WO2020138357A1 - 光透過性部品の製造方法、及び、光透過性部品の製造システム - Google Patents

光透過性部品の製造方法、及び、光透過性部品の製造システム Download PDF

Info

Publication number
WO2020138357A1
WO2020138357A1 PCT/JP2019/051287 JP2019051287W WO2020138357A1 WO 2020138357 A1 WO2020138357 A1 WO 2020138357A1 JP 2019051287 W JP2019051287 W JP 2019051287W WO 2020138357 A1 WO2020138357 A1 WO 2020138357A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
heating
area
manufacturing
Prior art date
Application number
PCT/JP2019/051287
Other languages
English (en)
French (fr)
Inventor
竹永 勝宏
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2020562450A priority Critical patent/JP7177180B2/ja
Publication of WO2020138357A1 publication Critical patent/WO2020138357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/002Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6208Laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6213Infrared
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding

Definitions

  • the present invention relates to a method of manufacturing a light transmissive part capable of stably manufacturing a light transmissive part, and a manufacturing system of the light transmissive part.
  • Patent Document 1 describes a processing machine for tapering a part of an optical fiber. Therefore, this processing machine can be understood as a manufacturing system for processing an optical fiber to manufacture an optical fiber having a predetermined function.
  • a high output CO 2 laser that oscillates light having a wavelength with a high absorptivity is applied to the optical fiber to form a part of the optical fiber. Is heating.
  • the output of the CO 2 laser device tends to be unstable, a manufacturing method and a manufacturing system capable of stably manufacturing the light transmissive component are required.
  • an object of the present invention is to provide a method of manufacturing a light-transmitting part that can stably manufacture a light-transmitting part, and a manufacturing system of the light-transmitting part.
  • a method for manufacturing a light-transmissive component of the present invention includes a preparatory step of preparing a light-transmissive workpiece, and a first region including at least a part of the workpiece at a predetermined temperature.
  • a second region including at least a part of the second region and heating the second region to a temperature higher than the predetermined temperature so that at least a part of the material of the second region is in a state different from that before the heating. And two heating steps.
  • the manufacturing system of the light transmissive component of this invention is a 1st heating part which can heat the 1st area
  • a second heating unit capable of irradiating a region and heating the second region to a temperature higher than the predetermined temperature, wherein the second heating unit heats the second region to a temperature higher than the predetermined temperature.
  • at least part of the material of the second region is in a state different from that before heating.
  • a light-transmissive member such as glass has the property of absorbing light of a wavelength that is transmitted at room temperature when the temperature rises.
  • a light source with stable output such as a semiconductor laser device can be used as a light source that emits light of such a wavelength. Therefore, heat energy due to light can be stably applied to the second region.
  • the second region is stabilized until the temperature of the second region becomes higher than a predetermined temperature and at least a part of the second region becomes different from the state before heating. Can be heated. That is, the second region can be stably processed. Therefore, according to the method of manufacturing the light transmissive component and the system of manufacturing the light transmissive component of the present invention, the light transmissive component can be stably manufactured.
  • the light is focused on the second region.
  • the second heating unit of the system for manufacturing the light transmissive component is capable of condensing the light in the second region.
  • the energy density of light can be increased, and the second area can be heated to a high temperature in a short time.
  • the second heating step of the method for manufacturing the light transmissive component it is preferable to heat the second region to a temperature higher than the temperature of the first region. Further, it is preferable that the second heating unit of the system for manufacturing the light transmissive component can heat the second region to a temperature higher than the temperature of the first region.
  • a light source that emits stable light can be used. By heating to a high temperature with such stable light, processing at a high temperature can be stably performed.
  • the second region may be located inside the first region.
  • the second heating unit may be capable of irradiating the light in the first region.
  • the second area Since the second area is located within the first area, the entire second area is heated from the beginning when the second area is irradiated with light. Therefore, the second region can be heated in a short time.
  • the second region may include at least a part of the first region and at least a part other than the first region.
  • the second heating unit may be capable of irradiating at least a part of the first region and at least a part other than the first region with the light.
  • a region of the second region that overlaps the first region is heated to a temperature higher than a predetermined temperature by heating and does not overlap the first region of the second region due to heat conduction and radiation from the overlapping region.
  • the area is heated above a predetermined temperature.
  • the region that has reached a predetermined temperature or higher absorbs light, so that thermal energy is applied and the region is further heated. Therefore, even if the first region is not included in a part of the second region, the region heated to a predetermined temperature or higher due to heat conduction or radiation spreads and the entire second region is heated. ..
  • the first region can be set to only a specific part of the workpiece. It is possible to heat other than the first region starting from the first region.
  • the second region of the method for manufacturing a light transmissive component is a part of the workpiece, and in the second heating step, the second region heated to a temperature higher than the predetermined temperature is the second region. It is preferable to move the position of the light with which the workpiece is irradiated so as to move to a region different from the first region. Further, the second region of the light-transmissive component manufacturing system is a part of the workpiece, and the second heating unit is configured such that the second region is heated to a temperature higher than the predetermined temperature. It is preferable that it is possible to move the position of the light with which the workpiece is irradiated so as to move to a region different from one region.
  • the heated area can be expanded.
  • the processed area can be expanded by moving the spot-shaped second area to a different area from the first area.
  • the optical path of the light with which the second region is irradiated in the second heating step of the method of manufacturing the light transmissive component is It is preferable that the area other than the second area irradiated with the light does not overlap with the area having the predetermined temperature or higher.
  • the second heating unit of the system for manufacturing a light-transmissive component is configured such that an optical path of the light with which the second region is irradiated is equal to or higher than the predetermined temperature in a region other than the second region with which the light is irradiated. It is preferable that the light can be emitted so as not to overlap the area.
  • the optical path overlaps with the area of a certain temperature or higher, the light is absorbed in the area, and the energy of the light irradiated to the second area is reduced. Therefore, since the optical path of the light does not overlap with the region of the predetermined temperature or higher in the region other than the second region illuminated by the light, the second region can be appropriately heated.
  • the second region may be ablated in the second heating step of the method of manufacturing the light transmissive component.
  • the second heating unit of the manufacturing system of the light transmissive component may be capable of ablating at least a part of the second region.
  • the second region includes the surface of the workpiece, a recess such as a groove can be formed in the light transmissive component, and if the second region is inside the workpiece, a void should be formed.
  • At least a part of the second region may be deformed in the second heating step of the method for manufacturing the light transmissive component.
  • a lens or the like can be formed on a part of the light transmissive component.
  • the two workpieces may be fused.
  • the second heating unit of the system for manufacturing a light transmissive component may be capable of fusion-splicing the two workpieces.
  • the workpieces When fusion is performed due to unstable heating, the workpieces tend to be fused instable. Particularly when the fusion area is large, stable heating is required.
  • the second region can be stably heated, the workpieces can be stably fused to each other, and the light-transmissive component can be stably manufactured. You can
  • the first heating unit can stop the heating of the first region after a time point when the second heating unit of the light transmissive component manufacturing system irradiates the second region with the light. ..
  • the heating of the first region serves as a trigger for heating the second region
  • the heating of the first region is stopped after the time when the second region is irradiated with light, so that unnecessary energy is not consumed. Consumption can be reduced.
  • the first heating step of the method for manufacturing the light transmissive component may be performed by any one of flame, discharge, heater, and laser light.
  • the first heating unit of the manufacturing system of the light transmissive component may include any one of a flame emitting device, a discharge device, a heater, and a laser light emitting device.
  • the light absorbed by the workpiece may be irradiated from the semiconductor laser or the fiber laser toward the second region.
  • the material of the object to be processed in the method of manufacturing the light transmissive component may include glass.
  • the shape of the object to be processed in the method of manufacturing the light transmissive component may be cylindrical.
  • the second heating unit of the system for manufacturing the light transmissive component may be a semiconductor laser or a fiber laser.
  • the light transmissive component manufacturing system further includes a camera capable of capturing at least one of the first region and the second region, and a control unit, and the control unit is an image captured by the camera or It is preferable that heating of the workpiece by at least one of the first heating unit and the second heating unit can be controlled based on a signal related to an image.
  • a light-transmitting component manufacturing method and a light-transmitting component manufacturing system capable of stably manufacturing a light-transmitting component.
  • FIG. 3 is a flowchart showing steps of a method for manufacturing the light transmissive component of FIG. 1. It is a figure which shows a to-be-processed body. It is a figure which shows a mode that the to-be-processed object was set to the processing machine. It is a figure which shows the mode of a 1st heating process. It is a state of the second heating step. It is a figure which shows the modification of the 2nd heating process of 1st Embodiment. It is a figure which shows the modification of the 1st heating process of 1st Embodiment.
  • FIG. 1 is a conceptual diagram showing a light transmissive component according to the present embodiment.
  • a cylindrical light transmissive component 100 is exemplified.
  • the light transmissive component 100 of the present embodiment is made of glass and has an inner portion 101 and an outer portion 102.
  • the inner part 101 and the outer part 102 are made of the same glass, but the inner part 101 and the outer part 102 are made of different materials.
  • the outer portion 102 is made of dense glass, while the inner portion 101 is made of glass having many fine voids formed therein.
  • the outer portion 102 is made of glass in which molecules are arranged in a state close to a crystal, while the inner portion 101 is made of glass having a large strain.
  • the outer portion 102 has higher light propagating properties than the inner portion 101.
  • the glass state of the inner portion 101 and the glass state of the outer portion 102 may be exchanged. In this case, the inner portion 101 has a higher light propagation property than the outer portion 102.
  • the method for manufacturing the light transmissive component 100 of the present embodiment includes a preparation step PS1, a first heating step PS2, and a second heating step PS3.
  • FIG. 3 is a diagram showing the workpiece 100a.
  • the workpiece 100a is made of glass having the same shape as the light transmissive component 100. Therefore, the workpiece 100a is a light transmissive member.
  • the workpiece 100a is made of the same material in the same state as the outer portion 102 of the light transmissive component 100. Therefore, for example, when the outer portion 102 is made of dense glass as described above, the workpiece 100a is a columnar member made of dense glass.
  • FIG. 4 is a diagram showing a state where the workpiece 100a is set on the processing machine 1.
  • the processing machine 1 is a light-transmissive component manufacturing system that processes the light-transmissive workpiece 100a to manufacture the light-transmissive component 100.
  • the processing machine 1 mainly includes a first heating unit 10, a second heating unit 20, a fixing unit 30, a camera 40, and a control unit 50.
  • the fixing portion 30 is a member that can fix the workpiece 100a.
  • the fixing part 30 is not particularly limited as long as the workpiece 100a can be fixed.
  • the fixing portion 30 is made of a member capable of chucking or fixing the end portion of the columnar workpiece 100a.
  • the fixing portion 30 of the present embodiment is movable in the direction along the longitudinal direction of the workpiece 100a to be fixed and in the radial direction of the workpiece 100a perpendicular to this direction, and is further fixed. It is configured to be rotatable about the axis of the body 100a.
  • the first heating unit 10 is a device capable of heating the first region, which is a part of the light-transmissive workpiece 100a, to a predetermined temperature or higher. Details of this first area will be described later.
  • the first heating unit 10 includes a semiconductor laser device.
  • the first heating unit 10 emits light having a wavelength absorbed by glass at room temperature.
  • the wavelength of the light emitted from the first heating unit 10 is, for example, 4 ⁇ m to 15 ⁇ m.
  • the 1st heating part 10 of this embodiment has a condensing lens etc. which are not illustrated, for example, and can emit the light condensed in the said 1st area
  • the predetermined temperature at which the first heating unit 10 heats the first region of the workpiece 100a is, for example, 1100° C. to 1800° C. when the workpiece 100a is quartz glass.
  • the first heating unit 10 can change the condensing position of the emitted light. For example, by moving the first heating unit 10 along the end surface or the surface of the workpiece 100a, it is possible to change the condensing position of the light with which the workpiece 100a is irradiated.
  • the wavelength is approximately the same as the wavelength of the CO 2 laser (for example, 9.3 ⁇ m to 10.6 ⁇ m). Therefore, as the first heating unit 10, a CO 2 laser device may be used instead of the semiconductor laser device. However, the semiconductor laser device is preferable to the CO 2 laser device because the intensity of emitted light is more stable. Further, the semiconductor laser device is preferable to the CO 2 laser device because of its smaller size, lower power consumption, and longer life.
  • the first heating unit 10 includes a micro torch as a flame radiating device that heats the first region with a flame, and a discharge including a pair of discharge electrodes that heats the first region by discharge. It may be configured by a device, a heater, a laser device that emits laser light having a wavelength different from the above, or the like.
  • the 2nd heating part 20 can irradiate light to the 2nd area
  • This is a device that can bring at least a part of the material of the second region into a state different from that before heating. Details of this second area will be described later.
  • the second heating unit 20 itself comprises a laser device. Examples of such a laser device include a semiconductor laser and a fiber laser device, and light of a wavelength emitted from the semiconductor laser or the fiber laser device is applied to the second region.
  • the 2nd heating part 20 of this embodiment has a condensing lens etc., for example, and can output the light condensed in the said 2nd area
  • the second heating unit 20 transmits the glass at room temperature and emits light having a wavelength absorbed by the glass at the predetermined temperature or higher.
  • the light emitted from the second heating unit 20 passes through the workpiece 100a at room temperature and is absorbed by the workpiece 100a at the predetermined temperature or higher.
  • Examples of light having such a wavelength include light having a wavelength of 0.5 to 2.5 ⁇ m. Light of such a wavelength is rapidly absorbed by the glass when the temperature of the glass is around 1100°C. Therefore, as described above, if the object 100a to be processed is glass and the first region is, for example, 1300° C., the light emitted from the second heating unit 20 is absorbed in the first region.
  • the second heating unit 20 can change the focus position of the emitted light. For example, by moving the second heating unit 20 along the radial direction or the longitudinal direction of the workpiece 100a, it is possible to change the condensing position of the light with which the workpiece 100a is irradiated.
  • the camera 40 is a camera capable of photographing the state of the workpiece 100a. Further, the camera 40 is capable of capturing an image of how the first heating unit 10 irradiates the workpiece 100a with light and how the second heating unit 20 irradiates the workpiece 100a with light. It The camera 40 is, for example, a camera capable of capturing a moving image using a CCD (Charge-Coupled Device) or a light receiving element of InGaAs or InSb. A camera using a light receiving element of InGaAs or InSb can be used as a night vision camera. That is, the camera 40 also includes a night-vision camera.
  • CCD Charge-Coupled Device
  • a camera using a light receiving element of InGaAs or InSb can be used as a night vision camera. That is, the camera 40 also includes a night-vision camera.
  • the camera 40 may be a camera using a two-dimensional infrared sensor such as an uncooled microbolometer using amorphous silicon. That is, the camera 40 includes a thermo camera capable of measuring the temperature distribution of the workpiece 100a. It should be noted that in the present embodiment, the camera 40 has a built-in image processing unit that digitally converts an image and performs necessary image processing. Also, a plurality of cameras 40 may be provided.
  • the control unit 50 is a device that can control at least one of the first heating unit 10 and the second heating unit 20 based on a signal relating to a video or image captured by the camera 40.
  • the control unit 50 is a device capable of adjusting the heating of the workpiece 100a by controlling at least one of the first heating unit 10 and the second heating unit 20.
  • the control unit 50 may use, for example, an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device. it can.
  • the NC device When the NC device is used, the control unit 50 may use a machine learning device or may not use a machine learning device.
  • a video signal or an image signal from the camera 40 is input to the control unit 50.
  • the control unit 50 controls the first heating unit 10, the second heating unit 20, and the fixed unit 30.
  • the first heating unit 10 emits, stops, and adjusts the power of the emitted light by a control signal generated by the control unit 50 based on a signal relating to an image or an image captured by the camera 40.
  • the light emitting position and the light collecting position of the emitted light are adjusted.
  • the second heating unit 20 emits light, stops light, adjusts the power of the emitted light, and emits light according to a control signal generated by the control unit 50 based on a signal relating to an image or an image captured by the camera 40.
  • the control unit 50 may be divided into a plurality of parts.
  • the first heating unit 10, the second heating unit 20, and the fixed unit 30 may be controlled by different control units.
  • the plurality of control units are the control unit 50 shown in FIG.
  • the workpiece 100a set in such a processing machine 1 is heated by the first heating unit 10 and the second heating unit 20 as described later.
  • This step is a step of heating the first region including at least a part of the workpiece 100a to a predetermined temperature or higher.
  • the workpiece 100a is set on the processing machine 1 as described above, and when the operator turns on a switch (not shown), the processing machine 1 performs this step.
  • FIG. 5 is a diagram showing a state of this step.
  • the fixed portion 30 moves and stops at a desired position in response to a control signal from the control portion 50.
  • the light 10L is emitted from the first heating unit 10 as shown in FIG.
  • the first heating unit 10 can emit condensed light, and the light 10L is condensed on the surface of one end of the workpiece 100a facing each other. At this time, the state of the light 10L is photographed by the camera 40, the control unit 50 controls the first heating unit 10 based on the photographed image, and the focus position of the light 10L is finely adjusted. In this way, the light 10L is applied to the workpiece 100a. As described above, the first heating unit 10 emits the light absorbed by the workpiece 100a at room temperature. Therefore, as shown in FIG.
  • the work piece 100a when the work piece 100a is irradiated with the light 10L, at least a part of the light 10L is absorbed by the work piece 100a and a part of the work piece 100a has the predetermined amount. It is heated above the temperature.
  • a region heated by the first heating unit 10 to a predetermined temperature or higher is a first region AR1 indicated by a dotted line.
  • the first region AR1 is heated to, for example, about 1300°C.
  • the 1st heating part 10 may irradiate light to a 1st area
  • ⁇ Second heating step PS3> At least a part of the first region AR1 heated by the first heating unit 10 is irradiated with light having a wavelength that is transmitted through the workpiece 100a at room temperature and is absorbed by the workpiece 100a at the predetermined temperature or higher.
  • the light absorbed by the workpiece is irradiated from the above-mentioned semiconductor laser or fiber laser, which is the second heating unit 20, toward the second region AR2.
  • the control unit 50 controls the second heating unit 20 to emit the light 20L from the second heating unit 20 as shown in FIG. 6 and controls the first heating unit 10 to control the light 10L. Stop emission.
  • the second heating unit 20 can emit condensed light, and the light 20L emitted from the second heating unit 20 is at least in the first region AR1 heated to a predetermined temperature or higher in the first heating step PS2. The light is focused on the second region AR2 including a part.
  • the second area AR2 is indicated by a dashed line.
  • the control unit 50 controls the second heating unit 20 based on the photographed image, and the focus position of the light 20L is finely adjusted.
  • the light 20L is applied to the second area AR2. Since the first area AR1 has a temperature equal to or higher than a predetermined temperature, the light irradiated to the area overlapping with the first area AR1 of the light 20L irradiated to the second area AR2 is absorbed by the workpiece 100a to generate thermal energy. Becomes Therefore, the region of the first region AR1 irradiated with the light 20L is further heated and the temperature thereof becomes higher.
  • the region adjacent to the region is also heated to a predetermined temperature or higher by heat conduction or radiation. Therefore, the region adjacent to the region overlapping the first region AR1 in the second region AR2, that is, the region not overlapping the first region AR1 in the second region AR2 also absorbs the light 20L and has a temperature higher than the predetermined temperature. Is heated up. In this way, the region to be heated spreads, and the entire second region AR2 irradiated with the light 20L is heated to a temperature higher than a predetermined temperature.
  • a region adjacent to the region irradiated with the light 20L is also heated to a predetermined temperature or higher due to heat conduction or radiation from another region heated to a temperature higher than the predetermined temperature.
  • the second heating unit 20 may irradiate the second region with light from a direction of 90° or less with respect to the axis of the workpiece 100a.
  • the second area AR2 is heated to a temperature higher than the temperature of the first area AR1 heated by the first heating unit 10 in the first heating step PS2 by the irradiation of the light 20L.
  • the second region AR2 is heated to, for example, the melting point of glass or higher.
  • the material of the second region AR2 is brought into a state different from that before heating by the heating. For example, voids may be formed in the second area AR2, or strain may remain in the molecular arrangement of the second area AR2 after cooling.
  • the control unit 50 controls the fixing unit 30 to move the fixing unit 30 in the longitudinal direction of the workpiece 100a. Therefore, the workpiece 100a moves along the longitudinal direction as indicated by the solid arrow in FIG.
  • the position of the workpiece 100a on which the light 20L is focused moves with time, as indicated by the dashed arrow in FIG.
  • the region adjacent to the region where the light 20L is condensed is heated to a predetermined temperature or higher
  • the light 20L is newly condensed by moving the workpiece 100a.
  • a region of the region AR2 that has already been heated to a predetermined temperature or higher absorbs the light 20L and is heated to a temperature higher than the predetermined temperature. Therefore, a region adjacent to the region heated to a temperature higher than the predetermined temperature is heated to a predetermined temperature or higher by heat conduction or radiation from the region.
  • the second region AR2 which moves due to the movement of the focus position of the light 20L on the workpiece 100a, is successively heated to a temperature higher than a predetermined temperature, and is brought into a state different from that before heating. In this way, the inner part 101 is formed.
  • the light 20L is incident from the side surface of the workpiece 100a, and the position where the light 20L is focused moves along the longitudinal direction of the workpiece 100a. Therefore, in the present embodiment, the optical path of the light 20L irradiated on the second region AR2 does not overlap the region heated to a predetermined temperature or higher in the region other than the second region AR2 irradiated by the light 20L.
  • the moving second region AR2 is heated to a temperature equal to or higher than a predetermined temperature, it is preferable that the position where the light 20L is focused be moved at an appropriate speed.
  • the speed is preferably 2 m/s or less.
  • the position of the workpiece 100a on which the light 20L is focused is moved along the broken line arrow in FIG. 6, the position does not have to move with time.
  • the workpiece 100a may be repeatedly moved and stopped in the direction indicated by the solid arrow in FIG. 6, and as a result, the position of the workpiece 100a on which the light 20L is focused may be repeatedly moved and stopped.
  • the second heating step PS3 may be lower or higher than the temperature of the first region AR1 heated in the first heating step PS2.
  • the first area AR1 has a predetermined temperature in the first heating step PS2. It will be heated to a higher temperature.
  • the second heating step is stopped and the end portion of the workpiece 100a where the inner portion 101 is not formed is cut by chucking.
  • the light transmissive component 100 having the inner portion 101 shown in FIG. 1 is manufactured.
  • the method for manufacturing the light transmissive component 100 of the present embodiment includes the preparation step PS1, the first heating step PS2, and the second heating step PS3.
  • a light-transmissive workpiece 100a is prepared.
  • the first heating step PS2 the first region AR1 including at least a part of the workpiece 100a is heated to a predetermined temperature or higher.
  • the second heating step PS3 at least one of the first regions AR1 heated in the first heating step PS2 is light 20L having a wavelength that is transmitted through the object 100a at room temperature and is absorbed by the object 100a at a predetermined temperature or higher.
  • the second region AR2 including the part is irradiated and the second region AR2 is heated to a temperature higher than a predetermined temperature so that at least a part of the material of the second region AR2 is in a state different from that before heating.
  • the processing machine 1 which is the manufacturing system of the light transmissive component 100 of the present embodiment includes the first heating unit 10 and the second heating unit 20.
  • the first heating unit 10 is a device capable of heating the first region AR1 including at least a part of the light-transmitting workpiece 100a to a predetermined temperature or higher.
  • the second heating unit 20 heats at least a part of the first area AR1 which is heated to a temperature equal to or higher than a predetermined temperature, the light having a wavelength that is transmitted through the object 100a to be processed at room temperature and is absorbed by the target 100a at a predetermined temperature or higher.
  • It is a device capable of irradiating the included second region AR2 and heating the second region AR2 to a temperature higher than a predetermined temperature, and is a device capable of changing at least a part of the material of the second region AR2 to a state different from that before heating.
  • the light transmissive member transmits at room temperature and is absorbed at a predetermined temperature or higher.
  • a light source of the second heating unit 20 that emits light of a certain wavelength
  • a light source such as a semiconductor laser device having a more stable output than the CO 2 laser device can be used. Therefore, according to the method of manufacturing the light transmissive component 100 and the manufacturing system of the light transmissive component 100 of the present embodiment, it is possible to stably apply the thermal energy of light to the second region AR2.
  • the second region AR2 can be stably heated until at least a part of the second region AR2 becomes in a state different from that before heating. That is, the second region AR2 can be stably processed.
  • the first area AR1 may be heated at least until the heating with the light 20L is started, and thereafter, the heating with the light 20L may be performed. Therefore, the stability of the first heating unit 10, which is a heat source for heating the first region AR1, is not so important, and the semiconductor laser device may not be used as the first heating unit 10. Therefore, according to the manufacturing method of the light transmissive component 100 of the present invention and the processing machine 1 which is the manufacturing system of the light transmissive component 100, the light transmissive component 100 can be stably manufactured.
  • the laser device different from the present embodiment may include other members such as a semiconductor laser used as an excitation light source and an amplifier for adjusting the power of light emitted from the excitation light source inside the laser device.
  • the light emitted from the laser device is the light emitted from the excitation light source after the power of the light is adjusted by another member such as the above-mentioned amplifier.
  • the laser device includes the excitation light source and other members, the entire laser device may be large, and it may be difficult to mount the laser device on the fusion machine. In addition, when the entire laser device becomes large, it may be difficult to realize downsizing of the fusion machine.
  • the wavelength of the light emitted to the second region AR2 is the same as the light directly emitted from the semiconductor laser or the fiber laser device used as the second heating unit 20. Therefore, the laser device of this embodiment can be the second heating unit 20 itself. As a result, the entire laser device of the present embodiment can be smaller than when the laser device different from the present embodiment includes the pumping light source and other members inside, and the laser device of the present embodiment can be fused. It can be easier to mount on a machine. Further, as described above, the size of the fusion machine can be reduced because the entire laser device becomes smaller.
  • the second heating unit 20 of the processing machine 1 focuses the light 20L on the second region AR2. Therefore, the energy density of light can be increased in the second region AR2, and the second region AR2 can be heated to a high temperature in a short time. Further, at the position where the light 20L is not condensed and the energy density of the light is low, the light 20L suppresses the workpiece 100a from being heated to a predetermined temperature or higher. Therefore, absorption of the light 20L at a position other than the position where the light 20L is condensed can be suppressed, and a desired position can be set to a state different from that before heating.
  • the second heating unit 20 heats the second area AR2 to a temperature higher than the temperature of the first area AR1.
  • a light source that emits stable light can be used as the second heating unit 20. By heating to a high temperature with such stable light, processing at a high temperature can be stably performed.
  • the second area AR2 includes at least a part of the first area AR1 and at least a part other than the first area AR1. Therefore, in the present embodiment, the second heating unit 20 of the processing machine 1 can irradiate the light 20L on at least a part of the first area AR1 and at least a part other than the first area AR1.
  • the region of the second region AR2 that overlaps the first region AR1 is heated to a temperature higher than a predetermined temperature by heating, and heat conduction and radiation from the overlapping region cause the second region AR2.
  • a region that does not overlap the first region AR1 is heated to a predetermined temperature or higher.
  • the region that has reached a predetermined temperature or higher absorbs light, so that thermal energy is applied and the region is further heated. Therefore, even when the first region AR1 is not included in a part of the second region AR2 as in the present embodiment, the region heated to a predetermined temperature or higher by heat conduction or radiation spreads, and The entire 2 area AR2 is heated.
  • the second area AR2 includes at least a part of the first area AR1 and at least a part other than the first area AR1 as described above, the first area AR1 can be set only to a specific part of the workpiece. Even in this case, it is possible to heat the area other than the first area AR1 starting from the first area AR1.
  • the first heating unit 10 can heat only the vicinity of the surface of the workpiece 100a as in the present embodiment
  • the second region AR2 can be expanded to the region inside including the surface of the workpiece 100a. ..
  • the second region AR2 is a part of the workpiece 100a, and in the second heating step PS3, the second region heated by the second heating unit 20 to a temperature higher than the predetermined temperature is the second region.
  • the position of the light applied to the workpiece 100a can be moved so as to move to a region different from one region. Therefore, as in the present embodiment, even if the second region AR2 is a spot-shaped region, the region heated by the movement can be widened to form the inner portion 101 shown in FIG.
  • the power of the light 20L emitted from the second heating unit 20 is increased to heat the second area AR2 until at least a part of the second area AR2 is ablated. May be done.
  • many voids can be formed in the second region AR2.
  • the first heating step may be stopped after the time point when the second area AR2 is irradiated with the light 20L. That is, the first heating unit 10 may stop heating the first region AR1 after the second heating unit 20 of the processing machine 1 irradiates the second region AR2 with the light 20L. Since the heating of the first area AR1 serves as a trigger for heating the second area AR2, the heating of the first area AR1 is stopped after the time when the second area AR2 is irradiated with light. The consumption of unnecessary energy can be reduced.
  • the inner part 101 of the light transmissive component 100 is formed in a linear shape, and the second region AR2 moves along the longitudinal direction of the workpiece 100a in the second heating step PS3.
  • the inner part 101 does not have to be linear.
  • the inner portion 101 of the light transmissive component may be formed in a spiral shape.
  • FIG. 7: is a figure which shows the modification of the 2nd heating process PS3 for manufacturing such a light transmissive component. As shown in FIG. 7, in this case, in the second heating step PS3, the light collection position of the light 20L emitted from the second heating unit 20 is a position displaced from the central axis of the workpiece 100a.
  • the fixing unit 30 moves the workpiece 100a along the longitudinal direction indicated by the solid arrow, and moves the workpiece 100a around the central axis of the workpiece 100a. Rotate in the direction. Therefore, the focus position of the light 20L emitted from the second heating unit 20 moves in a spiral shape indicated by a dashed arrow. In this way, it is possible to manufacture a light transmissive component in which the inner portion 101 is formed in a spiral shape.
  • the optical path of the light 20L irradiated on the second region AR2 of the workpiece 100a is at the condensing position of the light 20L and is equal to or higher than the predetermined temperature in the region other than the second region AR2 irradiated with the light 20L. It does not overlap the area of.
  • the optical path of the light 20L overlaps with a region having a predetermined temperature or higher, the light 20L is absorbed in the region, so that the energy of the light with which the second region AR2 is irradiated is reduced.
  • the optical path of the light 20L does not overlap with an area having a temperature equal to or higher than a predetermined temperature other than the second area AR2 irradiated with the light 20L, thereby suppressing a decrease in energy of the light irradiated onto the second area.
  • the second area AR2 can be appropriately heated.
  • the fixing part 30 moves the workpiece 100a along the longitudinal direction and emits from the second heating part 20.
  • the second heating unit 20 may be controlled so as to draw a circle when the condensing position of the light 20L to be processed is viewed along the longitudinal direction of the workpiece 100a.
  • the light transmissive component in which the inner portion 101 is formed in a spiral shape can also be manufactured by such a process. Even in this case, the optical path of the light 20L with which the second region AR2 of the workpiece 100a is irradiated as described above is equal to or higher than the predetermined temperature except the second region AR2 where the light 20L is focused.
  • the light 20L from the second heating unit 20 is preferably incident on the workpiece 100a from a direction that is non-perpendicular to the longitudinal direction of the workpiece 100a, and is 90° or less with respect to the axis of the workpiece 100a. It is more preferable that the light is incident from the direction.
  • the second area AR2 includes at least a part of the first area AR1 and at least a part other than the first area AR1.
  • the second area AR2 may be located in the first area AR1.
  • FIG. 8 is a diagram showing a modified example of the first heating step PS2.
  • the first heating unit 10 includes a heater.
  • the first heating unit 10 heats the workpiece 100a in a predetermined region along the longitudinal direction to a predetermined temperature or higher. That is, as shown in FIG. 8, in the present modification, the first area AR1 is a predetermined area along the longitudinal direction of the workpiece 100a.
  • the second heating step PS3 is performed in the same manner as in the above-described embodiment while the first heating step PS2 is being performed.
  • the second region AR2 is a region including a part of the side surface of the workpiece 100a.
  • the 2nd heating part 20 irradiates the 2nd field AR2 with light 20L of power which makes the temperature of the 2nd field AR2 higher than the temperature of the 1st field AR1.
  • the second area AR2 since the second area AR2 is located in the first area AR1, the entire second area AR2 is heated from the beginning when the second area AR2 is irradiated with light. Therefore, the second region AR2 can be heated in a shorter time than in the above embodiment.
  • FIG. 9 is a conceptual diagram showing the light transmissive component according to the present embodiment.
  • the optical fiber 110 is exemplified as the light transmissive component.
  • the optical fiber 110 of this embodiment includes an optical fiber 110a and an optical fiber 110b.
  • each of the optical fibers 110a and 110b has a core 111, a clad 112 that surrounds the core 111, and a coating layer 113 that covers the clad 112.
  • the core 111 is made of, for example, quartz to which a dopant is added, and the clad 112 is made of quartz glass having a lower refractive index than the core 111.
  • the optical fibers 110a and 110b of this embodiment are single-core fibers, the optical fibers 110a and 110b may be multi-clad fibers or multi-core fibers.
  • the optical fiber 110a and the optical fiber 110b each have a coating layer 113 peeled off near one end.
  • one ends of the optical fibers 110a and 110b from which the coating layer 113 is peeled off can be fusion-spliced.
  • the optical fiber 110a and the optical fiber 110b before being fusion-spliced with each other are light-transmissive workpieces in which light propagates through the core 111, and the optical fiber 110a and the optical fiber 110b are fusion-spliced.
  • the optical fiber 110 is a light transmissive component in which light propagates through the core 111 across the optical fiber 110a and the optical fiber 110b.
  • the flowchart showing the steps of the method for manufacturing the optical fiber 110 of this embodiment is the same as the flowchart shown in FIG. 2 of the first embodiment.
  • the optical fiber 110a and the optical fiber 110b are prepared in this step. Further, in the present embodiment, the coating layer 113 in the vicinity of one end of the optical fibers 110a and 110b is peeled off to align the positions of the cores 111 of the optical fibers 110a and 110b.
  • FIG. 10 is a view in which the optical fiber 110a and the optical fiber 110b are set in the optical fiber processing and fusion bonding machine.
  • the optical fiber processing and fusing machine 2 is a device capable of processing and fusion splicing the optical fibers.
  • the optical fiber 110a and the optical fiber 110b which are light transmissive workpieces, are fusion spliced.
  • the manufacturing system of the light-transmitting component for manufacturing the optical fiber 110 which is the light-transmitting component.
  • the optical fiber processing and fusion bonding machine 2 mainly includes a first heating unit 10, a second heating unit 20, optical fiber fixing units 30 a and 30 b, a camera 40, and a control unit 50.
  • first heating unit 10 and the second heating unit 20 are described as facing each other, the first heating unit 10 and the second heating unit 20 may be located on the same side.
  • the optical fiber fixing portion 30a is a member that fixes one optical fiber 110a
  • the optical fiber fixing portion 30b is a member that fixes the other optical fiber 110b.
  • the optical fiber fixing portions 30a and 30b are not particularly limited as long as the optical fibers can be fixed.
  • each of the optical fiber fixing portions 30a and 30b includes a member having a V-shaped groove formed in a plate-shaped member and a suppressing member. The optical fiber is arranged in the V groove and the optical fiber is suppressed by the suppressing member. It is said that. In the figure, the optical fiber fixing portions 30a and 30b are simply shown.
  • the optical fiber fixing portions 30a and 30b are movable in the direction along the longitudinal direction of the fixed optical fibers 110a and 110b and in the radial direction of the optical fibers 110a and 110b. Further, the optical fiber fixing portions 30a and 30b are configured to be rotatable around the axis of the fixed optical fibers 110a and 110b.
  • the optical fiber 110a is fixed to one optical fiber fixing portion 30a, and the optical fiber 110b is fixed to the other optical fiber fixing portion 30b.
  • One end of the optical fiber 110b is opposed to each other.
  • one end of the optical fiber 110a may be in contact with one end of the optical fiber 110b, but may be slightly separated. In this way, the optical fibers 110a and 110b from which the coating layer 113 near the one end is peeled off are set in the optical fiber processing and fusion bonding machine 2.
  • the first heating unit 10 has the same configuration as the first heating unit 10 of the first embodiment. Therefore, the first heating unit 10 is a member that heats the first region, which is a part of the optical fibers 110a and 110b, to a predetermined temperature or higher. Details of the first area of this embodiment will be described later.
  • the wavelength of the light emitted by the first heating unit 10 is the same as the wavelength emitted by the first heating unit 10 of the first embodiment, for example, and the light emitted by the first heating unit 10 has the core 111 and the clad at room temperature. It is absorbed by 112. In FIG. 10, it is described that light is emitted from the first heating unit 10 for easy understanding, but light is not emitted from the first heating unit 10 in this step.
  • the second heating unit 20 has the same configuration as the second heating unit 20 of the first embodiment. Therefore, the second heating unit 20 irradiates the second region including at least a part of the first region heated by the first heating unit 10 with light to bring the second region to a temperature higher than the predetermined temperature. It is a member that is heated to bring at least part of the second region into a state different from that before heating. Details of the second area of this embodiment will be described later.
  • the wavelength of the light emitted by the second heating unit 20 is similar to the wavelength emitted by the second heating unit 20 of the first embodiment, and the light emitted by the second heating unit 20 is the optical fiber 110a at room temperature.
  • the light passes through the core 111 and the clad 112 of 110b and is absorbed by the core 111 and the clad 112 at a temperature equal to or higher than the predetermined temperature.
  • the 2nd heating part 20 of this embodiment makes the optical fibers 110a and 110b fusion-splicable by the light radiate
  • FIG. 10 it is described that light is emitted from the second heating unit 20 for easy understanding, but light is not emitted from the second heating unit 20 in this step.
  • the camera 40 is a camera that captures a picture of the end of the optical fiber 110a and the end of the optical fiber 110b, and has the same configuration as the camera of the first embodiment. Therefore, the control unit 50, which will be described later, controls the positions of the optical fiber fixing units 30a and 30b based on the image captured by the camera 40. Accordingly, the end of the optical fiber 110a and the end of the optical fiber 110b are opposed to each other, and the optical fiber 110a and the optical fiber 110b can be aligned. Further, the camera 40 photographs how the light is emitted from the first heating unit 10 to the optical fibers 110a and 110b, and how the light is emitted from the second heating unit 20 to the optical fibers 110a and 110b. It is possible to do.
  • the control unit 50 has the same configuration as the control unit 50 of the first embodiment, but in the present embodiment, the control unit 50 can adjust the positions of the optical fiber fixing units 30a and 30b.
  • the optical fiber fixing portions 30a and 30b of the present embodiment are movable in a direction along the longitudinal direction of the optical fibers 110a and 110b to be fixed and in a radial direction of the optical fibers 110a and 110b perpendicular to this direction, and further fixed.
  • the optical fibers 110a and 110b are configured to be rotatable about their axes. Therefore, it is possible to align the optical fiber 110a and the optical fiber 110b by controlling the optical fiber fixing portions 30a and 30b based on the image taken by the camera.
  • FIG. 11 is a diagram showing a state of this step.
  • the light 10L is emitted from the first heating unit 10 as in the first embodiment.
  • the light 10L emitted from the first heating unit 10 is condensed on the surface of the clad 112 at one end of the optical fiber 110a and one end of the optical fiber 110b facing each other.
  • the light 10L is applied to the clad 112. Then, a part of the surface of the clad 112 at one end of the optical fiber 110a and at one end of the optical fiber 110b is heated to the predetermined temperature or higher.
  • the region of the cladding 112 heated by the first heating unit 10 to a predetermined temperature or higher is the first region AR1 indicated by the dotted line.
  • the first area AR1 is set to 1300° C., for example.
  • FIG. 12 is a diagram showing a state of this step in the present embodiment.
  • the light 20L emitted from the second heating unit 20 is collected in the second area AR2 including at least a part of the first area AR1 heated to a predetermined temperature or higher in the first heating step PS2. Be illuminated.
  • the second area AR2 is indicated by a dashed line. In this way, the light 20L is applied to the second area AR2.
  • the entire second region AR2 where the light 20L is condensed in the optical fibers 110a and 110b is higher than a predetermined temperature as in the first embodiment. Be heated.
  • the second area AR2 on which the light 20L is focused is heated to the melting point of quartz glass or higher. Therefore, at least in the second area AR2, the optical fiber 110a and the optical fiber 110b are fusion-spliced. In this way, the second area AR2 is heated to a temperature higher than the predetermined temperature, and at least part of the second area AR2 is brought into a state different from that before heating.
  • the control unit 50 controls the second heating unit 20 to move the position where the light 20L emitted from the second heating unit 20 is condensed with time. Specifically, the second area AR2 is moved so as to follow the locus shown by the dashed arrow in FIG.
  • the trajectory of FIG. 12 is an example, and the trajectory is not limited to the trajectory. In this way, the second area AR2 irradiated by the light 20L is heated to a temperature equal to or higher than the melting point of the silica glass, and the second area AR2 moves, so that the optical fiber 110a and the optical fiber 110b move in the second area AR2. Fusion-spliced to each other along the trajectory.
  • the optical fiber 110 as the light transmissive component is manufactured in which the optical fiber 110a and the optical fiber 110b, which are the workpieces, are fusion spliced.
  • the second region AR2 can be stably heated, so that the optical fiber that is a workpiece is stably processed.
  • 110a and the optical fiber 110b can be fusion-spliced, and the optical fiber 110 which is a light transmissive component can be stably manufactured.
  • FIG. 13 is a figure which shows the modification of the 2nd heating process PS3 of this embodiment.
  • the light 20L may be condensed on the entire end portions of the optical fibers 110a and 110b including the entire first region AR1.
  • the entire ends of the optical fibers 110a and 110b are the second area AR2.
  • the second region AR2 is illustrated as being slightly smaller in order to avoid complication of the drawing due to overlapping lines.
  • the light 10L is applied to the entire end portions of the optical fibers 110a and 110b, and the end portions of the optical fibers 110a and 110b are not irradiated.
  • the whole may be heated above a predetermined temperature.
  • the light 20L may be emitted as in the embodiment shown in FIG. 12 or may be emitted as in the modification.
  • FIG. 14 is a conceptual diagram showing the light transmissive component according to the present embodiment.
  • the optical fiber 120 is exemplified as the light transmissive component.
  • the optical fiber 120 of this embodiment is an optical fiber in which a ball lens 121 is formed at the tip of the optical fiber, and is sometimes called a ball lensed optical fiber.
  • the optical fiber 120 has the same configuration as the optical fibers 110a and 110b of the second embodiment except that the ball lens 121 is formed at the tip as described above. Therefore, the optical fiber 120 is a light transmissive component through which light propagates through the core 111 and the ball lens 121.
  • the flowchart showing the steps of the method for manufacturing the optical fiber 120 of this embodiment is the same as the flowchart shown in FIG. 2 of the first embodiment.
  • the optical fiber 120a is prepared in this step.
  • the optical fiber 120a has the same configuration as the optical fibers 110a and 110b of the second embodiment, and is a light-transmissive workpiece in which light propagates through the core 111.
  • the coating layer 113 near one end of the optical fiber 120a is peeled off.
  • FIG. 15 is a diagram in which the optical fiber 120a is set in the optical fiber processing and fusion machine 2.
  • the optical fiber processing and fusion bonding machine 2 is a system for manufacturing a light-transmissive component that processes an optical fiber 120a that is a light-transmissive workpiece to manufacture an optical fiber 120 that is a light-transmissive component. is there.
  • the optical fiber 120a is fixed to one optical fiber fixing portion 30a.
  • one end of the optical fiber 120a is arranged at a position where the light 10L from the first heating unit 10 and the light 20L from the second heating unit 20 are irradiated.
  • the optical fiber 120a from which the coating layer 113 near the one end is peeled off is set in the optical fiber processing and fusion bonding machine 2.
  • the other optical fiber fixing portion 30b may not be provided in the optical fiber processing and fusion bonding machine 2. Therefore, in FIG. 15, the optical fiber fixing portion 30b is omitted. Note that, in FIG. 15, for the sake of easy understanding, it is described that light is emitted from the first heating unit 10 and the second heating unit 20, but in this step, the first heating unit 10 and the second heating unit 20 are emitted. No light is emitted from the portion 20.
  • FIG. 16 is a diagram showing this step.
  • the first region including a part of the end portions of the optical fibers 110a and 110b is heated to a temperature equal to or higher than a predetermined temperature, the end portion of the optical fiber 120a.
  • the first region including a part of is heated to a predetermined temperature or higher.
  • FIG. 17 is a diagram showing a state of this step in the present embodiment.
  • the light 20L emitted from the second heating unit 20 is collected in the second region AR2 including at least a part of the first region AR1 heated to a predetermined temperature or higher in the first heating step PS2. Be illuminated.
  • the light 20L is condensed on the entire end portion of the optical fiber 120a including the entire first area AR1.
  • the second region AR2 is illustrated as being slightly smaller in order to avoid complication of the drawing due to overlapping lines.
  • the second area AR2 the area that is heated from the area overlapping the first area AR1 is expanded and the heating range is expanded as described above, and the entire second area AR2 is heated to a temperature higher than a predetermined temperature.
  • the entire second region AR2 is heated to a temperature higher than the melting point of quartz forming the core 111 and the clad 112. Then, the quartz is deformed into a spherical shape due to the surface tension of the fluidized quartz. Thus, the second area AR2 is brought into a state different from that before heating.
  • the optical fiber 120 as a light transmissive component in which a ball lens is formed at the tip of the optical fiber is manufactured.
  • the ball lens 121 can be stably formed in a part of the optical fiber 120 which is a light transmissive component.
  • the ball lens 121 when a part of the optical fiber 120 is deformed, what is formed by the deformation is not limited to the ball lens 121.
  • the light 10L is irradiated onto the entire end of the optical fiber 120a as the light 20L shown in FIG. 17, and the entire end of the optical fiber 120a is heated to a predetermined temperature. It may be heated above.
  • FIG. 18 is a conceptual diagram showing the light transmissive component according to the present embodiment.
  • the optical fiber 130 is exemplified as the light transmissive component.
  • the coating layer 113 is peeled off in a predetermined section, and the cladding mode optical stripper 131 is formed in the section.
  • the clad mode optical stripper 131 of the present embodiment is a portion formed in the clad 112 in a spiral groove shape.
  • the clad mode light stripper 131 emits unnecessary clad mode light propagating through the clad 112 to the outside.
  • This optical fiber 130 has the same configuration as the optical fiber 110a or the optical fiber 110b of the second embodiment except that the coating layer 113 is peeled off in the predetermined section to form the clad mode optical stripper 131 as described above. To be done.
  • the optical fiber 130 has a cladding mode optical stripper 131 formed at the connecting portion between the optical fiber 110a and the optical fiber 110b in which the coating layer 113 of the optical fiber 110 of the second embodiment is peeled off.
  • the optical fiber 130 is a light transmissive component through which light propagates through the core 111.
  • the flowchart showing the steps of the method for manufacturing the optical fiber 130 of the present embodiment is the same as the flowchart shown in FIG. 2 of the first embodiment.
  • the optical fiber 130a is prepared in this step.
  • the optical fiber 130a has the same configuration as the optical fibers 110a and 110b of the second embodiment, and is a light-transmissive workpiece in which light propagates through the core 111.
  • the coating layer 113 is peeled off in a part of the longitudinal direction of the optical fiber 130a.
  • FIG. 19 is a diagram in which the optical fiber 120a is set in the optical fiber processing and fusion machine 2.
  • the optical fiber processing and fusion bonding machine 2 is a system for manufacturing a light-transmissive component that processes an optical fiber 130a that is a light-transmissive workpiece to manufacture an optical fiber 130 that is a light-transmissive component. is there.
  • one side of the section where the coating layer 113 of the optical fiber 130a is peeled off is fixed to one optical fiber fixing portion 30a, and the coating layer 113 of the optical fiber 130a is peeled off.
  • the other side of the section is fixed to the other optical fiber fixing portion 30b.
  • the optical fiber 130a is fixed to the optical fiber fixing portions 30a and 30b so that the section where the coating layer 113 is peeled off is positioned to be irradiated with light from the first heating unit 10 and the second heating unit 20.
  • FIG. 19 it is described that light is emitted from the first heating unit 10 for easy understanding, but light is not emitted from the first heating unit 10 in this step.
  • the optical fiber 130a from which the coating layer 113 in the partial section is peeled off is set in the optical fiber processing and fusion bonding machine 2.
  • FIG. 19 it is described that the first heating unit 10 and the second heating unit 20 face each other, but the first heating unit 10 and the second heating unit 20 may be on the same side. ..
  • FIG. 20 is a diagram showing this step.
  • the coating layer of the optical fiber 130a is formed.
  • the first region including a part of the clad 112 in the section where the 113 is peeled off is heated to a predetermined temperature or higher.
  • FIG. 21 is a diagram showing a state of this step in the present embodiment.
  • the light 20L emitted from the second heating unit 20 is collected in the second area AR2 including at least a part of the first area AR1 heated to a predetermined temperature or higher in the first heating step PS2. Be illuminated.
  • the light 20L is condensed on a part of the clad 112 and the entire second region AR2 is heated to a temperature higher than a predetermined temperature.
  • the second region AR2 is heated to a temperature at which quartz is ablated. Therefore, the second area AR2 on which the light 20L is condensed is processed into a concave shape.
  • the second area AR2 is brought into a state different from that before heating.
  • control unit 50 moves the optical fiber fixing units 30a and 30b so that the optical fiber 130a rotates about the axis and moves along the longitudinal direction. Therefore, the second area AR2 on which the light 20L is focused moves on the optical fiber 130a as shown by the broken line arrow in FIG. With the movement of the second region AR2, a spiral groove is formed in the clad 112, and the groove serves as the clad mode optical stripper 131.
  • the optical fiber 130 as a light-transmissive component in which the cladding mode optical stripper 131 is formed is manufactured.
  • the cladding mode optical stripper 131 can be stably formed in a part of the optical fiber 130 which is a light transmissive component.
  • a part of the optical fiber 120 is ablated, what is formed by the ablation is not limited to the cladding mode optical stripper 131.
  • the entire section of the optical fiber 130a in which the cladding mode optical stripper 131 is formed is irradiated with the light 10L, and the entire section is heated to a predetermined temperature or higher. Good.
  • the first heating unit 10 heats a part of the workpiece to a predetermined temperature or higher is mainly shown, but as noted in each embodiment, the first heating unit 10 is You may heat the whole area
  • the first heating unit 10 stops emitting the light 10L. That is, when the second heating step PS3 was started, the first heating step PS2 was stopped.
  • the first heating step PS2 may be continuously performed after the second heating step PS3. For example, when the first heating unit 10 heats the entire region heated by the second heating unit 20 as described above, while the first region AR1 is heated by the first heating unit 10, one of the first regions AR1 is heated. The area of the part may be heated by the second heating part 20.
  • the light 20L emitted from the second heating unit 20 is collected in the second heating step PS3.
  • the light 20L emitted from the second heating unit 20 may not be condensed and may be, for example, collimated light.
  • the second area AR2 is heated to a temperature higher than the temperature of the first area AR1 heated in the first heating step PS2.
  • the temperature of the first area AR1 heated in the first heating step PS2 may be higher than the temperature of the second area AR2 heated in the second heating step PS3.
  • the first region AR1 heated in the first heating step PS2 is preferably a part of the workpiece.
  • the manufacturing system of the light transmissive component was equipped with one 1st heating part 10 and 2nd heating part 20, respectively, at least 1 side of the 1st heating part 10 and the 2nd heating part 20 is provided. May be plural.
  • the plurality of second regions AR2 can be simultaneously irradiated with the light 20L.
  • the shape of the object to be processed is not particularly limited, and may be, for example, a plate-shaped member, a conical member, a prismatic member, a pyramidal member, or the like.
  • the material of the light transmissive component 100 may include glass. Therefore, the material of the workpiece 100a also contains glass.
  • the material of the light transmissive component is not particularly limited as long as it is a light transmissive material, and may be resin.
  • the manufacturing system of the light transmissive component may include the first heating unit 10 and the second heating unit 20, and the fixing unit 30 and the optical fiber fixing units 30 a and 30 b, the camera 40, and the control unit 50. Is not a mandatory configuration.
  • the above-described light-transmissive component manufacturing system is not limited to the above-described processing machine 1 as a light-transmissive component manufacturing apparatus, and includes a first heating unit 10, a second heating unit 20, a fixing unit 30,
  • the camera 40 and the control unit 50 do not have to be incorporated in one device.
  • the control unit 50 may be arranged in another place and may be connected to the first heating unit 10, the second heating unit 20, and the camera 40 via a network.
  • the manufacturing method of the transparent component which can manufacture a transparent component stably, and the manufacturing system of a transparent component can be provided, and a transparent component, such as a system which uses an optical fiber. Can be used in the technical field of using.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Beam Processing (AREA)

Abstract

光透過性部品(100)の製造方法は、光透過性の被加工体(100a)を準備する準備工程(PS1)と、被加工体(100a)の少なくとも一部を含む第1領域(AR1)を所定の温度以上に加熱する第1加熱工程(PS2)と、常温で被加工体(100a)を透過し所定の温度以上で被加工体(100a)に吸収される波長の光を第1加熱工程(PS2)で加熱された第1領域(AR1)の少なくとも一部を含む第2領域(AR2)に照射し、第2領域(AR2)を所定の温度より高い温度に加熱して、第2領域(AR2)の少なくとも一部の材質を当該加熱前と異なる状態とする第2加熱工程(PS3)と、を備える。

Description

光透過性部品の製造方法、及び、光透過性部品の製造システム
 本発明は、安定して光透過性部品を製造し得る光透過性部品の製造方法、及び、光透過性部品の製造システムに関する。
 光ファイバに加工を施し、所定の機能を有する光ファイバを製造する製造システムが知られている。下記特許文献1には、光ファイバの一部をテーパ状にする加工機が記載されている。従って、この加工機は、光ファイバを加工して、所定の機能を有する光ファイバを製造する製造システムと理解し得る。
 この加工機では、光ファイバの一部をテーパ状にするために、石英ガラスで吸収率の高い波長の光を発振する高出力のCOレーザを光ファイバに照射して、光ファイバの一部を加熱している。
米国特許出願公開第2015/0378102号明細書
 しかし、COレーザ装置は、出力が不安定な傾向にあるため、安定して光透過性部品を製造し得る製造方法や製造システムが求められている。
 そこで、本発明は、安定して光透過性部品を製造し得る光透過性部品の製造方法、及び、光透過性部品の製造システムを提供することを目的とする。
 上記課題を解決するため、本発明の光透過性部品の製造方法は、光透過性の被加工体を準備する準備工程と、前記被加工体の少なくとも一部を含む第1領域を所定の温度以上に加熱する第1加熱工程と、常温で前記被加工体を透過し前記所定の温度以上で前記被加工体に吸収される波長の光を前記第1加熱工程で加熱された前記第1領域の少なくとも一部を含む第2領域に照射し、前記第2領域を前記所定の温度より高い温度に加熱して、前記第2領域の少なくとも一部の材質を当該加熱前と異なる状態とする第2加熱工程と、を備えることを特徴とするものである。
 また、上記課題を解決するため、本発明の光透過性部品の製造システムは、光透過性の被加工体の少なくとも一部を含む第1領域を所定の温度以上に加熱可能な第1加熱部と、常温で前記被加工体を透過し前記所定の温度以上で前記被加工体に吸収される波長の光を前記所定の温度以上に加熱された前記第1領域の少なくとも一部を含む第2領域に照射し、前記第2領域を前記所定の温度より高い温度に加熱可能な第2加熱部と、を備え、前記第2加熱部が前記第2領域を前記所定の温度より高い温度に加熱する場合に、前記第2領域の少なくとも一部の材質が当該加熱前と異なる状態となることを特徴とするものである。
 ガラス等の光透過性の部材は、温度が高くなると常温では透過する波長の光を吸収する性質を有する。このような波長の光を出射する光源として、半導体レーザ装置等の出力が安定した光源を用いることができる。従って、第2領域に安定して光による熱エネルギーを与えることができる。このように第2領域に熱エネルギーを与えることで、第2領域が所定の温度よりも高くなり、第2領域の少なくとも一部が加熱前と異なる状態となるまで、当該第2領域を安定して加熱することができる。つまり、第2領域を安定して加工することができる。従って、本発明の光透過性部品の製造方法、及び、光透過性部品の製造システムによれば、安定して光透過性部品を製造し得る。
 また、上記光透過性部品の製造方法の前記第2加熱工程において、前記光を前記第2領域に集光させることが好ましい。また、光透過性部品の製造システムの第2加熱部は、前記光を前記第2領域に集光可能であることが好ましい。
 光を第2領域に集光させることで、光のエネルギー密度を高くすることができ、第2領域を短時間で高温にすることができる。
 また、上記光透過性部品の製造方法の前記第2加熱工程において、前記第2領域を前記第1領域の温度よりも高い温度に加熱することが好ましい。また、光透過性部品の製造システムの第2加熱部は、前記第2領域を前記第1領域の温度よりも高い温度に加熱可能であることが好ましい。
 上記のように本発明では、安定した光を出射する光源を用いることができる。このような安定した光により高い温度まで加熱することで、高い温度での加工を安定して行うことができる。
 また、上記光透過性部品の製造方法において、前記第2領域は、前記第1領域内に位置することとしてもよい。また、光透過性部品の製造システムにおいて、前記第2加熱部は、前記光を前記第1領域内に照射可能であることとしてもよい。
 第2領域が第1領域内に位置することで、第2領域に光が照射された当初から第2領域全体が加熱される。従って、短時間に第2領域を加熱し得る。
 また、上記光透過性部品の製造方法において、前記第2領域は、前記第1領域の少なくとも一部と前記第1領域以外の少なくとも一部とを含むこととしてもよい。また、光透過性部品の製造システムにおいて、前記第2加熱部は、前記第1領域の少なくとも一部と前記第1領域以外の少なくとも一部とに前記光を照射可能であることとしてもよい。
 この場合、第2領域における第1領域と重なる領域が、光による加熱で所定の温度より高い温度とされ、この重なる領域からの熱伝導や輻射により、第2領域のうち第1領域と重ならない領域が所定の温度以上に加熱される。所定の温度以上になった領域は光を吸収するため、熱エネルギーが与えられ更に加熱される。このため、第2領域の一部に第1領域が含まれない場合であっても、熱伝導や輻射により所定の温度以上に加熱される領域が広がって、第2領域の全体が加熱される。このように第2領域が第1領域の少なくとも一部と第1領域以外の少なくとも一部とを含むことで、第1領域を被加工体の特定の一部にしか設定できない場合であっても、第1領域を起点として第1領域以外をも加熱することができる。
 また、上記光透過性部品の製造方法の前記第2領域は前記被加工体の一部とされ、前記第2加熱工程において、前記所定の温度より高い温度に加熱される前記第2領域が前記第1領域とは異なる領域に移動するように、前記被加工体に照射される前記光の位置を移動させることが好ましい。また、光透過性部品の製造システムの前記第2領域は前記被加工体の一部とされ、前記第2加熱部は、前記所定の温度より高い温度に加熱される前記第2領域が前記第1領域とは異なる領域に移動するように、前記被加工体に照射される前記光の位置を移動させることが可能であることが好ましい。
 このような構成とされることで、加熱される領域を広げることができる。例えば、光が照射される第2領域がスポット状の領域とされる場合、スポット状の第2領域を第1領域とは異なる領域に移動させることで、加工される領域を広げることができる。
 また、前記被加工体に照射される光の位置が時間と共に移動される場合、上記光透過性部品の製造方法の前記第2加熱工程において、前記第2領域に照射される前記光の光路は、当該光によって照射される前記第2領域以外における前記所定の温度以上の領域と重ならないことが好ましい。またこの場合、光透過性部品の製造システムの前記第2加熱部は、前記第2領域に照射される前記光の光路が当該光によって照射される前記第2領域以外における前記所定の温度以上の領域と重ならないように前記光を出射可能であることが好ましい。
 光路が所定の温度以上の領域と重なると、光が当該領域に吸収されるため、第2領域に照射される光のエネルギーが低下する。従って、光の光路が当該光によって照射される第2領域以外における所定の温度以上の領域と重ならないことで、第2領域を適切に加熱することができる。
 また、上記光透過性部品の製造方法の前記第2加熱工程において、前記第2領域の少なくとも一部をアブレーションしてもよい。また、光透過性部品の製造システムの前記第2加熱部は、前記第2領域の少なくとも一部をアブレーション可能であってもよい。
 この場合、第2領域が被加工体の表面を含めば、光透過性部品に溝等の凹部を形成することができ、第2領域が被加工体の内部であれば、ボイドを形成することができる。
 また、上記光透過性部品の製造方法の前記第2加熱工程において、前記第2領域の少なくとも一部を変形させてもよい。
 この場合、光透過性部品の一部にレンズ等を形成することができる。
 また、上記光透過性部品の製造方法の前記第2加熱工程において、2つの前記被加工体を融着させてもよい。また、光透過性部品の製造システムの前記第2加熱部は、2つの前記被加工体を融着接続可能にさせてもよい。
 不安定な加熱による融着が行われると、被加工体同士が不安定に融着される傾向にある。特に融着面積が広い場合には、安定して加熱されることが求められる。上記のように本発明によれば、第2領域を安定して加熱することができるため、安定して被加工体同士を融着させることができ、安定して光透過性部品を製造することができる。
 また、上記光透過性部品の製造方法の前記第2領域に前記光が照射される時点以降に前記第1加熱工程を停止することが好ましい。また、光透過性部品の製造システムの前記第2加熱部が前記第2領域に前記光を照射する時点以降に、前記第1加熱部は前記第1領域の加熱を停止可能であることが好ましい。
 第1領域の加熱は、第2領域を加熱するためのきっかけとしての役割であるため、第2領域に光が照射される時点以降に第1領域の加熱が停止されることで、不要なエネルギーの消費を低減し得る。
 また、上記光透過性部品の製造方法の第1加熱工程は、火炎、放電、ヒータ、及びレーザ光のいずれかにより行われてもよい。また、光透過性部品の製造システムの前記第1加熱部は、火炎放射装置、放電装置、ヒータ、及びレーザ光出射装置のいずれかを含んでもよい。
 また、上記光透過性部品の製造方法の第2加熱工程において、前記被加工体に吸収される前記光を半導体レーザ又はファイバレーザから前記第2領域に向けて照射してもよい。
 また、上記光透過性部品の製造方法の前記被加工体の材料は、ガラスを含んでもよい。
 また、上記光透過性部品の製造方法の前記被加工体の形状は、円柱状であってもよい。
 また、光透過性部品の製造システムの前記第2加熱部は、半導体レーザまたはファイバレーザであってもよい。
 また、光透過性部品の製造システムは、前記第1領域および前記第2領域の少なくとも一方を撮影可能なカメラと、制御部と、を更に備え、前記制御部は、前記カメラが撮影した映像または画像に係る信号に基づいて、前記第1加熱部及び前記第2加熱部の少なくとも一方による前記被加工体の加熱を制御可能であることが好ましい。
 このような制御により、第1領域や第2領域の位置をより正確に把握して、適切な位置を加熱することができる。
 以上のように、本発明によれば、安定して光透過性部品を製造し得る光透過性部品の製造方法、及び、光透過性部品の製造システムが提供される。
本発明の第1実施形態の光透過性部品を示す図である。 図1の光透過性部品の製造方法の工程を示すフローチャートである。 被加工体を示す図である。 被加工体が加工機にセットされた様子を示す図である。 第1加熱工程の様子を示す図である。 第2加熱工程の様子を示すである。 第1実施形態の第2加熱工程の変形例を示す図である。 第1実施形態の第1加熱工程の変形例を示す図である。 本発明の第2実施形態の光透過性部品を示す図である。 光ファイバ加工融着機に光ファイバがセットされた様子を示す図である。 第1加熱工程の様子を示す図である。 第2加熱工程の様子を示すである。 第2実施形態の第2加熱工程の変形例を示す図である。 本発明の第3実施形態の光透過性部品を示す図である。 光ファイバ加工融着機に光ファイバがセットされた様子を示す図である。 第1加熱工程の様子を示す図である。 第2加熱工程の様子を示すである。 本発明の第4実施形態の光透過性部品を示す図である。 光ファイバ加工融着機に光ファイバがセットされた様子を示す図である。 第1加熱工程の様子を示す図である。 第2加熱工程の様子を示すである。
 以下、本発明に係る光透過性部品の製造方法、及び、光透過性部品の製造システムの好適な実施形態について、図面を参照しながらそれぞれ詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。
(第1実施形態)
 図1は、本実施形態に係る光透過性部品を示す概念図である。図1に示すように、本実施形態では、円柱状の光透過性部品100が例示される。本実施形態の光透過性部品100は、ガラスから成り、内側部101と外側部102とを有する。内側部101と外側部102とは同じガラスから構成されているが、内側部101と外側部102とは、当該材質が異なる状態とされている。例えば、外側部102は緻密なガラスから成るが、内側部101は細かいボイドが多数形成されたガラスから成る。また例えば、外側部102は結晶に近い状態で分子が配列されたガラスから成るが、内側部101はひずみの多いガラスから成る。これらの例では、外側部102の方が内側部101よりも光の伝搬性が高い。また例えば、上記の内側部101のガラスの状態と、外側部102のガラスの状態とが入れ替わってもよい。この場合には、内側部101の方が外側部102よりも光の伝搬性が高い。
 次に、図1に示す光透過性部品100を製造する製造方法について説明する。
 図2は、図1の光透過性部品100の製造方法の工程を示すフローチャートである。図2に示すように、本実施形態の光透過性部品100の製造方法は、準備工程PS1と、第1加熱工程PS2と、第2加熱工程PS3と、を備える。
<準備工程PS1>
 本工程は、被加工体を準備する工程である。図3は、被加工体100aを示す図である。図3に示すように、本実施形態では、被加工体100aは、光透過性部品100と同一形状のガラスから成る。このため、被加工体100aは光透過性の部材である。被加工体100aは、光透過性部品100の外側部102と同じ状態の同じ材料からなる。従って、例えば上記のように外側部102が緻密なガラスから成る場合、被加工体100aは緻密なガラスから成る円柱状の部材とされる。
 図4は、被加工体100aが加工機1にセットされた様子を示す図である。加工機1は、光透過性の被加工体100aを加工して、光透過性部品100を製造する光透過性部品の製造システムである。図4に示すように、加工機1は、第1加熱部10と、第2加熱部20と、固定部30と、カメラ40と、制御部50と、を主な構成として備える。
 固定部30は、被加工体100aを固定可能な部材である。固定部30は、被加工体100aを固定できれば特に限定されない。本実施形態では、固定部30は、円柱状の被加工体100aの端部をチャッキング又は固定可能な部材からなる。また、本実施形態の固定部30は、固定される被加工体100aの長手方向に沿った方向及びこの方向に垂直な被加工体100aの径方向に移動可能とされ、さらに固定される被加工体100aの軸中心に回転可能な構成とされる。
 第1加熱部10は、光透過性の被加工体100aの一部である第1領域を所定の温度以上に加熱可能な装置である。この第1領域の詳細は後述される。本実施形態では、第1加熱部10は、半導体レーザ装置を含む。第1加熱部10は、常温でガラスに吸収される波長の光を出射する。第1加熱部10が出射する光の波長は、例えば4μm~15μmとされる。本実施形態の第1加熱部10は、例えば、不図示の集光レンズ等を有しており、図4に示されるように、上記第1領域において集光する光を出射することができる。図4では理解の容易のために第1加熱部10から光が出射されているように記載されているが、本工程においては、第1加熱部10からは光が出射されない。第1加熱部10が被加工体100aの第1領域を加熱する所定の温度は、例えば、被加工体100aが石英ガラスの場合では、1100℃~1800℃とされる。
 また、第1加熱部10は、出射する光の集光位置を変化させることができる。例えば、被加工体100aの端面や表面に沿って第1加熱部10を移動させることで、被加工体100aに照射する光の集光位置を変化させることができる。
 なお、上記波長は、COレーザの波長(例えば、9.3μm~10.6μm)と概ね同じである。従って、第1加熱部10として半導体レーザ装置の代わりにCOレーザ装置が用いられてもよい。ただし、COレーザ装置よりも半導体レーザ装置の方が、出射する光の強度が安定しているため好ましい。さらに、COレーザ装置よりも半導体レーザ装置の方が小型で、低消費電力、長寿命であるため好ましい。また、本実施形態と異なるが、第1加熱部10は、上記第1領域を火炎により加熱する火炎放射装置としてのマイクロトーチや、上記第1領域を放電により加熱する一対の放電電極を含む放電装置や、ヒータや、上記とは異なる波長のレーザ光を出射するレーザ装置等で構成されてもよい。
 第2加熱部20は、第1加熱部10により加熱された上記の第1領域の少なくとも一部を含む第2領域に光を照射し、この第2領域を所定の温度より高い温度に加熱可能な装置であり、第2領域の少なくとも一部の材質を加熱前と異なる状態とし得る装置である。この第2領域の詳細は後述される。本実施形態では、第2加熱部20そのものは、レーザ装置から成る。このようなレーザ装置としては半導体レーザやファイバレーザ装置を挙げることができ、半導体レーザまたはファイバレーザ装置から出射される波長の光は第2領域に照射される。従って、半導体レーザまたはファイバレーザ装置から直接出射される光の波長と第2領域に照射される光の波長とは、同一の波長である。本実施形態の第2加熱部20は、例えば集光レンズ等を有しており、図4に示されるように、上記第2領域において集光する光を出射することができる。図4では理解の容易のために第2加熱部20から光が出射されているように記載されているが、本工程においては、第2加熱部20からは光が出射されない。また、第2加熱部20は、常温でガラスを透過して、上記所定の温度以上でガラスに吸収される波長の光を出射する。従って、第2加熱部20から出射する光は、常温で被加工体100aを透過し、上記所定の温度以上で被加工体100aに吸収される。このような波長の光としては、例えば、0.5から2.5μmの波長の光を挙げることができる。このような波長の光は、ガラスの温度が1100℃近傍から急激にガラスに吸収される。従って、上記のように、被加工体100aがガラスであり、第1領域が例えば1300℃とされれば、第2加熱部20から出射される光は、第1領域に吸収される。
 また、第2加熱部20は、出射する光の集光位置を変化させることができる。例えば、被加工体100aの径方向や長手方向に沿って第2加熱部20を移動させることで、被加工体100aに照射する光の集光位置を変化させることができる。
 カメラ40は、被加工体100aの様子を撮影可能なカメラである。また、カメラ40は、第1加熱部10から光が被加工体100aに照射される様子や、第2加熱部20から光が被加工体100aに照射される様子を撮影することが可能とされる。カメラ40は、例えば、CCD(Charge-Coupled Device)やInGaAsやInSbの受光素子を用いた動画撮影可能なカメラとされる。InGaAsやInSbの受光素子を用いたカメラは、暗視カメラとして用いることが可能である。つまり、カメラ40は、暗視カメラも含む。また、カメラ40は、例えば、アモルファスシリコンを用いた非冷却マイクロボロメーターなどの二次元赤外線センサが用いられるものであってもよい。つまり、カメラ40は、被加工体100aの温度分布を測定可能なサーモカメラを含む。なお、本実施形態では、カメラ40には、映像をデジタル変換して適宜必要な画像処理を行う画像処理部が内蔵されている。また、カメラ40が複数備えられていてもよい。
 制御部50は、カメラ40が撮影した映像または画像に係る信号に基づいて、第1加熱部10及び第2加熱部20の少なくとも一方を制御可能な装置である。具体的には、制御部50は、第1加熱部10及び第2加熱部20の少なくとも一方を制御することで、被加工体100aの加熱を調節可能な装置である。ここで、制御部50は、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置を用いることができる。また、制御部50は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。制御部50には、カメラ40からの映像信号または画像信号が入力する。また、制御部50は、第1加熱部10、第2加熱部20、及び固定部30を制御する。具体的には、第1加熱部10は、カメラ40が撮影した映像や画像に係る信号に基づき、制御部50が生成した制御信号により、光の出射、停止、出射する光のパワーの調整、光の出射位置、及び出射する光の集光位置の調節をする。また、第2加熱部20は、カメラ40が撮影した映像や画像に係る信号に基づき制御部50が生成した制御信号により、光の出射、停止、出射する光のパワーの調整、光の出射位置、及び出射する光の集光位置の調節をする。また、固定部30は、制御部50からの制御信号により、固定される被加工体100aの長手方向に沿った方向及びこの方向に垂直な被加工体100aの径方向に移動し、また、固定される被加工体100aの軸中心に回転する。なお、制御部50が複数に分かれて構成されてもよい。例えば、第1加熱部10、第2加熱部20、及び固定部30が、別々の制御部で制御されてもよい。この場合、複数の制御部が図4に示す制御部50となる。
 このような加工機1にセットされた被加工体100aは、第1加熱部10及び第2加熱部20により後述のように加熱される。
<第1加熱工程PS2>
 本工程は、被加工体100aの少なくとも一部を含む第1領域を所定の温度以上に加熱する工程である。被加工体100aが上記のように加工機1にセットされ、作業者が不図示のスイッチを入れると、加工機1は本工程を行う。図5は、本工程の様子を示す図である。本実施形態では、制御部50からの制御信号により、固定部30が移動して、所望の位置で停止する。次に、制御部50からの制御信号により、図5に示すように第1加熱部10から光10Lが出射される。上記のように第1加熱部10は集光する光を出射でき、光10Lは互いに対向する被加工体100aの一方の端部の表面上に集光される。このとき、光10Lの様子がカメラ40で撮影され、撮影された映像に基づいて制御部50が第1加熱部10を制御し、光10Lの集光位置が微調整される。こうして光10Lは被加工体100aに照射される。上記のように第1加熱部10は常温で被加工体100aに吸収される光を出射する。従って、図5に示されるように、被加工体100aに光10Lが照射されると、光10Lの少なくとも一部は被加工体100aに吸収されて、被加工体100aの一部が上記所定の温度以上に加熱される。第1加熱部10により所定の温度以上に加熱された領域が点線で示される第1領域AR1である。本工程により、第1領域AR1は、例えば1300℃程度に加熱される。また、第1加熱部10は、被加工体100aの軸に対して、90°以下の方向から第1領域に光を照射してもよい。
<第2加熱工程PS3>
 本工程は、常温で被加工体100aを透過し上記所定の温度以上で被加工体100aに吸収される波長の光を第1加熱部10により加熱された上記第1領域AR1の少なくとも一部を含む第2領域AR2に照射し、この第2領域AR2を前記所定の温度より高い温度に加熱して、第2領域AR2の少なくとも一部を加熱前と異なる状態とする工程である。本工程では、被加工体に吸収される光を第2加熱部20である上記した半導体レーザ又はファイバレーザから第2領域AR2に向けて照射する。図6は本工程の様子を示す図である。本工程では、制御部50は、第2加熱部20を制御し、図6に示すように第2加熱部20から光20Lを出射させるとともに、第1加熱部10を制御して、光10Lの出射を停止させる。上記のように第2加熱部20は集光する光を出射でき、第2加熱部20から出射する光20Lは、第1加熱工程PS2で所定の温度以上に加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に集光される。図6では第2領域AR2が一点鎖線で示されている。このとき、光20Lの様子がカメラ40で撮影され、撮影された映像に基づいて制御部50が第2加熱部20を制御して、光20Lの集光位置は微調整される。こうして光20Lが第2領域AR2に照射される。第1領域AR1は、所定の温度以上であるため、第2領域AR2に照射された光20Lのうち第1領域AR1と重なる領域に照射される光は、被加工体100aに吸収されて熱エネルギーとなる。このため、第1領域AR1における光20Lが照射される領域は更に加熱され更に温度が高くなる。このように第1領域AR1における光20Lが照射される領域の温度が高くなると、熱伝導や輻射により当該領域と隣接する領域も所定の温度以上に加熱される。このため、第2領域AR2のうち第1領域AR1と重なる領域と隣接する領域、すなわち第2領域AR2のうち第1領域AR1と重ならない領域も光20Lを吸収して所定の温度よりも高い温度まで加熱される。こうして加熱される領域が広がって、光20Lが照射される第2領域AR2の全体が所定の温度よりも高い温度まで加熱される。さらに、光20Lが照射される領域と隣接する領域も、所定の温度より高い温度に加熱された他の領域からの熱伝導や輻射により所定の温度以上に加熱される。また、第2加熱部20は、被加工体100aの軸に対して、90°以下の方向から第2領域に光を照射してもよい。
 本実施形態では、第2領域AR2は、光20Lの照射により、第1加熱工程PS2において第1加熱部10が加熱する第1領域AR1の温度よりも高い温度まで加熱される。第2領域AR2は、例えばガラスの融点以上まで加熱される。本工程では、当該加熱により第2領域AR2の材質が加熱前と異なる状態とされる。例えば、第2領域AR2にボイドが形成されたり、冷却後に第2領域AR2の分子の配列に歪が残ったりする。次に、本実施形態では、制御部50は、固定部30を制御して、固定部30を被加工体100aの長手方向に移動させる。このため被加工体100aは図6において実線矢印で示されるように、長手方向に沿って移動する。被加工体100aの移動により、図6において破線矢印で示されるように、光20Lが集光する被加工体100aの位置が時間と共に移動する。上記のように光20Lが集光する領域と隣接する領域は所定の温度以上に加熱されるため、光20Lが被加工体100aを移動することにより、新たに光20Lが集光される第2領域AR2のうち既に所定の温度以上に加熱されている領域は、光20Lを吸収して所定の温度よりも高い温度に加熱される。このため、所定の温度より高い温度に加熱されたその領域と隣り合う領域は、その領域からの熱伝導や輻射により所定の温度以上に加熱される。こうして、被加工体100aにおける光20Lの集光位置の移動により移動する第2領域AR2が、次々と所定の温度よりも高い温度に加熱されて、加熱前と異なる状態とされる。こうして、内側部101が形成される。
 なお、本実施形態では、図6のように、光20Lは被加工体100aの側面から入射し、光20Lの集光する位置が被加工体100aの長手方向に沿って移動する。このため、本実施形態では、第2領域AR2に照射される光20Lの光路は、光20Lによって照射される第2領域AR2以外における所定の温度以上に加熱された領域と重ならない。
 また、移動する第2領域AR2が所定の温度以上に加熱されるため、光20Lが集光する位置の移動が適切な速度とされることが好ましい。例えば被加工体100aが石英ガラスであれば、当該速度が2m/s以下であることが好ましい。
 なお、光20Lが集光する被加工体100aの位置が、図6の破線矢印に沿って移動されれば、当該位置は時間と共に移動しなくてもよい。例えば、被加工体100aが図6の実線矢印で示される方向に移動と停止を繰り返し、その結果、光20Lが集光する被加工体100aの位置が移動と停止を繰り返してもよい。
 また、第1加熱工程PS2において第1領域AR1が所定の温度以上に加熱され、第2加熱工程PS3において、第2領域AR2が所定の温度より高い温度に加熱されれば、第2加熱工程PS3で加熱される第2領域AR2の温度は、第1加熱工程PS2で加熱される第1領域AR1の温度よりも低くても高くてもよい。第1加熱工程PS2で加熱される第1領域AR1の温度が第2加熱工程PS3で加熱される第2領域AR2の温度よりも高い場合、第1加熱工程PS2では第1領域AR1が所定の温度より高い温度に加熱されることになる。
 固定部30が被加工体100aの長手方向に沿って一定距離移動したところで、第2加熱工程を止めて、チャッキングにより被加工体100aの内側部101が形成されていない端部を切断して、図1に示す内側部101が形成された光透過性部品100が製造される。
 以上説明したように、本実施形態の光透過性部品100の製造方法は、準備工程PS1と、第1加熱工程PS2と、第2加熱工程PS3と、を備える。準備工程PS1では、光透過性の被加工体100aを準備する。第1加熱工程PS2では、被加工体100aの少なくとも一部を含む第1領域AR1を所定の温度以上に加熱する。第2加熱工程PS3では、常温で被加工体100aを透過し所定の温度以上で被加工体100aに吸収される波長の光20Lを第1加熱工程PS2で加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に照射し、第2領域AR2を所定の温度より高い温度に加熱して、第2領域AR2の少なくとも一部の材質を加熱前と異なる状態とする。
 また、本実施形態の光透過性部品100の製造システムである加工機1は、第1加熱部10と、第2加熱部20とを備える。第1加熱部10は、光透過性の被加工体100aの少なくとも一部を含む第1領域AR1を所定の温度以上に加熱可能な装置である。第2加熱部20は、常温で被加工体100aを透過し所定の温度以上で被加工体100aに吸収される波長の光を所定の温度以上に加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に照射し、第2領域AR2を所定の温度より高い温度に加熱可能な装置であり、第2領域AR2の少なくとも一部の材質を加熱前と異なる状態とし得る装置である。
 上記のように本実施形態の光透過性部品100の製造方法、及び、光透過性部品100の製造システムでは、光透過性の部材に対して、常温で透過して所定の温度以上で吸収される波長の光を出射する第2加熱部20の光源として、COレーザ装置よりも出力が安定した半導体レーザ装置等の光源を用いることができる。従って、本実施形態の光透過性部品100の製造方法、及び、光透過性部品100の製造システムによれば、第2領域AR2に安定して光による熱エネルギーを与えることができる。このように第2領域AR2に熱エネルギーを与えることで、第2領域AR2の少なくとも一部が加熱前と異なる状態となるまで、当該第2領域AR2を安定して加熱することができる。つまり、第2領域AR2を安定して加工することができる。また、上記第1領域AR1は少なくとも光20Lによる加熱が開始されるまで加熱されればよく、その後は光20Lによる加熱を行えばよい。従って、第1領域AR1を加熱するための熱源である第1加熱部10の安定性が然程重要ではなく、第1加熱部10として半導体レーザ装置が用いられなくてもよい。従って、本発明の光透過性部品100の製造方法、及び、光透過性部品100の製造システムである加工機1によれば、安定して光透過性部品100を製造することができる。
 なお、本実施形態とは異なるレーザ装置は、励起光源として用いられる半導体レーザと、励起光源から出射される光のパワーを調整する増幅器といった他の部材をレーザ装置の内部に備えることがある。この場合、レーザ装置から出射される光は、励起光源から出射される光を上記の増幅器等の他の部材で光のパワーを調整した後の光となる。ここで、レーザ装置が励起光源及び他の部材を備えると、レーザ装置全体が大きくなり得、また、レーザ装置を融着機に搭載することが困難になり得る。また、当該レーザ装置全体が大きくなると、融着機の小型化が実現困難になり得る。しかしながら、本実施形態では、第2領域AR2に照射される光の波長は、第2加熱部20として用いられる半導体レーザまたはファイバレーザ装置から直接照射される光と同一である。従って、本実施形態のレーザ装置は、第2加熱部20そのものとなり得る。これにより、本実施形態とは異なるレーザ装置が励起光源及び他の部材を内部に備える場合に比べて、本実施形態のレーザ装置全体は小さくなり得、また、本実施形態のレーザ装置を融着機に搭載することが容易になり得る。また、上述の通り、レーザ装置全体が小さくなるので、融着機の小型化が実現可能となり得る。
 また、本実施形態では、第2加熱工程PS3において、加工機1の第2加熱部20は、光20Lを第2領域AR2に集光させている。このため、第2領域AR2において、光のエネルギー密度を高くすることができ、第2領域AR2を短時間で高温にすることができる。また、光20Lが集光されておらず光のエネルギー密度が低い位置では、光20Lにより被加工体100aが所定の温度以上に加熱されることが抑制される。従って、光20Lが集光する位置以外で光20Lが吸収されることを抑制でき、所望の位置を加熱前と異なる状態にし得る。
 また、本実施形態では第2加熱工程PS3において、第2加熱部20は、第2領域AR2を第1領域AR1の温度よりも高い温度に加熱する。上記のように本実施形態では、安定した光を出射する光源を第2加熱部20として用いることができる。このような安定した光により高い温度まで加熱することで、高い温度での加工を安定して行うことができる。
 また、本実施形態では第2領域AR2は、第1領域AR1の少なくとも一部と第1領域AR1以外の少なくとも一部とを含む。このため、本実施形態では、加工機1の第2加熱部20は、第1領域AR1の少なくとも一部と第1領域AR1以外の少なくとも一部とに光20Lを照射可能である。この場合、上記のように、第2領域AR2における第1領域AR1と重なる領域が、光による加熱で所定の温度より高い温度とされ、この重なる領域からの熱伝導や輻射により、第2領域AR2のうち第1領域AR1と重ならない領域が所定の温度以上に加熱される。所定の温度以上になった領域は光を吸収するため、熱エネルギーが与えられ更に加熱される。このため、本実施形態のように第2領域AR2の一部に第1領域AR1が含まれない場合であっても、熱伝導や輻射により所定の温度以上に加熱される領域が広がって、第2領域AR2の全体が加熱される。このように第2領域AR2が第1領域AR1の少なくとも一部と第1領域AR1以外の少なくとも一部とを含むことで、第1領域AR1を被加工体の特定の一部にしか設定できない場合であっても、第1領域AR1を起点として第1領域AR1以外をも加熱することができる。例えば、本実施形態のように、第1加熱部10が被加工体100aの表面近傍しか加熱できない場合、第2領域AR2を被加工体100aの表面を含みその内側の領域まで拡大することができる。
 また、本実施形態では、第2領域AR2は被加工体100aの一部とされ、第2加熱工程PS3において、第2加熱部20により所定の温度より高い温度に加熱される第2領域が第1領域とは異なる領域に移動するように、被加工体100aに照射される光の位置が移動されることが可能である。従って、本実施形態のように、第2領域AR2がスポット状の領域であっても、当該移動により加熱される領域を広げて、図1に示される内側部101を形成することができる。
 また、本実施形態では、第2加熱工程PS3において、第2領域AR2の少なくとも一部がアブレーションされるまで、第2加熱部20から出射される光20Lのパワーを上げて第2領域AR2が加熱されてもよい。この場合、第2領域AR2にボイドを多数形成することができる。多数のボイドが形成されることにより、光を散乱させる機能や、伝搬する光を局所的に強度低下させる機能の部位を光透過性部品100に形成することも可能である。
 また、本実施形態では、第2領域AR2に光20Lが照射される時点以降に第1加熱工程が停止されてもよい。つまり、加工機1の第2加熱部20が第2領域AR2に光20Lを照射する時点以降に、第1加熱部10は第1領域AR1の加熱を停止してもよい。第1領域AR1の加熱は、第2領域AR2を加熱するためのきっかけとしての役割であるため、第2領域AR2に光が照射される時点以降に第1領域AR1の加熱が停止されることで、不要なエネルギーの消費を低減し得る。
 なお、本実施形態では、光透過性部品100の内側部101が直線状に形成され、第2加熱工程PS3では、第2領域AR2が被加工体100aの長手方向に沿って移動した。しかし、内側部101は直線状でなくてもよい。例えば、光透過性部品の内側部101が螺旋状に形成されてもよい。図7は、このような光透過性部品の製造をするための、第2加熱工程PS3の変形例を示す図である。図7に示されるように、この場合、第2加熱工程PS3において、第2加熱部20から出射する光20Lの集光位置が、被加工体100aの中心軸からずれた位置とされる。そして制御部50からの制御信号により、固定部30は、被加工体100aを実線矢印で示される長手方向に沿って移動させるとともに、被加工体100aの中心軸を中心に被加工体100aを周方向に回転させる。このため、第2加熱部20から出射する光20Lの集光位置が破線矢印で示される螺旋状に移動する。こうして、内側部101が螺旋状に形成された光透過性部品を製造することができる。
 また、本実施形態では、被加工体100aの第2領域AR2に照射される光20Lの光路は、光20Lの集光位置であり光20Lが照射される第2領域AR2以外における所定の温度以上の領域と重ならない。光20Lの光路が所定の温度以上の領域と重なると、光20Lが当該領域に吸収されるため、第2領域AR2に照射される光のエネルギーが低下する。従って、上記のように光20Lの光路が光20Lによって照射される第2領域AR2以外における所定の温度以上の領域と重ならないことで、第2領域に照射される光のエネルギーの低下が抑制され第2領域AR2を適切に加熱することができる。
 また、上記のように内側部101が螺旋状に形成される場合、第2加熱工程PS3において、固定部30が被加工体100aを長手方向に沿って移動させるとともに、第2加熱部20から出射する光20Lの集光位置が被加工体100aの長手方向に沿ってみる場合に円を描くように第2加熱部20が制御されてもよい。このような工程によっても、内側部101が螺旋状に形成された光透過性部品を製造することができる。また、この場合であっても、上記のように被加工体100aの第2領域AR2に照射される光20Lの光路は、光20Lの集光位置である第2領域AR2以外で所定の温度以上の領域と重ならないことが好ましい。従って、第2加熱部20からの光20Lは、被加工体100aの長手方向に非垂直な方向から被加工体100aに入射されることが好ましく、被加工体100aの軸に対して90°以下の方向から入射されることがより好ましい。
 また、本実施形態では、第2領域AR2は、第1領域AR1の少なくとも一部と第1領域AR1以外の少なくとも一部とを含む。しかし、第2領域AR2は、第1領域AR1内に位置することとしてもよい。図8は第1加熱工程PS2の変形例を示す図である。本変形例では、第1加熱部10がヒータを含んで構成される。本変形例の第1加熱工程PS2では、第1加熱部10が、被加工体100aを長手方向に沿った所定の領域を所定の温度以上に加熱する。つまり、図8に示すように、本変形例では、第1領域AR1が被加工体100aを長手方向に沿った所定の領域である。そして、本変形例では、第1加熱工程PS2が行われている最中に、第2加熱工程PS3が上記実施形態と同様にして行われる。ただし、本変形例では、第2領域AR2が被加工体100aの側面の一部を含む領域とされる。このとき、第2加熱部20は、第2領域AR2の温度が第1領域AR1の温度よりも高い温度となるパワーの光20Lを第2領域AR2に照射する。本変形例によれば、第2領域AR2は、第1領域AR1内に位置するため、第2領域AR2に光が照射された当初から第2領域AR2全体が加熱される。従って、上記実施形態よりも短時間に第2領域AR2を加熱し得る。
(第2実施形態)
 次に、本発明の第2実施形態について図9から図14を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略される。
 図9は、本実施形態に係る光透過性部品を示す概念図である。図9に示されるように、本実施形態では、光透過性部品として光ファイバ110が例示される。本実施形態の光ファイバ110は、光ファイバ110aと光ファイバ110bとからなる。本実施形態では、光ファイバ110a,110bは、それぞれコア111と、コア111を囲むクラッド112と、クラッド112を被覆する被覆層113とを有する。コア111は例えばドーパントが添加された石英からなり、クラッド112はコア111よりも屈折率の低い石英ガラスからなる。なお、本実施形態の光ファイバ110a,110bはシングルコアファイバとされるが、光ファイバ110a,110bはマルチクラッドファイバ、マルチコアファイバであってもよい。
 光ファイバ110a及び光ファイバ110bは、それぞれ一方の端部近傍において、被覆層113が剥離されている。本実施形態の光ファイバ110は、光ファイバ110a及び光ファイバ110bの被覆層113が剥離された一方の端部同士が融着接続可能とされている。
 互いに融着接続される前の光ファイバ110a及び光ファイバ110bは、それぞれコア111を光が伝搬する光透過性の被加工体であり、光ファイバ110aと光ファイバ110bとが融着接続されてなる光ファイバ110は、光ファイバ110aと光ファイバ110bとに渡りコア111を光が伝搬する光透過性部品である。
 次に、光ファイバ110aと光ファイバ110bとを融着接続して、光ファイバ110を製造する製造方法について説明する。
 本実施形態の光ファイバ110の製造方法の工程を示すフローチャートは、第1実施形態の図2で示したフローチャートと同様とされる。
<準備工程PS1>
 本実施形態では、本工程において、光ファイバ110aと光ファイバ110bとを準備する。また、本実施形態では、光ファイバ110a及び光ファイバ110bの一方の端部近傍における被覆層113を剥離し、光ファイバ110a、110bの各コア111の位置を調心する。
 図10は、光ファイバ110a及び光ファイバ110bが光ファイバ加工融着機にセットされた図である。光ファイバ加工融着機2は、光ファイバの加工や融着接続を可能な機器であり、本実施形態では、光透過性の被加工体である光ファイバ110aと光ファイバ110bとを融着接続して、光透過性部品である光ファイバ110を製造する光透過性部品の製造システムである。図10に示すように、光ファイバ加工融着機2は、第1加熱部10と、第2加熱部20と、光ファイバ固定部30a,30bと、カメラ40と、制御部50と、を主な構成として備える。ここで、カメラ40が1つ記載されているが、カメラ40が2つ以上備えられても良い。また、第1加熱部10、第2加熱部20が対向しているように記載されているが、第1加熱部10、第2加熱部20が同じ側に位置してもよい。
 光ファイバ固定部30aは、一方の光ファイバ110aを固定する部材であり、光ファイバ固定部30bは、他方の光ファイバ110bを固定する部材である。それぞれの光ファイバ固定部30a,30bは、光ファイバを固定できれば特に限定されない。例えば、それぞれの光ファイバ固定部30a,30bは、板状部材にV溝が形成された部材と抑え部材とからなり、このV溝に光ファイバを配置して、抑え部材で光ファイバを抑える構成とされる。なお、図では光ファイバ固定部30a,30bが簡易に記載されている。
 また、光ファイバ固定部30a,30bは、固定された光ファイバ110a,110bの長手方向に沿った方向、及び光ファイバ110a,110bの径方向に移動可能とされる。さらに、光ファイバ固定部30a,30bは、固定された光ファイバ110a,110bの軸中心に回転可能な構成とされる。
 図10に示されるように、光ファイバ110aが一方の光ファイバ固定部30aに固定され、光ファイバ110bが他方の光ファイバ固定部30bに固定された状態で、光ファイバ110aの一方の端部と光ファイバ110bの一方の端部とが互いに対向した状態とされる。この状態で光ファイバ110aの一方の端部と光ファイバ110bの一方の端部とが接していてもよいが、わずかに離間してもよい。こうして、一方の端部近傍における被覆層113が剥離された光ファイバ110a,110bは光ファイバ加工融着機2にセットされる。
 第1加熱部10は、第1実施形態の第1加熱部10と同様の構成とされる。従って、第1加熱部10は、光ファイバ110a,110bの一部である第1領域を所定の温度以上に加熱する部材である。本実施形態の第1領域の詳細は後述される。第1加熱部10が出射する光の波長は、例えば第1実施形態の第1加熱部10が出射する波長と同様とされ、第1加熱部10が出射する光は、常温でコア111及びクラッド112に吸収される。図10では理解の容易のために第1加熱部10から光が出射されているように記載されているが、本工程では第1加熱部10からは光が出射されない。
 第2加熱部20は、第1実施形態の第2加熱部20と同様の構成とされる。従って、第2加熱部20は、第1加熱部10により加熱された上記の第1領域の少なくとも一部を含む第2領域に光を照射し、この第2領域を所定の温度より高い温度に加熱して、第2領域の少なくとも一部を加熱前と異なる状態とする部材である。本実施形態の第2領域の詳細は後述される。第2加熱部20が出射する光の波長は、例えば第1実施形態の第2加熱部20が出射する波長と同様とされ、第2加熱部20から出射する光は、常温で光ファイバ110a,110bのコア111及びクラッド112を透過し、上記所定の温度以上でコア111及びクラッド112に吸収される。本実施形態の第2加熱部20は、第2加熱部20から出射する光によって、光ファイバ110a,110bを融着接続可能にさせている。図10では理解の容易のために第2加熱部20から光が出射されているように記載されているが、本工程では第2加熱部20からは光が出射されない。
 カメラ40は、光ファイバ110aの端部及び光ファイバ110bの端部の様子を撮影するカメラであり、第1実施形態のカメラと同様の構成とされる。従って、カメラ40で撮影される画像に基づいて、後述する制御部50が光ファイバ固定部30a,30bの位置を制御する。これにより、光ファイバ110aの端部と光ファイバ110bの端部とを対向させて、光ファイバ110aと光ファイバ110bとを調心することができる。また、カメラ40は、第1加熱部10から光が光ファイバ110a及び光ファイバ110bに照射される様子や、第2加熱部20から光が光ファイバ110a及び光ファイバ110bに照射される様子を撮影することが可能とされる。
 制御部50は、第1実施形態の制御部50と同様の構成とされるが、本実施形態では、制御部50は、光ファイバ固定部30a,30bの位置を調整することができる。本実施形態の光ファイバ固定部30a,30bは、固定される光ファイバ110a,110bの長手方向に沿った方向及びこの方向に垂直な光ファイバ110a,110bの径方向に移動可能とされ、さらに固定される光ファイバ110a,110bを軸中心に回転可能な構成とされる。従って、上記のカメラで撮影される画像に基づいて、光ファイバ固定部30a,30bを制御して、光ファイバ110aと光ファイバ110bとを調心することができる。
<第1加熱工程PS2>
 本実施形態では、本工程において、光ファイバ110a,110bの端部の一部を含む第1領域を所定の温度以上に加熱する。光ファイバ110a及び光ファイバ110bが上記のように光ファイバ加工融着機2にセットされ、作業者が不図示のスイッチを入れると、制御部50は本工程を行う。図11は、本工程の様子を示す図である。第1実施形態と同様にして、第1加熱部10から光10Lが出射される。第1加熱部10から出射した光10Lは、互いに対向する光ファイバ110aの一方の端部及び光ファイバ110bの一方の端部におけるクラッド112の表面に集光される。こうして光10Lがクラッド112に照射される。そして、光ファイバ110aの一方の端部及び光ファイバ110bに一方の端部におけるクラッド112の表面の一部が上記所定の温度以上に加熱される。本実施形態では、第1加熱部10により所定の温度以上に加熱されたクラッド112の領域が点線で示される第1領域AR1である。本実施形態では、第1領域AR1は例えば1300℃とされる。
<第2加熱工程PS3>
 図12は本実施形態における本工程の様子を示す図である。図12に示されるように、第2加熱部20から出射する光20Lは、第1加熱工程PS2で所定の温度以上に加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に集光される。第2領域AR2は一点鎖線で示される。こうして光20Lが第2領域AR2に照射される。光20Lが光ファイバ110a,110bに照射されると、第1実施形態と同様にして、光ファイバ110a,110bにおける光20Lが集光する第2領域AR2の全体が所定の温度よりも高い温度まで加熱される。
 本実施形態では、光20Lが集光する第2領域AR2は、石英ガラスの融点以上まで加熱される。従って、少なくとも第2領域AR2において、光ファイバ110aと光ファイバ110bとが融着接続される。こうして、第2領域AR2が所定の温度より高い温度に加熱されて、第2領域AR2の少なくとも一部が加熱前と異なる状態とされる。
 次に、本実施形態では、制御部50は、第2加熱部20を制御して、第2加熱部20から出射する光20Lが集光する位置を時間と共に移動させる。具体的には図12において破線矢印で示す軌跡を辿るように第2領域AR2を移動させる。ただし、図12の軌跡は一例であり、当該軌跡には限定されない。こうして、光20Lによって照射される第2領域AR2が石英ガラスの融点以上に加熱され、当該第2領域AR2が移動することで、光ファイバ110aと光ファイバ110bとは、第2領域AR2の移動の軌跡に沿って互いに融着接続される。
 こうして、被加工体である光ファイバ110aと光ファイバ110bとが融着接続されてなる光透過性部品としての光ファイバ110が製造される。
 本実施形態の光透過性部品の製造方法、及び、光透過性部品の製造システムによれば、第2領域AR2を安定して加熱することができるため、安定して被加工体である光ファイバ110aと光ファイバ110bとを融着接続でき、安定して光透過性部品である光ファイバ110を製造することができる。
 なお、本実施形態では、第2加熱工程PS3において、光20Lは、光ファイバ110a,110bの端部における一部に集光されて、光20Lが集光されて成る第2領域AR2が移動することで、光ファイバ110aと光ファイバ110bとが融着された。図13は、本実施形態の第2加熱工程PS3の変形例を示す図である。本変形例では、光20Lが第1領域AR1の全体を含む光ファイバ110a,110bの端部の全体に集光されてもよい。この変形例では、光ファイバ110a,110bの端部の全体が第2領域AR2となる。なお、図13では、線が重なることにより図が煩雑となることを避けるため、第2領域AR2が僅かに小さめに記載されている。このような変形例によれば、上記実施形態のように光ファイバ110a,110bの端部において、光20Lの集光位置を移動させる必要がない。従って、本変形例によれば、制御部50の負担を軽減して、短時間で第2加熱工程を終えることができる。ただし、本変形例における第2領域AR2の面積は本実施形態の第2領域AR2の面積より大きいため、第2加熱部20から出射される光のパワーが大きいことが好ましい。
 なお、本実施形態においても、第1加熱工程PS2において、上記変形例の光20Lのように光10Lが光ファイバ110a,110bの端部の全体に照射され、光ファイバ110a,110bの端部の全体が所定の温度以上に加熱されてもよい。この場合に、光20Lは、図12に示す上記実施形態のように照射されてもよく、上記変形例のように照射されてもよい。
(第3実施形態)
 次に、本発明の第3実施形態について図14から図17を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図14は、本実施形態に係る光透過性部品を示す概念図である。図14に示すように、本実施形態では、光透過性部品として光ファイバ120が例示される。本実施形態の光ファイバ120は、光ファイバの先端にボールレンズ121が形成された光ファイバであり、ボールレンズド光ファイバと呼ばれる場合がある。この光ファイバ120は、上記のように先端にボールレンズ121が形成された点を除き、第2実施形態の光ファイバ110a,110bと同様の構成とされる。従って、光ファイバ120は、光がコア111とボールレンズ121とを光が伝搬する光透過性部品である。
 次に、ボールレンズ121が形成された光ファイバ120を製造する製造方法について説明する。
 本実施形態の光ファイバ120の製造方法の工程を示すフローチャートは、第1実施形態の図2で示したフローチャートと同様とされる。
<準備工程PS1>
 本実施形態では、本工程において、光ファイバ120aを準備する。この光ファイバ120aは、第2実施形態の光ファイバ110a,110bと同様の構成とされ、コア111を光が伝搬する光透過性の被加工体である。本実施形態では、第2実施形態と同様に光ファイバ120aの一方の端部近傍における被覆層113を剥離する。
 図15は、光ファイバ120aが光ファイバ加工融着機2にセットされた図である。光ファイバ加工融着機2は、本実施形態では、光透過性の被加工体である光ファイバ120aを加工して光透過性部品である光ファイバ120を製造する光透過性部品の製造システムである。
 図15に示されるように、本実施形態では、光ファイバ120aが一方の光ファイバ固定部30aに固定される。この状態で光ファイバ120aの一方の端部は、第1加熱部10からの光10Lと第2加熱部20からの光20Lが照射される位置に配置される。こうして、一方の端部近傍における被覆層113が剥離された光ファイバ120aは光ファイバ加工融着機2にセットされる。なお、本実施形態では、他方の光ファイバ固定部30bは光ファイバ加工融着機2に備えられていなくてもよい。このため、図15では、光ファイバ固定部30bが省略されている。なお、図15では理解の容易のために第1加熱部10及び第2加熱部20から光が出射されているように記載されているが、本工程では、第1加熱部10、第2加熱部20からは光が出射されない。
<第1加熱工程PS2>
 図16は、本工程を示す図である。本実施形態では、本工程では、第2実施形態において光ファイバ110a,110bの端部の一部を含む第1領域が所定の温度以上に加熱されたのと同様に、光ファイバ120aの端部の一部を含む第1領域が所定の温度以上に加熱される。
<第2加熱工程PS3>
 図17は本実施形態における本工程の様子を示す図である。図17に示されるように、第2加熱部20から出射する光20Lは、第1加熱工程PS2で所定の温度以上に加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に集光される。本実施形態では、光20Lは、第1領域AR1の全体を含む光ファイバ120aの端部の全体に集光される。なお、図17では、線が重なることにより図が煩雑となることを避けるため、第2領域AR2が僅かに小さめに記載されている。このため第2領域AR2のうち第1領域AR1と重なる領域から加熱されて、上記説明のように加熱される範囲が広がり、第2領域AR2全体が所定の温度よりも高い温度まで加熱される。本実施形態では、第2領域AR2全体をコア111、クラッド112を形成する石英の融点よりも高い温度まで加熱する。そして、流動化した石英の表面張力により石英が球状に変形する。こうして、第2領域AR2が加熱前と異なる状態とされる。
 そして、第2加熱部からの光20Lの照射を停止することで、光ファイバの先端にボールレンズが形成された光透過性部品としての光ファイバ120が製造される。
 本実施形態の光透過性部品の製造方法、及び、光透過性部品の製造システムでは、第2領域AR2は安定して加熱されるため、第2領域AR2の少なくとも一部が安定して変形される。従って、光透過性部品である光ファイバ120の一部にボールレンズ121を安定して形成することができる。なお、光ファイバ120の一部が変形される場合、当該変形により形成されるものはボールレンズ121に限定されない。
 なお、本実施形態において、第1加熱工程PS2において、図17に示す光20Lのように光10Lが光ファイバ120aの端部の全体に照射され、光ファイバ120aの端部の全体が所定の温度以上に加熱されてもよい。
(第4実施形態)
 次に、本発明の第4実施形態について図18から図21を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図18は、本実施形態に係る光透過性部品を示す概念図である。図18に示されるように、本実施形態では、光透過性部品として光ファイバ130が例示される。本実施形態の光ファイバ130では、所定の区間において被覆層113が剥離され、当該区間にクラッドモード光ストリッパ131が形成されている。本実施形態のクラッドモード光ストリッパ131は、クラッド112において螺旋状の溝状に形成された部位である。クラッドモード光ストリッパ131は、クラッド112を伝搬する不要なクラッドモード光を外部に放射する。この光ファイバ130は、上記のように所定の区間において被覆層113が剥離されクラッドモード光ストリッパ131が形成された点を除き、第2実施形態の光ファイバ110a或いは光ファイバ110bと同様の構成とされる。また或いは、この光ファイバ130は、第2実施形態の光ファイバ110における被覆層113が剥離された光ファイバ110aと光ファイバ110bとの接続部分にクラッドモード光ストリッパ131が形成されたものであってもよい。従って、光ファイバ130は、光がコア111を伝搬する光透過性部品である。
 次に、クラッドモード光ストリッパ131が形成された光ファイバ130を製造する製造方法について説明する。
 本実施形態の光ファイバ130の製造方法の工程を示すフローチャートは、第1実施形態の図2で示したフローチャートと同様とされる。
<準備工程PS1>
 本実施形態では、本工程において、光ファイバ130aを準備する。この光ファイバ130aは、第2実施形態の光ファイバ110a,110bと同様の構成とされ、コア111を光が伝搬する光透過性の被加工体である。本実施形態では、光ファイバ130aの長手方向における一部の区間において、被覆層113を剥離する。
 図19は、光ファイバ120aが光ファイバ加工融着機2にセットされた図である。光ファイバ加工融着機2は、本実施形態では、光透過性の被加工体である光ファイバ130aを加工して光透過性部品である光ファイバ130を製造する光透過性部品の製造システムである。
 図19に示されるように、本実施形態では、光ファイバ130aの被覆層113が剥離された区間の一方側が一方の光ファイバ固定部30aに固定され、光ファイバ130aの被覆層113が剥離された区間の他方側が他方の光ファイバ固定部30bに固定される。このとき被覆層113が剥離された区間に第1加熱部10及び第2加熱部20から光が照射される位置となるように、光ファイバ130aは光ファイバ固定部30a,30bに固定される。図19では理解の容易のために第1加熱部10から光が出射されているように記載されているが、本工程では第1加熱部10からは光が出射されない。こうして、一部区間における被覆層113が剥離された光ファイバ130aは光ファイバ加工融着機2にセットされる。ここで、図19では、第1加熱部10、第2加熱部20が対向しているように記載されているが、第1加熱部10、第2加熱部20が同じ側にあってもよい。
<第1加熱工程PS2>
 図20は、本工程を示す図である。本実施形態では、本工程において、第2実施形態において光ファイバ110a,110bの端部の一部を含む第1領域が所定の温度以上に加熱されたのと同様に、光ファイバ130aの被覆層113が剥離された区間におけるクラッド112の一部を含む第1領域が所定の温度以上に加熱される。
<第2加熱工程PS3>
 図21は本実施形態における本工程の様子を示す図である。図21に示されるように、第2加熱部20から出射する光20Lは、第1加熱工程PS2で所定の温度以上に加熱された第1領域AR1の少なくとも一部を含む第2領域AR2に集光される。本実施形態では、光20Lは、クラッド112の一部に集光され、第2領域AR2全体が所定の温度よりも高い温度まで加熱される。本実施形態では、石英がアブレーションされる温度まで第2領域AR2を加熱する。従って、光20Lが集光される第2領域AR2は凹状に加工される。こうして、第2領域AR2が加熱前と異なる状態とされる。
 次に、制御部50は、光ファイバ130aが軸中心に回転しながら長手方向に沿って移動するように、光ファイバ固定部30a,30bを移動させる。従って、光20Lが集光する第2領域AR2は、光ファイバ130a上を図21に破線矢印で示されるように移動する。この第2領域AR2の移動に伴い、クラッド112は、螺旋状の溝が形成され、当該溝がクラッドモード光ストリッパ131となる。
 こうして、クラッドモード光ストリッパ131が形成された光透過性部品としての光ファイバ130が製造される。
 本実施形態の光透過性部品の製造方法、及び、光透過性部品の製造システムでは、第2領域AR2は安定して加熱されるため、第2領域AR2の少なくとも一部が安定してアブレーションされる。従って、光透過性部品である光ファイバ130の一部にクラッドモード光ストリッパ131を安定して形成することができる。なお、光ファイバ120の一部がアブレーションされる場合、当該アブレーションにより形成されるものはクラッドモード光ストリッパ131に限定されない。
 なお、本実施形態においても、第1加熱工程PS2において、光ファイバ130aにおけるクラッドモード光ストリッパ131が形成される区間全体に光10Lが照射されて、当該区間全体が所定の温度以上に加熱されてもよい。
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、上記実施形態では、第1加熱部10が被加工体の一部を所定の温度以上に加熱する例を主に示したが、各実施形態で注釈したように、第1加熱部10は第2加熱部20で加熱される領域全体を加熱してもよい。すなわち、第2領域AR2が第1領域AR1内であってもよい。また、第1加熱部10は、被加工体全体を加熱してもよい。
 また、上記実施形態では、第2加熱工程PS3において、第2加熱部20から光20Lが照射されると、第1加熱部10からの光10Lの照射が停止された。つまり、第2加熱工程PS3が開始されると、第1加熱工程PS2が停止された。しかし、第2加熱工程PS3以降も第1加熱工程PS2が継続して行われてもよい。例えば、上記のように第1加熱部10が第2加熱部20で加熱される領域全体を加熱する場合、第1領域AR1が第1加熱部10で加熱されながら、第1領域AR1内の一部の領域が第2加熱部20により加熱されてもよい。
 また、上記実施形態では、第2加熱工程PS3において、第2加熱部20から出射される光20Lが集光された。しかし、第2加熱部20から出射される光20Lが集光されず、例えば、コリメート光とされてもよい。
 上記実施形態では、第2加熱工程PS3において、第2領域AR2が第1加熱工程PS2で加熱される第1領域AR1の温度よりも高い温度に加熱された。しかし、第1加熱工程PS2で加熱される第1領域AR1の温度が、第2加熱工程PS3で加熱される第2領域AR2の温度よりも高くてもよい。この場合、第1加熱工程PS2で加熱される第1領域AR1は、被加工体の一部であることが好ましい。
 また、上記実施形態では、光透過性部品の製造システムは、第1加熱部10及び第2加熱部20をそれぞれ1つ備えていたが、第1加熱部10及び第2加熱部20の少なくとも一方が複数であってもよい。例えば、第2加熱部20が複数備えられる場合、複数の第2領域AR2に同時に光20Lを照射することができる。
 また、被加工体の形状は特に限定されず、例えば、板状、円錐状、角柱状、角錐状等の部材であってもよい。また、光透過性部品100の材料は、ガラスを含んでいればよい。従って、被加工体100aの材料もガラスを含むことになる。また、光透過性部品の材料は光透過性の材料であれば特に限定されず、樹脂であってもよい。
 また、上記光透過性部品の製造システムは、第1加熱部10と、第2加熱部20とを備えていればよく、固定部30や光ファイバ固定部30a、30b、カメラ40、制御部50は必須の構成ではない。
 また、上記光透過性部品の製造システムは、光透過性部品の製造装置としての上記の加工機1に限定されず、第1加熱部10と、第2加熱部20と、固定部30と、カメラ40と、制御部50とが、1つの装置内に組み込まれていなくてもよい。例えば、制御部50が別の場所に配置され、ネットワークを介して第1加熱部10と、第2加熱部20と、カメラ40とに接続されていてもよい。
 本発明によれば、安定して光透過性部品を製造し得る光透過性部品の製造方法、及び、光透過性部品の製造システムが提供され得、光ファイバを用いるシステム等といった光透過性部品を用いる技術分野において利用することができる。

 

Claims (22)

  1.  光透過性の被加工体を準備する準備工程と、
     前記被加工体の少なくとも一部を含む第1領域を所定の温度以上に加熱する第1加熱工程と、
     常温で前記被加工体を透過し前記所定の温度以上で前記被加工体に吸収される波長の光を前記第1加熱工程で加熱された前記第1領域の少なくとも一部を含む第2領域に照射し、前記第2領域を前記所定の温度より高い温度に加熱して、前記第2領域の少なくとも一部の材質を当該加熱前と異なる状態とする第2加熱工程と、
    を備える
    ことを特徴とする光透過性部品の製造方法。
  2.  前記第2領域は、前記第1領域内に位置する
    ことを特徴とする請求項1に記載の光透過性部品の製造方法。
  3.  前記第2領域は、前記第1領域の少なくとも一部と前記第1領域以外の少なくとも一部とを含む
    ことを特徴とする請求項1に記載の光透過性部品の製造方法。
  4.  前記第2領域は前記被加工体の一部とされ、
     前記第2加熱工程において、前記所定の温度よりも高い温度に加熱される前記第2領域が前記第1領域とは異なる領域に移動するように、前記被加工体に照射される前記光の位置を移動させる
    ことを特徴とする請求項1から3のいずれか1項に記載の光透過性部品の製造方法。
  5.  前記第2加熱工程において、前記第2領域に照射される前記光の光路は、当該光によって照射される前記第2領域以外における前記所定の温度以上の領域と重ならない
    ことを特徴とする請求項4に記載の光透過性部品の製造方法。
  6.  前記第2加熱工程において、前記第2領域の少なくとも一部をアブレーションする
    ことを特徴とする請求項1から5のいずれか1項に記載の光透過性部品の製造方法。
  7.  前記第2加熱工程において、前記第2領域の少なくとも一部を変形させる
    ことを特徴とする請求項1から5のいずれか1項に記載の光透過性部品の製造方法。
  8.  前記第2加熱工程において、2つの前記被加工体を融着させる
    ことを特徴とする請求項1から5のいずれか1項に記載の光透過性部品の製造方法。
  9.  前記第2領域に前記光が照射される時点以降に前記第1加熱工程を停止する
    ことを特徴とする請求項1から8のいずれか1項に記載の光透過性部品の製造方法。
  10.  前記第2加熱工程において、前記被加工体に吸収される前記光を半導体レーザ又はファイバレーザから前記第2領域に向けて照射する
    ことを特徴とする請求項1から9のいずれか1項に記載の光透過性部品の製造方法。
  11.  前記被加工体の材料は、ガラスを含む
    ことを特徴とする請求項1から10のいずれか1項に記載の光透過性部品の製造方法。
  12.  前記被加工体の形状は、円柱状である
    ことを特徴とする請求項1から11のいずれか1項に記載の光透過性部品の製造方法。
  13.  光透過性の被加工体の少なくとも一部を含む第1領域を所定の温度以上に加熱可能な第1加熱部と、
     常温で前記被加工体を透過し前記所定の温度以上で前記被加工体に吸収される波長の光を前記所定の温度以上に加熱された前記第1領域の少なくとも一部を含む第2領域に照射し、前記第2領域を前記所定の温度より高い温度に加熱可能な第2加熱部と、
    を備え、
     前記第2加熱部が前記第2領域を前記所定の温度より高い温度に加熱する場合に、前記第2領域の少なくとも一部の材質が当該加熱前と異なる状態となる
    ことを特徴とする光透過性部品の製造システム。
  14.  前記第2加熱部は、前記光を前記第1領域内に照射可能である
    ことを特徴とする請求項13に記載の光透過性部品の製造システム。
  15.  前記第2加熱部は、前記第1領域の少なくとも一部と前記第1領域以外の少なくとも一部とに前記光を照射可能である
    ことを特徴とする請求項13に記載の光透過性部品の製造システム。
  16.  前記第2領域は前記被加工体の一部とされ、
     前記第2加熱部は、前記所定の温度よりも高い温度に加熱される前記第2領域が前記第1領域とは異なる領域に移動するように、前記被加工体に照射される前記光の位置を移動させることが可能である
    ことを特徴とする請求項13から15のいずれか1項に記載の光透過性部品の製造システム。
  17.  前記第2加熱部は、前記第2領域に照射される前記光の光路が当該光によって照射される前記第2領域以外における前記所定の温度以上の領域と重ならないように前記光を出射可能である
    ことを特徴とする請求項16に記載の光透過性部品の製造システム。
  18.  前記第2加熱部は、前記第2領域の少なくとも一部をアブレーション可能である
    ことを特徴とする請求項13から17のいずれか1項に記載の光透過性部品の製造システム。
  19.  前記第2加熱部は、2つの前記被加工体を融着接続可能である
    ことを特徴とする請求項13から18のいずれか1項に記載の光透過性部品の製造システム。
  20.  前記第2加熱部が前記第2領域に前記光を照射する時点以降に、前記第1加熱部は前記第1領域の加熱を停止可能である
    ことを特徴とする請求項13から19のいずれか1項に記載の光透過性部品の製造システム。
  21.  前記第2加熱部は、半導体レーザまたはファイバレーザである
    ことを特徴とする請求項13から20のいずれか1項に記載の光透過性部品の製造システム。
  22.  前記第1領域および前記第2領域の少なくとも一方を撮影可能なカメラと、
     制御部と、
    を更に備え、
     前記制御部は、前記カメラが撮影した映像または画像に係る信号に基づいて、前記第1加熱部及び前記第2加熱部の少なくとも一方による前記被加工体の加熱を制御可能である
    ことを特徴とする請求項13から21のいずれか1項に記載の光透過性部品の製造システム。
     

     
PCT/JP2019/051287 2018-12-28 2019-12-26 光透過性部品の製造方法、及び、光透過性部品の製造システム WO2020138357A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562450A JP7177180B2 (ja) 2018-12-28 2019-12-26 光透過性部品の製造方法、及び、光透過性部品の製造システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246844 2018-12-28
JP2018-246844 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138357A1 true WO2020138357A1 (ja) 2020-07-02

Family

ID=71125954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051287 WO2020138357A1 (ja) 2018-12-28 2019-12-26 光透過性部品の製造方法、及び、光透過性部品の製造システム

Country Status (2)

Country Link
JP (1) JP7177180B2 (ja)
WO (1) WO2020138357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200099190A1 (en) * 2018-09-21 2020-03-26 Nlight, Inc. Optical fiber cladding light stripper
US11808973B2 (en) 2018-09-10 2023-11-07 Nlight, Inc. Optical fiber splice encapsulated by a cladding light stripper

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518565A (ja) * 2002-02-26 2005-06-23 テレフォンアクチーボラゲット エル エム エリクソン(パブル) ファイバ・スプライサ
JP2006305620A (ja) * 2005-05-02 2006-11-09 Research Foundation For Opto-Science & Technology レーザ加工装置及びレーザ加工方法
JP2010099708A (ja) * 2008-10-24 2010-05-06 Japan Steel Works Ltd:The 被切断材の切断面処理方法および装置
JP2013075769A (ja) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd ガラス板切断方法およびガラス板切断装置
JP2013119510A (ja) * 2011-12-08 2013-06-17 Asahi Glass Co Ltd レーザを用いてガラス基板を加工する方法
US20150378102A1 (en) * 2012-06-27 2015-12-31 Afl Telecommunications Llc Feedback system for improving the stability of a co2 laser based splicing and tapering apparatus
JP2017092126A (ja) * 2015-11-05 2017-05-25 株式会社ディスコ ウエーハの加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518565A (ja) * 2002-02-26 2005-06-23 テレフォンアクチーボラゲット エル エム エリクソン(パブル) ファイバ・スプライサ
JP2006305620A (ja) * 2005-05-02 2006-11-09 Research Foundation For Opto-Science & Technology レーザ加工装置及びレーザ加工方法
JP2010099708A (ja) * 2008-10-24 2010-05-06 Japan Steel Works Ltd:The 被切断材の切断面処理方法および装置
JP2013075769A (ja) * 2011-09-15 2013-04-25 Nippon Electric Glass Co Ltd ガラス板切断方法およびガラス板切断装置
JP2013119510A (ja) * 2011-12-08 2013-06-17 Asahi Glass Co Ltd レーザを用いてガラス基板を加工する方法
US20150378102A1 (en) * 2012-06-27 2015-12-31 Afl Telecommunications Llc Feedback system for improving the stability of a co2 laser based splicing and tapering apparatus
JP2017092126A (ja) * 2015-11-05 2017-05-25 株式会社ディスコ ウエーハの加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808973B2 (en) 2018-09-10 2023-11-07 Nlight, Inc. Optical fiber splice encapsulated by a cladding light stripper
US20200099190A1 (en) * 2018-09-21 2020-03-26 Nlight, Inc. Optical fiber cladding light stripper
US11575239B2 (en) * 2018-09-21 2023-02-07 Nlight, Inc. Optical fiber cladding light stripper

Also Published As

Publication number Publication date
JPWO2020138357A1 (ja) 2021-11-04
JP7177180B2 (ja) 2022-11-22

Similar Documents

Publication Publication Date Title
CN105364301B (zh) 能够切换纤芯的激光加工装置
TWI378860B (en) Microlenses for optical assemblies and related methods
US6822190B2 (en) Optical fiber or waveguide lens
TW201805100A (zh) 雷射處理設備以及方法
CN109188609B (zh) 一种光纤端帽熔接系统及熔接方法
US4263495A (en) Method of splicing optical fibers by CO2 -laser
WO2020138357A1 (ja) 光透過性部品の製造方法、及び、光透過性部品の製造システム
KR20060076205A (ko) 광부품의 제조방법 및 제조장치, 및 광부품
US7285744B2 (en) Method and apparatus for simultaneously heating materials
JP2013166379A (ja) 吸収されなかった赤外レーザー光の再循環により赤外レーザー光の吸収を高めるプラスチック赤外線溶接
CN103809246B (zh) 光纤端帽熔接装置及其熔接方法
US20220244461A1 (en) Fiber exit element
WO2018097018A1 (ja) レーザ加工装置及びレーザ加工方法
US20140346693A1 (en) Methods of forming a tir optical fiber lens
WO2021145358A1 (ja) レーザ加工装置
CN105051859B (zh) 通过透射穿过衬底的中红外激光的热加工
JP4380615B2 (ja) ライトガイドおよび光照射装置
JP3746555B2 (ja) レーザ加工装置およびこれを用いたレーザ加工方法
JP4959647B2 (ja) 光ファイバ端面処理装置及び方法
JP5918212B2 (ja) 機械的に位置合わせされた光学的要素及びその製造方法
US9791624B2 (en) Methods for stripping an optical fiber coating using blue or blue-violet radiation
JP4185405B2 (ja) 樹脂材間の接合方法
WO2020066190A1 (ja) 光ファイバーの融着方法、光ファイバー、及び、融着装置
JP2011521234A (ja) 超音波のレーザ発生のための中空コア導波器
JP2008286948A (ja) 融着接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903584

Country of ref document: EP

Kind code of ref document: A1