WO2020138739A2 - Shower head for chemical vapor deposition and deposition apparatus including same - Google Patents

Shower head for chemical vapor deposition and deposition apparatus including same Download PDF

Info

Publication number
WO2020138739A2
WO2020138739A2 PCT/KR2019/016615 KR2019016615W WO2020138739A2 WO 2020138739 A2 WO2020138739 A2 WO 2020138739A2 KR 2019016615 W KR2019016615 W KR 2019016615W WO 2020138739 A2 WO2020138739 A2 WO 2020138739A2
Authority
WO
WIPO (PCT)
Prior art keywords
supply
discharge
tube
manifold
shower head
Prior art date
Application number
PCT/KR2019/016615
Other languages
French (fr)
Korean (ko)
Other versions
WO2020138739A3 (en
Inventor
육영진
박진섭
김가현
Original Assignee
(주)에스테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스테크 filed Critical (주)에스테크
Publication of WO2020138739A2 publication Critical patent/WO2020138739A2/en
Publication of WO2020138739A3 publication Critical patent/WO2020138739A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to a shower head for chemical vapor deposition and a deposition apparatus having the same, and more specifically, the supply tube for supplying reactive gas and the discharge tube for discharging exhaust gas after reaction are efficiently arranged to miniaturize the reaction chamber.
  • the present invention relates to a chemical vapor deposition shower head and a deposition apparatus having the same.
  • a vacuum plasma reaction device is used in a thin film deposition and etching process during solar cell, semiconductor, and display manufacturing processes, and the vacuum plasma reaction device is a capacitively coupled plasma (CCP) and an ICP (according to the plasma generation structure).
  • CCP capacitively coupled plasma
  • ICP according to the plasma generation structure.
  • Inductively Coupled Plasma Inductively Coupled Plasma
  • the vacuum plasma reaction apparatus includes an injector for supplying a reactive gas and a reaction chamber provided with an exhaust port for discharging the gas after the reaction, but the conventional injector and the exhaust port are disposed at mutually spaced locations within the reaction chamber.
  • An example of the arrangement of a conventional injector and an exhaust port is a structure in which an injector for supplying a reaction gas is provided above the reaction chamber, and an exhaust port for exhausting gas is formed below the reaction chamber.
  • the size of the reaction chamber is increased more than necessary due to the inefficient arrangement of the injector and the exhaust port, as well as the reaction chamber.
  • the technical problem to be solved in the present invention is to provide a shower head for chemical vapor deposition and a deposition apparatus having the same, which can efficiently arrange a supply tube for supplying a reactive gas and a discharge tube for discharging the exhaust gas after the reaction. .
  • the present invention is to provide a shower head for chemical vapor deposition capable of miniaturization of a reaction chamber and a deposition apparatus equipped with the same, even when implementing a device for mass production or large area through efficient arrangement of a supply tube and a discharge tube.
  • the present invention provides a chemical vapor deposition shower head and a deposition apparatus having the same, which can shorten the residence time of the reaction gas in the reaction chamber.
  • the shower head for chemical vapor deposition according to the present invention for solving the above technical problem includes a supply tube for supplying a reactive gas and a discharge tube for discharging the exhaust gas after the reaction, wherein the supply tube and the discharge tube are processes Arranged on one side of the substrate, one tube of the supply tube and the discharge tube may be arranged inside the other tube.
  • the end of the supply tube may be disposed relatively closer to the process substrate than the end of the discharge tube.
  • the supply manifold provided with the supply tube and further includes a discharge manifold provided with the discharge tube, and the supply manifold and the discharge manifold may be stacked in the vertical direction.
  • the supply manifold and the discharge manifold may further include a height adjustment unit for adjusting the separation distance between each other.
  • a through hole through which a tube provided in a manifold disposed above may pass may be formed in a manifold disposed below the supply manifold and the discharge manifold.
  • one of the supply manifold and the discharge manifold is provided with a guide bar extending in the vertical direction, and a guide hole through which the guide bar can be formed may be formed in the other manifold.
  • a deposition apparatus equipped with a shower head for chemical vapor deposition according to the present invention includes a supply manifold provided with a supply tube to supply a reaction gas to a process substrate, and a discharge manifold provided with a discharge tube to discharge the exhaust gas after reaction It may include a shower head equipped with a plurality of the reaction head is disposed inside the reaction chamber.
  • a plurality of shower heads are stacked in the vertical direction, and supply pipes simultaneously supplying reaction gas to the plurality of supply manifolds and exhaust gases discharged from the plurality of discharge manifolds. It may further include a discharge pipe for discharging at the same time.
  • a plurality of the shower heads are continuously arranged on a plane inside the reaction chamber, and the reaction gas supplied through the supply pipe is supplied to the process substrate while sequentially passing through the plurality of supply manifolds, and after reaction
  • the exhaust gas may be discharged through an exhaust pipe while sequentially passing through the plurality of exhaust manifolds.
  • connection part may be provided to connect a plurality of adjacent shower heads to each other.
  • the connecting portion may include a coupling protrusion provided in one shower head so that a plurality of the shower heads are directly connected to each other, and a coupling groove provided in the other shower head to be combined with the coupling protrusion.
  • the connecting portion may include a connecting pipe communicating the plurality of shower heads.
  • the supply tube for supplying the reactant gas and the exhaust tube for discharging the exhaust gas after the reaction are superimposed and space utilization is improved. Therefore, it is possible to secure design freedom.
  • the supply tube and the discharge tube are efficiently arranged, miniaturization is possible even when implementing a device for mass production or large area.
  • the residence time of the reaction gas in the reaction chamber is shortened, it is possible to effectively prevent the reaction gas or the inside of the reaction chamber from being contaminated, and the process speed can be improved.
  • FIG. 1 is a perspective view showing a shower head according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing the arrangement state of the supply tube and the discharge tube of the present invention
  • Figure 2 (a) is a view showing the arrangement state according to an embodiment
  • Figure 2 (b) is according to another embodiment It is a diagram showing the arrangement state.
  • FIG 3 is a cross-sectional view showing a state in which the shower head is separated according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a state in which a shower head is combined according to an embodiment of the present invention.
  • Figure 5 (a) is a cross-sectional view showing a supply flow path inside the supply manifold according to an embodiment of the present invention
  • Figure 5 (b) is a discharge flow path inside the discharge manifold according to an embodiment of the present invention It is a sectional view showing.
  • FIG. 6 is a side view showing a shower head according to another embodiment of the present invention.
  • FIG. 7 is a side view showing a deposition apparatus according to an embodiment of the present invention.
  • FIG. 8 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention.
  • FIG. 9 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a shower head according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing the arrangement of the supply tube and the discharge tube of the present invention
  • Figure 2 (a) is according to an embodiment
  • Figure 2 (b) is a view showing the arrangement state according to another embodiment
  • Figure 3 is a cross-sectional view showing a state in which the shower head according to an embodiment of the present invention is separated
  • 4 is a cross-sectional view showing a state in which a shower head is coupled according to an embodiment of the present invention
  • FIG. 5(a) is a cross-sectional view showing a supply flow path inside the supply manifold according to an embodiment of the present invention
  • Figure 5 (b) is a cross-sectional view showing a discharge flow path inside the discharge manifold according to an embodiment of the present invention
  • Figure 6 is a side view showing a shower head according to another embodiment of the present invention
  • Figure 7 Is a side view showing a deposition apparatus according to an embodiment of the present invention
  • Figure 8 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention
  • Figure 9 is another view of the present invention It is a plan view showing a supply manifold provided in the vapor deposition apparatus according to the embodiment.
  • the shower head for chemical vapor deposition includes a supply tube 110 for supplying a reaction gas and a discharge tube 210 for discharging the exhaust gas after the reaction .
  • the supply tube 110 and the discharge tube 210 are provided on one side of the process substrate 10, in particular, one tube of the supply tube 110 and the discharge tube 210 is disposed inside the other tube do.
  • the placement efficiency is reduced by placing the injectors and the exhaust ports spaced apart from each other, and there have been many problems due to an increase in the residence time of the reaction gas, but in the case of an embodiment of the present invention, the supply tube 110 and the discharge By supplying one of the tubes of the tube 210 inside the other tube, the supply tube 110 and the discharge tube 210 are provided on one side of the process substrate 10 to improve the batch efficiency and the reaction gas It is possible to shorten the residence time.
  • a plurality of supply tubes 110 and discharge tubes 210 may be provided in the supply manifold 100 and the exhaust manifold 200, which will be described later, and the arrangement may be arranged in a lattice structure.
  • the lattice structure is a polygonal structure, and geometric arrangements such as a hexagon (honeycomb), a pentagon, and an intersection are possible.
  • the supply tube 110 and the discharge tube 210 may be made of non-conductor such as quartz or ceramic for plasma reaction.
  • the reaction gas When the reaction gas is supplied into the reaction chamber 30 to be described later through the supply tube 110, the plasma reaction is performed and the exhaust gas is discharged through the discharge tube 210. Therefore, as described above, when the supply tube 110 and the discharge tube 210 are arranged in a lattice shape, it is possible to completely create the same environment in the reactivity of the reactant gas at the center and edge portions of the process substrate 10. That is, the reaction gas stays in the reaction chamber 30 for a short time and is immediately discharged, and it is possible to improve the process speed through rapid discharge of the reaction gas.
  • a mass flow controller may be installed to control the flow rate of the reaction gas supplied through the supply tube 110.
  • a throttle valve is installed between the discharge tube 210 and a pump (not shown) connected thereto to control the flow rate of the discharged gas discharged through the discharge tube 210 and the pressure in the reaction chamber 30. Can be.
  • the end of the supply tube 110 may be disposed relatively closer to the process substrate 10 than the end of the discharge tube 210.
  • the end of the supply tube 110 may be disposed relatively closer to the process substrate 10 than the end of the discharge tube 210.
  • the arrangement of the supply tube 110 and the discharge tube 210 is as shown in (a) of FIG. 2, the supply tube 110 in a state in which the supply tube 110 is arranged inside the discharge tube 210 ) May be disposed closer to the process substrate 10 than the end of the discharge tube 210. Or, as shown in Figure 2 (b), in the state that the discharge tube 210 is configured to be disposed inside the supply tube 110, the end of the supply tube 110 is more process than the end of the discharge tube 210 It may be disposed relatively adjacent to the substrate 10.
  • the ratio of the supply area surrounded by the inner circumferential surface of the supply tube 110 and the discharge area between the inner circumferential surface of the discharge tube 210 and the outer circumferential surface of the supply tube 110 is 1: Although it may be configured as 1, the ratio of the supply area and the discharge area may be configured in a ratio of 1:2, 1:3, 1:4, etc. depending on the reaction conditions.
  • the reaction gas is a gas diluted with at least one selected from SiH 4 , Si 2 H 6 , SiCl 4 , SiHCl 3 , and SiF 4 in the deposition process in H 2 or He gas.
  • the reaction gas may be characterized in that the gas is a mixture of one or more selected from C 4 F 8 , NF 3 , SF 6 , Ar, O 2 during the etching process.
  • the reaction gas may be a concept including a precursor gas.
  • the reaction gas is decomposed in a plasma atmosphere to deposit a thin silicon film on the substrate.
  • the plasma frequency for the plasma reaction may be 13.56 MHz, 27.12 MHz, 40 MHz, 54.24 MHz, 60 MHz, and the like.
  • the process pressure during etching may be about 1 to 100 mTorr, and the process pressure during deposition may be about 50 mTorr to atmospheric pressure (ie, about 760 Torr).
  • the supply manifold 100 is provided with a plurality of supply tubes (110). Inside the supply manifold 100, as shown in Fig. 5 (a), a supply flow path 101 through which the reaction gas moves is formed, and the supply flow path 101 has a plurality of supply tubes 110 It is formed to communicate with each other.
  • the reaction gas is supplied to one side of the supply manifold 100, it moves to the plurality of supply tubes 110 through the supply flow path 101 and is then supplied into the reaction chamber 30.
  • the discharge manifold 200 is provided with a plurality of discharge tubes (210). Inside the discharge manifold 200, as shown in Figure 5 (b), the discharge flow path 201 to which the discharge gas moves after the reaction is formed, the discharge flow path 201 is a plurality of discharge tubes 210 ) Are formed to communicate with each other. After the reaction inside the reaction chamber 30, the exhaust gas moves to the discharge tube 210, and then is discharged to the outside of the reaction chamber 30 through the discharge channel 201.
  • the supply manifold 100 and the exhaust manifold 200 are coupled by relative movement such that the supply manifolds 100 and the exhaust manifolds 200 are stacked with each other in a state of being vertically arranged. do.
  • the supply tube 110 penetrates through the inside of the discharge tube 210, and as shown in FIG. 4, the supply manifold ( 100) and the discharge manifold 200 is completed, the end of the supply tube 110 is disposed relatively closer to the process substrate 10 than the end of the discharge tube 210.
  • the supply manifold 100 and the discharge manifold 200 may be provided with a height adjustment unit 300 for adjusting the separation distance between each other.
  • the height adjustment unit 300 may be configured such that the height of the supply manifold 100 is adjusted while the height of the discharge manifold 200 is fixed, but on the contrary, the supply manifold It is also possible to configure the height of the discharge manifold 200 to be adjusted while the height of the 100 is fixed. Alternatively, it is also possible to configure the height of both the supply manifold 100 and the discharge manifold 200 to be adjusted.
  • the height adjustment unit 300 When the height adjustment unit 300 is provided as described above, it is possible to adjust the protruding length in which the supply tube 110 is exposed to the outside of the discharge tube 210, thereby enabling adjustment of the protruding length according to the reaction conditions. .
  • the height adjustment unit 300 may be configured using the rack 310 and the pinion 320, but any configuration can be used as long as the height is adjustable such as a ball screw.
  • a through hole 200a through which a tube provided in a manifold disposed above is penetrated may be formed in a manifold disposed below the supply manifold 100 and the discharge manifold 200. That is, as shown in FIG. 3, when the supply manifold 100 is disposed above the discharge manifold 200, a through hole 200a is formed in the discharge manifold 200 disposed below.
  • the supply tube 110 provided in the supply manifold 100 is inserted into the discharge tube 210 after passing through the through hole 200a.
  • a separate sealing member (not shown) is provided between the through hole 200a formed in the discharge manifold 200 and the supply tube 110, and the discharge manifold 200 is provided by providing the sealing member as described above. ) It is possible to prevent the exhaust gas moving inside from leaking to the outside.
  • the discharge manifold 200 it is also possible to configure the discharge manifold 200 to be disposed above the supply manifold 100, in which case the supply manifold 100 has a through hole 200a through which the discharge tube 210 passes. do. Also in this case, as described above, it is preferable that a separate sealing member (not shown) is provided between the through-hole 200a formed in the supply manifold 100 and the discharge tube 210, through which the supply manifold is provided. It is possible to prevent the reaction gas moving inside the fold 100 from leaking to the outside.
  • the supply tube 110 provided in the supply manifold 100 passes through the discharge tube 210 provided in the discharge manifold 200, wherein the supply tube 110 and the discharge tube ( It is preferable that the supply tube 110 is configured to pass through the discharge tube 210 while the central axis of the 210) is disposed on the coaxial. If the central axis of the supply tube 110 and the discharge tube 210 are arranged to be inclined to each other, the discharge area formed between the supply tube 110 and the discharge tube 210 is not constant, so discharge of the exhaust gas is smooth. Because it may not be.
  • one of the supply manifold 100 and the discharge manifold 200 is provided with a guide bar 410 formed extending in the vertical direction, and the guide bar 410 described above is drawn into the other manifold.
  • a possible guide hole 420 is formed.
  • the guide bar 410 may be extended to the supply manifold 100 and the guide hole 420 may be formed to the discharge manifold 200.
  • the guide bar 410 and the guide hole 420 may be formed in a state in which the formation positions thereof are mutually changed.
  • a deposition apparatus equipped with a shower head for chemical vapor deposition includes a supply manifold 100 provided with a supply tube 110 to supply a reaction gas to the process substrate 10, and exhaust gas after reaction
  • the discharge manifold 200 provided with the discharge tube 210 to discharge the shower head 20 and a reaction chamber 30 in which the shower head 20 is disposed.
  • the temperature of the process substrate 10 needs to be adjusted in the range of about 100 to 1300°C to ensure reactivity.
  • the crystalline silicon substrate temperature needs to be adjusted in the range of 200 to 950°C. Therefore, this temperature should be maintained uniformly over the entire process substrate 10.
  • a heater may be provided on the process substrate 10, and an induction heater may be used as the heater.
  • the heater is coated with a coating layer on the surface of the heater to prevent corrosion reactions from corrosive reaction gases. Therefore, the coating layer is formed through coating of quartz, ceramic, silicon nitride film, and silicon carbide film.
  • a deposition apparatus equipped with a shower head for chemical vapor deposition may generate plasma in a capacitively coupled plasma (CCP) method.
  • CCP capacitively coupled plasma
  • electron acceleration occurs due to an electric field formed between electrodes, and plasma can be formed by obtaining energy from these accelerated electrons.
  • an electric field is formed by DC voltage between upper and lower electrodes, and plasma is generated and controlled, and it is advantageous to secure plasma uniformity.
  • a plurality of shower heads 20 may be disposed inside the reaction chamber 30.
  • a plurality of shower heads 20 are provided as described above, it is possible to process a large number of process substrates 10 or a large area process substrate 10.
  • a shielding film (not shown) for shielding electromagnetic waves may be additionally configured outside the reaction chamber 30.
  • the plurality of shower heads 20 it is possible to configure the plurality of shower heads 20 to be stacked in the vertical direction inside the reaction chamber 30.
  • the injector for supplying the process gas and the exhaust port for discharging the gas are formed at spaced apart positions, it was difficult to arrange a plurality of them in the vertical direction, but in the case of one embodiment of the present invention, the supply tube 110 and the discharge Since the tubes 210 are mutually superposed on one side of the process substrate 10, even if a plurality of shower heads 20 are stacked in the vertical direction, the structure is not complicated, so space utilization is improved and design freedom is ensured. .
  • the supply pipe 120 is provided to simultaneously supply the reaction gas to the plurality of supply manifolds 100 in the state where the shower head 20 is stacked in the vertical direction, and the plurality of discharge manifolds 200 are provided.
  • the discharge pipe 220 may be provided to simultaneously discharge the exhaust gas discharged from.
  • the reaction chamber 30 may be provided with a partition member 31 so that a plurality of shower heads 20 stacked in the vertical direction are disposed in mutually distinct regions.
  • the partition member 31 may be partitioned such that the shower heads 20 are disposed in mutually distinct regions within the single reaction chamber 30, or, the single reaction chamber 30 may include a plurality of reaction chambers 30. ).
  • reaction gas supplied through the supply pipe 120 is supplied to the process substrate 10 while sequentially passing through the plurality of supply manifolds 100, and after the reaction, the exhaust gas reacts with the plurality of exhaust manifolds 200. It is configured to be discharged through the discharge pipe 220 while passing sequentially.
  • connection part 500 may be provided so that a plurality of adjacent shower heads 20 are interconnected.
  • connection part 500 includes a coupling protrusion 510 provided on one side of the shower head 20 such that a plurality of shower heads 20 are directly connected to each other, and such a coupling protrusion ( 510) may include a coupling groove 520 provided in the other shower head 20.
  • a coupling protrusion 510 provided on one side of the shower head 20 such that a plurality of shower heads 20 are directly connected to each other
  • a coupling protrusion ( 510) may include a coupling groove 520 provided in the other shower head 20.
  • connection part 500 may include a connection pipe 530 communicating the plurality of shower heads 20.
  • connection pipe 530 communicating the plurality of shower heads 20.
  • the supply tube 110 and the discharge tube 210 are efficiently arranged, miniaturization is possible even when implementing a device for mass production or large area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

The present invention relates to a shower head for chemical vapor deposition and a deposition apparatus including same and, more particularly, to a shower head for chemical vapor deposition, which includes a supply tube for supplying reaction gas, a discharge tube for discharging discharge gas after reaction, and a reaction chamber, wherein the reaction chamber can be downsized by efficiently disposing the supply tube and the discharge tube and process speed can be improved by reducing residence time of the reaction gas. The present invention also relates to a deposition apparatus including same. To this end, the shower head for chemical vapor deposition according to the present invention includes a supply tube for supplying reaction gas and a discharge tube for discharging discharge gas after reaction. The supply tube and the discharge tube are disposed on one side of a process substrate, wherein one of the supply tube and the discharge tube may be disposed inside the other tube.

Description

화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치Shower head for chemical vapor deposition and vapor deposition apparatus having same
본 발명은 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치에 관한 것으로, 더욱 상세하게는 반응 가스 공급을 위한 공급 튜브와 반응 후 배출 가스의 배출을 위한 배출 튜브를 효율적으로 배치하여 반응 챔버의 소형화가 가능하고, 반응 가스 체류 시간 단축을 통한 공정 속도 향상이 가능한 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치에 관한 것이다.The present invention relates to a shower head for chemical vapor deposition and a deposition apparatus having the same, and more specifically, the supply tube for supplying reactive gas and the discharge tube for discharging exhaust gas after reaction are efficiently arranged to miniaturize the reaction chamber. The present invention relates to a chemical vapor deposition shower head and a deposition apparatus having the same.
일반적으로 태양전지, 반도체, 디스플레이 제조 공정 중 박막 증착 및 식각 공정에서는 진공 플라즈마 반응 장치가 사용되며, 이러한 진공 플라즈마 반응 장치는 플라즈마 발생 구조에 따라 CCP(Capacitively Coupled Plasma: 용량 결합성 플라즈마)와 ICP(Inductively Coupled Plasma: 유도 결합성 플라즈마)로 구분된다.In general, a vacuum plasma reaction device is used in a thin film deposition and etching process during solar cell, semiconductor, and display manufacturing processes, and the vacuum plasma reaction device is a capacitively coupled plasma (CCP) and an ICP (according to the plasma generation structure). Inductively Coupled Plasma (Inductively Coupled Plasma).
이러한 진공 플라즈마 반응 장치는 반응 가스 공급을 위한 인젝터와 반응 후 가스를 배출하기 위한 배기구가 구비된 반응 챔버를 포함하되, 종래의 인젝터와 배기구는 반응 챔버 내에서 상호 이격된 위치에 배치된다.The vacuum plasma reaction apparatus includes an injector for supplying a reactive gas and a reaction chamber provided with an exhaust port for discharging the gas after the reaction, but the conventional injector and the exhaust port are disposed at mutually spaced locations within the reaction chamber.
종래의 인젝터와 배기구의 배치 예로는, 반응 챔버의 상측에 반응 가스 공급을 위한 인젝터가 구비되고, 반응 챔버의 하측에 가스 배출을 위한 배기구가 형성되는 구조이다.An example of the arrangement of a conventional injector and an exhaust port is a structure in which an injector for supplying a reaction gas is provided above the reaction chamber, and an exhaust port for exhausting gas is formed below the reaction chamber.
다만, 인젝터와 배기구가 이와 같이 배치되는 경우 반응 챔버를 구성하는 부품 간의 배치가 복잡해져서 설계 자유도가 감소하게 되고, 결국 반응 챔버 내의 구성 부품의 효율적인 배치가 어렵게 된다.However, when the injector and the exhaust port are arranged in this way, the arrangement between the components constituting the reaction chamber is complicated, so that the degree of freedom in design is reduced, and eventually it is difficult to efficiently arrange the components in the reaction chamber.
또한, 전술한 바와 같은 인젝터와 배기구의 배치를 이용해서 대량 생산 또는 대면적을 위한 장치를 구현하게 되면 인젝터와 배기구의 비효율적인 배치로 인해 반응 챔버의 크기가 필요 이상으로 커지게 될 뿐만 아니라 반응 챔버 내에서 반응 가스의 체류 시간이 길어짐으로 인해 반응 가스의 오염 확률이 높아지고, 반응 챔버 내부도 오염되는 문제가 있게 된다.In addition, when the apparatus for mass production or large area is implemented using the arrangement of the injector and the exhaust port as described above, the size of the reaction chamber is increased more than necessary due to the inefficient arrangement of the injector and the exhaust port, as well as the reaction chamber. The longer the residence time of the reaction gas within, the higher the probability of contamination of the reaction gas, and there is a problem that the inside of the reaction chamber is also contaminated.
따라서 이러한 부분에 대한 개선이 필요한 실정이다.Therefore, it is necessary to improve these areas.
본 발명에서 해결하고자 하는 기술적 과제는 반응 가스 공급을 위한 공급 튜브와 반응 후 배출 가스의 배출을 위한 배출 튜브를 효율적으로 배치할 수 있는 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치를 제공하는 것이다.The technical problem to be solved in the present invention is to provide a shower head for chemical vapor deposition and a deposition apparatus having the same, which can efficiently arrange a supply tube for supplying a reactive gas and a discharge tube for discharging the exhaust gas after the reaction. .
또한, 본 발명은 공급 튜브와 배출 튜브의 효율적인 배치를 통해 대량 생산 또는 대면적을 위한 장치 구현 시에도 반응 챔버의 소형화가 가능한 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치를 제공하는 것이다.In addition, the present invention is to provide a shower head for chemical vapor deposition capable of miniaturization of a reaction chamber and a deposition apparatus equipped with the same, even when implementing a device for mass production or large area through efficient arrangement of a supply tube and a discharge tube.
아울러 본 발명은 반응 챔버 내에서 반응 가스의 체류 시간을 단축시킬 수 있는 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치를 제공하는 것이다.In addition, the present invention provides a chemical vapor deposition shower head and a deposition apparatus having the same, which can shorten the residence time of the reaction gas in the reaction chamber.
상기한 기술적 과제를 해결하기 위한 본 발명에 따른 화학 기상 증착용 샤워 헤드는, 반응 가스를 공급하는 공급 튜브 및 반응 후 배출 가스를 배출하는 배출 튜브를 포함하고, 상기 공급 튜브와 상기 배출 튜브는 공정 기판의 일측에 배치되되, 상기 공급 튜브와 상기 배출 튜브 중 어느 하나의 튜브는 다른 하나의 튜브의 내측에 배치될 수 있다.The shower head for chemical vapor deposition according to the present invention for solving the above technical problem includes a supply tube for supplying a reactive gas and a discharge tube for discharging the exhaust gas after the reaction, wherein the supply tube and the discharge tube are processes Arranged on one side of the substrate, one tube of the supply tube and the discharge tube may be arranged inside the other tube.
이때, 상기 공급 튜브의 끝단은 상기 배출 튜브의 끝단보다 상대적으로 상기 공정 기판에 더 인접하게 배치될 수 있다.At this time, the end of the supply tube may be disposed relatively closer to the process substrate than the end of the discharge tube.
상기 공급 튜브가 구비된 공급 매니폴드와, 상기 배출 튜브가 구비된 배출 매니폴드를 더 포함하고, 상기 공급 매니폴드와 상기 배출 매니폴드는 상하 방향으로 적층 배치될 수 있다.The supply manifold provided with the supply tube, and further includes a discharge manifold provided with the discharge tube, and the supply manifold and the discharge manifold may be stacked in the vertical direction.
이때, 상기 공급 매니폴드와 상기 배출 매니폴드 상호 간의 이격거리를 조절하는 높이 조절부를 더 포함할 수 있다.At this time, the supply manifold and the discharge manifold may further include a height adjustment unit for adjusting the separation distance between each other.
또한, 상기 공급 매니폴드와 상기 배출 매니폴드 중 하부에 배치된 매니폴드에는 상부에 배치된 매니폴드에 구비된 튜브가 관통하는 관통홀이 형성될 수 있다.In addition, a through hole through which a tube provided in a manifold disposed above may pass may be formed in a manifold disposed below the supply manifold and the discharge manifold.
이때, 상기 공급 매니폴드와 상기 배출 매니폴드 중 어느 하나의 매니폴드에는 상하 방향으로 연장 형성된 가이드 바가 구비되고, 다른 하나의 매니폴드에는 상기 가이드 바가 인입 가능한 가이드 홀이 형성될 수 있다.At this time, one of the supply manifold and the discharge manifold is provided with a guide bar extending in the vertical direction, and a guide hole through which the guide bar can be formed may be formed in the other manifold.
본 발명에 따른 화학 기상 증착용 샤워 헤드가 구비된 증착 장치는, 공정 기판에 반응 가스를 공급하도록 공급 튜브가 구비된 공급 매니폴드와, 반응 후 배출 가스를 배출하도록 배출 튜브가 구비된 배출 배니폴드가 구비된 샤워 헤드 및 복수 개의 상기 샤워 헤드가 내부에 배치된 반응 챔버를 포함할 수 있다.A deposition apparatus equipped with a shower head for chemical vapor deposition according to the present invention includes a supply manifold provided with a supply tube to supply a reaction gas to a process substrate, and a discharge manifold provided with a discharge tube to discharge the exhaust gas after reaction It may include a shower head equipped with a plurality of the reaction head is disposed inside the reaction chamber.
이때, 상기 반응 챔버의 내부에는 복수 개의 상기 샤워 헤드가 상하 방향으로 적층 배치되며, 복수 개의 상기 공급 매니폴드에 동시에 반응 가스를 공급하는 공급 파이프와, 복수 개의 상기 배출 매니폴드에서 배출되는 배출 가스를 동시에 배출하는 배출 파이프를 더 포함할 수 있다.At this time, inside the reaction chamber, a plurality of shower heads are stacked in the vertical direction, and supply pipes simultaneously supplying reaction gas to the plurality of supply manifolds and exhaust gases discharged from the plurality of discharge manifolds. It may further include a discharge pipe for discharging at the same time.
또는, 상기 반응 챔버의 내부에는 복수 개의 상기 샤워 헤드가 평면 상에서 연속적으로 배치되며, 공급 파이프를 통해 공급된 반응 가스는 복수 개의 상기 공급 매니폴드를 순차적으로 경유하면서 상기 공정 기판에 공급되고, 반응 후 배출 가스는 복수 개의 상기 배출 매니폴드를 순차적으로 경유하면서 배출 파이프를 통해 배출될 수도 있다.Alternatively, a plurality of the shower heads are continuously arranged on a plane inside the reaction chamber, and the reaction gas supplied through the supply pipe is supplied to the process substrate while sequentially passing through the plurality of supply manifolds, and after reaction The exhaust gas may be discharged through an exhaust pipe while sequentially passing through the plurality of exhaust manifolds.
이때, 인접 배치되는 복수 개의 상기 샤워 헤드가 상호 연결되도록 연결부가 구비될 수 있다.In this case, a connection part may be provided to connect a plurality of adjacent shower heads to each other.
상기 연결부는 복수 개의 상기 샤워 헤드가 상호 간에 직접 연결되도록 일측 샤워 헤드에 구비된 결합 돌기와, 상기 결합 돌기와 결합되도록 타측 샤워 헤드에 구비된 결합 홈을 포함할 수 있다.The connecting portion may include a coupling protrusion provided in one shower head so that a plurality of the shower heads are directly connected to each other, and a coupling groove provided in the other shower head to be combined with the coupling protrusion.
또는, 상기 연결부는 복수 개의 상기 샤워 헤드를 연통시키는 연결 파이프를 포함할 수도 있다.Alternatively, the connecting portion may include a connecting pipe communicating the plurality of shower heads.
상기한 구성을 갖는 본 발명에 따른 화학 기상 증착용 샤워 헤드 및 이를 구비한 증착 장치에 의하면 반응 가스 공급을 위한 공급 튜브와 반응 후 배출 가스의 배출을 위한 배출 튜브가 중첩 배치되어 공간 활용도가 향상되고, 설계 자유도를 확보할 수 있게 된다.According to the shower head for chemical vapor deposition according to the present invention having the above-described configuration and the deposition apparatus having the same, the supply tube for supplying the reactant gas and the exhaust tube for discharging the exhaust gas after the reaction are superimposed and space utilization is improved. Therefore, it is possible to secure design freedom.
또한, 본 발명에 의하면 공급 튜브와 배출 튜브가 효율적으로 배치되므로 대량 생산 또는 대면적을 위한 장치 구현 시에도 소형화가 가능하게 된다.In addition, according to the present invention, since the supply tube and the discharge tube are efficiently arranged, miniaturization is possible even when implementing a device for mass production or large area.
아울러 본 발명에 의하면 반응 챔버 내에서 반응 가스의 체류 시간이 단축되므로 반응 가스 또는 반응 챔버 내부가 오염되는 것을 효과적으로 방지할 수 있고, 공정 속도가 향상될 수 있게 된다.In addition, according to the present invention, since the residence time of the reaction gas in the reaction chamber is shortened, it is possible to effectively prevent the reaction gas or the inside of the reaction chamber from being contaminated, and the process speed can be improved.
도 1은 본 발명의 일 실시예에 따른 샤워 헤드를 도시한 사시도이다.1 is a perspective view showing a shower head according to an embodiment of the present invention.
도 2는 본 발명의 공급 튜브와 배출 튜브의 배치 상태를 도시한 단면도로서, 도 2(a)는 일 실시예에 따른 배치 상태를 도시한 도면이고, 도 2(b)는 다른 실시예에 따른 배치 상태를 도시한 도면이다.Figure 2 is a cross-sectional view showing the arrangement state of the supply tube and the discharge tube of the present invention, Figure 2 (a) is a view showing the arrangement state according to an embodiment, Figure 2 (b) is according to another embodiment It is a diagram showing the arrangement state.
도 3은 본 발명의 일 실시예에 따른 샤워 헤드가 분리된 상태를 도시한 단면도이다.3 is a cross-sectional view showing a state in which the shower head is separated according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 샤워 헤드가 결합된 상태를 도시한 단면도이다.4 is a cross-sectional view showing a state in which a shower head is combined according to an embodiment of the present invention.
도 5의 (a)는 본 발명의 일 실시예에 따른 공급 매니폴드 내부의 공급 유로를 도시한 단면도이고, 도 5의 (b)는 본 발명의 일 실시예에 따른 배출 매니폴드 내부의 배출 유로를 도시한 단면도이다.Figure 5 (a) is a cross-sectional view showing a supply flow path inside the supply manifold according to an embodiment of the present invention, Figure 5 (b) is a discharge flow path inside the discharge manifold according to an embodiment of the present invention It is a sectional view showing.
도 6은 본 발명의 다른 실시예에 따른 샤워 헤드를 도시한 측면도이다.6 is a side view showing a shower head according to another embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 증착 장치를 도시한 측면도이다.7 is a side view showing a deposition apparatus according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 증착 장치에 구비된 공급 매니폴드를 도시한 평면도이다.8 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention.
도 9는 본 발명의 또 다른 실시예에 따른 증착 장치에 구비된 공급 매니폴드를 도시한 평면도이다.9 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참고부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily practice. The present invention can be implemented in many different forms and is not limited to the embodiments described herein. In the drawings, parts not related to the description are omitted in order to clearly describe the present invention, and the same reference numerals are attached to the same or similar elements throughout the specification.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, and one or more other features. It should be understood that the existence or addition possibilities of fields or numbers, steps, actions, components, parts or combinations thereof are not excluded in advance. In addition, when a part such as a layer, film, region, plate, etc. is said to be "above" another part, this includes not only the case "directly above" the other part but also another part in the middle. Conversely, when a portion of a layer, film, region, plate, or the like is said to be “under” another portion, this includes not only the case “underneath” another portion, but also another portion in the middle.
도 1은 본 발명의 일 실시예에 따른 샤워 헤드를 도시한 사시도이고, 도 2는 본 발명의 공급 튜브와 배출 튜브의 배치 상태를 도시한 단면도로서, 도 2(a)는 일 실시예에 따른 배치 상태를 도시한 도면이고, 도 2(b)는 다른 실시예에 따른 배치 상태를 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 샤워 헤드가 분리된 상태를 도시한 단면도이고, 도 4는 본 발명의 일 실시예에 따른 샤워 헤드가 결합된 상태를 도시한 단면도이고, 도 5의 (a)는 본 발명의 일 실시예에 따른 공급 매니폴드 내부의 공급 유로를 도시한 단면도이고, 도 5의 (b)는 본 발명의 일 실시예에 따른 배출 매니폴드 내부의 배출 유로를 도시한 단면도이고, 도 6은 본 발명의 다른 실시예에 따른 샤워 헤드를 도시한 측면도이고, 도 7은 본 발명의 일 실시예에 따른 증착 장치를 도시한 측면도이고, 도 8은 본 발명의 다른 실시예에 따른 증착 장치에 구비된 공급 매니폴드를 도시한 평면도이며, 도 9는 본 발명의 또 다른 실시예에 따른 증착 장치에 구비된 공급 매니폴드를 도시한 평면도이다.1 is a perspective view showing a shower head according to an embodiment of the present invention, Figure 2 is a cross-sectional view showing the arrangement of the supply tube and the discharge tube of the present invention, Figure 2 (a) is according to an embodiment Figure 2 (b) is a view showing the arrangement state according to another embodiment, Figure 3 is a cross-sectional view showing a state in which the shower head according to an embodiment of the present invention is separated, 4 is a cross-sectional view showing a state in which a shower head is coupled according to an embodiment of the present invention, and FIG. 5(a) is a cross-sectional view showing a supply flow path inside the supply manifold according to an embodiment of the present invention , Figure 5 (b) is a cross-sectional view showing a discharge flow path inside the discharge manifold according to an embodiment of the present invention, Figure 6 is a side view showing a shower head according to another embodiment of the present invention, Figure 7 Is a side view showing a deposition apparatus according to an embodiment of the present invention, Figure 8 is a plan view showing a supply manifold provided in a deposition apparatus according to another embodiment of the present invention, Figure 9 is another view of the present invention It is a plan view showing a supply manifold provided in the vapor deposition apparatus according to the embodiment.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 화학 기상 증착용 샤워 헤드는, 반응 가스를 공급하는 공급 튜브(110) 및 반응 후 배출 가스를 배출하는 배출 튜브(210)를 포함한다. 이러한 공급 튜브(110)와 배출 튜브(210)는 공정 기판(10)의 일측에 구비되되, 특히, 공급 튜브(110)와 배출 튜브(210) 중 어느 하나의 튜브는 다른 하나의 튜브 내측에 배치된다.1, the shower head for chemical vapor deposition according to an embodiment of the present invention includes a supply tube 110 for supplying a reaction gas and a discharge tube 210 for discharging the exhaust gas after the reaction . The supply tube 110 and the discharge tube 210 are provided on one side of the process substrate 10, in particular, one tube of the supply tube 110 and the discharge tube 210 is disposed inside the other tube do.
즉, 종래의 경우 인젝터와 배기구가 상호 이격된 위치에 배치됨으로써 배치 효율성이 저하되고, 반응 가스의 체류 시간이 증가함으로 인한 많은 문제가 있었으나, 본 발명의 일 실시예의 경우 공급 튜브(110)와 배출 튜브(210) 중 어느 하나의 튜브는 다른 하나의 튜브 내측에 배치하는 방식을 통해 공급 튜브(110)와 배출 튜브(210)는 공정 기판(10)의 일측에 구비되도록 함으로써 배치 효율성 향상 및 반응 가스의 체류 시간 단축이 가능하게 되는 것이다.That is, in the conventional case, the placement efficiency is reduced by placing the injectors and the exhaust ports spaced apart from each other, and there have been many problems due to an increase in the residence time of the reaction gas, but in the case of an embodiment of the present invention, the supply tube 110 and the discharge By supplying one of the tubes of the tube 210 inside the other tube, the supply tube 110 and the discharge tube 210 are provided on one side of the process substrate 10 to improve the batch efficiency and the reaction gas It is possible to shorten the residence time.
이러한 공급 튜브(110) 및 배출 튜브(210)는 후술할 공급 매니폴드(100)와 배출 매니폴드(200)에 각각 복수 개 구비될 수 있으며, 그 배열 형태는 격자형 구조로 배치할 수 있다. 격자형 구조는 다각형 구조로서, 육각형(벌집), 오각형, 교차 등의 기하학적 배치가 가능하다.A plurality of supply tubes 110 and discharge tubes 210 may be provided in the supply manifold 100 and the exhaust manifold 200, which will be described later, and the arrangement may be arranged in a lattice structure. The lattice structure is a polygonal structure, and geometric arrangements such as a hexagon (honeycomb), a pentagon, and an intersection are possible.
공급 튜브(110)와 배출 튜브(210)는 플라즈마 반응을 위해서 석영, 세라믹 등의 부도체로 이루어질 수 있다.The supply tube 110 and the discharge tube 210 may be made of non-conductor such as quartz or ceramic for plasma reaction.
이러한 공급 튜브(110)를 통해 반응 가스가 후술할 반응 챔버(30) 내에 공급되면 플라즈마 반응이 이루어진 후 배출 가스는 배출 튜브(210)를 통해 배출된다. 따라서 전술한 바와 같이 공급 튜브(110)와 배출 튜브(210)를 격자형으로 배치하게 되면 공정 기판(10)의 중앙과 테두리 부분에서 반응 가스의 반응성에 있어서 완전히 동일한 환경 조성이 가능하게 된다. 즉, 반응 가스가 반응 챔버(30) 내에서 짧은 시간 체류하고 즉시 배출되는 것이며, 반응 가스의 신속한 배출을 통해 공정 속도의 향상이 가능하게 된다.When the reaction gas is supplied into the reaction chamber 30 to be described later through the supply tube 110, the plasma reaction is performed and the exhaust gas is discharged through the discharge tube 210. Therefore, as described above, when the supply tube 110 and the discharge tube 210 are arranged in a lattice shape, it is possible to completely create the same environment in the reactivity of the reactant gas at the center and edge portions of the process substrate 10. That is, the reaction gas stays in the reaction chamber 30 for a short time and is immediately discharged, and it is possible to improve the process speed through rapid discharge of the reaction gas.
공급 튜브(110)를 통해 공급되는 반응 가스의 유량 조절을 위해서 유량 조절기(MFC: Mass Flow Controller)가 설치될 수 있다. 또한, 배출 튜브(210)를 통해 배출되는 배출 가스의 유속 및 반응 챔버(30) 내의 압력 조절을 위해서 배출 튜브(210) 및 이에 연결된 펌프(미도시)의 사이에는 스로틀 밸브(throttle valve)가 설치될 수 있다.A mass flow controller (MFC) may be installed to control the flow rate of the reaction gas supplied through the supply tube 110. In addition, a throttle valve is installed between the discharge tube 210 and a pump (not shown) connected thereto to control the flow rate of the discharged gas discharged through the discharge tube 210 and the pressure in the reaction chamber 30. Can be.
이때, 공급 튜브(110)의 끝단은 배출 튜브(210)의 끝단보다 상대적으로 공정 기판(10)에 더 인접하게 배치될 수 있다. 이와 같이 구성하면 공급되는 반응 가스를 통해 효과적인 반응성 확보가 가능하게 된다.At this time, the end of the supply tube 110 may be disposed relatively closer to the process substrate 10 than the end of the discharge tube 210. When configured in this way, it is possible to secure effective reactivity through the supplied reaction gas.
이러한 공급 튜브(110)와 배출 튜브(210)의 배치는 도 2의 (a)에 도시된 바와 같이, 배출 튜브(210)의 내측에 공급 튜브(110)가 배치되도록 구성한 상태에서 공급 튜브(110)의 끝단이 배출 튜브(210)의 끝단보다 공정 기판(10)에 상대적으로 더 인접하게 배치할 수 있다. 또는, 도 2의 (b)에 도시된 바와 같이, 공급 튜브(110)의 내측에 배출 튜브(210)가 배치되도록 구성한 상태에서 공급 튜브(110)의 끝단이 배출 튜브(210)의 끝단보다 공정 기판(10)에 상대적으로 더 인접하게 배치할 수도 있다.The arrangement of the supply tube 110 and the discharge tube 210 is as shown in (a) of FIG. 2, the supply tube 110 in a state in which the supply tube 110 is arranged inside the discharge tube 210 ) May be disposed closer to the process substrate 10 than the end of the discharge tube 210. Or, as shown in Figure 2 (b), in the state that the discharge tube 210 is configured to be disposed inside the supply tube 110, the end of the supply tube 110 is more process than the end of the discharge tube 210 It may be disposed relatively adjacent to the substrate 10.
도 2의 (a)에 도시된 실시예를 기준으로 설명하면 공급 튜브(110) 내주면으로 둘러싸인 공급 면적과, 배출 튜브(210) 내주면과 공급 튜브(110) 외주면 사이의 배출 면적의 비율은 1:1로 구성할 수 있으나, 반응 조건에 따라 공급 면적과 배출 면적의 비율은 1:2, 1:3, 1:4 등의 비율로 구성하는 것도 가능하다.Referring to the embodiment shown in (a) of FIG. 2, the ratio of the supply area surrounded by the inner circumferential surface of the supply tube 110 and the discharge area between the inner circumferential surface of the discharge tube 210 and the outer circumferential surface of the supply tube 110 is 1: Although it may be configured as 1, the ratio of the supply area and the discharge area may be configured in a ratio of 1:2, 1:3, 1:4, etc. depending on the reaction conditions.
이때, 반응 가스는 증착 공정 시 SiH4, Si2H6, SiCl4, SiHCl3, SiF4 중 선택된 1종 이상을 H2 또는 He 가스에 희석시킨 가스를 이용한다. 또한, 반응 가스는 에칭 공정 시 C4F8, NF3, SF6, Ar, O2 중 선택된 1종 이상을 혼합한 가스인 것을 특징으로 할 수 있다. 여기서, 반응 가스는 전구체 가스를 포함하는 개념일 수 있다.At this time, the reaction gas is a gas diluted with at least one selected from SiH 4 , Si 2 H 6 , SiCl 4 , SiHCl 3 , and SiF 4 in the deposition process in H 2 or He gas. In addition, the reaction gas may be characterized in that the gas is a mixture of one or more selected from C 4 F 8 , NF 3 , SF 6 , Ar, O 2 during the etching process. Here, the reaction gas may be a concept including a precursor gas.
반응 가스는 플라즈마 분위기 내에서 분해되어 기판에 실리콘 박막을 증착한다. 플라즈마 반응을 위한 플라즈마 주파수는 13.56 MHz, 27.12 MHz, 40 MHz, 54.24 MHz, 60 MHz 등이 될 수 있다. 또한, 에칭 시 공정 압력은 약 1 내지 100 mTorr이고, 증착 시 공정 압력은 약 50 mTorr 내지 상압(즉 약 760 Torr)이 될 수 있다.The reaction gas is decomposed in a plasma atmosphere to deposit a thin silicon film on the substrate. The plasma frequency for the plasma reaction may be 13.56 MHz, 27.12 MHz, 40 MHz, 54.24 MHz, 60 MHz, and the like. In addition, the process pressure during etching may be about 1 to 100 mTorr, and the process pressure during deposition may be about 50 mTorr to atmospheric pressure (ie, about 760 Torr).
이때, 본 발명의 일 실시예에 따른 샤워 헤드는 도 3 및 도 4에 도시된 바와 같이, 공급 매니폴드(100)에는 복수 개의 공급 튜브(110)가 구비된다. 이러한 공급 매니폴드(100)의 내부에는 도 5의 (a)에 도시된 바와 같이, 반응 가스가 이동하는 공급 유로(101)가 형성되며, 공급 유로(101)는 복수 개의 공급 튜브(110)가 상호 연통되도록 형성된다. 반응 가스가 공급 매니폴드(100)의 일측으로 공급되면 공급 유로(101)를 통해 복수 개의 공급 튜브(110)로 이동한 후 반응 챔버(30) 내부로 공급되는 것이다.At this time, the shower head according to an embodiment of the present invention, as shown in Figures 3 and 4, the supply manifold 100 is provided with a plurality of supply tubes (110). Inside the supply manifold 100, as shown in Fig. 5 (a), a supply flow path 101 through which the reaction gas moves is formed, and the supply flow path 101 has a plurality of supply tubes 110 It is formed to communicate with each other. When the reaction gas is supplied to one side of the supply manifold 100, it moves to the plurality of supply tubes 110 through the supply flow path 101 and is then supplied into the reaction chamber 30.
또한, 배출 매니폴드(200)에는 복수 개의 배출 튜브(210)가 구비된다. 이러한 배출 매니폴드(200)의 내부에는 도 5의 (b)에 도시된 바와 같이, 반응 후 배출 가스가 이동하는 배출 유로(201)가 형성되며, 배출 유로(201)는 복수 개의 배출 튜브(210)가 상호 연통되도록 형성된다. 반응 챔버(30) 내부의 반응 후 배출 가스는 배출 튜브(210)로 이동하게 되며, 이후 배출 유로(201)를 통해 반응 챔버(30) 외부로 배출되는 것이다.In addition, the discharge manifold 200 is provided with a plurality of discharge tubes (210). Inside the discharge manifold 200, as shown in Figure 5 (b), the discharge flow path 201 to which the discharge gas moves after the reaction is formed, the discharge flow path 201 is a plurality of discharge tubes 210 ) Are formed to communicate with each other. After the reaction inside the reaction chamber 30, the exhaust gas moves to the discharge tube 210, and then is discharged to the outside of the reaction chamber 30 through the discharge channel 201.
도 3에 도시된 바와 같이, 이러한 공급 매니폴드(100)와 배출 매니폴드(200)가 상하로 배치된 상태에서 상호 적층되도록 상대 이동시킴으로써 공급 매니폴드(100)와 배출 매니폴드(200)가 결합된다. 또한, 공급 매니폴드(100)와 배출 매니폴드(200)가 결합되는 과정에서 공급 튜브(110)는 배출 튜브(210)의 내부를 관통하게 되며, 도 4에 도시된 바와 같이, 공급 매니폴드(100)와 배출 매니폴드(200)가 결합이 완료되면 공급 튜브(110)의 끝단이 배출 튜브(210)의 끝단보다 상대적으로 공정 기판(10)에 인접하게 배치되는 것이다.As shown in FIG. 3, the supply manifold 100 and the exhaust manifold 200 are coupled by relative movement such that the supply manifolds 100 and the exhaust manifolds 200 are stacked with each other in a state of being vertically arranged. do. In addition, in the process where the supply manifold 100 and the discharge manifold 200 are combined, the supply tube 110 penetrates through the inside of the discharge tube 210, and as shown in FIG. 4, the supply manifold ( 100) and the discharge manifold 200 is completed, the end of the supply tube 110 is disposed relatively closer to the process substrate 10 than the end of the discharge tube 210.
이때, 도 6에 도시된 바와 같이, 공급 매니폴드(100)와 배출 매니폴드(200) 상호 간의 이격거리를 조절하는 높이 조절부(300)가 구비될 수 있다. 이러한 높이 조절부(300)는 도 6에 도시된 바와 같이, 배출 매니폴드(200)의 높이가 고정된 상태에서 공급 매니폴드(100)의 높이가 조절되도록 구성할 수 있으나, 이와는 반대로 공급 매니폴드(100)의 높이가 고정된 상태에서 배출 매니폴드(200)의 높이가 조절되도록 구성하는 것도 가능하다. 또는, 공급 매니폴드(100)와 배출 매니폴드(200)의 높이가 모두 조절되도록 구성하는 것도 가능하다.At this time, as shown in Figure 6, the supply manifold 100 and the discharge manifold 200 may be provided with a height adjustment unit 300 for adjusting the separation distance between each other. 6, the height adjustment unit 300 may be configured such that the height of the supply manifold 100 is adjusted while the height of the discharge manifold 200 is fixed, but on the contrary, the supply manifold It is also possible to configure the height of the discharge manifold 200 to be adjusted while the height of the 100 is fixed. Alternatively, it is also possible to configure the height of both the supply manifold 100 and the discharge manifold 200 to be adjusted.
이와 같이 높이 조절부(300)가 구비되면 공급 튜브(110)가 배출 튜브(210)의 외부로 노출되는 돌출 길이를 조절할 수 있게 되며, 이를 통해 반응 조건에 따른 돌출 길이의 조절이 가능하게 되는 것이다.When the height adjustment unit 300 is provided as described above, it is possible to adjust the protruding length in which the supply tube 110 is exposed to the outside of the discharge tube 210, thereby enabling adjustment of the protruding length according to the reaction conditions. .
이러한 높이 조절부(300)는 랙(310)과 피니언(320)을 이용해서 구성할 수 있으나, 볼 스크류와 같이 높이를 조절할 수 있는 구성이라면 어떠한 구성이라도 사용이 가능하다.The height adjustment unit 300 may be configured using the rack 310 and the pinion 320, but any configuration can be used as long as the height is adjustable such as a ball screw.
이때, 공급 매니폴드(100)와 배출 매니폴드(200) 중 하부에 배치되는 매니폴드에는 상부에 배치되는 매니폴드에 구비된 튜브가 관통하는 관통홀(200a)이 형성될 수 있다. 즉, 도 3에 도시된 바와 같이, 공급 매니폴드(100)가 배출 매니폴드(200)의 상부에 배치되는 경우에는 하부에 배치된 배출 매니폴드(200)에 관통홀(200a)이 형성되며, 공급 매니폴드(100)에 구비된 공급 튜브(110)는 이러한 관통홀(200a)을 관통한 후 배출 튜브(210)의 내측으로 삽입되는 것이다. 이때, 배출 매니폴드(200)에 형성된 관통홀(200a)과 공급 튜브(110) 사이에는 별도의 실링 부재(미도시)가 구비되는 것이 바람직하며, 이와 같이 실링 부재가 구비됨으로써 배출 매니폴드(200) 내부를 이동하는 배출 가스가 외부로 누설되는 것을 방지할 수 있게 된다.In this case, a through hole 200a through which a tube provided in a manifold disposed above is penetrated may be formed in a manifold disposed below the supply manifold 100 and the discharge manifold 200. That is, as shown in FIG. 3, when the supply manifold 100 is disposed above the discharge manifold 200, a through hole 200a is formed in the discharge manifold 200 disposed below. The supply tube 110 provided in the supply manifold 100 is inserted into the discharge tube 210 after passing through the through hole 200a. At this time, it is preferable that a separate sealing member (not shown) is provided between the through hole 200a formed in the discharge manifold 200 and the supply tube 110, and the discharge manifold 200 is provided by providing the sealing member as described above. ) It is possible to prevent the exhaust gas moving inside from leaking to the outside.
또는, 배출 매니폴드(200)가 공급 매니폴드(100)의 상부에 배치되도록 구성하는 것도 가능하며, 이러한 경우 공급 매니폴드(100)에는 배출 튜브(210)가 관통하는 관통홀(200a)이 형성된다. 아울러 이와 같은 경우에도 전술한 바와 같이, 공급 매니폴드(100)에 형성된 관통홀(200a)과 배출 튜브(210) 사이에는 별도의 실링 부재(미도시)가 구비되는 것이 바람직하며, 이를 통해 공급 매니폴드(100) 내부를 이동하는 반응 가스가 외부로 누설되는 것을 방지할 수 있게 된다.Alternatively, it is also possible to configure the discharge manifold 200 to be disposed above the supply manifold 100, in which case the supply manifold 100 has a through hole 200a through which the discharge tube 210 passes. do. Also in this case, as described above, it is preferable that a separate sealing member (not shown) is provided between the through-hole 200a formed in the supply manifold 100 and the discharge tube 210, through which the supply manifold is provided. It is possible to prevent the reaction gas moving inside the fold 100 from leaking to the outside.
전술한 바와 같이, 공급 매니폴드(100)에 구비된 공급 튜브(110)는 배출 매니폴드(200)에 구비된 배출 튜브(210)를 관통하게 되는데, 이때, 공급 튜브(110)와 배출 튜브(210)의 중심축이 동축 상에 배치된 상태를 유지하면서 공급 튜브(110)가 배출 튜브(210)를 관통하도록 구성하는 것이 바람직하다. 만일 공급 튜브(110)와 배출 튜브(210)의 중심축이 상호 경사지게 배치되는 경우 공급 튜브(110)와 배출 튜브(210) 사이에 형성되는 배출 면적이 일정하지 않게 됨으로 인해 배출 가스의 배출이 원활하지 않게 될 수 있기 때문이다.As described above, the supply tube 110 provided in the supply manifold 100 passes through the discharge tube 210 provided in the discharge manifold 200, wherein the supply tube 110 and the discharge tube ( It is preferable that the supply tube 110 is configured to pass through the discharge tube 210 while the central axis of the 210) is disposed on the coaxial. If the central axis of the supply tube 110 and the discharge tube 210 are arranged to be inclined to each other, the discharge area formed between the supply tube 110 and the discharge tube 210 is not constant, so discharge of the exhaust gas is smooth. Because it may not be.
따라서 공급 매니폴드(100)와 배출 매니폴드(200) 중 어느 하나의 매니폴드에는 상하 방향으로 연장 형성된 가이드 바(410)가 구비되고, 다른 하나의 매니폴드에는 전술한 가이드 바(410)가 인입 가능한 가이드 홀(420)이 형성된다. 이와 같이 가이드 바(410)와 가이드 홀(420)을 포함하는 가이드 부재(400)가 형성될 경우 공급 매니폴드(100)와 배출 매니폴드(200)의 결합 시에 공급 튜브(110)와 배출 튜브(210)의 중심축이 동축 상에 배치된 상태를 유지하면서 이들의 결합이 가능하게 된다.Therefore, one of the supply manifold 100 and the discharge manifold 200 is provided with a guide bar 410 formed extending in the vertical direction, and the guide bar 410 described above is drawn into the other manifold. A possible guide hole 420 is formed. When the guide member 400 including the guide bar 410 and the guide hole 420 is formed as described above, when the supply manifold 100 and the discharge manifold 200 are combined, the supply tube 110 and the discharge tube While the central axis of 210 is disposed on the coaxial, it is possible to combine them.
이에 대한 일 실시예로 도 6에 도시된 바와 같이, 공급 매니폴드(100)에 가이드 바(410)를 연장 형성하고, 배출 매니폴드(200)에 가이드 홀(420)을 형성할 수 있다.As an example of this, as shown in FIG. 6, the guide bar 410 may be extended to the supply manifold 100 and the guide hole 420 may be formed to the discharge manifold 200.
물론 이러한 가이드 바(410)와 가이드 홀(420)은 그 형성 위치가 상호 변경된 상태로 형성되는 것도 가능하다.Of course, the guide bar 410 and the guide hole 420 may be formed in a state in which the formation positions thereof are mutually changed.
본 발명의 일 실시예 따른 화학 기상 증착용 샤워 헤드가 구비된 증착 장치는 공정 기판(10)에 반응 가스를 공급하도록 공급 튜브(110)가 구비된 공급 매니폴드(100)와, 반응 후 배출 가스를 배출하도록 배출 튜브(210)가 구비된 배출 매니폴드(200)가 샤워 헤드(20) 및 이러한 샤워 헤드(20)가 내부에 배치된 반응 챔버(30)를 포함한다.A deposition apparatus equipped with a shower head for chemical vapor deposition according to an embodiment of the present invention includes a supply manifold 100 provided with a supply tube 110 to supply a reaction gas to the process substrate 10, and exhaust gas after reaction The discharge manifold 200 provided with the discharge tube 210 to discharge the shower head 20 and a reaction chamber 30 in which the shower head 20 is disposed.
이러한 공정 기판(10)의 온도는 반응성 확보를 위해 약 100~1300 ℃ 범위에서 조절할 필요가 있다. 물론, 바람직하게는, 결정질 실리콘 기판 온도는 200~950 ℃ 범위로 조절할 필요가 있다. 따라서, 공정 기판(10) 전체에 대하여 이러한 온도가 균일하게 유지되어 한다. 이를 위해 공정 기판(10)에는 히터가 구비될 수 있으며, 이러한 히터는 인덕션 히터가 사용될 수 있다. 또한, 히터는 부식성의 반응 가스로부터 부식 반응을 방지하기 위해 히터의 표면에는 코팅층이 형성된다. 따라서, 코팅층은 석영, 세라믹, 실리콘 질화막, 및 실리콘 탄화막 등의 코팅을 통해 형성된다.The temperature of the process substrate 10 needs to be adjusted in the range of about 100 to 1300°C to ensure reactivity. Of course, preferably, the crystalline silicon substrate temperature needs to be adjusted in the range of 200 to 950°C. Therefore, this temperature should be maintained uniformly over the entire process substrate 10. For this, a heater may be provided on the process substrate 10, and an induction heater may be used as the heater. In addition, the heater is coated with a coating layer on the surface of the heater to prevent corrosion reactions from corrosive reaction gases. Therefore, the coating layer is formed through coating of quartz, ceramic, silicon nitride film, and silicon carbide film.
본 발명의 일 실시예에 따른 화학 기상 증착용 샤워 헤드가 구비된 증착 장치는 CCP(Capacitively Coupled Plasma: 용량 결합성 플라즈마) 방식으로 플라즈마를 발생시킬 수 있다. CCP 방식의 경우 전극 사이에 형성되는 전기장에 의해 전자 가속이 일어나고, 이러한 가속된 전자로부터 에너지를 얻어서 플라즈마를 형성할 수 있다. 이러한 CCP 방식은 상, 하부 전극 사이의 DC 전압에 의해 전기장이 형성되고, 플라즈마가 발생 및 제어되도록 구성되며, 플라즈마 균일도를 확보하는 것이 유리한 장점이 있다.A deposition apparatus equipped with a shower head for chemical vapor deposition according to an embodiment of the present invention may generate plasma in a capacitively coupled plasma (CCP) method. In the case of the CCP method, electron acceleration occurs due to an electric field formed between electrodes, and plasma can be formed by obtaining energy from these accelerated electrons. In this CCP method, an electric field is formed by DC voltage between upper and lower electrodes, and plasma is generated and controlled, and it is advantageous to secure plasma uniformity.
이때, 반응 챔버(30)의 내부에는 복수 개의 샤워 헤드(20)가 배치될 수 있다. 이와 같이 복수 개의 샤워 헤드(20)가 구비되면 대량의 공정 기판(10)이나 대면적의 공정 기판(10)을 가공하는 것이 가능하게 된다.At this time, a plurality of shower heads 20 may be disposed inside the reaction chamber 30. When a plurality of shower heads 20 are provided as described above, it is possible to process a large number of process substrates 10 or a large area process substrate 10.
이러한 반응 챔버(30)의 외부에는 별도의 전자기파 차폐를 위한 차폐막(미도시)이 추가로 구성될 수 있다.A shielding film (not shown) for shielding electromagnetic waves may be additionally configured outside the reaction chamber 30.
도 7에 도시된 바와 같이, 반응 챔버(30)의 내부에는 복수 개의 샤워 헤드(20)가 상하 방향으로 적층 배치되도록 구성하는 것이 가능하다. 종래의 경우 공정 가스를 공급하는 인젝터와 가스를 배출하는 배기구가 각각 이격된 위치에 형성되므로 이와 같이 상하 방향으로 복수 개 배치하는 것이 어려웠으나, 본 발명의 일 실시예의 경우 공급 튜브(110)와 배출 튜브(210)가 공정 기판(10)의 일측에 상호 중첩 배치되므로 복수 개의 샤워 헤드(20)를 상하 방향으로 적층해도 그 구조가 복잡하지 않으므로 공간 활용도가 향상되고, 설계 자유도를 확보할 수 있게 된다.As shown in FIG. 7, it is possible to configure the plurality of shower heads 20 to be stacked in the vertical direction inside the reaction chamber 30. In the conventional case, since the injector for supplying the process gas and the exhaust port for discharging the gas are formed at spaced apart positions, it was difficult to arrange a plurality of them in the vertical direction, but in the case of one embodiment of the present invention, the supply tube 110 and the discharge Since the tubes 210 are mutually superposed on one side of the process substrate 10, even if a plurality of shower heads 20 are stacked in the vertical direction, the structure is not complicated, so space utilization is improved and design freedom is ensured. .
아울러 이와 같이 샤워 헤드(20)가 상하 방향으로 복수 개 적층된 상태에서 복수 개의 공급 매니폴드(100)에 동시에 반응 가스를 공급하도록 공급 파이프(120)가 구비되고, 복수 개의 배출 매니폴드(200)에서 배출되는 배출 가스를 동시에 배출하도록 배출 파이프(220)가 구비될 수 있다.In addition, the supply pipe 120 is provided to simultaneously supply the reaction gas to the plurality of supply manifolds 100 in the state where the shower head 20 is stacked in the vertical direction, and the plurality of discharge manifolds 200 are provided. The discharge pipe 220 may be provided to simultaneously discharge the exhaust gas discharged from.
이와 같이 구성할 경우 구조가 간단하면서도 대량 생산이 가능하게 된다.In this way, the structure is simple and mass production is possible.
이때, 반응 챔버(30)에는 상하 방향으로 적층 배치된 복수 개의 샤워 헤드(20)가 상호 구분된 영역에 배치되도록 구획 부재(31)가 구비될 수 있다. 이러한 구획 부재(31)는 단일의 반응 챔버(30) 내에서 샤워 헤드(20)가 상호 구분된 영역에 배치되도록 구획할 수 있으나, 또는, 단일의 반응 챔버(30)가 복수의 반응 챔버(30)로 구분되도록 구획하는 것도 가능하다.At this time, the reaction chamber 30 may be provided with a partition member 31 so that a plurality of shower heads 20 stacked in the vertical direction are disposed in mutually distinct regions. The partition member 31 may be partitioned such that the shower heads 20 are disposed in mutually distinct regions within the single reaction chamber 30, or, the single reaction chamber 30 may include a plurality of reaction chambers 30. ).
또한, 이러한 반응 챔버(30)의 내부에는 복수 개의 샤워 헤드(20)가 평면 상에서 연속적으로 배치되도록 구성하는 것도 가능하다. 이때, 공급 파이프(120)를 통해 공급된 반응 가스는 복수 개의 공급 매니폴드(100)를 순차적으로 경유하면서 공정 기판(10)에 공급되고, 반응 후 배출 가스는 복수 개의 배출 매니폴드(200)를 순차적으로 경유하면서 배출 파이프(220)를 통해 배출되도록 구성된다.In addition, it is also possible to configure such that a plurality of shower heads 20 are continuously disposed on a plane inside the reaction chamber 30. At this time, the reaction gas supplied through the supply pipe 120 is supplied to the process substrate 10 while sequentially passing through the plurality of supply manifolds 100, and after the reaction, the exhaust gas reacts with the plurality of exhaust manifolds 200. It is configured to be discharged through the discharge pipe 220 while passing sequentially.
이와 같이 구성하기 위해 인접 배치되는 복수 개의 샤워 헤드(20)가 상호 연결되도록 연결부(500)가 구비될 수 있다.In order to configure as described above, a connection part 500 may be provided so that a plurality of adjacent shower heads 20 are interconnected.
이때, 도 8에 도시된 바와 같이, 전술한 연결부(500)는 복수 개의 샤워 헤드(20)가 상호 간에 직접 연결되도록 일측 샤워 헤드(20)에 구비된 결합 돌기(510)와, 이러한 결합 돌기(510)와 결합되도록 타측 샤워 헤드(20)에 구비된 결합 홈(520)을 포함할 수 있다. 이와 같이 복수 개의 샤워 헤드(20)가 결합 돌기(510)와 결합 홈(520)을 통해 직접 연결될 경우 대면적의 공정 기판(10)을 사용할 수 있게 된다.At this time, as shown in FIG. 8, the above-described connection part 500 includes a coupling protrusion 510 provided on one side of the shower head 20 such that a plurality of shower heads 20 are directly connected to each other, and such a coupling protrusion ( 510) may include a coupling groove 520 provided in the other shower head 20. As described above, when the plurality of shower heads 20 are directly connected through the coupling protrusion 510 and the coupling groove 520, the large-area process substrate 10 can be used.
또한, 도 9에 도시된 바와 같이, 전술한 연결부(500)는 복수 개의 샤워 헤드(20)를 연통시키는 연결 파이프(530)를 포함할 수도 있다. 이와 같이 각각의 샤워 헤드(20)가 연결 파이프(530)를 통해 연결될 경우 복수 개의 공정 기판(10)을 동시에 사용하는 것이 가능하게 된다.In addition, as illustrated in FIG. 9, the above-described connection part 500 may include a connection pipe 530 communicating the plurality of shower heads 20. In this way, when each shower head 20 is connected through the connection pipe 530, it is possible to use a plurality of process substrates 10 simultaneously.
전술한 바와 같이, 공급 튜브(110)와 배출 튜브(210)가 효율적으로 배치되므로 대량 생산 또는 대면적을 위한 장치 구현 시에도 소형화가 가능하게 된다.As described above, since the supply tube 110 and the discharge tube 210 are efficiently arranged, miniaturization is possible even when implementing a device for mass production or large area.
본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art to understand the spirit of the present invention, within the scope of the same spirit, addition and modification of components However, other embodiments may be easily proposed by deletion, addition, or the like, but this will also be considered within the scope of the present invention.

Claims (12)

  1. 화학 기상 증착용 샤워 헤드에 있어서,In the shower head for chemical vapor deposition,
    반응 가스를 공급하는 공급 튜브; 및A supply tube for supplying a reaction gas; And
    반응 후 배출 가스를 배출하는 배출 튜브;Discharge tube for discharging the exhaust gas after the reaction;
    를 포함하고,Including,
    상기 공급 튜브와 상기 배출 튜브는 공정 기판의 일측에 배치되되,The supply tube and the discharge tube are arranged on one side of the process substrate,
    상기 공급 튜브와 상기 배출 튜브 중 어느 하나의 튜브는 다른 하나의 튜브의 내측에 배치되는 샤워 헤드.A shower head in which one of the supply tube and the discharge tube is disposed inside the other tube.
  2. 제1항에 있어서,According to claim 1,
    상기 공급 튜브의 끝단은 상기 배출 튜브의 끝단보다 상대적으로 상기 공정 기판에 더 인접하게 배치되는 샤워 헤드.The end of the supply tube is a shower head disposed relatively closer to the process substrate than the end of the discharge tube.
  3. 제1항에 있어서,According to claim 1,
    상기 공급 튜브가 구비된 공급 매니폴드와, 상기 배출 튜브가 구비된 배출 매니폴드를 더 포함하고,Further comprising a supply manifold provided with the supply tube, and a discharge manifold provided with the discharge tube,
    상기 공급 매니폴드와 상기 배출 매니폴드는 상하 방향으로 적층 배치되는 샤워 헤드.A shower head in which the supply manifold and the discharge manifold are stacked vertically.
  4. 제3항에 있어서,According to claim 3,
    상기 공급 매니폴드와 상기 배출 매니폴드 상호 간의 이격거리를 조절하는 높이 조절부를 더 포함하는 샤워 헤드.A shower head further comprising a height adjustment unit that adjusts a separation distance between the supply manifold and the discharge manifold.
  5. 제3항에 있어서,According to claim 3,
    상기 공급 매니폴드와 상기 배출 매니폴드 중 하부에 배치된 매니폴드에는 상부에 배치된 매니폴드에 구비된 튜브가 관통하는 관통홀이 형성되는 샤워 헤드.A shower head having a through hole through which a tube provided in a manifold disposed above is formed in a manifold disposed below the supply manifold and the discharge manifold.
  6. 제5항에 있어서,The method of claim 5,
    상기 공급 매니폴드와 상기 배출 매니폴드 중 어느 하나의 매니폴드에는 상하 방향으로 연장 형성된 가이드 바가 구비되고,Any one of the supply manifold and the discharge manifold is provided with a guide bar extending in the vertical direction,
    다른 하나의 매니폴드에는 상기 가이드 바가 인입 가능한 가이드 홀이 형성되는 샤워 헤드.In the other manifold, a shower head having a guide hole through which the guide bar can be drawn.
  7. 화학 기상 증착용 샤워 헤드가 구비된 증착 장치에 있어서,In the deposition apparatus equipped with a shower head for chemical vapor deposition,
    공정 기판에 반응 가스를 공급하도록 공급 튜브가 구비된 공급 매니폴드와, 반응 후 배출 가스를 배출하도록 배출 튜브가 구비된 배출 매니폴드가 구비된 샤워 헤드; 및A shower head provided with a supply manifold provided with a supply tube to supply a reaction gas to the process substrate, and a discharge manifold provided with a discharge tube to discharge the exhaust gas after the reaction; And
    복수 개의 상기 샤워 헤드가 내부에 배치된 반응 챔버;A reaction chamber in which a plurality of the shower heads are disposed;
    를 포함하는 증착 장치.Deposition apparatus comprising a.
  8. 제7항에 있어서,The method of claim 7,
    상기 반응 챔버의 내부에는 복수 개의 상기 샤워 헤드가 상하 방향으로 적층 배치되며,A plurality of shower heads are stacked in the vertical direction in the reaction chamber,
    복수 개의 상기 공급 매니폴드에 동시에 반응 가스를 공급하는 공급 파이프와, 복수 개의 상기 배출 매니폴드에서 배출되는 배출 가스를 동시에 배출하는 배출 파이프를 더 포함하는 증착 장치.A deposition apparatus further comprising a supply pipe for simultaneously supplying a reaction gas to a plurality of the supply manifolds, and a discharge pipe for simultaneously discharging exhaust gases discharged from the plurality of discharge manifolds.
  9. 제7항에 있어서,The method of claim 7,
    상기 반응 챔버의 내부에는 복수 개의 상기 샤워 헤드가 평면 상에서 연속적으로 배치되며,A plurality of the shower heads are continuously arranged on a plane inside the reaction chamber,
    공급 파이프를 통해 공급된 반응 가스는 복수 개의 상기 공급 매니폴드를 순차적으로 경유하면서 상기 공정 기판에 공급되고,The reaction gas supplied through the supply pipe is supplied to the process substrate while sequentially passing through a plurality of the supply manifolds,
    반응 후 배출 가스는 복수 개의 상기 배출 매니폴드를 순차적으로 경유하면서 배출 파이프를 통해 배출되는 증착 장치.After the reaction, the exhaust gas is deposited through the exhaust pipe while sequentially passing through the plurality of exhaust manifolds.
  10. 제9항에 있어서,The method of claim 9,
    인접 배치되는 복수 개의 상기 샤워 헤드가 상호 연결되도록 연결부가 구비되는 증착 장치.Deposition apparatus provided with a connection so that a plurality of adjacent shower heads are interconnected.
  11. 제10항에 있어서,The method of claim 10,
    상기 연결부는 복수 개의 상기 샤워 헤드가 상호 간에 직접 연결되도록 일측 샤워 헤드에 구비된 결합 돌기와, 상기 결합 돌기와 결합되도록 타측 샤워 헤드에 구비된 결합 홈을 포함하는 증착 장치.The connecting portion is a deposition apparatus comprising a coupling protrusion provided in one shower head so that a plurality of the shower heads are directly connected to each other, and a coupling groove provided in the other shower head to be combined with the coupling protrusion.
  12. 제10항에 있어서,The method of claim 10,
    상기 연결부는 복수 개의 상기 샤워 헤드를 연통시키는 연결 파이프를 포함하는 증착 장치.The connecting portion is a deposition apparatus comprising a connecting pipe communicating a plurality of the shower head.
PCT/KR2019/016615 2018-12-28 2019-11-28 Shower head for chemical vapor deposition and deposition apparatus including same WO2020138739A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0171917 2018-12-28
KR1020180171917A KR102208609B1 (en) 2018-12-28 2018-12-28 Shower head for chemical vapor deposition and depositing apparatus using the same

Publications (2)

Publication Number Publication Date
WO2020138739A2 true WO2020138739A2 (en) 2020-07-02
WO2020138739A3 WO2020138739A3 (en) 2020-09-24

Family

ID=71129610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016615 WO2020138739A2 (en) 2018-12-28 2019-11-28 Shower head for chemical vapor deposition and deposition apparatus including same

Country Status (2)

Country Link
KR (1) KR102208609B1 (en)
WO (1) WO2020138739A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008487A1 (en) * 2000-07-24 2002-01-31 The University Of Maryland, College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation
KR101162510B1 (en) 2004-05-27 2012-07-09 엘지디스플레이 주식회사 PECVD including shower head
DE102011056589A1 (en) * 2011-07-12 2013-01-17 Aixtron Se Gas inlet member of a CVD reactor
US9837254B2 (en) * 2014-08-12 2017-12-05 Lam Research Corporation Differentially pumped reactive gas injector
KR102420015B1 (en) * 2015-08-28 2022-07-12 삼성전자주식회사 Shower head of Combinatorial Spatial Atomic Layer Deposition apparatus
KR102080760B1 (en) * 2016-12-08 2020-02-24 주식회사 원익아이피에스 Substrate treating apparatus

Also Published As

Publication number Publication date
KR20200081912A (en) 2020-07-08
WO2020138739A3 (en) 2020-09-24
KR102208609B1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
KR102423749B1 (en) Symmetric plasma process chamber
WO2011129492A1 (en) Gas injection unit and a thin-film vapour-deposition device and method using the same
WO2013147481A1 (en) Apparatus and cluster equipment for selective epitaxial growth
WO2009102133A2 (en) Batch-type atomic layer vapour-deposition device
US20060096540A1 (en) Apparatus to manufacture semiconductor
WO2012096529A2 (en) Spray member for use in semiconductor manufacture, and plasma treatment apparatus having same
WO2010101369A2 (en) Gas distribution apparatus, and substrate-processing apparatus comprising same
WO2013180451A1 (en) Substrate processing device and substrate processing method
WO2009104918A2 (en) Apparatus and method for processing substrate
WO2013095030A1 (en) Substrate-processing apparatus and substrate-processing method
WO2012050322A2 (en) Method and apparatus for manufacturing three-dimensional- structure memory device
WO2012134070A2 (en) Gas-injection apparatus, atomic layer deposition apparatus, and atomic layer deposition method using the apparatus
WO2013180452A1 (en) Substrate treating apparatus and method
WO2014003298A1 (en) Process chamber and substrate processing method
WO2013180453A1 (en) Substrate processing device and substrate processing method
WO2015083884A1 (en) Substrate processing apparatus
WO2015072691A1 (en) Atomic layer deposition apparatus and method
WO2020138739A2 (en) Shower head for chemical vapor deposition and deposition apparatus including same
WO2019212270A1 (en) Substrate processing apparatus
WO2014007572A1 (en) Substrate-processing apparatus
WO2018048125A1 (en) Gas spraying apparatus for substrate processing apparatus and substrate processing apparatus
WO2018190696A1 (en) Gas supply module for atomic layer deposition
WO2024010295A1 (en) Gas spraying apparatus, substrate processing apparatus, and thin film deposition method
WO2015083883A1 (en) Substrate processing apparatus
WO2009104917A2 (en) Apparatus and method for processing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905032

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905032

Country of ref document: EP

Kind code of ref document: A2