WO2020138808A1 - 테라헤르츠파를 이용한 검사장치 - Google Patents

테라헤르츠파를 이용한 검사장치 Download PDF

Info

Publication number
WO2020138808A1
WO2020138808A1 PCT/KR2019/017849 KR2019017849W WO2020138808A1 WO 2020138808 A1 WO2020138808 A1 WO 2020138808A1 KR 2019017849 W KR2019017849 W KR 2019017849W WO 2020138808 A1 WO2020138808 A1 WO 2020138808A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
light source
camera
inspection
waves
Prior art date
Application number
PCT/KR2019/017849
Other languages
English (en)
French (fr)
Inventor
김찬웅
이예솔
차병찬
Original Assignee
(주)미래컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)미래컴퍼니 filed Critical (주)미래컴퍼니
Publication of WO2020138808A1 publication Critical patent/WO2020138808A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Definitions

  • the present invention relates to an inspection apparatus using terahertz waves, and more specifically, a terahertz wave capable of precisely inspecting foreign substances contained in the inspection object by cross-irradiating a pair of the terahertz waves to the inspection object. It relates to an inspection device using a.
  • Terahertz wave is a term that combines tera, which means 12 to the power of 10, and hertz (Hz), which is a frequency unit. It is an electromagnetic wave that has transmittance, and has a longer wavelength than visible light or infrared light. It has transmission properties, low energy, and is safe from radiation hazards that are frequently used in transmission tests, so it does not harm the human body.
  • terahertz waves when irradiated with foreign matter such as bubbles, cracks, metal materials, have a property of reflecting differently from a general transmission object.
  • a test apparatus using a terahertz wave is known for inspecting foreign substances and bubbles inside the object to be inspected using the terahertz wave.
  • the conventional inspection device using terahertz waves uses a single type of terahertz of vertical and horizontal structures, and thus utilizes the transmission characteristics of a single type of terahertz waves, such as defects such as foreign matter or cracks in the inspection object. The presence or absence can be confirmed, but the location and depth of the defect are not known, making it difficult to make a major judgment in quality determination.
  • An object of the present invention is to solve the above problems, and to provide an inspection device using terahertz waves capable of precisely inspecting the position and depth of a foreign object contained in an object to be inspected in three dimensions. .
  • An object of the present invention a table on which an object to be inspected is seated; A first terahertz light source irradiating terahertz waves to the inspection object seated on the table; A first terahertz camera that forms an optical axis with the first terahertz light source and receives terahertz waves transmitted through the inspection object; A second terahertz light source that irradiates terahertz waves on the optical axis of the first terahertz light source to be inclined with respect to the optical axis of the first terahertz; And a second terahertz camera receiving the terahertz wave transmitted through the object to be inspected by the second terahertz light source or the terahertz wave reflected from the object to be inspected, achieved by an inspection apparatus using terahertz waves. do.
  • the first terahertz light source and the second terahertz light source are disposed below the table, and the first terahertz camera and the second terahertz camera are disposed above the table.
  • optical axis of the first terahertz light source may be inclined with respect to the inspection object, or may be perpendicular.
  • the first terahertz light source is disposed below the table
  • the first terahertz camera is disposed above the table
  • the second terahertz light source and the second terahertz camera are the The first terahertz camera may be disposed to face the upper side of the table.
  • the table may be made of a material that transmits terahertz waves.
  • the table may form a transfer path through which the inspection object is transferred.
  • the control unit may further include a control unit receiving an image signal from the first terahertz camera and the second terahertz camera, and the control unit may generate a 3D image image by combining the image signals.
  • the position and depth of the foreign matter contained in the inspection object can be grasped and inspected precisely in three dimensions.
  • FIG. 1 is a block diagram of an inspection apparatus using terahertz waves according to an embodiment of the present invention
  • FIG. 2 is a control block diagram of an inspection apparatus using terahertz waves according to the present invention
  • FIG. 3 is a block diagram of an inspection apparatus using terahertz waves according to another embodiment of the present invention.
  • FIG. 4 is a configuration diagram of an inspection apparatus using terahertz waves according to another embodiment of the present invention.
  • 1 and 2 is a block diagram of an inspection apparatus using terahertz waves according to an embodiment of the present invention.
  • the inspection apparatus 1a using a terahertz wave includes a transfer table 10, a first terahertz light source 20, and a first terahertz camera ( 30), a second terahertz light source 40 and a second terahertz camera 50.
  • the transfer table 10 is provided in the form of a single-axis transfer machine capable of transferring the inspection objects 100 one by one, and forms a transport path through which the inspection objects 100 are transferred.
  • the inspection object 100 is transported in one direction or in both directions along the transport path while seated on the transport table 10.
  • the object to be inspected 100 is described as being seated and transferred to the transfer table 10, but is not limited thereto, and the first object in the state where the object to be inspected 100 is seated on a fixed table It is also possible to inspect the inspection object 100 using the hertz light source 20, the first terahertz camera 30, the second terahertz light source 40, and the second terahertz camera 50.
  • the inspection apparatus 1a is made of a material through which the transport table 10 on which the inspection object 100 is seated is made of a material that transmits terahertz waves such as plastic, Teflon, paper, and fibers.
  • the first terahertz light source 20 is provided below the transfer table 10 and irradiates terahertz waves to the inspection object 100 transferred along the transfer path.
  • the first terahertz light source 20 is inclined with respect to the transport path of the inspection object 100, and irradiates the terahertz wave toward the inspection object 100.
  • the first terahertz camera 30 forms an optical axis with the first terahertz light source 20 and is provided above the transfer table 10.
  • the first terahertz camera 30 receives the terahertz wave transmitted from the first terahertz light source 20 and transmitted through the inspection object 100.
  • the first terahertz camera 30, like the first terahertz light source 20, is provided to be inclined with respect to the transport path of the inspection object 100. Accordingly, the first terahertz camera 30 and the first terahertz light source 20 form an optical axis and are disposed to face each other with the transfer table 10 interposed therebetween.
  • the second terahertz light source 40 is spaced apart from the first terahertz light source 20 and is provided below the transfer table 10.
  • the second terahertz light source 40 is inclined with respect to the optical axis of the first terahertz, for example, intersects the inspection object 100, and is terahertz wave on the optical axis of the first terahertz light source 20 of the inspection object 100.
  • the second terahertz camera 50 forms an optical axis with the second terahertz light source 40 and is provided above the transfer table 10.
  • the second terahertz camera 50 receives the terahertz wave that is irradiated from the second terahertz light source 40 and has transmitted through the inspection object 100.
  • the second terahertz camera 50 is provided to be inclined with respect to the transport path of the inspection object 100. Accordingly, the second terahertz camera 50 and the second terahertz light source 40 are disposed to face each other with the transfer table 10 interposed therebetween. In addition, the optical axis of the first terahertz light source 20 and the optical axis of the second terahertz light source 40 intersect at the inspection object 100.
  • the terahertz waves received through the first terahertz camera 30 and the second terahertz camera 50 are each converted into an electronic signal and transmitted to the control unit 60.
  • the control unit 60 includes a transfer table 10, a first terahertz light source 20, a first terahertz camera 30, a second terahertz light source 40, and a second terahertz camera 50. Controls its operation.
  • control unit 60 includes an image processing unit 70.
  • the image processing unit 70 of the control unit 60 receives the terahertz waves received by the respective terahertz cameras 30 and 50, and transmits the image images of the respective terahertz cameras 30 and 50 through the inspection object 100. Acquire as an image. As shown in the upper left and right of FIG. 1, the transmitted image is a video image of the object to be inspected 100 obtained by receiving the terahertz wave received by the first terahertz camera 30, and the second terra.
  • the terahertz wave received by the hertz camera 50 is transmitted and displayed as a video image of the object to be inspected 100, and the foreign object of the object to be inspected 100 from each image image of each terahertz camera 30 and 50 The positions appear in different orders according to the height of the object to be inspected 100.
  • the inspection object 100 is cross-checked by the first terahertz light source 20 and the first terahertz camera 30 and the second terahertz light source 40 and the second terahertz camera 50. By doing so, it is possible to accurately grasp the position of the foreign material in which the defect appeared according to the height of the inspection object 100 in three dimensions.
  • the inspection apparatus 1a using the terahertz wave is the first terahertz light source 20 when the inspection object 100 is transferred along the transportation path of the transportation table 10 ) And the second terahertz light source 40 respectively irradiate the terahertz waves at the inspection object 100.
  • each terahertz wave irradiated by the inspection object 100 is reflected by the foreign object and is received by each terahertz camera 30 and 50 It will not work.
  • each terahertz wave irradiated with the inspection object 100 passes through the inspection object 100 and is received by each terahertz camera 30, 50, and each tera The terahertz wave received through the hertz cameras 30 and 50 is converted into an electronic signal and transmitted to the control unit 60.
  • the image processing unit 70 of the control unit 60 receives the terahertz waves received by the respective terahertz cameras 30 and 50, and receives the image image of the inspection object 100 from each of the terahertz cameras 30 and 50. To acquire.
  • the difference between the video image of the inspection target 100 obtained by the image processing unit 70, for example, the video image from the first terahertz camera 30 and the second terahertz camera 50 is analyzed. By doing so, it is possible to accurately grasp the location and height of defects, such as bubbles, cracks, and foreign substances present inside the inspection object 100.
  • the first terahertz light source 20 and the second terahertz light source 40 are disposed below the transfer table 10
  • the first terahertz camera 30 and the second terahertz camera 50 are shown as being disposed above the transfer table 10, but are not limited thereto, the first terahertz light source 20 and the second terahertz
  • the light source 40 is disposed above the transfer table 10, and the first terahertz camera 30 and the second terahertz camera 50 may be disposed below the transfer table 10.
  • FIG. 3 is a block diagram of an inspection apparatus using terahertz waves according to another embodiment of the present invention.
  • the inspection device 1b using terahertz waves is different from the above-described one embodiment so that the optical axis of the first terahertz light source 20 is perpendicular to the transfer table 10.
  • the terahertz light source 20 and the first terahertz camera 30 are disposed.
  • the surface foreign matter 110a and the inside foreign matter 110b of the inspection target object are the first terahertz light source ( When located on the optical axis of 20), since the object foreign object surface 110a and the object foreign object 110b are located on the same axis, the surface of the object to be inspected from the image image acquired by the first terahertz camera 30 Since the foreign material 110a and the foreign object 110b inside the object to be inspected are located coaxially, they are displayed as one image as shown at the top of FIG. 3, but are inspected from the image image acquired by the second terahertz camera 50.
  • the locations of the object surface foreign matter 110a and the inside object 110b of the object to be inspected are displayed as images at intervals, so that it is possible to easily check the positions of the object foreign object surface 110a and the inside object 110b of the object to be inspected. .
  • the first terahertz light source 20 and the second terahertz light source 40 are disposed below the transfer table 10
  • the first terahertz camera 30 and the second terahertz camera 50 are shown as being disposed above the transfer table 10, but are not limited thereto, the first terahertz light source 20 and the second terahertz
  • the light source 40 is disposed above the transfer table 10, and the first terahertz camera 30 and the second terahertz camera 50 may be disposed below the transfer table 10.
  • FIG. 4 is a block diagram of an inspection apparatus using terahertz waves according to another embodiment of the present invention.
  • the inspection device 1c using the terahertz wave according to another embodiment of the present invention unlike the other embodiments described above, the second terahertz light source 40 and the second terahertz camera 50 are the first terahertz The cameras 30 are disposed to face each other above the transfer table 10.
  • the second terahertz light source 40 is inclined with respect to the optical axis of the first terahertz light source 20, and irradiates terahertz waves on the optical axis of the first terahertz light source 20 of the inspection object 100.
  • the second terahertz camera 50 receives the terahertz wave irradiated from the second terahertz light source 40 and reflected from the inspection target 100.
  • the optical axis of the first terahertz light source 20 is disposed perpendicular to the transfer table 10, and the second terahertz light source 40 and the second terahertz camera 50 are the first terahertz cameras.
  • the (30) is disposed to face each other, when the inspection object surface foreign matter (110a) and the inspection object internal foreign matter (110b) is located on the optical axis of the first terahertz light source 20, the inspection object surface foreign matter (110a) ) And the inside object 110b of the object to be inspected is located on the same axis, the surface foreign object 110a and the inside object 110b of the object to be inspected are coaxial from the image image acquired by the first terahertz camera 30.
  • the first terahertz light source 20 is disposed below the transfer table 10, and the first terahertz camera 30 Is disposed above the transfer table 10, the second terahertz light source 40 and the second terahertz camera 50 is shown as being disposed above the transfer table 10, but is not limited thereto.
  • 1 terahertz light source 20 is disposed above the transfer table 10
  • the first terahertz camera 30 is disposed below the transfer table 10
  • the second terahertz light source 40 and the second The terahertz camera 50 may be disposed below the transfer table 10.
  • the present invention by irradiating a pair of terahertz waves crossing the inspection object, the position and depth of the foreign matter contained in the inspection object can be grasped and inspected precisely in three dimensions.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Toxicology (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 테라헤르츠파를 이용한 검사장치에 관한 것으로서, 검사대상물이 안착되는 테이블; 상기 테이블에 안착된 상기 검사대상물에 테라헤르츠파를 조사하는 제1테라헤르츠 광원; 상기 제1테라헤르츠 광원과 광축을 이루며 상기 검사대상물을 투과한 테라헤르츠파를 수신하는 제1테라헤르츠 카메라; 상기 제1테라헤르츠의 광축에 대해 경사지게 상기 검사대상물의 상기 제1테라헤르츠 광원의 광축상에 테라헤르츠파를 조사하는 제2테라헤르츠 광원; 및 상기 제2테라헤르츠 광원에 의해 상기 검사대상물을 투과한 테라헤르츠파 또는 상기 검사대상물로부터 반사된 테라헤르츠파를 수신하는 제2테라헤르츠 카메라를 포함하는 것을 특징으로 한다.

Description

테라헤르츠파를 이용한 검사장치
본 발명은 테라헤르츠파를 이용한 검사장치에 관한 것으로, 보다 상세하게는, 한 쌍의 테라헤르츠파를 검사대상물에 교차 조사하여, 검사대상물에 함유된 이물 등을 정밀하게 검사할 수 있는 테라헤르츠파를 이용한 검사장치에 관한 것이다.
근래, 테라헤르츠파를 이용하여 검사대상물의 비파괴검사가 널리 시행되고 있다.
테라헤르츠파는 투과성을 가진 전자파로 10의 12제곱을 뜻하는 테라(tera)와 진동수 단위인 헤르츠(Hz)를 합성한 용어로서, 가시광선이나 적외선보다 파장이 길어 가시광에서 투과되지 않는 다양한 재질에 대한 투과 특성이 있으며, 에너지가 낮고, 투과검사에 자주 사용되는 방사선 위험으로부터 안전하므로 인체에 해를 입히지 않는다. 특히, 테라헤르츠파는 기포, 크랙, 금속 소재 등의 이물에 조사되었을 경우, 일반적인 투과 대상물과 다르게 반사하는 성질을 가진다.
이러한 테라헤르츠파를 이용하여 검사대상물 내부의 이물 및 기포 등을 검사하는 테라헤르츠파를 이용한 검사장치가 알려져 있다.
한편, 종래의 테라헤르츠파를 이용한 검사장치는 단일 형태의 수직, 수평 구조의 테라헤르츠를 사용하고 있으며, 이와 같이 단일 형태의 테라헤르츠파의 투과 특성을 활용하여 검사대상물의 이물이나 크랙 등의 불량 유무는 확인할 수 있지만, 불량의 위치와 깊이를 알 수 없어 품질 결정에 주요한 판단을 하기 어려운 문제점이 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 검사대상물에 함유된 이물의 위치와 깊이를 파악하여, 입체적으로 정밀하게 검사할 수 있는 테라헤르츠파를 이용한 검사장치를 제공하는 것을 발명의 목적으로 한다.
본 발명의 목적은, 검사대상물이 안착되는 테이블; 상기 테이블에 안착된 상기 검사대상물에 테라헤르츠파를 조사하는 제1테라헤르츠 광원; 상기 제1테라헤르츠 광원과 광축을 이루며 상기 검사대상물을 투과한 테라헤르츠파를 수신하는 제1테라헤르츠 카메라; 상기 제1테라헤르츠의 광축에 대해 경사지게 상기 검사대상물의 상기 제1테라헤르츠 광원의 광축상에 테라헤르츠파를 조사하는 제2테라헤르츠 광원; 및 상기 제2테라헤르츠 광원에 의해 상기 검사대상물을 투과한 테라헤르츠파 또는 상기 검사대상물로부터 반사된 테라헤르츠파를 수신하는 제2테라헤르츠 카메라를 포함하는, 테라헤르츠파를 이용한 검사장치에 의해 달성된다.
여기서, 일 실시에로서, 상기 제1테라헤르츠 광원 및 상기 제2테라헤르츠 광원은 상기 테이블의 하방에 배치되고, 상기 제1테라헤르츠 카메라 및 상기 제2테라헤르츠 카메라는 상기 테이블의 상방에 배치될 수 있다.
또한, 상기 제1테라헤르츠 광원의 광축은 상기 검사대상물에 대해 경사를 이루거나, 또는 수직을 이룰 수 있다.
다른 실시예로서, 상기 제1테라헤르츠 광원은 상기 테이블의 하방에 배치되고, 상기 제1테라헤르츠 카메라는 상기 테이블의 상방에 배치되며, 상기 제2테라헤르츠 광원과 상기 제2테라헤르츠 카메라는 상기 제1테라헤르츠 카메라를 사이에 두고 상기 테이블의 상방에 대향 배치될 수 있다.
상기 테이블은 테라헤르츠파가 투과되는 재질로 이루어질 수 있다.
상기 테이블은 상기 검사대상물이 이송되는 이송 경로를 형성할 수 있다.
상기 제1테라헤르츠 카메라와 상기 제2테라헤르츠 카메라로부터 영상신호를 받는 제어부를 더 포함하고, 상기 제어부는 상기 영상신호를 조합하여 3차원 영상이미지를 생성할 수 있다.
본 발명에 따르면, 한 쌍의 테라헤르츠파를 검사대상물에 교차시키며 조사함으로써, 검사대상물에 함유된 이물의 위치와 깊이를 파악하여, 입체적으로 정밀하게 검사할 수 있다.
도 1은 본 발명의 일 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도,
도 2는 본 발명에 따른 테라헤르츠파를 이용한 검사장치의 제어블록도,
도 3은 본 발명의 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도,
도 4는 본 발명의 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부 도면을 참조하여 본 발명에 대해 상세히 설명한다.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일 부호를 사용하여 대표적으로 일 실시예에서 설명하고, 그 외의 실시예에서는 일 실시예와 다른 구성에 대해 설명하기로 한다.
도 1 및 도 2에는 본 발명의 일 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도가 도시되어 있다.
이들 도면에 도시된 바와 같이, 본 발명의 일 실시예에 따른 테라헤르츠파를 이용한 검사장치(1a)는 이송 테이블(10)과, 제1테라헤르츠 광원(20)과, 제1테라헤르츠 카메라(30)와, 제2테라헤르츠 광원(40)과, 제2테라헤르츠 카메라(50)를 포함한다.
이송 테이블(10)은 검사대상물(100)을 1장씩 이송할 수 있는 단축 이송기 형태로 마련되며, 검사대상물(100)이 이송되는 이송 경로를 형성한다.
이에, 검사대상물(100)은 이송 테이블(10)에 안착된 상태에서 이송 경로를 따라 단방향으로 이송 또는 양방향으로 이송된다.
본 발명의 일 실시예에서는 검사대상물(100)이 이송 테이블(10)에 안착되어 이송되는 것으로 설명하였으나, 이에 한정되지 않으며, 검사대상물(100)이 고정된 테이블상에 안착된 상태에서 제1테라헤르츠 광원(20)과, 제1테라헤르츠 카메라(30)와, 제2테라헤르츠 광원(40)과, 제2테라헤르츠 카메라(50)를 이용하여 검사대상물(100)을 검사하는 것도 가능하다.
또한, 본 발명의 일 실시예에 따른 검사장치(1a)는 검사대상물(100)이 안착되는 이송 테이블(10)이 플라스틱, 테프론, 종이, 섬유 등의 테라헤르츠파가 투과되는 재질로 이루어진다.
제1테라헤르츠 광원(20)은 이송 테이블(10)의 하방에 마련되어, 이송 경로를 따라 이송되는 검사대상물(100)에 테라헤르츠파를 조사한다.
또한, 제1테라헤르츠 광원(20)은 검사대상물(100)의 이송 경로에 대해 경사지게 마련되어, 검사대상물(100)을 향해 테라헤르츠파를 조사한다.
제1테라헤르츠 카메라(30)는 제1테라헤르츠 광원(20)과 광축을 이루며, 이송 테이블(10)의 상방에 마련된다. 제1테라헤르츠 카메라(30)는 제1테라헤르츠 광원(20)으로부터 조사되어 검사대상물(100)을 투과한 테라헤르츠파를 수신한다.
제1테라헤르츠 카메라(30)는 제1테라헤르츠 광원(20)과 마찬가지로, 검사대상물(100)의 이송 경로에 대해 경사지게 마련된다. 이에 따라, 제1테라헤르츠 카메라(30)와 제1테라헤르츠 광원(20)은 광축을 이루며 이송 테이블(10)을 사이에 두고 대향 배치된다.
제2테라헤르츠 광원(40)은 제1테라헤르츠 광원(20)과 이격하며, 이송 테이블(10)의 하방에 마련된다.
제2테라헤르츠 광원(40)은 제1테라헤르츠의 광축에 대해 경사지게 예컨대, 검사대상물(100)에 교차하며, 검사대상물(100)의 제1테라헤르츠 광원(20)의 광축상에 테라헤르츠파를 조사한다.
제2테라헤르츠 카메라(50)는 제2테라헤르츠 광원(40)과 광축을 이루며, 이송 테이블(10)의 상방에 마련된다. 제2테라헤르츠 카메라(50)는 제2테라헤르츠 광원(40)으로부터 조사되어 검사대상물(100)을 투과한 테라헤르츠파를 수신한다.
제2테라헤르츠 카메라(50)는 제2테라헤르츠 광원(40)과 마찬가지로, 검사대상물(100)의 이송 경로에 대해 경사지게 마련된다. 이에 따라, 제2테라헤르츠 카메라(50)와 제2테라헤르츠 광원(40)은 이송 테이블(10)을 사이에 두고 대향 배치된다. 또한, 제1테라헤르츠 광원(20)의 광축과 제2테라헤르츠 광원(40)의 광축은 검사대상물(100)에서 교차한다.
한편, 제1테라헤르츠 카메라(30)와 제2테라헤르츠 카메라(50)를 통해 각각 수신한 테라헤르츠파는 각각 전자신호로 변환되어, 제어부(60)로 전송된다.
제어부(60)는 이송 테이블(10)과, 제1테라헤르츠 광원(20)과, 제1테라헤르츠 카메라(30)와, 제2테라헤르츠 광원(40)과, 제2테라헤르츠 카메라(50)의 작동을 제어한다.
또한, 제어부(60)는 영상처리부(70)를 포함한다.
제어부(60)의 영상처리부(70)는 각 테라헤르츠 카메라(30,50)에 수신된 테라헤르츠파를 전송받아, 각 테라헤르츠 카메라(30,50)의 영상이미지를 검사대상물(100)의 투과 이미지로 획득한다. 이러한 투과 이미지는 도 1의 좌측 및 우측 상단에 도시된 바와 같이, 제1테라헤르츠 카메라(30)에 수신된 테라헤르츠파를 전송받아 획득한 검사대상물(100)에 대한 영상이미지와, 제2테라헤르츠 카메라(50)에 수신된 테라헤르츠파를 전송받아 획득한 검사대상물(100)에 대한 영상이미지로 나타나고, 각 테라헤르츠 카메라(30,50)에 대한 각 영상이미지에서 검사대상물(100)의 이물 위치는 검사대상물(100)의 높이에 따라 서로 다른 순서로 나타난다.
이와 같이, 제1테라헤르츠 카메라(30)와 제2테라헤르츠 카메라(50)에 의해 각각 수신된 검사대상물(100)의 내부 이미지의 차이를 분석하여, 검사대상물(100)의 보다 정밀한 영상이미지를 얻을 수 있을 뿐만 아니라 검사대상물(100)을 제1테라헤르츠 광원(20) 및 제1테라헤르츠 카메라(30)와 제2테라헤르츠 광원(40) 및 제2테라헤르츠 카메라(50)에 의해 교차 검사하여, 검사대상물(100)의 높이에 따른 불량이 나타난 이물의 위치를 입체적으로 정밀하게 파악할 수 있게 된다.
이러한 구성에 의하여, 본 발명의 일 실시예에 따른 테라헤르츠파를 이용한 검사장치(1a)는 이송 테이블(10)의 이송 경로를 따라 검사대상물(100)이 이송되면, 제1테라헤르츠 광원(20)과 제2테라헤르츠 광원(40)은 각각 테라헤르츠파를 검사대상물(100)에서 교차하며 조사한다.
이 때, 검사대상물(100)의 내부에 기포, 크랙 등과 같은 이물이 존재하는 경우, 검사대상물(100)로 조사된 각 테라헤르츠파는 이물에 의해 반사되어 각 테라헤르츠 카메라(30,50)에 수신되지 않게 된다. 검사대상물(100)의 내부에 이물이 존재하지 않는 경우, 검사대상물(100)로 조사된 각 테라헤르츠파는 검사대상물(100)을 투과하며 각 테라헤르츠 카메라(30,50)에 수신되고, 각 테라헤르츠 카메라(30,50)를 통해 수신한 테라헤르츠파는 전자신호로 변환되어, 제어부(60)로 전송된다.
제어부(60)의 영상처리부(70)는 각 테라헤르츠 카메라(30,50)에 수신된 테라헤르츠파를 전송받아, 각 테라헤르츠 카메라(30,50)로부터의 검사대상물(100)의 영상이미지를 획득한다.
한편, 도 1에 도시된 바와 같이, 검사대상물 표면 이물(110a)과 검사대상물 내부 이물(110b)이 제1테라헤르츠 광원(20)의 광축상에 위치하더라도, 제1테라헤르츠 광원(20)과 제2테라헤르츠 광원(40)이 검사대상물(100)에 교차하며 각각 테라헤르츠파를 조사하므로, 제1테라헤르츠 카메라(30)에서 획득한 영상이미지로부터 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치를 확인할 수 있고, 제2테라헤르츠 카메라(50)에서 획득한 영상이미지로부터도 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치를 확인할 수 있게 된다. 이 때, 각 테라헤르츠 카메라(30,50)에 대한 각 영상이미지에서 검사대상물(100)의 이물 위치는 검사대상물(100)의 높이에 따라 서로 다른 순서로 나타나게 된다.
따라서, 영상처리부(70)에 의해 획득한 검사대상물(100)의 영상이미지 예컨대, 제1테라헤르츠 카메라(30)에서의 영상이미지와 제2테라헤르츠 카메라(50)에서의 영상이미지의 차이를 분석하여, 검사대상물(100)의 내부에 존재하는 기포, 크랙, 이물 혼입 등의 결함 위치와 높이를 정밀하게 파악할 수 있게 된다.
한편, 본 발명의 일 실시예에 따른 테라헤르츠파를 이용한 검사장치(1a)는 제1테라헤르츠 광원(20) 및 제2테라헤르츠 광원(40)이 이송 테이블(10)의 하방에 배치되고, 제1테라헤르츠 카메라(30) 및 제2테라헤르츠 카메라(50)가 이송 테이블(10)의 상방에 배치되는 것으로 도시되어 있지만 이에 한정되지 않고, 제1테라헤르츠 광원(20) 및 제2테라헤르츠 광원(40)은 이송 테이블(10)의 상방에 배치되고, 제1테라헤르츠 카메라(30) 및 제2테라헤르츠 카메라(50)는 이송 테이블(10)의 하방에 배치될 수도 있다.
도 3에는 본 발명의 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도가 도시되어 있다.
본 발명의 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치(1b)는 전술한 일 실시예와 달리, 제1테라헤르츠 광원(20)의 광축이 이송 테이블(10)에 대해 수직을 이루도록 제1테라헤르츠 광원(20)과 제1테라헤르츠 카메라(30)가 배치된다.
이와 같이, 제1테라헤르츠 광원(20)의 광축이 이송 테이블(10)에 대해 수직을 이루며 배치될 때, 검사대상물 표면 이물(110a)과 검사대상물 내부 이물(110b)이 제1테라헤르츠 광원(20)의 광축상에 위치할 경우, 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)이 동축상에 위치하므로, 제1테라헤르츠 카메라(30)에서 획득한 영상이미지로부터는 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)이 동축상에 위치하므로 도 3의 상단에 도시된 바와 같이 하나의 이미지로 표시되지만, 제2테라헤르츠 카메라(50)에서 획득한 영상이미지로부터는 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치가 간격을 두고 각각 이미지로 표시되어, 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치를 용이하게 확인할 수 있게 된다.
이로써, 제1테라헤르츠 카메라(30)에서의 영상이미지와 제2테라헤르츠 카메라(50)에서의 영상이미지의 차이를 분석하여, 검사대상물(100)의 내부에 존재하는 기포, 크랙, 이물 혼입 등의 결함 위치, 높이를 정밀하게 파악할 수 있게 된다.
한편, 본 발명의 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치(1b)는 제1테라헤르츠 광원(20) 및 제2테라헤르츠 광원(40)이 이송 테이블(10)의 하방에 배치되고, 제1테라헤르츠 카메라(30) 및 제2테라헤르츠 카메라(50)가 이송 테이블(10)의 상방에 배치되는 것으로 도시되어 있지만 이에 한정되지 않고, 제1테라헤르츠 광원(20) 및 제2테라헤르츠 광원(40)은 이송 테이블(10)의 상방에 배치되고, 제1테라헤르츠 카메라(30) 및 제2테라헤르츠 카메라(50)는 이송 테이블(10)의 하방에 배치될 수도 있다.
도 4에는 본 발명의 또 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치의 구성도가 도시되어 있다.
본 발명의 또 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치(1c)는 전술한 다른 실시예와 달리, 제2테라헤르츠 광원(40)과 제2테라헤르츠 카메라(50)는 제1테라헤르츠 카메라(30)를 사이에 두고 이송 테이블(10)의 상방에 대향 배치되어 있다.
제2테라헤르츠 광원(40)은 제1테라헤르츠 광원(20)의 광축에 대해 경사지게 마련되어, 검사대상물(100)의 제1테라헤르츠 광원(20)의 광축상에 테라헤르츠파를 조사한다.
제2테라헤르츠 카메라(50)는 제2테라헤르츠 광원(40)에서 조사되어 검사대상물(100)로부터 반사된 테라헤르츠파를 수신한다.
이와 같이, 제1테라헤르츠 광원(20)의 광축이 이송 테이블(10)에 대해 수직을 이루며 배치되고, 제2테라헤르츠 광원(40)과 제2테라헤르츠 카메라(50)가 제1테라헤르츠 카메라(30)를 사이에 두고 대향 배치될 때, 검사대상물 표면 이물(110a)과 검사대상물 내부 이물(110b)이 제1테라헤르츠 광원(20)의 광축상에 위치할 경우, 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)이 동축상에 위치하므로, 제1테라헤르츠 카메라(30)에서 획득한 영상이미지로부터는 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)이 동축상에 위치하므로 도 4의 상단에 도시된 바와 같이 하나의 이미지로 표시되지만, 제2테라헤르츠 카메라(50)에서 획득한 영상이미지로부터는 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치가 간격을 두고 각각 이미지로 표시되어, 검사대상물 표면 이물(110a) 및 검사대상물 내부 이물(110b)의 위치를 용이하게 확인할 수 있게 된다.
이로써, 제1테라헤르츠 카메라(30)에서의 영상이미지와 제2테라헤르츠 카메라(50)에서의 영상이미지의 차이를 분석하여, 검사대상물(100)의 내부에 존재하는 기포, 크랙, 이물 혼입 등의 결함 위치, 높이를 정밀하게 파악할 수 있게 된다.
한편, 본 발명의 또 다른 실시예에 따른 테라헤르츠파를 이용한 검사장치(1c)는 제1테라헤르츠 광원(20)이 이송 테이블(10)의 하방에 배치되고, 제1테라헤르츠 카메라(30)가 이송 테이블(10)의 상방에 배치되며, 제2테라헤르츠 광원(40)과 제2테라헤르츠 카메라(50)가 이송 테이블(10)의 상방에 배치되는 것으로 도시되어 있지만 이에 한정되지 않고, 제1테라헤르츠 광원(20)은 이송 테이블(10)의 상방에 배치되고, 제1테라헤르츠 카메라(30)는 이송 테이블(10)의 하방에 배치되며, 제2테라헤르츠 광원(40)과 제2테라헤르츠 카메라(50)는 이송 테이블(10)의 하방에 배치될 수도 있다.
이와 같이, 본 발명에 따르면, 한 쌍의 테라헤르츠파를 검사대상물에 교차시키며 조사함으로써, 검사대상물에 함유된 이물의 위치와 깊이를 파악하여, 입체적으로 정밀하게 검사할 수 있게 된다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술 분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (7)

  1. 검사대상물이 안착되는 테이블;
    상기 테이블에 안착된 상기 검사대상물에 테라헤르츠파를 조사하는 제1테라헤르츠 광원;
    상기 제1테라헤르츠 광원과 광축을 이루며 상기 검사대상물을 투과한 테라헤르츠파를 수신하는 제1테라헤르츠 카메라;
    상기 제1테라헤르츠의 광축에 대해 경사지게 상기 검사대상물의 상기 제1테라헤르츠 광원의 광축상에 테라헤르츠파를 조사하는 제2테라헤르츠 광원; 및
    상기 제2테라헤르츠 광원에 의해 상기 검사대상물을 투과한 테라헤르츠파 또는 상기 검사대상물로부터 반사된 테라헤르츠파를 수신하는 제2테라헤르츠 카메라를 포함하는, 테라헤르츠파를 이용한 검사장치.
  2. 제1항에 있어서,
    상기 제1테라헤르츠 광원 및 상기 제2테라헤르츠 광원은 상기 테이블의 하방에 배치되고, 상기 제1테라헤르츠 카메라 및 상기 제2테라헤르츠 카메라는 상기 테이블의 상방에 배치되는, 테라헤르츠파를 이용한 검사장치.
  3. 제1항에 있어서,
    상기 제1테라헤르츠 광원의 광축은 상기 검사대상물에 대해 경사를 이루거나, 또는 수직을 이루는, 테라헤르츠파를 이용한 검사장치.
  4. 제1항에 있어서,
    상기 제1테라헤르츠 광원은 상기 테이블의 하방에 배치되고, 상기 제1테라헤르츠 카메라는 상기 테이블의 상방에 배치되며, 상기 제2테라헤르츠 광원과 상기 제2테라헤르츠 카메라는 상기 제1테라헤르츠 카메라를 사이에 두고 상기 테이블의 상방에 대향 배치되는, 테라헤르츠파를 이용한 검사장치.
  5. 제1항에 있어서,
    상기 테이블은 테라헤르츠파가 투과되는 재질로 이루어진, 테라헤르츠파를 이용한 검사장치.
  6. 제1항에 있어서,
    상기 테이블은 상기 검사대상물이 이송되는 이송 경로를 형성하는, 테라헤르츠파를 이용한 검사장치.
  7. 제1항에 있어서,
    상기 제1테라헤르츠 카메라와 상기 제2테라헤르츠 카메라로부터 영상신호를 받는 제어부를 더 포함하고, 상기 제어부는 상기 영상신호를 조합하여 3차원 영상이미지를 생성하는, 테라헤르츠파를 이용한 검사장치.
PCT/KR2019/017849 2018-12-28 2019-12-17 테라헤르츠파를 이용한 검사장치 WO2020138808A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0172509 2018-12-28
KR1020180172509A KR20200082178A (ko) 2018-12-28 2018-12-28 테라헤르츠파를 이용한 검사장치

Publications (1)

Publication Number Publication Date
WO2020138808A1 true WO2020138808A1 (ko) 2020-07-02

Family

ID=71129105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017849 WO2020138808A1 (ko) 2018-12-28 2019-12-17 테라헤르츠파를 이용한 검사장치

Country Status (2)

Country Link
KR (1) KR20200082178A (ko)
WO (1) WO2020138808A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070024645A (ko) * 2004-05-26 2007-03-02 피코메트릭스 엘엘씨 반사 및 전송 모드에서의 수화물 및 승객 검사용테라헤르쯔 영상
US20070228280A1 (en) * 2005-09-20 2007-10-04 Mueller Eric R Identification of hidden objects by terahertz heterodyne laser imaging
KR101795992B1 (ko) * 2017-06-22 2017-11-10 한양대학교 산학협력단 테라헤르츠파를 이용한 튜브 형태 시편 분석장치 및 이를 이용한 튜브 형태 시편 분석방법
KR101840284B1 (ko) * 2016-11-04 2018-03-22 (주)레이텍 테라헤르츠파 물체 검사 장치
KR20180111421A (ko) * 2017-06-10 2018-10-11 심상근 다리공간이 있는 침대

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035394A (ja) 2014-08-01 2016-03-17 パイオニア株式会社 テラヘルツ波撮像装置及びテラヘルツ波撮像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070024645A (ko) * 2004-05-26 2007-03-02 피코메트릭스 엘엘씨 반사 및 전송 모드에서의 수화물 및 승객 검사용테라헤르쯔 영상
US20070228280A1 (en) * 2005-09-20 2007-10-04 Mueller Eric R Identification of hidden objects by terahertz heterodyne laser imaging
KR101840284B1 (ko) * 2016-11-04 2018-03-22 (주)레이텍 테라헤르츠파 물체 검사 장치
KR20180111421A (ko) * 2017-06-10 2018-10-11 심상근 다리공간이 있는 침대
KR101795992B1 (ko) * 2017-06-22 2017-11-10 한양대학교 산학협력단 테라헤르츠파를 이용한 튜브 형태 시편 분석장치 및 이를 이용한 튜브 형태 시편 분석방법

Also Published As

Publication number Publication date
KR20200082178A (ko) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2020138809A1 (ko) 테라헤르츠파를 이용한 검사장치
US5459330A (en) Process and device for the inspection of glass
WO2017111418A1 (ko) 균열 측정 장치 및 방법
WO2011087337A2 (ko) 기판 검사장치
WO2019132123A1 (ko) 테라헤르츠파 기반의 복합재 구조물 비파괴 비접촉 검사 장치 및 방법
WO2011083989A2 (ko) 결점 검사장치
WO2020138808A1 (ko) 테라헤르츠파를 이용한 검사장치
KR20090107400A (ko) 기판 검사 장치 및 이를 갖는 공정 설비
CN101464417A (zh) 玻璃检测方法及其设备
TWI622764B (zh) 用於表面異物檢測的自動光學檢測系統
WO2022092505A1 (ko) 비접촉 광음향 영상을 이용한 고주파 열처리 금속 내부의 비파괴 결함 검사 장치 및 방법
WO2020138810A1 (ko) 테라헤르츠파를 이용한 검사장치
WO2017090922A1 (ko) 슬릿광원 및 그를 가지는 비전검사장치
WO2017185545A1 (zh) 鞋内物品检测设备
WO2022211330A1 (ko) 표면 광학 검사 장치
WO2018048040A1 (ko) 비파괴 검사용 엔코더 치구
US6556298B1 (en) Method and system for non-destructive dye penetration testing of a surface
WO2014185746A1 (ko) 생검 바늘 가이드 장치
KR102148748B1 (ko) 간섭 회피 검사를 위한 엑스레이 검사 장치
WO2011108855A2 (ko) 기형 초음파 전파 영상화 장치
CN206459974U (zh) 一种fpc板检验设备
WO2013122442A1 (ko) 엘이디 부품의 검사장치 및 검사방법
CN108435582A (zh) 引脚不正的网络变压器自动筛选装置
JPH0518900A (ja) レンズ欠陥検査方法及び検査装置
CN203148862U (zh) 玻璃瓶缺陷检测装置和分像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902352

Country of ref document: EP

Kind code of ref document: A1