WO2020138523A1 - 세탁물 처리 장치 및 그의 세탁 코스 결정 방법 - Google Patents

세탁물 처리 장치 및 그의 세탁 코스 결정 방법 Download PDF

Info

Publication number
WO2020138523A1
WO2020138523A1 PCT/KR2018/016642 KR2018016642W WO2020138523A1 WO 2020138523 A1 WO2020138523 A1 WO 2020138523A1 KR 2018016642 W KR2018016642 W KR 2018016642W WO 2020138523 A1 WO2020138523 A1 WO 2020138523A1
Authority
WO
WIPO (PCT)
Prior art keywords
laundry
washing
information
processor
course
Prior art date
Application number
PCT/KR2018/016642
Other languages
English (en)
French (fr)
Inventor
김효은
김재홍
이태호
정한길
한종우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2018/016642 priority Critical patent/WO2020138523A1/ko
Priority to KR1020217011767A priority patent/KR20210096072A/ko
Priority to US16/526,225 priority patent/US11578444B2/en
Priority to EP19214777.5A priority patent/EP3674466B1/en
Priority to CN201911367428.9A priority patent/CN111379119B/zh
Publication of WO2020138523A1 publication Critical patent/WO2020138523A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/006Methods for washing, rinsing or spin-drying for washing or rinsing only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2101/02Characteristics of laundry or load
    • D06F2101/06Type or material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/06Type or material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/16Washing liquid temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/02Water supply
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/08Draining of washing liquids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/10Temperature of washing liquids; Heating means therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/04Signal transfer or data transmission arrangements
    • D06F34/05Signal transfer or data transmission arrangements for wireless communication between components, e.g. for remote monitoring or control
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight

Definitions

  • the present invention relates to a laundry treatment apparatus and a method for determining the laundry course thereof, and relates to a laundry treatment device and a laundry course determination method capable of providing an optimal laundry course according to laundry.
  • laundry treatment devices or laundry aids are essential household appliances in every home.
  • Clothing, bedding, or dolls that require washing are composed of various materials, and the requirements for washing are different for each material. Accordingly, current laundry devices or laundry assisting devices provide several laundry courses in order to provide a suitable laundry function for various materials.
  • the existing laundry processing devices or laundry assisting devices provide a corresponding washing course when a user selects a predetermined washing course, or a washing course reflecting the parameters when the user sets parameters for each washing step for each washing. It provides only the function to do.
  • the conventional laundry treatment apparatus is limited to providing a washing course in which a user reflects only a set parameter for each washing step, even when one type of laundry or several kinds of laundry are input.
  • An object of the present invention is to provide an optimal laundry course that satisfies a proper washing power while minimizing damage to all laundry when input laundry is composed of composite fiber materials having different characteristics.
  • the present invention has an object to provide a customized laundry course by automatically recognizing laundry input to the laundry treatment device, analyzing the material mixing ratio for each, and through a laundry course learning model.
  • the laundry treatment apparatus uses a laundry module to perform an operation related to laundry, a camera to take a tag image attached to the laundry, and a captured tag image to receive laundry information for a plurality of laundry. Acquiring, converting the obtained laundry information into encoding data, and obtaining values of laundry control variables suitable for the converted encoding data, based on a laundry course learning model learned using a plurality of reference data through a deep learning algorithm It includes a processor.
  • the laundry course determination method is obtained by obtaining laundry information for a plurality of laundry, converting the obtained laundry information into encoding data, and learning using a plurality of reference data through a deep learning algorithm. And obtaining values of laundry control variables suitable for the converted encoding data, based on the washed laundry course learning model.
  • a user when a plurality of laundry is input, as an optimized laundry course is provided, a user can minimize damage to laundry and improve washing power.
  • the user may need to separately determine the characteristics of the fabric, such as wool, cotton, cashmere, and synthetic fibers, to reduce washing and rinsing-dehydration.
  • 1 is a block diagram illustrating a learning apparatus of an artificial neural network.
  • FIG. 2 is a block diagram illustrating the configuration of a terminal according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating the configuration of a laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flow chart for explaining a method for determining a laundry course in a laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a process of acquiring laundry information using a tag image photographed through a camera according to an embodiment of the present invention.
  • 6 and 7 are diagrams for describing baseline information according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a process of generating laundry encoding data in a form that can be input to a learning model using laundry information and baseline information recognized through a tag according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a specific example of generating laundry encoding data through tag recognition according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a process of generating a laundry course learning model according to an embodiment of the present invention.
  • FIG. 11 is a view for explaining a process of determining a main material for a laundry composed of a plurality of materials according to an embodiment of the present invention.
  • FIG. 12 is a view showing a result of classifying the main materials into three washing groups according to an embodiment of the present invention.
  • FIG. 13 is a view showing a result of extracting characteristic values of a washing group according to an embodiment of the present invention.
  • FIG. 14 is a diagram representing the actual degree of damage y and the estimated degree of damage (Wx+b) in a determinant.
  • 15 is a diagram illustrating a process of obtaining values of laundry control variables for an optimal laundry course by applying a laundry course learning model to laundry encoding data according to an embodiment of the present invention.
  • 16 is a diagram for explaining a scenario in which laundry is automatically recommended when an laundry is put into a laundry treatment apparatus, and an optimal laundry course is recommended according to an embodiment of the present invention.
  • 17 is a diagram illustrating a user scenario for providing an optimal laundry course according to an embodiment of the present invention.
  • AI Artificial intelligence
  • Machine learning is a field of artificial intelligence that is a research field that gives computers the ability to learn without explicit programming.
  • machine learning can be said to be a technology that studies and builds systems and algorithms for learning, based on empirical data, performing predictions and improving one's own performance. Rather than performing strictly defined static program instructions, machine learning algorithms take the form of building a specific model to derive predictions or decisions based on input data.
  • machine learning' can be used interchangeably with the term'machine learning'.
  • Decision trees are an analysis method that performs classification and prediction by charting decision rules in a tree structure.
  • Bayesian network is a model that expresses the probabilistic relationship (conditional independence) between multiple variables in a graph structure. Bayesian networks are suitable for data mining through unsupervised learning.
  • the support vector machine is a model of supervised learning for pattern recognition and data analysis, and is mainly used for classification and regression analysis.
  • An artificial neural network is a model of a biological neuron's operating principle and a connection relationship between neurons.
  • a number of neurons, called nodes or processing elements, are connected in the form of a layer structure. It is an information processing system.
  • ANN Artificial Neural Network
  • an artificial neural network may mean an overall model having a problem-solving ability by changing the intensity of synaptic binding through artificial neurons (nodes) that form a network through synaptic coupling.
  • ANN Artificial Neural Network
  • An artificial neural network may include a plurality of layers, and each of the layers may include a plurality of neurons. Also, an artificial neural network (ANN) may include a neuron and a synapse connecting a neuron.
  • ANNs Artificial Neural Networks
  • the pattern of connections between neurons in different layers (2) the process of updating the weight of connections (3) the previous layer ( layer) can be defined by an activation function that takes a weighted sum of the input and generates an output value.
  • ANNs Artificial Neural Networks
  • DNN Deep Neural Network
  • RNN Recurrent Neural Network
  • BPDNN Bidirectional Recurrent Deep Neural Network
  • MLP Multilayer Perceptron
  • CNN Convolutional Neural Network
  • ANNs Artificial neural networks are divided into single layer neural networks and multi layer neural networks according to the number of layers.
  • General single layer neural networks are composed of an input layer and an output layer.
  • general multi-layer neural networks are composed of an input layer, a hidden layer, and an output layer.
  • the input layer is a layer that accepts external data
  • the number of neurons in the input layer is the same as the number of input variables
  • the hidden layer is located between the input layer and the output layer and receives signals from the input layer. Take and extract the characteristics and transfer them to the output layer.
  • the output layer receives a signal from the hidden layer and outputs it to the outside.
  • the input signal between neurons is multiplied after being multiplied by each connection strength having a value between 0 and 1, and when this sum is greater than the threshold value of the neuron, the neuron is activated and implemented as an output value through an activation function.
  • a deep neural network including a plurality of hidden layers between an input layer and an output layer is deep learning, which is a type of machine learning technology. It may be a representative artificial neural network that implements (deep learning).
  • the term'deep learning' may be used interchangeably with the term'deep learning'.
  • ANNs Artificial neural networks
  • training refers to parameters of an artificial neural network (ANN) using training data in order to achieve the purpose of classifying, regressing, or clustering input data. It can mean the process of determining (parameter).
  • parameters of an artificial neural network include weights applied to synapses and biases applied to neurons.
  • the artificial neural network learned by the training data may classify or cluster input data according to a pattern of the input data.
  • an artificial neural network trained using training data may be referred to as a trained model in this specification.
  • ANN Artificial Neural Network
  • the artificial neural network (ANN) learning method is largely classified into supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. have.
  • Supervised learning is a method of machine learning to infer a function from training data.
  • outputting a continuous value is called regression, and predicting and outputting a class of an input vector can be called classification.
  • ANN artificial neural network
  • the label means a correct answer (or a result value) that an artificial neural network (ANN) should infer when training data is input to an artificial neural network (ANN). Can.
  • a correct answer (or a result value) that an artificial neural network (ANN) should infer is called a label or labeling data.
  • labeling training data for training of an artificial neural network ANN
  • labeling data for training data labeling
  • training data and a label corresponding to the training data constitute one training set, and in the form of a training set for an artificial neural network (ANN). Can be entered.
  • ANN artificial neural network
  • the training data indicates a plurality of features
  • the labeling of the training data means that the features indicated by the training data are labeled. can do.
  • the training data may represent the characteristics of the input object in vector form.
  • An artificial neural network can infer a function for an association relationship between training data and labeling data using training data and labeling data.
  • an artificial neural network (ANN) can determine (optimize) parameters of an artificial neural network (ANN) by evaluating an inferred function.
  • Unsupervised learning is a kind of machine learning, and is not given a label for training data.
  • unsupervised learning may be a learning method of training an artificial neural network to find and classify patterns in training data itself, rather than an association relationship between training data and labels corresponding to training data.
  • unsupervised learning examples include clustering or independent component analysis.
  • Examples of artificial neural networks using unsupervised learning include a Generative Adversarial, Network (GAN) and an Autoencoder (AE).
  • GAN Generative Adversarial, Network
  • AE Autoencoder
  • GAN Genetic hostile neural network
  • GAN Genetic hostile neural network
  • the generator is a model that creates new data, and can generate new data based on the original data.
  • the discriminator is a model that recognizes a pattern of data, and may serve to discriminate whether or not the new data generated by the generator is based on the original data.
  • the generator can learn by receiving the data that did not deceive the discriminator (discriminator), and the discriminator (discriminator) can receive and learn the deceived data from the generator (generator). Accordingly, the generator may evolve to deceive the discriminator as best as possible, and may evolve to discriminate between the original data of the discriminator and the data generated by the generator.
  • Autoencoder is a neural network that aims to reproduce the input itself as an output.
  • An autoencoder includes an input layer, a hidden layer, and an output layer, and input data passes through the input layer and enters the hidden layer.
  • data output from the hidden layer enters the output layer.
  • the number of nodes in the output layer is greater than the number of nodes in the hidden layer, the dimension of data increases, and thus decompression or decoding is performed.
  • the autoencoder adjusts the connection strength of neurons through learning, so that input data is represented as hidden layer data.
  • hidden layer information is expressed in fewer neurons than the input layer.
  • the input data can be reproduced as output, which may mean that the hidden layer has found and expressed a hidden pattern from the input data.
  • Semi-supervised learning is a type of machine learning, and may mean a learning method using a mode of training data with a label and training data without a label.
  • Reinforcement learning is the theory that if given an environment where an agent can judge what to do every moment, it can find the best way through experience without data.
  • Reinforcement learning may be performed mainly by a Markov Decision Process (MDP).
  • MDP Markov Decision Process
  • the environment is provided with the information necessary for the agent to perform the next action, secondly, it defines how the agent will behave in the environment, and thirdly, what the agent is If you do well, you define whether to give a reward and what to do if you fail to do so. Fourth, you will derive the optimal policy through repeated experiences until the future reward reaches the peak.
  • MDP Markov Decision Process
  • FIG. 1 is a block diagram illustrating a learning apparatus 1000 of an artificial neural network.
  • the artificial neural network learning apparatus 1000 may include a data input unit 1010, a processor 1020, and an artificial neural network 1030.
  • the data input unit 1010 may receive input data.
  • the data input unit 1010 may receive training data or may receive raw data.
  • the processor 1020 may preprocess the received data to generate training data that can be input to the artificial neural network 1030.
  • the artificial neural network 1030 may be implemented by hardware, software, or a combination of hardware and software, and when some or all of the artificial neural network 1030 is implemented by software, one or more commands constituting the artificial neural network 1030 may be artificial neural networks. It may be stored in a memory (not shown) included in the learning device 1000 of.
  • the processor 1020 may train the artificial neural network 1030 by inputting training data or a training set into the artificial neural network 1030.
  • the processor 1020 may determine (optimize) parameters of an artificial neural network (ANN) by repeatedly learning an artificial neural network (ANN) using various learning techniques described above.
  • ANN artificial neural network
  • the artificial neural network whose parameters are determined by learning using the training data as described above may be referred to as a trained model in this specification.
  • a trained model may be used to infer a result value for new input data rather than training data.
  • a trained model may be inferred for a result value when it is mounted on the learning apparatus 1000 of an artificial neural network, or may be transmitted to another apparatus and mounted.
  • the learning device 1000 of the artificial neural network may include a communication unit (not shown) for communicating with other devices.
  • FIG. 2 illustrates a terminal 100 that can be used as another device.
  • the terminals described herein include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, and slate PCs. It may include a tablet PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display), etc. .
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • slate PCs slate PC
  • It may include a tablet PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display), etc.
  • the terminal 100 may also be applied to a fixed terminal such as a smart TV, a desktop computer, and a digital signage.
  • the terminal 100 may be applied to a fixed or movable robot.
  • the terminal 100 may perform the function of a voice agent.
  • the voice agent may be a program that recognizes a user's voice and outputs a response suitable for the recognized user's voice as a voice.
  • the terminal 100 includes a wireless communication unit 110, an input unit 120, a running processor 130, a sensing unit 140, an output unit 150, an interface unit 160, a memory 170, a processor 180, and It may include a power supply 190.
  • a trained model may be mounted in the terminal 100.
  • a trained model may be implemented by hardware, software, or a combination of hardware and software.
  • a trained model is configured.
  • One or more instructions may be stored in the memory 170.
  • the wireless communication unit 110 may include at least one of a broadcast receiving module 111, a mobile communication module 112, a wireless Internet module 113, a short-range communication module 114, and a location information module 115.
  • the broadcast receiving module 111 receives a broadcast signal and/or broadcast-related information from an external broadcast management server through a broadcast channel.
  • the mobile communication module 112 includes technical standards or communication methods for mobile communication (eg, Global System for Mobile Communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), EV -Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A (Long Term Evolution-Advanced) transmits and receives wireless signals to and from at least one of a base station, an external terminal and a server on a mobile communication network constructed according to (Long Term Evolution-Advanced).
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • WCDMA Wideband CDMA
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • the wireless Internet module 113 refers to a module for wireless Internet access, and may be built in or external to the terminal 100.
  • the wireless Internet module 113 is configured to transmit and receive wireless signals in a communication network according to wireless Internet technologies.
  • Wireless Internet technologies include, for example, WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity), Wi-Fi (Wireless Fidelity) Direct, DLNA (Digital Living Network Alliance), WiBro (Wireless Broadband), WiMAX (World) Interoperability for Microwave Access (HSDPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), and Long Term Evolution-Advanced (LTE-A).
  • WLAN Wireless LAN
  • Wi-Fi Wireless-Fidelity
  • Wi-Fi Wireless Fidelity
  • Direct Wireless Internet technologies
  • DLNA Digital Living Network Alliance
  • WiBro Wireless Broadband
  • WiMAX Worldwide Interoperability for Microwave Access
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the short-range communication module 114 is for short-range communication, BluetoothTM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, NFC (Near Field Communication), by using at least one of Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, Wireless USB (Wireless Universal Serial Bus) technology, it can support short-range communication.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the location information module 115 is a module for acquiring a location (or current location) of a mobile terminal, and representative examples thereof include a Global Positioning System (GPS) module or a Wireless Fidelity (WiFi) module.
  • GPS Global Positioning System
  • WiFi Wireless Fidelity
  • the terminal utilizes a GPS module, the location of the mobile terminal can be acquired using a signal sent from a GPS satellite.
  • the input unit 120 may include a camera 121 for inputting a video signal, a microphone 122 for receiving an audio signal, and a user input unit 123 for receiving information from a user.
  • the voice data or image data collected by the input unit 120 may be analyzed and processed by a user's control command.
  • the input unit 120 is for input of image information (or signals), audio information (or signals), data, or information input from a user.
  • the terminal 100 includes one or more cameras It may be provided with (121).
  • the camera 121 processes image frames such as still images or moving pictures obtained by an image sensor in a video call mode or a shooting mode.
  • the processed image frame may be displayed on the display unit 151 or stored in the memory 170.
  • the microphone 122 processes external sound signals as electrical voice data.
  • the processed voice data may be used in various ways depending on the function (or running application program) being performed by the terminal 100. Meanwhile, various noise reduction algorithms for removing noise generated in the process of receiving an external sound signal may be implemented in the microphone 122.
  • the user input unit 123 is for receiving information from a user. When information is input through the user input unit 123,
  • the processor 180 may control the operation of the terminal 100 to correspond to the inputted information.
  • the user input unit 123 is a mechanical input means (or a mechanical key, for example, a button located on the front/rear or side of the terminal 100, a dome switch, a jog wheel, a jog switch, etc. ) And a touch-type input means.
  • the touch-type input means is made of a virtual key, a soft key or a visual key displayed on the touch screen through software processing, or a part other than the touch screen It may be made of a touch key (touch key) disposed on.
  • the learning processor 130 may be configured to receive, classify, store, and output information to be used for data mining, data analysis, intelligent decision making, and machine learning algorithms and techniques.
  • the learning processor 130 may be received, detected, detected, generated, predefined, or otherwise output by the terminal or communicated with other components, devices, terminals, or terminals in a received, detected, detected, generated, predefined, or otherwise manner It may include one or more memory units configured to store data output by the device.
  • the learning processor 130 may include a memory integrated or implemented in a terminal. In some embodiments, the learning processor 130 may be implemented using the memory 170.
  • the learning processor 130 may be implemented using memory associated with the terminal, such as external memory coupled directly to the terminal or memory maintained in a server communicating with the terminal.
  • the learning processor 130 may be implemented using memory maintained in a cloud computing environment, or other remote memory location accessible by a terminal through a communication method such as a network.
  • the learning processor 130 typically includes one or more databases for identifying, indexing, categorizing, manipulating, storing, retrieving, and outputting data for use in supervised or unsupervised learning, data mining, predictive analytics, or other machines. It can be configured to store on.
  • the information stored in the learning processor 130 may be utilized by one or more other controllers of the processor 180 or terminal using any of a variety of different types of data analysis algorithms and machine learning algorithms.
  • fuzzy logic e.g probability theory
  • neural networks Boltzmann machines, vector quantization, pulse neural networks, support vector machines, maximum margin classifier, hill climbing, inductive logic system Bayesian network , Peritnet (e.g. finite state machine, milli machine, Moore finite state machine), classifier tree (e.g. perceptron tree, support vector tree, Markov tree, decision tree forest, random forest), stake models and systems, artificial Convergence, sensor fusion, image fusion, reinforcement learning, augmented reality, pattern recognition, automated planning, and more.
  • fuzzy logic eg probability theory
  • neural networks Boltzmann machines, vector quantization, pulse neural networks, support vector machines, maximum margin classifier, hill climbing, inductive logic system Bayesian network , Peritnet (e.g. finite state machine, milli machine, Moore finite state machine), classifier tree (e.g. perceptron tree, support vector tree, Markov tree, decision tree forest, random forest), stake models and systems, artificial Convergence, sensor fusion, image fusion
  • the processor 180 may determine or predict at least one executable action of the terminal based on the generated information, or determined using data analysis and machine learning algorithms. To this end, the processor 180 may request, search, receive, or utilize data of the learning processor 130, and may use the terminal to perform a predicted operation or an operation determined to be desirable among the at least one executable operation. Can be controlled.
  • the processor 180 may perform various functions for implementing intelligent emulation (ie, a knowledge-based system, a reasoning system, and a knowledge acquisition system). It can be applied to various types of systems (eg, fuzzy logic systems), including adaptive systems, machine learning systems, artificial neural networks, and the like.
  • intelligent emulation ie, a knowledge-based system, a reasoning system, and a knowledge acquisition system. It can be applied to various types of systems (eg, fuzzy logic systems), including adaptive systems, machine learning systems, artificial neural networks, and the like.
  • the processor 180 also involves speech and natural language speech processing, such as I/O processing modules, environmental condition modules, speech-to-text (STT) processing modules, natural language processing modules, work flow processing modules, and service processing modules. It may include sub-modules that enable computation.
  • speech and natural language speech processing such as I/O processing modules, environmental condition modules, speech-to-text (STT) processing modules, natural language processing modules, work flow processing modules, and service processing modules. It may include sub-modules that enable computation.
  • Each of these sub-modules can have access to one or more systems or data and models at the terminal, or a subset or superset thereof.
  • each of these sub-modules can provide a variety of functions, including vocabulary index, user data, work flow model, service model and automatic speech recognition (ASR) system.
  • ASR automatic speech recognition
  • processor 180 or terminal may be implemented with the submodules, systems, or data and models.
  • the processor 180 may be configured to detect and detect requirements based on the user's intention or contextual conditions expressed in user input or natural language input.
  • the processor 180 may actively derive and acquire information necessary to completely determine a requirement based on a context condition or a user's intention. For example, the processor 180 may actively derive information necessary to determine a requirement by analyzing historical data including historical input and output, pattern matching, unambiguous words, and input intention.
  • the processor 180 may determine a task flow for executing a function that responds to a requirement based on a context condition or a user's intention.
  • the processor 180 collects, detects, extracts, and detects signals or data used in data analysis and machine learning operations through one or more sensing components in the terminal in order to collect information for processing and storage in the learning processor 130 And/or receive.
  • Collecting information may include sensing information through a sensor, extracting information stored in the memory 170, or receiving information from another terminal, entity, or external storage device through communication means.
  • the processor 180 may collect and store usage history information in the terminal.
  • the processor 180 may use the stored usage history information and predictive modeling to determine the best match for executing a specific function.
  • the processor 180 may receive or sense surrounding environment information or other information through the sensing unit 140.
  • the processor 180 may receive a broadcast signal and/or broadcast-related information, a radio signal, and radio data through the radio communication unit 110.
  • the processor 180 may receive image information (or a corresponding signal), audio information (or a corresponding signal), data, or user input information from the input unit 120.
  • the processor 180 collects information in real time, processes or classifies information (for example, a knowledge graph, a command policy, a personalization database, a conversation engine, etc.), and processes the processed information in a memory 170 or a learning processor 130 ).
  • information for example, a knowledge graph, a command policy, a personalization database, a conversation engine, etc.
  • the processor 180 can control the components of the terminal to perform the determined operation. In addition, the processor 180 may perform the determined operation by controlling the terminal according to the control command.
  • the processor 180 analyzes historical information indicating execution of a specific operation through data analysis and machine learning algorithms and techniques, and performs updating of previously learned information based on the analyzed information. Can.
  • the processor 180 may improve the accuracy of future performance of data analysis and machine learning algorithms and techniques based on the updated information along with the learning processor 130.
  • the sensing unit 140 may include one or more sensors for sensing at least one of information in the mobile terminal, surrounding environment information surrounding the mobile terminal, and user information.
  • the sensing unit 140 includes a proximity sensor 141, an illumination sensor 142, a touch sensor, an acceleration sensor, a magnetic sensor, and gravity G-sensor, gyroscope sensor, motion sensor, RGB sensor, infrared sensor (IR sensor), fingerprint scan sensor, ultrasonic sensor , Optical sensor (e.g., camera (see 121)), microphone (refer to 122), battery gauge, environmental sensor (e.g. barometer, hygrometer, thermometer, radioactivity sensor, Thermal sensor, gas sensor, etc.), and a chemical sensor (eg, an electronic nose, a health care sensor, a biometric sensor, etc.).
  • the mobile terminal disclosed in the present specification may combine and use information sensed by at least two or more of these sensors.
  • the output unit 150 is for generating output related to vision, hearing, or tactile sense, and includes at least one of a display unit 151, an audio output unit 152, a hap tip module 153, and an optical output unit 154 can do.
  • the display unit 151 displays (outputs) information processed by the terminal 100.
  • the display unit 151 may display execution screen information of an application program driven by the terminal 100, or user interface (UI) or graphical user interface (GUI) information according to the execution screen information.
  • UI user interface
  • GUI graphical user interface
  • the display unit 151 may form a mutual layer structure with the touch sensor or may be integrally formed, thereby realizing a touch screen.
  • the touch screen may function as a user input unit 123 that provides an input interface between the terminal 100 and the user, and at the same time, provide an output interface between the terminal 100 and the user.
  • the audio output unit 152 may output audio data received from the wireless communication unit 110 or stored in the memory 170 in a call signal reception, call mode or recording mode, voice recognition mode, broadcast reception mode, or the like.
  • the audio output unit 152 may include at least one of a receiver, a speaker, and a buzzer.
  • the haptic module 153 generates various tactile effects that the user can feel.
  • a typical example of the tactile effect generated by the haptic module 153 may be vibration.
  • the light output unit 154 outputs a signal for notifying the occurrence of an event using the light of the light source of the terminal 100.
  • Examples of events occurring in the terminal 100 may include receiving messages, receiving call signals, missed calls, alarms, schedule notifications, receiving emails, and receiving information through applications.
  • the interface unit 160 serves as a passage with various types of external devices connected to the terminal 100.
  • the interface unit 160 connects a device equipped with a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, and an identification module. It may include at least one of a port, an audio input/output (I/O) port, a video input/output (I/O) port, and an earphone port.
  • I/O audio input/output
  • I/O video input/output
  • earphone port an earphone port
  • the identification module is a chip that stores various information for authenticating the usage rights of the terminal 100, a user identification module (UIM), a subscriber identity module (SIM), and a universal user authentication module (universal subscriber identity module; USIM).
  • the device provided with the identification module (hereinafter referred to as an'identification device') may be manufactured in a smart card format. Accordingly, the identification device may be connected to the terminal 100 through the interface unit 160.
  • the memory 170 stores data supporting various functions of the terminal 100.
  • the memory 170 is a plurality of application programs (application programs or applications) running in the terminal 100, data for the operation of the terminal 100, instructions, data for the operation of the running processor 130 Fields (eg, at least one algorithm information for machine learning, etc.).
  • the processor 180 controls the overall operation of the terminal 100 in addition to the operations related to the application program.
  • the processor 180 may provide or process appropriate information or functions to the user by processing signals, data, information, etc. input or output through the above-described components or by driving an application program stored in the memory 170.
  • the processor 180 may control at least some of the components discussed with reference to FIG. 1 in order to drive an application program stored in the memory 170. Furthermore, the processor 180 may operate by combining at least two or more of the components included in the terminal 100 for driving the application program.
  • the power supply unit 190 receives external power and internal power to supply power to each component included in the terminal 100.
  • the power supply unit 190 includes a battery, and the battery may be a built-in battery or a replaceable battery.
  • the processor 180 controls the operation related to the application program and generally the overall operation of the terminal 100. For example, when the state of the mobile terminal satisfies a set condition, the processor 180 may execute or release a lock state that restricts input of a user's control command to applications.
  • FIG. 3 is a block diagram illustrating the configuration of a laundry treatment apparatus according to an embodiment of the present invention.
  • the laundry treatment apparatus 300 may include the terminal 100 and the laundry unit 310 shown in FIG. 2.
  • the terminal 100 may be configured to be modularized as an internal component of the laundry treatment apparatus 300.
  • the laundry treatment apparatus 300 may include internal components of the terminal 100 illustrated in FIG. 2 and the laundry unit 310 as parallel components.
  • the laundry unit 310 includes at least one of a laundry module 311 performing a function related to washing, a drying module 312 performing a function related to drying, and a clothing management module 313 performing a function related to other clothes management. It may include.
  • the washing module 311 may perform functions related to washing, such as immersion, washing, rinsing, and dehydration.
  • the drying module 312 may perform a function of drying laundry using various methods, and typically, the laundry may be dried using wind (hot air or cold air).
  • the clothing management module 313 may perform functions related to various clothing management such as clothing mounting, dry cleaning, dust removal, sterilization, wrinkle removal, and ironing.
  • the control processor 314 provided in the processor 180 or the washing unit 310 controls various components included in the washing module 311, the drying module 312, or the clothing management module 313 of the washing unit 310 to control various components. It provides laundry function.
  • the input unit 120 and the sensor unit 140 may collect data related to user interaction related to the use and control of the laundry unit 310.
  • the input unit 120 and the sensor unit 140 may collect course selection information and control information through voice or interaction.
  • the output unit 150 may output information related to the use and control of the laundry unit 310.
  • the output unit 150 may output course information, usage records, and control information corresponding to laundry, drying, and clothing management.
  • the memory 170 may store information related to use and control of the laundry unit 310.
  • the memory 170 may store course information, usage records, and control information corresponding to laundry, drying, and clothing management.
  • the washing module 311 supplies the tub 311a in which washing water is stored, the drum 311b installed to be rotatable in the tub, and the driving unit 311c for rotating the drum, and the washing water. It may include a water supply unit 311d, a pump 311e for circulating or discharging the washing water, and a drainage unit 311f for discharging the discharged washing water.
  • a drum 311b in which laundry is accommodated may be rotatably provided in the tub 311a.
  • the drum 311b accommodates laundry, and the entrance to which the laundry is introduced is disposed to be located on the front or upper surface, and is rotated about a horizontal or vertical center of rotation.
  • a plurality of through holes may be formed in the drum 311b so that water in the tub 311a may be introduced into the drum 311b.
  • horizontal or vertical herein is not a term used in a mathematically strict sense. That is, it can be said that the center of rotation is substantially horizontal or vertical because it is close to horizontal even when the center of rotation is inclined at a predetermined angle with respect to horizontal or vertical as in the embodiment.
  • the water supply unit 311d may include a water supply valve, a water supply pipe, and a water supply hose.
  • the washing water passing through the water supply valve and the water supply pipe may be mixed with the detergent in the detergent dispenser, and then supplied to the tub 311a through the water supply hose.
  • a direct water supply pipe is connected to the water supply valve, and washing water may be directly supplied into the tub 311a without mixing with the detergent through the direct water supply pipe.
  • the pump 311e functions as a drain pump 311e for discharging wash water to the outside and a circulation pump 311e for circulating the wash water, but unlike this, the drain pump 311e and the circulation pump 311e are separate. Can be installed.
  • the pump 311e is connected to a drain pipe provided in the drain portion 311f, and discharges washing water to the outside through the drain pipe.
  • the pump 311e is connected to the circulation water supply pipe, and the washing water stored in the tub 311a may be sprayed into the drum 311b through the circulation water supply pipe to circulate the washing water.
  • the inner surface of the drum 311b may include one or more protrusions protruding toward the inside of the drum 311b.
  • the protrusion may be a lifter disposed on the inner surface of the drum 311b or an integrally formed embossing.
  • a lifter is provided on the inner surface of the drum 311b or embossing is formed, it is possible to repeat that the laundry is lifted and dropped by the lifter when the drum 311b is rotated.
  • the driving unit 311c rotates the drum 311b, and a driving shaft rotated by the driving unit 311c may be coupled to the drum 311b through the rear portion of the tub 311a.
  • the driving unit 311c may include a motor capable of speed control.
  • the motor may be an inverter direct drive motor (Inverter Direct Drive Motor).
  • the control processor 314 receives the output value (for example, output current) of the motor of the driving unit 311c as an input, and based on this, the rotational speed (or rotational speed) of the motor of the driving unit 311c is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 311c according to the driving pattern.
  • the output value for example, output current
  • the rotational speed (or rotational speed) of the motor of the driving unit 311c is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 311c according to the driving pattern.
  • the drying module 312 includes a drum 312a into which laundry is introduced, a driving unit 312b for rotating the drum, a heating unit 312c for heating air, a blower fan 312d for circulating internal air, and internal air It may include an exhaust portion (312e) for discharging.
  • the drum 312a is a space in which a dried object is dried, and is rotatably installed inside the main body.
  • one or more lifters for raising and falling the dried material may be provided inside the drum 312a.
  • the drum 312a is connected to an intake port (not shown), and air may be introduced into the inside by a blower fan 312d.
  • the driving unit 312b rotates the drum 312a, and a driving shaft rotated by the driving unit 312b may be combined with the drum 312a.
  • the driving unit 312b may include a motor capable of speed control.
  • the motor may be an inverter direct drive motor (Inverter Direct Drive Motor).
  • the control processor 314 receives the output value (for example, the output current) of the motor of the driving unit 312b as an input, and based on this, the rotational speed (or rotational speed) of the motor of the driving unit 312b is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 312b according to the driving pattern.
  • the output value for example, the output current
  • the rotational speed (or rotational speed) of the motor of the driving unit 312b is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 312b according to the driving pattern.
  • the heating unit 312c may include a heating unit that heats air inside the drum 312a or air introduced from the outside.
  • the heating unit heats air using various energy sources such as a gas type or an electric type, and a coil heater may be used for the electric type.
  • the heating unit 312c may include a plurality of heating units, and each heating unit may not be the same as each other and may use various energy sources, and each performance may be different.
  • the blowing fan 312d circulates air heated in the heating unit 312c or air inside the drum 312a.
  • the exhaust portion 312e serves to guide the air inside the drum 312a to be discharged to the outside, and may include an exhaust duct and an air filter.
  • the clothing management module 313 includes a clothing container 313a which is a space for mounting clothing, a driving unit 313b for moving a cradle provided in the clothing container 313a, and a blower fan 313c for circulating internal air, An air filter 313d, a sterilization unit 313e, and a wrinkle management unit 313f may be included.
  • the clothing container 313a is a space containing clothes (or laundry) to be managed or processed, and may include a holder capable of fixing clothes.
  • the clothing container may include a hanger and a hook through which the hanger can be mounted, or a three-dimensional shape such as a torso and a mannequin.
  • the clothing container 313a is connected to an intake port (not shown), and air may be introduced by the blowing fan 313c.
  • the driving unit 313b may drive the cradle to induce a predetermined movement with respect to the clothes mounted on the cradle.
  • the driving unit 313b may operate to vibrate the cradle and the clothes mounted on the cradle according to a certain vibration pattern. As the mounted clothing is vibrated, dust or foreign substances attached to or adhered to the clothing can be removed.
  • the driving unit 313b may include a motor capable of speed control.
  • the motor may be an inverter direct drive motor (Inverter Direct Drive Motor).
  • the control processor 314 receives the output value (for example, output current) of the motor of the driving unit 313b as an input, and based on this, the rotational speed (or rotational speed) of the motor of the driving unit 313b is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 313b according to the driving pattern.
  • the output value for example, output current
  • the rotational speed (or rotational speed) of the motor of the driving unit 313b is a predetermined target rotation It can be controlled to follow the number (or target rotational speed). Also, the control processor 314 may control driving of the motor of the driving unit 313b according to the driving pattern.
  • the blowing fan 313c circulates air by supplying air introduced from the outside of the clothing container 313a or air inside the clothing container 313a into the clothing container.
  • the blowing fan 313c may be installed such that air supplied to the clothes mounted on the clothing container 313a collides, or the air supply direction may be controlled.
  • the blower fan 313c may spray air on the mounted clothing to induce dust attached or adhered to the clothing to fall off the clothing, or to remove moisture in the clothing.
  • the air filter 313d filters dust or the like when the inside air of the clothing container 313a is circulated or when the inside air is discharged to the outside.
  • the sterilization unit 313e may include various sterilization devices for sterilizing the mounted clothes.
  • the sterilizing device may include a sterilizing device using ozone and a sterilizing device using ultraviolet light.
  • the wrinkle management unit 313f reduces or removes wrinkles of the mounted garments, and may include a steam supply, an iron and an ironing board.
  • the steam feeder heats the supplied water to make it steam, and naturally supplies the steam to the clothes container 313a or directly sprays it on the mounted clothes.
  • the iron and ironing board are provided inside the clothing container 313a.
  • the operation may be controlled according to the ironing operation information determined in consideration of the shape, location, and material of the clothes to be ironed.
  • the ironing operation information may include an iron/ironing board location/motion line, ironing temperature/time, and the like.
  • the control processor 314 may control the movement of the iron and the ironing board by controlling the driving unit separately provided in the driving unit 313b or the wrinkle management unit 313f, and may control the iron and the ironing board according to the ironing operation information. .
  • FIG. 4 is a flow chart for explaining a method for determining a laundry course in a laundry treatment apparatus according to an embodiment of the present invention.
  • the processor 180 of the laundry processing apparatus 300 acquires laundry information (S401).
  • the processor 180 may obtain laundry information of laundry based on an image captured through the camera 121.
  • the laundry information may include one or more of the material mixing ratio of laundry, precautions for handling laundry, and color of laundry.
  • the image captured through the camera 121 may include a tag image attached to laundry.
  • the processor 180 may obtain laundry information by recognizing a text included in a tag image or an image for handling laundry.
  • the processor 180 when an NFC tag or an RFID tag is attached to the laundry, the processor 180 recognizes the tag through an NFC reader or an RFID reader provided by itself, and obtains laundry information. It might be.
  • the processor 180 may obtain the laundry information by recognizing the QR code.
  • the processor 180 may acquire laundry information through a sensor capable of recognizing the material of the laundry.
  • FIG. 5 is a diagram for explaining a process of acquiring laundry information using a tag image photographed through a camera according to an embodiment of the present invention.
  • a tag 510 is attached to the laundry 500.
  • the tag 510 includes laundry handling images 513 showing material mixing ratio (or fiber composition, 511) of the laundry 500 and handling precautions.
  • the camera 121 of the laundry processing device 300 may photograph a tag image including the tag 510.
  • the processor 180 may recognize the captured tag image and obtain laundry information including material mixing ratio and laundry handling images.
  • the processor 180 may recognize the text included in the tag image using an optical character recognition (OCR) technique.
  • OCR optical character recognition
  • the processor 180 may recognize a laundry handling image included in the tag image using a known image recognition algorithm.
  • the processor 180 recognizes the unique model number of the laundry included in the tag image, and may additionally acquire color information of the laundry.
  • FIG. 4 will be described.
  • the processor 180 of the laundry processing apparatus 300 receives the obtained laundry information Group stored With baseline information By matching , Generate laundry encoding data (S403).
  • the baseline information may include one or more of a recommended washing course for each material, a quality damage degree when performing the recommended washing course for each material, and material laundry handling information.
  • the memory 170 may store baseline information. Baseline information may be received periodically from the learning device 1000 or a cloud server.
  • 6 and 7 are diagrams for describing baseline information according to an embodiment of the present invention.
  • Baseline information may include laundry handling information 600 for each material and a table 700 including recommended washing courses for each material and quality damage.
  • material laundry handling information 600 showing laundry handling image information for each material is illustrated.
  • the material laundry handling information 600 may include laundry handling images for each of a plurality of materials and text corresponding to each of the laundry handling images.
  • the laundry handling images for each material may be used to recognize the laundry handling images 513 included in the tag 510.
  • the baseline information may further include laundry handling information for materials other than a plurality of materials illustrated in FIG. 6.
  • a table 700 including a recommended washing course and a degree of damage corresponding to each of a plurality of materials is illustrated.
  • the washing time is 15 minutes
  • the number of rinsing times is 3
  • the strength of dehydration is steel
  • the strength of water flow is steel.
  • the degree of damage of the surface may be set to 1.
  • the number of dehydration may be used, and instead of the intensity of the dehydration, a numerical value expressing the intensity of the decay may be used.
  • the degree of damage has a value from 0 to 10, and may indicate the degree of quality damage of the material when performing the recommended washing course.
  • the value may be set high.
  • the processor 180 may generate laundry encoding data by comparing the obtained laundry information with the baseline information shown in FIGS. 6 and 7.
  • FIG. 8 is a flowchart illustrating a process of generating laundry encoding data in a form that can be input to a learning model using laundry information and baseline information recognized through a tag according to an embodiment of the present invention.
  • the processor 180 sets a vector having as many elements as the types of materials based on the baseline information (S801).
  • the vector may have 12 elements.
  • the 12 elements can be pre-ordered. Here, twelve are only examples.
  • Processor 180 is the material of the laundry recognized through the tag Mixing ratio Using the angle of the vector To the element The value is assigned (S803).
  • the processor 180 may assign a ratio value of a material to an element corresponding to each material according to the material mixing ratio.
  • the processor 180 compares the laundry handling images recognized through the tag with the baseline information, and converts the washing methods into a data set (S805).
  • the processor 180 compares laundry handling images with material laundry handling information 600 included in the baseline information, and converts laundry methods into binary data or real data.
  • the processor 180 may convert the laundry handling image to 1 when water washing is possible, and to the laundry handling image to 0 when water washing is not possible.
  • the processor 180 may convert the corresponding washing handling image to 40.
  • the processor 180 To the elements The laundry encoding data is generated by combining a data set and a vector to which a value is assigned (S807).
  • Steps S801 to S807 will be described in detail with reference to FIG. 9.
  • FIG. 9 is a diagram illustrating a specific example of generating laundry encoding data through tag recognition according to an embodiment of the present invention.
  • the tag 910 may include a material mixing ratio 911 of laundry and laundry handling images 913.
  • the processor 180 may recognize the tag 910 to obtain the material mixing ratio 911.
  • the processor 180 may generate a vector 930 to which the material mixing ratio 911 is applied to each of the 12 elements.
  • the processor 180 may assign a value to the element only for the top two materials having a large proportion among the three or more materials.
  • the processor 180 may convert each of the laundry handling images 913 included in the tag 910 into binary data or real data.
  • the processor 180 may convert the water washable image to one.
  • the processor 180 may convert the image to 40.
  • the processor 180 may convert the corresponding value to 2 indicating that only hot water washing is possible.
  • the processor 180 may convert the corresponding value to 1 indicating that cold/hot water washing is possible when the corresponding value is greater than or equal to the second specific value less than the predetermined first specific value.
  • the processor 180 may convert the corresponding value to 0 indicating that only cold water washing is possible.
  • the processor 180 may generate laundry encoding data 970 in which the vector 930 and the data set 950 are combined.
  • the laundry encoding data 970 may be used as input data of the laundry course learning model.
  • FIG. 4 will be described.
  • the processor 180 of the laundry processing apparatus 300 applies a laundry course learning model to the generated laundry encoding data to determine an optimal laundry course (S405).
  • the laundry course learning model may be a model for providing an optimal laundry course for laundry made of a composite material.
  • the laundry course learning model may be a pre-trained model based on the baseline information.
  • the laundry course learning model learns, for each of the plurality of laundry groups, using the baseline information, learning the optimal weight values of the laundry control variables, and using the learned optimal weight values, learning the values of the laundry control variables. It can be a model.
  • the laundry course learning model may be received from an external server, such as the learning device 1000 described in FIG. 1.
  • FIG. 10 is a flowchart illustrating a process of generating a laundry course learning model according to an embodiment of the present invention.
  • the processor 180 determines a main material to determine a washing course based on a material mixing ratio of each laundry stored in the baseline information (S1001).
  • the processor 180 may determine, as a main material, a product having the largest product of a ratio of materials and a degree of damage for one laundry composed of a plurality of materials.
  • the baseline information may be reference information for generating a laundry course learning model.
  • FIG. 11 is a view for explaining a process of determining a main material for a laundry composed of a plurality of materials according to an embodiment of the present invention.
  • the baseline information may include vectors including information on a material mixing ratio corresponding to each of the plurality of laundry items.
  • a first vector 930 including information about a material mixing ratio for a first laundry 1101 is illustrated.
  • the first laundry 1101 it is composed of brushed, wool, polyester, and hair, and each ratio is 0.1/0.5/0.3/0.3.
  • the processor 180 may extract the degree of damage to each material using the table 700 stored in the baseline information.
  • the processor 180 may calculate a product of the mixing ratio of each material and the damage degree of the corresponding material. Referring to FIG. 10, a first table 1105 in which the product of the mixing ratio of each material and the degree of damage of the material is calculated for the first laundry 1101 is illustrated.
  • the product of mixing ratio and degree of damage is 0.5 (0.1X5).
  • the product of mixing ratio and degree of damage is 2.5 (0.5X5).
  • the product of the mixing ratio and the degree of damage is 0.1 (0.1X1).
  • the product of mixing ratio and degree of damage is 2.7 (0.3X9).
  • the processor 180 may determine the hair corresponding to the material having the largest product of the mixing ratio and the degree of damage as the main material of the first laundry 1101.
  • the processor 180 may generate the second table 1113 using the second vector 1113 including information about the material mixing ratio of the second laundry 1111 and the degree of damage to each material.
  • the processor 180 may determine the leather corresponding to the material having the largest product of the mixing ratio and the degree of damage as the main material of the second laundry 1111.
  • the processor 180 may generate a third table 1133 using the third vector 1123 including information on the material mixing ratio of the third laundry 1121 and the degree of damage to each material.
  • the processor 180 may determine the wool corresponding to the material having the largest product of the mixing ratio and the degree of damage as the main material of the third laundry 1111.
  • the processor 180 may determine a main material for each laundry and label the determined main material.
  • FIG. 10 will be described.
  • the processor 180 classifies the determined main materials into a plurality of laundry groups (S1003).
  • the processor 180 may classify the determined main materials into three washing groups according to whether water is washable, whether the laundry treatment apparatus 300 is usable, or whether it is boilable.
  • the reason for classifying the determined main materials into a plurality of laundry groups is that whether water washing is possible, whether the laundry treatment apparatus 300 is usable, or whether it can be boiled can be the most important factor affecting the degree of damage to the laundry. to be.
  • FIG. 12 is a view showing a result of classifying the main materials into three washing groups according to an embodiment of the present invention.
  • the first laundry group 1210 is water-washable, and the laundry treatment device 300 can be used, and may be a group including materials that can be boiled.
  • the second washing group 1230 may be water-washable, and may be a group including materials that can be used in the laundry treatment apparatus 300 but are not boilable.
  • the third washing group 1250 may be a group including materials in which water washing is not possible.
  • FIG. 10 will be described.
  • the processor 180 determines laundry characteristic values of each of the plurality of classified laundry groups (S1005).
  • the processor 180 may extract laundry characteristic values of each laundry group based on the table 700 included in the baseline information.
  • the processor 180 may extract the washing time, the number of rinsing times, the dehydration intensity, the proper water temperature, and the water intensity of each of the materials included in the washing group from the table 700.
  • the processor 180 has the highest and minimum values among the extracted washing times, the highest and minimum values among the rinsing times, the highest and lowest degrees of dehydration strength, the highest and minimum values of proper water temperature, and the highest degree of water phase strength. And a minimum degree can be extracted.
  • the processor 180 may determine the extraction result as characteristic values of the corresponding washing group.
  • FIG. 13 is a view showing a result of extracting characteristic values of a washing group according to an embodiment of the present invention.
  • a first characteristic value table 1310 including characteristic values of a first laundry group 1210 and a second characteristic value table 1330 including characteristic values of a second laundry group 1230 are shown in FIG. It is shown.
  • the first characteristic value table 1310 has the longest washing time of 12 minutes, the minimum washing time of 9 minutes, the maximum number of rinsing times 2 times, the minimum number of rinsing times 2 times, the maximum dehydration strength and the minimum dehydration strength are weak, and the highest optimal water temperature It shows that this temperature is cold/low, the lowest proper water temperature is cold, the strength of the highest water phase is moderate, and the strength of the minimum water is weak.
  • the second characteristic value table 1330 has the longest washing time of 17 minutes, the minimum washing time of 15 minutes, the maximum number of rinsing times 3 times, the minimum number of rinsing times 3 times, the maximum dehydration strength and the minimum dehydration strength are strong, and the highest proper water temperature It shows that the lowest optimal water temperature is strong, the highest water phase strength is strong, and the minimum water intensity is strong.
  • FIG. 10 will be described.
  • the processor 180 Deep learning Using the algorithm, for each washing group To the degree of damage Optimal weight values of the laundry control parameters for each are determined (S1007).
  • the processor 180 may determine, for each washing group, optimal weight values at which the value of the loss function is minimum using a loss function.
  • Minimizing the value of the loss function may mean minimizing the difference between the actual damage of the laundry and the estimated damage.
  • Equation 1 The loss function can be expressed as Equation 1 below.
  • y is an actual degree of damage vector representing the actual degree of damage
  • x is a vector of laundry control variables including laundry control variables for determining a washing course
  • W is a weight vector representing the degree to which each laundry control variable affects the degree of damage.
  • b may represent a vector of external factor damage due to factors other than the washing control variable.
  • the external factor damage level set may be a set previously stored in the baseline information.
  • W may be a vector containing weights of five laundry control variables for each of the N laundry groups.
  • (Wx+b) represents the estimated degree of damage that best describes the actual degree of damage y
  • the loss function L(x;W,b) seeks to obtain a set of weights that minimize the difference between the actual and estimated damage. There is a purpose to do.
  • the actual degree of damage y and the estimated degree of damage (Wx+b) can be expressed as a matrix, as shown in FIG. 14.
  • FIG. 14 is a diagram representing the actual degree of damage y and the estimated degree of damage (Wx+b) in a determinant.
  • W may include a plurality of weight sets corresponding to each of the plurality of laundry groups.
  • the first weight set 1410 is a set including weight values corresponding to laundry control variables of the first laundry group 1210.
  • the second weight set 1420 is a set including weight values corresponding to laundry control variables of the second laundry group 1220.
  • step S1007 will be described.
  • the set of washing control variables includes a washing time variable (x1) indicating the washing time, a rinse number variable (x2) indicating the number of rinsing times, a dehydration number variable (or dehydration intensity) (x3) indicating the number of dehydrations or dehydration intensity, and a washing water temperature. It may include a washing water temperature variable (x4), the water intensity parameter (x5) indicating the water intensity.
  • the processor 180 inputs the washing time, the number of rinsing times, the number of dehydration times, the strength of the water, the proper water temperature, the actual degree of damage, and the degree of external damage of each material included in the baseline information as input data, a deep learning algorithm or a gradient descent method By using the (Gradient descent method), it is possible to determine (or learn) a set of weights that minimizes the value of the loss function.
  • any one of supervised learning and meta-learning can be used, but it is only an example.
  • a gradient descent method such as MLP (Multi-layer perceptron) may be used to determine optimal weight values, but this is only an example.
  • the weight values may be evolved as the user inputs the new laundry information accumulated and learned when the user uses the laundry processing device 300.
  • the processor 180 may obtain an optimal weight set including weight values corresponding to each washing group to minimize the loss function.
  • the processor 180 may obtain a first optimal weight set corresponding to the first laundry group 1210 and a second optimal weight set corresponding to the second laundry group 1230.
  • the processor 180 determines the values of the laundry control variables for the optimal weight values corresponding to each laundry group, using a control optimization technique (S1009).
  • the processor 180 may determine values of laundry control variables that minimize damage to laundry and maximize washing power, for a target function, using a Hamiltonian-based control optimization technique.
  • the Hamiltonian-based control optimization technique can be used to find the value of xi that minimizes the value of the objective function represented by the following [Equation 2].
  • the objective function can be expressed by the following [Equation 2].
  • W corresponds to the laundry group, and may indicate weight sets determined in step S1007.
  • xi may represent a washing control variable.
  • x1 is a variable indicating the washing time
  • x2 is a variable indicating the number of rinsing
  • x3 is a variable indicating the number of dehydration or dehydration intensity
  • x4 is a variable indicating the washing water temperature
  • x5 can be a variable indicating the water intensity.
  • is the Lagrangian coefficient constant.
  • the value of the laundry course control variables Range may be limited.
  • the determined values of the laundry control parameters may be used to perform an optimal laundry course of laundry input to the laundry treatment device 300.
  • Equation 3 Another objective function for imparting a constraint that limits the value to approximate their average value when a larger situation occurs, instead of Equation 2, which includes the maximum constraint function and the minimum constraint function Can be used.
  • 15 is a diagram illustrating a process of obtaining values of laundry control variables for an optimal laundry course by applying a laundry course learning model to laundry encoding data according to an embodiment of the present invention.
  • the processor 180 determines one or more laundry groups based on the laundry encoding data generated in step S403 (S1501 ).
  • the processor 180 may determine a laundry group to which the laundry belongs, by using the material mixing ratio included in the laundry encoding data 900 illustrated in FIG. 9.
  • the processor 180 may obtain laundry encoding data of each of the plurality of laundry items.
  • the processor 180 may determine a laundry group to which each of the plurality of laundry belongs, based on the laundry encoding data corresponding to each of the plurality of laundry.
  • the processor 180 acquires values of laundry control variables corresponding to the determined one or more laundry groups (S1403).
  • the processor 180 may determine an optimal weight set corresponding to each laundry group through step S1007.
  • the processor 180 may apply the determined characteristic values of the laundry group and the determined optimal weight values to the objective function represented by [Equation 2] to obtain values of the laundry control variables whose value of the objective function is minimum. have.
  • the processor 180 when a plurality of laundry items are classified into a plurality of laundry groups, the processor 180 applies property value sets and weight sets corresponding to the plurality of laundry groups to the objective function, so that the value of the objective function It is possible to obtain the values of the minimum washing control parameters.
  • the processor 180 transmits a washing control command including values of the obtained washing control parameters to the washing module 311 (S1405).
  • the laundry module 311 may perform laundry in which values of laundry control variables are applied according to the laundry control command received from the processor 180.
  • FIG. 4 will be described.
  • the processor 180 of the laundry processing apparatus 300 performs washing with a washing course according to the values of the determined washing control parameters (S407).
  • 16 is a diagram for explaining a scenario in which laundry is automatically recommended when an laundry is input to the laundry treatment apparatus 300 according to an embodiment of the present invention.
  • a plurality of laundry 1600 may be input to the laundry treatment apparatus 300.
  • the laundry treatment apparatus 300 may acquire laundry information by recognizing the tag of the laundry through a camera (not shown) provided in the laundry treatment apparatus 300.
  • the laundry processing apparatus 300 may convert laundry information into laundry encoding data and apply a laundry course learning model to the converted laundry encoding data to provide an optimal laundry course.
  • the laundry processing apparatus 300 may obtain laundry control variables corresponding to an optimal laundry course by using laundry encoding data as input data and a pre-trained weight set.
  • the laundry treatment apparatus 300 may control the washing module 311 to wash a plurality of laundry 1600 as a washing course that meets the values of the obtained laundry control parameters.
  • the laundry treatment apparatus 300 has a washing time of 13 minutes and a rinsing frequency of 3 times.
  • a washing course in which the number of times of dehydration is set to 4 the washing water temperature is set to cold water, and the water intensity is set to medium can be obtained.
  • the laundry treatment apparatus 300 has a washing time of 9 minutes and a rinsing frequency of 2 times. It is possible to design a washing course in which the number of times of dehydration is three times, the washing water temperature is hot water, and the water intensity is strong.
  • the laundry treatment apparatus 300 has a washing time of 11 minutes, rinsing frequency 3 times, dehydration frequency 3 times, washing water temperature cold water, and water flow It is possible to design a laundry course with an emphasis on strength.
  • the user can obtain a washing result in which damages of a plurality of laundry are minimized and washing power is maximized by only recognizing a tag for a plurality of laundry having different materials.
  • 17 is a diagram illustrating a user scenario for providing an optimal laundry course according to an embodiment of the present invention.
  • the laundry treatment apparatus 300 may include an artificial laundry button 399.
  • the artificial laundry button 399 may be a button that automatically recommends an optimal laundry course when a plurality of laundry items are input to the laundry processing device 300.
  • the laundry processing device 300 may display a material analysis screen 1710 that analyzes the materials of the laundry.
  • the laundry processing apparatus 300 may convert laundry information into encoding data, and determine the material of the laundry using the converted encoding data.
  • the laundry processing apparatus 300 may transmit information on the material analysis screen 1710 to the mobile terminal 100.
  • the material analysis screen 1710 may be displayed on the user's mobile terminal 100.
  • the laundry treatment apparatus 300 may display a notification message 1720 indicating whether materials of different washing groups are detected and whether to perform washing separately or together. .
  • the notification message 1720 may also be output through the sound output unit 152.
  • the notification message 1720 may be transmitted to the mobile terminal 100 and displayed on the mobile terminal 100.
  • the laundry processing apparatus 300 may determine values of laundry control variables based on laundry encoding data when receiving an input for performing laundry together with laundry of different laundry groups.
  • the laundry treatment apparatus 300 may display a progress message 1730 indicating that the laundry course is in progress according to the determined values of the laundry control parameters.
  • the progress message 1730 may be output through the sound output unit 152 or transmitted to the mobile terminal 100 and displayed on the mobile terminal 100.
  • the laundry treatment apparatus 300 may output a warning message 1750 informing that laundry is not possible when laundry is analyzed as a result of analysis of the material of the laundry, or when laundry of a material that requires dry cleaning is detected. have.
  • the warning message 1750 may be output through the sound output unit 152 or transmitted to the mobile terminal 100 and displayed on the mobile terminal 100.
  • the user can be guided through the correct method of washing the laundry through the warning message 1750.
  • the above-described present invention can be embodied as computer readable codes on a medium on which a program is recorded.
  • the computer-readable medium includes all types of recording devices in which data that can be read by a computer system are stored. Examples of computer-readable media include a hard disk drive (HDD), solid state disk (SSD), silicon disk drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device. There is this.
  • the computer may include a processor 180 of the terminal.

Abstract

본 발명의 일 실시 예에 따른 세탁물 처리 장치는 세탁과 관련된 동작을 수행하는 세탁 모듈과 세탁물에 부착된 태그 영상을 촬영하는 카메라 및 촬영된 태그 영상을 이용하여, 복수의 세탁물들에 대한 세탁물 정보를 획득하고, 획득된 세탁물 정보를 인코딩 데이터로 변환하고, 딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 프로세서를 포함한다.

Description

세탁물 처리 장치 및 그의 세탁 코스 결정 방법
본 발명은 세탁물 처리 장치 및 그의 세탁 코스 결정 방법에 관한 것으로, 세탁물에 따라 최적의 세탁 코스를 제공할 수 있는 세탁물 처리 기기 및 그의 세탁 코스 결정 방법에 관한 것이다.
현대에서 세탁물 처리 장치 또는 세탁 보조 장치는 모든 가정에서 필수적인 가전 제품이다.
세탁을 필요로 하는 의류, 침구 또는 인형 등은 다양한 소재로 구성되어 있으며, 각 소재 별로 세탁시 요구되는 사항이 상이하다. 따라서, 현재의 세탁 장치 또는 세탁 보조 장치들은 다양한 소재에 대하여 적합한 세탁 기능을 제공하기 위하여 여러 세탁 코스를 제공하고 있다.
한편, 기존의 세탁물 처리 장치 또는 세탁 보조 장치들은 미리 정해진 세탁 코스를 사용자가 선택하면 해당 세탁 코스를 제공하거나, 사용자가 매 세탁시마다 각 세탁 단계에 대한 파라미터를 설정하면 해당 파라미터를 반영한 세탁 코스를 제공하는 기능만을 제공하고 있다.
그러나, 종래의 세탁물 처리 장치는 한 종류의 세탁물, 또는 여러 종류의 세탁물들이 투입된 경우에도, 사용자가 각 세탁 단계에 대한 설정된 파라미터만을 반영한 세탁 코스를 제공하는데 그치고 있다.
이 경우, 특정 세탁물에 손상이 가해지거나, 특정 세탁물의 세척이 제대로 이루어지지 않는 문제가 있다.
본 발명은 투입된 세탁물들이 특성이 상이한 복합적인 섬유소재들로 구성되어 있을 때, 전체 세탁물들의 손상도를 최소화하는 동시에 알맞은 세척력을 충족시키는 최적의 세탁 코스를 제공하는 것에 그 목적이 있다.
또한, 본 발명은 세탁물 처리 기기에 투입된 세탁물들을 자동으로 인식하여, 각각에 대한 소재 혼용율을 분석하고, 세탁 코스 학습 모델을 통해, 맞춤형 세탁 코스를 제공하는 것에 그 목적이 있다.
본 발명의 일 실시 예에 따른 세탁물 처리 장치는 세탁과 관련된 동작을 수행하는 세탁 모듈과 세탁물에 부착된 태그 영상을 촬영하는 카메라 및 촬영된 태그 영상을 이용하여, 복수의 세탁물들에 대한 세탁물 정보를 획득하고, 획득된 세탁물 정보를 인코딩 데이터로 변환하고, 딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 프로세서를 포함한다.
본 발명의 실시 예에 따른 세탁 코스 결정 방법은 복수의 세탁물들에 대한 세탁물 정보를 획득하는 단계와 획득된 세탁물 정보를 인코딩 데이터로 변환하는 단계 및 딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 단계를 포함한다.
본 발명의 실시 예에 따르면, 복수의 세탁물들이 투입된 경우, 최적화된 세탁 코스가 제공됨에 따라, 사용자가 세탁물들의 손상도가 최소화되고, 세척력이 향상될 수 있다.
또한, 세탁을 하기 전 사용자가 울, 면, 캐시미어, 합성섬유 등 옷감의 특성을 따로 파악해 세탁-헹굼-탈수 설정을 해줘야 하는 기존의 수고로움이 감소될 수 있다.
또한, 세탁 전/후 의류 케어에 관심이 높아지고 있는 소비자들의 성향과, 과거와 달리 패션업계에서 신소재 개발은 물론 각종 섬유를 용도와 취향에 따라 개질함에 따라 두 가지 이상의 섬유소재들로 이루어진 의류가 개발되고 있는 추세에 대한 탄력적인 대응효과를 기대할 수 있다.
도 1은 인공 신경망의 학습 장치를 설명하기 위한 블록도이다.
도 2는 본 발명의 일 실시 예에 따른 단말기의 구성을 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 세탁물 처리 장치의 구성을 설명하기 위한 블록도이다.
도 4는 본 발명의 일 실시 예에 따른 세탁물 처리 장치의 세탁 코스 결정 방법을 설명하기 위한 흐름도이다.
도 5는 본 발명의 일 실시 예에 따라, 카메라를 통해 촬영된 태그 영상을 이용하여, 세탁물 정보를 획득하는 과정을 설명하는 도면이다.
도 6 및 도 7은 본 발명의 일 실시 예에 따른 베이스 라인 정보를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시 예에 따라, 태그를 통해 인식된 세탁물 정보와 베이스 라인 정보를 이용하여, 학습 모델에 입력 가능한 형태인 세탁 인코딩 데이터를 생성하는 과정을 설명하는 흐름도이다.
도 9는 본 발명의 실시 예에 따라 태그 인식을 통해, 세탁 인코딩 데이터를 생성하는 구체적인 예를 설명하는 도면이다.
도 10은 본 발명의 일 실시 예에 따라 세탁 코스 학습 모델을 생성하는 과정을 설명하는 흐름도이다.
도 11은 본 발명의 일 실시 예에 따라, 복수의 소재들로 구성된 세탁물에 대해, 메인 소재를 결정하는 과정을 설명하는 도면이다.
도 12는 본 발명의 일 실시 예에 따라 메인 소재들이 3개의 세탁 그룹들로 분류된 결과를 보여주는 도면이다.
도 13은 본 발명의 실시 예에 따라, 세탁 그룹의 특성 값들을 추출한 결과를 보여주는 도면이다.
도 14는 실제 손상도 y와 추정 손상도 (Wx+b)를 행렬식으로 표현한 도면이다.
도 15는 본 발명의 실시 예에 따라 세탁물 인코딩 데이터에 세탁 코스 학습 모델을 적용하여, 최적 세탁 코스를 위한 세탁 제어 변수들의 값들을 획득하는 과정을 설명하는 도면이다.
도 16은 본 발명의 일 실시 예에 따라, 세탁물들을 세탁물 처리 장치에 투입 시, 자동으로, 최적의 세탁 코스를 추천해 주는 시나리오를 설명하는 도면이다.
도 17은 본 발명의 일 실시 예에 따른 최적 세탁 코스 제공을 위한 사용자 시나리오를 설명하는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
인공 지능(artificial intelligence, AI)은 인간의 지능으로 할 수 있는 사고, 학습, 자기계발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터 공학 및 정보기술의 한 분야로, 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 의미한다.
또한, 인공지능은 그 자체로 존재하는 것이 아니라, 컴퓨터 과학의 다른 분야와 직간접으로 많은 관련을 맺고 있다. 특히 현대에는 정보기술의 여러 분야에서 인공지능적 요소를 도입하여, 그 분야의 문제 풀이에 활용하려는 시도가 매우 활발하게 이루어지고 있다.
머신 러닝(machine learning)은 인공지능의 한 분야로, 컴퓨터에 명시적인 프로그램 없이 배울 수 있는 능력을 부여하는 연구 분야이다.
구체적으로 머신 러닝은, 경험적 데이터를 기반으로 학습을 하고 예측을 수행하고 스스로의 성능을 향상시키는 시스템과 이를 위한 알고리즘을 연구하고 구축하는 기술이라 할 수 있다. 머신 러닝의 알고리즘들은 엄격하게 정해진 정적인 프로그램 명령들을 수행하는 것이라기보다, 입력 데이터를 기반으로 예측이나 결정을 이끌어내기 위해 특정한 모델을 구축하는 방식을 취한다.
용어 '머신 러닝'은 용어 '기계 학습'과 혼용되어 사용될 수 있다.
기계 학습에서 데이터를 어떻게 분류할 것인가를 놓고, 많은 기계 학습 알고리즘이 개발되었다. 의사결정나무(Decision Tree)나 베이지안 망(Bayesian network), 서포트벡터머신(support vector machine, SVM), 그리고 인공신경망(Artificial neural network) 등이 대표적이다.
의사결정나무는 의사결정규칙(Decision Rule)을 나무구조로 도표화하여 분류와 예측을 수행하는 분석방법이다.
베이지안 망은 다수의 변수들 사이의 확률적 관계(조건부독립성:conditional independence)를 그래프 구조로 표현하는 모델이다. 베이지안 망은 비지도 학습(unsupervised learning)을 통한 데이터마이닝(data mining)에 적합하다.
서포트벡터머신은 패턴인식과 자료분석을 위한 지도 학습(supervised learning)의 모델이며, 주로 분류와 회귀분석을 위해 사용한다.
인공신경망(Artificial Neural Network, ANN)은 생물학적 뉴런의 동작원리와 뉴런간의 연결 관계를 모델링한 것으로 노드(node) 또는 처리 요소(processing element)라고 하는 다수의 뉴런들이 레이어(Layer) 구조의 형태로 연결된 정보처리 시스템이다.
인공 신경망(Artificial Neural Network, ANN)은 기계 학습에서 사용되는 모델로써, 기계학습과 인지과학에서 생물학의 신경망(동물의 중추신경계중 특히 뇌)에서 영감을 얻은 통계학적 학습 알고리즘이다.
구체적으로 인공신경망(Artificial Neural Network, ANN)은 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다.
용어 인공신경망(Artificial Neural Network, ANN)은 용어 뉴럴 네트워크(Neural Network)와 혼용되어 사용될 수 있다.
인공신경망(Artificial Neural Network, ANN)은 복수의 레이어(layer)를 포함할 수 있고, 레이어들 각각은 복수의 뉴런(neuron)을 포함할 수 있다. 또한 인공신경망(Artificial Neural Network, ANN)은 뉴런(neuron)과 뉴런(neuron)을 연결하는 시냅스(synapse)를 포함할 수 있다.
인공 신경망(Artificial Neural Network, ANN)은 일반적으로 다음의 세가지 인자, 즉 (1) 다른 레이어(layer)의 뉴런들 사이의 연결 패턴 (2) 연결의 가중치를 갱신하는 학습 과정 (3) 이전 레이어(layer)로부터 수신되는 입력에 대하여 가중 합을 취하여 출력값을 생성하는 활성화 함수에 의해 정의될 수 있다.
인공 신경망(Artificial Neural Network, ANN)은, DNN(Deep Neural Network), RNN(Recurrent Neural Network), BRDNN(Bidirectional Recurrent Deep Neural Network), MLP(Multilayer Perceptron), CNN(Convolutional Neural Network)와 같은 방식의 네트워크 모델들을 포함할 수 있으나, 이에 한정되지 않는다.
본 명세서에서 용어 '레이어'는 용어 '계층'과 혼용되어 사용될 수 있다.
인공신경망(Artificial Neural Network, ANN)은 계층(layer) 수에 따라 단층 신경망(Single Layer Neural Networks)과 다층 신경망(Multi Layer Neural Networks)으로 구분된다.
일반적인 단층 신경망(Single Layer Neural Networks)은, 입력층과 출력층으로 구성된다.
또한 일반적인 다층신경망(Multi Layer Neural Networks)은 입력층과 은닉층, 출력층으로 구성된다.
입력층(input layer)은 외부의 자료들을 받아들이는 층으로서, 입력층의 뉴런 수는 입력되는 변수의 수와 동일하며, 은닉층(hidden layer)은 입력층과 출력층 사이에 위치하며 입력층으로부터 신호를 받아 특성을 추출하여 출력층으로 전달한다. 출력층(output layer)은 은닉층으로부터 신호를 받아 외부로 출력한다. 뉴런간의 입력신호는 0에서 1 사이의 값을 갖는 각각의 연결강도와 곱해진 후 합산되며 이 합이 뉴런의 임계치보다 크면 뉴런이 활성화되어 활성화 함수를 통하여 출력값으로 구현된다.
한편 입력층(input layer)과 출력 층(output layer) 사이에 복수의 은닉층(hidden layer)을 포함하는 심층 신경망(Deep Neural Network, DNN)은, 기계 학습(machine learning) 기술의 한 종류인 딥 러닝(deep learning)을 구현하는 대표적인 인공 신경망일 수 있다.
한편 용어 '딥 러닝'은 용어 '심층 학습'과 혼용되어 사용될 수 있다.
인공 신경망(Artificial Neural Network, ANN)은 훈련 데이터(training data)를 이용하여 학습(training)될 수 있다. 여기서 학습(training)이란, 입력 데이터를 분류(classification)하거나 회귀분석(regression)하거나 군집화(clustering)하는 등의 목적을 달성하기 위하여, 학습 데이터를 이용하여 인공 신경망(Artificial Neural Network, ANN)의 파라미터(parameter)를 결정하는 과정을 의미할 수 있다. 인공 신경망(Artificial Neural Network, ANN)의 파라미터의 대표적인 예시로써, 시냅스에 부여되는 가중치(weight)나 뉴런에 적용되는 편향(bias)을 들 수 있다.
훈련 데이터에 의하여 학습된 인공 신경망은, 입력 데이터를 입력 데이터가 가지는 패턴에 따라 분류(classification)하거나 군집화 (clustering)할 수 있다.
한편 훈련 데이터를 이용하여 학습된 인공 신경망을, 본 명세서에서는 학습 모델(a trained model)이라 명칭할 수 있다.
다음은 인공 신경망(Artificial Neural Network, ANN)의 학습 방식에 대하여 설명한다.
인공 신경망(Artificial Neural Network, ANN)의 학습 방식은 크게, 지도 학습(Supervised Learning), 비 지도 학습(Unsupervised Learning), 준 지도 학습(semi-supervised learning), 강화 학습(Reinforcement learning)으로 분류될 수 있다.
지도 학습(Supervised Learning)은 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법이다.
그리고 이렇게 유추되는 함수 중, 연속 적인 값을 출력하는 것을 회귀분석(Regression)이라 하고, 입력 벡터의 클래스(class)를 예측하여 출력하는 것을 분류(Classification)라고 할 수 있다.
지도 학습에서는, 훈련 데이터(training data)에 대한 레이블(label)이 주어진 상태에서 인공 신경망(Artificial Neural Network, ANN)을 학습시킨다.
여기서 레이블(label)이란, 훈련 데이터(training data)가 인공 신경망(Artificial Neural Network, ANN)에 입력되는 경우 인공 신경망(Artificial Neural Network, ANN)이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다.
본 명세서에서는 훈련 데이터(training data)가 입력되는 경우 인공 신경망(Artificial Neural Network, ANN)이 추론해 내야 하는 정답(또는 결과값)을 레이블(label) 또는 레이블링 데이터(labeling data)이라 명칭 한다.
또한 본 명세서에서는, 인공 신경망(Artificial Neural Network, ANN)의 학습을 위하여 훈련 데이터(training data)에 레이블(label)을 다는 것을, 훈련 데이터(training data)에 레이블링 데이터(labeling data)를 레이블링 한다(labeling)라고 명칭 한다.
이 경우 훈련 데이터(training data)와 훈련 데이터에 대응하는 레이블(label)은 하나의 트레이닝 셋(training set)을 구성하고, 인공 신경망(Artificial Neural Network, ANN)에는 트레이닝 셋(training set)의 형태로 입력될 수 있다.
한편 훈련 데이터(training data)는 복수의 특징(feature)을 나타내고, 훈련 데이터에 레이블(label)이 레이블링(labeling)된다는 것은 훈련 데이터(training data)가 나타내는 특징에 레이블(label)이 달린다는 것을 의미할 수 있다. 이 경우 훈련 데이터(training data)는 입력 객체의 특징을 벡터 형태로 나타낼 수 있다.
인공 신경망(Artificial Neural Network, ANN)은 훈련 데이터와 레이블링 데이터(labeling data)를 이용하여, 훈련 데이터와 레이블링 데이터(labeling data)의 연관 관계에 대한 함수를 유추할 수 있다. 또한 인공 신경망(Artificial Neural Network, ANN)은 유추된 함수에 대한 평가를 통해 인공 신경망(Artificial Neural Network, ANN)의 파라미터를 결정(최적화) 할 수 있다.
비 지도 학습(Unsupervised Learning)은 기계 학습의 일종으로, 훈련 데이터에 대한 레이블(label)이 주어지지 않는다.
구체적으로, 비 지도 학습(Unsupervised Learning)은, 훈련 데이터 및 훈련 데이터에 대응하는 레이블(label)의 연관 관계 보다는, 훈련 데이터 자체에서 패턴을 찾아 분류하도록 인공 신경망을 학습시키는 학습 방법일 수 있다.
비 지도 학습(Unsupervised Learning)의 예로는, 군집화(Clustering) 또는 독립 성분 분석(Independent Component Analysis)을 들 수 있다.
본 명세서에서 용어 '군집화'는 용어 '클러스터링'과 혼용되어 사용될 수 있다.
비지도 학습을 이용하는 인공 신경망의 일례로 생성적 적대 신경망(Generative Adversarial Network, GAN), 오토 인코더(Autoencoder, AE)를 들 수 있다.
생성적 적대 신경망(Generative Adversarial Network, GAN)이란, 생성기(generator)와 판별기(discriminator), 두 개의 서로 다른 인공지능이 경쟁하며 성능을 개선하는 머신러닝 방법이다.
이 경우 생성기(generator)는 새로운 데이터를 창조하는 모형으로, 원본 데이터를 기반으로 새로운 데이터를 생성할 수 있다.
또한 판별기(discriminator)는 데이터의 패턴을 인식하는 모형으로, 원본데이터를 기반으로 생성기(generator)에서 생성한 새로운 데이터에 대한 진위 여부를 감별하는 역할을 수행할 수 있다.
그리고 생성기(generator)는 판별기(discriminator)를 속이지 못한 데이터를 입력 받아 학습하며, 판별기(discriminator)는 생성기(generator)로부터 속은 데이터를 입력 받아 학습할 수 있다. 이에 따라 생성기(generator)는 판별기(discriminator)를 최대한 잘 속이도록 진화할 수 있고, 판별기(discriminator)의 원본 데이터와 생성기(generator)에 의해 생성된 데이터를 잘 구분하도록 진화할 수 있다.
오토 인코더(Autoencoder, AE)는 입력 자체를 출력으로 재현하는 것을 목표로 하는 신경망이다.
오토 인코더(Autoencoder, AE)는 입력층, 은닉층 및 출력층을 포함하며, 입력 데이터는 입력 데이터가 입력 계층을 통과하여 은닉 계층으로 들어간다.
이 경우 은닉 계층의 노드 수가 입력 계층의 노드 수보다 적으므로 데이터의 차원이 줄어들게 되며, 이에 따라 압축 또는 인코딩이 수행되게 된다.
또한 은닉 계층에서 출력한 데이터는 출력 계층으로 들어간다. 이 경우 출력 계층의 노드 수는 은닉 계층의 노드 수보다 많으므로, 데이터의 차원이 늘어나게 되며, 이에 따라 압축 해제 또는 디코딩이 수행되게 된다.
한편 오토 인코더(Autoencoder, AE)는 학습을 통해 뉴런의 연결 강도를 조절함으로써 입력 데이터가 은닉층 데이터로 표현된다. 은닉층에서는 입력층보다 적은 수의 뉴런으로 정보를 표현하는데 입력 데이터를 출력으로 재현할 수 있다는 것은, 은닉층이 입력 데이터로부터 숨은 패턴을 발견하여 표현했다는 것을 의미할 수 있다.
준 지도 학습(Semi-Supervised Learning)은 기계 학습의 일종으로, 레이블(label)이 주어진 훈련 데이터와 레이블(label)이 주어지지 않은 훈련 데이터를 모드 사용하는 학습 방법을 의미할 수 있다.
준지도 학습의 기법 중 하나로, 레이블이 주어지지 않은 훈련 데이터의 레이블을 추론한 후 추론된 라벨을 이용하여 학습을 수행하는 기법이 있으며, 이러한 기법은 레이블링에 소요되는 비용이 큰 경우에 유용하게 사용될 수 있다.
강화 학습(Reinforcement learning)은, 에이전트(Agent)가 매순간 어떤 행동을 해야 좋을지 판단할 수 있는 환경이 주어진다면, 데이터 없이 경험으로 가장 좋을 길을 찾을 수 있다는 이론이다.
강화 학습(Reinforcement Learning)은 주로 마르코프 결정 과정(Markov Decision Process, MDP)에 의하여 수행될 수 있다.
마르코프 결정 과정(Markov Decision Process, MDP)을 설명하면, 첫번째로 에이전트가 다음 행동을 하기 위해 필요한 정보들이 구성된 환경이 주어지며, 두번째로 그 환경에서 에이전트가 어떻게 행동할지 정의하고, 세번째로 에이전트가 무엇을 잘하면 보상(reward)를 주고 무엇을 못하면 벌점(penalty)을 줄지 정의하며, 네번째로 미래의 보상이 최고점에 이를 때까지 반복 경험하여 최적의 정책(policy)을 도출하게 된다.
도 1은 인공 신경망의 학습 장치(1000)를 설명하기 위한 블록도이다.
인공 신경망의 학습 장치(1000)는, 데이터 입력부(1010), 프로세서(1020) 및 인공 신경망(1030)을 포함할 수 있다.
데이터 입력부(1010)는 입력 데이터를 수신할 수 있다. 이 경우 데이터 입력부(1010)는 훈련 데이터를 수신할 수 있으며, 가공되지 않은 데이터를 수신할 수도 있다.
데이터 입력부(1010)가 가공되지 않은 데이터를 수신한 경우, 프로세서(1020)는 수신된 데이터를 전처리 하여 인공 신경망(1030)에 입력이 가능한 훈련데이터를 생성할 수 있다.
인공 신경망(1030)은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있으며, 인공 신경망(1030)의 일부 또는 전부가 소프트웨어로 구현되는 경우 인공 신경망(1030)을 구성하는 하나 이상의 명령어는 인공 신경망의 학습 장치(1000)에 포함되는 메모리(미도시)에 저장될 수 있다.
프로세서(1020)는 훈련 데이터 또는 트레이닝 셋(training set)을 인공 신경망(1030)에 입력하여 인공 신경망(1030)을 훈련(training)시킬 수 있다.
구체적으로 프로세서(1020)는 앞서 설명한 다양한 학습 기법을 이용하여 인공 신경망(Artificial Neural Network, ANN)을 반복적으로 학습시킴으로써, 인공 신경망(Artificial Neural Network, ANN)의 파라미터를 결정(최적화)할 수 있다
이와 같이 훈련 데이터를 이용하여 학습됨으로써 파라미터가 결정된 인공 신경망을, 본 명세서에서는 학습 모델(a trained model)이라 명칭할 수 있다.
한편 학습 모델(a trained model)은 훈련 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있다.
한편 학습 모델(a trained model)은 인공 신경망의 학습 장치(1000)에 탑재된 상태에서 결과 값을 추론할 수도 있으며, 다른 장치로 전송되어 탑재될 수도 있다.
학습 모델(a trained model)을 다른 장치로 전송하는 경우, 인공 신경망의 학습 장치(1000)는 다른 장치와 통신하기 위한 통신부(미도시)를 포함할 수 있다.
도 2에서는 다른 장치로 사용될 수 있는 단말기(100)를 설명한다.
본 명세서에서 설명되는 단말기에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시 예에 따른 단말기(100)는 스마트 TV, 데스크탑 컴퓨터, 디지털사이니지 등과 같은 고정 단말기에도 적용될 수도 있다.
또한, 본 발명의 실시 예에 따른 단말기(100)는 고정 또는 이동 가능한 로봇에도 적용될 수 있다.
또한, 본 발명의 실시 예에 따른 단말기(100)는 음성 에이전트의 기능을 수행할 수 있다. 음성 에이전트는 사용자의 음성을 인식하고, 인식된 사용자의 음성에 적합한 응답을 음성으로 출력하는 프로그램일 수 있다.
단말기(100)는 무선 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 인터페이스부(160), 메모리(170), 프로세서(180) 및 전원 공급부(190)를 포함할 수 있다.
학습 모델(a trained model)은 단말기(100)에 탑재될 수 있다.
한편 학습 모델(a trained model)은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있으며, 학습 모델(a trained model)의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델(a trained model)을 구성하는 하나 이상의 명령어는 메모리(170)에 저장될 수 있다.
무선 통신부(110)는, 방송 수신 모듈(111), 이동통신 모듈(112), 무선 인터넷 모듈(113), 근거리 통신 모듈(114), 위치정보 모듈(115) 중 적어도 하나를 포함할 수 있다.
방송 수신 모듈(111)은 방송 채널을 통하여 외부의 방송 관리 서버로부터 방송 신호 및/또는 방송 관련된 정보를 수신한다.
이동통신 모듈(112)은, 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등)에 따라 구축된 이동 통신망 상에서 기지국, 외부의 단말, 서버 중 적어도 하나와 무선 신호를 송수신한다.
무선 인터넷 모듈(113)은 무선 인터넷 접속을 위한 모듈을 말하는 것으로, 단말기(100)에 내장되거나 외장될 수 있다. 무선 인터넷 모듈(113)은 무선 인터넷 기술들에 따른 통신망에서 무선 신호를 송수신하도록 이루어진다.
무선 인터넷 기술로는, 예를 들어 WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등이 있다.
근거리 통신 모듈(114)은 근거리 통신(Short range communication)을 위한 것으로서, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다.
위치정보 모듈(115)은 이동 단말기의 위치(또는 현재 위치)를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Positioning System) 모듈 또는 WiFi(Wireless Fidelity) 모듈이 있다. 예를 들어, 단말기는 GPS모듈을 활용하면, GPS 위성에서 보내는 신호를 이용하여 이동 단말기의 위치를 획득할 수 있다.
입력부(120)는 영상 신호 입력을 위한 카메라(121), 오디오 신호를 수신하기 위한 마이크로폰(122), 사용자로부터 정보를 입력 받기 위한 사용자 입력부(123)를 포함할 수 있다.
입력부(120)에서 수집한 음성 데이터나 이미지 데이터는 분석되어 사용자의 제어명령으로 처리될 수 있다.
입력부(120)는 영상 정보(또는 신호), 오디오 정보(또는 신호), 데이터, 또는 사용자로부터 입력되는 정보의 입력을 위한 것으로서, 영상 정보의 입력을 위하여, 단말기(100)는 하나 또는 복수의 카메라(121)들을 구비할 수 있다.
카메라(121)는 화상 통화모드 또는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(151)에 표시되거나 메모리(170)에 저장될 수 있다.
마이크로폰(122)은 외부의 음향 신호를 전기적인 음성 데이터로 처리한다. 처리된 음성 데이터는 단말기(100)에서 수행 중인 기능(또는 실행 중인 응용 프로그램)에 따라 다양하게 활용될 수 있다. 한편, 마이크로폰(122)에는 외부의 음향 신호를 입력 받는 과정에서 발생되는 잡음(noise)을 제거하기 위한 다양한 잡음 제거 알고리즘이 구현될 수 있다.
사용자 입력부(123)는 사용자로부터 정보를 입력 받기 위한 것으로서, 사용자 입력부(123)를 통해 정보가 입력되면,
프로세서(180)는 입력된 정보에 대응되도록 단말기(100)의 동작을 제어할 수 있다.
사용자 입력부(123)는 기계식 (mechanical) 입력수단(또는, 메커니컬 키, 예를 들어, 단말기(100)의 전/후면 또는 측면에 위치하는 버튼, 돔 스위치 (dome switch), 조그 휠, 조그 스위치 등) 및 터치식 입력수단을 포함할 수 있다. 일 예로서, 터치식 입력수단은, 소프트웨어적인 처리를 통해 터치스크린에 표시되는 가상 키(virtual key), 소프트 키(soft key) 또는 비주얼 키(visual key)로 이루어지거나, 상기 터치스크린 이외의 부분에 배치되는 터치 키(touch key)로 이루어질 수 있다.
러닝 프로세서(130)는 데이터 마이닝, 데이터 분석, 지능형 의사 결정, 및 기계 학습 알고리즘 및 기술을 위해 이용될 정보를 수신, 분류, 저장 및 출력하도록 구성 될 수 있다.
러닝 프로세서(130)는 단말기에 의해 수신, 검출, 감지, 생성, 사전 정의 또는 다른 방식으로 출력되거나 수신, 검출, 감지, 생성, 사전 정의 또는 다른 방식으로 다른 컴포넌트, 디바이스, 단말기 또는 단말기와 통신하는 장치에 의해 출력되는 데이터를 저장하도록 구성된 하나 이상의 메모리 유닛을 포함 할 수 있다.
러닝 프로세서(130)는 단말기에 통합되거나 구현된 메모리를 포함 할 수 있다. 일부 실시 예에서, 러닝 프로세서(130)는 메모리(170)를 사용하여 구현 될 수 있다.
선택적으로 또는 부가 적으로, 러닝 프로세서(130)는 단말기에 직접 결합된 외부 메모리 또는 단말기와 통신하는 서버에서 유지되는 메모리와 같이 단말기와 관련된 메모리를 사용하여 구현 될 수 있다.
다른 실시 예에서, 러닝 프로세서(130)는 클라우드 컴퓨팅 환경에서 유지되는 메모리, 또는 네트워크와 같은 통신 방식을 통해 단말기에 의해 액세스 가능한 다른 원격 메모리 위치를 이용하여 구현 될 수 있다.
러닝 프로세서(130)는 일반적으로 감독 또는 감독되지 않은 학습, 데이터 마이닝, 예측 분석 또는 다른 머신에서 사용하기 위해 데이터를 식별, 색인화, 카테고리화, 조작, 저장, 검색 및 출력하기 위해 데이터를 하나 이상의 데이터베이스에 저장하도록 구성될 수 있다.
러닝 프로세서(130)에 저장된 정보는 다양한 상이한 유형의 데이터 분석 알고리즘 및 기계 학습 알고리즘 중 임의의 것을 사용하여 프로세서(180) 또는 단말기의 하나 이상의 다른 제어기에 의해 이용될 수 있다.
이러한, 알고리즘의 예로는, k-최근 인접 시스템, 퍼지 논리 (예: 가능성 이론), 신경 회로망, 볼츠만 기계, 벡터 양자화, 펄스 신경망, 지원 벡터 기계, 최대 마진 분류기, 힐 클라이밍, 유도 논리 시스템 베이지안 네트워크, 페리트넷 (예: 유한 상태 머신, 밀리 머신, 무어 유한 상태 머신), 분류기 트리 (예: 퍼셉트론 트리, 지원 벡터 트리, 마코프 트리, 의사 결정 트리 포리스트, 임의의 포리스트), 판돈 모델 및 시스템, 인공 융합, 센서 융합, 이미지 융합, 보강 학습, 증강 현실, 패턴 인식, 자동화 된 계획 등을 포함한다.
프로세서(180)는 데이터 분석 및 기계 학습 알고리즘을 사용하여 결정되거나, 생성된 정보에 기초하여 단말기의 적어도 하나의 실행 가능한 동작을 결정 또는 예측할 수 있다. 이를 위해, 프로세서(180)는 러닝 프로세서(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 상기 단말기를 제어할 수 있다.
프로세서(180)는 지능적 에뮬레이션(즉, 지식 기반 시스템, 추론 시스템 및 지식 획득 시스템)을 구현하는 다양한 기능을 수행 할 수 있다. 이는 적응 시스템, 기계 학습 시스템, 인공 신경망 등을 포함하는, 다양한 유형의 시스템(예컨대, 퍼지 논리 시스템)에 적용될 수 있다.
프로세서(180)는, 또한 I/O 처리 모듈, 환경 조건 모듈, 음성 - 텍스트 (STT) 처리 모듈, 자연어 처리 모듈, 작업 흐름 처리 모듈 및 서비스 처리 모듈과 같이, 음성 및 자연 언어 음성 처리를 수반하는 연산을 가능하게 하는 서브 모듈을 포함할 수 있다.
이들 서브 모듈들 각각은, 단말기에서의 하나 이상의 시스템 또는 데이터 및 모델, 또는 이들의 서브셋 또는 수퍼 셋에 대한 액세스를 가질 수 있다. 또한, 이들 서브 모듈들 각각은, 어휘 색인, 사용자 데이터, 작업 흐름 모델, 서비스 모델 및 자동 음성 인식 (ASR) 시스템을 비롯한 다양한 기능을 제공할 수 있다.
다른 실시 예에서, 프로세서(180) 또는 단말기의 다른 양태는 상기 서브 모듈, 시스템, 또는 데이터 및 모델로 구현 될 수 있다.
일부 예에서, 러닝 프로세서(130)의 데이터에 기초하여, 프로세서(180)는 사용자 입력 또는 자연 언어 입력으로 표현된 문맥 조건 또는 사용자의 의도에 기초하여 요구 사항을 검출하고 감지하도록 구성 될 수 있다.
프로세서(180)는 문맥 조건 또는 사용자의 의도에 기초하여 요구 사항을 완전히 결정하는데 필요한 정보를 능동적으로 이끌어 내고, 획득할 수 있다. 예를 들어, 프로세서(180)는 역사적 입력 및 출력, 패턴 매칭, 모호하지 않은 단어, 입력 의도 등을 포함하는 과거 데이터를 분석함으로써 요구 사항을 결정하는데, 필요한 정보를 능동적으로 이끌어낼 수 있다.
프로세서(180)는 문맥 조건 또는 사용자의 의도에 기초하여 요구 사항에 응답하는 기능을 실행하기 위한 태스크 흐름을 결정할 수 있다.
프로세서(180)는 러닝 프로세서(130)에서 프로세싱 및 저장을 위한 정보를 수집하기 위해, 단말기에서 하나 이상의 감지 컴포넌트를 통해 데이터 분석 및 기계 학습 작업에 사용되는 신호 또는 데이터를 수집, 감지, 추출, 검출 및/또는 수신하도록 구성 될 수 있다.
정보 수집은 센서를 통해 정보를 감지하는 것, 메모리(170)에 저장된 정보를 추출하는 것 또는 통신 수단을 통해 다른 단말기, 엔티티 또는 외부 저장 장치로부터 정보를 수신하는 것을 포함 할 수 있다.
프로세서(180)는 단말기에서 사용 히스토리 정보를 수집하여, 저장할 수 있다.
프로세서(180)는 저장된 사용 히스토리 정보 및 예측 모델링을 사용하여 특정 기능을 실행하기 위한 최상의 매치를 결정할 수 있다.
프로세서(180)는 센싱부(140)를 통해 주변 환경 정보 또는 기타 정보를 수신하거나 감지 할 수 있다.
프로세서(180)는 무선 통신부(110)을 통해 방송 신호 및/또는 방송 관련 정보, 무선 신호, 무선 데이터를 수신할 수 있다.
프로세서(180)는 입력부(120)로부터 이미지 정보 (또는 해당 신호), 오디오 정보 (또는 해당 신호), 데이터 또는 사용자 입력 정보를 수신 할 수 있다.
프로세서(180)는 정보를 실시간으로 수집하고, 정보 (예를 들어, 지식 그래프, 명령 정책, 개인화 데이터베이스, 대화 엔진 등)를 처리 또는 분류하고, 처리 된 정보를 메모리(170) 또는 러닝 프로세서(130)에 저장할 수 있다.
단말기의 동작이 데이터 분석 및 기계 학습 알고리즘 및 기술에 기초하여 결정될 때, 프로세서(180)는 결정된 동작을 실행하기 위해 단말기의 구성 요소를 제어 할 수 있다. 그리고 프로세서(180)는 제어 명령에 따라 단말을 제어하여 결정된 동작을 수행 할 수 있다.
프로세서(180)는 특정 동작이 수행되는 경우, 데이터 분석 및 기계 학습 알고리즘 및 기법을 통해 특정 동작의 실행을 나타내는 이력 정보를 분석하고, 분석된 정보에 기초하여 이전에 학습 한 정보의 업데이트를 수행 할 수 있다.
따라서, 프로세서(180)는 러닝 프로세서(130)과 함께, 업데이트 된 정보에 기초하여 데이터 분석 및 기계 학습 알고리즘 및 기법의 미래 성능의 정확성을 향상시킬 수 있다.
센싱부(140)는 이동 단말기 내 정보, 이동 단말기를 둘러싼 주변 환경 정보 및 사용자 정보 중 적어도 하나를 센싱 하기 위한 하나 이상의 센서를 포함할 수 있다.
예를 들어, 센싱부(140)는 근접센서(141, proximity sensor), 조도 센서(142, illumination sensor), 터치 센서(touch sensor), 가속도 센서(acceleration sensor), 자기 센서(magnetic sensor), 중력 센서(G-sensor), 자이로스코프 센서(gyroscope sensor), 모션 센서(motion sensor), RGB 센서, 적외선 센서(IR 센서: infrared sensor), 지문인식 센서(finger scan sensor), 초음파 센서(ultrasonic sensor), 광 센서(optical sensor, 예를 들어, 카메라(121 참조)), 마이크로폰(microphone, 122 참조), 배터리 게이지(battery gauge), 환경 센서(예를 들어, 기압계, 습도계, 온도계, 방사능 감지 센서, 열 감지 센서, 가스 감지 센서 등), 화학 센서(예를 들어, 전자 코, 헬스케어 센서, 생체 인식 센서 등) 중 적어도 하나를 포함할 수 있다. 한편, 본 명세서에 개시된 이동 단말기는, 이러한 센서들 중 적어도 둘 이상의 센서에서 센싱되는 정보들을 조합하여 활용할 수 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 디스플레이부(151), 음향 출력부(152), 햅팁 모듈(153), 광 출력부(154) 중 적어도 하나를 포함할 수 있다.
디스플레이부(151)는 단말기(100)에서 처리되는 정보를 표시(출력)한다. 예를 들어, 디스플레이부(151)는 단말기(100)에서 구동되는 응용 프로그램의 실행화면 정보, 또는 이러한 실행화면 정보에 따른 UI(User Interface), GUI(Graphic User Interface) 정보를 표시할 수 있다.
디스플레이부(151)는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 단말기(100)와 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부(123)로써 기능함과 동시에, 단말기(100)와 사용자 사이의 출력 인터페이스를 제공할 수 있다.
음향 출력부(152)는 호신호 수신, 통화모드 또는 녹음 모드, 음성인식 모드, 방송수신 모드 등에서 무선 통신부(110)로부터 수신되거나 메모리(170)에 저장된 오디오 데이터를 출력할 수 있다.
음향 출력부(152)는 리시버(receiver), 스피커(speaker), 버저(buzzer) 중 적어도 하나 이상을 포함할 수 있다.
햅틱 모듈(haptic module)(153)은 사용자가 느낄 수 있는 다양한 촉각 효과를 발생시킨다. 햅틱 모듈(153)이 발생시키는 촉각 효과의 대표적인 예로는 진동이 될 수 있다.
광출력부(154)는 단말기(100)의 광원의 빛을 이용하여 이벤트 발생을 알리기 위한 신호를 출력한다. 단말기(100)에서 발생 되는 이벤트의 예로는 메시지 수신, 호 신호 수신, 부재중 전화, 알람, 일정 알림, 이메일 수신, 애플리케이션을 통한 정보 수신 등이 될 수 있다.
인터페이스부(160)는 단말기(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행한다. 이러한 인터페이스부(160)는, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port)중 적어도 하나를 포함할 수 있다. 단말기(100)에서는, 상기 인터페이스부(160)에 외부 기기가 연결되는 것에 대응하여, 연결된 외부 기기와 관련된 적절할 제어를 수행할 수 있다.
한편, 식별 모듈은 단말기(100)의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(user identify module; UIM), 가입자 인증 모듈(subscriber identity module; SIM), 범용 사용자 인증 모듈(universal subscriber identity module; USIM) 등을 포함할 수 있다. 식별 모듈이 구비된 장치(이하 '식별 장치')는, 스마트 카드(smart card) 형식으로 제작될 수 있다. 따라서 식별 장치는 상기 인터페이스부(160)를 통하여 단말기(100)와 연결될 수 있다.
메모리(170)는 단말기(100)의 다양한 기능을 지원하는 데이터를 저장한다.
메모리(170)는 단말기(100)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 단말기(100)의 동작을 위한 데이터들, 명령어들을, 러닝 프로세서(130)의 동작을 위한 데이터들(예를 들어, 머신 러닝을 위한 적어도 하나의 알고리즘 정보 등)을 저장할 수 있다.
프로세서(180)는 상기 응용 프로그램과 관련된 동작 외에도, 통상적으로 단말기(100)의 전반적인 동작을 제어한다. 프로세서(180)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 메모리(170)에 저장된 응용 프로그램을 구동함으로써, 사용자에게 적절한 정보 또는 기능을 제공 또는 처리할 수 있다.
또한, 프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, 도 1와 함께 살펴본 구성요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용프로그램의 구동을 위하여, 단말기(100)에 포함된 구성요소들 중 적어도 둘 이상을 서로 조합하여 동작시킬 수 있다.
전원공급부(190)는 프로세서(180)의 제어 하에서, 외부의 전원, 내부의 전원을 인가 받아 단말기(100)에 포함된 각 구성요소들에 전원을 공급한다. 이러한 전원공급부(190)는 배터리를 포함하며, 상기 배터리는 내장형 배터리 또는 교체 가능한 형태의 배터리가 될 수 있다.
한편, 앞서 살펴본 것과 같이, 프로세서(180)는 응용 프로그램과 관련된 동작과, 통상적으로 단말기(100)의 전반적인 동작을 제어한다. 예를 들어, 프로세서(180)는 상기 이동 단말기의 상태가 설정된 조건을 만족하면, 애플리케이션들에 대한 사용자의 제어 명령의 입력을 제한하는 잠금 상태를 실행하거나, 해제할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 세탁물 처리 장치의 구성을 설명하기 위한 블록도이다.
도 3을 참조하면, 세탁물 처리 장치(300)는 도 2에 도시된 단말기(100) 및 세탁부(310) 등을 포함할 수 있다.
단말기(100)는 세탁물 처리 장치(300)의 내부 구성 요소로서 모듈화되어 구성될 수도 있다.
세탁물 처리 장치(300)는 도 2에 도시된 단말기(100)의 내부 구성 요소들과 세탁부(310)를 병렬적인 구성 요소로서 포함할 수 있다.
세탁부(310)는 세탁과 관련된 기능을 수행하는 세탁 모듈(311), 건조와 관련된 기능을 수행하는 건조 모듈(312) 및 기타 의류 관리와 관련된 기능을 수행하는 의류 관리 모듈(313) 중에서 적어도 하나 이상을 포함할 수 있다.
세탁 모듈(311)은 담금, 세탁, 헹굼 및 탈수 등의 세탁과 관련된 기능을 수행할 수 있다.
건조 모듈(312)은 다양한 방법을 이용하여 세탁물을 건조하는 기능을 수행할 수 있으며, 대표적으로 바람(열풍이나 냉풍)을 이용하여 세탁물을 건조할 수 있다.
의류 관리 모듈(313)은 의류 거치, 드라이클리닝, 먼지 제거, 살균, 주름 제거 및 다림질 등의 다양한 의류 관리와 관련된 기능을 수행할 수 있다.
프로세서(180) 또는 세탁부(310)에 구비된 제어 프로세서(314)는 세탁부(310)의 세탁 모듈(311), 건조 모듈(312) 또는 의류 관리 모듈(313)에 포함된 구성 요소들을 제어하여 다양한 세탁 기능을 제공한다.
입력부(120)와 센서부(140)는 세탁부(310)의 사용 및 제어와 관련된 사용자의 상호작용에 관련된 데이터를 수집할 수 있다. 예컨대, 입력부(120)와 센서부(140)는 음성이나 상호작용을 통한 코스 선택 정보 및 제어 정보 등을 수집할 수 있다.
출력부(150)는 세탁부(310)의 사용 및 제어와 관련된 정보를 출력할 수 있다. 예컨대, 출력부(150)는 세탁, 건조 및 의류 관리에 상응하는 코스 정보, 사용 기록, 제어 정보 등을 출력할 수 있다.
메모리(170)는 세탁부(310)의 사용 및 제어와 관련된 정보를 저장할 수 있다. 예컨대, 메모리(170)는 세탁, 건조 및 의류 관리에 상응하는 코스 정보, 사용 기록, 제어 정보 등을 저장할 수 있다.
구체적으로, 세탁 모듈(311)은 세탁수가 저장되는 터브(311a), 상기 터브 내에 회전 가능하도록 설치되어 세탁물이 투입되는 드럼(311b), 상기 드럼을 회전시키는 구동부(311c), 상기 세탁수를 공급하는 급수부(311d), 상기 세탁수를 순환 또는 배출시키는 펌프(311e) 및 상기 배출되는 세탁수를 배출하는 배수부(311f) 등을 포함할 수 있다.
터브(311a) 내에는 세탁물이 수용되는 드럼(311b)이 회전 가능하게 구비될 수 있다. 드럼(311b)은 세탁물을 수용하며, 세탁물이 투입되는 입구가 전면 또는 상면에 위치하도록 배치되며, 대략 수평한 또는 수직한 회전 중심선을 중심으로 회전된다. 터브(311a) 내의 물이 드럼(311b) 내로 유입될 수 있도록, 드럼(311b)에는 다수의 통공이 형성될 수 있다.
다만, 여기서의 "수평" 또는 "수직"은 수학적으로 엄밀한 의미로써 사용된 용어는 아니다. 즉, 실시예에서와 같이 회전 중심선이 수평 또는 수직에 대해 소정의 각도로 기울어진 경우에도 수평에 근접하기 때문에, 실질적으로 수평 또는 수직하다고 할 수 있다.
급수부(311d)는 급수밸브, 급수관 및 급수호스 등을 포함할 수 있다.
급수시 급수밸브, 급수관을 통과한 세탁수는 세제 디스펜서에서 세제와 혼합된 다음, 급수호스를 통하여 터브(311a)로 공급될 수 있다.
한편, 급수밸브에 직수 공급관이 연결되어 직수 공급관을 통하여 세탁수가 세제와 혼합되지 않고 터브(311a) 내로 직접 공급될 수 있다.
펌프(311e)는 세탁수를 외부로 배출시키는 배수 펌프(311e)와 세탁수를 순환시키는 순환 펌프(311e)로서의 기능을 수행하나, 이와 달리 배수 펌프(311e) 및 순환 펌프(311e)가 별개로 설치될 수 있다.
펌프(311e)는 배수부(311f)에 구비된 배수관과 연결되어, 배수관을 통하여 세탁수를 외부로 배출할 수 있다. 또한, 펌프(311e)는 순환수 공급관과 연결되어, 순환수 공급관을 통해 터브(311a) 내에 저장된 세탁수를 드럼(311b) 내부로 분사하여 세탁수를 순환시킬 수 있다.
드럼(311b)의 내측면에 드럼(311b)의 내부를 향하여 돌출된 하나 이상의 돌출부를 포함할 수 있다.
돌출부는 드럼(311b)의 내측면에 배치되는 리프터 또는 일체로 형성된 엠보싱일 수 있다. 드럼(311b)의 내측면에 리프터가 구비되거나 엠보싱이 형성되는 경우, 드럼(311b)의 회전시 세탁물이 리프터에 의해 들어올려졌다가 낙하되는 것을 반복할 수 있다.
구동부(311c)는 드럼(311b)을 회전시키며, 구동부(311c)에 의해 회전되는 구동축이 터브(311a)의 후면부를 통과하여 드럼(311b)과 결합될 수 있다.
구동부(311c)는 속도 제어가 가능한 모터를 포함할 수 있다.
이때, 모터는 직접 구동 방식의 인버터 모터(Inverter Direct Drive Motor)일 수 있다.
제어 프로세서(314)는 구동부(311c)의 모터의 출력값(예를 들어, 출력 전류)을 입력으로 받아, 이를 바탕으로 구동부(311c)의 모터의 회전수(또는, 회전속도)가 기 설정된 목표 회전수(또는, 목표 회전속도)를 추종하도록 제어할 수 있다. 또한, 제어 프로세서(314)는 구동 패턴에 따라 구동부(311c)의 모터의 구동을 제어할 수 있다.
그리고, 건조 모듈(312)은 세탁물이 투입되는 드럼(312a), 상기 드럼을 회전시키는 구동부(312b), 공기를 가열시키는 가열부(312c), 내부 공기를 순환시키는 송풍팬(312d) 및 내부 공기를 배출하는 배기부(312e) 등을 포함할 수 있다.
드럼(312a)은 건조물이 건조되는 공간으로, 본체의 내부에 회전 가능하게 설치된다. 그리고, 드럼(312a)의 내부에는 건조물을 상승시켜 낙하시키기 위한 하나 이상의 리프터가 구비될 수 있다.
드럼(312a)은 흡기구(미도시)와 연결되고, 송풍팬(312d)에 의해 내부로 공기가 유입될 수 있다.
구동부(312b)는 드럼(312a)을 회전시키며, 구동부(312b)에 의해 회전되는 구동축이 드럼(312a)와 결합될 수 있다.
구동부(312b)는 속도 제어가 가능한 모터를 포함할 수 있다.
이때, 모터는 직접 구동 방식의 인버터 모터(Inverter Direct Drive Motor)일 수 있다.
제어 프로세서(314)는 구동부(312b)의 모터의 출력값(예를 들어, 출력 전류)을 입력으로 받아, 이를 바탕으로 구동부(312b)의 모터의 회전수(또는, 회전속도)가 기 설정된 목표 회전수(또는, 목표 회전속도)를 추종하도록 제어할 수 있다. 또한, 제어 프로세서(314)는 구동 패턴에 따라 구동부(312b)의 모터의 구동을 제어할 수 있다.
가열부(312c)는 드럼(312a) 내부의 공기 또는 외부에서 유입되는 공기를 가열하는 가열부를 포함할 수 있다.
가열부는 가스식 혹은 전기식 등의 다양한 에너지원을 이용하여 공기를 가열시키며, 전기식의 경우 코일 히터를 이용할 수 있다.
가열부(312c)는 복수의 가열부를 포함할 수 있고, 각 가열부는 서로 동일하지 않고 다양한 에너지원을 이용할 수도 있고, 각각의 성능이 상이할 수도 있다.
송풍팬(312d)은 가열부(312c)에서 가열된 공기 또는 드럼(312a) 내부의 공기를 순환시킨다.
배기부(312e)는 드럼(312a) 내부의 공기가 외부로 배출될 수 있도록 안내하는 역할을 하며, 배기 덕트 및 에어필터 등을 포함할 수 있다.
그리고, 의류 관리 모듈(313)은 의류를 거치할 수 있는 공간인 의류 컨테이너(313a), 의류 컨테이너(313a)에 구비된 거치대를 움직이는 구동부(313b), 내부 공기를 순환시키는 송풍팬(313c), 에어 필터(313d), 살균부(313e) 및 주름 관리부(313f) 등을 포함할 수 있다.
의류 컨테이너(313a)는 관리 또는 처리의 대상이 되는 의류(또는 세탁물)을 담는 공간으로, 의류를 고정할 수 있는 거치대를 포함할 수 있다. 예컨대, 의류 컨테이너는 옷걸이와 옷걸이를 거치할 수 있는 후크, 또는 토르소와 마네킹 같은 입체 형상 등을 포함할 수 있다.
의류 컨테이너(313a)는 흡기구(미도시)와 연결되어, 송풍팬(313c)에 의해 공기가 유입될 수 있다.
구동부(313b)는 거치대를 구동하여 거치대에 거치된 의류에 대하여 기 설정된 움직임을 유도할 수 있다.
예컨대, 구동부(313b)는 일정한 진동 패턴에 따라 거치대와 거치대에 거치된 의류가 진동하도록 동작할 수 있다. 거치된 의류를 진동시킴에 따라 의류에 부착 또는 점착된 먼지나 이물질 등을 제거할 수 있다.
구동부(313b)는 속도 제어가 가능한 모터를 포함할 수 있다.
이때, 모터는 직접 구동 방식의 인버터 모터(Inverter Direct Drive Motor)일 수 있다.
제어 프로세서(314)는 구동부(313b)의 모터의 출력값(예를 들어, 출력 전류)을 입력으로 받아, 이를 바탕으로 구동부(313b)의 모터의 회전수(또는, 회전속도)가 기 설정된 목표 회전수(또는, 목표 회전속도)를 추종하도록 제어할 수 있다. 또한, 제어 프로세서(314)는 구동 패턴에 따라 구동부(313b)의 모터의 구동을 제어할 수 있다.
송풍팬(313c)은 의류 컨테이너(313a)의 외부에서 유입된 공기 또는 의류 컨테이너 내부(313a)의 공기를 의류 컨테이너 내부로 공급하여 공기를 순환시킨다.
송풍팬(313c)은 의류 컨테이너(313a)에 거치된 의류에 공급하는 공기가 부딪히도록 설치되거나, 공기 공급 방향이 제어될 수 있다.
예컨대, 송풍팬(313c)은 거치된 의류에 공기를 분사하여 의류에 부착 또는 점착된 먼지를 의류에서 떨어지도록 유도하거나, 의류의 습기를 제거할 수 있다.
에어 필터(313d)는 의류 컨테이너(313a)의 내부 공기가 순환될 때 혹은 내부 공기가 외부로 배출될 때 먼지 등을 필터링한다.
살균부(313e)는 거치된 의류를 살균하는 다양한 살균 장치를 포함할 수 있다.
예컨대, 살균 장치에는 오존을 이용하는 살균 장치 및 자외선을 이용하는 살균 장치 등이 포함될 수 있다.
주름 관리부(313f)는 거치된 의류의 주름을 줄이거나 제거하며, 스팀 공급기, 다리미 및 다림질판 등을 포함할 수 있다.
스팀 공급기는 공급된 물을 가열하여 스팀으로 만들고, 스팀을 의류 컨테이너(313a)에 자연 공급하거나 거치된 의류에 직접 분사할 수 있다.
다리미 및 다림질판은 의류 컨테이너(313a)의 내부에 구비된다. 그리고, 다림질 대상 의류의 모양, 위치 및 소재 등을 고려하여 결정된 다림질 작동 정보에 따라 그 작동이 제어될 수 있다.
이때, 다림질 작동 정보에는 다리미와 다림질판의 위치/동선, 다림질 온도/시간 등이 포함될 수 있다.
제어 프로세서(314)는 구동부(313b) 또는 주름 관리부(313f)에 별도로 구비된 구동부를 제어하여 다리미와 다림질판을 움직임을 제어할 수 있으며, 다림질 작동 정보에 따라 다리미 및 다림질판을 제어할 수 있다.
도 4는 본 발명의 일 실시 예에 따른 세탁물 처리 장치의 세탁 코스 결정 방법을 설명하기 위한 흐름도이다.
도 4를 참조하면, 세탁물 처리 장치(300)의 프로세서(180)는 세탁물 정보를 획득한다(S401).
일 실시 예에서, 프로세서(180)는 카메라(121)를 통해 촬영된 영상에 기초하여, 세탁물의 세탁물 정보를 획득할 수 있다.
세탁물 정보는 세탁물의 소재 혼용율, 세탁 취급 주의 사항, 세탁물의 색상 중 하나 이상을 포함할 수 있다.
카메라(121)를 통해 촬영된 영상은 세탁물에 부착된 태그 영상을 포함할 수 있다.
프로세서(180)는 태그 영상에 포함된 텍스트 또는 세탁물 취급 이미지를 인식하여, 세탁물 정보를 획득할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 세탁물에 NFC 태그 또는 RFID 태그가 부착된 경우, 프로세서(180)는 자체적으로 구비된, NFC 리더기, RFID 리더기를 통해 해당 태그를 인식하여, 세탁물 정보를 획득할 수도 있다.
또 다른 예로, 프로세서(180)는 세탁물에 QR 코드가 부착된 경우, QR 코드를 인식하여, 세탁물 정보를 획득할 수 있다.
또한, 프로세서(180)는 세탁물의 소재를 인식할 수 있는 센서를 통해, 세탁물 정보를 획득할 수도 있다.
도 5는 본 발명의 일 실시 예에 따라, 카메라를 통해 촬영된 태그 영상을 이용하여, 세탁물 정보를 획득하는 과정을 설명하는 도면이다.
도 5를 참조하면, 세탁물(500)에는 태그(510)가 부착되어 있다.
태그(510)는 세탁물(500)의 소재 혼용율(또는 섬유의 조성, 511) 및 취급 주의 사항을 나타내는 세탁물 취급 이미지들(513)을 포함한다.
세탁물 처리 기기(300)의 카메라(121)는 태그(510)를 포함하는 태그 영상을 촬영할 수 있다.
프로세서(180)는 촬영된 태그 영상을 인식하여, 소재 혼용율 및 세탁물 취급 이미지들을 포함하는 세탁물 정보를 획득할 수 있다.
프로세서(180)는 광학적 문자 인식(Optical Character Recognition, OCR) 기법을 이용하여, 태그 영상에 포함된 텍스트의 인식할 수 있다.
프로세서(180)는 공지의 이미지 인식 알고리즘을 이용하여, 태그 영상에 포함된 세탁물 취급 이미지를 인식할 수 있다.
프로세서(180)는 태그 영상에 포함된 세탁물의 고유 모델 번호를 인식하여, 세탁물의 색상 정보를 추가로 획득할 수 있다.
다시, 도 4를 설명한다.
세탁물 처리 장치(300)의 프로세서(180)는 획득된 세탁물 정보를 기 저장된 베이스 라인 정보와 매칭하여 , 세탁물 인코딩 데이터를 생성한다(S403).
베이스 라인 정보는 소재 별 권고 세탁 코스, 소재 별 권고 세탁 코스 수행 시, 품질 손상도, 소재 세탁 취급 정보 중 하나 이상을 포함할 수 있다.
메모리(170)는 베이스 라인 정보를 저장할 수 있다. 베이스 라인 정보는 학습 장치(1000) 또는 클라우드 서버로부터 주기적으로, 수신될 수 있다.
베이스 라인 정보에 대해서는, 도 6을 참조하여, 설명한다.
도 6 및 도 7은 본 발명의 일 실시 예에 따른 베이스 라인 정보를 설명하기 위한 도면이다.
베이스 라인 정보는 소재별 세탁 취급 정보(600) 및 소재별 권고 세탁 코스와 품질 손상도를 포함하는 테이블(700)을 포함할 수 있다.
도 6을 참조하면, 소재 별 세탁 취급 이미지 정보를 나타내는 소재 세탁 취급 정보(600)가 도시되어 있다.
소재 세탁 취급 정보(600)는 복수의 소재들 각각에 대한 세탁 취급 이미지들 및 세탁 취급 이미지들 각각에 대응하는 텍스트를 포함할 수 있다.
각 소재에 대한 세탁 취급 이미지들은 태그(510)에 포함된 세탁 취급 이미지들(513)을 인식하는데 사용될 수 있다.
한편, 베이스 라인 정보는 도 6에 도시된, 복수의 소재들 이외의 소재에 대한 세탁 취급 정보도 더 포함할 수 있다.
도 7을 참조하면, 복수의 소재들 각각에 대응하는 권고 세탁 코스 및 손상도를 포함하는 테이블(700)이 도시되어 있다.
예를 들어, 면의 권고 세탁 코스의 경우, 세탁 시간은 15분, 헹굼 횟수는 3회, 탈수 강도는 강, 물살 강도는 강이다. 이 경우, 면의 손상도는 1로 설정될 수 있다.
본 발명의 또 다른 실시 예에 따르면, 탈수 강도 대신, 탈수 횟수가 사용될 수 있고, 물살 강도 대신, 물살 강도를 표현할 수 있는 수치가 사용될 수 있다.
손상도는, 0에서 10까지의 값을 가지고, 권고 세탁 코스를 수행 시, 소재의 품질 손상 정도를 나타낼 수 있다.
손상도는 소재가 손상되기 쉬한 소재로 구성될 경우, 그 값이 높게 설정될 수 있다.
프로세서(180)는 획득된 세탁물 정보와, 도 6 및 도 7에 도시된 베이스 라인 정보를 비교하여, 세탁 인코딩 데이터를 생성할 수 있다.
획득된 세탁물 정보 및 베이스 라인 정보를 이용하여, 세탁 인코딩 데이터를 생성하는 과정에 대해 설명한다.
도 8은 본 발명의 일 실시 예에 따라, 태그를 통해 인식된 세탁물 정보와 베이스 라인 정보를 이용하여, 학습 모델에 입력 가능한 형태인 세탁 인코딩 데이터를 생성하는 과정을 설명하는 흐름도이다.
도 8을 참조하면, 프로세서(180)는 베이스 라인 정보에 기초하여, 소재들의 종류만큼의 엘리먼트들을 갖는 벡터를 설정한다(S801).
예를 들어, 베이스 라인 정보에 저장된 소재들의 종류가 12개인 경우, 벡터는 12개의 엘리먼트들을 가질 수 있다.
또한, 12개의 엘리먼트들은 미리 순서가 지정될 수 있다. 여기서, 12개는 예시에 불과한 수치이다.
프로세서(180)는 태그를 통해 인식된 세탁물의 소재 혼용율을 이용하여, 벡터의 각 엘리먼트에 값을 할당한다(S803).
프로세서(180)는 소재 혼용율에 따라 각 소재에 대응하는 엘리먼트에 소재의 비율 값을 할당할 수 있다.
프로세서(180)는 태그를 통해 인식된 세탁 취급 이미지들과, 베이스 라인 정보를 비교하여, 세탁 방법들을 데이터 세트로 변환한다(S805).
일 실시 예에서, 프로세서(180)는 세탁 취급 이미지들과, 베이스 라인 정보에 포함된 소재 세탁 취급 정보(600)를 비교하여, 세탁 방법들을 바이너리 데이터 또는 리얼 데이터로, 변환할 수 있다.
예를 들어, 프로세서(180)는 비교 결과, 물 세탁이 가능한 경우에는 해당 세탁물 취급 이미지를 1로, 물 세탁이 불가능한 경우에는, 해당 세탁물 취급 이미지를 0으로, 변환할 수 있다.
또 다른 예로, 프로세서(180)는 적정 세탁 수온을 포함하는 세탁 취급 이미지를 통해, 적정 세탁 수온이 40도인 경우, 해당 세탁 취급 이미지를 40으로 변환할 수 있다.
프로세서(180)는 엘리먼트들에 값이 할당된 벡터와 데이터 세트를 조합하여, 세탁 인코딩 데이터를 생성한다(S807).
단계 S801 내지 S807에 대해 도 9를 참조하여, 자세히 설명한다.
도 9는 본 발명의 실시 예에 따라 태그 인식을 통해, 세탁 인코딩 데이터를 생성하는 구체적인 예를 설명하는 도면이다.
도 9를 참조하면, 태그(910)는 세탁물의 소재 혼용율(911) 및 세탁 취급 이미지들(913)을 포함할 수 있다.
프로세서(180)는 태그(910)를 인식하여, 소재 혼용율(911)을 획득할 수 있다.
만약, 베이스 라인 정보에 저장된 소재의 종류가 12개인 경우, 프로세서(180)는 12개의 엘리먼트들 각각에, 소재 혼용율(911)을 적용한 벡터(930)를 생성할 수 있다.
구체적으로, 하나의 세탁물에 대해 면의 비율이 96%이고, 스판덱스의 비율이 4%인 경우, 벡터(930)의 면 엘리먼트(931)에 0.96을 할당하고, 스판덱스 엘리먼트(933)에 0.4를 할당하고, 나머지 엘리먼트들에 0을 할당할 수 있다.
일 실시 예에서, 하나의 세탁물에 대해 3개 이상의 소재들이 혼합된 경우, 프로세서(180)는 3개 이상의 소재들 중 비율이 큰 상위 2개의 소재들에 대해서만, 엘리먼트에 값을 할당시킬 수 있다.
또한, 프로세서(180)는 태그(910)에 포함된 세탁 취급 이미지들(913) 각각을 바이너리 데이터 또는 리얼 데이터로 변환할 수 있다.
예를 들어, 물세탁 가능 이미지가 포함되어 있는 경우, 프로세서(180)는 물세탁 가능 이미지를 1로 변환할 수 있다.
예를 들어, 40도의 적정 세탁 수온 이미지가 포함되어 있는 경우, 프로세서(180)는 해당 이미지를 40으로 변환할 수 있다. 프로세서(180)는, 해당 수치가 미리 지정된 제1 특정 값 이상인 경우, 해당 수치를 온수 세탁만이 가능함을 나타내는 2로 변환할 수 있다.
프로세서(180)는, 해당 수치가 미리 지정된 제1 특정 값 미만 제2 특정 값 이상인 경우, 해당 수치를 냉/온수 세탁이 가능함을 나타내는 1로 변환할 수 있다.
프로세서(180)는, 해당 수치가 미리 지정된 제2 특정 값 미만인 경우, 해당 수치를 냉수 세탁만이 가능함을 나타내는 0으로 변환할 수 있다.
프로세서(180)는 벡터(930)와 데이터 세트(950)가 조합된 세탁 인코딩 데이터(970)를 생성할 수 있다.
세탁 인코딩 데이터(970)는 세탁 코스 학습 모델의 입력 데이터로 사용될 수 있다.
다시, 도 4를 설명한다.
세탁물 처리 장치(300)의 프로세서(180)는 생성된 세탁물 인코딩 데이터에 세탁 코스 학습 모델을 적용하여, 최적의 세탁 코스를 결정한다(S405).
일 실시 예에서, 세탁 코스 학습 모델은 복합 소재로 이루어진 세탁물에 대해, 최적의 세탁 코스를 제공하기 위한 모델일 수 있다.
세탁 코스 학습 모델은 베이스 라인 정보에 기반하여, 미리 학습된 모델일 수 있다.
세탁 코스 학습 모델은 복수의 세탁 그룹들 각각에 대해, 베이스 라인 정보를 이용하여, 세탁 제어 변수들의 최적 가중치 값들을 학습하고, 학습된 최적 가중치 값들을 이용하여, 세탁 제어 변수들의 값들을 학습하는 학습 모델일 수 있다.
세탁 코스 학습 모델은 도 1에서 설명된 학습 장치(1000)와 같은 외부 서버로부터 수신될 수 있다.
이하에서는, 세탁 코스 학습 모델을 생성하는 과정에 대해, 설명한다.
도 10은 본 발명의 일 실시 예에 따라 세탁 코스 학습 모델을 생성하는 과정을 설명하는 흐름도이다.
도 10을 참조하면, 프로세서(180)는 베이스 라인 정보에 저장된 각 세탁물의 소재 혼용율을 기반으로, 세탁 코스를 결정지을 메인 소재를 결정한다(S1001).
일 실시 예에서, 프로세서(180)는 복수의 소재들로 구성된 하나의 세탁물에 대해, 소재의 비율과 손상도의 곱이 가장 큰 소재를 메인 소재로 결정할 수 있다.
베이스 라인 정보는 세탁 코스 학습 모델을 생성하기 위한 레퍼런스 정보일 수 있다.
이에 대해서는 도 11을 참조하여 설명한다.
도 11은 본 발명의 일 실시 예에 따라, 복수의 소재들로 구성된 세탁물에 대해, 메인 소재를 결정하는 과정을 설명하는 도면이다.
베이스 라인 정보는 복수의 세탁물들 각각에 대응하는 소재 혼용율에 대한 정보를 포함하는 벡터들을 포함할 수 있다.
도 11을 참조하면, 제1 세탁물(1101)에 대해 소재 혼용율에 대한 정보를 포함하는 제1 벡터(930)가 도시되어 있다.
제1 세탁물(1101)의 경우, 기모, 울, 폴리에스테르, 헤어로 구성되어 있고, 각 비율은 0.1/0.5/0.3/0.3이다.
프로세서(180)는 베이스 라인 정보에 저장된 테이블(700)을 이용하여, 각 소재에 대한 손상도를 추출할 수 있다.
프로세서(180)는 각 소재의 혼용율과 해당 소재의 손상도의 곱을 계산할 수 있다. 도 10을 참조하면, 제1 세탁물(1101)에 대해 각 소재의 혼용율과 해당 소재의 손상도의 곱이 계산된 제1 테이블(1105)이 도시되어 있다.
예를 들어, 기모의 경우, 혼용율과 손상도의 곱은 0.5(0.1X5)이다.
울의 경우, 혼용율과 손상도의 곱은 2.5(0.5X5)이다. 폴리에스테르의 경우, 혼용율과 손상도의 곱은 0.1(0.1X1)이다. hair의 경우, 혼용율과 손상도의 곱은 2.7(0.3X9)이다.
프로세서(180)는 혼용율과 손상도의 곱이 가장 큰 소재에 대응하는 hair를 제1 세탁물(1101)의 메인 소재로 결정할 수 있다.
프로세서(180)는 제2 세탁물(1111)의 소재 혼용율에 대한 정보를 포함하는 제2 벡터(1113) 및 각 소재에 대한 손상도를 이용하여, 제2 테이블(1113)을 생성할 수 있다.
프로세서(180)는 혼용율과 손상도의 곱이 가장 큰 소재에 대응하는 가죽을 제2 세탁물(1111)의 메인 소재로 결정할 수 있다.
프로세서(180)는 제3 세탁물(1121)의 소재 혼용율에 대한 정보를 포함하는 제3 벡터(1123) 및 각 소재에 대한 손상도를 이용하여, 제3 테이블(1133)을 생성할 수 있다.
프로세서(180)는 혼용율과 손상도의 곱이 가장 큰 소재에 대응하는 울을 제3 세탁물(1111)의 메인 소재로 결정할 수 있다.
이와 같이, 프로세서(180)는 각 세탁물에 대한 메인 소재를 결정하고, 결정된 메인 소재를 레이블링 할 수 있다.
다시, 도 10을 설명한다.
프로세서(180)는 결정된 메인 소재들을 복수의 세탁 그룹들로 분류한다(S1003).
프로세서(180)는 결정된 메인 소재들을 물 세탁 가능 여부, 세탁물 처리 장치(300)의 사용 가능 여부, 삶음 가능 여부에 따라 3개의 세탁 그룹들로 분류할 수 있다.
결정된 메인 소재들을 복수의 세탁 그룹들로 분류하는 이유는, 물 세탁 가능 여부, 세탁물 처리 장치(300)의 사용 가능 여부, 삶음 가능 여부가 세탁물의 손상도에 가장 영향이 큰 요인이 될 수 있기 때문이다.
도 12는 본 발명의 일 실시 예에 따라 메인 소재들이 3개의 세탁 그룹들로 분류된 결과를 보여주는 도면이다.
도 12를 참조하면, 제1 세탁 그룹(1210)은 물 세탁이 가능하며, 세탁물 처리 장치(300)의 사용이 가능하며, 삶음이 가능한 소재들을 포함하는 그룹일 수 있다.
제2 세탁 그룹(1230)은 물 세탁이 가능하며, 세탁물 처리 장치(300)의 사용이 가능하나, 삶음이 불가능한 소재들을 포함하는 그룹일 수 있다.
제3 세탁 그룹(1250)은 물 세탁이 불 가능한 소재들을 포함하는 그룹일 수 있다.
다시, 도 10을 설명한다.
프로세서(180)는 분류된 복수의 세탁 그룹들 각각의 세탁 특성 값들을 결정한다(S1005).
프로세서(180)는 베이스 라인 정보에 포함된 테이블(700)에 기반하여, 각 세탁 그룹의 세탁 특성 값들을 추출할 수 있다.
구체적으로, 프로세서(180)는 테이블(700)로부터 세탁 그룹에 포함된 소재들 각각의 세탁 시간, 헹굼 횟수, 탈수 강도, 적정 수온, 물살 강도를 추출할 수 있다.
프로세서(180)는 추출된 세탁 시간들 중 최고 값 및 최소 값, 헹굼 횟수들 중 최고 값 및 최소 값, 탈수 강도의 최고 정도 및 최소 정도, 적정 수온의 최고 값 및 최소 값, 물상 강도의 최고 정도 및 최소 정도를 추출할 수 있다.
프로세서(180)는 추출 결과를, 해당 세탁 그룹의 특성 값들로, 결정할 수 있다.
도 13은 본 발명의 실시 예에 따라, 세탁 그룹의 특성 값들을 추출한 결과를 보여주는 도면이다.
도 13을 참조하면, 제1 세탁 그룹(1210)의 특성 값들을 포함하는 제1 특성 값 테이블(1310) 및 제2 세탁 그룹(1230)의 특성 값들을 포함하는 제2 특성 값 테이블(1330)이 도시되어 있다.
제1 특성 값 테이블(1310)은 최장 세탁 시간이 12분, 최소 세탁 시간이 9분, 최대 헹굼 횟수가 2회, 최소 헹굼 횟수가 2회, 최대 탈수 강도 및 최소 탈수 강도가 약함, 최고 적정 수온이 온/냉, 최저 적정 수온이 냉, 최고 물상 강도가 중간, 최소 물살 강도가 약함을 나타내고 있다.
제2 특성 값 테이블(1330)은 최장 세탁 시간이 17분, 최소 세탁 시간이 15분, 최대 헹굼 횟수가 3회, 최소 헹굼 횟수가 3회, 최대 탈수 강도 및 최소 탈수 강도가 강함, 최고 적정 수온이 온 최저 적정 수온이 온, 최고 물상 강도가 강함, 최소 물살 강도가 강함을 나타내고 있다.
다시, 도 10을 설명한다.
프로세서(180)는 딥러닝 알고리즘을 이용하여, 각 세탁 그룹에 대해 손상도에 대한 세탁 제어 변수들의 최적 가중치 값들을 결정한다(S1007).
프로세서(180)는 각 세탁 그룹에 대해, 로스 함수(Loss function)를 이용하여, 로스 함수의 값이 최소가 되는 최적 가중치 값들을 결정할 수 있다.
로스 함수의 값이 최소가 된다는 것은 세탁물의 실제 손상도와 추정된 손상도 간의 차이를 최소화시킴을 의미할 수 있다.
로스 함수는 다음의 수학식 1과 같이 표현될 수 있다.
[수학식 1]
Figure PCTKR2018016642-appb-I000001
y는 실제 손상도를 나타내는 실제 손상도 벡터이고, x는 세탁 코스를 결정하는 세탁 제어 변수들을 포함하는 세탁 제어 변수 벡터이고, W는 각 세탁 제어 변수가 손상도에 영향을 미치는 정도를 나타내는 가중치 벡터이고, b는 세탁 제어 변수 이외의 요인으로 인한 외부 요인 손상도 벡터를 나타낼 수 있다.
외부 요인 손상도 세트는 베이스 라인 정보에 미리 저장된 세트일 수 있다.
특히, W는 N개의 세탁물 그룹들 각각에 대한 5개의 세탁 제어 변수들의 가중치들을 포함하는 벡터일 수 있다.
(Wx+b)는 실제 손상도 y를 가장 잘 묘사할 수 있는 추정 손상도를 나타내며, 로스 함수 L(x;W,b)는 실제 손상도와 추정 손상도 간의 차이를 최소화하는 가중치 세트를 얻고자 하는 것에 목적이 있다.
실제 손상도 y와 추정 손상도 (Wx+b)는 도 14와 같이, 행렬로 표현될 수 있다.
도 14는 실제 손상도 y와 추정 손상도 (Wx+b)를 행렬식으로 표현한 도면이다.
특히, W는 복수의 세탁 그룹들 각각에 대응하는 복수의 가중치 세트들을 포함할 수 있다.
예를 들어, 제1 가중치 세트(1410)는 제1 세탁 그룹(1210)의 세탁 제어 변수들에 대응하는 가중치 값들을 포함하는 세트이다.
제2 가중치 세트(1420)는 제2 세탁 그룹(1220)의 세탁 제어 변수들에 대응하는 가중치 값들을 포함하는 세트이다.
다시, 단계 S1007을 설명한다.
세탁 제어 변수 세트는 세탁 시간을 나타내는 세탁 시간 변수(x1), 헹굼 횟수를 나타내는 헹굼 횟수 변수(x2), 탈수 횟수 또는 탈수 강도를 나타내는 탈수 횟수 변수(또는 탈수 강도)(x3), 세탁 수온을 나타내는 세탁 수온 변수(x4), 물살 강도를 나타내는 물살 강도 변수(x5)를 포함할 수 있다.
프로세서(180)는 베이스 라인 정보에 포함된 각 소재에 대한 세탁 시간, 헹굼 횟수, 탈수 횟수, 물살 강도, 적정 수온, 실제 손상도, 외부 요인 손상도를 입력 데이터로, 딥 러닝 알고리즘 또는 경사 하강법(Gradient descent method)을 이용하여, 로스 함수의 값이 최소가 되도록 하는, 가중치 세트를 결정(또는 학습)할 수 있다.
여기서, 딥 러닝 알고리즘은 지도 학습, 메타 학습 중 어느 하나의 학습 방식이 사용될 수 있으나, 예시에 불과하다.
또한, 최적의 가중치 값들을 결정하기 위해 MLP(Multi-layer perceptron) 와 같은 경사 하강법이 사용될 수 있으나, 이는 예시에 불과하다.
또한, 가중치 값들은 사용자가 세탁물 처리 기기(300)를 사용할 시, 입력된 새로운 세탁물 정보가 축적되어, 학습됨에 따라, 진화될 수 있다.
프로세서(180)는 로스 함수를 최소화시키도록 하는 각 세탁 그룹에 대응되는 가중치 값들을 포함하는 최적 가중치 세트를 획득할 수 있다.
예를 들어, 프로세서(180)는 제1 세탁 그룹(1210)에 대응하는 제1 최적 가중치 세트 및 제2 세탁 그룹(1230)에 대응하는 제2 최적 가중치 세트를 획득할 수 있다.
프로세서(180)는 각 세탁 그룹에 대응하는 최적 가중치 값들에 대해, 제어 최적화 기법을 이용하여, 세탁 제어 변수들의 값들을 결정한다(S1009).
프로세서(180)는 Hamiltonian 기반 제어 최적화 기법을 이용하여, 목적 함수에 대해, 세탁물의 손상도를 최소화하고, 세척력을 최대화하는 세탁 제어 변수들의 값들을 결정할 수 있다.
Hamiltonian 기반 제어 최적화 기법은 x,y에 대한 함수 f의 궤도(trajectory)가 합리적인 값으로, 존재할 때, 매개변수가 추정된 모델 a=f(x,y;c)에 대해 a 값을 최소화하는 x와 y 값을 찾는 기법이다.
본 발명의 실시 예에서는 Hamiltonian 기반 제어 최적화 기법이 다음의 [수학식 2]로 표현되는 목적 함수의 값을 최소화시키는 xi 값을 찾는데 사용될 수 있다.
목적 함수는 다음의 [수학식 2]로 표현될 수 있다.
[수학식 2]
Figure PCTKR2018016642-appb-I000002
W는 세탁 그룹에 대응되고, 단계 S1007에서 결정된 가중치 세트들을 나타낼 수 있다.
xi는 세탁 제어 변수를 나타낼 수 있다.
x1은 세탁 시간을 나타내는 변수이고, x2는 헹굼 횟수를 나타내는 변수이고, x3은 탈수 횟수 또는 탈수 강도를 나타내는 변수이고, x4는 세탁 수온을 나타내는 변수이고, x5는 물살 강도를 나타내는 변수일 수 있다.
λ는 라그랑지언(Lagrangian coefficient) 상수이다.
Figure PCTKR2018016642-appb-I000003
는 하나의 세탁 그룹 내 또는 복수의 세탁 그룹들 내에서, 세탁 제어 변수의 최대 값을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000004
는 도 13에 도시된, 각 세탁 그룹 별 특성 값들로부터, 얻어질 수 있다.
복수의 세탁물들이 세탁물 처리 기기(300)에 인식되어, 복수의 세탁물 그룹들로, 분류되는 경우,
Figure PCTKR2018016642-appb-I000005
는 복수의 세탁물 그룹들 내에서, 세탁 제어 변수의 최대 값을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000006
는 손상도를 보장하는 권고 세탁 코스 범주 내에서, 최적의 세탁 코스가 얻어지도록 하는 제약을 부여할 수 있다.
Figure PCTKR2018016642-appb-I000007
는 하나의 세탁 그룹 내에서 최장 세탁 시간 또는 복수의 세탁 그룹들 내에서, 최장 세탁 시간을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000008
는 하나의 세탁 그룹 내에서 최대 헹굼 횟수 또는 복수의 세탁 그룹들 내에서, 최대 헹굼 횟수를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000009
는 하나의 세탁 그룹 내에서 최대 탈수 횟수(또는 강도) 또는 복수의 세탁 그룹들 내에서, 최대 탈수 횟수(또는 강도)를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000010
는 하나의 세탁 그룹 내에서 최대 세탁 수온 또는 복수의 세탁 그룹들 내에서, 최대 수탁 수온을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000011
는 하나의 세탁 그룹 내에서 최대 물살 강도 또는 복수의 세탁 그룹들 내에서, 최대 물살 강도를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000012
는 하나의 세탁 그룹 내 또는 복수의 세탁 그룹들 내에서, 세탁 제어 변수의 최소 값을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000013
는 도 13에 도시된, 각 세탁 그룹 별 특성 값들로부터, 얻어질 수 있다.
복수의 세탁물들이 세탁물 처리 기기(300)에 인식되어, 복수의 세탁물 그룹들로, 분류되는 경우,
Figure PCTKR2018016642-appb-I000014
는 복수의 세탁물 그룹들 내에서, 세탁 제어 변수의 최소 값을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000015
는 세척력을 보장하는 권고 세탁 코스 범주 내에서, 최적의 세탁 코스가 얻어지도록 하는 제약을 부여할 수 있다.
Figure PCTKR2018016642-appb-I000016
는 하나의 세탁 그룹 내에서 최소 세탁 시간 또는 복수의 세탁 그룹들 내에서, 최소 세탁 시간을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000017
는 하나의 세탁 그룹 내에서의 최소 헹굼 횟수 또는 복수의 세탁 그룹들 내에서, 최소 헹굼 횟수를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000018
는 하나의 세탁 그룹에서의 최소 탈수 횟수(또는 강도) 또는 복수의 세탁 그룹들 내에서, 최소 탈수 횟수(또는 강도)를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000019
는 하나의 세탁 그룹에서의 최소 세탁 수온 또는 복수의 세탁 그룹들 내에서, 최소 수탁 수온을 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000020
는 하나의 세탁 그룹에서의 최소 물살 강도 또는 복수의 세탁 그룹들 내에서, 최소 물살 강도를 나타낼 수 있다.
Figure PCTKR2018016642-appb-I000021
는 세탁 제어 변수들의 최대 값 내에서, 최적 값을 찾도록 제약 조건을 부여하는 최대 제약 함수이다.
Figure PCTKR2018016642-appb-I000022
는 세탁 제어 변수들의 최소 값 내에서, 최적 값을 찾도록 제약 조건을 부여하는 최소 제약 함수이다.
위에서 설명된 로스 함수만을 이용할 경우, 세탁 제어 변수들의 최적 값을 찾아가는 과정에서, 최적 값이, 적용 불가능한 결과 값으로, 얻어질 수 있기 때문에, 목적 함수가 이용됨에 따라 세탁 코스 제어 변수들의 값에 대한 범위가 제한될 수 있다.
결정된 세탁 제어 변수들의 값은 세탁물 처리 기기(300)에 투입된 세탁물의 최적 세탁 코스를 수행하는데 사용될 수 있다.
한편,
Figure PCTKR2018016642-appb-I000023
Figure PCTKR2018016642-appb-I000024
보다 큰 상황이 발생 시, 다음의 [수학식 3]으로 목적 함수가 대체될 수 있다.
[수학식 3]
Figure PCTKR2018016642-appb-I000025
[수학식 3]은
Figure PCTKR2018016642-appb-I000026
Figure PCTKR2018016642-appb-I000027
보다 큰 상황이 발생 시, 이들의 평균 값에 근사하도록, 그 값을 제한하는 제약 조건을 부여하기 위한 또 다른 목적함수로, 상기 최대 제약 함수 및 상기 최소 제약 함수를 포함하는 [수학식 2] 대신 사용될 수 있다.
도 15는 본 발명의 실시 예에 따라 세탁물 인코딩 데이터에 세탁 코스 학습 모델을 적용하여, 최적 세탁 코스를 위한 세탁 제어 변수들의 값들을 획득하는 과정을 설명하는 도면이다.
도 15를 참조하면, 프로세서(180)는 단계 S403에서 생성된 세탁물 인코딩 데이터에 기초하여, 하나 이상의 세탁물 그룹들을 결정한다(S1501).
프로세서(180)는 도 9에 도시된 세탁물 인코딩 데이터(900)에 포함된 소재 혼용율을 이용하여, 세탁물이 속한 세탁물 그룹을 결정할 수 있다.
또 다른 실시 예에서, 복수의 세탁물들이, 세탁물 처리 장치(300)에 투입되는 경우, 프로세서(180)는 복수의 세탁물들 각각의 세탁물 인코딩 데이터를 획득할 수 있다.
프로세서(180)는 복수의 세탁물들 각각에 대응하는 세탁물 인코딩 데이터에 기초하여, 복수의 세탁물들 각각이 속한 세탁물 그룹을 결정할 수 있다.
프로세서(180)는 결정된 하나 이상의 세탁물 그룹에 대응하는 세탁 제어 변수들의 값을 획득한다(S1403).
프로세서(180)는 단계 S1007을 통해 각 세탁물 그룹에 대응하는 최적 가중치 세트를 결정할 수 있다.
프로세서(180)는 결정된 세탁물 그룹의 특성 값들 및 결정된 최적 가중치 값들을, [수학식 2]로 표현된 목적 함수에 적용하여, 목적 함수의 값이, 최소가 되는 세탁 제어 변수들의 값들을 획득할 수 있다.
일 실시 예에서, 복수의 세탁물들이 복수의 세탁 그룹들로 분류된 경우, 프로세서(180)는 복수의 세탁물 그룹들에 대응하는 특성 값 세트들 및 가중치 세트들을 목적 함수에 적용하여, 목적 함수의 값이 최소가 되는 세탁 제어 변수들의 값들을 획득할 수 있다.
프로세서(180)는 획득된 세탁 제어 변수들의 값들을 포함하는 세탁 제어 명령을 세탁 모듈(311)에 전송한다(S1405).
세탁 모듈(311)은 프로세서(180)로부터 수신된 세탁 제어 명령에 따라 세탁 제어 변수들의 값들이 적용된 세탁을 수행할 수 있다.
다시, 도 4를 설명한다.
세탁물 처리 장치(300)의 프로세서(180)는 결정된 세탁 제어 변수들의 값들에 따른 세탁 코스로, 세탁을 수행한다(S407).
이에 대해서는, 도 16을 참조하여 설명한다.
도 16은 본 발명의 일 실시 예에 따라, 세탁물들을 세탁물 처리 장치(300)에 투입 시, 자동으로, 최적의 세탁 코스를 추천해 주는 시나리오를 설명하는 도면이다.
도 16을 참조하면, 복수의 세탁물들(1600)이 세탁물 처리 장치(300)에 투입될 수 있다.
세탁물 처리 장치(300)는 세탁물 처리 장치(300)에 구비된 카메라(미도시)를 통해 세탁물의 태그를 인식하여, 세탁물 정보를 획득할 수 있다.
세탁물 처리 장치(300)는 세탁물 정보를 세탁물 인코딩 데이터로 변환하고, 변환된 세탁물 인코딩 데이터에 세탁 코스 학습 모델을 적용하여, 최적의 세탁 코스를 제공할 수 있다.
세탁물 처리 장치(300)는 세탁물 인코딩 데이터를 입력 데이터로, 미리 학습된 가중치 세트를 이용하여, 최적의 세탁 코스에 대응하는 세탁 제어 변수들의 값들을 획득할 수 있다.
세탁물 처리 장치(300)는 획득된 세탁 제어 변수들의 값들에 맞는 세탁 코스로, 복수의 세탁물들(1600)을 세탁하도록 세탁 모듈(311)을 제어할 수 있다.
예를 들어, 복수의 세탁물들(1600)이 모두 그룹 A(도 12의 제1 세탁 그룹, 1210)에 속하는 경우, 세탁물 처리 장치(300)는 세탁 시간을 13분으로, 헹굼 횟수를 3회로, 탈수 횟수를 4회로, 세탁 수온을 냉수로, 물살 강도를 중으로 설정하는 세탁 코스를 획득할 수 있다.
또 다른 예로, 복수의 세탁물들(1600)이 모두 그룹 B(도 12의 제2 세탁 그룹, 1230)에 속하는 경우, 세탁물 처리 장치(300)는 세탁 시간을 9분으로, 헹굼 횟수를 2회로, 탈수 횟수를 3회로, 세탁 수온을 온수로, 물살 강도를 강으로 하는 세탁 코스를 설계할 수 있다.
복수의 세탁물들(1600)이 그룹 A 또는 그룹 B에 속하는 경우, 세탁물 처리 장치(300)는 세탁 시간을 11분으로, 헹굼 횟수를 3회로, 탈수 횟수를 3회로, 세탁 수온을 냉수로, 물살 강도를 중으로 하는 세탁 코스를 설계할 수 있다.
이에 따라, 사용자는 소재가 다른 복수의 세탁물들에 대해, 태그를 인식시키는 행위 만으로, 복수의 세탁물들의 손상도가 최소화되고, 세척력이 최대화되는 세탁 결과를 얻을 수 있다.
도 17은 본 발명의 일 실시 예에 따른 최적 세탁 코스 제공을 위한 사용자 시나리오를 설명하는 도면이다.
도 17을 참조하면, 세탁물 처리 장치(300)는 인공 세탁 버튼(399)을 구비할 수 있다.
인공 세탁 버튼(399)은 복수의 세탁물들을 세탁물 처리 장치(300)에 투입 시, 자동으로, 최적의 세탁 코스를 추천해주는 버튼일 수 있다.
복수의 세탁물들이 세탁물 처리 장치(300)에 투입되고, 인공 세탁 버튼(399)이 선택된 경우, 세탁물 처리 장치(300)는 세탁물들의 소재를 분석하는 소재 분석 화면(1710)을 표시할 수 있다.
세탁물 처리 장치(300)는 세탁물 정보를 인코딩 데이터로 변환하고, 변환된 인코딩 데이터를 이용하여, 세탁물의 소재를 결정할 수 있다.
세탁물 처리 장치(300)는 소재 분석 화면(1710)에 대한 정보를 이동 단말기(100)에 전송할 수 있다. 이 경우, 소재 분석 화면(1710)은 사용자의 이동 단말기(100) 상에 표시될 수도 있다.
만약, 서로 다른 세탁 그룹의 소재들이 검출된 경우, 세탁물 처리 장치(300)는 서로 다른 세탁 그룹의 소재들이 검출되었고, 따로 또는 함께 세탁을 수행할 것인지를 알리는 알림 메시지(1720)를 표시할 수 있다.
알림 메시지(1720)는 음향 출력부(152)를 통해서도 출력될 수 있다.
알림 메시지(1720)는 이동 단말기(100)에 전송되어, 이동 단말기(100) 상에서 표시될 수 있다.
세탁물 처리 장치(300)는 서로 다른 세탁 그룹의 세탁물들을 함께 세탁을 수행하도록 하는 입력을 수신한 경우, 세탁물 인코딩 데이터에 기반하여, 세탁 제어 변수들의 값들을 결정할 수 있다.
세탁물 처리 장치(300)는 결정된 세탁 제어 변수들의 값들에 맞는 세탁 코스를 진행함을 알리는 진행 메시지(1730)를 표시할 수 있다.
진행 메시지(1730)는 음향 출력부(152)를 통해 출력되거나, 이동 단말기(100)로 전송되어, 이동 단말기(100) 상에 표시될 수도 있다.
한편, 세탁물 처리 장치(300)는 세탁물의 소재 분석 결과, 물 세탁이 불가능하거나, 드라이 크리닝을 반드시 해야 하는 소재의 세탁물이 검출된 경우, 세탁물이 불가능함을 알리는 경고 메시지(1750)를 출력할 수 있다.
경고 메시지(1750)는 음향 출력부(152)를 통해 출력되거나, 이동 단말기(100)로 전송되어, 이동 단말기(100) 상에 표시될 수 있다.
사용자는 경고 메시지(1750)를 통해 세탁물에 대한 올바른 세탁 방법을 가이드 받을 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있다. 또한, 상기 컴퓨터는 단말기의 프로세서(180)를 포함할 수도 있다.

Claims (16)

  1. 세탁물 처리 장치에 있어서,
    세탁과 관련된 동작을 수행하는 세탁 모듈; 및
    복수의 세탁물들에 대한 세탁물 정보를 획득하고, 획득된 세탁물 정보를 인코딩 데이터로 변환하고, 딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 프로세서를 포함하는
    세탁물 처리 장치.
  2. 제1항에 있어서,
    상기 프로세서는
    상기 세탁 제어 변수들의 값들에 대응하는 세탁 코스로, 세탁을 수행하도록 상기 세탁 모듈을 제어하는
    세탁물 처리 장치.
  3. 제1항에 있어서,
    상기 세탁 제어 변수들은
    세탁 시간 변수, 헹굼 횟수 변수, 탈수 횟수 변수, 세탁 수온 변수 및 물살 강도 변수를 포함하는
    세탁물 처리 장치.
  4. 제1항에 있어서,
    상기 세탁 코스 학습 모델은
    상기 베이스 라인 정보를 이용하여, 상기 세탁 제어 변수들의 최적 가중치 값들을 결정하고, 결정된 최적 가중치 값들을 이용하여, 상기 세탁 제어 변수들의 값들을 결정하는 학습 모델인
    세탁물 처리 장치.
  5. 제4항에 있어서,
    상기 프로세서는
    상기 베이스 라인 정보에 포함된 복수의 세탁물들 각각의 소재 혼용율을 기반으로, 각 세탁물에 대한 메인 소재를 결정하고,
    결정된 메인 소재들을 물 세탁 가능 여부, 상기 세탁물 처리 기기의 사용 가능 여부 및 삶음 가능 여부에 따라 복수의 세탁 그룹들로 분류하고,
    분류된 각 세탁 그룹의 세탁 특성 값들을 결정하고,
    각 세탁 그룹에 대해 손상도에 대한 상기 세탁 제어 변수들의 최적 가중치 값들을 결정하고,
    상기 각 세탁 그룹의 세탁 특성 값들 및 결정된 최적 가중치 값들에 대해 제어 최적화 기법을 이용하여, 상기 세탁 제어 변수들의 값을 결정하는 과정에 따라 상기 세탁 코스 학습 모델을 생성하는
    세탁물 처리 장치.
  6. 제5항에 있어서,
    상기 프로세서는
    상기 인코딩 데이터에 기반하여, 상기 복수의 세탁물들을 복수의 세탁 그룹들로 분류하고, 상기 세탁 코스 학습 모델을 통해 분류된 복수의 세탁 그룹들에 대응하는 상기 세탁 제어 변수들의 값들을 획득하는
    세탁물 처리 장치.
  7. 제1항에 있어서,
    세탁물에 부착된 태그 영상을 촬영하는 카메라를 더 포함하고,
    상기 프로세서는
    촬영된 태그 영상을 이용하여, 상기 세탁물 정보를 획득하고,
    상기 세탁물 정보는
    세탁물의 소재 혼용율, 상기 세탁물의 세탁 취급 이미지들을 포함하는
    세탁물 처리 장치.
  8. 제1항에 있어서,
    출력부를 더 포함하고,
    상기 프로세서는
    상기 복수의 세탁물들이, 상기 세탁 모듈에 투입된 경우, 상기 세탁 제어 변수들의 값들을 포함하는 세탁 코스를 상기 출력부를 통해 출력하는
    세탁물 처리 장치.
  9. 제8항에 있어서,
    상기 프로세서는
    상기 복수의 세탁물들 중 상기 세탁 모듈을 통해 세탁이 불가능한 세탁물이 투입된 경우, 세탁이 불가능함을 알리는 정보를 상기 출력부를 통해 출력하는
    세탁물 처리 장치.
  10. 제8항에 있어서,
    상기 출력부는
    디스플레이부 또는 음향 출력부를 포함하는
    세탁물 처리 장치.
  11. 세탁 코스 결정 방법에 있어서,
    복수의 세탁물들에 대한 세탁물 정보를 획득하는 단계;
    획득된 세탁물 정보를 인코딩 데이터로 변환하는 단계; 및
    딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 단계를 포함하는
    세탁 코스 결정 방법.
  12. 제11항에 있어서,
    상기 세탁 제어 변수들은
    세탁 시간 변수, 헹굼 횟수 변수, 탈수 횟수 변수, 세탁 수온 변수 및 물살 강도 변수를 포함하는
    세탁 코스 결정 방법.
  13. 제11항에 있어서,
    상기 세탁 코스 학습 모델은
    상기 베이스 라인 정보를 이용하여, 상기 세탁 제어 변수들의 최적 가중치 값들을 결정하고, 결정된 최적 가중치 값들을 이용하여, 상기 세탁 제어 변수들의 값들을 결정하는 학습 모델인
    세탁 코스 결정 방법
  14. 제13항에 있어서,
    상기 세탁 코스 학습 모델을 생성하는 단계는
    상기 베이스 라인 정보에 포함된 복수의 세탁물들 각각의 소재 혼용율을 기반으로, 각 세탁물에 대한 메인 소재를 결정하는 단계와
    결정된 메인 소재들을 물 세탁 가능 여부, 상기 세탁물 처리 기기의 사용 가능 여부 및 삶음 가능 여부에 따라 복수의 세탁 그룹들로 분류하는 단계와
    분류된 각 세탁 그룹의 세탁 특성 값들을 결정하는 단계와
    각 세탁 그룹에 대해 손상도에 대한 상기 세탁 제어 변수들의 최적 가중치 값들을 결정하는 단계와
    상기 각 세탁 그룹의 세탁 특성 값들 및 결정된 최적 가중치 값들에 대해 제어 최적화 기법을 이용하여, 상기 세탁 제어 변수들의 값을 결정하는 단계를 포함하는
    세탁 코스 결정 방법.
  15. 제14항에 있어서,
    상기 프로세서는
    상기 인코딩 데이터에 기반하여, 상기 복수의 세탁물들을 복수의 세탁 그룹들로 분류하고, 상기 세탁 코스 학습 모델을 통해 분류된 복수의 세탁 그룹들에 대응하는 상기 세탁 제어 변수들의 값들을 획득하는
    세탁 코스 결정 방법.
  16. 세탁 코스 결정 방법을 수행하기 위한 프로그램이 기록된 기록 매체에 있어서,
    상기 세탁 코스 결정 방법은
    복수의 세탁물들에 대한 세탁물 정보를 획득하는 단계;
    획득된 세탁물 정보를 인코딩 데이터로 변환하는 단계; 및
    딥 러닝 알고리즘을 통해 복수의 레퍼런스 데이터들을 이용하여 학습된 세탁 코스 학습 모델에 기반하여, 상기 변환된 인코딩 데이터에 맞는 세탁 제어 변수들의 값들을 획득하는 단계를 포함하는
    기록 매체.
PCT/KR2018/016642 2018-12-26 2018-12-26 세탁물 처리 장치 및 그의 세탁 코스 결정 방법 WO2020138523A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2018/016642 WO2020138523A1 (ko) 2018-12-26 2018-12-26 세탁물 처리 장치 및 그의 세탁 코스 결정 방법
KR1020217011767A KR20210096072A (ko) 2018-12-26 2018-12-26 세탁물 처리 장치 및 그의 세탁 코스 결정 방법
US16/526,225 US11578444B2 (en) 2018-12-26 2019-07-30 Laundry treatment device and method of determining laundry course thereof
EP19214777.5A EP3674466B1 (en) 2018-12-26 2019-12-10 Laundry treatment device and method of determining laundry course thereof
CN201911367428.9A CN111379119B (zh) 2018-12-26 2019-12-26 洗涤物处理装置及其洗涤程序确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016642 WO2020138523A1 (ko) 2018-12-26 2018-12-26 세탁물 처리 장치 및 그의 세탁 코스 결정 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/526,225 Continuation US11578444B2 (en) 2018-12-26 2019-07-30 Laundry treatment device and method of determining laundry course thereof

Publications (1)

Publication Number Publication Date
WO2020138523A1 true WO2020138523A1 (ko) 2020-07-02

Family

ID=68848022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016642 WO2020138523A1 (ko) 2018-12-26 2018-12-26 세탁물 처리 장치 및 그의 세탁 코스 결정 방법

Country Status (5)

Country Link
US (1) US11578444B2 (ko)
EP (1) EP3674466B1 (ko)
KR (1) KR20210096072A (ko)
CN (1) CN111379119B (ko)
WO (1) WO2020138523A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020213390A1 (de) 2020-10-23 2022-04-28 BSH Hausgeräte GmbH Verfahren zum bestimmen von schaum beim behandeln von wäschestücken sowie wäschepflegemaschine zu dessen durchführung
CN112733847B (zh) * 2020-12-31 2023-06-16 青岛海尔科技有限公司 洗涤标的标注方法及装置、存储介质、电子装置
CN112941806A (zh) * 2021-01-29 2021-06-11 珠海格力电器股份有限公司 洗衣机及其泡沫量预测方法、装置和电子设备
CN115262162A (zh) * 2021-04-29 2022-11-01 青岛海尔洗衣机有限公司 用于智能家居系统的控制方法
KR102543220B1 (ko) * 2022-01-07 2023-06-14 상명대학교 천안산학협력단 세탁 및 의류 정보 관리 서버, 및 이를 이용한 세탁 및 의류 정보 관리 방법
US11829234B2 (en) * 2022-01-19 2023-11-28 Dell Products L.P. Automatically classifying cloud infrastructure components for prioritized multi-tenant cloud environment resolution using artificial intelligence techniques
CN114855416B (zh) * 2022-04-25 2024-03-22 青岛海尔科技有限公司 洗涤程序的推荐方法及装置、存储介质及电子装置
WO2024071816A1 (ko) * 2022-09-29 2024-04-04 삼성전자 주식회사 라벨 이미지를 처리하는 방법, 전자 장치 및 기록매체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019787A (ko) * 2004-08-30 2006-03-06 엘지전자 주식회사 세탁 장치 및 그 제어 방법
KR20060023410A (ko) * 2004-09-09 2006-03-14 엘지전자 주식회사 세탁 시스템 및 그 제어 방법
KR20130020375A (ko) * 2011-08-19 2013-02-27 엘지전자 주식회사 세탁장치 및 세탁방법
WO2017126881A1 (ko) * 2016-01-18 2017-07-27 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR20180058203A (ko) * 2016-11-23 2018-05-31 모토로라 모빌리티 엘엘씨 의류 클리닝 시스템 및 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171289A (ja) 1993-12-21 1995-07-11 Matsushita Electric Ind Co Ltd 洗濯機
US5899005A (en) 1997-03-13 1999-05-04 General Electric Company System and method for predicting the dryness of clothing articles
DE19810907C2 (de) 1998-03-12 2003-05-08 Maas Ruth Erfassungsvorrichtung für Wäschestücke
WO2006025650A2 (en) 2004-08-30 2006-03-09 Lg Electronics Inc. Device and method for washing machine
EP1683902A1 (en) * 2005-01-20 2006-07-26 Electrolux Home Products Corporation N.V. Clothes washing or drying machine with improved controls
US9476156B2 (en) 2012-01-06 2016-10-25 Lg Electronics Inc. Portable terminal and control method of clothes treatment apparatus using the same
KR101631542B1 (ko) 2012-03-19 2016-06-20 삼성전자 주식회사 세탁기 및 그 제어 방법
WO2015055239A1 (en) 2013-10-16 2015-04-23 Saronikos Trading And Services, Unipessoal Lda Laundry washing machine with speech recognition and response capabilities and method for operating same
US9994993B2 (en) 2014-11-26 2018-06-12 International Business Machines Corporation Automated selection of settings for an ironing device
PL3241938T3 (pl) 2016-05-06 2020-03-31 Electrolux Appliances Aktiebolag Sposób sterowania pralką
US9818007B1 (en) * 2016-12-12 2017-11-14 Filip Bajovic Electronic care and content clothing label
CN106854808B (zh) 2017-01-22 2020-07-14 无锡小天鹅电器有限公司 洗衣机及其洗涤控制方法和装置
CN106676822B (zh) 2017-01-22 2019-12-17 无锡小天鹅电器有限公司 洗衣机及其基于衣物性质的洗涤控制方法和装置
WO2018199543A1 (ko) 2017-04-25 2018-11-01 엘지전자 주식회사 의류처리장치와 의류처리장치의 제어방법 및 상기 의류처리장치를 포함하는 온라인 시스템
CN107354662B (zh) 2017-08-18 2019-09-17 无锡小天鹅电器有限公司 衣物处理装置及其控制方法、装置和计算机可读存储介质
CN107893309A (zh) 2017-10-31 2018-04-10 珠海格力电器股份有限公司 洗涤方法及装置、洗衣方法及装置
CN108411565B (zh) 2018-06-11 2020-06-16 珠海格力电器股份有限公司 洗衣机控制方法及装置
CN109008887A (zh) 2018-06-28 2018-12-18 青岛海尔智能技术研发有限公司 一种洗鞋方法、装置、洗鞋机及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019787A (ko) * 2004-08-30 2006-03-06 엘지전자 주식회사 세탁 장치 및 그 제어 방법
KR20060023410A (ko) * 2004-09-09 2006-03-14 엘지전자 주식회사 세탁 시스템 및 그 제어 방법
KR20130020375A (ko) * 2011-08-19 2013-02-27 엘지전자 주식회사 세탁장치 및 세탁방법
WO2017126881A1 (ko) * 2016-01-18 2017-07-27 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR20180058203A (ko) * 2016-11-23 2018-05-31 모토로라 모빌리티 엘엘씨 의류 클리닝 시스템 및 방법

Also Published As

Publication number Publication date
US20200208320A1 (en) 2020-07-02
US11578444B2 (en) 2023-02-14
CN111379119B (zh) 2022-07-05
CN111379119A (zh) 2020-07-07
EP3674466B1 (en) 2021-05-19
EP3674466A1 (en) 2020-07-01
KR20210096072A (ko) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2020213751A1 (ko) 인공 지능 세탁물 처리 기기 및 그의 동작 방법
WO2020138523A1 (ko) 세탁물 처리 장치 및 그의 세탁 코스 결정 방법
WO2020130177A1 (ko) 세탁 스케줄링 장치 및 그 방법
WO2020184735A1 (ko) 인공 지능 기기 및 그의 동작 방법
WO2020122294A1 (ko) 세탁기
WO2020213750A1 (ko) 객체를 인식하는 인공 지능 장치 및 그 방법
WO2020218632A1 (ko) 인공지능 장치
WO2020204221A1 (ko) 공기 조화기
WO2020138624A1 (en) Apparatus for noise canceling and method for the same
WO2020130180A1 (ko) 세탁물 처리 기기 및 그의 동작 방법
WO2020138564A1 (ko) 전자 장치
WO2018088794A2 (ko) 디바이스가 이미지를 보정하는 방법 및 그 디바이스
WO2020213758A1 (ko) 음성으로 상호작용하는 인공 지능 장치 및 그 방법
WO2020122293A1 (ko) 세탁 스케쥴링 장치
WO2019182265A1 (ko) 인공 지능 기기 및 그의 동작 방법
WO2011145873A2 (ko) 가전기기, 가전기기 시스템 및 그 동작방법
WO2019151846A2 (ko) 공기 청정기
WO2019139461A2 (ko) 식기 세척기와 통신하는 서버
WO2019225961A1 (en) Electronic device for outputting response to speech input by using application and operation method thereof
WO2021006405A1 (ko) 인공지능 서버
WO2019151845A2 (ko) 에어컨
WO2021006404A1 (ko) 인공지능 서버
WO2018084576A1 (en) Electronic device and controlling method thereof
WO2021137345A1 (ko) 인공 지능 냉장고 및 그의 동작 방법
WO2020184753A1 (ko) 음성 추출 필터를 이용하여 음성 제어를 수행하는 인공 지능 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945065

Country of ref document: EP

Kind code of ref document: A1