding part 31 may cover the light emitting diodes 21a by including a wavelength conversion material.
  • the wavelength converter 21b includes a wavelength conversion material that converts the wavelength of light generated by the light emitting diode 21a to implement white light.
  • the wavelength converter 21b may include a blue phosphor, a green phosphor, and a red phosphor.
  • the wavelength converter 21b may include a blue phosphor and an orange phosphor.
  • the wavelength converter may include quantum dots instead of or in addition to the phosphor.
  • the wavelength converter 21a may have, for example, a structure in which phosphors or quantum dots are dispersed in silicone resin or glass.
  • blue phosphors include BAM-based, Halo-Phosphate-based or aluminate-based phosphors, for example, BaMgAl 10 O 17 :Mn 2 + , BaMgAl 12 O 19 :Mn 2 + or (Sr,Ca, Ba)PO 4 Cl:Eu 2+ .
  • the blue phosphor may have a peak wavelength within the range of 440 to 500 nm, for example.
  • green phosphors examples include LuAG(Lu 3 (Al,Gd) 5 O 12 :Ce 3 + ), YAG(Y 3 (Al,Gd) 5 O 12 :Ce 3 + ), Ga-LuAG((Lu,Ga) 3 (Al,Gd) 5 O 12 :Ce 3+ ), Ga-YAG ((Ga,Y) 3 (Al,Gd) 5 O 12 :Ce 3 + ), LuYAG ((Lu,Y) 3 (Al, Gd) 5 O 12 :Ce 3+ ), Ortho-Silicate ((Sr,Ba,Ca,Mg) 2 SiO 4 :Eu 2 + ), Oxynitride ((Ba,Sr,Ca)Si 2 O 2 N 2 :Eu 2+), ⁇ -SiAlON: there may be mentioned the Eu 2+): Eu 2 +, Ca- ⁇ -SiAlON: Eu 2 +, or Thio Gallate (SrG
  • red phosphor examples include Nitride, Sulfide, Fluoride, or Oxynitride-based phosphor, and specifically, CASN(CaAlSiN 3 :Eu 2 + ), (Ba,Sr,Ca) 2 Si 5 N 8 :Eu 2 + , (Ca, Sr) s 2: there may be mentioned such as Eu 2 +: Eu 2+, or (Sr, Ca) 2 SiS 4 .
  • the red phosphor may have a peak wavelength in the range of 600 to 700 nm.
  • White light may be implemented by a combination of the light emitting diode 21a and the wavelength converter 21b. Most of the ultraviolet rays emitted by the light emitting diodes 21a are wavelength-converted by the wavelength converter 21a, and some unconverted ultraviolet rays are emitted to the outside. Since ultraviolet light is not observed with the naked eye, light that is wavelength-converted to visible light by the wavelength converter 21b is observed among the light emitted outside. Therefore, the spectrum of visible light emitted from the lighting device is determined by the combination of wavelength converting materials in the wavelength converter 21b. The implementation of the white light by the wavelength conversion material can prevent the occurrence of eye diseases or skin diseases caused by the blue wavelength, unlike white light using a conventional blue light emitting diode. This will be described again with reference to FIGS. 4 and 5.
  • the molding unit 31 may cover the light emitting units 21.
  • the molding unit 31 may protect the light emitting units 21 from the external environment.
  • the molding part 31 may be formed of, for example, a transparent resin such as silicone resin or transparent glass. If necessary, the molding part 31 may include a wavelength conversion material.
  • Vitamin D 3 Cholecalciferol (vitamin D 3 ) is synthesized by reacting 7-dehydrocholesterol in skin cells through UVB.
  • Figure 3 is a graph for showing the efficiency of vitamin D production in the human body according to the wavelength is published in CIE 174:2006.
  • ultraviolet light at 298 nm is most efficient for vitamin D production, and exhibits an efficiency of about 90% or more for the highest efficiency in the range of about 291 to 301 nm. In addition, it exhibits an efficiency of about 70% or more for the highest efficiency in the range of about 286 to 304nm, and an efficiency of about 50% or more for the highest efficiency in the range of 281 to 306nm.
  • the peak wavelength of the light emitting diode 21a is 298 nm, it is most efficient for vitamin D production, and when it is within the range of 286 to 304 nm, it will exhibit a relatively good efficiency of 70% or more for vitamin D production.
  • Vitamin D is involved in calcium metabolism, and the deficiency of vitamin D leads to great obstacles to bone growth.
  • the recommended daily amount of vitamin D which is generally suggested, varies from country to country, is generally in the range of 400 to 800 IU, and is upwardly adjusted.
  • the International Illumination Commission (CIE) suggests the UVB exposure required to produce 1000 IU of vitamin D, which is about 21 to 34 J/ for the entire body of the second skin type based on the midday sunlight at midday. m 2 .
  • the reference value for the human exposure safety range for UVB provided by the American Conference of Govermental Industrial Hygienists (ACGIH) is 47 J/m 2 for 290 nm, about 65 J/m 2 for 297 nm, and 100 for 300 nm J/m 2 .
  • the irradiation amount of UVB irradiated from the lighting device needs to be adjusted so that it can be used for vitamin D synthesis in a range not exceeding the safety range.
  • the longer the wavelength the higher the daily allowable reference value, so that the peak wavelength of the light emitting diode 21a is 298 nm or longer, such as within the range of 298 to 301 nm. It is more suitable for lighting devices having.
  • Figure 4 is a graph showing the risk according to the wavelength of the blue light.
  • Blue light is known to cause eye diseases or skin diseases, and in particular, shows the strongest risk between 430 and 440 nm.
  • the wavelength range of 420 to 455 nm represents a risk of 90% or more based on the highest risk value
  • 413 to 465 nm represents a risk of 70% or more
  • 411 to 476 nm represents a risk of 50% or more.
  • FIG. 5 shows a spectrum of a white light source using a blue light emitting diode according to the prior art.
  • the white light source implements white light using a yellow phosphor, or a green phosphor and a red phosphor together with a blue light emitting diode.
  • the type of phosphor and the amount of phosphor are adjusted according to the color temperature, and the intensity of blue light increases as the color temperature increases.
  • Blue light emitting diodes used in conventional white light sources generally have a center wavelength (peak wavelength) within a range of 430 nm to 470 nm.
  • the blue light within this range has a relatively high risk as shown in FIG. 4.
  • the light emitted from the blue light emitting diode is mixed with the light emitted from the phosphor to realize white light. Therefore, as the color temperature of the white light source increases, the intensity of blue light increases, and the risk of causing eye diseases or skin diseases increases.
  • the embodiment of FIGS. 1 and 2 uses a light emitting diode that emits ultraviolet light
  • the light emitted from the light emitting diode 21a is not used to implement white light. That is, light in the visible region is realized by light emitted from the wavelength converter 21b. Accordingly, the spectrum of the visible region of light emitted from the lighting device may have substantially similar intensity in all visible regions similar to sunlight, and as shown in FIG. 5, light of a specific wavelength, for example, blue region, may be used in other regions. There is no need to have an abnormally higher intensity than light. Therefore, the lighting device according to this embodiment can reduce the risk to the human body.
  • FIG. 6 is a schematic cross-sectional view for describing a lighting device according to another embodiment of the present disclosure.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 1 and 2, but differs in that it further includes a filter 41.
  • the filter 41 may block unnecessary ultraviolet rays emitted from the light emitting units 21 to the outside.
  • the filter 41 may block light in a range from about 301 nm to about 400 nm to prevent harmful effects on the human body by ultraviolet rays in this range. Light in the above range may be emitted by, for example, a wavelength conversion material. Therefore, the filter 41 is disposed outside the wavelength converter 21b.
  • the filter 41 may be disposed within the molding portion 31 or may be disposed outside the molding portion 31 as shown.
  • a band pass filter may be used, for example.
  • the light emitting unit 21 includes a light emitting diode 21a and a wavelength converter 21b covering it, it may be provided in a package form.
  • 7 is a schematic cross-sectional view for describing a light emitting unit according to another embodiment of the present disclosure.
  • FIG. 7 schematically shows a conventional package type light emitting device.
  • the light emitting unit 21 includes a light emitting diode 21a and a wavelength converter 21b.
  • the light emitting diode 21a may be mounted in the cavity of the housing 20, and the wavelength converter 21b covers the light emitting diode 21a in the cavity. Meanwhile, the light emitting diode 21a may be electrically connected to the lead electrodes through bonding wires.
  • the package of FIG. 7 is an example, and various types of packages may be used. Also, the wavelength converter 21b may cover the light emitting diodes 21a in various shapes. Meanwhile, when the light emitting units 21 are provided in the form of a package, the molding unit 31 may be omitted.
  • FIG. 8 is a schematic plan view for explaining a lighting device according to another embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view taken along the cutting line B-B of FIG. 8.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 1 and 2, but the light emitting units 23 are of a purple color instead of the ultraviolet light emitting diode 21a. The difference is that it includes a light emitting diode 23a that emits short wavelength visible light.
  • the light emitting diode 23a has a peak wavelength within a range of about 400 to 420 nm, and light of a wavelength in this range is suitable for sterilizing pathogenic microorganisms.
  • the light emitting diode 23a may emit light having a peak wavelength of about 400 to 410 nm, and further, a peak wavelength of about 405 nm.
  • the wavelength of about 405 nm is absorbed by Porphyrin, a substance existing in the cells of bacteria, to generate free radicals, and the generated free radicals accumulate to destroy the cell wall, causing a sterilization effect.
  • the wavelength of the visible region in the above range is suitable for sterilizing pathogenic microorganisms without causing eye disease or skin disease.
  • sterilization means killing or damaging pathogenic microorganisms to reduce or interfere with the growth of pathogenic microorganisms.
  • the wavelength converter 23b may include a wavelength conversion material that converts light from the light emitting diode 23a into blue, green, and red light. In another embodiment, the wavelength converter 23b may include a blue and orange wavelength conversion material that converts light from the light emitting diode 23a into blue and orange light. Since the type of the wavelength conversion material is similar to that described with reference to FIGS. 1 and 2, a detailed description is omitted to avoid duplication.
  • Part of the light generated by the light emitting diode 23a is converted into long-wavelength visible light by a wavelength conversion material, and part of it is emitted to the outside of the lighting device without wavelength conversion.
  • the light generated by the light emitting diode 23a and emitted to the outside is mixed with the wavelength-converted light by the wavelength converting material to implement white light, and further performs a sterilization function.
  • the irradiance of light generated by the light emitting diode 23a and emitted to the outside may be greater than that of wavelength converted light in the wavelength conversion material.
  • the present disclosure is not limited thereto.
  • the radiation intensity of the light generated by the light emitting diode 23a and emitted to the outside is converted from the wavelength converted material. It can be made smaller than the irradiance.
  • FIG. 10 shows examples of spectrums of white light of various color temperatures implemented by a combination of a light emitting diode 23a and a wavelength converter 23a.
  • white light of each color temperature is implemented by a combination of light emitted from the light emitting diode 23a and light emitted from phosphors. Further, at all color temperatures, the radiance of light emitted from the light emitting diode 23a may be smaller than that of the light emitted from the blue phosphor. As the color temperature increases, the radiance of light emitted from the light emitting diode 23a also increases, but the radiance of blue light emitted from the blue phosphor increases significantly. In addition, the radiance of light emitted from the light emitting diode 23a may be less than that of the light emitted from the green phosphor and less than the radiance of light emitted from the red phosphor.
  • the radiance may be further increased.
  • FIG. 11 is a schematic plan view for explaining a lighting device according to another embodiment of the present disclosure
  • FIG. 12 is a schematic cross-sectional view taken along the cutting line C-C of FIG. 11.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 1 and 2, but the light emitting units 25 include a light emitting diode 25a, and a wavelength
  • the converter 25b further includes a wavelength conversion material in the near-infrared region along with a wavelength conversion material in the visible light region.
  • the light emitting diode 25a may be a light emitting diode 21a that emits UVB described with reference to FIGS. 1 and 2, or may be a purple light emitting diode 23a described with reference to FIGS. 8 and 9, and other It may be a light emitting diode that emits ultraviolet or blue light.
  • the light emitted from the light emitting diode 25a is absorbed by the wavelength conversion material of the wavelength converter 25b and converted to wavelength, and the wavelength converted light is emitted to the outside of the lighting device. Furthermore, a part of the light generated by the light emitting diode 25a may be emitted to the outside, thus exerting the function of generating vitamin D described with reference to FIGS. 1 and 2 or the sterilizing function described with reference to FIGS. 8 and 9. Can.
  • the wavelength converter 25b includes a wavelength conversion material that absorbs light generated by the light emitting diode 25a and emits light having a longer wavelength.
  • the wavelength converter 25b may include, for example, a blue phosphor, a green phosphor, and a red phosphor as described above, and may also include a blue phosphor and an orange phosphor, and the light emitting diode 25a is blue.
  • a light emitting diode it may include a green phosphor and a red phosphor, or an orange phosphor.
  • the types of these phosphors are similar to those described with reference to FIGS. 1 and 2, and thus detailed descriptions are omitted to avoid duplication.
  • the wavelength converter 25b includes a wavelength conversion material that emits red light or near infrared rays in a range of about 605 to 935 nm.
  • the wavelength conversion material may emit light having a center wavelength within a range of, for example, 605 to 655 nm, 685 to 705 nm, 790 to 840 nm, or 875 to 935 nm.
  • the cytochrome c oxidase in the mitochondria absorbs light in the range of 605 to 935 nm as a photoreceptor, thereby increasing activity, thereby generating NO. NO improves human health by affecting pain relief and improving blood circulation.
  • the activity of the cytochrome c oxidase protein contributes to ATP production and also affects cell damage treatment.
  • the energy absorption of cytochrome c oxidase is relatively high in the range of 605 to 655 nm, 685 to 705 nm, 790 to 840 nm, or 875 to 935 nm.
  • the energy absorption rate of cytochrome c oxidase is highest in the wavelength range of 790 to 840 nm, next highest in the range of about 875 to 935 nm, and next in the wavelength range of about 605 to 655 nm, as shown in FIG. high.
  • the wavelength conversion material may be, for example, a phosphor or a quantum dot.
  • the use of quantum dots can emit light with a narrow half-width, which is more efficient for the production of cellular active substances.
  • the wavelength conversion material that emits light in the range of 605 to 655 nm overlaps with the wavelength conversion material for realizing white light, so there is no need to add it separately. That is, a wavelength conversion material that emits light having a center wavelength in a range of about 685 to 705 nm, 790 to 840 nm, or 875 to 935 nm may be mainly used.
  • the radiance of light emitted from the illumination device may be 570 W/m 2 or less, and further, 100 W/m 2 or less.
  • 570 W/m 2 represents the limit value of risk group 1 for light in the infrared range in the photobiological safety standard (IEC 62471), and 100 W/m 2 corresponds to exemption.
  • IEC 62471 photobiological safety standard
  • 100 W/m 2 corresponds to exemption.
  • this embodiment can be used to promote human health in an indoor living space as well as a space where a large number of people are active, such as an airport or a hospital.
  • a lighting device capable of emitting light capable of generating a cell active material together with white light while adopting one type of light emitting diode 25a may be provided. Furthermore, according to the selection of the light emitting diode 25a, a lighting device to which vitamin D synthesis or sterilization function is added may be provided.
  • FIG. 14 is a schematic plan view for explaining a lighting device according to another embodiment of the present disclosure
  • FIG. 15 is a schematic cross-sectional view taken along the cutting line D-D of FIG. 14.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 1 and 2, but the light emitting units 21, 23, and 25 have different light emitting diodes ( 21a, 23a, 25a).
  • the light emitting unit 21 is the same as the light emitting unit 21 described with reference to FIGS. 1 and 2, the light emitting unit 23 is the same as described with reference to FIGS. 8 and 9, and the light emitting unit 25 is a figure It is the same as the light emitting unit 25 described with reference to 11 and 12.
  • the light emitting units 21, 23, 25 can be arranged on the circuit board 11 in various ways.
  • the light-emitting units 21, 23, and 25 may be arranged such that light-emitting units of the same type are arranged in the same column, and light-emitting units of the same type may be arranged to be spaced apart from each other.
  • the light emitting units 21, 23, and 25 may be electrically connected so that light emitting units of the same type can be driven independently, and accordingly, a specific function may be performed simultaneously or at different times.
  • vitamin D production, sterilization, and cell activation functions may be performed together.
  • any one of vitamin D production, sterilization, and cell activation functions may be performed.
  • the lighting device can be programmed to control the time zone in which vitamin D production is active, the time zone in which sterilization function is active, and the time zone in which cell activation functions are active.
  • vitamin D production can be made to occur mainly at times close to noon.
  • a lighting device including all three types of light emitting units 21, 23 and 25 is described, but the present disclosure is not limited thereto.
  • a lighting device including a combination of any two light emitting units of the three types of light emitting units 21, 23 and 25 may be provided.
  • the present disclosure is not limited to these specific embodiments.
  • the light emitting units 23 and 25 may be provided in a package form as the light emitting unit 21 described with reference to FIG. 7.
  • a diffusion plate may be added to uniformly mix light emitted from the light emitting units 21, 23, and 25.
  • FIG. 16 is a schematic plan view for explaining a lighting device according to an embodiment of the present disclosure
  • FIG. 17 is a schematic cross-sectional view taken along the cutting line E-E of FIG. 16.
  • the lighting device may include a circuit board 111, a first light emitting diode 121, a second light emitting diode 123, a third light emitting diode 125 and a wavelength converter 131.
  • a circuit board 111 a first light emitting diode 121, a second light emitting diode 123, a third light emitting diode 125 and a wavelength converter 131.
  • the circuit board 111 may have a circuit pattern for supplying power to the first to third light emitting diodes 121, 123, and 125.
  • the circuit board 111 may be a printed circuit board, for example, a metal-PCB.
  • the circuit board 111 on which the first to third light emitting diodes 121, 123, and 125 are mounted may be disposed in the lighting device as a light emitting module.
  • the first light emitting diode 121 is a light source for realizing white light, and at least one is mounted on the circuit board 111.
  • the first light emitting diode 121 is an inorganic light emitting diode formed using, for example, a III-nitride semiconductor, such as an AlGaInN-based semiconductor, and a known light-emitting diode chip can be used, such as flip-chip type, vertical type, or horizontal type.
  • the structure is not particularly limited.
  • the plurality of first light emitting diodes 121 may be electrically connected to each other in various ways, for example, may be connected in series, parallel or series-parallel.
  • the plurality of first light emitting diodes 121 may be variously arranged according to the lighting device. For example, a plurality of first light emitting diodes 121 may be arranged in two dimensions for a surface lighting device, and for a tube type lighting device, the first light emitting diodes 121 may be arranged in a line.
  • the first light emitting diode 121 may emit ultraviolet light or visible light, and may have a peak wavelength within a range of about 300 to about 470 nm, for example. In particular, the first light emitting diode 121 may have a peak wavelength within a range of about 400 nm to about 420 nm.
  • the first light emitting diode 121 emits ultraviolet rays
  • most of the ultraviolet rays are wavelength-converted by the wavelength converter 131, so that ultraviolet rays from the first light emitting diode 121 can be prevented from being emitted to the outside. .
  • safety problems caused by ultraviolet rays can be eliminated in advance.
  • the first light emitting diode having a peak wavelength in the range of about 400 to about 420 nm energy loss due to wavelength conversion can be reduced compared to ultraviolet light, and it is possible to prevent eye disease or skin disease caused by blue light. This will be described later with reference to FIGS. 18 to 20.
  • the wavelength converter 131 converts the wavelength of light emitted from the first light emitting diode 121.
  • the wavelength converter 131 may be, for example, a molding part containing a phosphor or a quantum dot.
  • the wavelength converter 131 covers the first light emitting diode 121.
  • the wavelength converter 131 may cover all of the plurality of first light emitting diodes 121.
  • the wavelength converter 131 includes a wavelength conversion material for realizing white light together with light of the first light emitting diode 123.
  • the wavelength converter 131 may include a blue phosphor, a green phosphor and a red phosphor.
  • the wavelength converter 131 may include a blue phosphor and an orange phosphor.
  • the wavelength converter 131 when the first light emitting diode 121 is a blue light emitting diode, the wavelength converter 131 may include a green phosphor and a red phosphor without a blue phosphor, or an orange phosphor.
  • the wavelength converter may include quantum dots instead of or in addition to the phosphor.
  • examples of the blue phosphor include BAM-based, Halo-Phosphate-based, or aluminate-based phosphors, for example, BaMgAl 10 O 17 :Mn 2 + , BaMgAl 12 O 19 :Mn 2 + or (Sr, Ca,Ba)PO 4 Cl:Eu 2+ .
  • the blue phosphor may have a peak wavelength within the range of 440 to 500 nm, for example.
  • green phosphors examples include LuAG(Lu 3 (Al,Gd) 5 O 12 :Ce 3 + ), YAG(Y 3 (Al,Gd) 5 O 12 :Ce 3 + ), Ga-LuAG((Lu,Ga) 3 (Al,Gd) 5 O 12 :Ce 3+ ), Ga-YAG ((Ga,Y) 3 (Al,Gd) 5 O 12 :Ce 3 + ), LuYAG ((Lu,Y) 3 (Al, Gd) 5 O 12 :Ce 3+ ), Ortho-Silicate ((Sr,Ba,Ca,Mg) 2 SiO 4 :Eu 2 + ), Oxynitride ((Ba,Sr,Ca)Si 2 O 2 N 2 :Eu 2+), ⁇ -SiAlON: there may be mentioned the Eu 2+): Eu 2 +, Ca- ⁇ -SiAlON: Eu 2 +, or Thio Gallate (SrG
  • red phosphor examples include Nitride, Sulfide, Fluoride, or Oxynitride-based phosphor, and specifically, CASN(CaAlSiN 3 :Eu 2 + ), (Ba,Sr,Ca) 2 Si 5 N 8 :Eu 2 + , (Ca, Sr) s 2: there may be mentioned such as Eu 2 +: Eu 2+, or (Sr, Ca) 2 SiS 4 .
  • the red phosphor may have a peak wavelength in the range of 600 to 700 nm.
  • white light having various color temperatures may be implemented.
  • blue light is known to cause eye diseases or skin diseases.
  • 18 is a graph showing the risk according to the wavelength of blue light.
  • Fig. 18 shows the strongest risk between 430 nm and 440 nm.
  • the wavelength range of 420 to 455 nm represents a risk of 90% or more based on the highest risk value
  • 413 to 465 nm represents a risk of 70% or more
  • 411 to 476 nm represents a risk of 50% or more.
  • ultraviolet rays harm the human body, and in particular, show the strongest risk between 270 and 280 nm.
  • 19 shows a spectrum of a white light source using a general blue light emitting diode 121.
  • a white light source may implement white light by using a yellow phosphor or a green phosphor and a red phosphor together with a blue light emitting diode.
  • the type of phosphor and the amount of phosphor are adjusted according to the color temperature, and the intensity of blue light increases as the color temperature increases.
  • Blue light emitting diodes used in white light sources generally have peak wavelengths in the range of about 430 nm to about 470 nm.
  • the blue light within this range has a relatively high risk as shown in FIG. 18. Therefore, as the color temperature of the white light source increases, the intensity of blue light increases, and the risk of causing eye diseases or skin diseases increases.
  • FIG. 20 shows a spectrum of a white light source according to some embodiments of the present disclosure.
  • FIG. 20 shows examples of spectrums of white light having various color temperatures implemented by a combination of a purple light emitting diode 121 and a wavelength converter 131.
  • white light of each color temperature is implemented by a combination of light emitted from the purple light emitting diode 121 having a peak wavelength within a range of about 400 nm to about 420 nm and light emitted from phosphors.
  • the wavelength converter 131 includes a blue phosphor, and further includes a green phosphor and a red phosphor. These phosphors absorb light emitted from the purple light emitting diode 121 and emit blue light, green light, and red light.
  • the white light of various color temperatures shown in FIG. 20 has a peak due to the purple light emitting diode 121 and a peak due to the blue phosphor. These peaks are particularly pronounced at higher color temperatures.
  • the peak due to the purple light emitting diode 121 and the peak due to the blue phosphor are located at different wavelengths. In particular, since the blue phosphor converts the wavelength of light emitted from the purple light emitting diode 121 to a long wavelength, the peak due to the blue phosphor is located at a longer wavelength than the peak caused by the purple light emitting diode 121.
  • the radiance of light emitted from the light emitting diode 121 may be smaller than the radiance of light emitted from the blue phosphor. As the color temperature increases, the irradiance of light emitted from the light emitting diode 121 also increases, but the radiance of blue light emitted from the blue phosphor increases significantly. In addition, the radiance of light emitted from the light emitting diode 121 may be smaller than that of the light emitted from the green phosphor and less than the radiance of light emitted from the red phosphor.
  • the radiance may be further increased.
  • light emitted from the light emitting diode 121 having a peak wavelength in the range of about 400 nm to about 420 nm may have a sterilizing function.
  • the light emitting diode 121 may emit light having a peak wavelength of about 400 nm to about 410 nm, and further, a peak wavelength of about 405 nm.
  • Short-wavelength visible light within a range of about 400 nm to about 420 nm has a relatively low risk for ocular diseases or skin diseases, and has a high sterilization ability against pathogenic microorganisms, and thus can be suitably used for a lighting device to perform a sterilization function.
  • the second light emitting diode 123 may emit UVB ultraviolet rays, specifically, within a range of about 286 nm to about 304 nm, and more specifically, a peak wavelength within a range of about 291 nm to about 301 nm. It can emit light having. When ultraviolet light in this range is irradiated to the human body, vitamin D can be efficiently synthesized.
  • the light emitting diode 123 is an inorganic light emitting diode formed using, for example, a group III nitride semiconductor, and a known light emitting diode chip may be used, and its structure such as flip chip type, vertical type or horizontal type is not particularly limited.
  • the second light emitting diode 123 may be spaced apart from the wavelength converter 131 and mounted on the circuit board 111, so that light emitted from the second light emitting diode 123 is absorbed by the wavelength converter 131. Can be prevented. Accordingly, radiance of light emitted from the second light emitting diode 123 may be improved. In addition, by separating the second light emitting diode 123 from the wavelength converter 131, light emitted from the second light emitting diode 123 can be prevented from being wavelength-converted, and thus, energy loss due to stoke shift can be prevented. Can. However, the present disclosure is not necessarily limited thereto, and the second light emitting diode 123 may be disposed in the wavelength converter 131.
  • ultraviolet light at 298 nm is most efficient for vitamin D production, and exhibits an efficiency of about 90% or more with respect to the highest efficiency in the range of about 291 to 301 nm. It also exhibits an efficiency of at least about 70% for the highest efficiency in the range of about 286 to about 304 nm, and an efficiency of at least about 50% for the highest efficiency in the range of about 281 to about 306 nm.
  • the peak wavelength of the light emitting diode 123 is 298 nm, it is most efficient for vitamin D production, and when it is in the range of about 286 to about 304 nm, it will exhibit a relatively good efficiency of 70% or more for vitamin D production.
  • Vitamin D is involved in calcium metabolism, and the deficiency of vitamin D leads to great obstacles to bone growth.
  • the recommended daily amount of vitamin D which is generally suggested, varies from country to country, is generally in the range of 400 to 800 IU, and is upwardly adjusted.
  • the International Illumination Commission (CIE) provides the UVB exposure required to produce 1000 IU of vitamin D, which is about 21 to about 34 J for the entire body of the second skin type, based on midday sunlight at midday. /m 2 .
  • the reference value for the human exposure safety range for UVB provided by the American Conference of Govermental Industrial Hygienists (ACGIH) is 47 J/m 2 for 290 nm, about 65 J/m 2 for 297 nm, and 100 for 300 nm J/m 2 .
  • the irradiation amount of UVB irradiated from the lighting device needs to be adjusted so that it can be used for vitamin D synthesis in a range not exceeding the safety range.
  • the longer the wavelength the higher the daily allowable reference value, so that the peak wavelength of the second light emitting diode 123 is 298 nm or longer, such as within the range of 298 to 301 nm. It is more suitable for lighting devices having a composite function.
  • the second light emitting diode 123 may be driven independently of the first light emitting diode 121, and thus, while the first light emitting diode 121 is operating, may be turned on or off as needed.
  • the third light emitting diode 125 may be spaced apart from the wavelength converter 131 and mounted on the circuit board 111. The light emitted from the third light emitting diode 125 may be emitted outside without substantially entering the wavelength converter 131. Accordingly, radiance of light emitted from the third light emitting diode 125 may be improved.
  • the third light emitting diode 125 may be connected to the first light emitting diode 121 in series or parallel, or may be driven independently from the first light emitting diode 121.
  • the third light emitting diode 125 emits light suitable for cell activity.
  • the third light emitting diode 125 may emit light having a peak wavelength within a range of about 605 to 935 nm, for example.
  • the third light emitting diode may be formed of, for example, an AlGaInP-based or AlGaInAs-based semiconductor.
  • Red light or near infrared light in the range of about 605 to about 935 nm produces cellular actives in the mitochondria.
  • the cytochrome c oxidase in the mitochondrial absorbs light in the range of 605 to 935 nm as a photoreceptor, thereby increasing its activity, thereby generating NO. NO improves human health by affecting pain relief and improving blood circulation.
  • the activity of the cytochrome c oxidase protein contributes to ATP production and also affects cell damage treatment.
  • the third light emitting diode 125 may emit light having a peak wavelength within a range of about 605 to 655 nm, about 685 to 705 nm, about 790 to 840 nm, or about 875 to 935 nm.
  • the energy absorption rate of cytochrome c oxidase is relatively high.
  • the energy absorption rate of cytochrome c oxidase is highest in the wavelength range of 790 to 840 nm, the next highest in the range of about 875 to 935 nm, and next in the wavelength range of about 605 to 655 nm, as shown in FIG. high.
  • the health promoting efficiency can be improved by adopting a third light emitting diode 125 that emits light having a wavelength with a relatively high energy absorption rate of cytochrome c oxidase.
  • a plurality of third light emitting diodes 125 when a plurality of third light emitting diodes 125 are used, light emitting diodes that emit light within a specific wavelength range among the above wavelength ranges, for example, light having a high efficiency of 790 to 840 nm or 875 to 935 nm A plurality of light emitting diodes emitting may be used, or various light emitting diodes may be used to emit light in each wavelength range evenly.
  • the light emitting diode emitting light in the range of 605 ⁇ 655nm may affect the color temperature of the white light, so that it does not affect the color temperature of the white light emitting device, a low visibility range, that is, about 685 ⁇ 705nm, about 790 ⁇
  • Third light emitting diodes 125 that emit light having a peak wavelength within a range of 840 nm or about 875 to 935 nm may be mainly used.
  • the radiance of light emitted from the third light emitting diode 125 is emitted from the first light emitting diodes 121 and the wavelength converter 131 that embody white light. It is greater than the irradiance at the same wavelength of light. Accordingly, in this embodiment, the cell activation function is performed by the third diode 123.
  • the driving time of the third light emitting diode 125 and the driving time of the first light emitting diode 121 may be the same, but are not limited thereto.
  • the driving time of the third light emitting diode 125 may be adjusted according to the installation position of the lighting device. In particular, the use time of the third light emitting diode 125 or the magnitude of the irradiance may be adjusted in consideration of the risk to the human body.
  • the radiance of the third light emitting diode 125 emitted from the lighting device may be 570 W/m 2 or less, and further, 100 W/m 2 or less.
  • 570 W/m 2 represents the limit value of risk group 1 for light in the infrared range in the photobiological safety standard (IEC 62471), and 100 W/m 2 corresponds to exemption.
  • IEC 62471 photobiological safety standard
  • 100 W/m 2 corresponds to exemption.
  • the lighting device may include more of the first light emitting diode 121 than the third light emitting diode 125, and thus, may emit light having an intensity suitable for lighting.
  • the present disclosure is not limited thereto.
  • the third light emitting diode 123 emits light for performing a cell activation function
  • a wavelength conversion material may be used instead of the third light emitting diode 125.
  • phosphors or quantum dots that emit light in the red or infrared regions can be used.
  • the quantum dot since the quantum dot has a narrow half-width, it can emit light of a wavelength suitable for cell active function.
  • the wavelength converting material having a cell active function may be contained in the wavelength converter 131 to wavelength convert the light generated by the first light emitting diode 121, and may be disposed on a light emitting diode different from the first light emitting diode 121. Can.
  • the other light emitting diodes may emit light having a longer wavelength than the first light emitting diode 121, and accordingly, energy loss due to wavelength conversion may be reduced.
  • the lighting device of this embodiment can be used to promote human health in a space where a large number of people are active, such as an airport or hospital, as well as an indoor living space by including a cell activation function.
  • a plurality of first light emitting diodes 121, a second light emitting diode 123, and a third light emitting diode 125 are illustrated, but the plurality of second light emitting diodes 123 and A plurality of third light emitting diodes 125 may be disposed on the substrate 111.
  • FIG. 23 is a schematic cross-sectional view for describing a lighting device according to another embodiment of the present disclosure.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 16 and 17, but differs in that it further includes a fourth light emitting diode 127.
  • a fourth light emitting diode 127 In order to avoid duplication, description of the same components will be omitted, and the fourth light emitting diode 127 will be described in detail.
  • the fourth light emitting diode 127 may be spaced apart from the wavelength converter 131 and mounted on the circuit board 111.
  • the light emitted from the third light emitting diode 127 may be emitted outside without substantially entering the wavelength converter 131. Accordingly, radiance of light emitted from the fourth light emitting diode 127 may be improved.
  • the fourth light emitting diode 127 may be connected to the first light emitting diode 121 in series or parallel, or may be driven independently from the first light emitting diode 121.
  • the fourth light emitting diode 127 emits light suitable for sterilizing pathogenic microorganisms other than white light.
  • the fourth light emitting diode 127 may emit light having a peak wavelength of about 400 to about 420 nm, for example, a peak wavelength of about 400 to about 410 nm, and further, a peak wavelength of about 405 nm.
  • the wavelength of about 405 nm is absorbed by Porphyrin, a substance existing in the cells of bacteria, to generate free radicals, and the generated free radicals accumulate to destroy the cell wall, causing a sterilization effect.
  • the wavelength of the visible region in the above range is suitable for sterilizing pathogenic microorganisms without causing eye disease or skin disease.
  • sterilization means killing or damaging pathogenic microorganisms to reduce or interfere with the growth of pathogenic microorganisms.
  • the fourth light emitting diode 127 may emit light having the same wavelength as the first light emitting diode 121, but is not limited thereto, and may emit light having a different wavelength from the first light emitting diode 121.
  • the disinfection function can be efficiently provided by disposing the fourth light emitting diode 127 separately from the first light emitting diode 121.
  • the radiance of light emitted from the fourth light emitting diode 127 may be greater than that of the light emitted from the white light source at the same wavelength. Further, the radiance of the light emitted from the fourth light emitting diode 127 may be greater than that of the light emitted from the first light emitting diode 121 to the outside of the lighting device. Accordingly, the lighting device of the present embodiment is primarily sterilized by the fourth light emitting diode 127 compared to the first light emitting diode 121.
  • the driving time of the fourth light emitting diode 127 and the driving time of the first light emitting diode 121 may be the same, but the present invention is not limited thereto, and the driving time of the fourth light emitting diode 127 is not limited thereto.
  • the driving time can be adjusted.
  • the use time of the fourth light emitting diode or the magnitude of the irradiance can be adjusted in consideration of the risk to the human body.
  • the radiance of the fourth light emitting diode 127 emitted from the lighting device may be 1 W/m 2 or less, and further, 0.1 W/m 2 or less.
  • 1 W/m 2 represents the limit value of the risk group 1 for blue light in the range of 300 to 700 nm in the photobiological safety standard (IEC 62471), and 0.1 W/m 2 corresponds to exempt.
  • FIG. 24 is a schematic plan view for explaining a lighting device according to another embodiment of the present disclosure
  • FIG. 25 is a schematic cross-sectional view taken along the cutting line F-F of FIG. 24.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 16 and 17, but the wavelength converters 231 are provided on the first light emitting diodes 121. There is a difference in each formed. That is, in FIGS. 16 and 17, the wavelength converter 131 covers all of the plurality of first light emitting diodes 121, but in this embodiment, each of the first light emitting diodes 121 is individually a wavelength converter 231. ).
  • the wavelength conversion materials in the first to third light emitting diodes 121, 123, and 125 and the wavelength converter 231 are the same as described above, and thus detailed descriptions are omitted.
  • the second light emitting diode 123 and the third light emitting diode 125 may be disposed between the first light emitting diodes 121. have.
  • the plurality of second light emitting diodes 123 and the plurality of third light emitting diodes 125 may be uniformly distributed between the first light emitting diodes 121, and accordingly, the second light emitting diode 123 and Light emitted from the third light emitting diode 125 may be mixed with white light.
  • the second light emitting diode 123 or the third light emitting diode 125 may be covered with a transparent molding unit to protect it from the external environment.
  • a light source unit 221 for illumination is provided by the first light emitting diode 121 and the wavelength converter 231.
  • Each light source unit 221 may implement white light by a combination of the first light emitting diode 121 and the wavelength converter 231.
  • all of the light source units 221 may implement white light having the same color temperature.
  • the light source units 221 may implement white light having different color temperatures.
  • the light emitting diodes 121 may emit light having different peak wavelengths, and the wavelength converters 231 may include different wavelength conversion materials.
  • the light source units 221 may implement light of different colors instead of implementing white light, and white light may be implemented by a combination of these light source units 221.
  • 26 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 24 and 25, except that the fourth light emitting diode 127 is further included.
  • the fourth light emitting diode 127 is the same as the light emitting diode 127 described with reference to FIG. 23, a detailed description is omitted to avoid duplication.
  • FIG. 27 is a schematic plan view for describing a lighting device according to another embodiment of the present disclosure.
  • the lighting device according to the present embodiment is substantially similar to the lighting device described with reference to FIGS. 16 and 17, but differs in that it further includes a filter 41.
  • the filter 41 may block unnecessary ultraviolet rays emitted from the light emitting units 121 to the outside.
  • the filter 41 may block light in a range from about 301 nm to about 400 nm to prevent harmful effects on the human body by ultraviolet rays in this range.
  • the light in the above range may be emitted by, for example, the first light emitting diode 121 or the wavelength conversion material. Therefore, the filter 41 may be disposed outside the wavelength converter 131.
  • a band pass filter may be used, for example.
  • a diffusion plate may be disposed in place of the filter 41 or in addition to the filter 41.
  • the diffuser plate may mix white light generated by the first light emitting diode 121 and the wavelength converter 131 and light emitted from the second light emitting diode 123 and the third light emitting diode 125.
  • the filter 41 or the diffuser plate is not limited to the embodiment of FIG. 27 and may be applied to other embodiments.
  • the light emitting unit 221 includes a light emitting diode 121 and a wavelength converter 231, the light emitting diode 121 is illustrated and described as being directly mounted on the circuit board 111, , The light emitting unit 221 may be provided in the form of a package. This will be described with reference to FIG. 28.
  • FIG. 28 is a schematic cross-sectional view for describing a light emitting unit according to another embodiment of the present disclosure.
  • FIG. 28 schematically shows a package type light emitting device.
  • the light emitting unit 221 includes a light emitting diode 121 and a wavelength converter 231.
  • the light emitting diode 121 may be mounted in the cavity of the housing 120, and the wavelength converter 231 covers the light emitting diode 121 in the cavity. Meanwhile, the light emitting diode 121 may be electrically connected to the lead electrodes through bonding wires.
  • the package of FIG. 28 is an example, and various types of packages may be used.
  • the wavelength converter 231 may cover the light emitting diode 121 in various shapes.
  • the light emitting unit 221 is provided in the form of a package in this embodiment, the second light emitting diode 123, the third light emitting diode 24, and the fourth light emitting diode 127 are also provided in the form of a package. It may be mounted on the substrate 111.
  • 29 is a schematic cross-sectional view for describing a light emitting unit according to another embodiment of the present disclosure.
  • the light emitting unit according to the present embodiment is characterized in that the first light emitting diode 121, the second light emitting diode 123 and the third light emitting diode 125 are all mounted in one package. That is, in the embodiment of FIG. 28, each light emitting diode package includes one light emitting diode, but in this embodiment, the light emitting diode package includes first to third light emitting diodes 121, 123, and 125. Meanwhile, the wavelength converter 231 may cover the first light emitting diode 121, and accordingly, the light emitting unit 221 may be provided in the package.
  • the molding unit 230 may cover the light emitting unit 221, the second light emitting diode 123, and the third light emitting diode 125.
  • the molding unit 230 may be formed of, for example, a transparent resin such as silicone resin or transparent glass. If necessary, the molding unit 230 may include a wavelength conversion material.
  • a light emitting diode package including first to third light emitting diodes may be mounted on the circuit board 111.
  • the light emitting diode package may further include the fourth light emitting diode 127 described above.
  • a plurality of light emitting diode packages may be mounted on the circuit board 111, and these light emitting diode packages may all have the same structure, but are not limited thereto. That is, light emitting diode packages having the same multiple add-on functions may be disposed on the circuit board 111, or light-emitting diode packages having different additional functions are arranged on the circuit board 111 to have multiple add-on functions.
  • a lighting device may be provided.
  • the individual light emitting diode package may implement white light, but is not limited thereto, and white light may be implemented by a combination of a plurality of light emitting diode packages.
  • the lighting device may be installed in an indoor living space as well as an indoor space used by a large number of people, such as a hospital or an airport.
  • a lighting system in which the lighting device is installed can also be provided. This lighting system can routinely operate the lighting device to perform the lighting function along with the additional functions described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

일 실시예에 따른 조명 장치는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출하며, 상기 백색광은 상기 제1 발광 다이오드와 상기 파장변환기에 의해 구현된다.

Description

추가 기능을 갖는 LED 조명 장치
본 개시는 LED를 이용한 조명 장치에 관한 것으로, 더 상세하게는 추가 기능을 갖는 LED 조명 장치에 관한 것이다.
발광 다이오드는 무기 광원으로서, 디스플레이 장치, 차량용 램프, 일반 조명과 같은 여러 분야에 다양하게 이용되고 있다. 특히, 발광 다이오드는 수명이 길고, 소비 전력이 낮아 기존 조명 광원을 빠르게 대체하고 있다.
한편, 태양광은 자외선, 가시광 및 적외선 영역에 걸쳐 넓은 파장 스펙트럼을 나타낸다. 인체는 태양광에 적응하여 생존해 왔으며, 이에 따라, 태양광의 넓은 파장 범위에 걸쳐 넓은 파장 범위의 광을 이용한다.
일반적인 조명은 태양광과 달리 가시광 영역에 한정되며, 가시광 이외의 파장 범위의 광을 제공하지 못한다. 그 결과, 조명 광원 하에서 생활하는 일반인은 가시광 이외의 인체에 유익한 파장의 광을 흡수하지 못한다.
본 개시의 실시예들은 가시광을 제공하는 조명 기능 이외에 추가적인 기능을 갖는 조명 장치, 발광 다이오드 패키지 및 조명 시스템을 제공한다.
본 개시의 실시예들은 태양광에 유사한 가시광을 제공함과 아울러 에너지 효율이 높은 조명 장치, 발광 다이오드 패키지 및 조명 시스템을 제공한다.
본 개시의 실시예들은 단순한 구조의 유닛 광원들을 이용하여 추가적인 기능을 갖는 조명 장치를 제공한다.
본 개시의 일 실시예에 따른 조명 장치는, 단일의 발광 다이오드와 상기 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하는 적어도 하나의 발광 유닛을 포함하되, 상기 발광 유닛은 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광, 병원성 미생물을 살균하기에 적합한 광, 또는 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛의 적어도 두 개의 발광 유닛의 조합을 포함하되, 제1 발광 유닛은 피크 파장이 약 286nm 내지 약 304nm 범위 내의 광을 방출하는 제1 발광 다이오드 및 제1 파장변환기를 포함하며, 상기 제1 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고, 제2 발광 유닛은 피크 파장이 약 400nm 내지 420nm 범위 내의 광을 방출하는 제2 발광 다이오드 및 제2 파장변환기를 포함하며, 상기 제2 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고, 제3 발광 유닛은 피크파장이 약 286nm 내지 약 470nm 범위 내의 광을 방출하는 제3 발광 다이오드 및 제3 파장변환기를 포함하되, 상기 제3 파장변환기는 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내에 중심 파장을 갖는 파장변환물질을 포함한다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내의 피크 파장을 갖는 제3 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 상기 제1 발광 다이오드와 상기 파장변환기의 조합에 의해 백색광을 방출함과 아울러, 상기 제2 및 제3 발광 다이오드에서 생성된 광이 외부로 방출된다.
본 개시의 일 실시예에 따른 발광 다이오드 패키지는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
본 개시의 또 다른 실시예에 따른 발광 다이오드 패키지는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장을 갖는 제3 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 상기 제1 발광 다이오드와 상기 파장변환기의 조합에 의해 백색광을 방출함과 아울러, 상기 제2 및 제3 발광 다이오드에서 생성된 광이 외부로 방출된다.
또한, 본 개시의 또 다른 실시예들은 상기 조명 장치를 포함하는 조명 시스템을 제공한다.
도 1은 본 개시의 일 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 2는 도 1의 절취선 A-A를 따라 취해진 개략적인 단면도이다.
도 3은 파장에 따른 인체의 비타민 D 생성 효율을 나타내기 위한 그래프이다.
도 4는 청색광의 파장에 따른 위험도를 나타내는 그래프이다.
도 5는 종래의 청색 발광 다이오드를 사용한 백색광원의 스펙트럼을 나타낸다.
도 6은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 단면도이다.
도 7은 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 8은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 9는 도 8의 절취선 B-B를 따라 취해진 개략적인 단면도이다.
도 10은 본 개시의 몇몇 실시예들에 따른 조명 장치의 대표적인 스펙트럼들을 설명하기 위한 그래프이다.
도 11은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 12는 도 11의 절취선 C-C를 따라 취해진 개략적인 단면도이다.
도 13은 파장에 따른 세포 기능 활성 효율을 나타내기 위한 그래프이다.
도 14는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 15는 도 14의 절취선 D-D를 따라 취해진 개략적인 단면도이다.
도 16은 본 개시의 일 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 17는 도 16의 절취선 E-E를 따라 취해진 개략적인 단면도이다.
도 18은 청색광의 파장에 따른 위험도를 나타내는 그래프이다.
도 19는 일반적인 청색 발광 다이오드를 사용한 백색광원의 스펙트럼을 나타낸다.
도 20는 본 개시의 몇몇 실시예들에 따른 백색광원의 스펙트럼을 나타낸다.
도 21은 파장에 따른 인체의 비타민 D 생성 효율을 나타내기 위한 그래프이다.
도 22은 파장에 따른 세포 기능 활성 효율을 나타내기 위한 그래프이다.
도 23은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 24는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 25은 도 24의 절취선 F-F를 따라 취해진 개략적인 단면도이다.
도 26은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 27는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 28은 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 29는 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 평면도이다.
이하, 첨부한 도면들을 참조하여 본 개시의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 개시가 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 개시는 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 개시의 일 실시예에 따른 조명 장치는, 단일의 발광 다이오드와 상기 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하는 적어도 하나의 발광 유닛을 포함하되, 상기 발광 유닛은 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광, 병원성 미생물을 살균하기에 적합한 광, 또는 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
단일의 발광 다이오드를 이용하여 백색광을 구현함과 아울러 비타민 D 합성에 필요한 자외선을 방출할 수 있어, 구조를 복잡하게 하지 않으면서 추가 기능을 갖는 조명 장치를 제공할 수 있다.
상기 발광 다이오드는 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출할 수 있다. 더 구체적으로, 상기 발광 다이오드는 약 291nm 내지 약 301nm 범위 내의 피크 파장을 갖는 자외선을 방출할 수 있다. 이 범위의 자외선을 방출함으로써 비타민 D를 효율적으로 합성할 수 있다.
몇몇 실시예에 있어서, 상기 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있다. 상기 형광체들을 이용하여 백색광을 구현할 수 있다.
일 실시예에 있어서, 상기 발광 다이오드는 약 400nm 내지 420nm 범위 내의 피크 파장을 갖는 가시광을 방출할 수 있으며, 상기 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있다. 상대적으로 단파장의 가시광을 방출하는 발광 다이오드를 사용함으로써 태양광에 유사한 가시영역의 스펙트럼을 구현할 수 있다.
한편, 상기 세포 활성 물질은 미토콘드리아 내의 cytochrome c oxidase 활성에 의해 생성된 일산화질소(nitric oxide; NO)일 수 있다. NO는 통증 완화 및 혈액 순환 개선 등에 영향을 주어 인체의 건강을 증진시킨다.
나아가, 세포 내 미토콘드리아에 흡수된 제2 발광 다이오드의 광은 미토콘드리아가 더 많은 ATP를 생성하도록 하며 대사를 증진시킨다.
상기 파장변환기는 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 중심 파장의 광을 방출할 수 있다. 이 파장 범위에서 cytochrome c oxidase의 에너지 흡수율이 상대적으로 더 높다. 특히, cytochrome c oxidase는 790~840nm 범위 내에서 가장 높은 흡수율을 나타내며, 875~935nm 범위 내에서 그 다음으로 높은 흡수율을 나타낸다. 따라서, 상기 파장변환기는 적어도 790~840nm 범위 내 또는 875~935nm 범위 내에 중심 파장을 가질 수 있다. 나아가, 상기 파장변환물질은 형광체 또는 양자점을 포함할 수 있다. 양자점은 특히 좁은 반치폭을 가지며 따라서 세포 활성 물질 생성에 적합하다.
한편, 상기 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내의 중심 파장의 광을 갖는 파장변환물질에서 방출된 광의 복사 조도(irradiance)는 570W/m2 이하일 수 있다.
또 다른 실시예에 있어서, 상기 발광 다이오드는 약 286nm 내지 약 304nm 범위 내의 자외선, 또는 400 내지 420nm 범위 내의 가시광을 방출할 수 있다.
한편, 상기 조명 장치는 상기 발광 유닛이 실장된 회로 기판을 더 포함할 수 있다. 상기 회로 기판 상에 복수의 발광 유닛들이 실장될 수 있으며, 이들 발광 유닛들이 서로 직렬, 병렬 또는 역병렬로 연결될 수 있다.
몇몇 실시예들에 있어서, 상기 적어도 하나의 발광 유닛은 적어도 2 종류의 서로 다른 발광 유닛들을 포함할 수 있으며, 상기 서로 다른 발광 유닛들은 각각 백색광을 방출하며, 아울러, 비타민 D 생성에 적합한 광, 병원성 미생물을 살균하기에 적합한 광, 또는 세포 활성 물질을 생성하기에 적합한 광 중 서로 다른 광을 방출할 수 있다.
또 다른 실시예에 있어서, 상기 적어도 하나의 발광 유닛은 적어도 3 종류의 서로 다른 발광 유닛들을 포함할 수 있으며, 상기 서로 다른 발광 유닛들은 각각 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광, 병원성 미생물을 살균하기에 적합한 광, 또는 세포 활성 물질을 생성하기에 적합한 광을 방출할 수 있다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛의 적어도 두 개의 발광 유닛의 조합을 포함하되, 제1 발광 유닛은 피크 파장이 약 286nm 내지 약 304nm 범위 내의 광을 방출하는 제1 발광 다이오드 및 제1 파장변환기를 포함하며, 상기 제1 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고, 제2 발광 유닛은 피크 파장이 약 400nm 내지 420nm 범위 내의 광을 방출하는 제2 발광 다이오드 및 제2 파장변환기를 포함하며, 상기 제2 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고, 제3 발광 유닛은 피크파장이 약 286nm 내지 약 470nm 범위 내의 광을 방출하는 제3 발광 다이오드 및 제3 파장변환기를 포함하되, 상기 제3 파장변환기는 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내에 중심 파장을 갖는 파장변환물질을 포함한다.
상기 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내에 중심 파장을 갖는 파장변환물질은 양자점일 수 있다. 양자점은 좁은 반치폭으로 높은 강도의 변환광을 방출할 수 있어 특정 파장의 광을 방출하는데 적합하다.
한편, 상기 제1 파장변환기 및 제2 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있으며, 상기 제3 파장변환기는 녹색 형광체 및 적색 형광체를 더 포함할 수 있다.
상기 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛은 각각 독립적으로 구동될 수 있다.
상기 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛은 각각 백색광을 방출할 수 있다.
특정 실시예에 있어서, 상기 제3 발광 다이오드는 피크 파장이 약 400nm 내지 420nm 범위 내의 광을 방출할 수 있다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
백색광을 구현함과 아울러 비타민 D 생성에 필요한 자외선 및 세포 활성 물질을 생성하기에 적합한 광을 방출할 수 있어, 태양광과 유사하게 인체에 유익한 광을 제공하는 조명 장치를 제공할 수 있다. 더욱이, 본 실시예에 따른 조명 장치는 발광 다이오드를 이용하여 광을 방출하므로, 태양광에 부족한 자외선 영역에서도 광을 방출할 수 있어, 태양광에 비해 비타민 D 생성에 더 적합한 광을 방출할 수도 있다.
상기 백색광은 상기 제1 발광 다이오드와 상기 파장변환기에 의해 구현될 수 있다. 나아가, 상기 제1 발광 다이오드는 약 400nm 내지 약 420nm 범위 내의 피크 파장을 가질 수 있다.
한편, 상기 파장변환기는 청색 형광체를 포함할 수 있고, 상기 백색광은 상기 제1 발광 다이오드에 의한 피크와 상기 청색 형광체에 의한 피크를 가지며, 상기 제1 발광 다이오드에 의한 피크와 상기 청색 형광체에 의한 피크는 서로 다른 파장에 위치할 수 있다.
몇몇 실시예에 있어서, 상기 조명 장치는 서로 이격된 복수의 발광 유닛을 포함할 수 있으며, 각각의 발광 유닛은 상기 제1 발광 다이오드와 상기 제1 발광 다이오드를 덮는 상기 파장 변환기를 포함한다.
나아가, 상기 발광 유닛들은 서로 동일하거나 다른 색온도의 백색광을 구현할 수 있다.
다른 실시예에 있어서, 상기 발광 유닛들의 조합에 의해 백색광이 구현될 수 있다.
한편, 일 실시예에 있어서, 상기 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있다. 다른 실시예에 있어서, 상기 파장변환기는 청색 형광체 없이 녹색 형광체 및 적색 형광체를 포함하거나 오렌지색 형광체를 포함할 수도 있다.
상기 제2 발광 다이오드는 비타민 D 합성에 적합한 광을 방출한다. 특히, 상기 제2 발광 다이오드는 약 291nm 내지 약 301nm 범위 내의 피크 파장을 갖는 자외선을 방출할 수 있다. 이 범위의 자외선을 방출함으로써 비타민 D를 효율적으로 합성할 수 있다.
일 실시예에 있어서, 상기 제2 발광 다이오드는 상기 파장변환기로부터 이격될 수 있다. 제2 발광 다이오드에서 방출된 광이 파장변환기로 진입하는 것을 방지함으로써 제2 발광 다이오드에서 방출된 광이 파장변환되는 것을 방지할 수 있다. 이에 따라, 제2 발광 다이오드에서 방출된 광의 파장변환에 따른 광 손실을 방지할 수 있으며, 나아가, 조명 장치의 색온도를 쉽게 조절할 수 있다.
한편, 상기 세포 활성 물질은 미토콘드리아 내의 cytochrome c oxidase 활성에 의해 생성된 일산화질소(nitric oxide; NO)일 수 있다. NO는 통증 완화 및 혈액 순환 개선 등에 영향을 주어 인체의 건강을 증진시킨다. 나아가, 상기 세포 활성 물질을 생성하기에 적합한 광은 세포 내 미토콘드리아에 흡수되어 미토콘드리아가 더 많은 ATP를 생성하도록 하며 대사를 증진시킨다.
일 실시예에 있어서, 상기 파장변환기는 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내의 피크 파장의 광으로 파장을 변환하는 파장변환물질을 포함할 수 있다.
이 파장 범위에서 cytochrome c oxidase의 에너지 흡수율이 상대적으로 더 높다. 특히, cytochrome c oxidase는 790~840nm 범위 내에서 가장 높은 흡수율을 나타내며, 875~935nm 범위 내에서 그 다음으로 높은 흡수율을 나타낸다. 따라서, 상기 파장변환기는 적어도 790~840nm 범위 내 또는 875~935nm 범위 내에 피크 파장을 가질 수 있다. 나아가, 상기 파장변환물질은 형광체 또는 양자점을 포함할 수 있다. 양자점은 특히 좁은 반치폭을 가지며 따라서 세포 활성 물질 생성에 적합하다.
다른 실시예에 있어서, 상기 조명 장치는 제3 발광 다이오드를 더 포함할 수 있으며, 상기 제3 발광 다이오드가 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장의 광을 방출할 수 있다.
상기 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장의 광을 갖는 파장변환물질에서 방출된 광의 복사 조도(irradiance)는 570W/m2 이하일 수 있다.
일 실시예에 있어서, 상기 제1 발광 다이오드에서 생성된 광은 조명 장치의 외부로 방출되어 병원성 미생물을 살균할 수 있다.
다른 실시예에 있어서, 상기 조명 장치는 병원성 미생물을 살균하기에 적합한 광을 방출하는 제4 발광 다이오드를 더 포함할 수 있다. 상기 제4 발광 다이오드는 상기 파장변환기로부터 이격될 수 있다.
상기 제4 발광 다이오드는 약 400nm 내지 약 420nm 범위 내의 피크 파장을 가질 수 있으며, 나아가 약 400nm 내지 약 410nm의 피크 파장, 더 나아가, 약 405nm의 피크 파장을 가질 수 있다.
한편, 상기 조명 장치는 상기 제1 내지 제3 발광 다이오드들이 실장된 회로 기판을 더 포함할 수 있다.
본 개시의 또 다른 실시예에 따른 조명 장치는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장을 갖는 제3 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 상기 제1 발광 다이오드와 상기 파장변환기의 조합에 의해 백색광을 방출함과 아울러, 상기 제2 및 제3 발광 다이오드에서 생성된 광이 외부로 방출된다.
제1 발광 다이오드와 함께 제2 및 제3 발광 다이오드를 포함함으로써 인체의 비타민 D 합성 및 세포 활성 물질 생성에 도움을 줄 수 있다.
상기 조명 장치는 상기 파장변환기로부터 이격되며, 약 400nm 내지 약 420nm 범위 내의 피크 파장을 갖는 제4 발광 다이오드를 더 포함할 수 있다. 상기 제4 발광 다이오드에서 생성된 광은 병원성 미생물을 살균하는데 사용될 수 있다.
본 개시의 또 다른 실시예에 따른 발광 다이오드 패키지는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출한다.
본 개시의 또 다른 실시예에 따른 발광 다이오드 패키지는, 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드; 약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장을 갖는 제3 발광 다이오드; 및 상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며, 상기 제1 발광 다이오드와 상기 파장변환기의 조합에 의해 백색광을 방출함과 아울러, 상기 제2 및 제3 발광 다이오드에서 생성된 광이 외부로 방출된다.
본 개시의 또 다른 실시예들에 따른 조명 시스템은 실내 공간에 배치된 조명 장치를 포함하는데, 상기 조명 장치는 위에서 설명된 조명 장치들 중 하나이다.
이하, 첨부된 도면들을 참조하여 본 개시의 실시예들에 대해 상세히 설명한다.
도 1은 본 개시의 일 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 2는 도 1의 절취선 A-A를 따라 취해진 개략적인 단면도이다.
도 1 및 도 2를 참조하면, 조명 장치는 회로 기판(11), 발광 유닛(21) 및 몰딩부(31)를 포함할 수 있다.
회로 기판(11)은 발광 유닛들(21)에 전원을 공급하기 위한 회로 패턴을 가질 수 있다. 회로 기판(11)은 인쇄회로보드일 수 있으며, 예컨대 메탈-PCB일 수 있다. 발광 유닛(21)이 탑재된 회로 기판(11)이 발광 모듈로서 조명 장치 내에 배치될 수 있다.
발광 유닛(21)은 백색광을 구현하기 위한 단위 광원으로서 적어도 하나가 회로 기판(11) 상에 실장된다. 복수의 발광 유닛(21)은 서로 다양한 방식으로 전기적으로 연결될 수 있으며, 예컨대 직렬, 병렬 또는 직병렬 연결될 수 있다.
발광 유닛(21)은 발광 다이오드(21a)와 파장변환층(21b)을 포함한다. 본 실시예에 있어서, 발광 다이오드(21a)는 UVB의 자외선을 방출할 수 있으며, 구체적으로 약 286nm 내지 약 304nm 범위 내, 더 구체적으로는 약 291nm 내지 약 301nm 범위 내에 중심 파장을 갖는 광을 방출할 수 있다. 이 범위 내의 자외선이 인체에 조사되었을 때, 비타민D가 효율적으로 합성될 수 있다. 발광 다이오드(21a)는 예를 들어 Ⅲ족 질화물 반도체를 이용하여 형성된 무기 발광 다이오드로, 공지된 발광 다이오드 칩을 사용할 수 있으며, 플립칩형, 수직형 또는 수평형 등 그 구조도 특별히 한정되지 않는다.
파장 변환기(21b)는 발광 다이오드(21a)에서 방출된 광의 파장을 변환한다. 파장 변환기(21b)는 발광 다이오드(21a)를 덮을 수 있다. 특히, 발광 다이오드들(21a)이 복수개인 경우, 파장변환기들(21b)이 각각 발광 다이오드들(21a)을 덮을 수 있다. 그러나 본 개시는 이에 한정되는 것은 아니며, 발광 다이오드들(21a)이 하나의 파장변환기(21b)로 함께 덮일 수도 있다. 예를 들어, 몰딩부(31)가 파장변환물질을 포함하여 발광 다이오드들(21a)을 덮을 수도 있다.
파장 변환기(21b)는 발광 다이오드(21a)에서 생성된 광의 파장을 변환시켜 백색광을 구현하는 파장변환물질을 포함한다. 일 실시예에서, 파장변환기(21b)는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있다. 다른 실시예에서, 파장변환기(21b)는 청색 형광체 및 오렌지색 형광체를 포함할 수 있다. 다른 실시예에서, 파장변환기는 형광체 대신에 또는 형광체에 더하여 양자점을 포함할 수도 있다. 파장변환기(21a)는 예를 들어 실리콘 수지 또는 유리에 형광체 또는 양자점이 분산된 구조를 가질 수 있다.
청색 형광체의 예로는 BAM계, Halo-Phosphate계 또는 알루미네이트계의 형광체를 들 수 있으며, 예를 들어, BaMgAl10O17:Mn2 +, BaMgAl12O19:Mn2 + 또는 (Sr,Ca,Ba)PO4Cl:Eu2+ 를 포함할 수 있다. 청색 형광체는 예를 들어 440 내지 500nm 범위 내에 피크 파장을 가질 수 있다.
녹색 형광체의 예로는 LuAG(Lu3(Al,Gd)5O12:Ce3 +), YAG(Y3(Al,Gd)5O12:Ce3 +), Ga-LuAG((Lu,Ga)3(Al,Gd)5O12:Ce3+), Ga-YAG ((Ga,Y)3(Al,Gd)5O12:Ce3 +), LuYAG ((Lu,Y)3(Al,Gd)5O12:Ce3+), Ortho-Silicate ((Sr,Ba,Ca,Mg)2SiO4:Eu2 +), Oxynitride ((Ba,Sr,Ca)Si2O2N2:Eu2+), β-SiAlON:Eu2 +, Ca-α-SiAlON:Eu2 +, 또는 Thio Gallate (SrGa2S4:Eu2+) 를 들 수 있다. 녹색 형광체는 500 내지 600nm 범위 내에 피크 파장을 가질 수 있다.
적색 형광체의 예로는 Nitride, Sulfide, Fluoride 또는 Oxynitride 계의 형광체를 들 수 있고, 구체적으로, CASN(CaAlSiN3:Eu2 +), (Ba,Sr,Ca)2Si5N8:Eu2 +, (Ca,Sr)S2:Eu2+, 또는 (Sr,Ca)2SiS4:Eu2 + 등을 들 수 있다. 적색 형광체는 600 내지 700nm 범위 내에 피크 파장을 가질 수 있다.
발광 다이오드(21a)와 파장변환기(21b)의 조합에 의해 백색광이 구현될 수 있다. 발광 다이오드(21a)가 방출하는 자외선은 대부분 파장변환기(21a)에 의해 파장변환되며, 파장변환되지 않은 일부 자외선이 외부로 방출된다. 자외선은 육안으로 관찰되지 않기 때문에, 외부로 방출되는 광 중에서 파장변환기(21b)에 의해 가시광으로 파장변환된 광이 관찰된다. 따라서, 조명 장치에서 방출되는 가시광의 스펙트럼은 파장변환기(21b) 내의 파장변환물질의 조합에 의해 결정된다. 파장변환물질에 의한 백색광의 구현은 종래의 청색 발광 다이오드를 이용한 백색광과 달리 청색 파장에 의한 안구질환이나 피부질환 발생을 방지할 수 있다. 이에 대해서는 도 4 및 도 5를 참조하여 다시 설명한다.
몰딩부(31)는 발광 유닛들(21)을 덮을 수 있다. 몰딩부(31)는 외부 환경으로부터 발광 유닛들(21)을 보호할 수 있다. 몰딩부(31)는 예컨대 실리콘 수지와 같은 투명 수지 또는 투명 유리로 형성될 수 있다. 필요에 따라, 몰딩부(31)는 파장변환물질을 포함할 수도 있다.
한편, 발광 다이오드(21a)에 생성되어 외부로 방출되는 자외선은 비타민D 합성에 사용된다. 피부 세포 내 7-dehydrocholesterol이 UVB를 통해 반응하여 Cholecalciferol(비타민 D3)이 합성되는 것으로 알려져 있다. 도 3은 파장에 따른 인체의 비타민 D 생성 효율을 나타내기 위한 그래프로 CIE 174:2006에 공개된 것이다.
도 3을 참조하면, 298nm의 자외선이 비타민 D 생성에 가장 효율적이며, 약 291 내지 301nm 범위 내에서 최고 효율에 대해 약 90% 이상의 효율을 나타낸다. 또한, 약 286 내지 304nm 범위에서 최고 효율에 대해 약 70% 이상의 효율을 나타내며, 281 내지 306nm 범위에서 최고 효율에 대해 약 50% 이상의 효율을 나타낸다. 발광 다이오드(21a)의 피크 파장이 298nm일 때, 비타민 D 생성에 가장 효율적이며, 286 내지 304nm 범위 내일 때, 비타민 D 생성에 70% 이상의 상대적으로 양호한 효율을 나타낼 것이다.
비타민 D는 칼슘 대사에 관여하며, 비타민 D의 결핍은 뼈의 성장에 커다란 장애를 초래한다. 비타민 D의 적정 레벨을 유지하기 위해 일반적으로 제시되는 비타민 D의 일일 권장량은 국가에 따라 차이가 있으며, 대체로 400~800IU 범위 내이며, 상향 조정되는 추세이다. 일 예로, 국제 조명 위원회(CIE)에서는 1000 IU의 비타민 D를 생성하기 위해 필요한 UVB 노출량을 제시하고 있으며, 이는 한여름 정오의 태양광 기준으로 제2 스킨 타입의 전체 바디에 대해 약 21 내지 34 J/m2이다. 한편, ACGIH(American Conference of Govermental Industrial Hygienists)에서 제공되는 UVB에 대한 인체 노출 안전 범위에 대한 기준치는 290nm의 경우 47 J/m2이며, 297nm의 경우 약 65 J/m2이고, 300nm의 경우 100 J/m2이다.
따라서, 조명장치에서 조사되는 UVB의 조사량은 안전범위를 초과하지 않는 범위에서 비타민 D 합성에 사용될 수 있도록 조절될 필요가 있다. 특히, UVB의 자외선 영역에서도 파장이 길 수록 일일 허용 기준치가 증가하므로 발광 다이오드(21a)의 피크 파장은 298nm 또는 그보다 장파장, 예컨대 298 내지 301nm 범위 내인 것이 더 많은 자외선을 조사할 수 있어 비타민 D 합성 기능을 갖는 조명 장치에 더욱 적합하다.
한편, 도 4는 청색광의 파장에 따른 위험도를 나타내는 그래프이다.
청색광은 안구질환이나 피부질환을 유발하는 것으로 알려져 있으며, 특히, 430 내지 440nm 사이에 가장 강한 위험도를 나타낸다. 420 내지 455nm의 파장범위는 위험도가 가장 높은 값을 기준으로 90% 이상의 위험도를 나타내며, 413 내지 465nm는 70% 이상의 위험도를 411 내지 476nm는 50% 이상의 위험도를 나타낸다.
도 5는 종래 기술에 따라 청색 발광 다이오드를 사용한 백색광원의 스펙트럼을 나타낸다.
도 5를 참조하면, 종래 기술에 따른 백색 광원은 청색 발광 다이오드와 함께 황색 형광체, 또는 녹색 형광체와 적색 형광체를 사용하여 백색광을 구현한다. 색온도에 따라 형광체의 종류, 형광체의 양이 조절되며, 색온도가 높을 수록 청색광의 강도가 증가한다.
종래 백색광원에 사용되는 청색 발광 다이오드는 대체로 430nm 내지 470nm 범위 내에 중심 파장(피크 파장)을 갖는다. 이 범위 내의 청색광은 도 4에 도시한 바와 같이 위험도가 상대적으로 높다. 더욱이, 청색 발광 다이오드에서 방출된 광은 형광체에서 방출된 광과 혼합되어 백색광을 구현한다. 따라서, 백색 광원의 색온도가 증가할수록 청색광의 강도도 증가하여, 안구질환이나 피부질환을 유발할 위험성이 증가한다.
이에 반해, 도 1 및 도 2의 실시예는 자외선을 방출하는 발광 다이오드를 사용하므로, 발광 다이오드(21a)에서 방출된 광은 백색광을 구현하는데 사용되지 않는다. 즉, 가시 영역의 광은 파장변환기(21b)에서 방출된 광에 의해 구현된다. 이에 따라, 조명 장치에서 방출되는 광의 가시 영역의 스펙트럼은 태양광에 유사하게 전 가시 영역에서 대체로 유사한 강도를 가질 수 있으며, 도 5와 같이, 특정 파장의 광, 예컨대 청색 영역의 광이 다른 영역의 광보다 비정상적으로 높은 강도를 가질 필요가 없다. 따라서 본 실시예에 따른 조명 장치는 인체에 대한 위험도를 줄일 수 있다.
도 6은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 단면도이다.
도 6을 참조하면, 본 실시예에 따른 조명 장치는 도 1 및 도 2를 참조하여 설명한 조명 장치와 대체로 유사하나, 필터(41)를 더 포함하는 것에 차이가 있다.
필터(41)는 발광 유닛들(21)에서 외부로 방출되는 불필요한 자외선을 차단할 수 있다. 예를 들어, 필터(41)는 약 301nm 내지 약 400nm 범위 내의 광을 차단하여 이 범위 내의 자외선에 의해 인체에 해로운 영향을 미치는 것을 방지할 수 있다. 위 범위의 광은 예를 들어, 파장변환물질에 의해 방출될 수 있다. 따라서, 필터(41)는 파장변환기(21b) 외부에 배치된다. 필터(41)는 몰딩부(31) 내에 배치될 수도 있고, 도시한 바와 같이, 몰딩부(31) 외부에 배치될 수도 있다. 필터(41)로는 예를 들어, 밴드 패스 필터가 사용될 수 있다.
한편, 앞의 실시예들에서, 발광 유닛(21)이 발광 다이오드(21a)와 그것을 덮는 파장변환기(21b)를 포함하는 것으로 설명하였지만, 패키지 형태로 제공될 수도 있다. 도 7은 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다. 여기서, 도 7은 종래의 패키지 형태의 발광 소자를 개략적으로 나타낸다.
도 7을 참조하면, 발광 유닛(21)은 발광 다이오드(21a) 및 파장변환기(21b)를 포함한다. 발광 다이오드(21a)는 하우징(20)의 캐비티 내에 실장될 수 있으며, 파장변환기(21b)는 캐비티 내에서 발광 다이오드(21a)를 덮는다. 한편, 발광 다이오드(21a)는 본딩 와이어들을 통해 리드 전극들에 전기적으로 연결될 수 있다.
도 7의 패키지는 일 예이며, 다양한 종류의 패키지가 사용될 수 있다. 또한, 파장변환기(21b)도 다양한 형상으로 발광 다이오드(21a)를 덮을 수 있다. 한편, 발광 유닛들(21)이 패키지 형태로 제공되는 경우, 몰딩부(31)는 생략될 수도 있다.
도 8은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 9는 도 8의 절취선 B-B를 따라 취해진 개략적인 단면도이다.
도 8 및 도 9를 참조하면, 본 실시예에 따른 조명 장치는 도 1 및 도 2를 참조하여 설명한 조명 장치와 대체로 유사하나, 발광 유닛들(23)이 자외선 발광 다이오드(21a) 대신 보라색 계열의 단파장 가시광을 방출하는 발광 다이오드(23a)를 포함하는 것에 차이가 있다.
즉, 발광 다이오드(23a)는 약 400 내지 420nm 범위 내에 피크 파장을 가지며, 이 범위의 파장의 광은 병원성 미생물을 살균하기에 적합하다. 특히, 발광 다이오드(23a)는 약 400 내지 410nm의 피크 파장, 나아가, 약 405nm의 피크 파장의 광을 방출할 수 있다. 약 405nm의 파장은 세균의 세포 내에 존재하는 물질인 포피린(Porphyrin)에 흡수되어 활성 산소를 생성하고, 생성된 활성 산소가 축적되어 세포벽을 파괴함으로서 살균작용이 일어난다. 이와 같이, 위 범위의 가시 영역의 파장은 안구질환이나 피부질환을 유발하지 않으면서 병원성 미생물을 살균하기에 적합하다. 본 명세서에서, 살균(sterilization)은 병원성 미생물의 증식을 감소시키거나 방해하도록 병원성 미생물을 죽이거나 손상시키는 것을 의미한다.
파장변환기(23b)는 발광 다이오드(23a)의 광을 청색, 녹색 및 적색광으로 변환하는 파장변환물질을 포함할 수 있다. 다른 실시예에서, 상기 파장변환기(23b)는 발광 다이오드(23a)의 광을 청색 및 오렌지색의 광으로 변환하는 청색 및 오렌지색 파장변환물질을 포함할 수도 있다. 파장변환물질의 종류에 대해서는 도 1 및 도 2를 참조하여 설명한 것과 유사하므로, 중복을 피하기 위해 상세한 설명은 생략한다.
발광 다이오드(23a)에서 생성된 광의 일부는 파장변환물질에 의해 장파장 가시광으로 변환되고, 일부는 파장변환없이 조명 장치의 외부로 방출된다. 발광 다이오드(23a)에서 생성되어 외부로 방출된 광은 파장변환물질에 의해 파장변환된 광과 혼합되어 백색광을 구현하며, 나아가, 살균 기능을 수행한다.
살균 기능을 강화하기 위해, 발광 다이오드(23a)에서 생성되어 외부로 방출되는 파장의 광의 복사 조도는 파장변환물질에서 파장변환된 광의 복사 조도보다 클 수 있다. 그러나 본 개시가 이에 한정되는 것은 아니다. 예를 들어, 도 4를 참조하여 설명한 바와 같이, 청색 영역의 파장의 광에 의한 위험을 줄이기 위해, 발광 다이오드(23a)에서 생성되어 외부로 방출되는 광의 복사 조도를 파장변환물질에서 파장변환된 광의 복사 조도보다 작게 할 수도 있다.
도 10은 발광 다이오드(23a)와 파장변환기(23a)의 조합에 의해 구현된 다양한 색온도의 백색광의 스펙트럼의 예들을 나타낸다.
도 10을 참조하면, 각 색온도의 백색광은 발광 다이오드(23a)에서 방출된 광과 형광체들에서 방출된 광의 조합에 의해 구현된다. 또한, 모든 색온도에서 발광 다이오드(23a)에서 방출된 광의 복사 조도가 청색 형광체에서 방출된 광의 복사 조도보다 작을 수 있다. 색온도가 증가할 수록 발광 다이오드(23a)에서 방출된 광의 복사 조도도 증가하지만, 청색 형광체에서 방출된 청색광의 복사 조도가 더 크게 증가한다. 또한, 발광 다이오드(23a)에서 방출된 광의 복사 조도는 녹색 형광체에서 방출된 광의 복사 조도보다 작고 적색 형광체에서 방출된 광의 복사 조도보다 작을 수 있다.
이에 따라, 발광 다이오드(23a)에서 방출된 광에 의해 안구 질환이나 피부질환이 유발되는 것을 더욱 방지할 수 있다. 그러나 앞에서 설명한 바와 같이 400 내지 420nm 범위 내의 파장은 인체에 대한 위험도가 상대적으로 낮기 때문에, 복사 조도를 더 증가시킬 수도 있다.
본 실시예에 따르면, 보라색 계열의 발광 다이오드(23a)를 사용함으로써 안구질환이나 피부질환을 유발하지 않으면서 또한 살균 기능을 갖는 조명 장치를 제공할 수 있다.
도 11은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 12는 도 11의 절취선 C-C를 따라 취해진 개략적인 단면도이다.
도 11 및 도 12를 참조하면, 본 실시예에 따른 조명 장치는 도 1 및 도 2를 참조하여 설명한 조명 장치와 대체로 유사하나, 발광 유닛들(25)이 발광 다이오드(25a)를 포함하고, 파장변환기(25b)가 가시광 영역의 파장변환물질과 함께 근적외선 영역의 파장변환물질을 더 포함하는 것에 차이가 있다.
발광 다이오드(25a)는 도 1 및 도 2를 참조하여 설명한 UVB를 방출하는 발광 다이오드(21a)일 수도 있고, 도 8 및 도 9를 참조하여 설명한 보라색 계열의 발광 다이오드(23a)일 수도 있으며, 다른 자외선 또는 청색광을 방출하는 발광 다이오드일 수도 있다.
발광 다이오드(25a)에서 방출된 광은 파장변환기(25b)의 파장변환물질에 흡수되어 파장변환되며, 파장변환된 광이 조명 장치의 외부로 방출된다. 나아가, 발광 다이오드(25a)에서 생성된 광의 일부는 외부로 방출될 수도 있으며, 따라서, 도 1 및 도 2를 참조하여 설명한 비타민 D 생성 기능이나, 도 8 및 도 9를 참조하여 설명한 살균 기능을 발휘할 수 있다.
한편, 파장변환기(25b)는 발광 다이오드(25a)에서 생성된 광을 흡수하여 그보다 장파장의 광을 방출하는 파장변환물질을 포함한다. 파장변환기(25b)는 예를 들어, 앞서 설명한 바와 같은 청색 형광체, 녹색 형광체, 및 적색 형광체를 포함할 수 있으며, 청색 형광체와 오렌지색 형광체를 포함할 수도 있고, 또한, 상기 발광 다이오드(25a)가 청색 발광 다이오드인 경우, 녹색 형광체와 적색 형광체, 또는 오렌지색 형광체를 포함할 수 있다. 이들 형광체의 종류에 대해서는 도 1 및 도 2를 참조하여 설명한 바와 유사하므로 중복을 피하기 위해 상세한 설명은 생략한다.
한편, 파장변환기(25b)는 약 605 내지 935nm 범위 내의 적색광 또는 근적외선을 방출하는 파장변환물질을 포함한다. 특히, 상기 파장변환물질은 예를 들어 605~655nm, 685~705nm, 790~840nm, 또는 875~935nm 범위 내의 중심 파장을 갖는 광을 방출할 수 있다.
위 범위 내의 파장의 광은 미토콘드리아 내에서 세포 활성 물질을 생성한다. 구체적으로, 미토콘드리아 내의 cytochrome c oxidase는 광 수용체로서 605 내지 935nm 범위 내의 광을 흡수하여 활동력이 증가하며, 이에 따라, NO를 생성한다. NO는 통증 완화 및 혈액순환 개선 등에 영향을 주어 인체의 건강을 증진한다. 또한, cytochrome c oxidase 단백질의 활성은 ATP 생성에 기여하며, 세포 손상 치료에도 영향을 미친다.
특히, 605~655nm, 685~705nm, 790~840nm, 또는 875~935nm 범위에서 cytochrome c oxidase의 에너지 흡수율이 상대적으로 높다. 특히, cytochrome c oxidase의 에너지 흡수율은 도 13에 도시한 바와 같이, 790~840nm 파장 범위 내에서 가장 높고, 약 875~935nm 범위 내에서 그 다음으로 높으며, 약 605~655nm 파장 범위 내에서 그 다음으로 높다.
cytochrome c oxidase의 에너지 흡수율이 상대적으로 높은 파장의 광을 방출하는 파장변환물질을 채택함으로써 건강 증진 효율을 향상시킬 수 있다.
상기 파장변환물질은 예를 들어 형광체일 수도 있고, 양자점일 수도 있다. 특히, 양자점을 사용함으로써 좁은 반치폭을 갖는 광을 방출할 수 있어, 세포 활성 물질 생성에 더 효율적이다.
한편, 605~655nm 범위의 광을 방출하는 파장변환물질은 백색광을 구현하기 위한 파장변환물질과 중첩되므로, 별도로 추가할 필요가 없으며, 백색 발광 장치의 색온도에 영향을 주지 않도록, 시감도가 낮은 범위, 즉, 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내의 중심 파장을 갖는 광을 방출하는 파장변환물질이 주로 사용될 수 있다.
한편, 세포 활성을 위해 조명 장치로부터 방출되는 광의 복사 조도는 570W/m2 이하일 수 있으며, 나아가, 100W/m2 이하일 수 있다. 570W/m2은 광생물학적 안전 규격(IEC 62471)에서 적외선 범위의 광에 대한 위험 그룹 1(risk group 1)의 한계값을 나타내며, 100W/m2은 면제(exempt)에 해당한다. 570W/m2 미만의 복사 조도를 갖도록 함으로써 조명 장치에서 상대적으로 긴 시간 동안 인체에 해를 주지 않으면서 세포 활성 물질 생성 작용을 하도록 구동될 수 있다.
본 실시예에 따르면, 실내 생활 공간뿐만 아니라, 공항이나 병원과 같이 다수의 사람들이 활동하는 공간에서 인체의 건강을 증진하도록 사용될 수 있다.
본 실시예에 따르면, 한 종류의 발광다이오드(25a)를 채택하면서도 백색광과 함께 세포 활성 물질을 생성할 수 있는 광을 방출할 수 있는 조명 장치가 제공될 수 있다. 나아가, 발광 다이오드(25a)의 선택에 따라, 비타민 D 합성이나 살균 기능이 추가된 조명 장치가 제공될 수 있다.
도 14는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 15는 도 14의 절취선 D-D를 따라 취해진 개략적인 단면도이다.
도 14 및 도 15를 참조하면, 본 실시예에 따른 조명 장치는 도 1 및 도 2를 참조하여 설명한 조명 장치와 대체로 유사하나, 발광 유닛들(21, 23, 25)이 서로 다른 발광 다이오드들(21a, 23a, 25a)을 포함하는 것에 차이가 있다.
발광 유닛(21)은 도 1 및 도 2를 참조하여 설명한 발광 유닛(21)과 동일하며, 발광 유닛(23)은 도 8 및 도 9를 참조하여 설명한 바와 동일하고, 발광 유닛(25)은 도 11 및 도 12를 참조하여 설명한 발광 유닛(25)과 동일하다.
발광 유닛들(21, 23, 25)은 회로 기판(11) 상에 다양한 방식으로 정렬될 수 있다. 예를 들어, 발광 유닛들(21, 23, 25)은 같은 열에 같은 종류의 발광 유닛들이 배치되도록 정렬될 수도 있으며, 같은 종류의 발광 유닛들이 서로 멀리 떨어지도록 배치될 수도 있다.
또한, 발광 유닛들(21, 23, 25)은 같은 종류의 발광 유닛들끼리 독립적으로 구동할 수도 있도록 전기적으로 연결될 수 있으며, 이에 따라, 특정 기능이 동시에 또는 서로 다른 시간에 수행될 수 있다.
예를 들어, 발광 유닛들(21, 23, 25) 전체를 동작시킬 경우, 비타민 D 생성, 살균 및 세포 활성 기능이 함께 수행될 수 있다. 또한, 발광 유닛들(21, 23, 25)을 개별적으로 동작시킬 경우, 비타민 D 생성, 살균 및 세포 활성 기능 중 어느 하나의 기능이 수행될 수 있다.
본 실시예에 따르면, 조명 장치를 프로그램하여 비타민 D 생성이 활발한 시간대와 살균 기능이 활발한 시간대 및 세포 활성 기능이 활발한 시간대를 조절할 수 있다. 예를 들어, 비타민 D 생성은 정오에 가까운 시간대에 주로 수행되도록 할 수 있다.
한편, 본 실시예에서, 세 종류의 발광 유닛들(21, 23, 25)을 모두 포함하는 조명 장치에 대해 설명하지만, 본 개시는 이에 한정되는 것은 아니다. 예를 들어, 세 종류의 발광 유닛들(21, 23, 25) 중 어느 두 개의 발광 유닛들의 조합을 포함하는 조명 장치가 제공될 수도 있다.
앞에서 다양한 조명 장치에 대해 설명하였으나, 본 개시가 이들 특정 실시예에 한정되는 것은 아니다. 예를 들어, 발광 유닛들(23, 25)은 도 7을 참조하여 설명한 발광 유닛(21)과 같이 패키지 형태로 제공될 수도 있다. 나아가, 발광 유닛들(21, 23, 25)에서 방출되는 광을 균일하게 혼합하기 위해 확산판이 추가될 수도 있다.
도 16은 본 개시의 일 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 17는 도 16의 절취선 E-E를 따라 취해진 개략적인 단면도이다.
도 16 및 도 17를 참조하면, 조명 장치는 회로 기판(111), 제1 발광 다이오드(121), 제2 발광 다이오드(123), 제3 발광 다이오드(125) 및 파장변환기(131)를 포함할 수 있다.
회로 기판(111)은 제1 내지 제3 발광 다이오드들(121, 123, 125)에 전원을 공급하기 위한 회로 패턴을 가질 수 있다. 회로 기판(111)은 인쇄회로보드일 수 있으며, 예컨대 메탈-PCB일 수 있다. 제1 내지 제3 발광 다이오드들(121, 123, 125)이 탑재된 회로 기판(111)이 발광 모듈로서 조명 장치 내에 배치될 수 있다.
제1 발광 다이오드(121)는 백색광을 구현하기 위한 광원으로서 적어도 하나가 회로 기판(111) 상에 실장된다. 제1 발광 다이오드(121)는 예를 들어 Ⅲ족 질화물 반도체, 예컨대 AlGaInN계열의 반도체를 이용하여 형성된 무기 발광 다이오드로, 공지된 발광 다이오드 칩을 사용할 수 있으며, 플립칩형, 수직형 또는 수평형 등 그 구조도 특별히 한정되지 않는다.
복수의 제1 발광 다이오드들(121)이 서로 다양한 방식으로 전기적으로 연결될 수 있으며, 예컨대 직렬, 병렬 또는 직병렬 연결될 수 있다. 복수의 제1 발광 다이오드(121)는 조명 장치에 따라 다양하게 배열될 수 있다. 예를 들어, 면 조명 장치를 위해 복수의 제1 발광 다이오드(121)가 2차원으로 배열될 수 있으며, 튜브형 조명 장치를 위해, 제1 발광 다이오드들(121)이 일렬로 배열될 수도 있다.
제1 발광 다이오드(121)는 자외선 또는 가시광을 방출할 수 있으며, 예를 들어, 약 300 내지 약 470nm 범위 내의 피크 파장을 가질 수 있다. 특히, 제1 발광 다이오드(121)는 약 400nm 내지 약 420nm 범위 내의 피크 파장을 가질 수 있다. 제1 발광 다이오드(121)가 자외선을 방출하는 경우, 대부분의 자외선은 파장변환기(131)에 의해 파장변환되며, 이에 따라 제1 발광 다이오드(121)로부터 자외선이 외부로 방출되는 것이 방지될 수 있다. 나아가, 400 내지 420nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드를 사용할 경우, 자외선에 의한 안전 문제를 사전에 제거할 수 있다. 더욱이, 약 400 내지 약 420nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드를 사용할 경우, 자외선에 비해 파장변환에 따른 에너지 손실을 줄일 수 있으며, 청색광에 의한 안구질환이나 피부질환 유발을 방지할 수 있다. 이에 대해서는 도 18 내지 도 20를 참조하여 뒤에서 다시 설명한다.
파장변환기(131)는 제1 발광 다이오드(121)에서 방출된 광의 파장을 변환시킨다. 파장변환기(131)는 예를 들어 형광체 또는 양자점을 함유하는 몰딩부일 수 있다. 파장변환기(131)는 제1 발광 다이오드(121)를 덮는다. 복수의 제1 발광 다이오드(121)가 회로 기판(111) 상에 실장된 경우, 파장변환기(131)는 복수의 제1 발광 다이오드(121)를 모두 덮을 수 있다.
파장 변환기(131)는 제1 발광 다이오드(123)의 광과 함께 백색광을 구현하기 위한 파장변환물질을 포함한다. 일 실시예에서, 파장변환기(131)는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함할 수 있다. 다른 실시예에서, 파장변환기(131)는 청색 형광체 및 오렌지색 형광체를 포함할 수 있다. 다른 실시예에서, 제1 발광 다이오드(121)가 청색 발광 다이오드인 경우, 파장변환기(131)는 청색 형광체 없이 녹색 형광체 및 적색 형광체를 포함하거나 또는 오렌지색 형광체를 포함할 수 있다. 다른 실시예에서, 파장변환기는 형광체 대신 또는 형광체에 더하여 양자점을 포함할 수도 있다.
한편, 청색 형광체의 예로는 BAM계, Halo-Phosphate계 또는 알루미네이트계의 형광체를 들 수 있으며, 예를 들어, BaMgAl10O17:Mn2 +, BaMgAl12O19:Mn2 + 또는 (Sr,Ca,Ba)PO4Cl:Eu2+ 를 포함할 수 있다. 청색 형광체는 예를 들어 440 내지 500nm 범위 내에 피크 파장을 가질 수 있다.
녹색 형광체의 예로는 LuAG(Lu3(Al,Gd)5O12:Ce3 +), YAG(Y3(Al,Gd)5O12:Ce3 +), Ga-LuAG((Lu,Ga)3(Al,Gd)5O12:Ce3+), Ga-YAG ((Ga,Y)3(Al,Gd)5O12:Ce3 +), LuYAG ((Lu,Y)3(Al,Gd)5O12:Ce3+), Ortho-Silicate ((Sr,Ba,Ca,Mg)2SiO4:Eu2 +), Oxynitride ((Ba,Sr,Ca)Si2O2N2:Eu2+), β-SiAlON:Eu2 +, Ca-α-SiAlON:Eu2 +, 또는 Thio Gallate (SrGa2S4:Eu2+) 를 들 수 있다. 녹색 형광체는 500 내지 600nm 범위 내에 피크 파장을 가질 수 있다.
적색 형광체의 예로는 Nitride, Sulfide, Fluoride 또는 Oxynitride 계의 형광체를 들 수 있고, 구체적으로, CASN(CaAlSiN3:Eu2 +), (Ba,Sr,Ca)2Si5N8:Eu2 +, (Ca,Sr)S2:Eu2+, 또는 (Sr,Ca)2SiS4:Eu2 + 등을 들 수 있다. 적색 형광체는 600 내지 700nm 범위 내에 피크 파장을 가질 수 있다.
제1 발광 다이오드(121)와 파장변환기(131)의 조합에 의해 다양한 색온도의 백색광이 구현될 수 있다.
한편, 앞서 설명한 바와 같이, 청색광은 안구질환이나 피부 질환을 유발하는 것으로 알려져 있다. 도 18은 청색광의 파장에 따른 위험도를 나타내는 그래프이다.
도 18을 참조하면, 특히, 430nm 내지 440nm 사이에 가장 강한 위험도를 나타낸다. 420 내지 455nm의 파장범위는 위험도가 가장 높은 값을 기준으로 90% 이상의 위험도를 나타내며, 413 내지 465nm는 70% 이상의 위험도를 411 내지 476nm는 50% 이상의 위험도를 나타낸다. 한편, 자외선은 인체에 해를 끼치며 특히, 270 내지 280nm 사이에 가장 강한 위험도를 나타낸다.
도 19는 일반적인 청색 발광 다이오드(121)를 사용한 백색광원의 스펙트럼을 나타낸다.
도 19를 참조하면, 일반적으로 백색 광원은 청색 발광 다이오드와 함께 황색 형광체, 또는 녹색 형광체와 적색 형광체를 사용하여 백색광을 구현할 수 있다. 색온도에 따라 형광체의 종류, 형광체의 양이 조절되며, 색온도가 높을 수록 청색광의 강도가 증가한다.
백색광원에 사용되는 청색 발광 다이오드는 대체로 약 430nm 내지 약 470nm 범위 내에 피크 파장을 갖는다. 이 범위 내의 청색광은 도 18에 도시한 바와 같이 위험도가 상대적으로 높다. 따라서, 백색 광원의 색온도가 증가할수록 청색광의 강도도 증가하여, 안구질환이나 피부질환을 유발할 위험성이 증가한다.
한편, 도 20는 본 개시의 몇몇 실시예들에 따른 백색광원의 스펙트럼을 나타낸다. 특히, 도 20는 보라색 발광 다이오드(121)와 파장변환기(131)의 조합에 의해 구현된 다양한 색온도의 백색광의 스펙트럼의 예들을 나타낸다.
도 20를 참조하면, 각 색온도의 백색광은 약 400nm 내지 약 420nm 범위 내에 피크 파장을 갖는 보라색 발광 다이오드(121)에서 방출된 광과 형광체들에서 방출된 광의 조합에 의해 구현된다.
여기서 파장변환기(131)는 청색 형광체를 포함하며, 나아가, 녹색 형광체 및 적색 형광체를 포함한다. 이들 형광체들은 보라색 발광 다이오드(121)에서 방출된 광을 흡수하여 청색광, 녹색광 및 적색광을 방출한다.
도 20에 도시된 다양한 색온도의 백색광은 보라색 발광 다이오드(121)에 의한 피크와 청색 형광체에 의한 피크를 가진다. 이들 피크들은 특히 색온도가 높을수록 뚜렷하게 나타난다. 보라색 발광 다이오드(121)에 의한 피크와 청색 형광체에 의한 피크는 서로 다른 파장에 위치한다. 특히, 청색 형광체는 보라색 발광 다이오드(121)에서 방출된 광의 파장을 장파장으로 변환하므로, 청색 형광체에 의한 피크는 보라색 발광 다이오드(121)에 의한 피크보다 장파장에 위치한다.
또한, 모든 색온도에서 발광 다이오드(121)에서 방출된 광의 복사 조도가 청색 형광체에서 방출된 광의 복사 조도보다 작을 수 있다. 색온도가 증가할수록 발광 다이오드(121)에서 방출된 광의 복사 조도도 증가하지만, 청색 형광체에서 방출된 청색광의 복사 조도가 더 크게 증가한다. 또한, 발광 다이오드(121)에서 방출된 광의 복사 조도는 녹색 형광체에서 방출된 광의 복사 조도보다 작고 적색 형광체에서 방출된 광의 복사 조도보다 작을 수 있다.
이에 따라, 제1 발광 다이오드(121)에서 방출된 광에 의해 안구 질환이나 피부질환이 유발되는 것을 더욱 방지할 수 있다. 그러나 앞에서 설명한 바와 같이 약 400nm 내지 약 420nm 범위 내의 파장은 인체에 대한 위험도가 상대적으로 낮기 때문에, 복사 조도를 더 증가시킬 수도 있다.
나아가, 약 400nm 내지 약 420nm 범위 내의 피크 파장을 갖는 발광 다이오드(121)에서 방출된 광은 살균 기능을 가질 수 있다. 이를 위해, 상기 발광 다이오드(121)는 특히 약 400nm 내지 약 410nm의 피크 파장, 더 나아가, 약 405nm의 피크 파장을 갖는 광을 방출할 수 있다. 약 400nm 내지 약 420nm 범위 내의 단파장 가시광선은 안구질환이나 피부질환에 대한 위험도가 상대적으로 낮으며, 병원성 미생물에 대한 살균 능력이 크므로, 조명 장치에 적합하게 사용되어 살균 기능을 수행할 수 있다.
다시 도 16 및 도 17를 참조하면, 제2 발광 다이오드(123)는 UVB의 자외선을 방출할 수 있으며, 구체적으로 약 286nm 내지 약 304nm 범위 내, 더 구체적으로는 약 291nm 내지 약 301nm 범위 내에 피크 파장을 갖는 광을 방출할 수 있다. 이 범위 내의 자외선이 인체에 조사되었을 때, 비타민D가 효율적으로 합성될 수 있다. 발광 다이오드(123)는 예를 들어 Ⅲ족 질화물 반도체를 이용하여 형성된 무기 발광 다이오드로, 공지된 발광 다이오드 칩을 사용할 수 있으며, 플립칩형, 수직형 또는 수평형 등 그 구조도 특별히 한정되지 않는다.
제2 발광 다이오드(123)는 파장변환기(131)로부터 이격되어 회로 기판(111) 상에 실장될 수 있으며, 따라서, 제2 발광 다이오드(123)에서 방출된 광이 파장변환기(131)에 흡수되는 것을 방지할 수 있다. 이에 따라, 제2 발광 다이오드(123)에서 방출되는 광의 복사 조도가 향상될 수 있다. 또한, 제2 발광 다이오드(123)를 파장변환기(131)로부터 이격시킴으로써 제2 발광 다이오드(123)에서 방출된 광이 파장변환되는 것을 방지할 수 있으며, 따라서, 스토크 쉬프트에 의한 에너지 손실을 방지할 수 있다. 그러나 본 개시가 반드시 이에 한정되는 것은 아니며, 제2 발광 다이오드(123)가 파장변환기(131) 내에 배치될 수도 있다.
한편, 제2 발광 다이오드(123)에서 생성되어 외부로 방출되는 자외선은 비타민D 합성에 사용된다. 피부 세포 내 7-dehydrocholesterol이 UVB를 통해 반응하여 Cholecalciferol(비타민 D3)이 합성되는 것으로 알려져 있다. 도 21은 파장에 따른 인체의 비타민 D 생성 효율을 나타내기 위한 그래프로 CIE 174:2006에 공개된 것이다.
도 21을 참조하면, 298nm의 자외선이 비타민 D 생성에 가장 효율적이며, 약 291 내지 301nm 범위 내에서 최고 효율에 대해 약 90% 이상의 효율을 나타낸다. 또한, 약 286 내지 약 304nm 범위에서 최고 효율에 대해 약 70% 이상의 효율을 나타내며, 약 281 내지 약 306nm 범위에서 최고 효율에 대해 약 50% 이상의 효율을 나타낸다. 발광 다이오드(123)의 피크 파장이 298nm일 때, 비타민 D 생성에 가장 효율적이며, 약 286 내지 약 304nm 범위 내일 때, 비타민 D 생성에 70% 이상의 상대적으로 양호한 효율을 나타낼 것이다.
비타민 D는 칼슘 대사에 관여하며, 비타민 D의 결핍은 뼈의 성장에 커다란 장애를 초래한다. 비타민 D의 적정 레벨을 유지하기 위해 일반적으로 제시되는 비타민 D의 일일 권장량은 국가에 따라 차이가 있으며, 대체로 400~800IU 범위 내이며, 상향 조정되는 추세이다. 일 예로, 국제 조명 위원회(CIE)에서는 1000 IU의 비타민 D를 생성하기 위해 필요한 UVB 노출량을 제시하고 있으며, 이는 한여름 정오의 태양광 기준으로 제2 스킨 타입의 전체 바디에 대해 약 21 내지 약 34 J/m2이다. 한편, ACGIH(American Conference of Govermental Industrial Hygienists)에서 제공되는 UVB에 대한 인체 노출 안전 범위에 대한 기준치는 290nm의 경우 47 J/m2이며, 297nm의 경우 약 65 J/m2이고, 300nm의 경우 100 J/m2이다.
따라서, 조명장치에서 조사되는 UVB의 조사량은 안전범위를 초과하지 않는 범위에서 비타민 D 합성에 사용될 수 있도록 조절될 필요가 있다. 특히, UVB의 자외선 영역에서도 파장이 길 수록 일일 허용 기준치가 증가하므로 제2 발광 다이오드(123)의 피크 파장은 298nm 또는 그보다 장파장, 예컨대 298 내지 301nm 범위 내인 것이 더 많은 자외선을 조사할 수 있어 비타민 D 합성 기능을 갖는 조명 장치에 더욱 적합하다.
제2 발광 다이오드(123)는 제1 발광 다이오드(121)과 독립적으로 구동될 수 있으며, 따라서, 제1 발광 다이오드(121)가 동작하고 있는 동안, 필요에 따라 턴온되거나 턴오프될 수 있다.
제3 발광 다이오드(125)는 파장변환기(131)로부터 이격되어 회로기판(111) 상에 실장될 수 있다. 제3 발광 다이오드(125)에서 방출된 광은 실질적으로 파장변환기(131)로 진입하지 않고 외부로 방출될 수 있다. 이에 따라, 제3 발광 다이오드(125)에서 방출되는 광의 복사 조도가 향상될 수 있다.
제3 발광 다이오드(125)는 제1 발광 다이오드(121)에 직렬 또는 병렬 연결될 수 있으며, 또는 제1 발광 다이오드(121)로부터 독립적으로 구동될 수도 있다.
제3 발광 다이오드(125)는 세포 활성에 적합한 광을 방출한다. 제3 발광 다이오드(125)는 예컨대 약 605 내지 935nm 범위 내의 피크 파장을 갖는 광을 방출할 수 있다. 제3 발광 다이오드는 예컨대 AlGaInP 계열 또는 AlGaInAs 계열의 반도체로 형성될 수 있다.
약 605 내지 약 935nm 범위 내의 적색광 또는 근적외선은 미토콘드리아 내에서 세포 활성 물질을 생성한다. 구체적으로, 미토콘드라아 내의 cytochrome c oxidase는 광 수용체로서 605 내지 935nm 범위 내의 광을 흡수하여 활동력이 증가하며, 이에 따라, NO를 생성한다. NO는 통증 완화 및 혈액순환 개선 등에 영향을 주어 인체의 건강을 증진한다. 또한, cytochrome c oxidase 단백질의 활성은 ATP 생성에 기여하며, 세포 손상 치료에도 영향을 미친다.
특히, 제3 발광 다이오드(125)는 약 605~655nm, 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장을 갖는 광을 방출할 수 있다. 이 범위에서 cytochrome c oxidase의 에너지 흡수율이 상대적으로 높다. 특히, cytochrome c oxidase의 에너지 흡수율은 도 22에 도시한 바와 같이, 790~840nm 파장 범위 내에서 가장 높고, 약 875~935nm 범위 내에서 그 다음으로 높으며, 약 605~655nm 파장 범위 내에서 그 다음으로 높다.
cytochrome c oxidase의 에너지 흡수율이 상대적으로 높은 파장의 광을 방출하는 제3 발광 다이오드(125)를 채택함으로써 건강 증진 효율을 향상시킬 수 있다.
나아가, 복수의 제3 발광 다이오드(125)를 사용할 경우, 위 파장범위 중 특정 파장 범위 내에서 광을 방출하는 발광 다이오드들, 예를 들어 효율이 높은 790~840nm, 또는 875~935nm 범위 내의 광을 방출하는 발광 다이오드들을 복수개 사용할 수도 있고, 각 파장 범위들의 광을 골고루 방출하도록 다양한 발광 다이오드들을 사용할 수도 있다.
또한, 605~655nm 범위의 광을 방출하는 발광 다이오드는 백색광의 색온도에 영향을 미칠 수 있으므로, 백색 발광 장치의 색온도에 영향을 주지 않도록, 시감도가 낮은 범위, 즉, 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장을 갖는 광을 방출하는 제3 발광 다이오드들(125)을 주로 사용할 수 있다.
본 실시예에서, 조명 장치에 세포 활성 기능을 부가하기 위해, 제3 발광 다이오드(125)에서 방출되는 광의 복사 조도는 백색광을 구현하는 제1 발광 다이오드들(121) 및 파장변환기(131)에서 방출되는 광의 동일 파장에서의 복사 조도보다 크다. 이에 따라, 본 실시예에 있어서, 세포 활성 기능은 제3 다이오드(123)에 의해 수행된다.
한편, 제3 발광 다이오드(125)의 구동 시간과 제1 발광 다이오드(121)의 구동 시간은 동일할 수도 있으나, 이에 한정되는 것은 아니다. 조명 장치의 설치 위치에 따라 제3 발광 다이오드(125)의 구동 시간이 조절될 수 있다. 특히, 제3 발광 다이오드(125)의 사용시간 또는 복사 조도의 크기는 인체에 대한 위해성을 고려하여 조절될 수 있다.
예를 들어, 조명 장치로부터 방출되는 제3 발광 다이오드(125)의 복사 조도는 570W/m2 이하일 수 있으며, 나아가, 100W/m2 이하일 수 있다. 570W/m2은 광생물학적 안전 규격(IEC 62471)에서 적외선 범위의 광에 대한 위험 그룹 1(risk group 1)의 한계값을 나타내며, 100W/m2은 면제(exempt)에 해당한다. 570W/m2 미만의 복사 조도를 갖도록 함으로써 조명 장치에서 상대적으로 긴 시간 동안 인체에 해를 주지 않으면서 세포 활성 물질 생성 작용을 하도록 구동될 수 있다.
일 실시예에 있어서, 조명 장치는 제3 발광 다이오드(125)보다 제1 발광 다이오드(121)를 더 많이 포함할 수 있으며, 따라서, 조명에 적합한 세기의 광을 방출할 수 있다. 그러나 본 개시가 이에 한정되는 것은 아니다.
한편, 본 실시예에 있어서, 제3 발광 다이오드(123)가 세포 활성 기능을 수행하기 위한 광을 방출하는 것으로 설명하지만, 제3 발광 다이오드(125) 대신 파장변환물질이 사용될 수도 있다. 예를 들어, 적색 영역 또는 적외선 영역의 광을 방출하는 형광체나 양자점이 사용될 수 있다. 특히, 양자점은 좁은 반치폭을 가지므로, 세포 활성 기능에 적합한 파장의 광을 방출할 수 있다. 세포 활성 기능을 갖는 파장변환물질은 파장변환기(131) 내에 함유되어 제1 발광 다이오드(121)에서 생성된 광을 파장변환시킬 수도 있으며, 제1 발광 다이오드(121)와 다른 발광 다이오드 상에 배치될 수 있다. 이 경우, 상기 다른 발광 다이오드는 제1 발광 다이오드(121)에 비해 장파장의 광을 방출할 수 있으며, 이에 따라, 파장변환에 따른 에너지 손실을 줄일 수 있다.
본 실시예의 조명 장치는 세포 활성 기능을 포함함으로써 실내 생활 공간뿐만 아니라, 공항이나 병원과 같이 다수의 사람들이 활동하는 공간에서 인체의 건강을 증진하도록 사용될 수 있다.
도 16 및 도 17에서 복수의 제1 발광 다이오드(121)와 하나의 제2 발광 다이오드(123) 및 하나의 제3 발광 다이오드(125)를 도시하고 있으나, 복수의 제2 발광 다이오드(123) 및 복수의 제3 발광 다이오드(125)가 기판(111) 상에 배치될 수도 있다.
도 23은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 단면도이다.
도 23을 참조하면, 본 실시예에 따른 조명 장치는 도 16 및 도 17를 참조하여 설명한 조명 장치와 대체로 유사하나, 제4 발광 다이오드(127)를 더 포함하는 것에 차이가 있다. 중복을 피하기 위해 동일한 구성요소에 대한 설명은 생략하고, 제4 발광 다이오드(127)에 대해 구체적으로 설명한다.
제4 발광 다이오드(127)는 파장변환기(131)로부터 이격되어 회로기판(111) 상에 실장될 수 있다. 제3 발광 다이오드(127)에서 방출된 광은 실질적으로 파장변환기(131)로 진입하지 않고 외부로 방출될 수 있다. 이에 따라, 제4 발광 다이오드(127)에서 방출되는 광의 복사 조도가 향상될 수 있다.
제4 발광 다이오드(127)는 제1 발광 다이오드(121)에 직렬 또는 병렬 연결될 수 있으며, 또는 제1 발광 다이오드(121)로부터 독립적으로 구동될 수도 있다.
한편, 제4 발광 다이오드(127)는 백색광 이외의 병원성 미생물을 살균하기에 적합한 광을 방출한다. 제4 발광 다이오드(127)는 예컨대 약 400 내지 약 420nm의 피크 파장, 나아가, 약 400 내지 약 410nm의 피크 파장, 더 나아가, 약 405nm의 피크 파장을 갖는 광을 방출할 수 있다. 약 405nm의 파장은 세균의 세포 내에 존재하는 물질인 포피린(Porphyrin)에 흡수되어 활성 산소를 생성하고, 생성된 활성 산소가 축적되어 세포벽을 파괴함으로서 살균작용이 일어난다. 이와 같이, 위 범위의 가시 영역의 파장은 안구질환이나 피부질환을 유발하지 않으면서 병원성 미생물을 살균하기에 적합하다. 본 명세서에서, 살균(sterilization)은 병원성 미생물의 증식을 감소시키거나 방해하도록 병원성 미생물을 죽이거나 손상시키는 것을 의미한다.
제4 발광 다이오드(127)는 제1 발광 다이오드(121)와 동일 파장의 광을 방출할 수도 있으나, 이에 한정되는 것은 아니며, 제1 발광 다이오드(121)와 다른 파장의 광을 방출할 수도 있다. 제4 발광 다이오드(127)를 제1 발광 다이오드(121)와 별도로 배치함으로써 살균 기능을 효율적으로 제공할 수 있다.
본 실시예에서, 조명 장치에 살균 기능을 부가하기 위해, 제4 발광 다이오드(127)에서 방출되는 광의 복사 조도는 백색 광원에서 방출되는 광의 동일 파장에서의 복사 조도보다 클 수 있다. 나아가, 제4 발광 다이오드(127)에서 방출되는 광의 복사 조도는 피크 파장이 제1 발광 다이오드(121)에서 조명 장치 외부로 방출되는 광의 복사 조도보다 클 수 있다. 이에 따라, 본 실시예의 조명 장치는 제1 발광 다이오드(121)에 비해 제4 발광 다이오드(127)에 의해 살균 기능이 주요하게 수행된다.
한편, 제4 발광 다이오드(127)의 구동 시간과 제1 발광 다이오드(121)의 구동 시간은 동일할 수도 있으나, 이에 한정되는 것은 아니며, 조명 장치의 설치 위치에 따라 제4 발광 다이오드(127)의 구동 시간이 조절될 수 있다. 특히, 제4 발광 다이오드의 사용시간 또는 복사 조도의 크기는 인체에 대한 위해성을 고려하여 조절될 수 있다.
예를 들어, 조명 장치로부터 방출되는 제4 발광 다이오드(127)의 복사 조도는 1W/m2 이하일 수 있으며, 나아가, 0.1W/m2 이하일 수 있다. 1W/m2은 광생물학적 안전 규격(IEC 62471)에서 300 내지 700nm 범위 내 청색광에 대한 위험 그룹 1(risk group 1)의 한계값을 나타내며, 0.1W/m2은 면제(exempt)에 해당한다. 1W/m2 미만의 복사 조도를 갖도록 함으로써 조명 장치에서 상대적으로 긴 시간 동안 살균 작용을 하도록 구동될 수 있다.
본 실시예에 따르면, 실내 생활 공간뿐만 아니라, 공항이나 병원과 같이 다수의 사람들이 활동하는 공간에서 병원성 미생물을 살균할 수 있어 병원성 미생물에 의한 인체 감염을 방지할 수 있다.
도 24는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이고, 도 25은 도 24의 절취선 F-F를 따라 취해진 개략적인 단면도이다.
도 24 및 도 25을 참조하면, 본 실시예에 따른 조명 장치는 도 16 및 도 17를 참조하여 설명한 조명 장치와 대체로 유사하나, 파장변환기들(231)이 제1 발광 다이오드들(121) 상에 각각 형성된 것에 차이가 있다. 즉, 도 16 및 도 17에서 파장변환기(131)는 복수의 제1 발광 다이오드들(121)을 모두 덮지만, 본 실시예에서, 각각의 제1 발광 다이오드(121)는 개별적으로 파장변환기(231)로 덮인다.
제1 내지 제3 발광 다이오드(121, 123, 125)와 파장변환기(231) 내의 파장변환 물질은 앞서 설명한 바와 같으므로 상세한 설명은 생략한다.
한편, 제1 발광 다이오드들(121)이 각각 파장변환기(231)로 덮이므로, 제2 발광 다이오드(123) 및 제3 발광 다이오드(125)는 제1 발광 다이오드들(121) 사이에 배치될 수도 있다. 또한, 복수의 제2 발광 다이오드(123) 및 복수의 제3 발광 다이오드(125)가 제1 발광 다이오드들(121) 사이에 균일하게 분포될 수 있으며, 이에 따라, 제2 발광 다이오드(123)및 제3 발광 다이오드(125)에서 방출되는 광이 백색광과 혼합될 수 있다. 한편, 도시하지는 않았지만, 제2 발광 다이오드(123) 또는 제3 발광 다이오드(125)를 외부 환경으로부터 보호하기 위해 투명 몰딩부로 덮을 수도 있다.
본 실시예에 있어서, 제1 발광 다이오드(121)와 파장변환기(231)에 의해 조명을 위한 광원 유닛(221)이 제공된다. 각각의 광원 유닛(221)은 제1 발광 다이오드(121)와 파장변환기(231)의 조합에 의해 백색광을 구현할 수 있다. 일 실시예에 있어서, 광원 유닛들(221)은 모두 동일한 색온도의 백색광을 구현할 수 있다. 다른 실시예에 있어서, 광원 유닛들(221)은 서로 다른 색온도의 백색광을 구현할 수 있다. 예를 들어, 발광 다이오드들(121)이 서로 다른 피크 파장의 광을 방출할 수도 있고, 파장변환기들(231)이 서로 다른 파장변환물질을 포함할 수도 있다. 또 다른 실시예에 있어서, 광원 유닛들(221)은 백색광을 구현하는 대신 다른 색상의 광을 구현할 수도 있으며, 이들 광원 유닛들(221)의 조합에 의해 백색광이 구현될 수도 있다.
도 26은 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 26을 참조하면, 본 실시예에 따른 조명 장치는 도 24 및 도 25을 참조하여 설명한 조명 장치와 대체로 유사하나, 제4 발광 다이오드(127)를 더 포함하는 것에 차이가 있다.
제4 발광 다이오드(127)는 도 23을 참조하여 설명한 발광 다이오드(127)와 동일하므로, 중복을 피하기 위해 상세한 설명은 생략한다.
도 27는 본 개시의 또 다른 실시예에 따른 조명 장치를 설명하기 위한 개략적인 평면도이다.
도 27를 참조하면, 본 실시예에 따른 조명 장치는 도 16 및 도 17를 참조하여 설명한 조명 장치와 대체로 유사하나, 필터(41)를 더 포함하는 것에 차이가 있다.
필터(41)는 발광 유닛들(121)에서 외부로 방출되는 불필요한 자외선을 차단할 수 있다. 예를 들어, 필터(41)는 약 301nm 내지 약 400nm 범위 내의 광을 차단하여 이 범위 내의 자외선에 의해 인체에 해로운 영향을 미치는 것을 방지할 수 있다. 위 범위의 광은 예를 들어, 제1 발광 다이오드(121) 또는 파장변환물질에 의해 방출될 수 있다. 따라서, 필터(41)는 파장변환기(131) 외부에 배치될 수 있다. 필터(41)로는 예를 들어, 밴드 패스 필터가 사용될 수 있다.
한편, 필터(41) 대신에 또는 필터(41)에 더하여 확산판이 배치될 수 있다. 확산판은 제1 발광 다이오드(121) 및 파장변환기(131)에 의해 생성된 백색광과 제2 발광 다이오드(123) 및 제3 발광 다이오드(125)에서 방출되는 광을 혼합할 수 있다.
필터(41) 또는 확산판은 도 27의 실시예에 한정되지 않고, 다른 실시예에도 적용될 수 있다.
한편, 앞의 실시예에서, 발광 유닛(221)이 발광 다이오드(121)와 파장변환기(231)를 포함하며, 발광 다이오드(121)가 회로 기판(111) 상에 직접 실장된 것으로 도시 및 설명하지만, 발광 유닛(221)은 패키지 형태로 제공될 수도 있다. 이에 대해, 도 28을 참조하여 설명한다.
도 28은 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다. 여기서, 도 28은 패키지 형태의 발광 소자를 개략적으로 나타낸다.
도 28을 참조하면, 발광 유닛(221)은 발광 다이오드(121) 및 파장변환기(231)를 포함한다. 발광 다이오드(121)는 하우징(120)의 캐비티 내에 실장될 수 있으며, 파장변환기(231)는 캐비티 내에서 발광 다이오드(121)를 덮는다. 한편, 발광 다이오드(121)는 본딩 와이어들을 통해 리드 전극들에 전기적으로 연결될 수 있다.
도 28의 패키지는 일 예이며, 다양한 종류의 패키지가 사용될 수 있다. 또한, 파장변환기(231)도 다양한 형상으로 발광 다이오드(121)를 덮을 수 있다.
본 실시예에서, 발광 유닛(221)이 패키지 형태로 제공된 것에 대해 설명하지만, 제2 발광 다이오드(123), 제3 발광 다이오드(24) 및 제4 발광 다이오드(127)도 패키지 형태로 제공되어 회로 기판(111) 상에 실장될 수 있다.
도 29는 본 개시의 또 다른 실시예에 따른 발광 유닛을 설명하기 위한 개략적인 단면도이다.
도 29를 참조하면, 본 실시예에 따른 발광 유닛은 제1 발광 다이오드(121), 제2 발광 다이오드(123) 및 제3 발광 다이오드(125)가 모두 하나의 패키지 내에 실장된 것을 특징으로 한다. 즉, 도 28의 실시예에서 각각의 발광 다이오드 패키지는 하나의 발광 다이오드를 포함하나, 본 실시예에서, 발광 다이오드 패키지는 제1 내지 제3 발광 다이오드들(121, 123, 125)을 포함한다. 한편, 파장변환기(231)는 제1 발광 다이오드(121)를 덮을 수 있으며, 이에 따라, 패키지 내에 발광 유닛(221)이 제공될 수 있다.
한편, 몰딩부(230)가 상기 발광 유닛(221), 제2 발광 다이오드(123) 및 제3 발광 다이오드(125)를 덮을 수 있다. 몰딩부(230)는 예컨대 실리콘 수지와 같은 투명 수지 또는 투명 유리로 형성될 수 있다. 필요에 따라, 몰딩부(230)는 파장변환물질을 포함할 수도 있다.
본 실시예에 따르면, 회로 기판(111) 상에 제1 내지 제3 발광 다이오드들을 포함하는 발광 다이오드 패키지가 실장될 수 있다. 상기 발광 다이오드 패키지는 또한 앞서 설명한 제4 발광 다이오드(127)를 더 포함할 수도 있다.
회로 기판(111) 상에 복수의 발광 다이오드 패키지들이 실장될 수 있으며, 이들 발광 다이오드 패키지들은 모두 동일한 구조를 가질 수도 있으나, 반드시 이에 한정되는 것은 아니다. 즉, 다중 추가 기능을 동일하게 갖는 발광 다이오드 패키지들이 회로 기판(111) 상에 배치될 수도 있으며, 또는 서로 다른 추가 기능을 갖는 발광 다이오드 패키지들이 회로 기판(111) 상에 배치되어 다중 추가 기능을 갖는 조명 장치가 제공될 수도 있다. 또한, 개별 발광 다이오드 패키지가 백색광을 구현할 수도 있으나, 이에 한정되는 것은 아니며, 복수의 발광 다이오드 패키지들의 조합에 의해 백색광이 구현될 수도 있다.
앞에서 다양한 조명 장치에 대해 설명하였으나, 본 개시가 이들 특정 실시예에 한정되는 것은 아니다.
한편, 상기 조명 장치는 실내 생활 공간 뿐만 아니라 병원이나 공항과 같이 다수의 사람들이 이용하는 실내 공간에 설치될 수 있다. 따라서, 상기 조명 장치가 설치된 조명 시스템이 또한 제공될 수 있다. 이 조명 시스템은 일상적으로 조명 기능과 함께 위에서 설명된 추가 기능을 수행하도록 조명 장치를 작동할 수 있다.
이상에서, 본 개시의 다양한 실시예들에 대해 설명하였으나, 본 발명은 이들 실시예들에 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 발명의 기술적 사상을 벗어나지 않는 한, 다른 실시예에도 적용될 수 있다.

Claims (20)

  1. 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛의 적어도 두 개의 발광 유닛의 조합을 포함하되,
    제1 발광 유닛은 피크 파장이 약 286nm 내지 약 304nm 범위 내의 광을 방출하는 제1 발광 다이오드 및 제1 파장변환기를 포함하며, 상기 제1 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고,
    제2 발광 유닛은 피크 파장이 약 400nm 내지 420nm 범위 내의 광을 방출하는 제2 발광 다이오드 및 제2 파장변환기를 포함하며, 상기 제2 발광 다이오드에서 생성된 광의 일부를 외부로 방출하고,
    제3 발광 유닛은 피크파장이 약 286nm 내지 약 470nm 범위 내의 광을 방출하는 제3 발광 다이오드 및 제3 파장변환기를 포함하되,
    상기 제3 파장변환기는 약 685~705nm, 790~840nm, 또는 875~935nm 범위 내에 중심 파장을 갖는 파장변환물질을 포함하는 조명 장치.
  2. 청구항 1에 있어서,
    상기 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내에 중심 파장을 갖는 파장변환물질은 양자점인 조명 장치.
  3. 청구항 1에 있어서,
    상기 제1 파장변환기 및 제2 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함하고,
    상기 제3 파장변환기는 녹색 형광체 및 적색 형광체를 더 포함하는 조명 장치.
  4. 청구항 1에 있어서,
    상기 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛은 각각 독립적으로 구동되는 조명 장치.
  5. 청구항 1에 있어서,
    상기 제1 발광 유닛, 제2 발광 유닛 및 제3 발광 유닛은 각각 백색광을 방출하는 조명 장치.
  6. 청구항 1에 있어서,
    상기 제3 발광 다이오드는 피크 파장이 약 400nm 내지 420nm 범위 내의 광을 방출하는 조명 장치.
  7. 약 300nm 내지 약 470nm 범위 내의 피크 파장을 갖는 제1 발광 다이오드;
    약 286nm 내지 약 304nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 제2 발광 다이오드; 및
    상기 제1 발광 다이오드에서 방출된 광의 파장을 변환하기 위한 파장변환기를 포함하며,
    백색광을 방출함과 아울러, 비타민 D 생성에 적합한 광 및 세포 활성 물질을 생성하기에 적합한 광을 방출하되,
    상기 백색광은 상기 제1 발광 다이오드와 상기 파장변환기에 의해 구현되는 조명 장치.
  8. 청구항 7에 있어서,
    상기 제1 발광 다이오드는 약 400nm 내지 약 420nm 범위 내의 피크 파장을 갖는 조명 장치.
  9. 청구항 8에 있어서,
    상기 파장변환기는 청색 형광체를 포함하고,
    상기 백색광은 상기 제1 발광 다이오드에 의한 피크와 상기 청색 형광체에 의한 피크를 가지며, 상기 제1 발광 다이오드에 의한 피크와 상기 청색 형광체에 의한 피크는 서로 다른 파장에 위치하는 조명 장치.
  10. 청구항 8에 있어서,
    서로 이격된 복수의 발광 유닛을 포함하되,
    각각의 발광 유닛은 상기 제1 발광 다이오드와 상기 제1 발광 다이오드를 덮는 상기 파장 변환기를 포함하는 조명 장치.
  11. 청구항 10에 있어서,
    상기 발광 유닛들은 서로 동일하거나 다른 색온도의 백색광을 구현하는 조명 장치.
  12. 청구항 7에 있어서,
    상기 파장변환기는 청색 형광체, 녹색 형광체 및 적색 형광체를 포함하는 조명 장치.
  13. 청구항 7에 있어서,
    상기 제2 발광 다이오드는 약 291nm 내지 약 301nm 범위 내의 피크 파장을 갖는 자외선을 방출하는 조명 장치.
  14. 청구항 13에 있어서,
    상기 제2 발광 다이오드는 상기 파장변환기로부터 이격된 조명 장치.
  15. 청구항 7에 있어서,
    상기 세포 활성 물질은 미토콘드리아 내의 cytochrome c oxidase 활성에 의해 생성된 일산화질소(nitric oxide; NO)인 조명 장치.
  16. 청구항 15에 있어서,
    상기 파장변환기는 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장의 광으로 파장을 변환하는 파장변환물질을 포함하는 조명 장치.
  17. 청구항 15에 있어서,
    제3 발광 다이오드를 더 포함하되,
    상기 제3 발광 다이오드는 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장의 광을 방출하는 조명 장치.
  18. 청구항 17에 있어서,
    상기 약 685~705nm, 약 790~840nm, 또는 약 875~935nm 범위 내의 피크 파장의 광을 갖는 파장변환물질에서 방출된 광의 복사 조도(irradiance)는 570W/m2 이하인 조명 장치.
  19. 청구항 7에 있어서,
    병원성 미생물을 살균하기에 적합한 광을 방출하는 제4 발광 다이오드를 더 포함하되,
    상기 제4 발광 다이오드는 상기 파장변환기로부터 이격된 조명 장치.
  20. 청구항 19에 있어서,
    상기 제4 발광 다이오드는 약 400nm 내지 약 420nm 범위 내의 피크 파장을 갖는 조명 장치.
PCT/KR2019/018458 2018-12-26 2019-12-26 추가 기능을 갖는 led 조명 장치 WO2020138947A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217016643A KR102679696B1 (ko) 2018-12-26 2019-12-26 추가 기능을 갖는 led 조명 장치
JP2021537170A JP7485674B2 (ja) 2018-12-26 2019-12-26 追加機能を持つled照明装置
MX2021007827A MX2021007827A (es) 2018-12-26 2019-12-26 Dispositivo de iluminacion led con funcion adicional.
CN201980051260.2A CN112567168A (zh) 2018-12-26 2019-12-26 具有附加功能的led照明装置
EP19905053.5A EP3904751A4 (en) 2018-12-26 2019-12-26 LED LIGHTING DEVICE WITH AN ADDITIONAL FUNCTION

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862784885P 2018-12-26 2018-12-26
US62/784,885 2018-12-26
US201962792865P 2019-01-15 2019-01-15
US62/792,865 2019-01-15
US16/726,622 US11996500B2 (en) 2018-12-26 2019-12-24 LED lighting apparatus having additional function
US16/726,622 2019-12-24

Publications (1)

Publication Number Publication Date
WO2020138947A1 true WO2020138947A1 (ko) 2020-07-02

Family

ID=71122148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018458 WO2020138947A1 (ko) 2018-12-26 2019-12-26 추가 기능을 갖는 led 조명 장치

Country Status (7)

Country Link
US (2) US11996500B2 (ko)
EP (1) EP3904751A4 (ko)
JP (1) JP7485674B2 (ko)
KR (1) KR102679696B1 (ko)
CN (1) CN112567168A (ko)
MX (1) MX2021007827A (ko)
WO (1) WO2020138947A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117157125A (zh) * 2020-08-18 2023-12-01 贝那索尔公司 家庭光疗装置及相关系统和方法
EP4300606A4 (en) * 2021-02-24 2024-10-09 Panasonic Ip Man Co Ltd LIGHT-EMMITTING DEVICE AND ELECTRONIC DEVICE THEREOF
US20240035654A1 (en) * 2021-11-26 2024-02-01 Daons Co. Ltd. Lighting apparatus using pcb board in which visible-light sterilization led and led having infrared wavelength are combined

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110003198A (ko) * 2009-07-03 2011-01-11 한솔테크닉스(주) 살균용 발광소자가 구비된 led 모듈
KR20120031182A (ko) * 2009-07-07 2012-03-30 씨씨에스 가부시키가이샤 발광 장치
KR20120120996A (ko) * 2011-04-25 2012-11-05 순천대학교 산학협력단 생리 감응형 발광 다이오드 조명 장치
US20130279149A1 (en) * 2012-04-19 2013-10-24 Sumitronics Taiwan Co., Ltd. Led light bulb
KR20170120772A (ko) * 2016-04-22 2017-11-01 (주)링크옵틱스 Uvb led를 이용한 조명장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416699B (en) 2004-08-05 2010-04-14 Photo Therapeutics Ltd Skin rejuvenation
JP5141107B2 (ja) 2006-06-27 2013-02-13 三菱化学株式会社 照明装置
US8567973B2 (en) 2008-03-07 2013-10-29 Intematix Corporation Multiple-chip excitation systems for white light emitting diodes (LEDs)
WO2013180749A1 (en) 2012-05-31 2013-12-05 Photopharmics, Inc. Apparatuses for treating and/or diagnosing motor related neurological conditions
WO2013150413A1 (en) 2012-04-05 2013-10-10 Koninklijke Philips N.V. Light emitting arrangement comprising quantum dots
JPWO2014119313A1 (ja) 2013-01-31 2017-01-26 株式会社東芝 発光装置及びled電球
US8858607B1 (en) * 2013-03-15 2014-10-14 Gary W. Jones Multispectral therapeutic light source
TWI523277B (zh) 2013-07-12 2016-02-21 White light emitting diode module with ultraviolet light
DE102015106757A1 (de) 2015-04-30 2016-11-03 Osram Opto Semiconductors Gmbh Strahlungsemittierendes optoelektronisches Bauelement
WO2017012829A1 (en) 2015-07-23 2017-01-26 Philips Lighting Holding B.V. A lighting assembly with a uv protected light source that emits visible light
WO2017019836A1 (en) * 2015-07-28 2017-02-02 Photonmd, Llc Systems and methods for phototherapeutic modulation of nitric oxide
ES2890876T3 (es) 2015-11-10 2022-01-24 Signify Holding Bv Fuente de luz blanca sintonizable con componente UV variable
WO2017125322A1 (en) 2016-01-19 2017-07-27 Philips Lighting Holding B.V. Lighting device
US10679975B2 (en) 2016-11-17 2020-06-09 Signify Holding B.V. Lighting device with UV LED
US11213693B2 (en) * 2018-04-27 2022-01-04 Seoul Viosys Co., Ltd. Light source for eye therapy and light emitting device having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110003198A (ko) * 2009-07-03 2011-01-11 한솔테크닉스(주) 살균용 발광소자가 구비된 led 모듈
KR20120031182A (ko) * 2009-07-07 2012-03-30 씨씨에스 가부시키가이샤 발광 장치
KR20120120996A (ko) * 2011-04-25 2012-11-05 순천대학교 산학협력단 생리 감응형 발광 다이오드 조명 장치
US20130279149A1 (en) * 2012-04-19 2013-10-24 Sumitronics Taiwan Co., Ltd. Led light bulb
KR20170120772A (ko) * 2016-04-22 2017-11-01 (주)링크옵틱스 Uvb led를 이용한 조명장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904751A4 *

Also Published As

Publication number Publication date
JP2022515455A (ja) 2022-02-18
KR102679696B1 (ko) 2024-07-01
US20240313169A1 (en) 2024-09-19
US11996500B2 (en) 2024-05-28
JP7485674B2 (ja) 2024-05-16
EP3904751A4 (en) 2022-09-21
EP3904751A1 (en) 2021-11-03
KR20210075198A (ko) 2021-06-22
CN112567168A (zh) 2021-03-26
US20200212265A1 (en) 2020-07-02
MX2021007827A (es) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2020138947A1 (ko) 추가 기능을 갖는 led 조명 장치
WO2021177539A1 (ko) 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩
WO2020171586A1 (ko) Led 조명 장치 및 그것을 갖는 조명 시스템
WO2016056837A1 (ko) 발광 장치
WO2020111833A1 (ko) 살균 기능을 갖는 led 조명 장치
KR100916178B1 (ko) 멀티칩 발광-다이오드 패키지 및 조사 디바이스
WO2016017969A1 (ko) 발광 소자 및 이를 구비한 광원 모듈
CN100539221C (zh) 半导体发光器件和半导体发光器件组装体
WO2017191966A1 (ko) 반도체 소자 패키지
WO2017179944A1 (ko) 발광소자, 발광소자 패키지 및 발광모듈
WO2020116950A1 (ko) 세포 활성 기능을 갖는 led 조명 장치
WO2018117699A1 (ko) 반도체 소자
WO2020036436A1 (ko) 광 조사 장치
WO2020111897A1 (ko) 조명 장치 및 그것을 갖는 조명 시스템
WO2021256839A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 응용품
WO2017200341A2 (ko) 플래시 모듈 및 이를 포함하는 단말기
WO2017188795A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
WO2019004656A1 (ko) 발광 장치
WO2022186593A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 제조 방법
WO2018230962A1 (ko) 조명 모듈
WO2021201634A1 (ko) 식물 재배용 광원 및 이를 이용한 식물 재배 방법
WO2019235835A1 (ko) 반도체 소자 패키지
WO2017043851A1 (ko) 발광 장치
WO2013073816A1 (en) Light source module and lighting device
WO2020022695A1 (ko) 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217016643

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021537170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905053

Country of ref document: EP

Effective date: 20210726