WO2020138708A1 - 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법 - Google Patents

과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법 Download PDF

Info

Publication number
WO2020138708A1
WO2020138708A1 PCT/KR2019/015216 KR2019015216W WO2020138708A1 WO 2020138708 A1 WO2020138708 A1 WO 2020138708A1 KR 2019015216 W KR2019015216 W KR 2019015216W WO 2020138708 A1 WO2020138708 A1 WO 2020138708A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
posture
remote control
driving
signal
Prior art date
Application number
PCT/KR2019/015216
Other languages
English (en)
French (fr)
Inventor
한창수
김상호
이용석
선동익
이상근
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US17/417,931 priority Critical patent/US11459728B2/en
Publication of WO2020138708A1 publication Critical patent/WO2020138708A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/125Control of position or direction using feedback using discrete position sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device

Definitions

  • the present invention relates to a control device and method of a remote control excavator, and more particularly, to an excavator remote control device and method capable of preventing overload.
  • Excavator is a construction machine that performs works such as excavation work to dig the ground at civil engineering, construction, and construction sites, loading work to transport soil, crushing work to dismantle buildings, and stopping work to clear the ground. It consists of an upper slewing body and a working device mounted on the body and the traveling body and rotating 360 degrees.
  • Excavators are classified into caterpillar crawler excavators and tire-type wheel excavators according to the traveling method of the traveling body. Crawler excavators are widely used in each work site, ranging from 1 ton to over 100 tons of equipment weight, because the work is more stable and the productivity is higher than that of the wheel excavators. Due to this, the stability during work is poor, but it is possible to drive on the road, so it is possible to move the work place without a transport trailer and is mainly used in work sites that frequently require work and movement.
  • the excavator can be used by installing an appropriate working device (attachment) according to the condition of the soil and rock, the type of work, and the use.
  • Buckets for general excavation and soil transport, breakers for crushing hard ground, rocks, etc., and crackers used for demolition and crushing of buildings are mainly used working equipment for excavators.
  • the technical problem to be achieved by the present invention is to provide a control device and method of a remote control excavator capable of preventing overload.
  • a control device for a remote-controlled excavator includes inertial sensors provided in the excavator, a communication unit for receiving a remote control signal from the remote control device, and a control unit for driving the excavator in response to the remote control signal.
  • the controller stops driving the excavator.
  • the inertial sensors include a first inertial sensor provided in the body of the excavator, a second inertial sensor provided in the boom of the excavator, a third inertial sensor provided in the arm of the excavator, and attachment of the excavator It may include a fourth inertial sensor provided.
  • the attachment may be a bucket, a breaker, a vibrator, a fork, a crasher, or a grapple.
  • the communication unit may transmit an overload generation signal to the remote control device.
  • the control unit may include a driving unit outputting a driving signal to the excavator corresponding to the remote control signal, a memory storing the current attitude of the excavator, and a current attitude and a posture change value corresponding to the remote control signal.
  • a posture estimator for estimating the predicted posture based on the posture measurement unit for measuring the actual posture based on the sensing values, and a driving stop signal if the difference between the expected posture and the actual posture exceeds the allowable value. It includes an overload detection unit for outputting, and the driving unit may block the driving signal in response to the driving stop signal.
  • the control unit measures a posture change amount for measuring a real posture change amount of the excavator based on the sensing values received from the inertial sensors and a drive part outputting a drive signal to the excavator in response to the remote control signal
  • the driving unit may be configured to generate a driving stop signal if the difference between the actual attitude change amount and the expected attitude change amount exceeds the allowable value while the excavator is operating and the attitude change amount estimating unit for calculating the expected attitude change amount corresponding to the remote control signal. It includes an overload detection unit for outputting, and the driving unit may block the driving signal in response to the driving stop signal.
  • the remote control device for the excavator further includes a pressure sensor provided in the attachment of the excavator, and the controller can adjust the allowable value according to the magnitude of the reaction force measured by the pressure sensor.
  • the controller may increase the allowable value according to the number of times the difference between the expected posture and the actual posture exceeds the allowable value.
  • the communication unit may transmit the actual posture of the excavator to the remote control device.
  • a control method of a remote-controlled excavator includes measuring a current posture of an excavator, estimating an expected posture by adding a posture change value corresponding to a control signal received from a remote control device to the current posture, And driving the excavator in response to the control signal, measuring the actual attitude of the excavator, and stopping driving of the excavator when the difference between the expected attitude and the actual attitude exceeds an allowable value.
  • control method may further include updating the current posture to the actual posture.
  • control method may further include measuring a reaction force applied to the attachment of the excavator and adjusting the allowable value according to the magnitude of the reaction force.
  • control method may further include increasing the allowable value when the difference between the expected posture and the actual posture exceeds the allowable value.
  • control method may further include transmitting an overload signal to the remote control device when the difference between the expected posture and the actual posture exceeds the allowable value.
  • the control device and method of a remote control excavator prevents malfunction or failure of the excavator even if a communication delay between the remote control device and the excavator occurs by detecting the overload and stopping the operation by itself. Can.
  • FIG. 1 is a flow chart for explaining a control method of a remote control excavator according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a control device of a remote control excavator according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view showing an excavator according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing an example of the control unit illustrated in FIG. 2.
  • FIG. 5 is a block diagram showing another example of the control unit illustrated in FIG. 2.
  • FIG. 6 is a block diagram showing a control device of a remote control excavator according to a second embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The above terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of rights according to the concept of the present invention, the first component may be referred to as the second component, and similarly The second component may also be referred to as the first component.
  • FIG. 1 is a flow chart (flow chart) for explaining a control method of a remote control excavator according to an embodiment of the present invention
  • Figure 2 is a block diagram showing a control device of a remote control excavator according to the first embodiment of the present invention
  • 3 is a perspective view showing an excavator according to an embodiment of the present invention.
  • the control device 10 of the remote-controlled excavator (20, hereinafter referred to as an'excavator') includes inertial sensors 100-1 to 100-4, a communication unit 200, and a control unit 300 It includes.
  • the control device 10 may be provided on the main body of the remote-controlled excavator 20.
  • the inertial sensors 100-1 to 100-4 measure the inertia force on the parts of the excavator 20 (eg, body, boom, arm and attachment) and measure the measured inertia sensing values IV1 to IV4. It transmits to the control unit 300.
  • the inertial sensors 100-1 to 100-4 are provided in the excavator 20.
  • the first inertial sensor 100-1 is provided in the body 21 of the excavator 20
  • the second inertial sensor 100-2 is the excavator 20.
  • the third inertial sensor 100-3 is provided on the arm 23 of the excavator 20
  • the fourth inertial sensor 100-4 is the attachment 24 of the excavator 20 It may be provided in.
  • the attachment 24 is shown as a bucket, but this is only an example.
  • the attachment 24 may include various work tools such as a breaker, vibrator, fork, crasher, or grapple, as well as a bucket.
  • the communication unit 200 communicates with a remote control device (not shown).
  • the communication unit 200 may receive a remote control signal RS from a remote control device (not shown) and transmit it to the control unit 300.
  • the communication unit 200 may receive the current state information or the overload detection signal of the excavator 20 from the control unit 300 and transmit it to a remote control device (not shown).
  • the control unit 300 drives the excavator 20 in response to the remote control signal RS received through the communication unit 200 from a remote control device (not shown).
  • the controller 300 determines that the excavator 20 has an overload and stops driving the excavator 20 Order.
  • the controller 300 sets the excavator 20 to a predetermined initial posture (S100).
  • the control unit 300 uses the inertial sensors 100-1 to 100-4 provided in the excavator 20 to pose the remotely controlled excavator 20, that is, the position of the body, the boom, the arm, and the attachment, and Measure the angle, etc.
  • the controller 300 may continuously monitor the excavator 20 from the initial state (posture) through the inertial sensors 100-1 to 100-4 to accurately store the current posture of the excavator 20.
  • the control unit 300 receives the remote control signal RS through the communication unit 200 from the remote control device (not shown), and drives the excavator 20 in response to the received remote control signal RS (S110). .
  • the control unit 300 converts the remote control signal RS into a drive signal DS suitable for the excavator 20 and outputs the drive signal DS to the excavator 20.
  • the control device 10 may output a driving signal DS to the electro-hydraulic control unit of the excavator 20.
  • the control device 10 may output a driving signal DS to the remote control robot.
  • the controller 300 estimates the expected posture of the excavator 20 based on the remote control signal RS (S120).
  • the controller 300 estimates an expected posture by adding a posture change value corresponding to the remote control signal RS to the current posture of the excavator 20.
  • the posture change value corresponding to the remote control signal RS may be determined according to the working environment (temperature, humidity, etc.) and the type and current state of the excavator 20.
  • the controller 300 measures the actual posture of the excavator 20 based on the inertial sensing values IV1 to IV4 output from the inertial sensors 100-1 to 100-4 (S130). As described above, the controller 300 can accurately monitor the excavator 20 from the initial state to accurately measure the actual posture of the excavator 20.
  • the controller 300 stores the measured actual posture of the excavator 20 as the current posture (S140).
  • the controller 300 compares the estimated predicted posture with the measured actual posture (S150).
  • the controller 300 continues driving the excavator 20 (S160).
  • the controller 300 stops driving the excavator 20 (S170).
  • the allowable value may be determined according to the working environment (temperature, humidity, etc.) and the type and current state of the excavator 20.
  • the controller 300 may increase the allowable value. Through this, the control unit 300 can drive the excavator 20 despite an overload, if necessary.
  • control unit 300 The functions and operations of the control unit 300 will be described in more detail in FIGS. 4 and 5.
  • FIG. 4 is a block diagram showing an example of the control unit illustrated in FIG. 2.
  • the control unit 300A includes a posture measurement unit 310A, a posture estimation unit 320A, an overload detection unit 330, a driving unit 340, and a memory 350.
  • the posture measuring unit 310A receives the inertial sensing values IV1 to IV4 (hereinafter IVs) from the inertial sensors 100-1 to 100-4 and determines the actual posture of the excavator based on the received inertial sensing values IVs. Measure.
  • the posture measurement unit 310A outputs the actual posture information AP related to the measured actual posture to the overload detection unit 330. Also, the self-restraining unit 310A stores the actual posture information AP as the current posture information CP in the memory 350.
  • the actual posture information (AP), the current posture information (CP) and the predicted posture information (EP) are the position of the body 21, the boom 22, the arm 23, and the attachment 24 of the excavator 20, Values for angles, etc.
  • the meaning of comparing attitude information may be interpreted as meaning of comparing values included in the attitude information.
  • the posture estimator 320A calculates a posture change value corresponding to the remote control signal RS.
  • the remote control signal RS includes commands for controlling the main body 21, the boom 22, the arm 23, and the attachment 24 of the excavator 20, and the posture estimator 320A ) Calculates a posture change value of the body 21, the boom 22, the arm 23, and the attachment 24 corresponding to the commands.
  • the posture estimator 320A retrieves the current posture information CP from the memory 350 and estimates the predicted posture of the excavator 20 by applying the calculated posture change value. That is, the posture estimator 320A generates estimated posture information EP by adding the calculated posture change value to the current posture information CP.
  • the attitude estimation unit 320A outputs the generated expected attitude information EP to the overload detection unit 330.
  • the overload detection unit 330 receives the actual attitude information AP from the attitude measurement unit 310A and the expected attitude information EP from the attitude estimation unit 320A. The overload detection unit 330 detects whether an overload has occurred based on actual posture information AP and expected posture information EP.
  • the overload detection unit 330 determines that no overload has occurred if the difference between the actual posture information AP and the expected posture information EP is within an allowable range. Conversely, if the difference between the actual attitude information AP and the expected attitude information EP exceeds the allowable range, the overload detection unit 330 determines that an overload has occurred.
  • the overload detection unit 330 determines that an overload has occurred in the excavator 20.
  • the overload detection unit 330 When it is determined that an overload has occurred, the overload detection unit 330 outputs a stop driving signal SS to the driving unit 340.
  • the driving unit 340 drives the excavator 20 in response to the remote control signal RS.
  • the driving unit 340 converts the remote control signal RS into a driving signal DS suitable for driving the excavator 20 and outputs the driving signal DS to the excavator 20.
  • the driving unit 340 blocks the driving signal DS in response to the driving stop signal SS received from the overload detection unit 330.
  • the memory 350 stores current posture information CP received from the posture measurement unit 310A.
  • the memory 350 outputs the stored current posture information CP to the posture estimator 320A in response to the request of the posture estimator 320A.
  • 5 is a block diagram showing another example of the control unit illustrated in FIG. 2. 5 shows a control unit 300B capable of determining whether an overload has occurred based on the amount of posture change regardless of the current posture.
  • control unit 300B includes a posture change amount measurement unit 310B, a posture change amount estimation unit 320B, an overload detection unit 330, and a driving unit 340.
  • the posture change amount measurement unit 310B measures the posture change amount for a predetermined time of the excavator based on the inertial sensing value IVs.
  • the posture change amount measurement unit 310B outputs the actual posture change amount information AC for the measured posture change amount to the overload detection unit 330.
  • the posture change amount estimator 320B calculates an expected posture change amount corresponding to the remote control signal RS. Specifically, the posture change amount estimator 320B calculates the predicted posture change amount of the body 21, the boom 22, the arm 23, and the attachment 24 corresponding to the remote control signal RS. The posture change amount estimation unit 320B outputs the predicted posture change amount information EC for the calculated predicted posture change amount to the overload detection unit 330.
  • the actual posture change amount information AC and the predicted posture change amount information EC are the change amount values, such as the position and angle of the main body 21, the boom 22, the arm 23, and the attachment 24 of the excavator 20.
  • the overload detection unit 330 receives actual posture change amount information AC from the posture change amount measurement unit 310B and receives expected posture change amount information EC from the posture estimation unit 320B. The overload detection unit 330 detects whether an overload has occurred based on the actual posture change amount information AC and the predicted posture change amount information EC.
  • the overload detection unit 330 determines that no overload has occurred if the difference between the actual posture change amount information AC and the expected posture change amount information EC is within an allowable range. Conversely, the overload detection unit 330 determines that an overload has occurred if the difference between the actual posture change amount information AC and the expected posture change amount information EC exceeds an allowable range.
  • the overload detection unit 330 determines that the excavator 20 has an overload. do.
  • the overload detection unit 330 When it is determined that an overload has occurred, the overload detection unit 330 outputs a stop driving signal SS to the driving unit 340.
  • the driving unit 340 drives the excavator 20 in response to the remote control signal RS.
  • the driving unit 340 converts the remote control signal RS into a driving signal DS suitable for driving the excavator 20 and outputs the driving signal DS to the excavator 20.
  • the driving unit 340 blocks the driving signal DS in response to the driving stop signal SS received from the overload detection unit 330.
  • FIG. 6 is a block diagram showing a control device of a remote control excavator according to a second embodiment of the present invention.
  • the control device 10' shown in FIG. 6 is the same as the control device 10 shown in FIG. 2, except that the pressure sensor 400 is added, and duplicate description is omitted.
  • the control device 10 ′ includes inertial sensors 100-1 to 100-4, a communication unit 200, a control unit 300, and a pressure sensor 400.
  • the pressure sensor 400 may be provided in the attachment 24 of the excavator 20.
  • the pressure sensor 400 measures the pressure applied to the attachment 24, that is, the magnitude of the reaction force, and outputs the measured pressure sensing value PV to the control unit 300.
  • the control unit 300 may adjust the allowable range (or value) based on the pressure sensing value PV. That is, when the magnitude of the reaction force is large, the control unit 300 may expand the allowable range and reduce the case where it is determined as overload.
  • control unit 300 may extend the allowable range according to the increased reaction force so that the operation can be smoothly continued without stopping the driving of the excavator 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법이 개시된다. 본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 장치는 굴삭기에 구비된 관성 센서들, 원격 제어 장치로부터 원격 제어 신호를 수신하는 통신부 및 상기 원격 제어 신호에 응답하여 상기 굴삭기를 구동하는 제어부를 포함하며, 상기 제어부는 상기 원격 제어 신호에 기초하여 추정되는 상기 굴삭기의 예상 자세와 상기 관성 센서들을 이용해 측정된 상기 굴삭기의 실제 자세의 차이가 허용 값을 초과하면 상기 굴삭기의 구동을 중지한다.

Description

과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법
본 발명은 원격 제어 굴삭기의 제어 장치 및 방법에 관한 것으로, 특히, 과부하를 방지할 수 있는 굴삭기 원격 제어 장치 및 방법에 관한 것이다.
굴착기는 토목, 건축, 건설 현장에서 땅을 파는 굴착작업, 토사를 운반하는 적재작업, 건물을 해체하는 파쇄작업, 지면을 정리하는 정지작업 등의 작업을 행하는 건설기계로서 장비의 이동 역할을 하는 주행체와 주행체에 탑재되어 360도 회전하는 상부 선회체 및 작업 장치로 구성되어 있다.
굴착기는 주행체의 주행방식에 따라 무한궤도식 크롤라 굴착기와 타이어식 휠 굴착기로 구분된다. 크롤라 굴착기는 휠 굴착기에 비해 작업이 안정적이며 작업 생산성이 높기 때문에 장비 중량 1톤부터 100톤 이상의 초대형에 이르기까지 각 작업 현장에 폭 넓게 사용되며, 휠 굴착기는 크롤라 굴착기에 비해 타이어 지지 방식으로 인해 작업시 안정성은 떨어지나, 도로 주행이 가능하여 운반 트레일러 없이 작업장 이동이 가능하고 작업과 이동을 빈번하게 요구하는 작업 현장에 주로 사용된다.
또한 굴착기는 토사와 암석의 상태, 작업의 종류 및 용도에 따라 적절한 작업 장치(어태치먼트)를 장착하여 사용 할 수 있다. 일반 굴착 및 토사 운반을 위한 버켓, 단단한 지면, 암석 등의 파쇄를 위한 브레이커, 건물의 해체 및 파쇄에 사용하는 크래셔 등이 굴착기에 주로 사용되는 작업 장치이다.
최근에는 사람이 진입하기 어렵거나 위험한 지역의 작업을 위해 굴삭기를 원격 조종하는 방법이 연구되고 있다. 종래의 원격 조종 굴삭기는 조종자의 조작, 조작 신호 전송, 굴삭기 구동, 굴삭기 상태 피드백 등 전과정에 적지 않은 시간이 필요하여 예측하지 못한 장애물 등에 의한 과부하로 굴삭기의 오동작 또는 고장이 발생할 수 있었다.
본 발명이 이루고자 하는 기술적인 과제는 과부하를 방지할 수 있는 원격 제어 굴삭기의 제어 장치 및 방법을 제공하는 것이다.
본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 장치는 굴삭기에 구비된 관성 센서들, 원격 제어 장치로부터 원격 제어 신호를 수신하는 통신부 및 상기 원격 제어 신호에 응답하여 상기 굴삭기를 구동하는 제어부를 포함하며, 상기 제어부는 상기 원격 제어 신호에 기초하여 추정되는 상기 굴삭기의 예상 자세와 상기 관성 센서들을 이용해 측정된 상기 굴삭기의 실제 자세의 차이가 허용 값을 초과하면 상기 굴삭기의 구동을 중지한다.
실시 예에 따라, 상기 관성 센서들은 상기 굴삭기의 본체에 구비된 제1 관성 센서, 상기 굴삭기의 붐에 구비된 제2 관성 센서, 상기 굴삭기의 암에 구비된 제3 관성 센서 및 상기 굴삭기의 어태치먼트에 구비된 제4 관성 센서를 포함할 수 있다.
실시 예에 따라, 상기 어태치먼트는 버켓, 브레이커, 바이브레이터, 포크, 크래셔 또는 그래플일 수 있다.
실시 예에 따라, 상기 통신부는, 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면, 상기 원격 제어 장치로 과부하 발생 신호를 송신할 수 있다.
실시 예에 따라, 상기 제어부는 상기 원격 제어 신호에 대응하는 상기 굴삭기로 구동 신호를 출력하는 구동부, 상기 굴삭기의 현재 자세를 저장하는 메모리, 상기 현재 자세와 상기 원격 제어 신호에 대응하는 자세 변경 값에 기초하여 상기 예상 자세를 추정하는 자세 추정부, 상기 센싱 값들에 기초하여 상기 실제 자세를 측정하는 자세 측정부 및 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 구동 중지 신호를 상기 구동부로 출력하는 과부하 감지부를 포함하며, 상기 구동부는 상기 구동 중지 신호에 응답하여 상기 구동 신호를 차단할 수 있다.
실시 예에 따라, 상기 제어부는 상기 원격 제어 신호에 응답하여 상기 굴삭기로 구동 신호를 출력하는 구동부, 상기 관성 센서들로부터 수신된 상기 센싱 값들에 기초하여 상기 굴삭기의 실제 자세 변화량을 측정하는 자세 변화량 측정부, 상기 원격 제어 신호에 대응하는 예상 자세 변화량을 계산하는 자세 변화량 추정부 및 상기 굴삭기가 구동하는 동안 상기 실제 자세 변화량과 상기 예상 자세 변화량의 차이가 상기 허용 값을 초과하면 구동 중지 신호를 상기 구동부로 출력하는 과부하 감지부를 포함하며, 상기 구동부는 상기 구동 중지 신호에 응답하여 상기 구동 신호를 차단할 수 있다.
실시 예에 따라, 상기 굴삭기 원격 제어 장치는 상기 굴삭기의 어태치먼트에 구비된 압력 센서를 더 포함하며, 상기 제어부는 상기 압력 센서에 의해 측정된 반력의 크기에 따라 상기 허용 값을 조절할 수 있다.
실시 예에 따라, 상기 제어부는 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하는 횟수에 따라 상기 허용 값을 증가시킬 수 있다.
실시 예에 따라, 상기 통신부는 상기 굴삭기의 상기 실제 자세를 상기 원격 제어 장치로 송신할 수 있다.
본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 방법은 굴삭기의 현재 자세를 측정하는 단계, 상기 현재 자세에 원격 제어 장치로부터 수신된 제어 신호에 대응하는 자세 변경 값을 더하여 예상 자세를 추정하는 단계, 상기 제어 신호에 응답하여 상기 굴삭기를 구동하고 상기 굴삭기의 실제 자세를 측정하는 단계 및 상기 예상 자세와 상기 실제 자세의 차이가 허용 값을 초과하면 상기 굴삭기의 구동을 중지하는 단계를 포함한다.
실시 예에 따라, 상기 제어 방법은 상기 실제 자세로 상기 현재 자세를 갱신하는 단계를 더 포함할 수 있다.
실시 예에 따라, 상기 제어 방법은 상기 굴삭기의 어태치먼트에 가해지는 반력을 측정하는 단계 및 상기 반력의 크기에 따라 상기 허용 값을 조절하는 단계를 더 포함할 수 있다.
실시 예에 따라, 상기 제어 방법은 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 상기 허용 값을 증가시키는 단계를 더 포함할 수 있다.
실시 예에 따라, 상기 제어 방법은 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 상기 원격 제어 장치로 과부하 신호를 송신하는 단계를 더 포함할 수 있다.
본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 장치 및 방법은 원격 굴삭기가 자체적으로 과부하를 감지하고 구동을 중지함으로써 원격 제어 장치와 굴삭기 사이의 통신 딜레이가 발생하여도 굴삭기의 오동작 또는 고장을 방지할 수 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 상세한 설명이 제공된다.
도 1은 본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 방법을 설명하기 위한 플로우 차트(flow chart)이다.
도 2는 본 발명의 제1 실시 예에 따른 원격 제어 굴삭기의 제어 장치를 나타내는 블록도이다.
도 3은 본 발명의 실시 예에 따른 굴삭기를 나타내는 사시도이다.
도 4는 도 2에 도시된 제어부의 일례를 나타내는 블록도이다.
도 5는 도 2에 도시된 제어부의 다른 예를 나타내는 블록도이다.
도 6은 본 발명의 제2 실시 예에 따른 원격 제어 굴삭기의 제어 장치를 나타내는 블록도이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소는 제1구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다.
도 1은 본 발명의 실시 예에 따른 원격 제어 굴삭기의 제어 방법을 설명하기 위한 플로우 차트(flow chart)이고, 도 2는 본 발명의 제1 실시 예에 따른 원격 제어 굴삭기의 제어 장치를 나타내는 블록도이며, 도 3은 본 발명의 실시 예에 따른 굴삭기를 나타내는 사시도이다.
도 1 내지 3을 참조하면, 원격 조종 굴삭기(20, 이하 '굴삭기'라고 함)의 제어 장치(10)는 관성 센서들(100-1 내지 100-4), 통신부(200) 및 제어부(300)을 포함한다. 제어 장치(10)는 원격 조종 굴삭기(20)의 본체에 구비될 수 있다.
관성 센서들(100-1 내지 100-4)은 굴삭기(20)의 부분들(예를 들어, 본체, 붐, 암 및 어태치먼트)에 대한 관성력을 측정하고 측정된 관성 센싱값(IV1 내지 IV4)을 제어부(300)로 송신한다. 관성 센서들(100-1 내지 100-4)은 굴삭기(20)에 구비된다. 예를 들어, 도 3에 도시된 바와 같이, 제1 관성 센서(100-1)는 굴삭기(20)의 본체(21)에 구비되고, 제2 관성 센서(100-2)는 굴삭기(20)의 붐(21)에 구비되고, 제3 관성 센서(100-3)는 굴삭기(20)의 암(23)에 구비되며, 제4 관성 센서(100-4)는 굴삭기(20)의 어태치먼트(24)에 구비될 수 있다.
도 3에서는 어태치먼트(24)가 버켓인 것으로 도시되었으나, 이는 일례에 불과하다. 예를 들어, 어태치먼트(24)는 버켓 뿐만 아니라 브레이커, 바이브레이터, 포크, 크래셔 또는 그래플 등 다양한 작업 도구를 포함할 수 있다.
통신부(200)는 원격 조종 장치(미도시)와 통신한다. 통신부(200)는 원격 조종 장치(미도시)로부터 원격 제어 신호(RS)를 수신하고 이를 제어부(300)로 송신ㅎ할 수 있다. 통신부(200)는 제어부(300)로부터 굴삭기(20)의 현재 상태 정보 또는 과부하 감지 신호 등을 수신하고 이를 원격 조종 장치(미도시)로 송신할 수 있다.
제어부(300)는 원격 조종 장치(미도시)로부터 통신부(200)를 통해 수신된 원격 제어 신호(RS)에 응답하여 굴삭기(20)를 구동시킨다. 제어부(300)는 굴삭기(20)의 이상적인(즉, 정상 상태에서의) 움직임과 실제 움직임의 차이가 허용 범위를 벗어나면 굴삭기(20)에 과부하가 발생한 것으로 판단하고 굴삭기(20)의 구동을 중지시킨다.
도 1을 통해 보다 상세하게 설명하면, 초기 설정 단계에서 제어부(300)는 굴삭기(20)를 소정의 초기 자세로 설정한다(S100). 제어부(300)는 굴삭기(20)에 구비된 관성 센서들(100-1 내지 100-4)을 이용해 원격 조종 굴삭기(20)의 자세, 즉, 본체, 붐, 암 및 어태치먼트(attachment)의 위치 및 각도 등을 측정한다. 제어부(300)는 굴삭기(20)를 초기 상태(자세)로부터 지속적으로 관성 센서들(100-1 내지 100-4)을 통해 모니터링하여 굴삭기(20)의 현재 자세를 정확하게 저장할 수 있다.
제어부(300)는 원격 조종 장치(미도시)로부터 통신부(200)를 통해 원격 제어 신호(RS)를 수신하고, 수신된 원격 제어 신호(RS)에 응답하여 굴삭기(20)를 구동시킨다(S110). 제어부(300)는 원격 제어 신호(RS)를 굴삭기(20)에 적합한 구동 신호(DS)로 변환하고 구동 신호(DS)를 굴삭기(20)로 출력한다.
실시 예에 따라, 굴삭기(20)가 전자 유압식인 경우 제어 장치(10)는 굴삭기(20)의 전자 유압 제어부로 구동 신호(DS)를 출력할 수 있다. 다른 실시 예에 따라, 굴삭기(20)에 원격 조종용 로봇이 부착되어 있는 경우 제어 장치(10)는 상기 원격 조종용 로봇으로 구동 신호(DS)를 출력할 수 있다.
제어부(300)는 원격 제어 신호(RS)에 기초하여 굴삭기(20)의 예상 자세를 추정한다(S120). 제어부(300)는 굴삭기(20)의 현재 자세에 원격 제어 신호(RS)에 대응하는 자세 변경 값을 더하여 예상 자세를 추정한다. 원격 제어 신호(RS)에 대응하는 자세 변경 값은 작업 환경(온도, 습도 등) 및 굴삭기(20)의 종류와 현재 상태 등에 따라 결정될 수 있다.
제어부(300)는 관성 센서들(100-1 내지 100-4)로부터 출력되는 관성 센싱값(IV1 내지 IV4)에 기초하여 굴삭기(20)의 실제 자세를 측정한다(S130). 상기한 바와 같이, 제어부(300)는 굴삭기(20)를 초기 상태로부터 지속적으로 모니터링하여 굴삭기(20)의 실제 자세를 정확하게 측정할 수 있다.
제어부(300)는 측정된 굴삭기(20)의 실제 자세를 현재 자세로 저장한다(S140).
제어부(300)는 추정된 예상 자세와 측정된 실제 자세를 비교한다(S150).
추정된 예상 자세와 측정된 실제 자세의 차이가 허용 값 이내이면(S150의 YES 브랜치), 제어부(300)는 굴삭기(20)를 계속 구동시킨다(S160).
반대로, 추정된 예상 자세와 측정된 실제 자세의 차이가 허용 값을 초과하면(S150의 NO 브랜치), 제어부(300)는 굴삭기(20)의 구동을 중지한다(S170).
여기서, 허용 값은 작업 환경(온도, 습도 등) 및 굴삭기(20)의 종류와 현재 상태 등에 따라 결정될 수 있다.
실시 예에 따라, 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면, 제어부(300)는 상기 허용 값을 증가시킬 수 있다. 이를 통해 제어부(300)는 특별하게 필요한 경우 과부하에도 불구하고 굴삭기(20)를 구동시킬 수 한다.
제어부(300)의 기능 및 동작은 도 4 및 도 5에서 보다 상세하게 설명될 것이다.
도 4는 도 2에 도시된 제어부의 일례를 나타내는 블록도이다. 도 4를 참조하면, 제어부(300A)는 자세 측정부(310A), 자세 추정부(320A), 과부하 감지부(330), 구동부(340) 및 메모리(350)를 포함한다.
자세 측정부(310A)는 관성 센서들(100-1 내지 100-4)로부터 관성 센싱값(IV1 내지 IV4, 이하 IVs)을 수신하고 수신된 관성 센싱값(IVs)에 기초하여 굴삭기의 실제 자세를 측정한다. 자세 측정부(310A)는 측정된 실제 자세에 관한 실제 자세 정보(AP)를 과부하 감지부(330)로 출력한다. 또한, 자제 측정부(310A)는 실제 자세 정보(AP)를 현재 자세 정보(CP)로 메모리(350)에 저장한다.
여기서, 실제 자세 정보(AP), 현재 자세 정보(CP) 및 예상 자세 정보(EP)는 굴삭기(20)의 본체(21), 붐(22), 암(23) 및 어태치먼트(24)의 위치, 각도 등에 대한 값들을 포함한다. 자세 정보들을 비교한다는 의미는 상기 자세 정보들에 포함된 값들을 비교한다는 의미로 해석될 수 있다.
자세 추정부(320A)는 원격 제어 신호(RS)에 대응하는 자세 변경 값을 계산한다. 구체적으로, 원격 제어 신호(RS)는 굴삭기(20)의 본체(21), 붐(22), 암(23) 및 어태치먼트(24)를 제어하기 위한 명령들을 포함하고 있는 바, 자세 추정부(320A)는 상기 명령들에 대응하는 본체(21), 붐(22), 암(23) 및 어태치먼트(24)의 자세 변경 값을 계산한다.
자세 추정부(320A)는 메모리(350)로부터 현재 자세 정보(CP)를 불러오고, 계산된 자세 변경 값을 적용하여 굴삭기(20)의 예상 자세를 추정한다. 즉, 자세 추정부(320A)는 현재 자세 정보(CP)에 계산된 자세 변경 값을 더하여 예상 자세 정보(EP)를 생성한다. 자세 추정부(320A)는 생성된 예상 자세 정보(EP)를 과부하 감지부(330)로 출력한다.
과부하 감지부(330)는 자세 측정부(310A)로부터 실제 자세 정보(AP)를 수신하고 자세 추정부(320A)로부터 예상 자세 정보(EP)를 수신한다. 과부하 감지부(330)는 실제 자세 정보(AP)와 예상 자세 정보(EP)에 기초하여 과부하 발생 여부를 감지한다.
과부하 감지부(330)는 실제 자세 정보(AP)와 예상 자세 정보(EP)의 차이가 허용 범위 이내이면 과부하가 발생하지 않은 것으로 판단한다. 반대로, 과부하 감지부(330)는 실제 자세 정보(AP)와 예상 자세 정보(EP)의 차이가 허용 범위를 초과하면 과부하가 발생한 것으로 판단한다.
예를 들어, 실제 측정된 붐(22)의 각도와 예상되는 붐(22)의 각도가 허용 범위를 초과하면, 과부하 감지부(330)는 굴삭기(20)에 과부하가 발생한 것으로 판단한다.
과부하가 발생한 것으로 판단되면, 과부하 감지부(330)는 구동부(340)로 구동 중지 신호(SS)를 출력한다.
구동부(340)는 원격 제어 신호(RS)에 응답하여 굴삭기(20)를 구동시킨다. 구동부(340)는 원격 제어 신호(RS)를 굴삭기(20)의 구동에 적합한 구동 신호(DS)로 변환하고 구동 신호(DS)를 굴삭기(20)로 출력한다.
구동부(340)는 과부하 감지부(330)로부터 수신되는 구동 중지 신호(SS)에 응답하여 구동 신호(DS)를 차단한다.
메모리(350)는 자세 측정부(310A)로부터 수신되는 현재 자세 정보(CP)를 저장한다. 메모리(350)는 자세 추정부(320A)의 요청에 응답하여 저장되어 있는 현재 자세 정보(CP)를 자세 추정부(320A)로 출력한다.
도 5는 도 2에 도시된 제어부의 다른 예를 나타내는 블록도이다. 도 5는 현재 자세와 상관없이 자세 변화량에 기초하여 과부하 발생 여부를 판단할 수 있는 제어부(300B)를 나타낸다.
도 5를 참조하면, 제어부(300B)는 자세 변화량 측정부(310B), 자세 변화량 추정부(320B), 과부하 감지부(330) 및 구동부(340)를 포함한다.
자세 변화량 측정부(310B)는 관성 센싱값(IVs)에 기초하여 굴삭기의 일정 시간 동안 자세 변화량을 측정한다. 자세 변화량 측정부(310B)는 측정된 자세 변화량에 대한 실제 자세 변화량 정보(AC)를 과부하 감지부(330)로 출력한다.
자세 변화량 추정부(320B)는 원격 제어 신호(RS)에 대응하는 예상 자세 변화량을 계산한다. 구체적으로, 자세 변화량 추정부(320B)는 원격 제어 신호(RS)에 대응하는 본체(21), 붐(22), 암(23) 및 어태치먼트(24)의 예상 자세 변화량을 계산한다. 자세 변화량 추정부(320B)는 계산된 예상 자세 변화량에 대한 예상 자세 변화량 정보(EC)를 과부하 감지부(330)로 출력한다.
여기서, 실제 자세 변화량 정보(AC) 및 예상 자세 변화량 정보(EC)는 굴삭기(20)의 본체(21), 붐(22), 암(23) 및 어태치먼트(24)의 위치, 각도 등의 변화량 값들을 포함한다.
과부하 감지부(330)는 자세 변화량 측정부(310B)로부터 실제 자세 변화량 정보(AC)를 수신하고 자세 추정부(320B)로부터 예상 자세 변화량 정보(EC)를 수신한다. 과부하 감지부(330)는 실제 자세 변화량 정보(AC)와 예상 자세 변화량 정보(EC)에 기초하여 과부하 발생 여부를 감지한다.
과부하 감지부(330)는 실제 자세 변화량 정보(AC)와 예상 자세 변화량 정보(EC)의 차이가 허용 범위 이내이면 과부하가 발생하지 않은 것으로 판단한다. 반대로, 과부하 감지부(330)는 실제 자세 변화량 정보(AC)와 예상 자세 변화량 정보(EC)의 차이가 허용 범위를 초과하면 과부하가 발생한 것으로 판단한다.
예를 들어, 실제 측정된 암(23)의 위치 변화량과 예상되는 암(23)의 위치 변화량의 차이가 허용 값을 초과하면, 과부하 감지부(330)는 굴삭기(20)에 과부하가 발생한 것으로 판단한다.
과부하가 발생한 것으로 판단되면, 과부하 감지부(330)는 구동부(340)로 구동 중지 신호(SS)를 출력한다.
구동부(340)는 원격 제어 신호(RS)에 응답하여 굴삭기(20)를 구동시킨다. 구동부(340)는 원격 제어 신호(RS)를 굴삭기(20)의 구동에 적합한 구동 신호(DS)로 변환하고 구동 신호(DS)를 굴삭기(20)로 출력한다.
구동부(340)는 과부하 감지부(330)로부터 수신되는 구동 중지 신호(SS)에 응답하여 구동 신호(DS)를 차단한다.
도 6은 본 발명의 제2 실시 예에 따른 원격 제어 굴삭기의 제어 장치를 나타내는 블록도이다. 도 6에 도시된 제어 장치(10')는 압력 센서(400)가 추가된 것을 제외하면 도 2에 도시된 제어 장치(10)와 동일한 바, 중복되는 설명은 생략한다.
도 6을 참조하면, 제어 장치(10')는 관성 센서들(100-1 내지 100-4), 통신부(200), 제어부(300) 및 압력 센서(400)를 포함한다.
압력 센서(400)는 굴삭기(20)의 어태치먼트(24)에 구비될 수 있다. 압력 센서(400)는 어태치먼트(24)에 인가되는 압력, 즉, 반력의 크기를 측정하고 측정된 압력 센싱값(PV)을 제어부(300)로 출력한다.
제어부(300)는 압력 센싱값(PV)에 기초하여 상기 허용 범위(또는 값)을 조절할 수 있다. 즉, 반력의 크기가 크면, 제어부(300)는 허용 범위을 확장시켜 과부하로 판단되는 경우를 감소시킬 수 있다.
예를 들어, 작업 환경의 온도가 매우 낮아 지면이 얼어있는 경우 제어부(300)가 증가된 반력에 따라 허용 범위를 확장시킴으로써 굴삭기(20)의 구동 중지 없이 원활하게 작업이 지속될 수 있게 할 수 있다.
본 발명은 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.
- 부호의 설명
10, 10'; 제어 장치
20; 원격 제어 굴삭기
100-1 내지 100-4; 관성 센서
200; 통신부
300; 제어부
400; 압력 센서

Claims (14)

  1. 굴삭기에 구비된 관성 센서들;
    원격 조종 장치로부터 원격 제어 신호를 수신하는 통신부; 및
    상기 원격 제어 신호에 응답하여 상기 굴삭기를 구동하는 제어부를 포함하며,
    상기 제어부는 상기 원격 제어 신호에 기초하여 추정되는 상기 굴삭기의 예상 자세와 상기 관성 센서들을 이용해 측정된 상기 굴삭기의 실제 자세의 차이가 허용 값을 초과하면 상기 굴삭기의 구동을 중지하는 원격 제어 굴삭기의 제어 장치.
  2. 제1항에 있어서,
    상기 관성 센서들은,
    상기 굴삭기의 본체에 구비된 제1 관성 센서;
    상기 굴삭기의 붐에 구비된 제2 관성 센서;
    상기 굴삭기의 암에 구비된 제3 관성 센서; 및
    상기 굴삭기의 어태치먼트에 구비된 제4 관성 센서를 포함하는 원격 제어 굴삭기의 제어 장치.
  3. 제2항에 있어서,
    상기 어태치먼트는 버켓, 브레이커, 바이브레이터, 포크, 크래셔 또는 그래플인 원격 제어 굴삭기의 제어 장치.
  4. 제1항에 있어서,
    상기 통신부는, 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면, 상기 원격 조종 장치로 과부하 발생 신호를 송신하는 원격 제어 굴삭기의 제어 장치.
  5. 제1항에 있어서,
    상기 제어부는,
    상기 원격 제어 신호에 대응하는 상기 굴삭기로 구동 신호를 출력하는 구동부;
    상기 굴삭기의 현재 자세를 저장하는 메모리;
    상기 현재 자세와 상기 원격 제어 신호에 대응하는 자세 변경 값에 기초하여 상기 예상 자세를 추정하는 자세 추정부;
    상기 센싱 값들에 기초하여 상기 실제 자세를 측정하는 자세 측정부; 및
    상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 구동 중지 신호를 상기 구동부로 출력하는 과부하 감지부를 포함하며,
    상기 구동부는 상기 구동 중지 신호에 응답하여 상기 구동 신호를 차단하는 원격 제어 굴삭기의 제어 장치.
  6. 제1항에 있어서,
    상기 제어부는,
    상기 원격 제어 신호에 응답하여 상기 굴삭기로 구동 신호를 출력하는 구동부;
    상기 관성 센서들로부터 수신된 상기 센싱 값들에 기초하여 상기 굴삭기의 실제 자세 변화량을 측정하는 자세 변화량 측정부;
    상기 원격 제어 신호에 대응하는 예상 자세 변화량을 계산하는 자세 변화량 추정부; 및
    상기 굴삭기가 구동하는 동안 상기 실제 자세 변화량과 상기 예상 자세 변화량의 차이가 상기 허용 값을 초과하면 구동 중지 신호를 상기 구동부로 출력하는 과부하 감지부를 포함하며,
    상기 구동부는 상기 구동 중지 신호에 응답하여 상기 구동 신호를 차단하는 원격 제어 굴삭기의 제어 장치.
  7. 제1항에 있어서,
    상기 제어 장치는,
    상기 굴삭기의 어태치먼트에 구비된 압력 센서를 더 포함하며,
    상기 제어부는 상기 압력 센서에 의해 측정된 반력의 크기에 따라 상기 허용 값을 조절하는 원격 제어 굴삭기의 제어 장치.
  8. 제1항에 있어서,
    상기 제어부는 상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하는 횟수에 따라 상기 허용 값을 증가시키는 원격 제어 굴삭기의 제어 장치.
  9. 제1항에 있어서,
    상기 통신부는 상기 굴삭기의 상기 실제 자세를 상기 원격 조종 장치로 송신하는 원격 제어 굴삭기의 제어 장치.
  10. 굴삭기의 현재 자세를 측정하는 단계;
    상기 현재 자세에 원격 조종 장치로부터 수신된 제어 신호에 대응하는 자세 변경 값을 더하여 예상 자세를 추정하는 단계;
    상기 제어 신호에 응답하여 상기 굴삭기를 구동하고 상기 굴삭기의 실제 자세를 측정하는 단계; 및
    상기 예상 자세와 상기 실제 자세의 차이가 허용 값을 초과하면 상기 굴삭기의 구동을 중지하는 단계를 포함하는 원격 제어 굴삭기의 제어 방법.
  11. 제10항에 있어서,
    상기 제어 방법은,
    상기 실제 자세로 상기 현재 자세를 갱신하는 단계를 더 포함하는 원격 제어 굴삭기의 제어 방법.
  12. 제10항에 있어서,
    상기 제어 방법은,
    상기 굴삭기의 어태치먼트에 가해지는 반력을 측정하는 단계; 및
    상기 반력의 크기에 따라 상기 허용 값을 조절하는 단계를 더 포함하는 원격 제어 굴삭기의 제어 방법.
  13. 제10항에 있어서,
    상기 제어 방법은,
    상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 상기 허용 값을 증가시키는 단계를 더 포함하는 원격 제어 굴삭기의 제어 방법.
  14. 제10항에 있어서,
    상기 제어 방법은,
    상기 예상 자세와 상기 실제 자세의 차이가 상기 허용 값을 초과하면 상기 원격 조종 장치로 과부하 신호를 송신하는 단계를 더 포함하는 원격 제어 굴삭기의 제어 방법.
PCT/KR2019/015216 2018-12-27 2019-11-11 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법 WO2020138708A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,931 US11459728B2 (en) 2018-12-27 2019-11-11 Apparatus and method for controlling remote-controlled excavator for preventing overload

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0171362 2018-12-27
KR1020180171362A KR102090409B1 (ko) 2018-12-27 2018-12-27 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2020138708A1 true WO2020138708A1 (ko) 2020-07-02

Family

ID=70004101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015216 WO2020138708A1 (ko) 2018-12-27 2019-11-11 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법

Country Status (3)

Country Link
US (1) US11459728B2 (ko)
KR (1) KR102090409B1 (ko)
WO (1) WO2020138708A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453550B1 (ko) * 2020-04-21 2022-10-12 고등기술연구원연구조합 원격 조작 굴삭기 작업 부하를 고려한 전도 방지 시스템 및 방법
KR102373567B1 (ko) 2020-06-03 2022-03-11 (주)나우이엔에스 트렌치커터의 굴착 자동화 시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325125A (ja) * 1989-06-22 1991-02-01 Komatsu Ltd 掘削機械の掘削制御装置
KR20100127963A (ko) * 2009-05-27 2010-12-07 전자부품연구원 무인 굴삭기의 전도 방지 시스템 및 방법
JP2016045674A (ja) * 2014-08-22 2016-04-04 株式会社Ihiエアロスペース 作業用車両
JP2017022433A (ja) * 2015-07-07 2017-01-26 日立建機株式会社 遠隔操縦システム
KR101776819B1 (ko) * 2016-06-09 2017-09-20 한양대학교 에리카산학협력단 굴삭기 전도 상태 판별 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7912612B2 (en) * 2007-11-30 2011-03-22 Caterpillar Inc. Payload system that compensates for rotational forces
US8660758B2 (en) * 2007-11-30 2014-02-25 Caterpillar Inc. Payload system with center of gravity compensation
JP4841671B2 (ja) * 2008-01-07 2011-12-21 日立建機株式会社 双腕作業機械
EP3514394A1 (en) * 2010-05-11 2019-07-24 Parker Hannifin Corp. Pressure compensated hydraulic system having differential pressure control
CN103597147B (zh) * 2011-06-10 2016-05-25 日立建机株式会社 作业机械
US20130229272A1 (en) * 2012-03-05 2013-09-05 Caterpillar Inc. Manual control device and method
US9587369B2 (en) * 2015-07-02 2017-03-07 Caterpillar Inc. Excavation system having adaptive dig control
US10997534B2 (en) * 2015-11-20 2021-05-04 Caterpillar Inc. System and method for connecting an operator with worksite operations
JP6644870B2 (ja) * 2016-03-16 2020-02-12 住友重機械工業株式会社 ショベル
KR102353868B1 (ko) * 2016-03-31 2022-01-19 스미도모쥬기가이고교 가부시키가이샤 쇼벨
US9926677B1 (en) * 2016-09-26 2018-03-27 Caterpillar Inc. Constant down force vibratory compactor
JP6707047B2 (ja) * 2017-03-17 2020-06-10 日立建機株式会社 建設機械
JP7117843B2 (ja) * 2017-12-26 2022-08-15 日立建機株式会社 作業機械
US11227242B2 (en) * 2018-08-28 2022-01-18 Caterpillar Inc. System and method for automatically triggering incident intervention
EP3848515B1 (en) * 2018-09-03 2024-01-10 Hitachi Construction Machinery Co., Ltd. Work machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325125A (ja) * 1989-06-22 1991-02-01 Komatsu Ltd 掘削機械の掘削制御装置
KR20100127963A (ko) * 2009-05-27 2010-12-07 전자부품연구원 무인 굴삭기의 전도 방지 시스템 및 방법
JP2016045674A (ja) * 2014-08-22 2016-04-04 株式会社Ihiエアロスペース 作業用車両
JP2017022433A (ja) * 2015-07-07 2017-01-26 日立建機株式会社 遠隔操縦システム
KR101776819B1 (ko) * 2016-06-09 2017-09-20 한양대학교 에리카산학협력단 굴삭기 전도 상태 판별 방법

Also Published As

Publication number Publication date
US11459728B2 (en) 2022-10-04
US20220081875A1 (en) 2022-03-17
KR102090409B1 (ko) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2020138708A1 (ko) 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법
WO2012153880A1 (ko) 하이브리드 액츄에이터의 급정지 장치가 구비되는 하이브리드 굴삭기
WO2012081742A1 (ko) 하이브리드 건설기계용 선회 제어시스템
WO2019054558A1 (ko) 협동로봇제어장치 및 협동로봇을 제어하는 방법
US8509999B2 (en) Abnormal operation detection device
WO2014051170A1 (en) Automatic grading system for construction machine and method for controlling the same
WO2013051737A1 (ko) 굴삭기를 이용한 평탄화 작업 제어시스템
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
WO2014092355A1 (ko) 조이스틱 컨트롤 기반의 건설장비 자동 제어 시스템 및 방법
WO2014126355A1 (ko) 작업용 차량의 작업기 제어 장치 및 그 방법
WO2012087020A2 (ko) 건설장비의 로우아이들 제어 시스템 및 그 자동 제어방법
WO2022025556A1 (ko) 건설 기계
WO2014123300A1 (ko) 건설장비
US11242666B2 (en) Shovel
JPH01271185A (ja) 遠隔ロボット操縦システム
WO2018139836A2 (ko) 트랙 장력 모니터링 방법 및 시스템
WO2014104635A1 (ko) 건설 기계의 자동 변속 제어 장치 및 제어 방법
WO2012161439A2 (ko) 굴착기
WO2013100218A1 (ko) 건설기계의 엔진 제어방법
WO2019177279A1 (ko) 건설기계의 전자 유압식 제어 장치 및 방법
WO2021101214A1 (ko) 건설기계의 제어 방법 및 시스템
WO2020141659A1 (ko) 컨트롤러, 조정장치 및 조정시스템
WO2021029484A1 (ko) 재난 구조 로봇 제어시스템 및 방법
WO2013183795A1 (ko) 건설기계용 주행 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905181

Country of ref document: EP

Kind code of ref document: A1