WO2014003298A1 - Process chamber and substrate processing method - Google Patents

Process chamber and substrate processing method Download PDF

Info

Publication number
WO2014003298A1
WO2014003298A1 PCT/KR2013/002751 KR2013002751W WO2014003298A1 WO 2014003298 A1 WO2014003298 A1 WO 2014003298A1 KR 2013002751 W KR2013002751 W KR 2013002751W WO 2014003298 A1 WO2014003298 A1 WO 2014003298A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boat
space
injection
chamber
Prior art date
Application number
PCT/KR2013/002751
Other languages
French (fr)
Korean (ko)
Inventor
윤송근
이종화
고혁준
이장혁
Original Assignee
(주)이노시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이노시티 filed Critical (주)이노시티
Publication of WO2014003298A1 publication Critical patent/WO2014003298A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • H01L21/205
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces

Definitions

  • the present invention relates to a process chamber and a substrate processing method, and a process chamber capable of improving substrate processing capability and a substrate processing method using the same.
  • sputtering In general, in the manufacturing process of a semiconductor device, sputtering, chemical vapor deposition (CVD), and atomic layer deposition (ALD) are applied to uniformly deposit a thin film.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • a thin film having a required thickness is deposited on a substrate using a reaction gas and a decomposition gas.
  • Chemical Vapor Deposition (CVD) first injects various gases into the process chamber and deposits a thin film of the required thickness on the substrate by chemically reacting gases induced by high energy such as heat, light and plasma.
  • the chemical vapor deposition method increases the deposition rate by controlling the reaction conditions through the ratio and amount of plasma or gases applied by the reaction energy.
  • the fast reactions make it very difficult to control the thermodynamic stability of atoms and degrade the physical, chemical and electrical properties of thin films.
  • atomic layer deposition is a method for depositing an atomic layer by alternately supplying a source gas (reaction gas) and a purge gas, the thin film formed thereby has a good coating properties and is applied to large diameter substrates and ultra-thin film Excellent electrical and physical properties.
  • atomic layer deposition involves first supplying a first source gas to chemically adsorb a layer of the first source onto the substrate surface and purging the excess physically adsorbed sources by flowing a purge gas.
  • the second source gas is supplied to the source of the layer to chemically react the first source and the second source gas of one layer to deposit the desired atomic layer thin film, and the excess reaction gas flows through the purge gas to purge. the thin film is deposited.
  • the atomic layer deposition method can obtain not only a stable thin film but also a uniform thin film by using a surface reaction mechanism.
  • the atomic layer deposition method separates the source gas and the reaction gas from each other and sequentially injects and purges the particles, thereby suppressing particle generation by gas phase reaction, compared to chemical vapor deposition.
  • FIG. 1 is a schematic view showing the configuration of an atomic layer thin film deposition apparatus of a showerhead method.
  • the showerhead type atomic layer thin film deposition apparatus includes a process chamber (2) having a reaction space (1) in which reactant gas and purge gas are sequentially supplied, and atomic layer deposition is performed on the substrate (3), and the process chamber (2).
  • a substrate support 4 provided at a lower portion of the substrate 3 on which the substrate 3 is mounted, and a shower head 5 and the shower head 5 which inject gas into the reaction space 1 to face the substrate stand 4. It is provided in each of the supply path to be supplied includes a valve (6) for opening and closing the gas supply.
  • the process chamber 2 is connected with pumping means for discharging the gas supplied to the reaction space 1 to the outside.
  • the conventional atomic layer thin film deposition apparatus has a small volume of process chamber 2 for rapid gas supply and removal in the reactor 1 in order to uniformly expose the density of the reaction gas and the purge gas on the substrate 3. ).
  • the technical problem of the present invention is to provide a process gas injection means of a horizontal injection type structure, rather than a conventional process gas injection means of a vertical injection type structure.
  • a process chamber includes a boat in which a plurality of substrates are stacked up and down, a lower chamber housing having a first inner space as an inner space, and a second inner space positioned at an upper layer of the lower chamber housing.
  • Process gas injection means for horizontally injecting different process gases from the walls of the upper chamber housing to the spaced stacked substrates of the boat separately from the walls of the upper chamber housing, and the gas in the inner space of the upper chamber housing
  • Process gas discharging means for discharging the gas, the boat driving means for elevating the boat from the first inner space of the lower chamber housing to the second inner space of the upper chamber housing, and rotating the boat; And a substrate transfer gate penetrated through the sidewalls.
  • the process gas is characterized in that at least any one of the process gas, including a source gas, a reaction gas and a purge gas.
  • the upper chamber housing includes an upper chamber inner housing in which the boat lifted through the opened lower side is accommodated, and an upper chamber outer housing surrounding the upper surface and sidewalls of the upper chamber inner housing.
  • the process gas injection means has an internal space, a process gas inlet space formed in the wall of the upper chamber housing, a plurality of gas injection holes formed in the wall surface of the process gas inlet space in contact with the boat, and the process gas It includes at least one process gas supply pipe connected to the internal space of the inlet space to introduce the process gas.
  • the process gas supply pipe includes a source gas supply pipe for supplying the source gas, a reaction gas supply pipe for supplying the reaction gas, and at least one or more purge gas supply pipe for supplying the purge gas, and each of the supply pipes is separated and each independently gas.
  • the process gas inflow space is divided into a plurality of partitions, and any one of the source gas supply pipe, the reaction gas supply pipe, and the purge gas supply pipe is connected to the partition space between each partition wall.
  • the gas injection hole formed in the wall surface of the partition space injects different process gases according to the type of supply pipes supplied to each partition space, each partition wall is formed so as to vertically divide the inside of the process gas inlet space.
  • the substrate processing method horizontally processes the process gas through the injection hole of the inner sidewall between the boat on which the plurality of substrates are stacked up and down and the boat is placed in the inner space and the substrate is spaced apart on the boat.
  • a method of depositing an atomic layer of a process chamber having a flowing chamber housing comprising: laminating a substrate vertically on a boat, placing the boat in an inner space of the chamber housing, and rotating the boat And vertically dividing the injection holes of the inner sidewall of the chamber housing into a plurality of injection groups, and simultaneously spraying different process gases on each of the injection groups onto the rotating substrate while being spaced apart or spraying at different times. .
  • the process of injecting purge gas through the purge gas injection group when the substrate processing process is started, and the reaction gas is not injected while maintaining the purge gas injection Source gas injection process for injecting the source gas through the source gas injection group in the non-state, and reaction for injecting the reaction gas through the reaction gas injection group while the source gas is not injected while maintaining the purge gas injection
  • the substrate processing ability can be improved by spraying the process gas horizontally after laminating the substrates in the vertical direction.
  • various process treatment methods may be performed.
  • the present invention may be applied to a CVD or an ALD device.
  • the plasma generating means by providing the plasma generating means, the efficiency of the substrate processing ability and the film quality can be improved.
  • FIG. 1 is a schematic view showing the configuration of an atomic layer thin film deposition apparatus of a showerhead method.
  • FIG 2 is an external perspective view of a process chamber according to an embodiment of the present invention.
  • FIG 3 is an exploded view of a process chamber in accordance with an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a process chamber in which a boat is raised or lowered according to an embodiment of the present invention.
  • FIG 5 is a view showing a state in which the boat is raised in stages as the substrate is mounted on the boat according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a process gas inlet space, a process gas discharge space, and a plasma generating means provided on an inner sidewall of an upper inner housing according to an exemplary embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a process gas flow above the process chamber in accordance with an embodiment of the present invention.
  • FIG. 8 is a view showing the sealing sealing coupled to each other the lower housing chamber and the boat housing in accordance with an embodiment of the present invention.
  • FIG. 9 is a view illustrating a process in which a substrate is loaded into a boat, processed in a chamber housing, and then unloaded again according to an embodiment of the present invention.
  • FIG. 10 is a view of the partition wall of the process gas from the top according to an embodiment of the present invention.
  • FIG. 11 is a perspective view of a process gas inlet space in which three partitions are formed according to an embodiment of the present invention.
  • FIG. 12 is a view showing a state in which the distribution flow of each gas is viewed from above according to an embodiment of the present invention.
  • FIG. 13 is a view illustrating a process gas inlet space body having a plurality of partition spaces according to an exemplary embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a process of simultaneously spraying a process gas in the process of depositing a space-division atomic layer according to an embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a flow graph for simultaneously spraying a process gas during a space-division atomic layer deposition process according to an exemplary embodiment of the present invention.
  • 16 is a diagram illustrating a sequence in which a substrate is exposed to the process gas when the process gas is simultaneously sprayed according to the exemplary embodiment of the present invention.
  • FIG. 17 is a flowchart illustrating a process of spraying process gas at a time difference in space-division atomic layer deposition according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a flow graph in which process gas is injected at a time difference in the space-division atomic layer deposition process according to an exemplary embodiment of the present invention.
  • the process chamber according to the embodiment of the present invention can be applied to various processing apparatuses such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a semiconductor such as an LED device and a memory device may be manufactured using a process chamber that injects gas from the sidewall and discharges the gas to the other side. It can be applied to.
  • FIG. 2 is an external perspective view of a process chamber according to an embodiment of the present invention
  • FIG. 3 is an exploded view of the process chamber according to an embodiment of the present invention
  • FIG. 4 is a view of a boat being raised or lowered according to an embodiment of the present invention.
  • 5 is a cross-sectional view of a process chamber of FIG. 5 is a view illustrating a state in which a boat is stepped up as a substrate is mounted on the boat according to an embodiment of the present invention
  • FIG. 6 is an upper inner housing according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating a process gas inlet space, a process gas discharge space, and a plasma generating means provided on an inner sidewall of the same, and FIG. One drawing.
  • the process chamber stacks a plurality of substrates up and down and then flows the process gas between the stacked substrates so that substrate processing such as deposition and etching is performed on the surface of the substrate.
  • the process chamber includes a boat 300 in which a plurality of substrates are spaced apart from each other, and the boat is lifted up and positioned in an internal space. It comprises a chamber housing (100,200), a boat driving means 400 for raising and lowering the boat into the chamber housing, and a substrate transfer gate 500 through one side wall of the chamber housing.
  • the Boat 300 is a plurality of substrates are stacked spaced apart up and down, there is a gap between the stacked substrates so that the process gas flows between these gaps flows to the other side. Therefore, the process gas may be in contact with the upper surface of the substrate, so that substrate processing such as deposition or etching may be performed on the substrate.
  • the boat 300 includes a plurality of support bars 330 and 330a connecting the upper plate plate 310, the lower plate plate 320, the upper plate plate 310, and the lower plate plate 320 to separate the substrates. 330b and 330c, and a plurality of substrate seating grooves 331 formed on sidewalls of the support bar.
  • the substrate seating grooves 331 are grooves excavated from the sidewall of the support bar 330, and each substrate is seated in these grooves.
  • the boat may rotate and repeatedly expose the substrate to the source gas, purge gas, and reaction gas.
  • the substrate transfer gate 500 is a gate formed on one side wall of the lower chamber housing 200 to allow the substrate to enter and exit the boat. Each substrate is transferred through the substrate transfer gate as it is loaded or unloaded into the boat 300.
  • the boat driving means 400 raises or lowers the boat 300 between an inner space of the upper chamber housing 100 and an inner space of the lower chamber housing 200, and the boat support 420 and the lowering rotary drive shaft. 410.
  • the boat support 420 supports the lower plate plate 320 at the upper surface, and the elevating rotation drive shaft 410 penetrates the bottom surface of the lower chamber housing 200 to lower the boat's bottom surface, that is, the lower plate of the boat.
  • the bottom surface of the boat support 420 is connected to the lifting and lowering rotation drive shaft 410 is raised and lowered in accordance with the drive of the up and down reciprocating drive source, such as a motor, the up and down piston reciprocating movement to raise or lower the boat.
  • the lifting and lowering rotation drive shaft 410 ascends or descends the boat step by step instead of raising and lowering the boat at the same time during the lifting (up / down) operation of the boat.
  • the boat driving means performs one step in the boat as shown in FIG. 5 (b). It is further raised to allow the next substrate seating groove to reach the substrate transfer gate.
  • the board may be finally mounted and inserted into the inner space of the upper chamber housing.
  • the elevating rotary drive shaft also rotates the boat support, which in turn can rotate the boat connected to the boat support. Therefore, regardless of the CVD process or the ALD process, as the boat rotates as the process proceeds, the substrate placed on the boat may be sequentially exposed to the source gas, the purge gas, and the reaction gas.
  • the chamber housings 100 and 200 are positioned in the inner space by raising the boat, and spray the process gas in a horizontal direction from one inner wall to flow between the stacked substrates and discharge them to the outside.
  • the chamber housing which is an embodiment of the present invention, includes a lower chamber housing 200 and an upper chamber housing 100.
  • the lower chamber housing 200 has an upper side open to have an inner space (hereinafter, referred to as a “first inner space”).
  • first inner space an inner space
  • the lowered boat 300 is located in the first inner space of the lower chamber housing 200 as shown in FIG. 4 (b).
  • the boat 300 is loaded in step by step into the substrate mounting groove, the boat 300 does not exist in the first inner space of the upper chamber housing 100.
  • the upper chamber housing 100 is positioned above the lower chamber housing 200 with the lower side opened to have an inner space (hereinafter, referred to as a “second inner space”).
  • the boat raised from the first inner space of the lower chamber housing is positioned in the second inner space of the upper chamber housing 100, and the boat is mounted with the substrates spaced apart from each other in the substrate seating grooves.
  • Process gas is injected from one inner wall of the upper chamber housing 100, flows between the substrates stacked on the boat, and passes through the other inner wall of the upper chamber housing to be discharged.
  • the upper chamber housing When the process gas is injected from one inner wall of the upper chamber housing 100 to the other inner wall, the upper chamber housing may be implemented as a single wall, but may be implemented in a double wall form. That is, the upper chamber housing 100 may be implemented in the form of a housing having a dual structure of the upper chamber inner housing 110 and the upper chamber outer housing 120 spaced apart from each other.
  • the upper chamber inner housing 110 located inside accommodates the boat 300 lifted from the lower chamber housing 200, and the upper chamber outer housing 120 located outside the upper and side walls of the upper chamber inner housing 110. Wrap it apart.
  • One side inner wall of the upper chamber inner housing 110 is provided with a process gas injection means for injecting a process gas toward the other inner wall opposite and a process gas discharge means for discharging the process gas inside the housing to the outside.
  • a process gas injection means for injecting a process gas toward the other inner wall opposite
  • a process gas discharge means for discharging the process gas inside the housing to the outside.
  • the gas injection means 130 includes a process gas inflow space 131 having an internal space and a plurality of gas injection holes 132 formed on a wall surface of the process gas inflow space contacting the boat. And a process gas supply pipe 133 for introducing the process gas into the inner space of the process gas inflow space.
  • the process gas inflow space 131 is a space having an internal space due to the up, down, left, and right walls, and gas introduced from the process gas supply pipe 133 is present in the internal space.
  • a plurality of gas injection holes 132 penetrating into the interior space of the process gas inlet space 131 are formed in the wall surface of the process gas inlet space so that the process gas is formed in the upper chamber through the gas injection holes 132.
  • the gas injection holes 132 are formed in plural numbers at positions corresponding to gaps between the substrate gaps mounted on the boat.
  • the wall of the process gas inlet space is the wall facing the boat.
  • the process gas supply pipe 133 injects the process gas into the internal space of the process gas inflow space 131, and supplies the process gas stored in the process gas storage tank to the process gas inflow space 131. Therefore, the process gas supply pipe 133 has a conduit connected to the process gas storage tank along the inside of the wall of the upper chamber inner housing to supply the process gas to the process gas inlet space.
  • the upper chamber inner housing is provided with a process gas discharge means 140 for discharging the processed process gas to the outside.
  • the process gas discharge unit 140 includes a process gas discharge space 141, a gas discharge hole 142, a process gas discharge pipe 143, and a discharge pump (not shown).
  • the process gas discharge space 141 is a space having an inner space due to the upper, lower, left, and right walls.
  • the process gas remaining in the upper chamber inner housing 110 flows into the process gas and exists inside the space.
  • a plurality of gas discharge holes 142 are formed on the surface of the process gas discharge space so that the process gas remaining after the substrate treatment in the inner space of the upper chamber inner housing passes through the gas discharge hole 142. Flows inside).
  • the wall surface of the process gas discharge space 141 in which the gas discharge hole is formed is a surface facing the boat.
  • the process gas discharge pipe 143 connects the discharge space and the internal space of the fixed gas discharge space.
  • the process gas discharge pipe 143 is connected to the inside of the process gas discharge space 141 and is connected to an external discharge pump (not shown) along the inside of the wall of the upper chamber inner housing. Therefore, the process gas inside the process gas discharge space 141 is discharged to the outside via the process gas discharge pipe 143.
  • the discharge pump (not shown) performs the pumping to discharge the process gas to the outside through the process gas discharge pipe.
  • the process gas inlet space 131 and the process gas discharge space 141 having the internal space as described above are formed on the wall of the upper housing inner housing, the process gas inlet space 131 and the process gas discharge space ( 141 are formed at opposite positions facing each other with the boat in between.
  • the process gas injected from the process gas inlet space 131 flows into the process gas discharge space 141 through a gap between the substrates mounted on the boat by the pumping discharge pressure and then is discharged to the outside.
  • the process gas inlet space 131 and the process gas discharge space 141 may be buried in the side wall of the upper chamber inner housing, but may be coupled to the inner surface of the side wall as a separate mechanism.
  • FIG. 7 is a view of the process chamber according to an embodiment of the present invention as seen from above, and shows a process gas flows from one side wall to the other side wall of the upper chamber inner housing.
  • the process gas injected from the gas injection hole of the process gas inlet space 130 horizontally crosses the inner space of the upper chamber inner housing 110 and is disposed on the other side wall of the process gas discharge space facing each other. 140) can be seen flowing.
  • the process gas flow may be induced by a pump discharge pressure connected to the process gas discharge space 140.
  • the boat and the upper chamber housing should be sealed to each other to maintain the seal with the outside.
  • the boat support 420 and the upper chamber inner housing 120 are sealed by a sealant combination such as an O-ring.
  • a sealant combination such as an O-ring.
  • an o-ring groove 421 is formed on the outer circumferential outer upper surface of the boat support 420.
  • the outer circumferential outer upper surface is a surface in contact with the bottom surface of the lower chamber 110 inside the upper chamber.
  • An O-ring 111 is formed at a bottom surface of the upper chamber inner housing 110 in contact with the boat support 420 at a position opposite to the O-ring groove 421 of the boat support. Therefore, when the boat 300 is lifted up and stored in the upper chamber inner housing 110, as shown in FIG. 8B, an O-ring formed on the bottom surface of the upper chamber inner housing is the upper surface of the boat support. Can be inserted into the O-ring groove formed in the, to maintain the sealing.
  • an embodiment of the present invention includes a plasma generating means.
  • Plasma generating means is used to excite the process gas into a plasma state.
  • Plasma generating means may be provided with a plasma generating means in the upper chamber housing, in the case of the upper chamber housing of the dual structure, the plasma generating means may be provided between the upper chamber inner housing and the upper chamber outer housing.
  • the plasma generating means is characterized by being implemented as a U-shaped plasma antenna. That is, as shown in FIG.
  • the connecting line 600c is formed of a plasma antenna penetrating in a U shape between the upper chamber inner housing and the upper chamber outer housing.
  • the U-shaped plasma antenna may be driven in a Capacitively Coupled Plasma (CCP) method of exciting plasma using RF.
  • the plasma may be driven by a high frequency inductively coupled plasma (ICP) method.
  • the process chamber may be provided with a heating means for heating the substrate. That is, substrate heating means such as a heater for heating the substrate in a boat or upper chamber housing may be provided to provide a heat source during substrate processing.
  • substrate heating means such as a heater for heating the substrate in a boat or upper chamber housing
  • the lower plate plate 310 of the boat may be provided with a heating means such as a heating wire.
  • the heating wire 121 may be provided on the inner wall of the upper chamber inner housing. The heating wire located on the inner wall of the upper inner housing may be embedded in the wall and formed in a zigzag shape.
  • FIG. 9 is a view illustrating a process in which a substrate is loaded into a boat, processed in a chamber housing, and then unloaded again according to an embodiment of the present invention.
  • the loading process will be described.
  • the substrate is transferred and seated from the substrate seating groove at the end of the boat through the substrate transfer gate.
  • the boat is lifted so that the next substrate seating groove is located at the substrate transfer gate, and the substrate being transported is seated in the substrate seating recess.
  • the boat is raised and the substrate is seated in each substrate seating groove.
  • the boat on which the substrate is seated in the substrate seating groove is accommodated in the upper chamber internal housing. Subsequently, as shown in FIG.
  • the process gas flows out of the sidewall and contacts the upper surface of the substrate, thereby processing the substrate.
  • the substrate processing process is completed, as shown in FIG. 9E, the substrate is again unloaded to be discharged to the outside through the substrate transfer gate.
  • the boat is stored in the inner space of the lower chamber housing.
  • the lower chamber housing serves as the substrate loading chamber and the upper chamber housing serves as the process chamber through the process gas injection.
  • the present invention is not limited thereto, and it will be apparent that the lower chamber housing may be applied to a process chamber for injecting a process gas and a configuration such that the upper chamber housing serves as a substrate loading chamber. Therefore, the lower chamber housing also has a plurality of gas injection holes and process gas inlet spaces capable of performing the same function as the upper chamber housing, so that the process can be performed separately in the lower chamber housing, or both the lower chamber housing and the upper chamber housing You will be able to proceed with the equivalent process.
  • the process chamber is a process chamber used for a chemical vapor deposition or an atomic layer deposition process using a plurality of process gases
  • the process gas injection means at the time of carrying out the atomic layer deposition process which has a source gas, a reaction gas, and a purge gas as a process gas is demonstrated.
  • the interior of the process gas inlet space 131 is divided into a plurality of partitions, as shown in FIG. 10, and each partition 135.
  • the barrier rib space 136 between) has a structure in which any one of the source gas supply pipe, the reaction gas supply pipe and the purge gas supply pipe is connected.
  • 10 is a diagram illustrating a conceptual diagram of a supply pipe connected to an internal space of a process gas inlet space. Referring to FIG. 10, the interior of the process gas inlet space 131, in which the upper chamber inner housing 110 forms a part, is separated into a plurality of partitions.
  • the source gas supply pipe 133a, the purge gas supply pipe 133b, and the reaction gas supply pipe 133c are connected to the partition space 136 separated by the partition 135. That is, the source gas supply pipe 133a is connected to the first partition space 136a, the purge gas supply pipe 136b is connected to the second partition space 136b, and the reaction gas supply pipe 136c is connected to the third partition space. ) Is connected, and source gas, purge gas, and reaction gas are supplied to each partition space.
  • FIG. 11 which is a perspective view of a process gas inflow space having a partition
  • the partition 135 is formed to vertically divide the inside of the process gas inflow space.
  • the same process gas is injected vertically between the gaps between the substrates.
  • the source gas, the reaction gas, and the supply gas have the structure of FIG. 10 connected to each partition space, the top of the distribution flow of each gas is shown in FIG. 12. Referring to FIG. 12, it can be seen that the source gas, the reaction gas, and the supply gas provided in each partition space may be provided at the same time.
  • the above-described process gas is just one example, and the same process gas (eg, source gas) is supplied to all of the partition spaces so that the same process gas into the inside of the chamber housing is temporarily provided at the gas injection holes formed in all of the partition spaces. Will be able to spray.
  • FIG. 13 is a diagram illustrating a process gas inflow space having a plurality of partition spaces, wherein a source gas supply pipe (SH 4 , Si 2 H 6, or the like) is introduced into the first partition space 136a.
  • a source gas supply pipe SH 4 , Si 2 H 6, or the like
  • 133a may be connected.
  • a purge gas supply pipe 133b may be connected to the second partition space 136b and the fourth partition space 136d so that purge gas such as Ar and N 2 may be introduced therein.
  • first reaction gas supply pipe 133c may be connected to the third partition space 136c so that the first reaction gas such as O 2 , O 3 , NH 3 flows therein, and the B 2 H is connected to the fifth partition space 136e.
  • the second reaction gas supply pipe 133d may be connected to allow the second reaction gas such as 6 , PH 3 , C 2 H 4 , and H 2 to flow therein.
  • FIG. 14 is a flowchart illustrating a process of simultaneously injecting process gases in a space-division atomic layer deposition process according to an embodiment of the present invention
  • FIG. 15 is a process gas in a space-division atomic layer deposition process according to an embodiment of the present invention
  • FIG. 16 is a diagram illustrating a flow graph of simultaneous spraying
  • FIG. 16 is a diagram illustrating a sequence in which the substrate is exposed to the process gas when the process gas is simultaneously sprayed according to an embodiment of the present invention.
  • the boat After stacking the substrate up and down on the boat (S1401), the boat is positioned in the inner space of the chamber housing (S1402). Thereafter, the boat is rotated (S1403), and as a result, the substrate stacked on the boat is rotated.
  • the partition space is formed to spray the source gas, the purge gas and the reaction gas in order as shown in FIG. 13 to facilitate the explanation, the A region, which is a part of the substrate, is exposed to the process gas as the substrate is rotated. Will be described with reference to FIG. 16.
  • the source gas and the source gas may be further improved.
  • the purge gas may be implemented to be injected at a time difference. This will be described with reference to FIGS. 17 and 18.
  • FIG. 17 is a flowchart illustrating a process of spraying process gas at a time difference in a space-division atomic layer deposition process according to an exemplary embodiment of the present invention
  • FIG. 18 is a flowchart of a space-division atomic layer deposition process according to an embodiment of the present invention. This figure shows the flow graph of spraying process gas with time difference.
  • the boat After stacking the substrate up and down on the boat (S1701), the boat is positioned in the inner space of the chamber housing (S1702). Thereafter, the boat is rotated (S1703), and as a result, the substrate stacked on the boat is rotated.
  • different process gases such as source gas, reaction gas, and purge gas
  • source gas such as source gas, reaction gas, and purge gas
  • purge gas is continuously injected through the purge gas injection group.
  • the source gas is injected through the source gas injection group while the injection of the reaction gas is not performed.
  • the reaction gas is injected through the reaction gas injection group while the injection of the source gas is not performed while maintaining the purge gas injection.
  • the injection time difference between the source gas and the reaction gas is determined by a preset time. That is, the reaction gas injection is made after a predetermined time elapses after the source gas injection is stopped, and likewise, the source gas injection is performed after the predetermined time elapses after the reaction gas injection is stopped.
  • Plasma is applied.
  • Plasma is applied during the reaction gas injection to increase the reaction of the source gas and the reaction gas. Since plasma application occurs in the process gas inlet space, the substrate is rotated to improve uniformity of the thin film so that all regions of the substrate reach around the process gas inlet space, thereby allowing the plasma to reach the entire substrate evenly. .
  • the source gas supply pipe and the purge gas supply pipe are connected to the partition space corresponding to the source gas injection group by a valve to enable selective gas supply.
  • purge gas may be injected through the reaction gas injection group to improve the purge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)

Abstract

The present invention relates to a process chamber and to a substrate processing method. The process chamber according to one embodiment of the present invention includes: a boat in which a plurality of substrates are stacked vertically apart from each other; a lower layer chamber housing having a first inner space which is inside the internal space of the boat; an upper layer chamber housing positioned in the upper layer of the lower layer chamber housing and having a second inner space which is inside the internal space of the boat; a process gas injection means which horizontally injects different process gases individually between the substrates of the boat which are stacked apart from each other from the wall body of the upper layer chamber housing; a process gas discharge means which discharges the gas in the inner space of the upper layer chamber housing to the outside; a boat driving means which raises and lowers the boat to and from the first inner space of the lower layer chamber housing and the second inner space of the upper layer chamber housing and rotates the boat; and a substrate transfer gate which penetrates one side wall of the lower layer chamber housing.

Description

프로세스 챔버 및 기판 처리 방법Process chamber and substrate processing method
본 발명은 프로세스 챔버 및 기판 처리 방법에 관한 것으로서, 기판 처리 능력을 향상시킬 수 있는 프로세스 챔버 및 이를 이용하여 기판을 처리하는 기판처리방법이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process chamber and a substrate processing method, and a process chamber capable of improving substrate processing capability and a substrate processing method using the same.
반도체 소자의 스케일이 점차 축소됨에 따라 극박막에 대한 요구가 갈수록 증대되고 있으며, 콘택홀 크기가 감소되면서 단차 도포성(step coverage)에 대한 문제도 점점 더 심각해지고 있다. As the scale of semiconductor devices is gradually reduced, the demand for ultra-thin films is increasing, and as the contact hole size is reduced, the problem of step coverage becomes more and more serious.
일반적으로 반도체장치의 제조 공정 시에, 박막을 균일하게 증착하기 위해 스퍼터링법(sputtering), 화학기상증착법(chemical vapor deposition: CVD), 원자층증착법(atomic layer deposition: ALD)을 적용한다.In general, in the manufacturing process of a semiconductor device, sputtering, chemical vapor deposition (CVD), and atomic layer deposition (ALD) are applied to uniformly deposit a thin film.
이중에서 화학기상증착법(CVD)은 가장 널리 이용되는 증착기술로서, 반응가스와 분해가스를 이용하여 요구되는 두께를 갖는 박막을 기판상에 증착한다. 화학기상증착법(CVD)은 먼저 다양한 가스들을 프로세스 챔버로 주입시키고, 열, 빛, 플라즈마와 같은 고에너지에 의해 유도된 가스들을 화학반응시킴으로써 기판상에 요구되는 두께의 박막을 증착시킨다. 또한, 화학 기상증착법에서는 반응에너지만큼 인가된 플라즈마 또는 가스들의 비(ratio) 및 양(amount)을 통해 반응조건을 제어함으로써 증착률을 증가시킨다. 그러나, 반응들이 빠르기 때문에 원자들의 열역학적(thermaodynamic) 안정성을 제어하기 매우 어렵고, 박막의 물리적, 화학적, 전기적특성을 저하시킨다.Among them, chemical vapor deposition (CVD) is the most widely used deposition technique. A thin film having a required thickness is deposited on a substrate using a reaction gas and a decomposition gas. Chemical Vapor Deposition (CVD) first injects various gases into the process chamber and deposits a thin film of the required thickness on the substrate by chemically reacting gases induced by high energy such as heat, light and plasma. In addition, the chemical vapor deposition method increases the deposition rate by controlling the reaction conditions through the ratio and amount of plasma or gases applied by the reaction energy. However, the fast reactions make it very difficult to control the thermodynamic stability of atoms and degrade the physical, chemical and electrical properties of thin films.
한편, 원자층 증착법(ALD)은 소스가스(반응가스)와 퍼지가스를 교대로 공급하여 원자층을 증착하기 위한 방법으로서, 이에 의해 형성된 박막은 양호한 피복 특성을 갖고 대구경 기판 및 극박막에 적용되며, 전기적 물리적 특성이 우수하다. 일반적으로 원자층 증착법은, 먼저 제1소스가스를 공급하여 기판 표면에 한 층의 제1소스를 화학적으로 흡착(chemical adsorption)시키고 여분의 물리적 흡착된 소스들은 퍼지가스를 흘려보내어 퍼지시킨 다음, 한 층의 소스에 제2소스가스를 공급하여 한 층의 제1소스와 제2소스가스를 화학반응시켜 원하는 원자층박막을 증착하고 여분의 반응가스는 퍼지가스를 흘려보내 퍼지시키는 과정을 한 주기(cycle)로 하여 박막을 증착한다. 상술한 바와 같이 원자층 증착방법은 표면 반응 메커니즘(surface reaction mechanism)을 이용함으로써 안정된 박막을 얻을 수 있을 뿐만 아니라, 균일한 박막을 얻을 수 있다. 또한, 원자층 증착법은 소스가스와 반응가스를 서로 분리시켜 순차적으로 주입 및 퍼지시키기 때문에 화학적기상증착법에 비하여 기상반응(gas phase reaction)에 의한 파티클 생성을 억제한다.On the other hand, atomic layer deposition (ALD) is a method for depositing an atomic layer by alternately supplying a source gas (reaction gas) and a purge gas, the thin film formed thereby has a good coating properties and is applied to large diameter substrates and ultra-thin film Excellent electrical and physical properties. In general, atomic layer deposition involves first supplying a first source gas to chemically adsorb a layer of the first source onto the substrate surface and purging the excess physically adsorbed sources by flowing a purge gas. The second source gas is supplied to the source of the layer to chemically react the first source and the second source gas of one layer to deposit the desired atomic layer thin film, and the excess reaction gas flows through the purge gas to purge. the thin film is deposited. As described above, the atomic layer deposition method can obtain not only a stable thin film but also a uniform thin film by using a surface reaction mechanism. In addition, the atomic layer deposition method separates the source gas and the reaction gas from each other and sequentially injects and purges the particles, thereby suppressing particle generation by gas phase reaction, compared to chemical vapor deposition.
도 1은 샤워헤드 방식의 원자층박막증착장치 구성을 나타낸 개략도이다.1 is a schematic view showing the configuration of an atomic layer thin film deposition apparatus of a showerhead method.
샤워헤드 방식 원자층박막증착장치는, 반응가스와 퍼지가스가 순차적으로 공급되어 기판(3)에 원자층 증착이 이루어지는 반응 공간(1)을 갖는 프로세스 챔버(2)와, 상기 프로세스 챔버(2) 하부에 구비되어 기판(3)이 안착되는 기판지지대(4)와, 상기 기판대(4)과 대향하여 가스를 반응 공간(1)으로 분사시키는 샤워헤드(5)와 상기 샤워헤드(5)로 공급되는 공급로에 각각 구비되어 가스공급을 개폐하는 밸브(6)를 포함한다. 여기에서, 상기 프로세스 챔버(2)는 반응공간(1)에 공급된 가스를 외부로 배출시키기 위한 펌핑수단과 연결된다. 이와 같이 종래의 원자층박막증착장치는, 기판(3) 상에 반응가스 및 퍼지가스의 밀도를 균일하게 노출시키기 위하여 반응로(1)에서 빠른 가스공급과 제거를 위하여 작은 체적의 프로세스 챔버(2)를 구성한다.The showerhead type atomic layer thin film deposition apparatus includes a process chamber (2) having a reaction space (1) in which reactant gas and purge gas are sequentially supplied, and atomic layer deposition is performed on the substrate (3), and the process chamber (2). A substrate support 4 provided at a lower portion of the substrate 3 on which the substrate 3 is mounted, and a shower head 5 and the shower head 5 which inject gas into the reaction space 1 to face the substrate stand 4. It is provided in each of the supply path to be supplied includes a valve (6) for opening and closing the gas supply. Here, the process chamber 2 is connected with pumping means for discharging the gas supplied to the reaction space 1 to the outside. As described above, the conventional atomic layer thin film deposition apparatus has a small volume of process chamber 2 for rapid gas supply and removal in the reactor 1 in order to uniformly expose the density of the reaction gas and the purge gas on the substrate 3. ).
한편, 화학기상증착장치(CVD)나 원자층박막증착장치(ALD)의 경우 기판 처리 양산 능력이 그리 크지 못하는 문제가 있다. 기판 지지대의 평면상에 복수의 기판이 올려져 화학기상증착 또는 원자층박막증착이 이루어진다 하더라도, 기판지지대 상에 올려질 수 있는 기판의 개수는 제한적이기 때문에 동시에 많은 수의 기판을 처리할 수 없는 한계가 있기 때문이다.On the other hand, in the case of chemical vapor deposition (CVD) or atomic layer deposition (ALD) there is a problem that the mass production capacity of substrate processing is not very large. Even if a plurality of substrates are placed on the plane of the substrate support and chemical vapor deposition or atomic layer thin film deposition is performed, the number of substrates that can be placed on the substrate support is limited, so that it is impossible to process a large number of substrates at the same time. Because there is.
(선행특허문헌) 한국공개특허 10-2005-0080433호(Preceding Patent Document) Korean Patent Publication No. 10-2005-0080433
본 발명의 기술적 과제는 화학기상증착법, 원자층증착법 등의 기판 처리 공정을 수행할 수 있는 프로세스 챔버 및 기판 처리 방법을 제공하는데 있다. 또한 본 발명의 기술적 과제는 기판 처리 능력을 향상시키는 프로세스 챔버 및 기판 처리 방법을 제공하는데 있다. 또한 본 발명의 기술적 과제는 종래의 수직 분사형 구조의 공정가스 분사 수단이 아닌 수평 분사형 구조의 공정가스 분사 수단을 제공하는데 있다.SUMMARY OF THE INVENTION The present invention provides a process chamber and a substrate processing method capable of performing a substrate processing process such as chemical vapor deposition and atomic layer deposition. Another object of the present invention is to provide a process chamber and a substrate processing method for improving substrate processing capability. In addition, the technical problem of the present invention is to provide a process gas injection means of a horizontal injection type structure, rather than a conventional process gas injection means of a vertical injection type structure.
본 발명의 실시 형태인 프로세스 챔버는 복수의 기판이 상하로 이격 적층되는 보트와, 내부 공간인 제1내부 공간을 가지는 하층 챔버 하우징과, 상기 하층 챔버 하우징의 상층에 위치하여 내부 공간인 제2내부 공간을 가지는 상층 챔버 하우징과, 상기 상층 챔버 하우징의 벽체에서 상기 보트의 이격 적층된 기판 사이로 서로 다른 공정가스를 개별적으로 수평 분사하는 공정가스 분사 수단과, 상기 상층 챔버 하우징의 내부 공간의 가스를 외부로 배출하는 공정가스 배출 수단과, 상기 보트를 상기 하층 챔버 하우징의 제1내부공간에서 상층 챔버 하우징의 제2내부공간으로 승하강시키며, 보트를 회전시키는 보트 구동 수단과, 상기 하층 챔버 하우징의 일측벽에 관통된 기판 이송 게이트를 포함한다.According to an embodiment of the present invention, a process chamber includes a boat in which a plurality of substrates are stacked up and down, a lower chamber housing having a first inner space as an inner space, and a second inner space positioned at an upper layer of the lower chamber housing. Process gas injection means for horizontally injecting different process gases from the walls of the upper chamber housing to the spaced stacked substrates of the boat separately from the walls of the upper chamber housing, and the gas in the inner space of the upper chamber housing Process gas discharging means for discharging the gas, the boat driving means for elevating the boat from the first inner space of the lower chamber housing to the second inner space of the upper chamber housing, and rotating the boat; And a substrate transfer gate penetrated through the sidewalls.
또한 공정가스는 소스가스, 반응가스 및 퍼지가스를 포함하는 공정가스 중에서 적어도 어느 하나임을 특징으로 한다. 상층 챔버 하우징은, 개방된 하측을 통하여 상승된 보트가 수납되는 상층 챔버 내부 하우징과, 상기 상층 챔버 내부 하우징의 상면 및 측벽을 이격하여 감싸는 상층 챔버 외부 하우징을 포함한다.In addition, the process gas is characterized in that at least any one of the process gas, including a source gas, a reaction gas and a purge gas. The upper chamber housing includes an upper chamber inner housing in which the boat lifted through the opened lower side is accommodated, and an upper chamber outer housing surrounding the upper surface and sidewalls of the upper chamber inner housing.
또한 공정가스 분사 수단은, 내부 공간을 가지며, 상기 상층 챔버 하우징의 벽체에 형성된 공정가스 유입 공간체와, 상기 보트에 접하는 공정가스 유입 공간체의 벽면에 형성된 다수의 가스 분사홀과, 상기 공정가스 유입 공간체의 내부 공간에 연결되어 공정가스를 유입시키는 적어도 하나 이상의 공정가스 공급관을 포함한다.In addition, the process gas injection means has an internal space, a process gas inlet space formed in the wall of the upper chamber housing, a plurality of gas injection holes formed in the wall surface of the process gas inlet space in contact with the boat, and the process gas It includes at least one process gas supply pipe connected to the internal space of the inlet space to introduce the process gas.
또한 공정가스 공급관은 소스가스를 공급하는 소스가스 공급관과, 반응가스를 공급하는 반응가스 공급관과, 퍼지가스를 공급하는 퍼지가스 공급관을 적어도 어느 하나 이상 포함하며, 각 공급관이 분리되어 각각 독립적으로 가스를 공급한다. 또한 공정가스 유입 공간체는 내부가 복수의 격벽으로 분리되어 있으며, 각 격벽 사이의 격벽 공간에 상기 소스가스 공급관, 반응가스 공급관 및 퍼지가스 공급관 중에서 어느 하나가 연결된다. 또한 격벽 공간의 벽면에 형성된 가스 분사홀은, 각 격벽 공간으로 공급된 공급관의 종류에 따라서 서로 다른 공정가스를 분사하며, 각 격벽은 공정가스 유입 공간체의 내부를 수직으로 분할되도록 형성된다.In addition, the process gas supply pipe includes a source gas supply pipe for supplying the source gas, a reaction gas supply pipe for supplying the reaction gas, and at least one or more purge gas supply pipe for supplying the purge gas, and each of the supply pipes is separated and each independently gas. To supply. In addition, the process gas inflow space is divided into a plurality of partitions, and any one of the source gas supply pipe, the reaction gas supply pipe, and the purge gas supply pipe is connected to the partition space between each partition wall. In addition, the gas injection hole formed in the wall surface of the partition space, injects different process gases according to the type of supply pipes supplied to each partition space, each partition wall is formed so as to vertically divide the inside of the process gas inlet space.
또한 본 발명의 실시 형태인 기판 처리 방법은, 복수의 기판이 상하로 이격 적층되는 보트와, 내부공간에 보트를 위치시키며 보트에 이격 적층된 기판 사이로 내부 측벽의 분사홀을 통해서 공정가스를 수평으로 흘러보내는 챔버 하우징을 구비한 프로세스 챔버의 원자층 증착 방법에 있어서, 보트에 기판을 상하로 이격 적층시키는 과정과, 상기 보트를 상기 챔버 하우징의 내부공간에 위치시키는 과정과, 상기 보트를 회전시키는 과정과, 챔버 하우징의 내부 측벽의 분사홀을 복수개의 분사 그룹으로 수직 분할하여, 각 분사 그룹별로 서로 다른 공정가스를 이격 적층되어 회전하는 기판에 동시에 분사하거나 또는 시간을 달리하여 분사하는 과정을 포함한다.In addition, the substrate processing method according to the embodiment of the present invention horizontally processes the process gas through the injection hole of the inner sidewall between the boat on which the plurality of substrates are stacked up and down and the boat is placed in the inner space and the substrate is spaced apart on the boat. A method of depositing an atomic layer of a process chamber having a flowing chamber housing, the method comprising: laminating a substrate vertically on a boat, placing the boat in an inner space of the chamber housing, and rotating the boat And vertically dividing the injection holes of the inner sidewall of the chamber housing into a plurality of injection groups, and simultaneously spraying different process gases on each of the injection groups onto the rotating substrate while being spaced apart or spraying at different times. .
또한 기판 처리 방법은, 시간을 달리하여 분사하는 경우에는, 기판 처리 공정이 시작되면 퍼지가스 분사그룹을 통하여 퍼지가스를 분사하는 과정과, 퍼지가스 분사를 유지한 채, 반응가스의 분사가 이루어지지 않는 상태에서 소스가스 분사그룹을 통하여 소스가스를 분사하는 소스가스 분사과정과, 퍼지가스 분사를 유지한 채, 소스가스의 분사가 이루어지지 않는 상태에서 반응가스 분사그룹을 통하여 반응가스를 분사하는 반응가스 분사과정과, 기판 처리 공정이 종료할 때까지 상기 소스가스 분사과정 및 반응가스 분사과정을 반복 수행하는 과정을 포함한다.In the substrate processing method, when the substrate is sprayed at different times, the process of injecting purge gas through the purge gas injection group when the substrate processing process is started, and the reaction gas is not injected while maintaining the purge gas injection. Source gas injection process for injecting the source gas through the source gas injection group in the non-state, and reaction for injecting the reaction gas through the reaction gas injection group while the source gas is not injected while maintaining the purge gas injection And a process of repeating the source gas injection process and the reaction gas injection process until the gas injection process and the substrate processing process are completed.
본 발명의 실시 형태에 따르면 기판을 상하 방향으로 이격 적층시킨 후 수평으로 공정가스를 분사함으로써, 기판 처리 능력을 향상시킬 수 있다. 또한 다양한 공정 처리 방식을 수행할 수 있는데, 예컨대, CVD, ALD 장치 등에 적용할 수 있다. 또한 플라즈마 발생 수단을 제공함으로써, 기판 처리 능력의 효율성과 막의 질을 높일 수 있다. 또한 기존의 샤워헤드 방식의 막질 특성 저하를 방지하고 막질 특성을 향상시킬 수 있다.According to the embodiment of the present invention, the substrate processing ability can be improved by spraying the process gas horizontally after laminating the substrates in the vertical direction. In addition, various process treatment methods may be performed. For example, the present invention may be applied to a CVD or an ALD device. In addition, by providing the plasma generating means, the efficiency of the substrate processing ability and the film quality can be improved. In addition, it is possible to prevent degradation of the film quality of the conventional showerhead method and to improve the film quality.
도 1은 샤워헤드 방식의 원자층박막증착장치 구성을 나타낸 개략도이다.1 is a schematic view showing the configuration of an atomic layer thin film deposition apparatus of a showerhead method.
도 2는 본 발명의 실시예에 따른 프로세스 챔버의 외관 사시도이다.2 is an external perspective view of a process chamber according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 프로세스 챔버의 분해도이다.3 is an exploded view of a process chamber in accordance with an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 보트가 상승 또는 하강된 모습의 프로세스 챔버의 단면도이다.4 is a cross-sectional view of a process chamber in which a boat is raised or lowered according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 보트에 기판이 실장됨에 따라 보트가 단계별로 상승하는 모습을 도시한 도면이다.5 is a view showing a state in which the boat is raised in stages as the substrate is mounted on the boat according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 상층 내부 하우징의 내부 측벽에 공정가스 유입 공간체 및 공정가스 배출 공간체 및 플라즈마 발생 수단이 구비된 모습을 도시한 그림이다.FIG. 6 is a view illustrating a process gas inlet space, a process gas discharge space, and a plasma generating means provided on an inner sidewall of an upper inner housing according to an exemplary embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 프로세스 챔버의 상측에서의 공정 가스 흐름을 도시한 도면이다.7 is a diagram illustrating a process gas flow above the process chamber in accordance with an embodiment of the present invention.
도 8은 본 발명의 실시예에 따라 하층 챔버 내부 하우징과 보트와 서로 실링 밀폐 결합되는 모습을 도시한 도면이다.8 is a view showing the sealing sealing coupled to each other the lower housing chamber and the boat housing in accordance with an embodiment of the present invention.
도 9는 본 발명의 실시예에 따라 기판이 보트에 로딩되어 챔버 하우징 내에서 기판 처리된 후 다시 언로딩되는 과정을 도시한 도면이다.FIG. 9 is a view illustrating a process in which a substrate is loaded into a boat, processed in a chamber housing, and then unloaded again according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라 공정가스의 격벽을 상부에서 바라본 도면이다.10 is a view of the partition wall of the process gas from the top according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따라 3개의 격벽이 형성된 공정가스 유입 공간체의 사시도이다.11 is a perspective view of a process gas inlet space in which three partitions are formed according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따라 각 가스의 분포 흐름을 상측에서 바라본 모습을 도시한 도면이다.12 is a view showing a state in which the distribution flow of each gas is viewed from above according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따라 다수의 격벽 공간을 가진 공정가스 유입 공간체를 도시한 도면이다.FIG. 13 is a view illustrating a process gas inlet space body having a plurality of partition spaces according to an exemplary embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 공간분할 원자층 증착 과정에서 공정가스를 동시에 분사하는 과정을 도시한 플로차트이다.14 is a flowchart illustrating a process of simultaneously spraying a process gas in the process of depositing a space-division atomic layer according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 공간분할 원자층 증착 공정 시의 공정가스를 동시 분사하는 흐름 그래프를 도시한 그림이다.FIG. 15 is a diagram illustrating a flow graph for simultaneously spraying a process gas during a space-division atomic layer deposition process according to an exemplary embodiment of the present invention.
도 16은 본 발명의 실시예에 따라 공정가스를 동시에 분사할 때 기판이 공정가스에 노출되는 순서를 도시한 그림이다.16 is a diagram illustrating a sequence in which a substrate is exposed to the process gas when the process gas is simultaneously sprayed according to the exemplary embodiment of the present invention.
도 17은 본 발명의 실시예에 따른 공간분할 원자층 증착 과정에서 공정가스를 시간차를 두며 분사하는 과정을 도시한 플로차트이다.FIG. 17 is a flowchart illustrating a process of spraying process gas at a time difference in space-division atomic layer deposition according to an embodiment of the present invention.
도 18은 본 발명의 실시예에 따른 공간분할 원자층 증착 공정 시의 공정가스를 시간차를 두며 분사하는 흐름 그래프를 도시한 그림이다.FIG. 18 is a diagram illustrating a flow graph in which process gas is injected at a time difference in the space-division atomic layer deposition process according to an exemplary embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. Like numbers refer to like elements in the figures.
또한 본 발명의 실시예에 따른 프로세스 챔버는, 화학기상증착장치(CVD), 원자층증착장치(ALD) 등의 다양한 공정 장치에 적용할 수 있다. 또한 본 발명의 실시예에 따라 측벽에서 가스를 분사하여 타측으로 배출하는 프로세스 챔버를 이용하여, LED 소자, 메모리 소자 등의 반도체를 제조할 수 있으며 이에 한정되지 않고 LCD, SOLAR 등의 평판패널기판 제작에도 적용될 수 있을 것이다.In addition, the process chamber according to the embodiment of the present invention can be applied to various processing apparatuses such as chemical vapor deposition (CVD) and atomic layer deposition (ALD). In addition, according to an exemplary embodiment of the present invention, a semiconductor such as an LED device and a memory device may be manufactured using a process chamber that injects gas from the sidewall and discharges the gas to the other side. It can be applied to.
도 2는 본 발명의 실시예에 따른 프로세스 챔버의 외관 사시도이며, 도 3은 본 발명의 실시예에 따른 프로세스 챔버의 분해도이며, 도 4는 본 발명의 실시예에 따라 보트가 상승 또는 하강된 모습의 프로세스 챔버의 단면도이며, 도 5는 본 발명의 실시예에 따라 보트에 기판이 실장됨에 따라 보트가 단계별로 상승하는 모습을 도시한 도면이며, 도 6은 본 발명의 실시예에 따라 상층 내부 하우징의 내부 측벽에 공정가스 유입 공간체 및 공정가스 배출 공간체 및 플라즈마 발생 수단이 구비된 모습을 도시한 그림이며, 도 7은 본 발명의 실시예에 따른 프로세스 챔버의 상측에서의 공정 가스 흐름을 도시한 도면이다.2 is an external perspective view of a process chamber according to an embodiment of the present invention, FIG. 3 is an exploded view of the process chamber according to an embodiment of the present invention, and FIG. 4 is a view of a boat being raised or lowered according to an embodiment of the present invention. 5 is a cross-sectional view of a process chamber of FIG. 5 is a view illustrating a state in which a boat is stepped up as a substrate is mounted on the boat according to an embodiment of the present invention, and FIG. 6 is an upper inner housing according to an embodiment of the present invention. FIG. 7 is a view illustrating a process gas inlet space, a process gas discharge space, and a plasma generating means provided on an inner sidewall of the same, and FIG. One drawing.
프로세스 챔버는 기판 처리 능력을 향상시키기 위하여, 복수의 기판을 상하로 이격 적층시킨 후 이격 적층된 기판 사이로 공정가스를 흘러보내 기판의 표면에 증착, 식각 등의 기판 처리가 이루어지도록 한다. 이를 위하여 프로세스 챔버는, 복수의 기판이 이격 적층되는 보트(300)와, 상기 보트를 상승시켜 내부 공간에 위치시키며, 측벽에서 공정가스를 수평 방향으로 분사하고 이격 적층된 기판 사이로 흘러보내 외부로 배출하도록 하는 챔버 하우징(100,200)과, 상기 보트를 상기 챔버 하우징의 내부로 승하강시키는 보트 구동 수단(400)과, 상기 챔버 하우징의 일측벽이 관통된 기판 이송 게이트(500)를 포함한다.In order to improve substrate processing capability, the process chamber stacks a plurality of substrates up and down and then flows the process gas between the stacked substrates so that substrate processing such as deposition and etching is performed on the surface of the substrate. To this end, the process chamber includes a boat 300 in which a plurality of substrates are spaced apart from each other, and the boat is lifted up and positioned in an internal space. It comprises a chamber housing (100,200), a boat driving means 400 for raising and lowering the boat into the chamber housing, and a substrate transfer gate 500 through one side wall of the chamber housing.
보트(300)는 복수의 기판이 상하로 이격 적층되어 있어, 적층된 기판들 사이에 이격틈이 존재하여 이러한 틈 사이로 공정가스가 유입되어 반대편으로 흘러나간다. 따라서 기판 상부면에 공정가스가 접할 수 있어 기판상에 증착 또는 식각 등의 기판 처리가 이루어질 수 있다. 기판의 이격 적층을 위하여 보트(300)는 상부 플레이트판(310), 하부 플레이트판(320), 상부 플레이트판(310)과 하부 플레이트 판(320)을 연결하는 복수의 지지바(330;330a,330b,330c), 상기 지지바의 측벽에 형성된 복수의 기판 안착홈(331)을 포함한다. 기판 안착홈(331)은 지지바(330)의 측벽에서 파여진 홈으로서, 이러한 홈에 각 기판이 안착된다. 보트는 회전을 하면서 순차적으로 소스가스, 퍼지가스, 반응가스에 기판을 반복 노출시킬 수 있다. Boat 300 is a plurality of substrates are stacked spaced apart up and down, there is a gap between the stacked substrates so that the process gas flows between these gaps flows to the other side. Therefore, the process gas may be in contact with the upper surface of the substrate, so that substrate processing such as deposition or etching may be performed on the substrate. The boat 300 includes a plurality of support bars 330 and 330a connecting the upper plate plate 310, the lower plate plate 320, the upper plate plate 310, and the lower plate plate 320 to separate the substrates. 330b and 330c, and a plurality of substrate seating grooves 331 formed on sidewalls of the support bar. The substrate seating grooves 331 are grooves excavated from the sidewall of the support bar 330, and each substrate is seated in these grooves. The boat may rotate and repeatedly expose the substrate to the source gas, purge gas, and reaction gas.
기판 이송 게이트(500)는 하층 챔버 하우징(200)의 일측벽에 형성되어 기판이 보트로 출입되는 게이트이다. 각각의 기판이 보트(300)에 로딩(loading) 또는 언로딩(unloading)될 때 기판 이송 게이트를 통하여 이송된다. The substrate transfer gate 500 is a gate formed on one side wall of the lower chamber housing 200 to allow the substrate to enter and exit the boat. Each substrate is transferred through the substrate transfer gate as it is loaded or unloaded into the boat 300.
보트 구동 수단(400)은 보트(300)를 상층 챔버 하우징(100)의 내부 공간과 하층 챔버 하우징(200)의 내부 공간 사이에서 보트를 상승 또는 하강시키는데, 보트 지지대(420)와 승하강 회전 구동축(410)을 구비한다. 보트 지지대(420)는 상부면에서 하부 플레이트판(320)을 지지하는데, 승하강 회전 구동축(410)이 하층 챔버 하우징(200)의 바닥면을 관통하여 보트의 하부면, 즉, 보트의 하부 플레이트판(320)을 지지한다. 보트 지지대(420)의 하부면은 승하강 회전 구동축(410)에 연결되어 모터와 같은 상하 왕복 구동원의 구동에 따라 상승 및 하강하는데, 상하 피스톤 왕복 운동을 하며 보트를 상승 또는 하강시킨다. 또한 승하강 회전 구동축(410)은 보트의 승하강(상승/하강) 동작시에 한꺼번에 보트를 승하강시키는 것이 아니라 단계별로 보트를 상승 또는 하강시킨다. 예를 들어, 도 5(a)에 도시한 바와 같이 기판 이송 게이트를 통하여 기판이 보트의 기판 안착홈에 삽입 안착된 경우, 도 5(b)에 도시한 바와 같이 보트 구동 수단은 보트를 한 단계 더 상승시켜 다음번째의 기판 안착홈이 기판 이송 게이트에 도달하도록 한다. 이와 같이 단계별로 보트를 상승시키며 기판을 각 기판 안착홈에 안착시켜 최종적으로 도 5(c)에 도시한 바와 같이 각 기판 안착홈에 기판을 탑재하고 상층 챔버 하우징의 내부 공간으로 삽입될 수 있다. 또한 승하강 회전 구동축은 보트 지지대를 회전시킴으로써, 결과적으로 보트 지지대에 연결된 보트를 회전시킬 수 있다. 따라서 CVD 공정, ALD 공정에 상관없이 공정이 진행될 때 보트가 회전되면서, 보트 위에 놓인 기판이 소스가스, 퍼지가스, 반응가스에 순차적으로 노출될 수 있다.The boat driving means 400 raises or lowers the boat 300 between an inner space of the upper chamber housing 100 and an inner space of the lower chamber housing 200, and the boat support 420 and the lowering rotary drive shaft. 410. The boat support 420 supports the lower plate plate 320 at the upper surface, and the elevating rotation drive shaft 410 penetrates the bottom surface of the lower chamber housing 200 to lower the boat's bottom surface, that is, the lower plate of the boat. Support plate 320. The bottom surface of the boat support 420 is connected to the lifting and lowering rotation drive shaft 410 is raised and lowered in accordance with the drive of the up and down reciprocating drive source, such as a motor, the up and down piston reciprocating movement to raise or lower the boat. In addition, the lifting and lowering rotation drive shaft 410 ascends or descends the boat step by step instead of raising and lowering the boat at the same time during the lifting (up / down) operation of the boat. For example, when the substrate is inserted and seated in the board seating groove of the boat through the substrate transfer gate as shown in FIG. 5 (a), the boat driving means performs one step in the boat as shown in FIG. 5 (b). It is further raised to allow the next substrate seating groove to reach the substrate transfer gate. As such, as the boat is raised in stages, the substrate is seated in each substrate seating groove, and as shown in FIG. 5 (c), the board may be finally mounted and inserted into the inner space of the upper chamber housing. The elevating rotary drive shaft also rotates the boat support, which in turn can rotate the boat connected to the boat support. Therefore, regardless of the CVD process or the ALD process, as the boat rotates as the process proceeds, the substrate placed on the boat may be sequentially exposed to the source gas, the purge gas, and the reaction gas.
챔버 하우징(100,200)은 상기 보트를 상승시켜 내부 공간에 위치시키며, 일측 내벽에서 공정가스를 수평 방향으로 분사하여 이격 적층된 기판 사이로 흘러보내 외부로 배출한다. 본 발명의 실시예인 챔버 하우징은 하층 챔버 하우징(200)과 상층 챔버 하우징(100)으로 이루어진다.The chamber housings 100 and 200 are positioned in the inner space by raising the boat, and spray the process gas in a horizontal direction from one inner wall to flow between the stacked substrates and discharge them to the outside. The chamber housing, which is an embodiment of the present invention, includes a lower chamber housing 200 and an upper chamber housing 100.
하층 챔버 하우징(200)은 상측이 개방되어 내부 공간(이하, '제1내부 공간'이라 함)을 가진다. 공정이 완료되어 기판이 언로딩된 상태에서는 도 4(b)에 도시한 바와 같이 하강된 보트(300)는 하층 챔버 하우징(200)의 제1내부 공간에 위치하며, 반대로, 기판이 보트의 각 기판 안착홈에 단계별로 로딩되어 상승하게 되면 보트(300)는 상층 챔버 하우징(100)의 제1내부 공간에 존재하지 않게 된다.The lower chamber housing 200 has an upper side open to have an inner space (hereinafter, referred to as a “first inner space”). After the process is completed and the substrate is unloaded, the lowered boat 300 is located in the first inner space of the lower chamber housing 200 as shown in FIG. 4 (b). When the boat 300 is loaded in step by step into the substrate mounting groove, the boat 300 does not exist in the first inner space of the upper chamber housing 100.
상층 챔버 하우징(100)은 하측이 개방된 채 하층 챔버 하우징(200)의 상층에 위치하여 내부 공간(이하, '제2내부 공간'이라 함)을 가진다. 상층 챔버 하우징(100)의 제2내부 공간에는 하층 챔버 하우징의 제1내부 공간으로부터 상승한 보트가 위치하며, 이러한 보트에는 각 기판 안착홈에 기판이 이격 적층되어 탑재되어 있다. 상층 챔버 하우징(100)의 일측 내벽에서 공정가스가 분사되며, 보트에 이격 적층된 기판의 사이를 흘러가서 상층 챔버 하우징의 타측 내벽을 통과하여 회부로 배출된다.The upper chamber housing 100 is positioned above the lower chamber housing 200 with the lower side opened to have an inner space (hereinafter, referred to as a “second inner space”). The boat raised from the first inner space of the lower chamber housing is positioned in the second inner space of the upper chamber housing 100, and the boat is mounted with the substrates spaced apart from each other in the substrate seating grooves. Process gas is injected from one inner wall of the upper chamber housing 100, flows between the substrates stacked on the boat, and passes through the other inner wall of the upper chamber housing to be discharged.
상층 챔버 하우징(100)의 일측 내벽에서 타측 내벽으로 향해 공정가스가 분사되는 경우, 상층 챔버 하우징은 단일벽으로 구현될 수 있지만, 이중벽 형태로 구현될 수 있다. 즉, 상층 챔버 하우징(100)은 상층 챔버 내부 하우징(110)과 이를 이격하여 감싸는 상층 챔버 외부 하우징(120)으로 된 이중 구조의 하우징 형태로 구현될 수 있다. 내측에 위치한 상층 챔버 내부 하우징(110)은 하층 챔버 하우징(200)으로부터 상승된 보트(300)가 수납되며, 외측에 위치한 상층 챔버 외부 하우징(120)은 상층 챔버 내부 하우징(110)의 상면 및 측벽을 이격하여 감싼다. When the process gas is injected from one inner wall of the upper chamber housing 100 to the other inner wall, the upper chamber housing may be implemented as a single wall, but may be implemented in a double wall form. That is, the upper chamber housing 100 may be implemented in the form of a housing having a dual structure of the upper chamber inner housing 110 and the upper chamber outer housing 120 spaced apart from each other. The upper chamber inner housing 110 located inside accommodates the boat 300 lifted from the lower chamber housing 200, and the upper chamber outer housing 120 located outside the upper and side walls of the upper chamber inner housing 110. Wrap it apart.
상층 챔버 내부 하우징(110)의 일측 내벽에는 대향되는 타측 내벽을 향해 공정가스를 분사하는 공정가스 분사 수단과 하우징 내부의 공정 가스를 외부로 배출하는 공정가스 배출 수단이 구비된다. 일측 내벽에서 대향되는 타측 내벽을 향해 공정가스를 분사함으로써, 상층 챔버 하우징의 내부 공간에 존재하는 보트에 공정가스를 흘러보낼 수 있다.One side inner wall of the upper chamber inner housing 110 is provided with a process gas injection means for injecting a process gas toward the other inner wall opposite and a process gas discharge means for discharging the process gas inside the housing to the outside. By injecting the process gas toward the other inner wall opposite from one inner wall, the process gas can flow into the boat existing in the inner space of the upper chamber housing.
가스 분사 수단(130)은 도 6에 도시한 바와 같이, 내부 공간을 가지는 공정가스 유입 공간체(131)와, 상기 보트에 접하는 공정가스 유입 공간체의 벽면에 형성된 다수의 가스 분사홀(132)과, 상기 공정가스 유입 공간체의 내부 공간에 공정가스를 유입시키는 공정가스 공급관(133)을 포함한다. 공정가스 유입 공간체(131)는 상하좌우 벽체로 인한 내부 공간을 가지는 공간체로서, 내부 공간에 공정가스 공급관(133)으로부터 유입된 가스가 존재한다. 공정가스 유입 공간체(131)의 내부공간으로 관통하는 다수의 가스 분사홀(132;hole)이 공정가스 유입 공간체의 벽면에 형성되어, 이러한 가스 분사홀(132)을 통하여 공정가스가 상층 챔버 내부 하우징의 내부 공간으로 유입된다. 가스 분사홀(132)은 보트에 실장된 각 기판들 이격틈 사이와 각각 매칭되는 위치에 복수개로 형성된다. 공정가스 유입 공간체의 벽면은 보트를 바라보는 벽면이다. 공정가스 공급관(133)은 공정가스 유입 공간체(131)의 내부 공간으로 공정가스를 유입시키는데, 공정가스 저장 탱크에 보관된 공정가스를 공정가스 유입 공간체(131)로 공급한다. 따라서 공정가스 공급관(133)은 공정가스 저장 탱크에 연결된 도관을 상층 챔버 내부 하우징의 벽체의 내부를 따라 형성되어, 공정가스 유입 공간체에 공정가스를 공급한다.As illustrated in FIG. 6, the gas injection means 130 includes a process gas inflow space 131 having an internal space and a plurality of gas injection holes 132 formed on a wall surface of the process gas inflow space contacting the boat. And a process gas supply pipe 133 for introducing the process gas into the inner space of the process gas inflow space. The process gas inflow space 131 is a space having an internal space due to the up, down, left, and right walls, and gas introduced from the process gas supply pipe 133 is present in the internal space. A plurality of gas injection holes 132 penetrating into the interior space of the process gas inlet space 131 are formed in the wall surface of the process gas inlet space so that the process gas is formed in the upper chamber through the gas injection holes 132. It flows into the inner space of the inner housing. The gas injection holes 132 are formed in plural numbers at positions corresponding to gaps between the substrate gaps mounted on the boat. The wall of the process gas inlet space is the wall facing the boat. The process gas supply pipe 133 injects the process gas into the internal space of the process gas inflow space 131, and supplies the process gas stored in the process gas storage tank to the process gas inflow space 131. Therefore, the process gas supply pipe 133 has a conduit connected to the process gas storage tank along the inside of the wall of the upper chamber inner housing to supply the process gas to the process gas inlet space.
또한 상층 챔버 내부 하우징은 기판 처리된 공정가스를 외부로 배출하는 공정가스 배출 수단(140)을 구비한다. 공정가스 배출 수단(140)은 도 6에 도시한 바와 같이, 공정가스 배출 공간체(141), 가스 배출홀(142), 공정가스 배출관(143), 배출펌프(미도시)를 포함한다. 공정가스 배출 공간체(141)는 상하좌우 벽체로 인한 내부 공간을 가지는 공간체로서, 상층 챔버 내부 하우징(110) 내부에서 처리되고 남은 공정가스가 유입되어 공간체 내부에 존재한다. 가스 배출홀(142)은 공정가스 배출 공간체의 면에 다수개로 형성되어, 상층 챔버 내부 하우징의 내부 공간에서 기판 처리되고 남은 공정가스가 가스 배출홀(142)을 통해 공정가스 배출 공간체(141)의 내부로 흘러들어간다. 가스 배출홀이 형성되는 공정가스 배출 공간체(141)의 벽면은 보트를 바라보는 면이다. 공정가스 배출관(143)은 고정가스 배출 공간체의 내부 공간과 배출 펌프를 연결한다. 공정가스 배출관(143)은 공정가스 배출 공간체(141)의 내부와 연결되어 상층 챔버 내부 하우징의 벽체의 내부를 따라 외부의 배출펌프(미도시)와 연결된다. 따라서 공정가스 배출 공간체(141) 내부의 공정가스는 공정가스 배출관(143)을 거쳐서 외부로 배출된다. 배출펌프(미도시)는 공정가스 배출관을 통해 공정가스를 외부로 배출하기 위한 펌핑을 수행한다.In addition, the upper chamber inner housing is provided with a process gas discharge means 140 for discharging the processed process gas to the outside. As illustrated in FIG. 6, the process gas discharge unit 140 includes a process gas discharge space 141, a gas discharge hole 142, a process gas discharge pipe 143, and a discharge pump (not shown). The process gas discharge space 141 is a space having an inner space due to the upper, lower, left, and right walls. The process gas remaining in the upper chamber inner housing 110 flows into the process gas and exists inside the space. A plurality of gas discharge holes 142 are formed on the surface of the process gas discharge space so that the process gas remaining after the substrate treatment in the inner space of the upper chamber inner housing passes through the gas discharge hole 142. Flows inside). The wall surface of the process gas discharge space 141 in which the gas discharge hole is formed is a surface facing the boat. The process gas discharge pipe 143 connects the discharge space and the internal space of the fixed gas discharge space. The process gas discharge pipe 143 is connected to the inside of the process gas discharge space 141 and is connected to an external discharge pump (not shown) along the inside of the wall of the upper chamber inner housing. Therefore, the process gas inside the process gas discharge space 141 is discharged to the outside via the process gas discharge pipe 143. The discharge pump (not shown) performs the pumping to discharge the process gas to the outside through the process gas discharge pipe.
상기와 같이 내부 공간을 가지는 공정가스 유입 공간체(131)와 공정가스 배출 공간체(141)가 상층 챔버 내부 하우징의 벽체에 형성되는데, 공정가스 유입 공간체(131)와 공정가스 배출 공간체(141)는 보트를 사이에 두고 서로 마주 보며 대향되는 위치에 형성된다. 공정가스 유입 공간체(131)에서 분사되는 공정가스는 펌핑 배출압에 의하여 보트에 실장된 기판들 사이의 이격틈을 가로질러서 공정가스 배출 공간체(141)의 내부로 흘러간 후 외부로 배출된다. 공정가스 유입 공간체(131)와 공정가스 배출 공간체(141)는 상층 챔버 내부 하우징의 측벽에 매립 형성될 수 있지만, 별도의 기구물로서 측벽의 내부면에 결합되어 형성될 수 있다.The process gas inlet space 131 and the process gas discharge space 141 having the internal space as described above are formed on the wall of the upper housing inner housing, the process gas inlet space 131 and the process gas discharge space ( 141 are formed at opposite positions facing each other with the boat in between. The process gas injected from the process gas inlet space 131 flows into the process gas discharge space 141 through a gap between the substrates mounted on the boat by the pumping discharge pressure and then is discharged to the outside. The process gas inlet space 131 and the process gas discharge space 141 may be buried in the side wall of the upper chamber inner housing, but may be coupled to the inner surface of the side wall as a separate mechanism.
참고로, 도 7은 본 발명의 실시예에 따른 프로세스 챔버를 상측에서 바라본 모습으로서, 공정가스가 상층 챔버 내부 하우징의 일측벽에서 타측벽으로 흘러가는 모습을 도시한 그림이다. 공정가스 유입 공간체(130)의 가스 분사홀에서 분사된 공정가스는 상층 챔버 내부 하우징(110)의 내부 공간을 수평으로 가로질러, 마주보며 대향된 위치의 타측벽에 위치한 공정가스 배출 공간체(140)로 흘러감을 알 수 있다. 공정가스 배출 공간체(140)에 연결되어 있는 펌프배출압에 의하여 공정가스 흐름을 유도할 수 있다. For reference, FIG. 7 is a view of the process chamber according to an embodiment of the present invention as seen from above, and shows a process gas flows from one side wall to the other side wall of the upper chamber inner housing. The process gas injected from the gas injection hole of the process gas inlet space 130 horizontally crosses the inner space of the upper chamber inner housing 110 and is disposed on the other side wall of the process gas discharge space facing each other. 140) can be seen flowing. The process gas flow may be induced by a pump discharge pressure connected to the process gas discharge space 140.
한편, 보트(300)에 기판이 탑재되어 상층 챔버 내부 하우징(110)의 내부 공간으로 상승하게 되면, 보트와 상층 챔버 하우징은 외부와의 밀폐성을 유지하도록 서로 실링되어야 한다. 이러한 밀폐성(기밀성)을 위하여 보트 지지대(420)와 상층 챔버 내부 하우징(120)은 오링(O-ring)과 같은 실링제 결합체에 의하여 실링된다. 이를 위하여 도 8(a)에 도시한 바와 같이 보트 지지대(420)의 외주 바깥쪽 상부면에는 오링홈(421)이 형성된다. 외주 바깥쪽 상부면은 상층 챔버 내부 하부징(110)의 바닥면과 닿는 면이다. 보트 지지대(420)와 닿는 상층 챔버 내부 하우징(110)의 바닥면에는 보트 지지대의 오링 홈(421)과 대향되는 위치에 오링(111;O-ring)이 형성된다. 따라서 보트(300)가 상승하여 상층 챔버 내부 하우징(110)으로 수납되면, 도 8(b)에 도시한 바와 같이 상층 챔버 내부 하우징의 바닥면에 형성된 오링(O-ring)이 보트 지지대의 상부면에 형성된 오링 홈에 삽입되어, 밀폐성을 유지할 수 있다.On the other hand, when the substrate is mounted on the boat 300 to rise to the inner space of the upper chamber inner housing 110, the boat and the upper chamber housing should be sealed to each other to maintain the seal with the outside. For this sealing (sealing) the boat support 420 and the upper chamber inner housing 120 are sealed by a sealant combination such as an O-ring. To this end, as illustrated in FIG. 8A, an o-ring groove 421 is formed on the outer circumferential outer upper surface of the boat support 420. The outer circumferential outer upper surface is a surface in contact with the bottom surface of the lower chamber 110 inside the upper chamber. An O-ring 111 is formed at a bottom surface of the upper chamber inner housing 110 in contact with the boat support 420 at a position opposite to the O-ring groove 421 of the boat support. Therefore, when the boat 300 is lifted up and stored in the upper chamber inner housing 110, as shown in FIG. 8B, an O-ring formed on the bottom surface of the upper chamber inner housing is the upper surface of the boat support. Can be inserted into the O-ring groove formed in the, to maintain the sealing.
한편, 기판 처리 효율을 높이기 위하여, 기판 처리되는 공정가스를 플라즈마 형태로 여기시켜 처리할 수 있다. 이를 위하여 본 발명의 실시예는 플라즈마 발생 수단을 구비한다. 플라즈마 발생 수단은 공정 가스를 플라즈마 상태로 여기시키는데 사용된다. 플라즈마 발생 수단은 상층 챔버 하우징의 내부에 플라즈마 발생 수단이 구비될 수 있는데, 이중 구조의 상층 챔버 하우징인 경우, 상층 챔버 내부 하우징과 상층 챔버 외부 하우징 사이에 플라즈마 발생 수단이 구비될 수 있다. 이러한 플라즈마 발생수단은 U자 형태의 플라즈마 안테나로 구현됨을 특징으로 한다. 즉, 도 6에 도시한 바와 같이, 전압이 인가되는 일끝단(600a) 및 접지 연결점인 타끝단(600b)이 상층 챔버 내부 하우징의 바깥 표면에 위치하여, 일끝단(600a)과 타끝단(600b)의 연결 선로(600c)가 상층 챔버 내부 하우징과 상층 챔버 외부 하우징 사이에서 U자 형태로 관통한 플라즈마 안테나로 형성된다. 참고로, 상기 U자 형태의 플라즈마 안테나는 RF를 이용하여 플라즈마를 여기시키는 축전결합플라즈마(CCP;Capacitively Coupled Plasma) 방식으로 구동될 수 있다. 또한 플라즈마를 고주파 유도결합 플라즈마(ICP;Inductively Coupled Plasma) 방식으로 구동될 수 있다.On the other hand, in order to increase the substrate processing efficiency, the process gas to be processed in the substrate can be processed by exciting the plasma form. To this end, an embodiment of the present invention includes a plasma generating means. Plasma generating means is used to excite the process gas into a plasma state. Plasma generating means may be provided with a plasma generating means in the upper chamber housing, in the case of the upper chamber housing of the dual structure, the plasma generating means may be provided between the upper chamber inner housing and the upper chamber outer housing. The plasma generating means is characterized by being implemented as a U-shaped plasma antenna. That is, as shown in FIG. 6, one end 600a to which a voltage is applied and the other end 600b which is a ground connection point are located on the outer surface of the upper chamber inner housing, and thus the one end 600a and the other end 600b. The connecting line 600c is formed of a plasma antenna penetrating in a U shape between the upper chamber inner housing and the upper chamber outer housing. For reference, the U-shaped plasma antenna may be driven in a Capacitively Coupled Plasma (CCP) method of exciting plasma using RF. In addition, the plasma may be driven by a high frequency inductively coupled plasma (ICP) method.
한편, 기판 처리의 효율성을 위하여 프로세스 챔버에는 기판을 가열하기 위한 가열 수단이 구비될 수 있다. 즉, 기판 처리시에 열원을 제공하기 위하여 보트 또는 상층 챔버 하우징에 기판을 가열시키는 열선(heater)과 같은 기판 가열 수단이 구비될 수 있다. 보트에 가열 수단이 구비되는 경우, 보트의 하부 플레이트판(310)에 열선과 같은 가열 수단이 구비될 수 있다. 또한 상층 챔버 하우징에 가열 수단이 구비되는 경우 상층 챔버 내부 하우징의 내벽에 열선(121)이 구비될 수 있다. 상층 내부 하우징의 내벽에 위치하는 열선은 벽체에 매립되어 지그재그 형태로 형성될 수 있다.On the other hand, for the efficiency of substrate processing, the process chamber may be provided with a heating means for heating the substrate. That is, substrate heating means such as a heater for heating the substrate in a boat or upper chamber housing may be provided to provide a heat source during substrate processing. When the boat is provided with a heating means, the lower plate plate 310 of the boat may be provided with a heating means such as a heating wire. In addition, when the heating means is provided in the upper chamber housing, the heating wire 121 may be provided on the inner wall of the upper chamber inner housing. The heating wire located on the inner wall of the upper inner housing may be embedded in the wall and formed in a zigzag shape.
도 9는 본 발명의 실시예에 따라 기판이 보트에 로딩되어 챔버 하우징 내에서 기판 처리된 후 다시 언로딩되는 과정을 도시한 도면이다.FIG. 9 is a view illustrating a process in which a substrate is loaded into a boat, processed in a chamber housing, and then unloaded again according to an embodiment of the present invention.
우선, 로딩하는 과정을 설명하면, 도 9(a)에 도시한 바와 같이 기판 이송 게이트를 통하여 보트의 제일 마지막단의 기판 안착홈부터 기판이 이송되어 안착된다. 기판이 안착되면 다음번째의 기판 안착홈이 기판 이송 게이트에 위치하도록 보트가 상승되고 이송되는 기판이 해당 기판 안착홈에 안착된다. 따라서 도 9(b)에 도시한 바와 같이 보트가 상승하며 각 기판 안착홈에 기판이 안착된다. 보트의 상승에 따라 기판이 안착되고 나면, 도 9(c)에 도시한 바와 같이 기판 안착홈에 기판이 안착된 보트가 상층 챔버 내부 하우징에 수납된다. 그 후 도 9(d)에 도시한 바와 같이 공정가스가 측벽에서 흘러나와 기판 상부면에 닿아서 기판 처리가 이루어진다. 기판 처리 공정이 완료되면 도 9(e)에 도시한 바와 같이 다시 기판이 기판 이송 게이트를 통하여 외부로 배출되는 언로딩 과정을 가진다. 언로딩이 완전히 완료되면 도 9(f)에 도시한 바와 같이 보트는 하층 챔버 하우징의 내부 공간에 수납된다. First, the loading process will be described. As shown in FIG. 9 (a), the substrate is transferred and seated from the substrate seating groove at the end of the boat through the substrate transfer gate. When the substrate is seated, the boat is lifted so that the next substrate seating groove is located at the substrate transfer gate, and the substrate being transported is seated in the substrate seating recess. Accordingly, as shown in FIG. 9 (b), the boat is raised and the substrate is seated in each substrate seating groove. After the substrate is seated as the boat rises, as shown in FIG. 9 (c), the boat on which the substrate is seated in the substrate seating groove is accommodated in the upper chamber internal housing. Subsequently, as shown in FIG. 9 (d), the process gas flows out of the sidewall and contacts the upper surface of the substrate, thereby processing the substrate. When the substrate processing process is completed, as shown in FIG. 9E, the substrate is again unloaded to be discharged to the outside through the substrate transfer gate. When the unloading is completed, as shown in Fig. 9 (f) the boat is stored in the inner space of the lower chamber housing.
한편, 상기에서 설명한 본 발명의 실시예에 따른 프로세스 챔버는, 하층 챔버 하우징이 기판 로딩 챔버로서의 역할을 하며 상층 챔버 하우징이 공정가스 분사를 통한 프로세스 챔버로서의 역할을 한다. 본 발명은 이에 한정되지 않고 하층 챔버 하우징이 공정가스를 분사하는 프로세스 챔버, 상층 챔버 하우징이 기판 로딩 챔버로서의 역할을 하도록 하는 구성에도 적용될 수 있음은 자명할 것이다. 따라서하층 챔버 하우징 또한 상층 챔버 하우징과 동일 기능을 수행할 수 있는 다수의 가스 분사홀 및 공정가스 유입 공간체를 구비하여, 하층 챔버 하우징에서 개별적으로 공정을 진행하거나, 하부 챔버 하우징과 상부 챔버 하우징 모두에서 동등한 공정을 진행 할 수 있을 것이다.On the other hand, in the process chamber according to the embodiment of the present invention described above, the lower chamber housing serves as the substrate loading chamber and the upper chamber housing serves as the process chamber through the process gas injection. The present invention is not limited thereto, and it will be apparent that the lower chamber housing may be applied to a process chamber for injecting a process gas and a configuration such that the upper chamber housing serves as a substrate loading chamber. Therefore, the lower chamber housing also has a plurality of gas injection holes and process gas inlet spaces capable of performing the same function as the upper chamber housing, so that the process can be performed separately in the lower chamber housing, or both the lower chamber housing and the upper chamber housing You will be able to proceed with the equivalent process.
한편, 프로세스 챔버가 복수의 공정가스를 사용하는 화학기상증착이나 원자층증착공정에 사용되는 프로세스 챔버인 경우에는, 공정가스 유입 공간체(131)에서 서로 다른 공정가스를 개별적으로 수평 분사해야 한다. 이하의 설명에서는 소스가스, 반응가스 및 퍼지가스를 공정가스로 가지는 원자층증착공정을 진행할 때의 공정가스 분사 수단에 대해서 설명한다.On the other hand, when the process chamber is a process chamber used for a chemical vapor deposition or an atomic layer deposition process using a plurality of process gases, it is necessary to separately spray different process gases in the process gas inlet space 131. In the following description, the process gas injection means at the time of carrying out the atomic layer deposition process which has a source gas, a reaction gas, and a purge gas as a process gas is demonstrated.
서로 다른 공정가스를 상층 챔버 내부 하우징에서 보트를 향해서 수평 분사하기 위해서는, 공정가스 유입 공간체(131)의 내부가 도 10에 도시한 바와 같이 내부가 복수의 격벽으로 분리되어 있으며, 각 격벽(135) 사이의 격벽 공간(136)에 상기 소스가스 공급관, 반응가스 공급관 및 퍼지가스 공급관 중에서 어느 하나가 연결되는 구조를 가진다. 도 10은 공정가스 유입 공간체의 내부공간에 연결된 공급관의 개념도를 도시한 그림이다. 도 10을 참조하면, 상층 챔버 내부 하우징(110)이 일부를 이루는 공정가스 유입 공간체(131)의 내부는 다수의 격벽으로 분리되어 있다. 이러한 격벽(135)으로 분리된 격벽 공간(136)에는 각 소스가스 공급관(133a), 퍼지가스 공급관(133b), 반응가스 공급관(133c)가 각각 연결된다. 즉, 제1격벽 공간(136a)에는 소스가스 공급관(133a)이 연결되어 있으며, 제2격벽 공간(136b)에는 퍼지가스 공급관(136b)이 연결되어 있으며, 제3격벽 공간에는 반응가스 공급관(136c)이 연결되어 있어, 각 격벽 공간에 소스가스, 퍼지가스 및 반응가스가 공급된다. 또한 격벽이 형성된 공정가스 유입 공간체의 사시도인 도 11을 참조하면, 격벽(135)은 공정가스 유입 공간체의 내부를 수직으로 분할하도록 형성된다. 보트에 기판이 상하로 수직방향으로 이격 적층되어 있기 때문에, 각 기판 틈사이로 수직상에서 동일한 공정가스를 분사하기 위함이다. 소스가스, 반응가스 및 공급가스가 각각의 격벽 공간에 연결되는 도 10의 구조를 가질때, 각 가스의 분포 흐름을 상측에서 바라본 모습을 도 12에 도시하였다. 도 12를 참조하면, 각 격벽 공간에 제공된 소스가스, 반응가스 및 공급가스는 동시에 각각 제공될 수 있음을 알 수 있다. 그런데, 상기의 공정가스 예시는 하나의 예시에 불과하며, 모든 격벽 공간에 동일한 공정가스(예컨대, 소스가스)를 공급하여 모든 격벽 공간에 형성된 가스 분사홀에서 일시에 챔버 하우징의 내부로 동일한 공정가스를 분사할 수 있을 것이다.In order to horizontally inject different process gases from the upper chamber inner housing toward the boat, the interior of the process gas inlet space 131 is divided into a plurality of partitions, as shown in FIG. 10, and each partition 135. The barrier rib space 136 between) has a structure in which any one of the source gas supply pipe, the reaction gas supply pipe and the purge gas supply pipe is connected. 10 is a diagram illustrating a conceptual diagram of a supply pipe connected to an internal space of a process gas inlet space. Referring to FIG. 10, the interior of the process gas inlet space 131, in which the upper chamber inner housing 110 forms a part, is separated into a plurality of partitions. The source gas supply pipe 133a, the purge gas supply pipe 133b, and the reaction gas supply pipe 133c are connected to the partition space 136 separated by the partition 135. That is, the source gas supply pipe 133a is connected to the first partition space 136a, the purge gas supply pipe 136b is connected to the second partition space 136b, and the reaction gas supply pipe 136c is connected to the third partition space. ) Is connected, and source gas, purge gas, and reaction gas are supplied to each partition space. In addition, referring to FIG. 11, which is a perspective view of a process gas inflow space having a partition, the partition 135 is formed to vertically divide the inside of the process gas inflow space. Since the substrates are vertically spaced apart in the boat in the vertical direction, the same process gas is injected vertically between the gaps between the substrates. When the source gas, the reaction gas, and the supply gas have the structure of FIG. 10 connected to each partition space, the top of the distribution flow of each gas is shown in FIG. 12. Referring to FIG. 12, it can be seen that the source gas, the reaction gas, and the supply gas provided in each partition space may be provided at the same time. However, the above-described process gas is just one example, and the same process gas (eg, source gas) is supplied to all of the partition spaces so that the same process gas into the inside of the chamber housing is temporarily provided at the gas injection holes formed in all of the partition spaces. Will be able to spray.
한편, 도 10 내지 도 12의 격벽 구조는 공정가스 유입 공간체의 내부를 3개로 분할하여 형성된 예를 도시한 것인데, 이러한 3개 격벽 구조 이외에도 다양한 격벽 구조가 있을 수 있을 것이다. 예를 들어, 도 13은 다수의 격벽 공간을 가진 공정가스 유입 공간체를 도시한 그림으로서, 제1격벽 공간(136a)에는 SiH4, Si2H6와 같은 소스가스가 유입되도록 소스가스 공급관(133a)이 연결될 수 있다. 또한 제2격벽 공간(136b) 및 제4격벽 공간(136d)에는 Ar, N2와 같은 퍼지가스가 유입되도록 퍼지가스 공급관(133b)이 연결될 수 있다. 또한 제3격벽 공간(136c)에는 O2,O3,NH3와 같은 제1반응가스가 유입되도록 제1반응가스 공급관(133c)이 연결될 수 있으며, 제5격벽 공간(136e)에는 B2H6, PH3, C2H4, H2와 같은 제2반응가스가 유입되도록 제2반응가스 공급관(133d)이 연결될 수 있다.Meanwhile, the partition structure of FIGS. 10 to 12 illustrates an example formed by dividing the inside of the process gas inflow space into three, and there may be various partition structures in addition to the three partition walls. For example, FIG. 13 is a diagram illustrating a process gas inflow space having a plurality of partition spaces, wherein a source gas supply pipe (SH 4 , Si 2 H 6, or the like) is introduced into the first partition space 136a. 133a may be connected. In addition, a purge gas supply pipe 133b may be connected to the second partition space 136b and the fourth partition space 136d so that purge gas such as Ar and N 2 may be introduced therein. In addition, the first reaction gas supply pipe 133c may be connected to the third partition space 136c so that the first reaction gas such as O 2 , O 3 , NH 3 flows therein, and the B 2 H is connected to the fifth partition space 136e. The second reaction gas supply pipe 133d may be connected to allow the second reaction gas such as 6 , PH 3 , C 2 H 4 , and H 2 to flow therein.
도 14는 본 발명의 실시예에 따른 공간분할 원자층 증착 과정에서 공정가스를 동시에 분사하는 과정을 도시한 플로차트이며, 도 15는 본 발명의 실시예에 따른 공간분할 원자층 증착 공정 시의 공정가스를 동시 분사하는 흐름 그래프를 도시한 그림이며, 도 16은 본 발명의 실시예에 따라 공정가스를 동시에 분사할 때 기판이 공정가스에 노출되는 순서를 도시한 그림이다.FIG. 14 is a flowchart illustrating a process of simultaneously injecting process gases in a space-division atomic layer deposition process according to an embodiment of the present invention, and FIG. 15 is a process gas in a space-division atomic layer deposition process according to an embodiment of the present invention. FIG. 16 is a diagram illustrating a flow graph of simultaneous spraying, and FIG. 16 is a diagram illustrating a sequence in which the substrate is exposed to the process gas when the process gas is simultaneously sprayed according to an embodiment of the present invention.
보트에 기판을 상하로 이격 적층(S1401)시킨 후 보트를 챔버 하우징의 내부 공간에 위치시킨다(S1402). 그 후 보트를 회전시켜(S1403), 결과적으로 보트에 이격 적층된 기판이 회전된다. After stacking the substrate up and down on the boat (S1401), the boat is positioned in the inner space of the chamber housing (S1402). Thereafter, the boat is rotated (S1403), and as a result, the substrate stacked on the boat is rotated.
보트 회전과 아울러 서로 다른 공정가스, 예컨대, 소스가스, 반응가스 및 퍼지가스가 챔버 하우징의 내측벽의 가스 분사홀에서 도 15에 도시된 바와 같이 동시에 분사되도록 한다(S1404). 이때, 챔버 하우징의 내부 측벽의 분사홀이 복수개의 분사 그룹으로 수직 분할되어, 각 분사 그룹별로 서로 다른 공정가스가 분사되도록 한다. 이러한 보트 회전 과정(S1403) 및 가스 분사 과정(S1404)는 원하는 박막의 두께가 증착되어 기판 처리가 종료될 때까지(S1405) 반복 수행된다.Along with the boat rotation, different process gases, for example, source gas, reaction gas, and purge gas, are simultaneously sprayed in the gas injection hole of the inner wall of the chamber housing as shown in FIG. 15 (S1404). At this time, the injection hole of the inner side wall of the chamber housing is vertically divided into a plurality of injection groups, so that different process gases are injected for each injection group. The boat rotation process (S1403) and the gas injection process (S1404) are repeatedly performed until the desired thin film thickness is deposited and the substrate processing is completed (S1405).
설명의 이해를 돕기 위하여 도 13과 같이 소스가스, 퍼지가스 및 반응가스의 순서로 분사되도록 격벽 공간이 형성되어 있는 경우, 기판의 일부 영역인 A 영역이 기판의 회전에 따라 공정가스에 노출되는 모습을 도 16과 함께 설명한다.When the partition space is formed to spray the source gas, the purge gas and the reaction gas in order as shown in FIG. 13 to facilitate the explanation, the A region, which is a part of the substrate, is exposed to the process gas as the substrate is rotated. Will be described with reference to FIG. 16.
우선, 도 16(a) 도시한 바와 같이 기판이 상승하여 챔버 하우징의 내부공간에 위치하여 A 영역의 위치가 도 16(a)와 같다고 할 경우, 보트의 회전에 따라 기판이 회전하게 되면, 기판의 A 영역은 도 16(b)와 같이 소스가스 분사 영역에 위치하게 된다. 그 후 기판이 회전하게 되면 기판의 A영역은 도 16(c)와 같이 퍼지가스 분사 영역에 위치하여 퍼지되고, 이어서 기판의 A 영역은 도 16(d)와 같이 반응가스 분사 영역에 위치하여 반응가스에 반응하게 된다. 따라서 기판의 A 영역은 보트의 회전에 따라 소스가스->퍼지가스->반응가스-퍼지가스->반응가스->...순서로 노출되어 원자층 증착을 이룰 수 있다. 참고로, 각 공정가스는 공정가스 배출 수단의 펌핑 배출압에 의하여 공정가스 배출 공간체를 향하여 챔버 하우징의 내부 공간에서 직진성을 가지며 분사될 수 있다.First, as shown in FIG. 16 (a), when the substrate is raised and positioned in the inner space of the chamber housing, and the position of the region A is the same as that of FIG. 16 (a), when the substrate is rotated according to the rotation of the boat, Region A is positioned in the source gas injection region as shown in FIG. Then, when the substrate is rotated, the A region of the substrate is purged by being located in the purge gas injection region as shown in FIG. 16 (c), and then the A region of the substrate is located in the reaction gas injection region as shown in FIG. Will react to the gas. Therefore, the A region of the substrate may be exposed in the order of source gas-> purge gas-> react gas-> purge gas-> react gas-> ... as the boat rotates to achieve atomic layer deposition. For reference, each process gas may be injected with a straightness in the internal space of the chamber housing toward the process gas discharge space by the pumping discharge pressure of the process gas discharge means.
한편, 상기의 도 14의 설명에서는 소스가스, 퍼지가스, 반응가스를 포함하는 모든 공정가스가 모두 동시에 분사되는 예를 설명하였으나, 발명의 다른 실시예로서 박막 증착 효율을 더욱 향상시키기 위하여 소스가스 및 퍼지가스를 시간차를 두어 분사하도록 구현할 수 있다. 도 17 및 도 18과 함께 상술한다.Meanwhile, in the description of FIG. 14, an example in which all process gases including the source gas, the purge gas, and the reaction gas are all injected at the same time has been described, but as another embodiment of the present invention, the source gas and the source gas may be further improved. The purge gas may be implemented to be injected at a time difference. This will be described with reference to FIGS. 17 and 18.
도 17은 본 발명의 실시예에 따른 공간분할 원자층 증착 과정에서 공정가스를 시간차를 두며 분사하는 과정을 도시한 플로차트이며, 도 18은 본 발명의 실시예에 따른 공간분할 원자층 증착 공정 시의 공정가스를 시간차를 두며 분사하는 흐름 그래프를 도시한 그림이다.FIG. 17 is a flowchart illustrating a process of spraying process gas at a time difference in a space-division atomic layer deposition process according to an exemplary embodiment of the present invention, and FIG. 18 is a flowchart of a space-division atomic layer deposition process according to an embodiment of the present invention. This figure shows the flow graph of spraying process gas with time difference.
보트에 기판을 상하로 이격 적층(S1701)시킨 후 보트를 챔버 하우징의 내부 공간에 위치시킨다(S1702). 그 후 보트를 회전시켜(S1703), 결과적으로 보트에 이격 적층된 기판이 회전된다.After stacking the substrate up and down on the boat (S1701), the boat is positioned in the inner space of the chamber housing (S1702). Thereafter, the boat is rotated (S1703), and as a result, the substrate stacked on the boat is rotated.
보트 회전과 아울러 서로 다른 공정가스, 예컨대, 소스가스, 반응가스 및 퍼지가스가 챔버 하우징의 내측벽의 가스 분사홀에서 도 18에 도시된 바와 같이 시간차를 두고서 분사되도록 한다(S1704). 챔버 하우징의 내부 측벽의 분사홀이 복수개의 분사 그룹으로 수직 분할되어, 각 분사 그룹별로 서로 다른 공정가스가 분사되도록 한다. 도 18을 참조하면, 기판 처리 공정이 시작되면 퍼지가스 분사그룹을 통하여 퍼지가스를 계속하여 분사한다. 소스가스의 경우에는, 퍼지가스 분사를 유지한 채, 반응가스의 분사가 이루어지지 않는 상태에서 소스가스 분사그룹을 통하여 소스가스를 분사한다. 반응가스의 경우에는, 퍼지가스 분사를 유지한 채, 소스가스의 분사가 이루어지지 않는 상태에서 반응가스 분사그룹을 통하여 반응가스를 분사한다. 이러한 소스가스와 반응가스의 분사 시간 차는 미리 설정한 시간에 의해 결정된다. 즉, 소스가스 분사가 중지된 후 미리 정한 시간이 경과한 후 반응가스 분사가 이루어지며, 마찬가지로 반응가스 분사가 중지된 후 미리 정한 시간이 경과한 후 소스가스 분사가 이루어지도록 한다. In addition to the boat rotation, different process gases, such as source gas, reaction gas, and purge gas, are injected at a time difference as shown in FIG. 18 from the gas injection hole of the inner wall of the chamber housing (S1704). The injection hole of the inner side wall of the chamber housing is vertically divided into a plurality of injection groups, so that different process gases are injected for each injection group. Referring to FIG. 18, when the substrate treating process is started, the purge gas is continuously injected through the purge gas injection group. In the case of the source gas, while maintaining the purge gas injection, the source gas is injected through the source gas injection group while the injection of the reaction gas is not performed. In the case of the reaction gas, the reaction gas is injected through the reaction gas injection group while the injection of the source gas is not performed while maintaining the purge gas injection. The injection time difference between the source gas and the reaction gas is determined by a preset time. That is, the reaction gas injection is made after a predetermined time elapses after the source gas injection is stopped, and likewise, the source gas injection is performed after the predetermined time elapses after the reaction gas injection is stopped.
반응 가스 분사가 이루어지는 동안에, 플라즈마가 인가된다. 소스가스와 반응가스의 반응을 증대시키기 위하여 반응가스 분사가 이루어지는 동안 플라즈마가 인가되는 것이다. 플라즈마 인가는 공정가스 유입 공간체에서 발생되기 때문에, 박막의 균일성을 향상시키기 위하여 기판을 회전시켜 기판의 모든 영역이 공정가스 유입 공간체 주변에 도달하도록 함으로써, 플라즈마가 기판 전체에 골고루 도달되도록 한다.During the reaction gas injection, plasma is applied. Plasma is applied during the reaction gas injection to increase the reaction of the source gas and the reaction gas. Since plasma application occurs in the process gas inlet space, the substrate is rotated to improve uniformity of the thin film so that all regions of the substrate reach around the process gas inlet space, thereby allowing the plasma to reach the entire substrate evenly. .
한편, 소스가스 공급이 중단되는 기간에는, 소스가스 분사그룹을 통하여 퍼지가스를 분사하여 퍼지 능력을 향상시킬 수 있다. 소스가스 분사가 안이루어지는 동안 소스가스 분사그룹의 가스 분사홀을 통하여 아무런 가스를 분사 안하는 것보다 소스가스 분사그룹에서 퍼지가스를 분사함으로써, 퍼지능력을 향상시키는 것이다. 이를 위하여 소스가스 분사그룹에 대응되는 격벽 공간에는 소스가스 공급관 미 퍼지가스 공급관이 밸브에 의해 연결되어 선택적인 가스 공급이 가능하도록 한다.On the other hand, in the period in which the source gas supply is stopped, it is possible to improve the purge capacity by injecting the purge gas through the source gas injection group. The purge ability is improved by injecting purge gas in the source gas injection group rather than injecting no gas through the gas injection hole of the source gas injection group while the source gas injection is not performed. For this purpose, the source gas supply pipe and the purge gas supply pipe are connected to the partition space corresponding to the source gas injection group by a valve to enable selective gas supply.
마찬가지로, 반응가스 공급이 중단되는 기간에는, 반응가스 분사그룹을 통하여 퍼지가스를 분사하여 퍼지 능력을 향상시키도록 할 수 있다. Similarly, in the period in which supply of the reaction gas is stopped, purge gas may be injected through the reaction gas injection group to improve the purge capacity.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the invention has been described with reference to the accompanying drawings and the preferred embodiments described above, the invention is not limited thereto, but is defined by the claims that follow. Accordingly, one of ordinary skill in the art may variously modify and modify the present invention without departing from the spirit of the following claims.

Claims (21)

  1. 복수의 기판이 상하로 이격 적층되는 보트;A boat in which a plurality of substrates are spaced apart vertically;
    내부 공간인 제1내부 공간을 가지는 하층 챔버 하우징;A lower chamber housing having a first inner space that is an inner space;
    상기 하층 챔버 하우징의 상층에 위치하여 내부 공간인 제2내부 공간을 가지는 상층 챔버 하우징;An upper chamber housing positioned above the lower chamber housing and having a second inner space that is an inner space;
    상기 상층 챔버 하우징의 벽체에서 상기 보트의 이격 적층된 기판 사이로 서로 다른 공정가스를 개별적으로 수평 분사하는 공정가스 분사 수단;Process gas injection means for horizontally injecting different process gases from a wall of the upper chamber housing to a spaced stacked substrate of the boat;
    상기 상층 챔버 하우징의 내부 공간의 가스를 외부로 배출하는 공정가스 배출 수단;Process gas discharge means for discharging the gas in the inner space of the upper chamber housing to the outside;
    상기 보트를 상기 하층 챔버 하우징의 제1내부공간에서 상층 챔버 하우징의 제2내부공간으로 승하강시키며, 보트를 회전시키는 보트 구동 수단;Boat driving means for elevating the boat from the first inner space of the lower chamber housing to the second inner space of the upper chamber housing and rotating the boat;
    상기 하층 챔버 하우징의 일측벽에 관통된 기판 이송 게이트;A substrate transfer gate penetrating through one side wall of the lower chamber housing;
    를 포함하는 프로세스 챔버.Process chamber comprising a.
  2. 청구항 1에 있어서, 상기 공정가스는 소스가스, 반응가스 및 퍼지가스를 포함하는 공정가스 중에서 적어도 어느 하나임을 특징으로 하는 프로세스 챔버.The process chamber of claim 1, wherein the process gas is at least one of a process gas including a source gas, a reaction gas, and a purge gas.
  3. 청구항 1에 있어서, 상기 상층 챔버 하우징은,The method of claim 1, wherein the upper chamber housing,
    개방된 하측을 통하여 상승된 보트가 수납되는 상층 챔버 내부 하우징;An upper chamber inner housing in which the boat raised through the opened lower side is accommodated;
    상기 상층 챔버 내부 하우징의 상면 및 측벽을 이격하여 감싸는 상층 챔버 외부 하우징;An upper chamber outer housing surrounding the upper surface and sidewalls of the upper chamber inner housing;
    을 포함하는 프로세스 챔버.Process chamber comprising a.
  4. 청구항 1 또는 청구항 3에 있어서, 상기 공정가스 분사 수단은,The method according to claim 1 or 3, wherein the process gas injection means,
    내부 공간을 가지며, 상기 상층 챔버 하우징의 벽체에 형성된 공정가스 유입 공간체;A process gas inlet space having an internal space and formed in a wall of the upper chamber housing;
    상기 보트에 접하는 공정가스 유입 공간체의 벽면에 형성된 다수의 가스 분사홀;A plurality of gas injection holes formed in a wall of the process gas inlet space contacting the boat;
    상기 공정가스 유입 공간체의 내부 공간에 연결되어 공정가스를 유입시키는 적어도 하나 이상의 공정가스 공급관;At least one process gas supply pipe connected to an internal space of the process gas inlet space and introducing a process gas;
    을 포함하는 프로세스 챔버.Process chamber comprising a.
  5. 청구항 4에 있어서, 상기 공정가스 공급관은 소스가스를 공급하는 소스가스 공급관과, 반응가스를 공급하는 반응가스 공급관과, 퍼지가스를 공급하는 퍼지가스 공급관을 적어도 어느 하나 이상 포함하며, 각 공급관이 분리되어 각각 독립적으로 가스를 공급하는 프로세스 챔버.The process gas supply pipe of claim 4, wherein the process gas supply pipe includes at least one source gas supply pipe for supplying a source gas, a reaction gas supply pipe for supplying a reaction gas, and a purge gas supply pipe for supplying a purge gas, and each supply pipe is separated. Process chambers that supply gas independently of each other.
  6. 청구항 5에 있어서, 상기 공정가스 유입 공간체는 내부가 복수의 격벽으로 분리되어 있으며, 각 격벽 사이의 격벽 공간에 상기 소스가스 공급관, 반응가스 공급관 및 퍼지가스 공급관 중에서 어느 하나가 연결되어 있는 프로세스 챔버. The process chamber of claim 5, wherein the process gas inlet space is divided into a plurality of partition walls, and any one of the source gas supply pipe, the reaction gas supply pipe, and the purge gas supply pipe is connected to the partition space between the partition walls. .
  7. 청구항 6에 있어서, 상기 격벽 공간의 벽면에 형성된 가스 분사홀은, 각 격벽 공간으로 공급된 공급관의 종류에 따라서 서로 다른 공정가스를 분사하는 프로세스 챔버.The process chamber according to claim 6, wherein the gas injection holes formed in the wall surface of the partition space inject different process gases according to the type of supply pipes supplied to each partition space.
  8. 청구항 6에 있어서, 상기 격벽은 공정가스 유입 공간체의 내부를 수직으로 분할되도록 형성되는 프로세스 챔버.The process chamber of claim 6, wherein the partition wall is formed to vertically divide the inside of the process gas inlet space.
  9. 청구항 4에 있어서, 상기 공정가스 배출 수단은,The method according to claim 4, The process gas discharge means,
    내부 공간을 가지는 공정가스 배출 공간체;A process gas discharge space having an internal space;
    상기 보트에 접하는 공정가스 배출 공간체의 벽면에 형성된 다수의 가스 배출홀;A plurality of gas discharge holes formed on a wall surface of the process gas discharge space in contact with the boat;
    상기 공정가스 배출 공간체의 내부 공간에 있는 공정가스를 외부로 펌핑하는 배출펌프;A discharge pump for pumping the process gas in the inner space of the process gas discharge space to the outside;
    상기 공정가스 배출 공간체의 내부 공간과 상기 배출펌프를 연결하는 공정가스 배출관;A process gas discharge pipe connecting the internal space of the process gas discharge space and the discharge pump;
    을 포함하는 프로세스 챔버.Process chamber comprising a.
  10. 청구항 9에 있어서, 상기 공정가스 유입 공간체 및 공정가스 배출 공간체가 상기 상층 챔버 내부 하우징의 벽체에 형성되어 있는 프로세스 챔버.The process chamber according to claim 9, wherein the process gas inlet space and the process gas outlet space are formed on a wall of the upper chamber inner housing.
  11. 청구항 10에 있어서, 상기 공정가스 유입 공간체 및 공정가스 배출 공간체는 서로 마주 보며 대향하는 위치에 형성되는 프로세스 챔버.The process chamber of claim 10, wherein the process gas inlet space and the process gas outlet space are formed at opposite positions facing each other.
  12. 청구항 3에 있어서, 상기 보트는,The method of claim 3, wherein the boat,
    상부 플레이트판;Upper plate plate;
    하부 플레이트판;Lower plate plate;
    상기 상부 플레이트판과 하부 플레이트 판을 연결하는 복수의 지지바;A plurality of support bars connecting the upper plate plate and the lower plate plate;
    상기 지지바의 측벽에 형성된 복수의 기판 안착홈;A plurality of substrate seating grooves formed on sidewalls of the support bar;
    을 포함하는 프로세스 챔버.Process chamber comprising a.
  13. 청구항 12에 있어서, 상기 보트 구동 수단은,The method of claim 12, wherein the boat drive means,
    상기 하부 플레이트판을 지지하는 보트 지지대;A boat support for supporting the lower plate plate;
    상기 하층 챔버 하우징의 바닥면을 관통하여 상기 보트 지지대를 승하강 및 회전시키는 승하강 회전 구동축;An elevating rotation drive shaft for elevating and rotating the boat support through the bottom surface of the lower chamber housing;
    을 포함하는 프로세스 챔버.Process chamber comprising a.
  14. 청구항 3에 있어서, 플라즈마 전압을 인가하는 플라즈마 발생 수단이 상기 상층 챔버 내부 하우징과 상층 챔버 내부 하우징 사이에 U자 형태로 위치하는 프로세스 챔버.The process chamber of claim 3, wherein plasma generating means for applying a plasma voltage is positioned in a U shape between the upper chamber inner housing and the upper chamber inner housing.
  15. 복수의 기판이 상하로 이격 적층되는 보트와, 내부공간에 보트를 위치시키며 보트에 이격 적층된 기판 사이로 내부 측벽의 분사홀을 통해서 공정가스를 수평으로 흘러보내는 챔버 하우징을 구비한 프로세스 챔버의 원자층 증착 방법에 있어서,An atomic layer of a process chamber having a boat in which a plurality of substrates are stacked up and down, and a chamber housing for placing the boat in an inner space and horizontally flowing the process gas through the injection hole in the inner sidewall between the substrates stacked in the boat. In the deposition method,
    보트에 기판을 상하로 이격 적층시키는 과정;Stacking the substrate up and down on the boat;
    상기 보트를 상기 챔버 하우징의 내부공간에 위치시키는 과정;Placing the boat in an interior space of the chamber housing;
    상기 보트를 회전시키는 과정;Rotating the boat;
    챔버 하우징의 내부 측벽의 분사홀을 복수개의 분사 그룹으로 수직 분할하여, 각 분사 그룹별로 서로 다른 공정가스를 이격 적층되어 회전하는 기판에 동시에 분사하거나 또는 시간을 달리하여 분사하는 과정;Vertically dividing the injection holes of the inner sidewall of the chamber housing into a plurality of injection groups, simultaneously spraying different process gases on each of the injection groups by simultaneously stacking or dispensing different process gases onto the rotating substrate;
    을 포함하는 기판 처리 방법.Substrate processing method comprising a.
  16. 청구항 15에 있어서, 상기 공정가스는, 소스가스, 반응가스 및 퍼지가스를 포함하는 공정가스 중에서 적어도 어느 하나임을 특징으로 하는 기판 처리 방법.The method of claim 15, wherein the process gas is at least one of a process gas including a source gas, a reaction gas, and a purge gas.
  17. 청구항 15에 있어서, 시간을 달리하여 분사하는 경우에는,The method according to claim 15, wherein when spraying at different times,
    기판 처리 공정이 시작되면 퍼지가스 분사그룹을 통하여 퍼지가스를 분사하는 과정;Injecting purge gas through the purge gas injection group when the substrate processing process is started;
    퍼지가스 분사를 유지한 채, 반응가스의 분사가 이루어지지 않는 상태에서 소스가스 분사그룹을 통하여 소스가스를 분사하는 소스가스 분사과정;A source gas injection process of injecting the source gas through the source gas injection group in a state in which the injection of the reactive gas is not performed while maintaining the purge gas injection;
    퍼지가스 분사를 유지한 채, 소스가스의 분사가 이루어지지 않는 상태에서 반응가스 분사그룹을 통하여 반응가스를 분사하는 반응가스 분사과정;A reaction gas injection process of injecting the reaction gas through the reaction gas injection group in a state where injection of the source gas is not maintained while maintaining the purge gas injection;
    기판 처리 공정이 종료할 때까지 상기 소스가스 분사과정 및 반응가스 분사과정을 반복 수행하는 과정;Repeating the source gas injection process and the reaction gas injection process until the substrate processing process is completed;
    을 포함하는 기판 처리 방법.Substrate processing method comprising a.
  18. 청구항 17에 있어서, 소스가스 분사가 중지된 후 미리 정한 시간이 경과한 후 반응가스 분사가 이루어지며, 마찬가지로 반응가스 분사가 중지된 후 미리 정한 시간이 경과한 후 반응가스 분사가 이루어지는 기판 처리 방법.The substrate processing method according to claim 17, wherein a reaction gas injection is performed after a predetermined time elapses after the source gas injection is stopped, and similarly, a reaction gas injection is performed after a predetermined time elapses after the reaction gas injection is stopped.
  19. 청구항 17에 있어서, 상기 반응가스를 분사하는 시간 동안 플라즈마를 인가하는 기판 처리 방법.The method of claim 17, wherein a plasma is applied during the time of spraying the reaction gas.
  20. 청구항 17에 있어서, 소스가스의 분사가 중지되는 기간에는, 소스가스 분사그룹을 통하여 퍼지가스를 분사하는 기판 처리 방법.The substrate processing method of claim 17, wherein the purge gas is injected through the source gas injection group in a period in which injection of the source gas is stopped.
  21. 청구항 17에 있어서, 반응가스의 분사가 중지되는 기간에는, 반응가스 분사그룹을 통하여 퍼지가스를 분사하는 기판 처리 방법.The substrate processing method of claim 17, wherein the purge gas is injected through the reaction gas injection group in a period in which injection of the reaction gas is stopped.
PCT/KR2013/002751 2012-06-27 2013-04-03 Process chamber and substrate processing method WO2014003298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120069227A KR101224521B1 (en) 2012-06-27 2012-06-27 Apparatus for process chamber and method for processing substrate
KR10-2012-0069227 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014003298A1 true WO2014003298A1 (en) 2014-01-03

Family

ID=47842312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002751 WO2014003298A1 (en) 2012-06-27 2013-04-03 Process chamber and substrate processing method

Country Status (2)

Country Link
KR (1) KR101224521B1 (en)
WO (1) WO2014003298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243994A (en) * 2015-07-17 2020-06-05 株式会社国际电气 Gas supply nozzle, substrate processing apparatus, and method for manufacturing semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507556B1 (en) * 2013-02-28 2015-04-07 주식회사 엔씨디 The horizontal type apparatus for depositing a atomic layer on the large substrate
KR101507557B1 (en) * 2013-04-25 2015-04-07 주식회사 엔씨디 The horizontal type apparatus for depositing a atomic layer on the large substrate
KR101499467B1 (en) * 2013-11-05 2015-03-06 주식회사 엔씨디 The horizontal type apparatus for depositing a atomic layer on the large substrate
KR101698021B1 (en) * 2014-12-31 2017-01-19 주식회사 엔씨디 A ald apparatus for large substrate
KR101841326B1 (en) 2015-04-24 2018-03-23 한양대학교 산학협력단 Apparatus and method for manufacturing a thin film
KR101789512B1 (en) * 2017-01-09 2017-10-26 주식회사 아르케 Method for manufacturing silicon carbide solar cell
WO2024091305A1 (en) * 2022-10-27 2024-05-02 Applied Materials, Inc. Methods of correlating zones of processing chambers, and related systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037075A (en) * 2001-07-26 2003-02-07 Tokyo Electron Ltd Control method of transfer device and method and device for heat treatment
JP2003109798A (en) * 2001-09-27 2003-04-11 Ishikawajima Harima Heavy Ind Co Ltd Discharge device, plasma treatment method and solar cell
KR20100077445A (en) * 2008-12-29 2010-07-08 주식회사 케이씨텍 Batch type atomic layer deposition apparatus
KR20100105520A (en) * 2010-09-01 2010-09-29 주성엔지니어링(주) Process apparatus using plasma which injects and vents proocess gas through inner side wall of process chamber, and method of processing a substrate using the same
KR20110110063A (en) * 2011-04-25 2011-10-06 (주)이노시티 Apparatus for wafer container
KR20110131158A (en) * 2011-11-09 2011-12-06 주성엔지니어링(주) Thin film manufacturing apparatus and thin film deposition method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037075A (en) * 2001-07-26 2003-02-07 Tokyo Electron Ltd Control method of transfer device and method and device for heat treatment
JP2003109798A (en) * 2001-09-27 2003-04-11 Ishikawajima Harima Heavy Ind Co Ltd Discharge device, plasma treatment method and solar cell
KR20100077445A (en) * 2008-12-29 2010-07-08 주식회사 케이씨텍 Batch type atomic layer deposition apparatus
KR20100105520A (en) * 2010-09-01 2010-09-29 주성엔지니어링(주) Process apparatus using plasma which injects and vents proocess gas through inner side wall of process chamber, and method of processing a substrate using the same
KR20110110063A (en) * 2011-04-25 2011-10-06 (주)이노시티 Apparatus for wafer container
KR20110131158A (en) * 2011-11-09 2011-12-06 주성엔지니어링(주) Thin film manufacturing apparatus and thin film deposition method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243994A (en) * 2015-07-17 2020-06-05 株式会社国际电气 Gas supply nozzle, substrate processing apparatus, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR101224521B1 (en) 2013-01-22

Similar Documents

Publication Publication Date Title
WO2014003298A1 (en) Process chamber and substrate processing method
WO2014003296A1 (en) Process chamber and substrate processing device
WO2014003297A1 (en) Substrate heating device and process chamber
US10822695B2 (en) Thin film deposition apparatus
US8187679B2 (en) Radical-enhanced atomic layer deposition system and method
WO2010140778A2 (en) Showerhead for film depositing vacuum equipment
WO2011027987A2 (en) Gas-discharging device and substrate-processing apparatus using same
KR20100028490A (en) Film formation apparatus, substrate processing apparatus, film formation method and storage medium
WO2010067974A2 (en) Apparatus for treating multiple substrates
CN103155104A (en) Substrate processing device for supplying reaction gas through symmetry-type inlet and outlet
KR102549735B1 (en) Integrated direct dielectric and metal deposition
KR100522727B1 (en) Reactor for depositing thin film on wafer
KR101173081B1 (en) Horizontal batch type ald
KR20010028032A (en) Tube for chemical vapor deposition
KR101635085B1 (en) Thin film deposition apparatus
WO2014119971A1 (en) Thin-film vapour deposition device
KR102236013B1 (en) A apparatus for depositing the atomic layer
US8377206B2 (en) Apparatus and method of forming semiconductor devices
CN103155719A (en) Substrate processing device equipped with semicircle shaped antenna
KR20040046042A (en) structure of boat and process tube of the axial type heat-treatment for performing atomic layer deposition
KR20120066852A (en) Thin layer deposition apparatus
WO2024054056A1 (en) Gas spraying apparatus, substrate processing apparatus, and thin film deposition method
WO2024010295A1 (en) Gas spraying apparatus, substrate processing apparatus, and thin film deposition method
KR20040102600A (en) Deposition apparatus for manufacturing semiconductor devices
KR101145058B1 (en) Atomic layer deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810448

Country of ref document: EP

Kind code of ref document: A1