WO2021177539A1 - 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩 - Google Patents

광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩 Download PDF

Info

Publication number
WO2021177539A1
WO2021177539A1 PCT/KR2020/014834 KR2020014834W WO2021177539A1 WO 2021177539 A1 WO2021177539 A1 WO 2021177539A1 KR 2020014834 W KR2020014834 W KR 2020014834W WO 2021177539 A1 WO2021177539 A1 WO 2021177539A1
Authority
WO
WIPO (PCT)
Prior art keywords
phototherapy
self
light
photoconversion
luminous type
Prior art date
Application number
PCT/KR2020/014834
Other languages
English (en)
French (fr)
Inventor
이성훈
Original Assignee
셀바이오코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200025734A external-priority patent/KR20210110914A/ko
Priority claimed from KR1020200061465A external-priority patent/KR102529994B1/ko
Priority claimed from KR1020200135345A external-priority patent/KR102515324B1/ko
Application filed by 셀바이오코리아 주식회사 filed Critical 셀바이오코리아 주식회사
Publication of WO2021177539A1 publication Critical patent/WO2021177539A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/662Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • A61N2005/0647Applicators worn by the patient the applicator adapted to be worn on the head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0656Chemical light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0657Natural light sources, e.g. captured sunlight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light

Definitions

  • the present invention relates to a self-luminous type photoconversion material for phototherapy that outputs a specific wavelength, a functional patch and a functional mask pack including the same, and more particularly, to absorb sunlight and ambient light to perform a phototherapy function. It is an eco-friendly energy source based on the principle of light emission, and a sapphire-based blue phosphor material is used as excitation light in the core having a relatively long light emission time, and the excitation light is absorbed by selecting a wavelength in the shell part. It relates to a light-converting material having a structure in which a wavelength can be selected to efficiently express a phototherapy function as a material designed with a complex structure that enables light emission, and a functional patch and a functional mask pack having a phototherapy function including the same.
  • Light Therapy uses various artificial light sources (laser, fluorescent lamp, UV lamp, etc.) that output wavelengths in the visible or near-infrared region to irradiate the human body with light in a specific wavelength range, thereby applying light energy to the subcutaneous layer of the skin. It uses the principle of accelerating biochemical reactions within cells by infiltrating the cells to the skin. Because it is effective in relieving inflammation, it is attracting attention as a method to treat skin diseases or improve skin conditions, and also plays a role in relieving muscle fatigue.
  • laser laser, fluorescent lamp, UV lamp, etc.
  • Phototherapy is a method of improving or treating skin diseases by selectively using a wavelength of 400 nm to 1,300 nm that exerts a positive effect on the skin among predetermined wavelengths output from a light source.
  • 400 nm to 420 nm wavelength is effective for cell growth and regeneration cell regeneration
  • 440 nm to 500 nm wavelength is effective for acne bacteria removal, acne inflammation reduction and sebaceous gland control
  • the wavelength of 500nm to 520nm is effective in soothing irritated skin and reducing the expansion of capillaries
  • the wavelength of 520nm to 562nm helps to manage complex skin problems and dark spots
  • the wavelength of 565nm to 590nm is for redness and sunburn care due to inflammation.
  • 590nm to 620nm wavelength has the effect of skin vitality, skin improvement and radiance
  • 620nm to 700nm wavelength has wrinkle improvement and skin regeneration effect through collagen production promotion
  • 750nm to 1000nm wavelength has effects on the deep layers of the skin It exerts the effect of amplifying the therapeutic effect.
  • phototherapy is based on the principle that light energy is changed into chemical, kinetic, or thermal energy for physiological and chemical therapeutic purposes in cells, so it is important that light is absorbed by elements or molecules in cells, and light of a specific wavelength It is important that they be efficiently absorbed by specific chromophores within these cells.
  • the red wavelength is used to activate the sebaceous glands in the deep layers of the skin
  • the blue wavelength is used to activate the keratin in the epidermis using the PDT (Photodynamic Therapy) method to control the surface condition of the skin.
  • PDT Photodynamic Therapy
  • LED light emitting devices are mostly used as light sources for outputting a predetermined light for phototherapy.
  • 'patch-type skin treatment device As an example of the prior art using an LED light emitting device as a light source, 'patch-type skin treatment device (Korean Patent No. 10-1829984)', a phototherapy product in the form of a patch, has been disclosed, and the prior art has a certain wavelength range when power is supplied. It includes a plurality of LED chips irradiating the light of the skin, and a zigzag pattern is formed so as to flexibly change the circuit pattern connecting the LED chips according to the change in the shape of the LED patch unit.
  • a 'photomask device for skin care (Korean Patent Registration No. 10-1074882)' has been disclosed, and a light emitting unit mounted in a face mask to emit light to the face of a user wearing the face mask and a light emitting driver for on/off driving the light emitting unit, a manipulation unit for selecting driving of the light emitting unit, and a control unit for controlling the light emitting driver according to an operation signal of the manipulation unit.
  • the devices that exhibit the phototherapy effect using the LED light emitting device have limitations in applicable products because they require an electric circuit for driving the LED light emitting device, as well as a power supply means, and the production cost is quite high. There is a problem.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to replace an LED light emitting device as a light source for phototherapy, but use ambient light as an energy source as an eco-friendly energy source without an artificial electric energy source. It is possible to provide a self-luminous type photoconversion material for phototherapy that can easily add a phototherapy effect to various products by outputting a required wavelength for a long time with the principle of self-luminescence driving.
  • Another object of the present invention is that it can be attached to various parts of the body, and it uses ambient light without LEDs, incandescent lamps and other light source devices that operate with electric energy, including self-luminous type photoconversion materials for phototherapy. By exerting it, it is possible to provide a functional patch that maximizes the phototherapy effect or the therapeutic effect of the drug.
  • Another object of the present invention is formed in the form of a sheet that can be attached to the face, and includes a self-luminous type light conversion material for phototherapy, using ambient light without LEDs, incandescent lamps and other light source devices that operate with electrical energy. By exhibiting the function, it is possible to provide a functional mask pack that relatively maximizes the effect of the mask pack.
  • the M in the formula M a ⁇ Al 2 O 3 is Ba, Sr, Ca, Mg, Eu, or Dy at least one metal and an inorganic oxide according to the formula equivalent ratio.
  • a blue excitation light core made of a sapphire-based blue phosphor material, which is formed to output a predetermined wavelength according to a function for phototherapy by delaying the light emission time by treating the surface defect through firing and pulverization of the mixture produced by mixing;
  • a light conversion raw material mixture produced by mixing at least one of a green conversion material, a yellow conversion material, a red conversion material, and a material belonging to a near-infrared conversion material, and alcohol and silicon nitride balls in a 1:3:2 ratio It is formed of, a light conversion shell surrounding the blue excitation light core; may provide a self-luminous type light conversion material for phototherapy comprising a.
  • the blue excitation light core is characterized in that the range according to the above formula is 0 ⁇ a ⁇ 1.
  • the inorganic oxide raw material is Al 2 O 3 corresponding to aluminate which is sapphire as a matrix, europium to dysprosium is added, or calcium to strontium to barium to It is characterized in that it is a sapphire-based blue phosphorescent phosphor material made by adding magnesium.
  • the near-infrared conversion material zinc (Zinc), gallium (Gallium), and scandium (Scandium) oxide and manganese (Manganese) or chromium (Chromium) or neodium (Neodium) is characterized in that it contains a transition element.
  • the adhesive material is applied to the back surface is attached to various parts of the user's body, the patch body made of various sizes and shapes; and a light emitting means made of a self-luminous type photoconversion material for phototherapy according to any one of claims 1 to 6, and formed by a printing method on the rear surface of the patch body, which is the inner surface of the patch body, which is in contact with the user's body; It is possible to provide a functional patch comprising a self-luminous type photoconversion material for phototherapy including.
  • the patch body is formed of the same material as the patch body, is formed relatively wider than the patch body, and one side is coated with an adhesive material so that it is attached to the body while covering the patch body attached to the user's body to attach the patch body It is characterized in that it further comprises an adhesive cloth for maintaining the state.
  • the light emitting means is characterized in that it is printed in a grid pattern over the entire rear surface of the patch body.
  • the lattice pattern is characterized in that it is made at an interval of between 2 mm and 5 mm.
  • the patch body is characterized in that it contains a drug component.
  • the present invention in order to achieve the above object, is impregnated with a lotion, the mask sheet attached to the user's face; and a light emitting means made of the self-luminous type photoconversion material for phototherapy according to any one of claims 1 to 6, and formed by a printing method on the inner surface of the mask sheet, which is the rear surface in contact with the user's face; It is possible to provide a functional mask pack including a self-luminous type photoconversion material for phototherapy.
  • the light emitting means is characterized in that it is printed in a patterned form designed over the entire rear surface of the mask sheet.
  • the light emitting means is characterized in that it is printed over the entire back surface of the mask sheet in the form of a grid pattern.
  • the lattice pattern is characterized in that it is made at an interval between 10mm to 5mm.
  • the mask sheet a functional mask pack comprising a self-luminous type light conversion material for phototherapy, characterized in that it further comprises an extension having a length and a width to cover the head by being connected to the area covering the forehead of the face.
  • the present invention has the effect of being able to replace the LED light emitting device as a light source for phototherapy as a light source for phototherapy, and ambient light without an electric energy source. It is a self-luminous principle that is driven by itself as an energy source, and it has an effect that can be applied to various phototherapy by outputting the required wavelength for a long time.
  • the functional patch according to the present invention can be attached to various parts of the body, and by including a self-luminous type photoconversion material for phototherapy, it uses ambient light to convert it into a wavelength having a phototherapy effect and output it to relieve pain, There is an effect of conveniently receiving various phototherapy such as sterilization, wound infection prevention and vitamin D generation, and there is an effect of maximizing the therapeutic effect of the drug depending on the added drug.
  • the functional mask pack according to the present invention is formed in the form of a sheet that can be attached to the face, and contains a self-luminous type photoconversion material for phototherapy. It exerts a phototherapy function, and through this, it has the effect of relatively maximizing the effect of the mask pack.
  • FIG. 1 is a view for conceptually explaining a self-luminous type photoconversion material for phototherapy according to the present invention.
  • Figure 2 is a flow chart showing a method of manufacturing a self-luminous type photoconversion material for phototherapy according to the present invention.
  • 3 is an SEM photograph before and after the surface treatment step of the sapphire-based blue phosphor material included in the self-luminous type light conversion material for phototherapy according to the present invention.
  • FIG. 4 is a view showing the emission spectrum and the emission time spectrum of the sapphire-based blue phosphor material included in the self-luminous type light conversion material for phototherapy according to the present invention.
  • FIG. 5 is a SEM photograph of the light conversion shell included in the self-luminous type light conversion material for phototherapy according to the present invention.
  • FIG. 6 is a photograph of a self-luminous type light conversion material for phototherapy according to the present invention.
  • Figure 7 is a self-luminescence comparison photo according to the formation state of the light conversion shell included in the light-emitting type light conversion material for phototherapy according to the present invention.
  • FIG. 10 is a view illustrating an example and form of use of a functional patch including a self-luminous type photoconversion material for phototherapy according to the present invention.
  • FIG. 11 is a view for explaining the conceptual features of a functional patch comprising a self-luminous type photoconversion material for phototherapy according to the present invention.
  • FIG. 12 is a view for explaining the light emitting means included in the functional patch including the self-luminous type light conversion material for phototherapy of the present invention.
  • FIG. 13 is a schematic view of a functional mask pack including a self-luminous type photoconversion material for phototherapy according to the present invention.
  • FIG. 14 is a view for explaining the conceptual features of a functional mask pack including a self-luminous type photoconversion material for phototherapy according to the present invention.
  • FIGS. 13 and 14 are views showing another embodiment of the mask sheet shown in FIGS. 13 and 14;
  • 16 is a view for explaining the light emitting means included in the functional mask pack including the self-luminous type light conversion material for phototherapy of the present invention.
  • Preparation Example 4 is a light spectrum of Preparation Example 4 according to the method for manufacturing a self-luminous type light conversion material for phototherapy according to the present invention.
  • Preparation Example 8 is a light spectrum of Preparation Example 8 according to the method of manufacturing a self-luminous type light conversion material for phototherapy according to the present invention.
  • Example 25 is a sterilizing power comparison test diagram of Example 1 in which a light emitting means made of a self-luminous type light conversion material for phototherapy according to the present invention is formed.
  • Example 26 is a graph of the skin density test result of Example 1 in which a light emitting means made of a self-luminous type light conversion material for phototherapy according to the present invention is formed.
  • Example 27 is a graph of the results of the pigmentation experiment in Example 1 in which the light emitting means made of the self-luminous type photoconversion material for phototherapy according to the present invention is formed.
  • the self-luminous type photoconversion material 10 for phototherapy according to the present invention can be applied to various products to add a phototherapy effect without electrical energy.
  • a self-luminous type light conversion material and a manufacturing method for phototherapy will be described in detail.
  • FIG. 1 is a view for conceptually explaining a self-luminous type photoconversion material for phototherapy according to the present invention.
  • the self-luminous type photoconversion material 10 for phototherapy includes a blue excitation light core 12 positioned at the center and a light conversion shell 14 surrounding the blue excitation light core 12 . It has a complex structure consisting of
  • the blue excitation light core 12 is made of a sapphire-based blue phosphor material
  • the light conversion shell 14 is made of a light conversion material, so that the self-emission type light conversion material 10 for phototherapy is relatively
  • the light conversion shell 14 surrounding the blue excitation light core 12 that has a long light emission time and absorbs sunlight and ambient light to output excitation light absorbs the excitation light and converts it to a selected wavelength to emit light is a technical feature.
  • the self-luminous type photoconversion material 10 for phototherapy absorbs the excitation light output from the blue excitation light core 12 in the photoconversion shell 14 and converts it into a predetermined wavelength for phototherapy. It is a phosphor material that emits light with a wavelength having a therapeutic effect and emits light.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a self-luminous type photoconversion material for phototherapy according to the present invention.
  • a self-emission type photoconversion material 10 for phototherapy including the blue excitation light core 12 and the photoconversion shell 14 surrounding the blue excitation light core 12 is manufactured.
  • the sapphire-based blue phosphor material constituting the blue excitation light core 12 is largely produced in a mixture generation step (S10), a mixture heat treatment step (S11), a mixture natural cooling step (S12), and a mixture surface treatment step (S13), and the light conversion material constituting the light conversion shell 14 is prepared in the form of a slurry, including a light conversion raw material mixture generation step (S20) and a pulverization and surface treatment step (S21), like this
  • the mixture generation step (S10) is represented by Chemical Formula M
  • the M of a ⁇ Al 2 O 3 is Ba, Sr, Ca, Mg, Eu, or Dy at least one metal and a raw material composed of an inorganic oxide according to the formula equivalent ratio is mixed to form a mixture.
  • the range according to the formula of the mixture generating step (S10) is 0 ⁇ a ⁇ 1
  • the inorganic oxide raw material is Al 2 O 3 corresponding to aluminate, which is sapphire as a parent
  • Europium to Dysprosium may be added, or calcium to strontium to barium to magnesium may be added.
  • the mixture heat treatment step (S11) is heat-treated by heating the mixture generated in the mixture generation step (S10).
  • the mixture heat treatment step (S11) is made by heating at 1,000 ° C. to 1,500 ° C. for 2 hours to 12 hours, such a mixture heat treatment can be made in a reducing atmosphere.
  • the mixture heat-treated through the mixture heat treatment step (S11) is naturally cooled at room temperature.
  • the mixture surface treatment step (S13) is a mixture of the mixture naturally cooled through the natural cooling step (S12) of the mixture, alcohol and silicon nitride balls in a 2: 1:2 ratio, and the mixture is stirred at 1,000 rpm to 5,000 rpm.
  • the mixture is pulverized by physical force by stirring for 1 hour to 5 hours to treat surface defects.
  • the surface treatment step (S13) of the mixture is performed so that the self-luminous type photoconversion material 10 for phototherapy has a longer long afterglow characteristic, in this case, the particle size of the pulverized mixture is 15 ⁇ m to It is preferable to control it so that it is formed in 20 micrometers.
  • the light conversion raw material mixture generating step (S20) is a green conversion material such as the light conversion raw material described in Table 1, a yellow conversion material , a light conversion raw material in which any one or more of a material belonging to a red conversion material and a near-infrared conversion material is mixed with alcohol and silicon nitride balls are mixed in a 1:3:2 ratio to produce a light conversion raw material mixture.
  • the light conversion raw material constituting the light conversion shell 14 is any one or more of materials belonging to a green conversion material, a yellow conversion material, a red conversion material, and a near-infrared conversion material.
  • the near-infrared conversion material includes zinc (Zinc), gallium (Gallium) and scandium (Scandium) oxide and manganese (Manganese) or chromium (Chromium) or neodium (Neodium) as transition elements.
  • the pulverization and surface treatment step (S21) is a process for producing a slurry form by pulverizing and surface-treating the light conversion raw material mixture generated in the light conversion raw material mixture generating step (S20) in a planetary ball mill method.
  • the planetary ball mill is preferably set to 5,000 rpm or more.
  • the light conversion material manufactured in this way forms the light conversion shell 14, and receives the wavelength of the ultraviolet to blue region output from the sapphire-based blue phosphor material constituting the blue excitation light core 12 to reduce pain, It outputs wavelengths with proven effects on sterilization, wound infection prevention, and vitamin D formation.
  • the red conversion material or near-infrared conversion material outputs light of a wavelength that helps skin regeneration.
  • the self-luminous type photoconversion material 10 for phototherapy with the sapphire-based blue phosphor material and the light conversion material, effects such as pain relief, sterilization, prevention of wound infection, and vitamin D generation are achieved. While outputting a wavelength in the blue region of 400 nm to 500 nm, it is possible to additionally output near ultraviolet rays effective for atopy, or output near infrared rays with a wavelength of 780 nm to 2.5 ⁇ m effective for skin regeneration.
  • the mixed solution generation step (S30) is prepared through the mixture generation step (S10) to the mixture surface treatment step (S13).
  • a mixed solution is prepared in which the sapphire-based blue phosphorescent material is mixed with the light conversion material in the form of a slurry prepared through the step (S20) to the pulverization and surface treatment step (S21) of the light conversion raw material mixture.
  • the light is transferred to the blue excitation light core 12 made of the sapphire-based blue phosphor material by heat-treating the mixed solution generated in the mixed solution generation step S30 through the light conversion shell forming step S40.
  • the light conversion shell 14 made of a conversion material is formed.
  • the stabilizing step (S42) preferably further includes a washing step of washing using ethanol or ultra-pure water.
  • FIG. 3 is an SEM photograph before and after the surface treatment step of the sapphire-based blue phosphor material included in the self-luminescence type photoconversion material for phototherapy according to the present invention
  • FIG. 4 is the self-luminescence type light conversion material for phototherapy according to the present invention. It is a view showing the emission spectrum and emission time spectrum of the sapphire-based blue phosphor material included in the .
  • the surface defect treatment of the sapphire-based blue light-emitting phosphor material is performed. do.
  • the sapphire-based blue phosphor material absorbs ambient light by controlling the particle size of 15 to 20 ⁇ m with a physical force and surface defect treatment to absorb ambient light, as shown in FIG. 4(a) As shown in , it can be seen that the wavelength of 400 to 550 nm is emitted and output for 30 minutes or longer.
  • FIG. 5 is a SEM photograph of a light conversion shell included in the self-luminescence type light conversion material for phototherapy according to the present invention
  • FIG. 6 is a photograph of the self-luminescence type light conversion material for phototherapy according to the present invention
  • FIG. 7 is It is a self-luminescence comparison photo according to the formation state of the light conversion shell included in the self-luminescence type light conversion material for phototherapy according to the present invention.
  • a mixed solution is generated by mixing the sapphire-based blue phosphor material shown in FIG. 4 and the light conversion material shown in FIG. 5 through the mixed solution generating step (S30), and the light conversion shell In the forming step ( S40 ), the light conversion shell 14 made of the light conversion material is formed on the blue excitation light core 12 made of the sapphire-based blue phosphor material.
  • the photoconversion shell 14 formed on the outside of the blue excitation optical core 12 is formed differently depending on temperature and time, and the higher the temperature and the longer the heating time, the more As shown in (a) of 6, the photoconversion shell is formed while completely surrounding the blue excitation light core, and when heating is performed at a relatively low temperature to a short time, incomplete as shown in (b) of FIG. A light conversion shell is formed.
  • the self-luminous type photoconversion material for phototherapy formed by mixing the sapphire-based blue phosphor material (B) and the red conversion material (R) in a ratio of 1:1 to 1:3 ( Looking at the self-luminescence comparison photo of 10), it can be seen that when the incomplete photoconversion shell is formed, the blue light emission is converted inefficiently in the light conversion. It can be seen that the efficiency of
  • the self-emission wavelengths are different from each other, and the self-emission type photoconversion material 10 for phototherapy is the
  • the efficiency is high, whereas when the light conversion shell 14 is incompletely formed, the light conversion material is used as the blue excitation light core. The conversion efficiency is lowered because of the sparse attachment.
  • the light conversion shell 14 is incompletely formed as shown in FIG. 6(b) for the phototherapy. It is preferable to use the self-luminous type light conversion material 10 .
  • FIG. 8 is a comparison photograph of self-luminescence according to the content ratio of the sapphire-based blue phosphor material and the light conversion material included in the self-luminous type light conversion material for phototherapy according to the present invention
  • FIG. 9 is a phototherapy for phototherapy according to the present invention. It is a self-luminescence comparison photo according to the content ratio of the red/green/blue conversion material of the self-luminescence type photoconversion material.
  • the luminous color of the light conversion material constituting the light conversion cell is changed close to that of the light conversion material constituting the light conversion cell by increasing the content ratio of the light conversion material constituting the light conversion cell to the sapphire-based blue phosphor material, and in FIG. As shown, various luminescent colors can be realized by controlling the content ratio while using the light conversion material constituting the light conversion shell in combination.
  • the self-luminous type photoconversion material for phototherapy according to the present invention can be applied as a light emitting means of various products that want to add a phototherapy effect without electric energy. It can also be applied as a light emitting means such as.
  • FIGS. 10 to 12 describe a functional patch including a self-luminous type photoconversion material for phototherapy.
  • FIG. 10 is a view illustrating an example and form of a functional patch including a self-luminous type photoconversion material for phototherapy according to the present invention
  • FIG. 11 includes a self-luminous type photoconversion material for phototherapy according to the present invention. It is a diagram for explaining the conceptual features of a functional patch.
  • the functional patch 100 including the self-luminous type photoconversion material for phototherapy of the present invention is a patch body 101 that is basically the same material as a conventional patch.
  • the light emitting means 110 made of the self-luminous type photoconversion material 10 for phototherapy is formed on the back surface by a printing method, and the general patch and the method of use are the same.
  • the patch body 101 may be formed in various shapes and sizes such as square, rectangular, circular, oval, etc. so that it can be attached to various parts of the body and used, and is made of a fiber material, and has a thickness of several mm and has a thickness of several mm. By making it elastic, it can be easily attached to curved parts of the skin.
  • the patch body 101 may be made of a fiber material, and in particular, it is preferably formed of a sheet of a printable fiber material such as a printable cotton sheet, a non-woven fabric sheet, and a cellulose sheet. , More preferably, it may be made of Tencel fabric.
  • TENCEL fabric is a functional natural material developed by Lenzing, an Austrian textile company, and is an eco-friendly material made from eucalyptus tree extract. Therefore, it is effective for sensitive skin.
  • the patch body 101 may be made of a hydrogel, which is a material having a three-dimensional hydrophilic polymer network structure using purified water as a dispersion medium in order to improve adhesion with the skin and moisturizing ability.
  • the hydrogel constituting the patch body 101 may be formed by including various viscoelastic polymers known in the art, such as aluronic acid, agarose, alginate, chitosan, gelatin or collagen.
  • the patch body 101 is not limited to the above-mentioned embodiments and may be embodied in other forms.
  • an adhesive material is applied to the rear surface of the patch body 101, that is, the inner surface of the patch body 10 in direct contact with the skin, so that it can be easily attached to the body.
  • the patch body 101 is formed relatively wider than the patch body 101 and one side is coated with an adhesive material so that it is attached to the body while covering the patch body 101 attached to the user's body to determine the attachment state of the patch body 101 .
  • It may further include an adhesive cloth 102 for holding, and the adhesive cloth 102 may be a conventional adhesive cloth used to maintain the attachment state of the patch and prevent contamination from the outside, and the patch. It may be formed of the same material as the body 101 .
  • the functional patch 100 including the self-luminous type photoconversion material for phototherapy of the present invention when used for a predetermined treatment purpose, it may include various pharmaceutical components according to the treatment purpose.
  • FIG. 12 is a view for explaining the light emitting means included in the functional patch including the self-luminous type light conversion material for phototherapy of the present invention.
  • the light emitting means 110 is printed and formed on the rear surface of the patch body 101 , and is printed and formed in a patterned form designed over the entire rear surface of the patch body 101 .
  • it may be printed on the entire rear surface of the patch body 101, and may be printed over the entire rear surface of the patch body 101 in one direction in a stripe pattern, or may be printed and formed in a grid pattern.
  • the light emitting means 110 When the light emitting means 110 is printed and formed in the form of a stripe pattern or a grid pattern, compared to the case where the light emitting means 110 is printed over the entire back surface, the amount of light required to form the light emitting means 110 is reduced and sufficient light is applied to the entire face. It can provide a therapeutic effect.
  • the interval between the lines or the grid is made with an interval of 2 mm to 5 mm. desirable.
  • the light emitting means 110 is not limited to the form illustrated in FIG. 12 , and may be printed in various forms as necessary, and is not limited to any specific pattern or pattern.
  • FIGS. 13 to 16 describe a functional patch comprising a self-luminous type photoconversion material for phototherapy.
  • FIG. 13 is a schematic view of a functional mask pack including a self-luminous type photoconversion material for phototherapy according to the present invention
  • FIG. It is a view for explaining the conceptual features of the mask pack
  • FIG. 15 is a view showing another embodiment of the mask sheet shown in FIGS. 13 and 14 .
  • the functional mask pack 200 including the self-luminous type photoconversion material for phototherapy of the present invention is a mask sheet 201 in the form of a sheet impregnated with a lotion like a normal mask pack.
  • the light emitting means 210 made of the self-luminous type light conversion material for phototherapy is formed by a printing method, and the method of use is the same as that of a general sheet-type mask pack.
  • the mask sheet 201 is in close contact with the user's face and is formed in a shape corresponding thereto so as to cover the entire or part of the user's face.
  • the mask sheet 201 may be made of a fiber material as an embodiment, and in particular, it is preferably formed of a sheet of a printable fiber material such as a printable cotton sheet, a non-woven fabric sheet, and a cellulose sheet, and more Preferably, it may be made of Tencel fabric.
  • TENCEL fabric is a functional natural material developed by Lenzing, an Austrian textile company, and is an eco-friendly material made from eucalyptus tree extract. Therefore, it is effective for sensitive skin.
  • the mask sheet 201 may be made of a hydrogel, which is a material having a three-dimensional hydrophilic polymer network structure using purified water as a dispersion medium in order to improve adhesion with the skin and moisturizing ability.
  • the hydrogel constituting the mask sheet 201 may include various viscoelastic polymers known in the art, such as aluronic acid, agarose, alginate, chitosan, gelatin, or collagen.
  • the mask sheet 201 is not limited to the above-mentioned embodiments and may be embodied in other forms.
  • the lotion impregnated in the mask sheet 201 may be a material of various natural or chemical components useful for skin, such as whitening, whitening, nutrition, and wrinkle improvement, depending on the component, and not limited
  • the mask sheet 201 may further include an extension portion 202 having a length and width to be connected to a portion covering the forehead portion of the face and to cover the head portion.
  • the extension 202 has a length and width that can cover the head, so that the functional mask pack 200 containing the self-luminous type photoconversion material for phototherapy of the present invention can be applied to the user's face as well as the scalp of the head. In addition to this, it is possible to exert a phototherapy function on the hair.
  • 16 is a view for explaining the light emitting means included in the functional mask pack including the self-luminous type light conversion material for phototherapy of the present invention.
  • the light emitting means 210 is printed and formed on the back surface of the mask sheet 201 , and is printed in a patterned form designed over the entire rear surface of the mask sheet 201 to be formed.
  • the mask sheet 201 may be printed on the entire rear surface, and may be printed on the entire rear surface of the mask sheet 201 in one direction in a striped pattern or printed in a grid pattern.
  • the amount of light required to form the light emitting means 210 is reduced while sufficient light is applied to the entire face. It can provide a therapeutic effect.
  • the interval between the lines or the grid is preferably 5 mm to 10 mm.
  • the light emitting means 210 is the back of the mask sheet 201 corresponding to a specific part, such as around the eyes, around the lips, on the forehead, etc.
  • the area is printed in a relatively large area compared to other areas such as cheeks and chin, so that a relatively large amount of light is supplied to the skin.
  • the light emitting means 210 is not limited to the illustrated form, and may be formed in various forms as necessary. It can be printed in a pattern or pattern, and is not limited to any specific pattern or pattern.
  • the self-luminescence type light conversion material for phototherapy prepared through the method for producing a self-luminescence type light conversion material for phototherapy of the present invention was prepared by mixing the sapphire-based blue light-emitting phosphor material at a weight ratio of 1: yellow conversion material 3 ratio.
  • the optical characteristics are blue 480 nm excitation emission peak and yellow 565 nm.
  • the light conversion peak was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, 2.41 ⁇ m based on D50 of the Y 3 Al 5 O 12 :Ce 3+ yellow conversion material, and the particles of the final self-luminous type light conversion material for phototherapy.
  • the size was found to be 25.3 ⁇ m based on D50.
  • the self-luminescence-type photoconversion material for phototherapy prepared through the method for producing a self-luminescence-type photoconversion material for phototherapy of the present invention was prepared by mixing the sapphire-based blue light-emitting phosphor material at a weight ratio of 1: green conversion material 3 ratio.
  • the optical characteristics are blue 480 nm excitation emission peak and yellow 540 nm.
  • the light conversion peak was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, and 4.12 ⁇ m based on D50 of the Lu 3 Al 5 O 12 :Ce 3+ green conversion material, and the particles of the self-luminous type light conversion material for final phototherapy.
  • the size was found to be 21.3 ⁇ m based on D50.
  • the self-luminescence type light conversion material for phototherapy prepared through the method for producing a self-luminescence type light conversion material for phototherapy of the present invention was prepared by mixing the weight ratio sapphire-based blue light-emitting phosphor material 1: green/yellow conversion material 3 ratio. .
  • the particle size of the final self-luminous type photoconversion material for phototherapy was 21.1, 2.22, and 20.8 ⁇ m based on D50.
  • the self-luminescence-type photoconversion material for phototherapy prepared through the method for producing a self-luminescence-type photoconversion material for phototherapy of the present invention was prepared by mixing the weight ratio of the sapphire-based blue light-emitting phosphor material: the yellow conversion material 3 ratio.
  • the optical characteristics are blue 480 nm excitation emission peak and yellow 545 nm.
  • the light conversion peak was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, 5.82 ⁇ m based on D50 of the La 3 Si 5 N 11 :Ce 3+ yellow conversion material, and the particles of the self-luminous type light conversion material for final phototherapy.
  • the size was found to be 25.8 ⁇ m based on D50.
  • the self-luminescence type light conversion material for phototherapy prepared through the method for producing a self-luminescence type light conversion material for phototherapy of the present invention was prepared by mixing the weight ratio sapphire-based blue light-emitting phosphor material 1: green/yellow conversion material 3 ratio. .
  • the optical characteristics are a blue 480 nm excitation emission peak and a green 530 nm, A light conversion peak with yellow 590 nm was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, and 4.12 ⁇ m based on D50 of the ⁇ -SiAlON and ⁇ -SiAlON green/yellow conversion materials, and the particle size of the final self-luminous type photoconversion material for phototherapy. was 28.1 ⁇ m based on D50.
  • the self-luminescence-type photoconversion material for phototherapy prepared through the method for producing a self-luminescence-type photoconversion material for phototherapy of the present invention was prepared by mixing the weight ratio of the sapphire-based blue light-emitting phosphor material: the red conversion material at a ratio of 4.
  • the optical characteristics are a blue 480 nm excitation emission peak and a red 620 nm, The light conversion peak at 650 nm was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, CaAlSiN 3 :Eu 3+ / Sr 2 Si 5 N 8 :Eu 2+ 6.3 ⁇ m based on the D50 of the red conversion material, and the final phototherapy
  • the particle size of the light-emitting type light conversion material was found to be 28.5 ⁇ m based on D50.
  • the self-luminescence type light conversion material for phototherapy prepared through the method for producing a self-luminescence type light conversion material for phototherapy of the present invention was prepared by mixing the weight ratio of the sapphire-based blue light-emitting phosphor material: the red conversion material at a ratio of 5.
  • the optical characteristics are blue 480 nm excitation emission peak and red 630 nm.
  • the light conversion peak was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50
  • the particle size of the K 2 SiF 6 :Mn 4+ red conversion material is 3.2 ⁇ m based on D50
  • the particle size of the final light-emitting type light conversion material for phototherapy is It was found to be 21.2 ⁇ m based on D50.
  • the self-luminescence-type photoconversion material for phototherapy prepared through the method for producing a self-luminescence-type photoconversion material for phototherapy of the present invention was prepared by mixing the weight ratio of the sapphire-based blue light-emitting phosphor material: the red conversion material at a ratio of 4.
  • the optical characteristics are blue 480 nm excitation emission peak and red 850 nm.
  • the light conversion peak was confirmed in the light spectrum.
  • the particle size of the sapphire-based blue phosphor material is 20.4 ⁇ m based on D50, 1.2 ⁇ m based on D50 of the Zn 3 Ga 2 Ge 2 O 12 near-infrared conversion material, and the particle size of the final self-luminous type light conversion material for phototherapy is It was found to be 20.9 ⁇ m based on D50.
  • the self-luminous type light conversion material for phototherapy prepared in Preparation Example 3 was coated on one surface of a TENCEL fabric by a printing method to prepare a sample in which a light emitting means was formed.
  • the TENCEL fabric in which the light emitting means is not formed, was set as the control group (b), and a general white LED light (renton) was used to achieve the same conditions as the experimental group (a). Then, the microorganism culture was applied to confirm the change of the microorganism.
  • control group (b) showed no significant change at the value of 13,000, whereas the test group (a) continued to decrease from the value of 13,000 to 24 hours and decreased to 55%.
  • the number of the control group (b) made of only TENCEL fabric was maintained on average and it was confirmed that there was no sterilization power, and the light emitting means made of the self-luminous type light conversion material for phototherapy was formed in the experimental group (a).
  • the sterilization efficiency was about 16%, 27%, 29%, 33.9%, and 55%, respectively.
  • the sample prepared in Example 1 was processed in the form of a patch and applied to the same body part for 30 minutes a day for 4 weeks, and then the skin density Changes and changes in skin pigmentation were confirmed.
  • Example 1 As shown in the skin density test result graph of Example 1, in which the light emitting means made of the self-luminous type photoconversion material for phototherapy according to the present invention of FIG. 26 is formed, the self-luminous type photoconversion material for phototherapy is used. As a result of using Example 1, in which the light emitting means was formed, for 4 weeks, it was confirmed that the skin density through red and infrared rays increased by 15%, thereby having a great effect on skin regeneration.
  • Example 1 in which the light emitting means made of the self-luminous type photoconversion material for phototherapy according to the present invention of FIG. 27 is formed, the self-luminescence type photoconversion material for phototherapy As a result of using Example 1 in which the light emitting means formed of

Abstract

본 발명은 특정한 파장을 출력하는 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩에 관한 것으로, 보다 상세하게는 광테라피 기능을 수행하기 위하여 태양광 및 주변광을 흡수하여 발광하는 형태의 원리로 자발광에 가까운 타입으로 친환경적 에너지원이며 상대적으로 긴 발광시간을 갖는 코어에 사파이어계 청색 축광 형광체 물질을 여기광으로 사용하고, 쉘 부분에서 파장을 선택하여 여기광을 흡수하여 발광할 수 있도록 하는 복합 구조로 설계된 물질로서 광테라피 기능을 효율적으로 발현하기 위해 파장을 선택할 수 있는 구조를 갖는 광변환 물질과 이를 포함하여 광테라피 기능을 갖는 기능성 패치 및 기능성 마스크팩에 관한 것이다.

Description

광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩
본 발명은 특정한 파장을 출력하는 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩에 관한 것으로, 보다 상세하게는 광테라피 기능을 수행하기 위하여 태양광 및 주변광을 흡수하여 발광하는 형태의 원리로 자발광에 가까운 타입으로 친환경적 에너지원이며 상대적으로 긴 발광시간을 갖는 코어에 사파이어계 청색 축광 형광체 물질을 여기광으로 사용하고, 쉘 부분에서 파장을 선택하여 여기광을 흡수하여 발광할 수 있도록 하는 복합 구조로 설계된 물질로서 광테라피 기능을 효율적으로 발현하기 위해 파장을 선택할 수 있는 구조를 갖는 광변환 물질과 이를 포함하여 광테라피 기능을 갖는 기능성 패치 및 기능성 마스크팩에 관한 것이다.
광테라피(Light Therapy)는 가시광선 영역의 파장 혹은 근적외선 영역의 파장을 출력하는 다양한 인공 광원(레이저, 형광등, UV Lamp 등)을 이용하여 특정 파장 대의 광을 인체에 조사함으로써 광에너지를 피부의 피하층까지 침투시켜 세포 내에서의 생화학적 반응을 촉진시키는 원리를 이용하는 것으로, 혈액순환을 도와주어 피부의 온도를 높여 혈관을 확대시키고 신진대사를 원활하게 하여 피부세포의 재생을 돕고 면역성을 강화하여 통증 및 염증 완화에 효과적이므로 피부 질환을 치료하거나 피부 상태를 개선하는 방법으로 각광받고 있으며, 근육의 피로를 덜어주는 역할도 한다.
광테라피는 광원에서 출력되는 소정 파장 중에서 피부에 긍적적인 효과를 발휘하는 400nm 내지 1,300nm의 파장을 선택적으로 사용함으로써 피부질환을 개선하거나 치료하는 방법으로 그 사용범위가 넓어지고 있다.
광테라피에 따른 색 파장별 검증된 피부개선 효과를 보면, 400nm 내지 420nm 파장은 세포 증가 및 리제너레이션 세포 재생에 효과적이고, 440nm 내지 500nm 파장은 여드름균 제거, 여드름 염증 감소 및 피지선 조절에 효과적이고, 500nm 내지 520nm 파장은 자극받은 피부를 진정시키고 모세혈관의 확장 감소에 효과적이며, 520nm 내지 562nm 파장은 복합적인 피부문제와 다크 스팟 관리에 도움을 주며, 565nm 내지 590nm 파장은 염증으로 인한 붉음증과 선번 케어에 효과적이고, 590nm 내지 620nm 파장은 피부활력, 피부 개선 및 광채 부여의 효과가 있고, 620nm 내지 700 nm 파장은 콜라겐 생성촉진을 통한 주름 개선 및 피부 재생 효과가 있으며, 750nm 내지 1000nm 파장은 피부 깊은 층까지 침부하여 치료 효과를 증폭시키는 효과를 발휘한다.
이처럼, 광테라피는 광 에너지가 세포 내에서 생리화학상의 치료 목적을 위해 화학적, 운동역학적 또는 열에너지로 변화되는 원리를 기반으로 함으로써 세포 내의 원소 또는 분자에 의해 빛이 흡수되는 것이 중요하고 특정 파장의 빛이 세포 내에 있는 특정 색소포(chromophore)에 효율적으로 흡수되는 것이 중요하다.
예를 들면, 레드 계열의 파장은 피부의 깊은 층에 있는 피지선의 활성화에 이용되고, 블루 계열의 파장은 PDT(Photodynamic Therapy)방법을 이용해 표피에 있는 각질을 활성화하여 피부의 표면 상태를 조절하는데 이용될 수 있다.
한편, 광테라피를 위해 소정의 빛을 출력하는 광원으로 대부분 엘이디 발광소자가 이용되고 있다.
엘이디 발광소자를 광원으로 이용하는 종래기술의 일 예로 패치 형태의 광테라피 제품인 '패치형 피부 치료장치(한국등록특허 제10-1829984호)'가 개시된 바 있고, 상기 종래기술은 전원이 공급되면 일정 파장 범위의 빛을 상기 피부에 조사하는 다수의 LED 칩을 구비하며, 상기 형상의 가변에 따라 상기 LED 칩을 연결하는 회로 패턴이 유연하게 변경되도록 지그재그 패턴을 형성한 LED패치부를 포함한다.
또 다른 종래기술로 '피부미용 광 마스크 장치(한국등록특허 제10-1074882호)'가 개시된 바 있고, 안면 마스크 내에 장착되어 안면 마스크를 착용한 사용자의 안면에 광을 출사할 수 있도록 된 발광부와, 발광부를 온/오프 구동하는 발광구동부와, 발광부의 구동을 선택하는 조작부와, 조작부의 조작신호에 따라 발광구동부를 제어하는 제어부를 구비한다.
위와 같이 엘이디 발광소자를 이용하여 광테라피 효과를 발휘하는 장치들은 엘이디 발광소자를 구동하기 위한 전기회로를 비롯하여 전원공급 수단 등이 필수적으로 요구됨으로 인해 적용 가능한 제품에 한계가 있고, 생산 비용도 상당히 높은 문제점이 있다.
또한, 사용이 불편하고 휴대성이 떨어지며, 충전 대기로 인한 불편함과 인체에 사용되는 장치로써 전자파가 노출되는 위험을 감수 하여야만 하는 문제점이 있다.
한편, 주변광을 흡수하여 축광의 원리로서 이용되는 종래의 자발광성 축광 형광체의 경우, 청색의 발광 영역이 높은 에너지 대역이기 때문에 그 발광시간이 짧아 만족스럽지 못하고 그 내구성이 취약한 단점이 있다.
따라서, 광테라피를 위한 광원으로서 엘이디 발광소자를 대체할 수 있는 수단이 요구되고 있다
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 광테라피를 위한 광원으로서 엘이디 발광 소자를 대체하되, 인위적인 전기에너지원 없이 친환경 에너지원으로서 주변광을 에너지원으로 하여 자체적으로 구동하는 자발광 원리로, 필요한 파장을 장시간 출력함으로써 다양한 제품에 용이하게 광테라피 효과를 부가할 수 있는 광테라피용 자발광 타입 광변환 물질을 제공할 수 있다.
본 발명의 다른 목적은 신체의 다양한 부위에 부착가능하며, 광테라피용 자발광 타입 광변환 물질을 포함하여 전기에너지로 작동하는 LED, 백열등 및 기타 광원 장치 없이 주변의 광을 이용하여 광테라피 기능을 발휘함으로써 광테라피 효과 내지 약제의 치료 효과를 극대화하는 기능성 패치를 제공할 수 있다.
본 발명의 또 다른 목적은 안면에 부착가능한 시트 형태로 형성되며, 광테라피용 자발광 타입 광변환 물질을 포함하여 전기에너지로 작동하는 LED, 백열등 및 기타 광원 장치 없이 주변의 광을 이용하여 광테라피 기능을 발휘함으로써 마스크팩의 효과를 상대적으로 극대화시키는 기능성 마스크팩을 제공할 수 있다.
본 발명은 상기의 목적을 달성하기 위해서, 화학식 Ma·Al2O3의 상기 M은 Ba, Sr, Ca, Mg, Eu 또는 Dy 1종 이상의 금속으로 하여 상기 화학식 당량비에 맞춘 무기 산화물로 이루어진 원료를 혼합하여 생성된 혼합물을 소성 및 분쇄를 통해 표면 결함 처리함으로써 발광시간을 지연시켜 광테라피에 기능에 따른 소정의 파장을 출력하도록 형성되는 사파이어계 청색 축광 형광체 물질로 이루어진 청색 여기광 코어; 및 녹색 변환 물질, 황색 변환 물질, 적색 변환 물질 및 근적외선 변환 물질에 속하는 물질 중 어느 하나 이상을 혼합한 광변환 원료와 알코올과 질화규소볼을 1:3:2 비율로 혼합하여 생성된 광변환 원료 혼합물로 형성되며, 상기 청색 여기광 코어를 감싸는 광변환 쉘;을 포함하는 광테라피용 자발광 타입 광변환 물질을 제공할 수 있다.
이때, 상기 청색 여기광 코어는, 상기 화학식에 따른 범위가 0≤a<1 인 것을 특징으로 한다.
또한, 상기 무기 산화물 원료는, 사파이어인 알루미네이트에 해당하는 Al2O3를 모체로 유로퓸(Europium) 내지 디스프로슘(Dysprosium)을 첨가하거나, 칼슘(Calcium) 내지 스트론튬 (Strontium) 내지 바륨(Barium) 내지 마그네슘(Magnesium)을 첨가하여 이루어지는 사파이어계 청색 축광 형광체 물질인 것을 특징으로 한다.
이와 더불어, 상기 녹색 변환 물질과 황색 변환 물질은, YAG(Y3Al5O12:Ce), LuAG (Lu3Al5O12:Ce), M=(Ca,Sr,Ba), M2SiO4:Eu, M3SiO5:Eu, MSi2O2N2:Eu, α-SiAlON, β-SiAlON 중 어느 하나인 것을 특징으로 한다.
게다가, 상기 적색 변환 물질은, M=(Ca,Sr,Ba), MAlSiN3:Eu, M2Si5N8, K2SiF6:Mn 중 어느 하나인 것을 특징으로 한다.
아울러, 상기 근적외선 변환 물질은, 아연(Zinc) 및 갈륨(Gallium) 및 스칸듐(Scandium) 산화물과 망간(Manganese) 또는 크롬(Chromium) 또는 네오디윰(Neodium)을 전이 원소로 포함한 것을 특징으로 한다.
한편, 본 발명은 상기의 목적을 달성하기 위해서, 배면에 접착성 물질이 도포되어 있어 사용자의 신체다양한 부위에 부착되며, 다양한 크기와 형상으로 이루어지는 패치 본체; 및 제1항 내지 제6항 중 어느 한 항에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지며, 상기 패치 본체의 안쪽면인 사용자의 신체와 접하는 배면에는 인쇄방식으로 형성되는 발광수단;을 포함하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치를 제공할 수 있다.
이때, 상기 패치 본체와 동일한 소재로 형성되며, 상기 패치 본체보다 상대적으로 넓게 형성되고, 일측은 접착성물질이 도포되어 있어 사용자의 신체에 부착된 패치 본체를 덮으면서 신체에 부착되어 패치 본체의 부착 상태를 유지하는 접착포를 더 포함하는 것을 특징으로 한다.
또한, 상기 발광수단은, 상기 패치 본체의 배면 전체에 걸쳐 격자 무늬로 인쇄되어 이루어지는 것을 특징으로 한다.
게다가, 상기 격자 무늬는 2 mm 내지 5 mm 사이의 간격으로 이루어지는 것을 특징으로 한다.
아울러, 상기 패치 본체는, 약제 성분을 포함하는 것을 특징으로 한다.
한편, 본 발명은 상기의 목적을 달성하기 위해서, 화장수이 함침되며, 사용자의 안면에 부착되는 마스크 시트; 및 제1항 내지 제6항 중 어느 한 항에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지며, 상기 마스크 시트의 내측면인 사용자의 안면과 접하는 배면에 인쇄방식으로 형성되는 발광수단;을 포함하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩을 제공할 수 있다.
이때, 상기 발광수단은, 마스크 시트의 배면 전체에 걸쳐 디자인된 패턴화 형태로 인쇄되어 이루어지는 것을 특징으로 한다.
바람직하게는, 상기 발광수단은, 마스크 시트의 배면 전체에 걸쳐 격자 무늬 형태로 인쇄되어 이루어지는 것을 특징으로 한다.
게다가, 상기 격자 무늬는, 10mm 내지 5mm 사이의 간격으로 이루어지는 것을 특징으로 한다.
아울러, 상기 마스크 시트는, 안면의 이마 부분을 덮는 부위에 연결되어 머리부위를 덮는 길이와 넓이를 갖는 연장부를 더 포함하는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
본 발명은 위와 같은 과제의 해결 수단을 통하여, 본 발명에 따른 광테라피용 자발광 타입 광변환 물질은 광테라피를 위한 광원으로서 엘이디 발광 소자를 대체할 수 있는 효과가 있고, 전기에너지원 없이 주변광을 에너지원으로 하여 자체적으로 구동하는 자발광 원리로, 필요한 파장을 장시간 출력함으로써 다양한 광테라피에 적용할 수 있는 효과가 있다.
또한, 본 발명에 따른 기능성 패치는 신체의 다양한 부위에 부착가능하며, 광테라피용 자발광 타입 광변환 물질을 포함함으로써 주변의 빛을 이용하여 광테라피 효과가 있는 파장으로 변환시켜 출력하여 통증완화, 살균, 상처감염방지 및 비타민D 생성 등과 같은 다양한 광테라피를 편리하게 받을 수 있는 효과가 있고, 부가된 약제에 따라 약제의 치료 효과를 극대화하는 효과가 있다.
또한, 본 발명에 따른 기능성 마스크팩은 안면에 부착가능한 시트 형태로 형성되며, 광테라피용 자발광 타입 광변환 물질을 포함함으로써 전기에너지로 작동하는 LED, 백열등 및 기타 광원 장치 없이 주변광을 이용하여 광테라피 기능을 발휘하고, 이를 통해 마스크팩의 효과를 상대적으로 극대화시키는 효과가 있다.
도 1은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 개념적으로 설명하기 위한 도면.
도 2는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법을 보인 순서도.
도 3은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질의 표면처리 단계 전후 SEM 사진.
도 4는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질의 발광 스펙트럼과 발광시간 스펙트럼을 보인 도면.
도 5는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 광변환 쉘의 SEM 사진.
도 6은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 사진.
도 7은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 광변환 쉘의 형성 상태에 따른 자발광 비교 사진.
도 8은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질과 광변환 물질의 함량비에 따른 자발광 비교 사진.
도 9는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 적색/녹색/청색 변환 물질 함량비에 따른 자발광 비교 사진.
도 10은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치의 사용 예와 형태를 예시한 도면.
도 11는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치의 개념적 특징을 설명하기 위한 도면.
도 12는 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치에 포함된 발광수단을 설명하기 위한 도면.
도 13은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩의 개략적으로 도시한 도면.
도 14는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩의 개념적 특징을 설명하기 위한 도면.
도 15는 도 13 및 도 14에 도시된 마스크 시트의 다른 실시예를 도시한 도면.
도 16은 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩에 포함된 발광수단을 설명하기 위한 도면.
도 17은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 1의 광스펙트럼.
도 18은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 2의 광스펙트럼.
도 19는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 3의 광스펙트럼.
도 20은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 4의 광스펙트럼.
도 21은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 5의 광스펙트럼.
도 22는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 6의 광스펙트럼.
도 23은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 7의 광스펙트럼.
도 24는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 8의 광스펙트럼.
도 25는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 살균력 비교 테스트 도면.
도 26은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 피부 치밀도 실험 결과 그래프.
도 27은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 색소침착 실험 결과 그래프.
<부호의 설명>
10 : 광테라피용 자발광 타입 광변환 물질
12 : 청색 여기광 코어
14 : 광변환 쉘
100 : 기능성 패치
101 : 패치 몸체
110 : 발광수단
200 : 기능성 마스크팩
201 : 마스크 시트
210 : 발광수단
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 제조예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 제조예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 제조예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 제조예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 발명에 따른 광테라피용 자발광 타입 광변환 물질(10)은 다양한 제품에 적용되어 전기에너지 없이 광테라피 효과를 부가할 수 있는 것으로, 이하, 첨부된 도 1 내지 도 9를 참조하여 본 발명에 따른 광테라피용 자발광 타입 광변환 물질 및 제조 방법을 상세히 설명하기로 한다.
도 1은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 개념적으로 설명하기 위한 도면이다.
도 1에 도시된 바와 같이, 상기 광테라피용 자발광 타입 광변환 물질(10)은 중심에 위치하는 청색 여기광 코어(12)와 상기 청색 여기광 코어(12)를 감싸는 광변환 쉘(14)로 이루어진 복합구조를 갖는다.
이때, 상기 청색 여기광 코어(12)는 사파이어계 청색 축광 형광체 물질로 이루어지며, 상기 광변환 쉘(14)은 광변환 물질로 이루어져 상기 광테라피용 자발광 타입 광변환 물질(10)은 상대적으로 긴 발광시간을 갖고 태양광 및 주변광을 흡수하여 여기광을 출력하는 상기 청색 여기광 코어(12)를 감싸는 상기 광변환 쉘(14) 부분에서 상기 여기광을 흡수하여 선택된 파장으로 광변환하여 발광하는 것을 기술적 특징으로 한다.
즉, 상기 광테라피용 자발광 타입 광변환 물질(10)은 상기 청색 여기광 코어(12)에서 출력되는 여기광을 광변환 쉘(14)에서 흡수하여 광테라피를 위한 소정의 파장으로 변환시켜 광테라피 효과를 갖는 파장의 빛으로 출력하여 자발광하는 형광체 물질인 것이다.
도 2는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법을 보인 순서도이다.
도 2에 도시한 바와 같이, 상기 청색 여기광 코어(12)와 상기 청색 여기광 코어(12)를 감싸는 상기 광변환 쉘(14)로 이루어진 광테라피용 자발광 타입 광변환 물질(10)을 제조하는 방법에 있어서, 상기 청색 여기광 코어(12)를 이루는 상기 사파이어계 청색 축광 형광체 물질은 크게 혼합물 생성 단계(S10), 혼합물 열처리 단계(S11), 혼합물 자연 냉각 단계(S12) 및 혼합물 표면처리 단계(S13)를 통하여 제조되고, 상기 광변환 쉘(14)을 이루는 상기 광변환 물질은 광변환 원료 혼합물 생성 단계(S20)와 분쇄 및 표면처리 단계(S21)를 포함하여 슬러리 형태로 제조하며, 이렇게 제조된 상기 사파이어계 청색 축광 형광체 물질과 슬러리 형태의 상기 광변환 물질을 이용한 혼합 용액 생성 단계(S30) 및 광변환 쉘 형성 단계(S40)를 통해 상기 광테라피용 자발광 타입 광변환 물질(10)을 제조한다.
구체적으로는, 상기 광테라피용 자발광 타입 광변환 물질(10)의 상기 청색 여기광 코어(12)를 이루는 상기 사파이어계 청색 축광 형광체 물질을 제조하기 위하여, 상기 혼합물 생성 단계(S10)는 화학식 Ma·Al2O3의 상기 M은 Ba, Sr, Ca, Mg, Eu 또는 Dy 1종 이상의 금속으로 하여 상기 화학식 당량비에 맞춘 무기 산화물로 이루어진 원료를 혼합하여 혼합물을 생성한다.
이때, 상기 혼합물 생성 단계(S10)의 상기 화학식에 따른 범위는 0≤a<1 인 것이 바람직하고, 상기 무기 산화물 원료는 사파이어인 알루미네이트에 해당하는 Al2O3를 모체로 유로퓸(Europium) 내지 디스프로슘(Dysprosium)을 첨가하거나, 칼슘(Calcium) 내지 스트론튬(Strontium) 내지 바륨(Barium) 내지 마그네슘(Magnesium)을 첨가하여 이루어질 수 있다.
상기 혼합물 열처리 단계(S11)는 상기 혼합물 생성 단계(S10)에서 생성된 혼합물을 가열하여 열처리한다.
이때, 상기 혼합물 열처리 단계(S11)는 1,000℃ 내지 1,500℃에서 2시간 내지 12시간 동안 가열하여 이루어지고, 이와 같은 혼합물 열처리는 환원분위기에서 이루어질 수 있다.
상기 혼합물 자연 냉각 단계(S12)는 상기 혼합물 열처리 단계(S11)를 통해 열처리된 혼합물을 상온에서 서서히 자연 냉각시킨다.
상기 혼합물 표면처리 단계(S13)는 상기 혼합물 자연 냉각 단계(S12)를 거쳐 자연 냉각된 혼합물과 알코올과 질화 규소볼을 2:1:2 비율로 혼합하고, 이렇게 혼합된 것을 1,000rpm 내지 5,000rpm으로 1시간 내지 5시간 교반하여 물리적인 힘으로 상기 혼합물을 분쇄하여 표면 결함 처리를 한다.
상기 혼합물 표면처리 단계(S13)는 상기 광테라피용 자발광 타입 광변환 물질(10)이 보다 긴 장잔광의 특성을 갖도록 하기 위하여 수행되는 것으로, 이때, 분쇄된 상기 혼합물의 입자 크기가 15㎛ 내지 20㎛로 형성되도록 제어하는 것이 바람직하다.
한편, 상기 광변환 쉘(14)을 이루는 광변환 물질을 제조하기 위하여, 우선, 상기 광변환 원료 혼합물 생성 단계(S20)는 표 1에 기재한 광변환 원료 물질과 같은 녹색 변환 물질, 황색 변환 물질, 적색 변환 물질 및 근적외선 변환 물질에 속하는 물질 중 어느 하나 또는 하나 이상을 혼합한 광변환 원료와 알코올과 질화규소볼을 1:3:2 비율로 혼합하여 광변환 원료 혼합물을 생성한다.
물질 화합물 흡수 파장대 광변환 영역
Aluminate Y3Al5O12:Ce3+ UV ~ Green 녹색 ~ 황색
Lu3Al5O12:Ce3+
Tb3Al5O12:Ce3+
Silicate M2SiO4:Eu2+(M=Ca,Sr,Ba) 녹색 ~ 황색
M3SiO4:Eu2+
K2SiF6:Mn4+ 적색 ~ 근적외선
Oxy-nitride β-SiAlON 녹색~ 황색
α-SiAlON
MSi2O2N2:Eu2+(M=Sr,Ba)
Nitride MAlSiN3:Eu2+(M=Ca,Sr) 적색 ~ 근적외선
M2Si5N8:Eu(M=Ca,Sr,Ba)
기타 Zn3Ga2Ge2O12 근적외선 ~ 원적외선
Zn2GaO4
즉, 상기 광변환 쉘(14)을 이루는 광변환 원료 물질은 표 1에 기재한 바와 같이, 녹색 변환 물질, 황색 변환 물질, 적색 변환 물질 및 근적외선 변환 물질에 속하는 물질 중 어느 하나 또는 하나 이상이 복합적으로 이루어질 수 있으며, 녹색 변환 물질과 황색 변환 물질은 YAG(Y3Al5O12:Ce), LuAG(Lu3Al5O12:Ce), M=(Ca,Sr,Ba), M2SiO4:Eu, M3SiO5:Eu, MSi2O2N2:Eu, α-SiAlON, β-SiAlON 등이 될 수 있고, 상기 적색 변환 물질은 이와 같은 적색 변환 물질의 예로 M=(Ca,Sr,Ba), MAlSiN3:Eu, M2Si5N8, K2SiF6:Mn 등이 될 수 있다.
또한, 상기 근적외선 변환 물질은 아연(Zinc) 및 갈륨(Gallium) 및 스칸듐(Scandium) 산화물과 망간(Manganese) 또는 크롬(Chromium) 또는 네오디윰(Neodium)을 전이 원소로 포함한다.
상기 분쇄 및 표면처리 단계(S21)는 상기 광변환 원료 혼합물 생성단계(S20)에서 생성된 광변환 원료 혼합물을 유성볼밀 방식으로 분쇄 및 표면처리를 하여 슬러리 형태로 제조하기 위한 공정으로, 이때, 상기 유성볼밀은 5,000rpm 이상으로 하는 것이 바람직하다.
이렇게 제조된 상기 광변환 물질은 상기 광변환 쉘(14)을 이루며, 상기 청색 여기광 코어(12)를 이루는 상기 사파이어계 청색 축광 형광체 물질에서 출력되는 자외선 내지 청색 영역의 파장을 입력받아 통증감소, 살균, 상처감염방지 및 비타민D 형성 등에 효과가 검증된 파장을 출력한다.
예를 들어, 상기 적색 변환 물질 내지 근적외선 변환 물질은 피부재생을 돕는 파장의 빛을 출력한다.
즉, 상기 사파이어계 청색 축광 형광체 물질과 상기 광변환 물질로 상기 광테라피용 자발광 타입 광변환 물질(10)을 형성함으로써, 통증완화, 살균, 상처감염방지 및 비타민D 생성 등과 같은 효과를 발휘하는 400nm 내지 500nm의 청색 영역의 파장을 출력하면서 동시에 추가로 아토피에 효과적인 근자외선을 출력하거나, 피부재생에 효과적인 780nm 내지 2.5㎛ 파장의 근적외선을 출력할 수 있다.
한편, 상기 광테라피용 자발광 타입 광변환 물질(10)의 복합구조를 형성하기 위하여 상기 혼합 용액 생성 단계(S30)는 상기 혼합물 생성 단계(S10) 내지 상기 혼합물 표면처리 단계(S13)를 통해 제조된 상기 사파이어계 청색 축광 형광체 물질과 상기 광변환 원료 혼합물 생성 단계(S20) 내지 상기 분쇄 및 표면처리 단계(S21)를 통해 제조된 슬러리 형태의 상기 광변환 물질을 혼합한 혼합 용액을 생성한다.
이후, 상기 광변환 쉘 형성 단계(S40)를 통해 상기 혼합 용액 생성 단계(S30)에서 생성된 상기 혼합 용액을 열처리하여 상기 사파이어계 청색 축광 형광체 물질로 이루어진 상기 청색 여기광 코어(12)에 상기 광변환 물질로 이루어진 상기 광변환 쉘(14)을 형성한다.
구체적으로는, 상기 광변환 쉘 형성 단계(40)는, 상기 혼합 용액 생성 단계(S30)에서 생성된 상기 혼합 용액에 상기 사파이어계 청색 축광 형광체 물질과 상기 광변환 물질의 부착을 위한 올레인산나트륨 및 분산제를 투입하고, 30분 내지 120분 동안 교반하는 혼합 용액 교반 단계(S41), 상기 혼합 용액 교반 단계(S41)를 거친 교반된 상기 혼합 용액을 1시간 내지 3시간 동안 상온에 방치하는 안정화 단계(S42) 및 상기 안정화 단계(S42)를 거쳐 안정화된 상기 혼합 용액을 가열하여 알코올을 제거하고 청색 여기광 코어에 광변환 물질로 이루어진 광변환 쉘을 형성하는 광변환 쉘 형성 단계(S43)를 포함하여 이루어진다.
이때, 상기 안정화 단계(S42)는 에탄올 또는 초순도워터를 이용하여 세척하는 세척 단계를 더 포함하는 것이 바람직하다.
도 3은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질의 표면처리 단계 전후 SEM 사진이며, 도 4는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질의 발광 스펙트럼과 발광시간 스펙트럼을 보인 도면이다.
도 3을 통해 비교되는 바와 같이, 상기 광테라피용 자발광 타입 광변환 물질(10)을 제조하는 방법에 있어서, 상기 혼합물 표면처리 단계(S13)에서는 상기 사파이어계 청색 축광 형광체 물질의 표면 결함 처리를 한다.
이는 상기 광테라피용 자발광 타입 광변환 물질(10)이 보다 긴 장잔광의 특성을 갖도록 하기 위한 것으로, 그 특성은 도 4의 (b)에 도시한 바와 같이 발광시간이 기존보다 길어짐을 알 수 있다.
특히, 상기 혼합물 표면처리 단계(S13)를 통해 상기 사파이어계 청색 축광 형광체 물질은 물리적인 힘으로 15 내지 20㎛의 입자 크기로 제어하고 표면 결함 처리를 함으로써 주변광을 흡수하여 도 4의 (a)에 도시한 바와 같이, 400 내지 550nm 영역의 파장을 발광하고, 30분 이상 출력하는 것을 확인할 수 있다.
도 5는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 광변환 쉘의 SEM 사진이고, 도 6은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 사진이며, 도 7은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 광변환 쉘의 형성 상태에 따른 자발광 비교 사진이다.
앞서 살펴본 바와 같이, 상기 혼합 용액 생성 단계(S30)를 통해 도 4에 도시된 상기 사파이어계 청색 축광 형광체 물질과 도 5에 도시된 상기 광변환 물질을 혼합하여 혼합 용액을 생성하며, 상기 광변환 쉘 형성 단계(S40)를 통해 상기 사파이어계 청색 축광 형광체 물질로 이루어진 상기 청색 여기광 코어(12)에 상기 광변환 물질로 이루어진 상기 광변환 쉘(14)을 형성한다.
이때, 상기 광변환 쉘 형성 단계(S40)에서 상기 청색 여기광 코어(12)의 외곽에 형성되는 상기 광변환 쉘(14)은 온도와 시간에 따라 다르게 형성되며, 온도가 높고 오랜시간 가열할수록 도 6의 (a)에 도시된 바와 같이, 청색 여기광 코어를 완전히 감싸면서 광변환 쉘이 형성되고, 상대적으로 낮은 온도 내지 짧은 시간 동안 가열이 이루어지면 도 6의 (b)에 도시된 바와 같이 불완전하게 광변환 쉘이 형성된다.
또한, 도 7을 통해 확인되는 바와 같이, 사파이어계 청색 축광 형광체 물질(B)과 적색 변환 물질(R)을 1 : 1 에서 1 : 3 까지 혼합하여 형성된 상기 광테라피용 자발광 타입 광변환 물질(10)의 자발광 비교 사진을 보면, 불완전 광변환 쉘이 형성된 경우는 청색 발광이 광변환이 되는 것에 있어서 비효율적으로 변환하는 것을 알 수 있으며, 완전 광변환 쉘이 형성된 경우는 전체적으로 싸는 구조임으로 광변환의 효율성이 높은 것을 알 수 있다.
따라서, 상기 광변환 쉘(14)이 상기 청색 여기광 코어(12)에 완전 또는 불완전하게 형성됨에 따라 자발광 파장은 서로 다르게 발생하며, 상기 광테라피용 자발광 타입 광변환 물질(10)이 상기 청색 여기광 코어(12)에 상기 광변환 쉘(14)이 전체적으로 둘러싸여져 완전하게 형성된 경우는 효율이 높은 반면, 상기 광변환 쉘(14)이 불완전하게 형성된 경우는 광변환 물질이 청색 여기광 코어를 듬성 듬성 부착되어 있음으로 변환 효율이 떨어지게 된다.
그러나, 광테라피의 파장을 선택할 시 청색의 기능인 살균 및 소독 등의 기능을 우선적으로 선택해야 할 경우에는 오히려 상기 광변환 쉘(14)이 도 6의(b)와 같이 불완전하게 형성된 상기 광테라피용 자발광 타입 광변환 물질(10)을 이용하는 것이 바람직하다.
도 8은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질에 포함된 사파이어계 청색 축광 형광체 물질과 광변환 물질의 함량비에 따른 자발광 비교 사진이며, 도 9는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 적색/녹색/청색 변환 물질 함량비에 따른 자발광 비교 사진이다.
도 8에 도시된 바와 같이, 사파이어계 청색 축광 형광체 물질 대비 광변환 셀을 이루는 광변환 물질의 함량비를 늘리는 만큼 광변환 셀을 이루는 광변환 물질의 발광색에 가깝게 변하는 것을 확인할 수 있으며, 도 9에 도시된 바와 같이 광변환 쉘을 이루는 광변환 물질을 복합적으로 사용하면서 그 함량비를 조절함으로써 다양한 발광색을 구현할 수 있다.
따라서, 상기 사파이어계 청색 축광 형광체 물질 대비 상기 광변환 물질의 함량비를 조절함으로써 발광색을 조절할 수 있는 것이다.
한편, 본 발명에 따른 광테라피용 자발광 타입 광변환 물질은 전기에너지 없이 광테라피 효과를 부가하고자 하는 다양한 제품의 발광수단으로 적용될 수 있으며, 특히, 피부 미용용 혹은 의료용 패치, 피부 미용용 마스크팩 등의 발광수단으로 적용될 수도 있다.
이하, 첨부된 도 10 내지 도 12를 참조하여 본 발명의 일 실시형태는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치를 설명하기로 한다.
도 10은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치의 사용 예와 형태를 예시한 도면이고, 도 11는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치의 개념적 특징을 설명하기 위한 도면이다.
도 10 내지 도 11에 도시된 바와 같이, 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치(100)는 전통적으로 사용되고 있던 일반적인 패치와 기본적으로 소재가 동일한 패치 본체(101)의 배면에 상기 광테라피용 자발광 타입 광변환 물질(10)로 이루어진 발광수단(110)이 인쇄방식으로 형성된 것으로, 일반적인 패치와 사용 방법은 동일하다.
이때, 상기 패치 본체(101)는 신체의 다양한 부위에 부착하여 사용할 수 있도록 정사각형, 직사각형, 원형, 타원형 등 다양한 형태와 크기로 형성될 수 있으며, 섬유소재로 이루어지되, 수 mm의 두께를 갖고 전체적으로 신축성이 있도록 하여 피부의 굴곡진 부분에도 용이하게 접착될 수 있도록 한다.
바람직하게는, 상기 패치 본체(101)의 일 실시예로서, 섬유소재로 이루어질 수 있으며, 특히, 인쇄가 가능한 코튼 시트, 부직포 시트, 셀룰로오스 시트 등 인쇄가 가능한 섬유소재의 시트로 형성되는 것이 바람직하며, 보다 바람직하게는 텐셀 원단으로 이루어질 수 있다.
주지된 바와 같이, 텐셀(TENCEL) 원단은 오스트리아의 섬유회사 렌징사에서 개발한 기능성 천연 소재로 유칼립투스 나무 추출물로 만든 친환경적인 소재로 수분 함유량과 흡수성이 뛰어나고, 섬유 구조가 매끄러워 피부를 자극하지 않기 때문에 민감한 피부에 효과적이다.
또한, 상기 패치 본체(101)의 다른 실시예로서, 피부와의 밀착력과 보습능을 향상시키기 위하여 정제수를 분산매체로 하는 삼차원 친수성 고분자 망상구조를 가진 물질인 하이드로겔로 이루어질 수도 있으며, 이때, 상기 패치 본체(101)를 이루는 상기 하이드로겔은 알루론산, 아가로스, 알지네이트, 키토산, 젤라틴 또는 콜라겐 등 당업계에 공지된 다양한 점탄성 고분자를 포함하여 형성될 수 있다.
아울러, 상기 패치 본체(101)는 앞서 언급한 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있음은 물론이다.
또한, 상기 패치 본체(101)의 배면 즉, 피부에 직접 닿는 상기 패치 본체(10)의 안쪽면에는 접착성 물질이 도포되어 있어 신체의 부착이 용이하도록 한다.
게다가, 상기 패치 본체(101)보다 상대적으로 넓게 형성되고 일측은 접착성 물질이 도포되어 있어 사용자의 신체에 부착된 패치 본체(101)를 덮으면서 신체에 부착되어 패치 본체(101)의 부착 상태를 유지하는 접착포(102)를 더 포함할 수 있고, 상기 접착포(102)는 일반적으로 패치의 부착상태를 유지하고 외부로부터 오염 등을 방지하기 위해 사용되는 통상의 접착포가 될 수 있으며, 상기 패치 본체(101)와 동일한 재질로 형성될 수도 있다.
한편, 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치(100)를 소정의 치료 목적으로 사용하는 경우에는 상기 치료 목적에 따른 다양한 약제 성분을 포함할 수 있다.
도 12는 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치에 포함된 발광수단을 설명하기 위한 도면이다.
도 12에 도시된 바와 같이, 상기 발광수단(110)은 상기 패치 본체(101)의 배면에 인쇄되어 형성되되, 상기 패치 본체(101)의 배면 전체에 걸쳐 디자인된 패턴화 형태로 인쇄되어 형성될 수 있다.
구체적으로는, 상기 패치 본체(101) 배면 전체 영역에 인쇄될 수 있으며, 줄 무늬 형태로 일방으로 상기 패치 본체(101)의 배면 전체에 걸쳐 인쇄되거나, 격자 무늬 형태로 인쇄되어 형성될 수 있다.
상기 발광수단(110)이 줄 무늬 형태 혹은 격자 무늬 형태로 인쇄되어 형성되는 경우, 배면 전체에 걸쳐 인쇄되는 경우에 비해 상기 발광수단(110)을 형성하는데 소요되는 원료를 줄이면서도 충분히 안면 전체에 광테라피 효과를 제공할 수 있다.
여기서, 상기 발광수단(110)이 상기 패치 본체(101)의 배면에 줄 무늬 형태 혹은 격자 무늬 형태로 인쇄되는 경우, 줄과 줄 사이 혹은 격자 간의 간격은 2 mm 내지 5 mm 사이의 간격으로 이루어지는 것이 바람직하다.
또한, 발광수단(110)은 도 12에 예시된 형태에 국한되는 것은 아니며, 필요에 따라 다양한 형태로 문양 내지 무늬로 인쇄될 수 있고 어느 특정된 문양 내지 무늬에 국한되지 않는다.
이하, 첨부된 도 13 내지 도 16을 참조하여 본 발명의 다른 실시형태는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치를 설명하기로 한다.
도 13은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩의 개략적으로 도시한 도면이며, 도 14는 본 발명에 따른 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩의 개념적 특징을 설명하기 위한 도면이고, 도 15는 도 13 및 도 14에 도시된 마스크 시트의 다른 실시예를 도시한 도면이다.
도 13 내지 도 15에 도시된 바와 같이, 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩(200)은 통상의 마스크팩과 마찬가지로 화장수가 함침된 시트 형태의 마스크 시트(201)의 배면에 상기 광테라피용 자발광 타입 광변환 물질로 이루어진 발광수단(210)이 인쇄방식으로 형성된 것으로, 일반적인 시트형 마스크팩과 사용 방법은 동일하다.
우선, 상기 마스크 시트(201)는 사용자의 안면에 밀착되어 사용자의 안면의 전체 혹은 일부를 덮을 수 있도록 이에 대응하는 형상으로 형성된다.
또한, 상기 마스크 시트(201)는 일 실시예로서, 섬유소재로 이루어질 수 있으며, 특히, 인쇄가 가능한 코튼 시트, 부직포 시트, 셀룰로오스 시트 등 인쇄가 가능한 섬유소재의 시트로 형성되는 것이 바람직하며, 보다 바람직하게는 텐셀 원단으로 이루어질 수 있다.
주지된 바와 같이, 텐셀(TENCEL) 원단은 오스트리아의 섬유회사 렌징사에서 개발한 기능성 천연 소재로 유칼립투스 나무 추출물로 만든 친환경적인 소재로 수분 함유량과 흡수성이 뛰어나고, 섬유 구조가 매끄러워 피부를 자극하지 않기 때문에 민감한 피부에 효과적이다.
또한, 상기 마스크 시트(201)는 다른 실시예로서, 피부와의 밀착력과 보습능을 향상시키기 위하여 정제수를 분산매체로 하는 삼차원 친수성 고분자 망상구조를 가진 물질인 하이드로겔로 이루어질 수도 있으며, 이때, 상기 마스크 시트(201)를 이루는 상기 하이드로겔은 알루론산, 아가로스, 알지네이트, 키토산, 젤라틴 또는 콜라겐 등 당업계에 공지된 다양한 점탄성 고분자를 포함하여 형성될 수 있다.
아울러, 상기 마스크 시트(201)는 앞서 언급한 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있음은 물론이다.
이와 더불어, 상기 마스크 시트(201)에 함침되는 상기 화장수는 성분에 따라 미백, 화이트닝, 영양, 주름개선 등 피부에 도움이 되는 다양한 천연성분 내지 화학성분의 물질이 될 수 있고, 어느 특정된 물질에 국한되지 않는다.
게다가, 상기 마스크 시트(201)는 안면의 이마 부분을 덮는 부위에 연결되어 머리부위를 덮는 길이와 넓이를 갖는 연장부(202)를 더 포함할 수 있다.
상기 연장부(202)는 머리부위를 덮을 수 있는 길이와 넓이를 가짐으로써 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩(200)이 사용자의 안면은 물론 머리부위의 두피를 비롯하여 두발에도 광테라피 기능을 발휘할 수 있도록 한다.
도 16은 본 발명의 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩에 포함된 발광수단을 설명하기 위한 도면이다.
도 16에 도시된 바와 같이, 상기 발광수단(210)은 상기 마스크 시트(201)의 배면에 인쇄되어 형성되되, 상기 마스크 시트(201)의 배면 전체에 걸쳐 디자인된 패턴화 형태로 인쇄되어 형성될 수 있다.
구체적으로는, 상기 마스크 시트(201) 배면 전체 영역에 인쇄될 수 있으며, 줄 무늬 형태로 일방으로 상기 마스크 시트(201)의 배면 전체에 걸쳐 인쇄되거나 격자 무늬 형태로 인쇄되어 형성될 수 있다.
상기 발광수단(210)이 줄 무늬 형태 혹은 격자 무늬 형태로 인쇄되어 형성되는 경우, 배면 전체에 걸쳐 인쇄되는 경우에 비해 상기 발광수단(210)을 형성하는데 소요되는 원료를 줄이면서도 충분히 안면 전체에 광테라피 효과를 제공할 수 있다.
여기서, 상기 발광수단(210)이 상기 패치 본체(201)의 배면에 줄 무늬 형태 혹은 격자 무늬 형태로 인쇄되는 경우, 줄과 줄 사이 혹은 격자 간의 간격은 5mm 내지 10mm로 이루어지는 것이 바람직하다.
게다가, 눈주변, 입술 주변, 이마 등과 같이 안면의 특정 부위에 집중 케어가 필요한 경우, 상기 발광수단(210)은 눈주변, 입술 주변, 이마 등과 같은 특정 부위에 대응하는 상기 마스크 시트(201) 배면 부위를 볼이나 턱과 같은 다른 부위에 비해 상대적으로 많은 면적으로 인쇄되어 상대적으로 많은 광량이 피부에 공급되도록 한다.
도 16을 통해 상기 발광수단(210)이 상기 마스크 시트(10)의 배면에 인쇄되는 다양한 형태를 설명하였으나, 상기 발광수단(210)은 예시된 형태에 국한되는 것은 아니며, 필요에 따라 다양한 형태로 문양 내지 무늬로 인쇄될 수 있고 어느 특정된 문양 내지 무늬에 국한되지 않는다.
이하, 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예, 실시예 및 실험예에 의해 본 발명을 보다 구체적으로 설명하고자 한다.
제조예 1
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 황색 변환 물질 3 비율로 혼합하여 제조하였다.
그 결과, 도 17의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 1의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 황색 565㎚로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, Y3Al5O12:Ce3+ 황색 변환 물질의 D50 기준 2.41㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 25.3㎛으로 나타났다.
제조예 2
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 녹색 변환 물질 3 비율로 혼합하여 제조하였다.
그 결과, 도 18의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 2의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 황색 540㎚ 로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, Lu3Al5O12:Ce3+ 녹색 변환 물질의 D50 기준 4.12㎛ 이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 21.3㎛ 으로 나타났다.
제조예 3
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 녹/황색 변환 물질 3 비율로 혼합 하여 제조하였다.
그 결과, 도 19의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 3의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 각각 530, 560, 565㎚ 로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, M2SiO4:Eu2+(M=Ba,Sr,Ca) 녹/황색 변환 물질의 D50 기준 2.18, 5.12, 4.65㎛ 이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 21.1, 2.22, 20.8㎛으로 나타났다.
제조예 4
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 황색 변환 물질 3 비율로 혼합 하여 제조하였다.
그 결과, 도 20의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 4의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 황색 545㎚로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, La3Si5N11:Ce3+ 황색 변환 물질의 D50 기준 5.82㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 25.8㎛으로 나타났다.
제조예 5
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 녹/황색 변환 물질 3 비율로 혼합 하여 제조하였다.
그 결과, 도 21의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 5의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 녹색 530㎚, 황색 590㎚으로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, α-SiAlON, β-SiAlON 녹/황색 변환 물질의 D50 기준 4.12㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 28.1㎛으로 나타났다.
제조예 6
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 적색 변환 물질 4 비율로 혼합 하여 제조하였다.
그 결과, 도 22의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 6의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 적색 620㎚, 650㎚으로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, CaAlSiN3:Eu3+ / Sr2Si5N8:Eu2+ 적색 변환 물질의 D50 기준 6.3㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 28.5㎛으로 나타났다.
제조예 7
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 적색 변환 물질 5 비율로 혼합 하여 제조하였다.
그 결과, 도 23의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 7의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 적색 630㎚으로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, K2SiF6:Mn4+ 적색 변환 물질의 D50 기준 3.2㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 21.2㎛으로 나타났다.
제조예 8
본 발명의 광테라피용 자발광 타입 광변환 물질의 제조 방법 통해 제조된 광테라피용 자발광 타입 광변환 물질을 중량비율 사파이어계 청색 축광 형광체 물질 1 : 적색 변환 물질 4 비율로 혼합 하여 제조하였다.
그 결과, 도 24의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질의 제조 방법에 따른 제조예 8의 광스펙트럼에 도시한 바와 같이, 광특성은 청색 480㎚ 여기 발광 피크와 적색 850㎚으로 광변환 피크를 광스펙트럼에서 확인하였다.
이때, 사파이어계 청색 축광 형광체 물질의 입자 크기는 D50 기준 20.4㎛이며, Zn3Ga2Ge2O12 근적외선 변환 물질의 D50 기준 1.2㎛이고, 최종 광테라피용 자발광 타입 광변환 물질의 입자 크기는 D50 기준 20.9㎛으로 나타났다.
실시예 1
상기 제조예 3에서 제조된 광테라피용 자발광 타입 광변환 물질을 인쇄방식으로 텐셀(TENCEL) 원단 일면에 도포하여 발광수단이 형성된 시료를 제조하였다.
실험예 1
상기 실시예 1에서 제조된 시료에 대하여 485 nm 파장의 특성인 살균력을 확인하기 위해서, 상기 실시예 1에서 제조된 시료(이하, 실험군, a)의 발광수단을 이루는 청색 축광 형광체의 여기를 위해 일반 백색 LED 조명(렌턴)을 사용하여 6시간 단위로 10분간 축광시킨 후, 상기 실험군에 미생물 배양액을 도포하여 상기 미생물의 변화 확인를 확인하였다.
또한, 발광수단이 형성되지 않은 텐셀(TENCEL) 원단을 대조군(b)으로 설정하고, 상기 실험군(a)과 동일한 조건을 이루도록 일반 백색 LED 조명(렌턴)을 사용하여 6시간 단위로 10분간 축광시킨 후, 상기 미생물 배양액을 도포하여 상기 미생물의 변화 확인를 확인하였다.
이때, 상기 미생물은 미세조류 식물성 플랑크톤인 Alexandrium A. Insuetum을 사용하였으며, 0시간부터 24시간까지 3시간 단위로 미세조류 개체수를 Counting하여 도 25은 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 살균력 비교 테스트 도면에 도시된 바와 같이, 스펙트럼으로 나타내어 그 변화를 확인하였다.
실험 결과, 상기 대조군(b)은 13,000 수치에서 유의한 변화가 없는데 반해, 실험군(a)은 13,000 수치에서 24시간까지 지속적으로 감소하여 55%까지 감소하는 것을 확인하였다.
즉, 텐셀(TENCEL) 원단으로만 이루어진 대조군(b)의 개체수는 평균적으로 유지되어 살균력이 없는 것을 확인할 수 있었고, 상기 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 실험군(a)의 개체수는 살균시간을 기준으로 3, 6, 9, 12, 24시간 동안 측정한 결과 살균효율은 각각 약 16%, 27%, 29%, 33.9%, 55%로 살균되는 것을 확인할 수 있었다.
실험예 2
상기 실시예 1에서 제조된 시료에 대하여 피부 재생 및 개선 효과를 확인하기 위해서, 상기 실시예 1에서 제조된 시료를 패치 형태로 가공하여 동일한 신체부위에 4주간 하루 30분씩 부착 사용한 후, 피부 치밀도 변화 및 피부 색소침착 변화를 확인하였다.
도 26의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 피부 치밀도 실험 결과 그래프에 도시된 바와 같이, 상기 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1를 4주간 사용한 결과, 적색 및 적외선을 통한 피부치밀도가 15 % 증가함에 따라 피부 재생에 큰 효과가 있는 것으로 확인되었다.
또한, 도 27의 본 발명에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1의 색소침착 실험 결과 그래프에 도시된 바와 같이, 상기 광테라피용 자발광 타입 광변환 물질로 이루어지는 발광수단이 형성된 상기 실시예 1를 4주간 사용한 결과, 적색의 광테라피를 통해 상처나 피부 색소 침착이 273% 감소하는 개선 효과가 있는 것으로 확인되었다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.

Claims (16)

  1. 화학식 Ma·Al2O3의 상기 M은 Ba, Sr, Ca, Mg, Eu 또는 Dy 1종 이상의 금속으로 하여 상기 화학식 당량비에 맞춘 무기 산화물로 이루어진 원료를 혼합하여 생성된 혼합물을 소성 및 분쇄를 통해 표면 결함 처리함으로써 발광시간을 지연시켜 광테라피에 기능에 따른 소정의 파장을 출력하도록 형성되는 사파이어계 청색 축광 형광체 물질로 이루어진 청색 여기광 코어; 및
    녹색 변환 물질, 황색 변환 물질, 적색 변환 물질 및 근적외선 변환 물질에 속하는 물질 중 어느 하나 이상을 혼합한 광변환 원료와 알코올과 질화규소볼을 1:3:2 비율로 혼합하여 생성된 광변환 원료 혼합물로 형성되며, 상기 청색 여기광 코어를 감싸는 광변환 쉘;을 포함하는 광테라피용 자발광 타입 광변환 물질.
  2. 제1항에 있어서,
    상기 청색 여기광 코어는,
    상기 화학식에 따른 범위가 0≤a<1 인 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질.
  3. 제1항에 있어서,
    상기 무기 산화물 원료는,
    사파이어인 알루미네이트에 해당하는 Al2O3를 모체로 유로퓸(Europium) 내지 디스프로슘(Dysprosium)을 첨가하거나, 칼슘(Calcium) 내지 스트론튬 (Strontium) 내지 바륨(Barium) 내지 마그네슘(Magnesium)을 첨가하여 이루어지는 사파이어계 청색 축광 형광체 물질인 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질.
  4. 제1항에 있어서,
    상기 녹색 변환 물질과 황색 변환 물질은,
    YAG(Y3Al5O12:Ce), LuAG (Lu3Al5O12:Ce), M=(Ca,Sr,Ba), M2SiO4:Eu, M3SiO5:Eu, MSi2O2N2:Eu, α-SiAlON, β-SiAlON 중 어느 하나인 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질.
  5. 제1항에 있어서,
    상기 적색 변환 물질은,
    M=(Ca,Sr,Ba), MAlSiN3:Eu, M2Si5N8, K2SiF6:Mn 중 어느 하나인 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질.
  6. 제1항에 있어서,
    상기 근적외선 변환 물질은,
    아연(Zinc) 및 갈륨(Gallium) 및 스칸듐(Scandium) 산화물과 망간(Manganese) 또는 크롬(Chromium) 또는 네오디윰(Neodium)을 전이 원소로 포함한 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질.
  7. 배면에 접착성 물질이 도포되어 있어 사용자의 신체다양한 부위에 부착되며, 다양한 크기와 형상으로 이루어지는 패치 본체; 및
    제1항 내지 제6항 중 어느 한 항에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지며, 상기 패치 본체의 안쪽면인 사용자의 신체와 접하는 배면에는 인쇄방식으로 형성되는 발광수단;을 포함하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치.
  8. 제7항에 있어서,
    상기 패치 본체와 동일한 소재로 형성되며, 상기 패치 본체보다 상대적으로 넓게 형성되고, 일측은 접착성물질이 도포되어 있어 사용자의 신체에 부착된 패치 본체를 덮으면서 신체에 부착되어 패치 본체의 부착 상태를 유지하는 접착포를 더 포함하는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치.
  9. 제7항에 있어서,
    상기 발광수단은,
    상기 패치 본체의 배면 전체에 걸쳐 격자 무늬로 인쇄되어 이루어지는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치.
  10. 제7항에 있어서,
    상기 격자 무늬는
    2 mm 내지 5 mm 사이의 간격으로 이루어지는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치.
  11. 제7항에 있어서,
    상기 패치 본체는,
    약제 성분을 포함하는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 패치.
  12. 화장수이 함침되며, 사용자의 안면에 부착되는 마스크 시트; 및
    제1항 내지 제6항 중 어느 한 항에 따른 광테라피용 자발광 타입 광변환 물질로 이루어지며, 상기 마스크 시트의 내측면인 사용자의 안면과 접하는 배면에 인쇄방식으로 형성되는 발광수단;을 포함하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
  13. 제12항에 있어서,
    상기 발광수단은,
    마스크 시트의 배면 전체에 걸쳐 디자인된 패턴화 형태로 인쇄되어 이루어지는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
  14. 제13항에 있어서,
    상기 발광수단은,
    마스크 시트의 배면 전체에 걸쳐 격자 무늬 형태로 인쇄되어 이루어지는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
  15. 제14항에 있어서,
    상기 격자 무늬는,
    10mm 내지 5mm 사이의 간격으로 이루어지는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
  16. 제12항에 있어서,
    상기 마스크 시트는,
    안면의 이마 부분을 덮는 부위에 연결되어 머리부위를 덮는 길이와 넓이를 갖는 연장부를 더 포함하는 것을 특징으로 하는 광테라피용 자발광 타입 광변환 물질을 포함하는 기능성 마스크팩.
PCT/KR2020/014834 2020-03-02 2020-10-28 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩 WO2021177539A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2020-0025734 2020-03-02
KR1020200025734A KR20210110914A (ko) 2020-03-02 2020-03-02 광테라피 기능을 갖는 기능성 패치
KR1020200061465A KR102529994B1 (ko) 2020-05-22 2020-05-22 바이오 광테라피용 자발광 타입 광변환 물질 제조 방법
KR10-2020-0061465 2020-05-22
KR1020200135345A KR102515324B1 (ko) 2020-10-19 2020-10-19 광테라피 기능을 갖는 기능성 마스크팩
KR10-2020-0135345 2020-10-19

Publications (1)

Publication Number Publication Date
WO2021177539A1 true WO2021177539A1 (ko) 2021-09-10

Family

ID=77463891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014834 WO2021177539A1 (ko) 2020-03-02 2020-10-28 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩

Country Status (2)

Country Link
US (1) US20210268304A1 (ko)
WO (1) WO2021177539A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048089B2 (en) 2005-12-30 2011-11-01 Edge Systems Corporation Apparatus and methods for treating the skin
US9566088B2 (en) 2006-03-29 2017-02-14 Edge Systems Llc Devices, systems and methods for treating the skin
WO2014151104A1 (en) 2013-03-15 2014-09-25 Edge Systems Llc Devices, systems and methods for treating the skin
KR101836310B1 (ko) 2008-01-04 2018-03-08 엣지 시스템즈 엘엘씨 피부 처리 장치 및 방법
EP3237055B1 (en) 2014-12-23 2020-08-12 Edge Systems LLC Devices and methods for treating the skin using a rollerball or a wicking member
US10179229B2 (en) 2014-12-23 2019-01-15 Edge Systems Llc Devices and methods for treating the skin using a porous member
USD1016615S1 (en) 2021-09-10 2024-03-05 Hydrafacial Llc Container for a skin treatment device
CN117363356A (zh) * 2023-09-27 2024-01-09 广东省科学院资源利用与稀土开发研究所 一种虹膜识别用钙钆镓锗石榴石基近红外光荧光粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083089B2 (ja) * 1990-01-26 1996-01-17 松下電工株式会社 光変換体の形成方法
KR20140005262U (ko) * 2013-03-31 2014-10-08 (주)미디어에버 광테라피의 엘이디 패치
JP2019131779A (ja) * 2017-03-28 2019-08-08 デンカ株式会社 蓄光材料
KR102035972B1 (ko) * 2019-04-29 2019-10-29 셀바이오코리아 주식회사 광테라피 기능을 갖는 마스크팩

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083089B2 (ja) * 1990-01-26 1996-01-17 松下電工株式会社 光変換体の形成方法
KR20140005262U (ko) * 2013-03-31 2014-10-08 (주)미디어에버 광테라피의 엘이디 패치
JP2019131779A (ja) * 2017-03-28 2019-08-08 デンカ株式会社 蓄光材料
KR102035972B1 (ko) * 2019-04-29 2019-10-29 셀바이오코리아 주식회사 광테라피 기능을 갖는 마스크팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG YAN; WEI HUA; ZHANG LIHUA; KISSLINGER KIM; MELCHER CHARLES L.; WU YIQUAN: "Blue emission of Eu2+-doped translucent alumina", JOURNAL OF LUMINESCENCE, ELSEVIER BV NORTH-HOLLAND, NL, vol. 168, 21 August 2015 (2015-08-21), NL, pages 297 - 303, XP029286824, ISSN: 0022-2313, DOI: 10.1016/j.jlumin.2015.08.015 *

Also Published As

Publication number Publication date
US20210268304A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2021177539A1 (ko) 광테라피용 자발광 타입 광변환 물질, 이를 포함하는 기능성 패치 및 기능성 마스크팩
WO2020111833A1 (ko) 살균 기능을 갖는 led 조명 장치
WO2020171586A1 (ko) Led 조명 장치 및 그것을 갖는 조명 시스템
WO2020116950A1 (ko) 세포 활성 기능을 갖는 led 조명 장치
WO2010018999A2 (ko) β-사이알론 형광체 제조방법
KR102035972B1 (ko) 광테라피 기능을 갖는 마스크팩
WO2011034226A1 (ko) 산질화물 형광체, 그 제조방법 및 발광장치
WO2020034390A1 (zh) Led白光器件及其制备方法、led背光模组
WO2019209063A1 (ko) 안구 치료용 광원 및 이를 포함하는 안구 치료 장치
WO2020111897A1 (ko) 조명 장치 및 그것을 갖는 조명 시스템
WO2012039566A2 (ko) 사이알론 형광체, 그 제조방법 및 이를 이용한 발광소자 패키지
CN111162153B (zh) 节律照明用的led光源
WO2013058467A1 (ko) 발광 다이오드 색변환 필터와 그 제조방법 및 이를 포함하는 발광 다이오드 모듈
WO2012044026A2 (ko) 형광체 및 이의 제조방법
WO2019004656A1 (ko) 발광 장치
WO2020138947A1 (ko) 추가 기능을 갖는 led 조명 장치
WO2020105998A1 (ko) 살균 기능을 갖는 led 조명 장치
WO2016017904A1 (ko) 나시콘 구조의 형광체 및 상기 형광체를 포함하는 발광소자
KR102529994B1 (ko) 바이오 광테라피용 자발광 타입 광변환 물질 제조 방법
WO2018230962A1 (ko) 조명 모듈
KR101072572B1 (ko) 고체 조명용 적색 형광체 및 그 제조방법
WO2024058548A1 (ko) 발광 소자 및 그것을 갖는 조명 기구
WO2013058478A1 (ko) 산화물계 녹색 형광체 및 그의 제조방법 및 이를 이용한 백색 led
WO2021112554A1 (ko) 발광 소자 및 그것을 갖는 조명 기구
WO2016036054A1 (ko) 혼합광 생성장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923115

Country of ref document: EP

Kind code of ref document: A1