WO2020137932A1 - 造粒粉末の製造方法及び造粒粉末 - Google Patents

造粒粉末の製造方法及び造粒粉末 Download PDF

Info

Publication number
WO2020137932A1
WO2020137932A1 PCT/JP2019/050250 JP2019050250W WO2020137932A1 WO 2020137932 A1 WO2020137932 A1 WO 2020137932A1 JP 2019050250 W JP2019050250 W JP 2019050250W WO 2020137932 A1 WO2020137932 A1 WO 2020137932A1
Authority
WO
WIPO (PCT)
Prior art keywords
granulated powder
whey
mass
binder liquid
content
Prior art date
Application number
PCT/JP2019/050250
Other languages
English (en)
French (fr)
Inventor
圭介 山本
誠恭 矢野
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to EP19901809.4A priority Critical patent/EP3903592A4/en
Priority to JP2020563231A priority patent/JP7550650B2/ja
Publication of WO2020137932A1 publication Critical patent/WO2020137932A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • A23C21/06Mixtures of whey with milk products or milk components
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor

Definitions

  • the present invention relates to a method for producing a granulated powder and a granulated powder.
  • the present application claims priority based on Japanese Patent Application No. 2018-246472 filed in Japan on December 28, 2018, the contents of which are incorporated herein by reference.
  • the protein-containing powder is used in dietary supplements and the like.
  • the protein-containing powder is mixed with water using a shaker or the like, dissolved, and provided for drinking.
  • Whey protein is often used as the protein source of protein-containing powders.
  • a whey protein concentrate (hereinafter also referred to as “WPC”) is known.
  • WPC is manufactured by pulverizing retentate (a concentrated fraction of whey protein) obtained by treating whey with an ultrafiltration membrane. When WPC is directly mixed with water and dissolved, excessive foaming occurs. Excessive lathering is undesirable during drinking.
  • Patent Document 1 As a technique for suppressing foaming, a method using a silicone antifoaming agent for food is widely used. It has also been reported that an emulsifier such as lecithin is used as an antifoaming agent (Patent Document 1).
  • -Silicone-based defoamer is a component that is not originally contained in whey.
  • the use of such ingredients is not desirable from the viewpoint of producing foods without additives as much as possible in consideration of health-conscious consumers. Further, since lecithin has a high viscosity, there are problems that workability is poor and flavor is unfavorable.
  • An object of one aspect of the present invention is to provide a granulated powder that does not easily foam when mixed with water and a method for producing the same, even if the whey does not include a component that is not originally contained in whey.
  • a step of spraying a whey protein concentrate with a binder solution and granulating to obtain a granulated powder The method for producing a granulated powder, wherein the binder liquid contains a whey-derived lipid.
  • a granulated powder of whey protein concentrate Contains whey protein and lipids, The content of the lipid is 0.5% by mass or more and less than 10% by mass with respect to the total mass of the granulated powder, Granulated powder having a volume-based cumulative 50% diameter of 60 ⁇ m or more.
  • the granulated powder according to [7] wherein the content of the whey protein is 50 to 95 mass% with respect to the total mass of the granulated powder.
  • the method for producing a granulated powder of the present invention it is possible to produce a granulated powder that does not easily foam when mixed with water, even if it does not contain components that are not originally contained in milk or WPC.
  • the granulated powder of the present invention is unlikely to foam when mixed with water, even if it does not contain components that are not originally contained in milk or WPC.
  • Additives are components that are not originally contained in whey.
  • the lipid content is a value measured by the Reese-Godlieve method.
  • the whey protein content is a value obtained by multiplying a numerical value representing the nitrogen content measured by the combustion method by a coefficient of 6.38.
  • the water content is a value measured by a normal pressure heat drying method. Specifically, the weight loss ((mass of sample before drying (g)-mass of sample after drying (g))/weight of sample before drying) when the sample was dried for 4 hours in a thermostat at 99° C.
  • Mass (g) ⁇ 100) is defined as water content (mass %).
  • Cheese whey is whey obtained in the cheese manufacturing process.
  • the volume-based cumulative 50% diameter (hereinafter, also referred to as "D50”) has a cumulative volume of 50% in a cumulative volume distribution curve obtained by measuring the particle diameter with a laser diffraction/scattering type particle diameter distribution measuring device. It is the particle size of a point.
  • the volume-based cumulative 90% diameter (hereinafter, also referred to as "D90”) has a cumulative volume of 90% in a cumulative volume distribution curve obtained by measuring the particle diameter with a laser diffraction/scattering type particle diameter distribution measuring device. It is the particle size of a point.
  • the volume-based cumulative 10% diameter (hereinafter, also referred to as “D10”) has a cumulative volume of 10% in a cumulative volume distribution curve obtained by measuring the particle diameter with a laser diffraction/scattering type particle diameter distribution measuring device. It is the particle size of a point.
  • the Sauter average particle diameter (hereinafter, also referred to as “D[3,2]”) refers to the average particle diameter weighted by surface area (average surface area moment). D[3,2] is measured using a laser diffraction/scattering particle size distribution measuring device.
  • the De Brouckere average particle size (hereinafter, also referred to as “D[4,3]”) refers to a volume-weighted average particle size (volume moment average).
  • D[4,3] is measured using a laser diffraction/scattering particle size distribution measuring device.
  • the angle of repose is an angle that is horizontal to the slope when the powder is dropped from a certain height and is stable without breaking.
  • the detailed measurement procedure is as described in Examples described later.
  • the collapse angle is the angle at which the angle of repose is collapsed by applying a constant impact.
  • the detailed measurement procedure is as described in Examples below.
  • the difference angle is a value obtained by subtracting the collapse angle from the angle of repose.
  • Avalanche energy, avalanche angle, and surface fractal are values measured using a rotating drum/image analysis type powder fluidity measuring device. The detailed measurement procedure is as described in Examples below.
  • the method for producing a granulated powder of the present invention includes a step (granulation step) of obtaining a granulated powder by spraying a binder liquid onto WPC and granulating.
  • the binder liquid contains whey-derived lipid.
  • the "whey-derived lipid" in the binder liquid is the same as the whey lipid.
  • “Whey” refers to a transparent liquid portion left after removing solidified solid matter (casein or the like) in the process of producing cheese, casein, sodium caseinate, yogurt or the like using milk as a raw material. Whey includes whey protein, lipids, lactose, minerals (ash), water and the like. Examples of whey as a lipid source of the binder liquid include cheese whey and acid whey. As the raw material milk for whey, milk of mammals such as cow, sheep and goat is preferable, and cow milk is particularly preferable.
  • whey may be used alone or in combination of two or more.
  • cheese whey is preferable in terms of flavor and production suitability. That is, as the whey-derived lipid, a cheese whey-derived lipid is preferable.
  • curd-forming enzyme rennet
  • the liquid part that remains after removing the curd is cheese whey.
  • Whey-derived lipids typically include phospholipids and neutral fats. In addition, it contains a trace amount of glycolipid.
  • the phospholipid include phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidic acid (PA), lysophosphatidylcholine (LPC), and lysophosphatidylethanol.
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • PI phosphatidylinositol
  • PS phosphatidylserine
  • PG phosphatidylglycerol
  • PA phosphatidic acid
  • LPC lysophosphatidylcholine
  • lysophosphatidylethanol examples include amine (LPE) and sphingomyelin (SM).
  • the ratio of phospholipids to the total mass of whey-derived lipids is, for example, 10 to 40% by mass, and further 10 to 25% by mass.
  • the ratio of neutral fat to the total mass of whey-derived lipids is, for example, 50 to 85 mass %.
  • the sum of the proportion of phospholipids and the proportion of neutral fats does not exceed 100% by mass with respect to the total mass of whey-derived lipids.
  • the composition of phospholipids in whey-derived lipids is, for example, 20 to 35% by mass of PC, 20 to 35% by mass of PE, 3 to 8% by mass of PI, and 5 to 15% of PS with respect to the total mass of phospholipids.
  • % By mass, 0-5% by mass in PG, 0-5% by mass in PA, 0-5% by mass in LPC, 0-5% by mass in LPE, 20-30% by mass in SM.
  • the sum of PC, PE, PI, PS, PG, PA, LPC, LPE and SM does not exceed 100% by mass with respect to the total mass of the phospholipids.
  • the content of whey-derived lipid in the binder liquid is preferably 6% by mass or more, more preferably 9% by mass or more, and further preferably 12% by mass or more, based on the total mass of the solid content of the binder liquid.
  • the content of whey-derived lipid in the binder liquid is preferably 60% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and 15% by mass or less, based on the total mass of the solid content of the binder liquid. Particularly preferred.
  • the content of whey-derived lipid in the binder liquid may be, for example, 6 to 60% by mass, 9 to 30% by mass, or 12 to 20% by mass based on the total mass of the solid content of the binder liquid. It may be, and may be 12 to 15% by mass.
  • the binder liquid typically contains water.
  • the water content is selected according to the desired solid content concentration of the binder liquid.
  • the content of water is preferably 70 to 99.5% by mass, more preferably 75 to 99.5% by mass, based on the total mass of the binder liquid.
  • the solid content concentration of the binder liquid is preferably 0.5 to 30% by mass, more preferably 0.5 to 25% by mass, based on the total mass of the binder liquid. If the solid content concentration of the binder liquid is equal to or higher than the lower limit value of the above range, when the solid content derived from the binder liquid that can be added in the granulation step is limited, it can be used to add a predetermined amount of solid content. The amount of binder liquid can be reduced. As a result, it is possible to shorten the process time and the time and energy for drying the water. When the solid content concentration of the binder liquid is equal to or lower than the upper limit value of the above range, the viscosity of the binder liquid is lowered, and workability such as sterilization is excellent.
  • the amount of the binder liquid that can be used to add a predetermined amount of solid content increases.
  • the resulting granulated powder has good solubility.
  • the binder liquid may further contain whey protein, lactose, minerals, other milk-derived components and the like.
  • the total content of whey protein, lactose, minerals and other milk-derived components may be, for example, 40 to 94% by mass, or 70 to 91% by mass, based on the total mass of the solid content of the binder liquid. , 80 to 88% by mass, and 85 to 88% by mass.
  • the sum of whey-derived lipid, whey protein, lactose, minerals and other milk-derived components does not exceed 100% by mass based on the total mass of the solid content of the binder liquid.
  • the binder liquid does not contain an additive in consideration of health-conscious consumers.
  • the additive include an emulsifier having a defoaming effect.
  • emulsifiers include silicone antifoaming agents, lecithin not derived from whey, and glycerin esters.
  • the binder liquid typically contains a raw material containing a whey-derived lipid.
  • the powder raw material may be dissolved in water to form a binder liquid.
  • the raw material containing a lipid derived from whey include microfiltration membrane retentate of whey, ultrafiltration membrane retentate of whey, WPC having a lipid content higher than that of WPC to be granulated, whey cream, and the like.
  • the microfiltration membrane is also referred to as MF
  • the ultrafiltration membrane is also referred to as UF.
  • Whey's MF retentate or UF retentate is preferable because of its relatively high lipid content.
  • Whey includes whey protein, lipids (fat globules), lactose, minerals (calcium, sodium, etc.), water and the like.
  • MF is generally impermeable to lipids and permeable to whey protein, lactose, minerals and water, so MF treatment of whey yields a retentate enriched in lipids.
  • UF is generally impermeable to whey proteins and lipids and permeable to lactose, minerals, and water
  • UF treatment of whey provides a retentate enriched in whey proteins and lipids.
  • Whey MF and UF retentates typically each have the following composition.
  • the ratio of each component is the ratio of the solid content to the total mass.
  • MF retentate of whey lipid 6 to 30% by mass (phospholipid 2 to 15% by mass), whey protein 10 to 80% by mass.
  • Whey UF retentate lipids 1-20% by weight (phospholipids 0.25-8% by weight), whey proteins 10-80% by weight.
  • the solid content concentration of whey MF retentate is typically from 2 to 30% by weight, based on the total weight of MF retentate.
  • the solid content concentration of whey UF retentate is typically from 2 to 30% by weight, based on the total weight of UF retentate.
  • Whey MF or UF retentate can be prepared by treating whey with MF or UF.
  • the pore diameter of MF is, for example, 0.01 ⁇ m to 1 ⁇ m, preferably 0.02 ⁇ m to 0.6 ⁇ m, more preferably 0.05 ⁇ m to 0.2 ⁇ m, and further preferably 0.1 ⁇ m to 0.2 ⁇ m.
  • the pore diameter of UF is, for example, 100 nm or less, preferably 1 to 100 nm, and more preferably 1 to 10 nm.
  • the whey may be sterilized.
  • a heat treatment method according to a conventional method can be used.
  • the heating temperature and the holding time during the heat treatment may be set appropriately under conditions that allow sufficient sterilization.
  • whey can be sterilized by heat treatment at 70 to 140° C. for 2 seconds to 30 minutes.
  • the method of heat sterilization may be either a batch method or a continuous method, and even in the continuous method, any method such as a plate heat exchange method, an infusion method and an injection method may be used.
  • the whey MF retentate or the UF retentate can be used as it is, or can be diluted or concentrated with water as necessary to obtain a binder liquid.
  • the binder liquid may be composed of any one or more of whey MF retentate, its diluted solution and concentrated solution, and whey UF retentate, its diluted solution and concentrated solution.
  • the preferred solid content concentration of this binder liquid is the same as above.
  • a microfiltration membrane retentate produced during the production of a whey protein isolate (hereinafter also referred to as “WPI”) is preferable.
  • WPI is produced by subjecting whey to MF treatment, subjecting the permeate (permeate) to UF treatment, and drying the retentate.
  • the MF retentate of whey produced during the production of WPI has been used as a feed for livestock, but it is often discarded.
  • this MF retentate as the binder liquid, it is possible to contribute to the reduction of the environmental load due to disposal.
  • Each of WPC and WPI typically has the following composition.
  • the content (mass %) of each component is the ratio to the total mass of each of WPC and WPI.
  • WPC lipid 3 to 8% by mass (phospholipid 1.2 to 3.2% by mass), protein 34 to 88% by mass.
  • WPI lipid 0.1 to 1% by mass (phospholipid 0.03 to 0.3% by mass), protein 88 to 95% by mass.
  • WPC WPC
  • a commercially available product may be used, or a WPC manufactured by a known manufacturing method may be used.
  • WPC can be produced, for example, by drying whey UF retentate.
  • Examples of the whey UF retentate include the same ones as described above.
  • a drying method a known drying method such as a spray drying method can be appropriately adopted.
  • the drying temperature is, for example, 150 to 200°C.
  • the D50 of WPC is, for example, 30 to 55 ⁇ m.
  • the D90 of WPC is, for example, 70 to 105 ⁇ m.
  • the D10 of WPC is, for example, 10 to 20 ⁇ m.
  • WPC is sprayed with a binder liquid to granulate.
  • a known granulation method such as fluidized bed granulation method, stirring granulation, tumbling granulation or the like can be used, and in terms of obtaining a granulated powder having a better solubility in water, The fluidized bed granulation method is preferred.
  • the fluidized bed granulation method can be carried out using a known fluidized bed granulator.
  • the fluidized bed granulator is an apparatus that blows a fluid such as air from the bottom of the apparatus to make solid particles (WPC) in a floating (fluid) state, and sprays a binder liquid on the particles to perform granulation and drying.
  • a commercially available fluidized bed granulator can be used as the fluidized bed granulator.
  • a continuous fluidized bed granulator that is connected to a spray dryer and continuously granulates, or a batch fluidized bed granulator that replaces the powder each time to perform granulation is well known. Has been.
  • the amount of the binder liquid sprayed is the solid content concentration of the binder liquid, the content of whey-derived lipid in the binder liquid, the desired characteristics of the granulated powder to be produced (lipid content, D50, solubility in water, etc.), etc. Should be set in consideration.
  • the solid content concentration of the binder liquid is 0.5 to 30 mass% with respect to the total mass of the binder liquid, and the whey-derived lipid content is 6 to 60 mass% with respect to the total mass of the solid content of the binder liquid.
  • the amount of the binder liquid sprayed is preferably 0.1 to 2 L/kg, more preferably 0.2 to 1 L/kg, as the volume of the binder liquid per mass of WPC.
  • the amount of the binder liquid sprayed is not less than the lower limit value, the granulation property of the particles is enhanced, and a powder having excellent fluidity and water solubility can be obtained.
  • the spray amount of the binder liquid is equal to or less than the upper limit value, it can be expected that the production time is shortened and the energy cost such as the amount of heat required for drying is reduced.
  • the characteristics of the granulated powder obtained in the granulation step may be the same as the characteristics of the granulated powder of the present invention described later, for example.
  • the ratio of D50 ( ⁇ m) of the granulated powder to D50 ( ⁇ m) of WPC is preferably 150 to 650%, more preferably 150 to 500%.
  • the ratio of the D50 of the granulated powder to the D50 of WPC is at least the above lower limit, it is expected that the effect of suppressing foaming will be more excellent, and that the granulated powder will be sufficiently granulated and have good solubility and fluidity.
  • the ratio of the D50 of the granulated powder to the D50 of WPC is equal to or less than the upper limit value of the above range, the powder is not bulky and the wrapping property and transportability are more excellent.
  • This ratio can be adjusted by the spray amount of the binder liquid, the spray speed, the hot air temperature, the hot air amount, and the like.
  • the ratio of the lipid content (mass %) of the granulated powder to the lipid content (mass %) of WPC is preferably 100.5 to 130 mass %, more preferably 103 to 110 mass %.
  • the lipids of the granulated powder consist of WPC lipids and binder liquid lipids.
  • the ratio of the lipid content of the granulated powder to the lipid content of WPC is at least the lower limit value of the above range, the effect of suppressing foaming is more excellent.
  • the ratio of the lipid content of the granulated powder to the lipid content of WPC is not more than the upper limit value of the above range, a high protein content can be maintained and the suitability as a nutritional food is more excellent. This ratio can be adjusted by the spray amount of the binder liquid.
  • the granulated powder of the present invention (hereinafter, also referred to as “main granulated powder”) is a granulated powder of WPC. Since the present granulated powder is a WPC granulated powder, it contains whey protein and lipid.
  • the content of whey protein in the present granulated powder is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, based on the total mass of the present granulated powder.
  • the content of whey protein is at least the lower limit value of the above range, the usefulness of the present granulated powder as a dietary supplement or the like is high.
  • the content of whey protein is less than or equal to the upper limit of the above range, lipid can be sufficiently contained, and foaming hardly occurs during mixing with water and dissolution.
  • the content of lipid in the present granulated powder is 0.5% by mass or more and less than 10% by mass, preferably 3 to 8% by mass, and 4.5 to 7% by mass, based on the total mass of the present granulated powder. More preferable.
  • the lipid content is at least the lower limit value of the above range, foaming is unlikely to occur during mixing with water and dissolution.
  • the whey protein can be sufficiently contained, and the granulated powder is highly useful as a dietary supplement.
  • the ratio of the total mass of whey protein and lipid to the total mass of the present granulated powder is, for example, 50 to 97 mass %.
  • the present granulated powder may further contain minerals, lactose, water, and other trace components derived from milk, in addition to whey protein and lipid.
  • the water content is, for example, 1 to 10 mass% with respect to the total mass of the present granulated powder.
  • the total content of minerals, lactose, and other trace components derived from milk is, for example, 2 to 49 mass% with respect to the total mass of the present granulated powder.
  • the sum of whey protein, lipid, water, mineral, lactose, and other trace components derived from milk does not exceed 100% by mass with respect to the total mass of the present granulated powder.
  • the present granulated powder does not contain an additive in consideration of health-conscious consumers.
  • an additive in consideration of health-conscious consumers.
  • the above-mentioned thing is mentioned as an example of an additive.
  • the D50 of the present granulated powder is 60 ⁇ m or more, more preferably 62 ⁇ m or more. When D50 is at least the above lower limit, the particles of the granulated powder are more formed and the solubility in water is excellent.
  • the D50 of the present granulated powder is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, further preferably 160 ⁇ m or less, and particularly preferably 120 ⁇ m or less. When D50 is not more than the above upper limit, the dissolution rate of the present granulated powder in water, the packaging property and the transportability are more excellent.
  • the D50 of the present granulated powder may be, for example, 60 to 250 ⁇ m, 60 to 200 ⁇ m, 60 to 160 ⁇ m, 60 to 120 ⁇ m, or 62 to 120 ⁇ m. ..
  • the D90 of the present granulated powder is preferably 110 to 400 ⁇ m, more preferably 150 to 350 ⁇ m.
  • the D10 of the present granulated powder is preferably 20 to 50 ⁇ m, more preferably 20 to 45 ⁇ m.
  • D90 or D10 is at least the lower limit value of the above range, it is sufficiently granulated and excellent in fluidity and water solubility. And excellent in transportability.
  • the D[3,2] of the present granulated powder is preferably 30 to 90 ⁇ m, more preferably 45 to 80 ⁇ m.
  • the D[4,3] of the present granulated powder is preferably 60 to 200 ⁇ m, more preferably 65 to 180 ⁇ m.
  • the angle of repose of the present granulated powder is preferably 35 to 55°, more preferably 40 to 50°.
  • the collapse angle of the present granulated powder is preferably 25 to 50°, more preferably 30 to 45°. When the angle of repose or the angle of collapse is not more than the upper limit of the above range, it is considered that the fluidity is excellent and the granulation is sufficiently performed.
  • the difference angle of the present granulated powder is preferably 5 to 15°, more preferably 10 to 15°.
  • the avalanche energy of the present granulated powder is preferably 10 to 50 mJ/kg, more preferably 15 to 50 mJ/kg.
  • the avalanche angle of the present granulated powder is preferably 40 to 60°, more preferably 45 to 55°.
  • the surface fractal of the present granulated powder is preferably 1 to 7, more preferably 1.5 to 6. When the avalanche energy, avalanche angle or surface fractal is less than or equal to the upper limit of the above range, the fluidity of the powder is more excellent.
  • D50 of the present granulated powder is 60 ⁇ m or more, and the avalanche angle is 40 to 60°.
  • the D50 of the present granulated powder is 60 ⁇ m or more, the avalanche energy is 10 to 50 mJ/kg, and the avalanche angle is 40 to 60°.
  • the rate of increase in volume in the evaluation of foaming is preferably 3 times or less, more preferably 2 times or less, further preferably 1.75 times or less, and 1.55 It is particularly preferable that the amount is not more than double, and may be not more than 1.5.
  • the lower limit of the capacity increase rate in the evaluation of foaming is not particularly limited, but may be 1.0 times or more, or 1.1 times or more.
  • the rate of increase in volume in the evaluation of foaming may be 1.0 to 3 times, 1.0 to 2 times, 1.2 to 1.75 times, 1.2 to 1 times. It may be .55 times.
  • Volume of solution before foaming test is a value calculated by dividing the mass (g) of a solution obtained by dissolving 20 g of granulated powder with 180 g of water by the specific gravity (mL/g) of the solution.
  • the specific gravity of the solution is a value at room temperature (25° C.).
  • the specific gravity of the solution is preferably a value measured by a conventional method using a known hydrometer.
  • the present granulated powder can be produced, for example, by the method for producing a granulated powder of the present invention described above.
  • powder characteristics of the obtained granulated powder (D50, D90, D10, D[3,2], D[4,3], repose angle, collapse angle, difference angle, Avalanche energy, surface fractal, avalanche angle) can be adjusted according to the conditions of the granulation process. For example, if the amount of binder is increased or the hot air temperature is decreased, D50 tends to increase and the surface fractal and avalanche angle tend to decrease.
  • whey protein content was measured by multiplying the numerical value representing the amount of nitrogen obtained by the combustion method by a coefficient of 6.38.
  • composition of phospholipids The composition of phospholipids was measured by a thin layer chromatography measurement method or a nuclear magnetic resonance (NMR) measurement method.
  • the ash content was measured by the direct ashing method.
  • carbohydrate content The carbohydrate content was calculated by "100-water content-protein content-lipid content-ash content”.
  • the water content (%) was measured by a normal pressure heat drying method. Specifically, the weight loss after drying for 4 hours in a thermostat of 99° C. was taken as the moisture value.
  • D50, D90, D10, D[3,2], D[4,3] are 25° C. and relative humidity, using a laser diffraction/scattering type particle size distribution measuring device (“Mastersizer 3000” manufactured by Malvern Instruments Ltd.). It was measured under the condition of 40 to 55%.
  • the angle of repose and the angle of collapse were measured using a powder tester (manufactured by Hosokawa Micron, model: PT-X) under the conditions of 25° C. and relative humidity of 40 to 55% by the following procedure.
  • the sample hopper is vibrated with a vibration width of 1 mm, passed through a mesh with a mesh opening of 1.7 mm, a discharge funnel, and a nozzle (inner diameter of 7 mm), and the powder is placed on the disc of the repose angle table from a height of 10.5 cm. Drop into a pile of powder.
  • the angle of the peak of the powder formed under these conditions is represented as a measurement value as a result of image analysis by the powder tester PT-X.
  • the collapse angle is calculated according to the program of the powder tester PT-X, by analyzing the angle of the peak of the powder when the weight of 109.7 g is naturally dropped from the height of 160 mm and shock is applied, and the measured value is calculated. To do.
  • avalanche energy, avalanche angle, surface fractal The avalanche energy, avalanche angle, and surface fractal were measured at 25°C and 40-55% relative humidity using a rotating drum/image analysis type powder fluidity measuring device ("Revolution Powder Analyzer” manufactured by Mercury Scientific Co., Ltd.). Then, it measured by the following procedures. Weigh 100 mL of sample, put it in the attached drum, set the drum in the device and slowly rotate it at a speed of 0.3 rpm while taking a picture of the powder behavior with the CCD camera attached to the device. Images before and after the avalanche are recorded and analyzed, and various parameters are calculated based on the data.
  • the avalanche energy is used as the amount of change in the potential energy before and after the avalanche
  • the avalanche angle is the angle at which the avalanche occurs
  • the surface fractal is used as an index that represents the roughness of the powder surface after the avalanche.
  • WPC Milei 80 manufactured by Milei GmbH.
  • the composition is shown in Table 1.
  • Whey MF retentate Cheese whey treated with a microfiltration membrane having a pore size of 0.2 ⁇ m to obtain MF retentate powdered by spray drying.
  • the composition is shown in Table 1.
  • the raw material composition shows the mass ratio of each component to the total mass of the raw material
  • the phospholipid composition shows the mass ratio of each phospholipid to the total mass of the phospholipid.
  • Purified sunflower lecithin Emurpur SF manufactured by Cargill.
  • Lecithin Sunflower-derived lecithin Topcithin SF manufactured by Cargill.
  • Binder liquids 1 to 4 were prepared by dissolving the raw materials shown in Table 2 in water so as to have the concentrations shown in Table 2.
  • Table 2 shows the contents of lipid, protein, ash and carbohydrate in each binder solution.
  • the binder liquids 3 to 4 the calculated values (estimated values) calculated from the values of the acetone insoluble matter are shown.
  • the balance of each binder liquid is water.
  • Example 1, Comparative Example 1, Reference Examples AB> The WPC was granulated according to the following procedure for each kind of the binder liquid, and the granulated powders granulated using the binder liquids 1 to 4 were used as Comparative Example 1, Example 1, Reference Example A, and Reference Example, respectively. It was set to B. 600 g of WPC was put into a fluidized bed granulator (manufactured by Okawara Seisakusho Co., Ltd.), and the binder solution shown in Table 3 was used, and the spray rate of the binder solution was 40 g/min. After granulating, the powder was dried under the condition of blowing hot air of 85° C. for 15 minutes to obtain granulated powder.
  • the amount of binder to be sprayed was set so that the amount of lipid derived from the binder was approximately the same. That is, the spray amount of Example 1 and Comparative Example 1 was 500 g, and the spray amount of Reference Examples A and B was 120 g.
  • Table 3 shows the protein and lipid contents and the phospholipid composition in the obtained granulated powder. In Table 3, the content of protein and lipid shows the mass ratio of each component to the total mass of the raw material, and the phospholipid composition shows the mass ratio of each phospholipid to the total mass of lipid.
  • Table 4 shows the powder characteristics of the granulated powder of each example. The following evaluation was performed about the granulated powder of each example. The results are shown in Table 4.
  • the granulated powder of Example 1 was suppressed in foaming when mixed with water, as compared with the ungranulated WPC and the granulated powder of Comparative Example 1.
  • the solubility in water was also good.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明の一態様に係る造粒粉末の製造方法は、ホエイタンパク質濃縮物にバインダー液を噴霧して造粒し、造粒粉末を得る工程を含み、前記バインダー液が、ホエイ由来の脂質を含む。

Description

造粒粉末の製造方法及び造粒粉末
 本発明は、造粒粉末の製造方法及び造粒粉末に関する。
 本願は、2018年12月28日に、日本に出願された特願2018-246472号に基づき優先権を主張し、その内容をここに援用する。
 タンパク質含有粉末は、栄養補助食品等に用いられている。タンパク質含有粉末は、例えば、シェイカー等で水と混合、溶解して飲用に供される。
 タンパク質含有粉末のタンパク源としてはホエイ(乳清)タンパク質が用いられることが多い。
 ホエイタンパク質を含有する原料としては、ホエイタンパク質濃縮物(Whey Protein Concentrate)(以下、「WPC」とも記す。)が知られている。WPCは、ホエイを限外ろ過膜処理して得られるリテンテート(ホエイタンパク質の濃縮画分)を粉末化して製造される。
 WPCをそのまま水と混合して溶解すると、過度の泡立ちが発生する。過度の泡立ちは、飲用時に好ましくない。
 泡立ちを抑制する技術としては、食品用のシリコーン系消泡剤を用いる方法が広く用いられている。また、レシチン等の乳化剤を消泡剤として利用することも報告されている(特許文献1)。
日本国特許第4827987号公報
 シリコーン系消泡剤はホエイに本来含まれない成分である。このような成分を用いることは、健康志向の消費者に配慮して出来る限り添加物を使用しないで食品を製造するという観点では望ましくない。また、レシチンは、高粘度であるため作業性が良くない、風味上好ましくない、といった問題がある。
 本発明の一態様は、ホエイに本来含まれない成分を含まずとも、水との混合時に泡立ちにくい造粒粉末及びその製造方法を提供することを目的とする。
 [1]ホエイタンパク質濃縮物にバインダー液を噴霧して造粒し、造粒粉末を得る工程を含み、
 前記バインダー液が、ホエイ由来の脂質を含む、造粒粉末の製造方法。
 [2]前記ホエイ由来の脂質が、チーズホエイ由来の脂質である、[1]の造粒粉末の製造方法。
 [3]前記バインダー液が、ホエイの精密ろ過膜リテンテート又は限外ろ過膜リテンテートを含む、[1]又は[2]の造粒粉末の製造方法。
 [4]前記バインダー液が、ホエイの精密ろ過膜リテンテートを含む、[1]~[3]のいずれかの造粒粉末の製造方法。
 [5]前記精密ろ過膜リテンテートが、ホエイタンパク質単離物の製造時に生成したものである、[4]の造粒粉末の製造方法。
 [6]前記バインダー液が、添加剤を含まない、[1]~[5]のいずれかの造粒粉末の製造方法。
 [7]ホエイタンパク質濃縮物の造粒粉末であって、
 ホエイタンパク質と脂質とを含み、
 前記脂質の含量が、前記造粒粉末の総質量に対し、0.5質量%以上、10質量%未満であり、
 体積基準累積50%径が60μm以上である、造粒粉末。
 [8]前記ホエイタンパク質の含量が、前記造粒粉末の総質量に対し、50~95質量%である、[7]の造粒粉末。
 [9]添加剤を含まない、[7]又は[8]の造粒粉末。
 [10]雪崩角度が40~60°である、[7]~[9]のいずれかの造粒粉末。
 [11]雪崩エネルギーが10~50mJ/kgである、[7]~[10]のいずれかの造粒粉末。
 [12]泡立ちの評価における容積の増加率が3倍以下である、[7]~[11]のいずれかの造粒粉末。
 本発明の造粒粉末の製造方法によれば、乳やWPCに本来含まれない成分を含まずとも、水との混合時に泡立ちにくい造粒粉末を製造できる。
 本発明の造粒粉末は、乳やWPCに本来含まれない成分を含まずとも、水との混合時に泡立ちにくい。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 添加剤は、ホエイ(乳清)に本来含まれない成分である。
 脂質の含量は、レーゼ・ゴッドリーブ法により測定した値である。
 ホエイタンパク質の含量は、燃焼法により測定した窒素分を表す数値に係数6.38を乗じた値である。
 固形分は、「固形分(質量%)=100-水分(質量%)」で算出した値である。水分は、常圧加熱乾燥法により測定した値である。具体的には、試料を99℃の恒温器にて4時間乾燥したときの減量分((乾燥前の試料の質量(g)-乾燥後の試料の質量(g))/乾燥前の試料の質量(g)×100)を水分(質量%)とする。
 チーズホエイは、チーズ製造過程で得られたホエイである。
 体積基準累積50%径(以下、「D50」とも記す。)は、レーザー回析/散乱式粒子径分布測定装置で粒子径を測定して得られる累積体積分布曲線において累積体積が50%となる点の粒子径である。
 体積基準累積90%径(以下、「D90」とも記す。)は、レーザー回析/散乱式粒子径分布測定装置で粒子径を測定して得られる累積体積分布曲線において累積体積が90%となる点の粒子径である。
 体積基準累積10%径(以下、「D10」とも記す。)は、レーザー回析/散乱式粒子径分布測定装置で粒子径を測定して得られる累積体積分布曲線において累積体積が10%となる点の粒子径である。
 ザウター平均粒径(以下、「D[3,2]」とも記す。)は、表面積で重み付けられた平均粒子径(表面積モーメント平均)を指す。D[3,2]は、レーザー回析/散乱式粒子径分布測定装置を用いて測定される。
 De Brouckere平均粒径(以下、「D[4,3]」とも記す。)は、体積で重み付けられた平均粒子径(体積モーメント平均)を指す。D[4,3]は、レーザー回析/散乱式粒子径分布測定装置を用いて測定される。
 安息角は、一定の高さから粉を落とした際に、崩れず安定している時の斜面と水平のなす角である。詳しい測定手順は後述する実施例に記載のとおりである。
 崩潰角は、安息角に一定の衝撃を与えて崩れたときの角度である。詳しい測定手順は後述する実施例に記載のとおりである。
 差角は、安息角から崩潰角を減じた値である。
 雪崩エネルギー(Avalanche energy)、雪崩角度(Avalanche angle)及び表面フラクタルは、回転ドラム・画像解析方式粉体流動性測定装置を用いて測定した値である。詳しい測定手順は後述する実施例に記載のとおりである。
<造粒粉末の製造方法>
 本発明の造粒粉末の製造方法は、WPCにバインダー液を噴霧して造粒し、造粒粉末を得る工程(造粒工程)を含む。
(バインダー液)
 バインダー液は、ホエイ由来の脂質を含む。
 バインダー液における「ホエイ由来の脂質」は、ホエイの脂質と同じものである。「ホエイ」とは、乳を原料として、チーズ、カゼイン、カゼインナトリウム、ヨーグルト等を製造する過程において、凝固させた固形分(カゼイン等)を取り除いて残る透明な液体部分を言う。ホエイには、ホエイタンパク質、脂質、乳糖、ミネラル(灰分)、水分等が含まれる。
 バインダー液の脂質源のホエイとしては、チーズホエイ、酸ホエイ等が挙げられる。ホエイの原料乳としては、ウシ、ヒツジ、ヤギ等の哺乳動物の乳が好ましく、ウシの乳が特に好ましい。これらのホエイはいずれか1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 ホエイとしては、風味や製造適性の点で、チーズホエイが好ましい。すなわち、ホエイ由来の脂質としては、チーズホエイ由来の脂質が好ましい。チーズ製造過程では、例えば、原料乳を乳酸発酵させ、凝乳酵素(レンネット)を加えてカードを形成し、カードを取り出すことが行われる。カードを取り出した後に残る液体部分がチーズホエイである。
 ホエイ由来の脂質は、典型的には、リン脂質及び中性脂肪を含む。さらに微量の糖脂質を含む。
 リン脂質としては、ホスファチジルコリン(PC)、ホスファチジルエタノールアミン(PE)、ホスファチジルイノシトール(PI)、ホスファチジルセリン(PS)、ホスファチジルグリセロール(PG)、ホスファチジン酸(PA)、リゾホスファチジルコリン(LPC)、リゾホスファチジルエタノールアミン(LPE)、スフィンゴミエリン(SM)等が挙げられる。
 ホエイ由来の脂質の総質量に対するリン脂質の割合は、例えば10~40質量%、さらには10~25質量%である。ホエイ由来の脂質の総質量に対する中性脂肪の割合は、例えば50~85質量%である。ここで、リン脂質の割合及び中性脂肪の割合の和は、ホエイ由来の脂質の総質量に対して100質量%を超えない。
 ホエイ由来の脂質におけるリン脂質の組成は、例えば、リン脂質の総質量に対し、PCが20~35質量%、PEが20~35質量%、PIが3~8質量%、PSが5~15質量%、PGが0~5質量%、PAが0~5質量%、LPCが0~5質量%、LPEが0~5質量%、SMが20~30質量%である。ここで、PC、PE、PI、PS、PG、PA、LPC、LPE及びSMの和は、リン脂質の総質量に対して100質量%を超えない。
 バインダー液におけるホエイ由来の脂質の含量は、バインダー液の固形分の総質量に対し、6質量%以上が好ましく、9質量%以上がより好ましく、12質量%以上がさらに好ましい。ホエイ由来の脂質の含量が前記下限値以上であれば、泡立ちの抑制効果がより優れる。
 バインダー液におけるホエイ由来の脂質の含量は、バインダー液の固形分の総質量に対し、60質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましく、15質量%以下が特に好ましい。ホエイ由来の脂質の含量が前記上限値以下であれば、バインダー液への分散性や作業適性が良好である。
 バインダー液におけるホエイ由来の脂質の含量は、例えば、バインダー液の固形分の総質量に対し、6~60質量%であってよく、9~30質量%であってよく、12~20質量%であってよく、12~15質量%であってよい。
 バインダー液は、典型的には、水を含む。
 水の含量は、バインダー液の所望の固形分濃度に応じて選定される。
 水の含量は、バインダー液の総質量に対し、70~99.5質量%が好ましく、75~99.5質量%がより好ましい。
 バインダー液の固形分濃度は、バインダー液の総質量に対し、0.5~30質量%が好ましく、0.5~25質量%がより好ましい。バインダー液の固形分濃度が前記範囲の下限値以上であれば、造粒工程で添加できるバインダー液由来の固形分が限られている場合には、所定量の固形分を添加するために使用できるバインダー液の量を減らすことができる。結果、工程時間や水分を乾燥させるための時間やエネルギーの短縮が可能である。バインダー液の固形分濃度が前記範囲の上限値以下であれば、バインダー液の粘度が低下し、殺菌等の作業適性が優れる。また、造粒工程で添加できるバインダー液由来の固形分が限られている場合には、所定量の固形分を添加するために使用できるバインダー液の量が増える。結果、得られる造粒粉末の溶解性が良好となる。
 バインダー液は、ホエイタンパク質、乳糖、ミネラル、その他の乳由来成分等をさらに含んでいてもよい。
 ホエイタンパク質、乳糖、ミネラル及びその他の乳由来成分の合計の含量は、例えば、バインダー液の固形分の総質量に対し、40~94質量%であってよく、70~91質量%であってよく、80~88質量%であってよく、85~88質量%であってよい。ここで、ホエイ由来の脂質、ホエイタンパク質、乳糖、ミネラル、その他の乳由来成分の和は、バインダー液の固形分の総質量に対して100質量%を超えない。
 バインダー液は、健康志向の消費者への配慮から、添加剤を含まないことが好ましい。
 添加剤の例としては、消泡効果を持つ乳化剤が挙げられる。かかる乳化剤の例としては、シリコーン系消泡剤、ホエイに由来しないレシチン、グリセリンエステルが挙げられる。
 バインダー液は、典型的には、ホエイ由来の脂質を含む原料を含む。粉末の原料を水に溶解してバインダー液とすることもできる。
 ホエイ由来の脂質を含む原料としては、例えば、ホエイの精密ろ過膜リテンテート、ホエイの限外ろ過膜リテンテート、造粒するWPCよりも脂質含量の多いWPC、ホエイクリーム等が挙げられる。
 以下、精密ろ過膜をMF、限外ろ過膜をUFとも記す。
 ホエイ由来の脂質を含む原料としては、脂質の含量が比較的多い点から、ホエイのMFリテンテート又はUFリテンテートが好ましい。
 ホエイには、ホエイタンパク質、脂質(脂肪球)、乳糖、ミネラル(カルシウム、ナトリウム等)、水分等が含まれる。MFは一般に、脂質を透過せず、ホエイタンパク質、乳糖、ミネラル、水分を透過するので、ホエイをMF処理すると、脂質が濃縮されたリテンテートが得られる。UFは一般に、ホエイタンパク質及び脂質を透過せず、乳糖、ミネラル、水分を透過するので、ホエイをUF処理すると、ホエイタンパク質及び脂質が濃縮されたリテンテートが得られる。
 ホエイのMFリテンテート、UFリテンテートはそれぞれ、典型的には、以下の組成を有する。各成分の比率は、固形分の総質量に対する比率である。
 ホエイのMFリテンテート:脂質6~30質量%(リン脂質2~15質量%)、ホエイタンパク質10~80質量%。
 ホエイのUFリテンテート:脂質1~20質量%(リン脂質0.25~8質量%)、ホエイタンパク質10~80質量%。
 ホエイのMFリテンテートの固形分濃度は、典型的には、MFリテンテートの総質量に対し、2~30質量%である。ホエイのUFリテンテートの固形分濃度は、典型的には、UFリテンテートの総質量に対し、2~30質量%である。
 ホエイのMFリテンテート又はUFリテンテートは、ホエイをMF又はUFで処理することにより調製できる。
 MFの孔径は、例えば0.01μm~1μm、好ましくは0.02μm~0.6μm、より好ましくは0.05μm~0.2μm、さらに好ましくは0.1μm~0.2μmである。
 UFの孔径は、例えば100nm以下であり、好ましくは1~100nmであり、より好ましくは1~10nmである。
 ホエイをMF又はUFで処理する前に、ホエイを殺菌してもよい。殺菌方法としては、常法による加熱処理方法を用いることができる。加熱処理時の加熱温度と保持時間は、充分に殺菌できる条件を適宜設定すればよい。例えば、ホエイを70~140℃で2秒間~30分間加熱処理することにより殺菌できる。加熱殺菌の方式は、バッチ式、連続式いずれも可能であり、連続式においてもプレート熱交換方式、インフュージョン方式、インジェクション方式等、いずれの方式も用いることができる。
 ホエイのMFリテンテート又はUFリテンテートは、そのまま、又は必要に応じて水で希釈若しくは濃縮して、バインダー液とすることができる。
 バインダー液は、ホエイのMFリテンテート、その希釈液及び濃縮液、並びにホエイのUFリテンテート、その希釈液及び濃縮液のいずれか1以上からなるものであってよい。このバインダー液の好ましい固形分濃度は前記と同様である。
 ホエイ由来の脂質を含む原料としては、ホエイタンパク質単離物(Whey Protein Isolate)(以下、「WPI」とも記す。)の製造時に生成した精密ろ過膜リテンテートが好ましい。
 WPIは、ホエイをMF処理し、そのパーミエイト(透過液)をUF処理し、そのリテンテートを乾燥して製造される。従来、WPIの製造時に生成したホエイのMFリテンテートは、一部は家畜への飼料用途とされているが、廃棄されることが多い。このMFリテンテートをバインダー液に用いることで、廃棄による環境への負荷低減に貢献できる。
 なお、WPC、WPIはそれぞれ、典型的には、以下の組成を有する。各成分の含量(質量%)は、WPC、WPIそれぞれの総質量に対する比率である。
 WPC:脂質3~8質量%(リン脂質1.2~3.2質量%)、タンパク質34~88質量%。
 WPI:脂質0.1~1質量%(リン脂質0.03~0.3質量%)、タンパク質88~95質量%。
(WPC)
 WPCとしては、市販品を用いてもよく、公知の製造方法により製造したものを用いてもよい。
 WPCは、例えば、ホエイのUFリテンテートを乾燥することにより製造できる。
 ホエイのUFリテンテートとしては、前記したものと同様のものが挙げられる。
 乾燥方法としては、噴霧乾燥法等の公知の乾燥法を適宜採用できる。乾燥温度は、例えば150~200℃である。
 WPCのD50は、例えば30~55μmである。
 WPCのD90は、例えば70~105μmである。
 WPCのD10は、例えば10~20μmである。
(造粒工程)
 造粒工程では、WPCにバインダー液を噴霧して造粒する。
 造粒方法としては、流動層造粒法、撹拌造粒、転動造粒等の公知の造粒方法を利用でき、水への溶解性がより良好である造粒粉末が得られる点では、流動層造粒法が好ましい。
 流動層造粒法は、公知の流動層造粒装置を用いて実施できる。
 流動層造粒装置は、装置の下部から空気等の流体を吹き上げ、固体粒子(WPC)を浮遊(流動)状態とし、これにバインダー液を噴霧して造粒、乾燥を行う装置である。流動層造粒装置としては、市販の流動層造粒機を用いることができる。一般的には、噴霧乾燥装置に連結させ、連続的に造粒を実施する連続式流動層造粒装置や、その都度粉を入れ替えて造粒を実施するバッチ式流動層造粒装置が良く知られている。
 バインダー液の噴霧量は、バインダー液の固形分濃度、バインダー液中のホエイ由来の脂質の含量、製造する造粒粉体の所望の特性(脂質の含量、D50、水への溶解性等)等を考慮して設定すればよい。
 例えば、バインダー液の固形分濃度が、バインダー液の総質量に対し0.5~30質量%、ホエイ由来の脂質の含量が、バインダー液の固形分の総質量に対し6~60質量%である場合、バインダー液の噴霧量は、WPCの質量あたりのバインダー液の体積として、0.1~2L/kgが好ましく、0.2~1L/kgがより好ましい。バインダー液の噴霧量が前記下限値以上であれば、粒子の造粒性が高まり、流動性や水への溶解性に優れた粉末を得ることができる。バインダー液の噴霧量が前記上限値以下であれば、製造時間の短縮、及び乾燥にかかる熱量等エネルギーコストの低減が期待できる。
 乾燥条件としては、60~95℃にて1~60分が好ましい。
 造粒工程で得られる造粒粉体の特性は、例えば、後述する本発明の造粒粉体の特性と同様であってよい。
 WPCのD50(μm)に対する造粒粉体のD50(μm)の割合は、150~650%が好ましく、150~500%がより好ましい。WPCのD50に対する造粒粉体のD50の割合が前記下限値以上であれば、泡立ち抑制効果がより優れ、また、充分に造粒され良好な溶解性や流動性を持つと期待できる。WPCのD50に対する造粒粉体のD50の割合が前記範囲の上限値以下であれば、粉体がかさばらず、包装性及び運搬性がより優れる。この割合は、バインダー液の噴霧量、噴霧スピード、熱風温度、熱風量等によって調整できる。
 WPCの脂質含量(質量%)に対する造粒粉末の脂質含量(質量%)の割合は、100.5~130質量%が好ましく、103~110質量%がより好ましい。造粒粉末の脂質は、WPCの脂質とバインダー液の脂質とからなる。WPCの脂質含量に対する造粒粉末の脂質含量の割合が前記範囲の下限値以上であれば、泡立ちの抑制効果がより優れる。WPCの脂質含量に対する造粒粉末の脂質含量の割合が前記範囲の上限値以下であれば、高タンパク含量を維持でき栄養食品としての適性がより優れる。この割合は、バインダー液の噴霧量によって調整できる。
 造粒工程の後、必要に応じて、冷却工程、分級工程等を行ってもよい。
<造粒粉末>
 本発明の造粒粉末(以下、「本造粒粉末」とも記す。)は、WPCの造粒粉末である。
 本造粒粉末は、WPCの造粒粉末であるので、ホエイタンパク質と脂質とを含む。
 本造粒粉末のホエイタンパク質の含量は、本造粒粉末の総質量に対し、50~95質量%が好ましく、60~90質量%がより好ましい。ホエイタンパク質の含量が前記範囲の下限値以上であれば、本造粒粉末の栄養補助食品等としての有用性が高い。ホエイタンパク質の含量が前記範囲の上限値以下であれば、脂質を充分に含有でき、水との混合、溶解時に泡立ちが生じにくい。
 本造粒粉末の脂質の含量は、本造粒粉末の総質量に対し、0.5質量%以上、10質量%未満であり、3~8質量%が好ましく、4.5~7質量%がより好ましい。脂質の含量が前記範囲の下限値以上であれば、水との混合、溶解時に泡立ちが生じにくい。脂質の含量が前記範囲の上限値以下であれば、ホエイタンパク質を充分に含有でき、本造粒粉末の栄養補助食品としての有用性が高い。
 本造粒粉末の総質量に対するホエイタンパク質と脂質との合計質量の割合は、例えば50~97質量%である。
 本造粒粉末は、ホエイタンパク質及び脂質以外に、ミネラル、乳糖、水分、その他乳由来の微量成分等をさらに含んでいてもよい。
 水分含量は、本造粒粉末の総質量に対し、例えば1~10質量%である。ミネラル、乳糖、その他乳由来の微量成分の合計の含量は、本造粒粉末の総質量に対し、例えば2~49質量%である。ここで、ホエイタンパク質、脂質、水分、ミネラル、乳糖、その他乳由来の微量成分の和は、本造粒粉末の総質量に対して100質量%を超えない。
 本造粒粉末は、健康志向の消費者への配慮から、添加剤を含まないことが好ましい。
 添加剤の例としては、前記したものが挙げられる。
 本造粒粉末のD50は、60μm以上であり、62μm以上がより好ましい。D50が前記下限値以上であれば、造粒粉末の粒子がより形成されており水への溶解性が優れる。
 本造粒粉体のD50は、250μm以下が好ましく、200μm以下がより好ましく、160μm以下がさらに好ましく、120μm以下が特に好ましい。D50が前記上限値以下であれば、本造粒粉末の水への溶解速度、包装性や運搬性がより優れる。
 本造粒粉体のD50は、例えば、60~250μmであってよく、60~200μmであってよく、60~160μmであってよく、60~120μmであってよく、62~120μmであってよい。
 本造粒粉末のD90は、110~400μmが好ましく、150~350μmがより好ましい。
 本造粒粉末のD10は、20~50μmが好ましく、20~45μmがより好ましい。
 D90又はD10が前記範囲の下限値以上であれば、充分に造粒されており、流動性や水への溶解性に優れ、前記範囲の上限値以下であれば、嵩高くならず、包装性や運搬性に優れる。
 本造粒粉末のD[3,2]は、30~90μmが好ましく、45~80μmがより好ましい。
 本造粒粉末のD[4,3]は、60~200μmが好ましく、65~180μmがより好ましい。
 本造粒粉末の安息角は、35~55°が好ましく、40~50°がより好ましい。
 本造粒粉末の崩潰角は、25~50°が好ましく、30~45°がより好ましい。
 安息角又は崩潰角が、前記範囲の上限値以下の場合は、流動性に優れ、充分に造粒されていると考えられる。
 本造粒粉末の差角は、5~15°が好ましく、10~15°がより好ましい。
 本造粒粉末の雪崩エネルギーは、10~50mJ/kgが好ましく、15~50mJ/kgがより好ましい。
 本造粒粉末の雪崩角度は、40~60°が好ましく、45~55°がより好ましい。
 本造粒粉末の表面フラクタルは、1~7が好ましく、1.5~6がより好ましい。
 雪崩エネルギー、雪崩角度又は表面フラクタルが前記範囲の上限値以下の場合は、粉体の流動性がより優れる。
 本造粒粉末の1つの側面として、本造粒粉末のD50は60μm以上であり、雪崩角度は40~60°である。
 本造粒粉末の他の1つの側面として、本造粒粉末のD50は60μm以上であり、雪崩エネルギーは10~50mJ/kgであり、雪崩角度は40~60°である。
 本造粒粉末は、泡立ちの評価における容積の増加率が、3倍以下であることが好ましく、2倍以下であることがより好ましく、1.75倍以下であることがさらに好ましく、1.55倍以下であることが特に好ましく、1.5倍以下であってもよい。泡立ちの評価における容量の増加率の下限値は特に制限されないが、1.0倍以上であってもよく、1.1倍以上であってもよい。
 泡立ちの評価における容積の増加率は、1.0~3倍であってよく、1.0~2倍であってよく、1.2~1.75倍であってよく、1.2~1.55倍であってよい。
 ここで、泡立ちの評価における容積の増加率は、後述する実施例に記載のとおり、25℃の条件下で、造粒粉末20gと水180gを容量500mLのシェイカーに投入し、20回シェイクした後、前記シェイカーの内容液を500mLメスシリンダーに投入し、その容量V(mL)を計測し、式:増加率(倍)=[V]÷[泡立ち試験前の溶液の容量]により算出される。Vは、泡立ち試験後の泡を含めた溶液の容量である。[泡立ち試験前の溶液の容量]は、造粒粉末20gを水180gで溶解した溶液の質量(g)をその溶液の比重(mL/g)で割ることで算出した値である。造粒粉末20gを水180gで溶解した溶液の比重は、溶液の比重(実測値)1.008から、試験前の容量は、198mL(=200(g)÷1.008(mL/g))となる。溶液の比重は、常温(25℃)における値である。溶液の比重は、公知の比重計を用いて常法により測定した値が好ましい。
 本造粒粉末は、例えば、前記した本発明の造粒粉末の製造方法により製造できる。
 本発明の造粒粉末の製造方法において、得られる造粒粉末の粉体特性(D50、D90、D10、D[3,2]、D[4,3]、安息角、崩潰角、差角、雪崩エネルギー、表面フラクタル、雪崩角度)は、造粒工程の条件により調整できる。例えば、バインダーの量を増加させたり熱風温度を低下させたりすると、D50は大きくなり、表面フラクタルや雪崩角度は小さくなる傾向がある。
 以下に、実施例を用いて本発明をさらに詳しく説明する。ただし本発明はこれら実施例に限定されるものではない。なお、本実施例において百分率は、特に断りのない限り、質量による表示である。
<測定方法>
 (ホエイタンパク質の含量)
 ホエイタンパク質の含量は、燃焼法により得られた窒素量を表す数値に係数6.38をかけることにより測定した。
 (脂質の含量)
 脂質の含量は、レーゼ・ゴットリーブ法により測定した。
 (リン脂質の組成)
 リン脂質の組成は、薄層クロマトグラフィー測定法、又は核磁気共鳴(NMR)測定法により測定した。
 (灰分の含量)
 灰分の含量は、直接灰化法により測定した。
 (炭水化物の含量)
 炭水化物の含量は、「100-水分値-タンパク質含量-脂質含量-灰分含量」により算出した。
 (固形分)
 固形分は、「固形分(%)=100-水分(%)」により算出した。
 水分(%)は、常圧加熱乾燥法により測定した。具体的には、99℃の恒温器にて4時間乾燥後の減量分を水分値とした。
 (D50、D90、D10、D[3,2]、D[4,3])
 D50、D90、D10、D[3,2]、D[4,3]は、レーザー回析/散乱式粒子径分布測定装置(マルバーン社製「マスターサイザー3000」)を用い、25℃、相対湿度40~55%の条件で測定した。
 (安息角、崩潰角、差角)
 安息角及び崩潰角は、パウダーテスター(ホソカワミクロン社製、型式:PT-X)を用い、25℃、相対湿度40~55%の条件で、以下の手順で測定した。
 試料用ホッパーを振動幅1mmの設定で振動させ、目開き1.7mmの網、排出ロート、ノズル(内径7mm)を通し、10.5cmの高さから粉体を安息角試料台の円板上に落下させ粉体の山を作る。この条件により形成された粉体の山の角度が、パウダーテスターPT-Xによる画像解析の結果、測定値としてあらわされる。また、崩潰角はパウダーテスターPT-Xのプログラムに従い、109.7gの錘を160mmの高さから自然落下させて衝撃を加えた際の粉体の山の角度を画像解析し、測定値を算出する。
 差角は、「差角=安息角-崩潰角」で算出した。
 (雪崩エネルギー、雪崩角度、表面フラクタル)
 雪崩エネルギー、雪崩角度及び表面フラクタルは、回転ドラム・画像解析方式粉体流動性測定装置(マーキュリー・サイエンティフィック社製「レボリューションパウダーアナライザー」)を用い、25℃、相対湿度40~55%の条件で、以下の手順で測定した。
 100mLのサンプルを計量し、付属のドラムに入れた後、当該ドラムを装置にセットし、0.3rpmのスピードで緩やかに回転させ、その間の粉体挙動を装置に付属するCCDカメラで撮影しながら雪崩が生じた前後の画像を記録、解析し、そのデータを基に各種パラメーターを算出する。雪崩エネルギーは雪崩前後の位置エネルギーの変化量を、雪崩角度は雪崩が生じる際の角度を、表面フラクタルは雪崩後の粉面の粗さを表す指標として用いる。
<原料>
 WPC:Milei GmbH社製Milei 80。その組成を表1に示す。
 ホエイのMFリテンテート:チーズホエイを孔径0.2μmの精密ろ過膜で処理して得たMFリテンテートを噴霧乾燥により粉末化したもの。その組成を表1に示す。
 表1中、原料組成は、原料の総質量に対する各成分の質量割合を示し、リン脂質組成は、リン脂質の総質量に対する各リン脂質の質量割合を示す。
 精製ヒマワリレシチン:カーギル社製Emurpur SF。
 レシチン:カーギル社製ヒマワリ由来レシチン Topcithin SF。
Figure JPOXMLDOC01-appb-T000001
<バインダー液の調製>
 表2に示す原料を、表2に示す濃度になるように水に溶解してバインダー液1~4を調製した。各バインダー液中の脂質、タンパク質、灰分、炭水化物の含量を表2に示す。ただし、バインダー液3~4については、アセトン不溶物の値から算出した計算値(予想値)を示した。各バインダー液の残部は水である。
Figure JPOXMLDOC01-appb-T000002
<実施例1、比較例1、参考例A~B>
 前記バインダー液の種類毎にWPCを以下の手順で造粒し、前記バインダー液1~4を用いて造粒した造粒粉末を、それぞれ比較例1、実施例1、参考例A、及び参考例Bとした。WPC600gを流動層造粒機(株式会社大川原製作所製)に投入し、表3に示すバインダー液を用い、バインダー液の噴霧速度40g/分、吹き込み熱風60℃にて、数回の中間乾燥を入れながら造粒したのち、吹き込み熱風85℃15分間の条件で乾燥し、造粒粉末を得た。噴霧するバインダー量は、バインダー由来の脂質量が凡そ同じになるように設定した。すなわち、実施例1及び比較例1の噴霧量は500g、参考例A及びBの噴霧量は120gとした。
 得られた造粒粉末におけるタンパク質及び脂質の含量、リン脂質組成を表3に示す。表3中、タンパク質及び脂質の含量は、原料の総質量に対する各成分の質量割合を示し、リン脂質組成は、脂質の総質量に対する各リン脂質の質量割合を示す。
 各例の造粒粉末の粉体特性を表4に示す。
 各例の造粒粉末について、以下の評価を行った。結果を表4に示す。
 (溶解性の評価)
 25℃の条件下で、造粒粉末20gと水180gを容量500mLのシェイカーに投入し、20回シェイクした。その後、造粒粉末の溶け残りの有無を目視で確認し、以下の基準で溶解性を評価した。
 A:造粒粉末の溶け残りはなかった。
 B:造粒粉末の溶け残りがあった。
 (泡立ちの評価)
 前記溶解性の評価で、20回シェイクした直後に、シェイカーの内容液を500mLメスシリンダーに投入し、その容量V(mL)を計測した。[V]÷[試験前の溶液の容量]により増加率を算出した。増加率が小さいほど泡立ちが抑制されている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1の造粒粉末は、未造粒のWPCや比較例1の造粒粉末に比べて、水と混合した時の泡立ちが抑制されていた。水への溶解性も良好であった。

Claims (12)

  1.  ホエイタンパク質濃縮物にバインダー液を噴霧して造粒し、造粒粉末を得る工程を含み、
     前記バインダー液が、ホエイ由来の脂質を含む、造粒粉末の製造方法。
  2.  前記ホエイ由来の脂質が、チーズホエイ由来の脂質である、請求項1に記載の造粒粉末の製造方法。
  3.  前記バインダー液が、ホエイの精密ろ過膜リテンテート又は限外ろ過膜リテンテートを含む、請求項1又は2に記載の造粒粉末の製造方法。
  4.  前記バインダー液が、ホエイの精密ろ過膜リテンテートを含む、請求項1~3のいずれか一項に記載の造粒粉末の製造方法。
  5.  前記精密ろ過膜リテンテートが、ホエイタンパク質単離物の製造時に生成したものである、請求項4に記載の造粒粉末の製造方法。
  6.  前記バインダー液が、添加剤を含まない、請求項1~5のいずれか一項に記載の造粒粉末の製造方法。
  7.  ホエイタンパク質濃縮物の造粒粉末であって、
     ホエイタンパク質と脂質とを含み、
     前記脂質の含量が、前記造粒粉末の総質量に対し、0.5質量%以上、10質量%未満であり、
     体積基準累積50%径が60μm以上である、造粒粉末。
  8.  前記ホエイタンパク質の含量が、前記造粒粉末の総質量に対し、50~95質量%である、請求項7に記載の造粒粉末。
  9.  添加剤を含まない、請求項7又は8に記載の造粒粉末。
  10.  雪崩角度が40~60°である、請求項7~9のいずれか一項に記載の造粒粉末。
  11.  雪崩エネルギーが10~50mJ/kgである、請求項7~10のいずれか一項に記載の造粒粉末。
  12.  泡立ちの評価における容積の増加率が3倍以下である、請求項7~11のいずれか一項に記載の造粒粉末。
PCT/JP2019/050250 2018-12-28 2019-12-23 造粒粉末の製造方法及び造粒粉末 WO2020137932A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19901809.4A EP3903592A4 (en) 2018-12-28 2019-12-23 PROCESS FOR PRODUCTION OF GRANULAR POWDER AND GRANULAR POWDER
JP2020563231A JP7550650B2 (ja) 2018-12-28 2019-12-23 造粒粉末の製造方法及び造粒粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246472 2018-12-28
JP2018-246472 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137932A1 true WO2020137932A1 (ja) 2020-07-02

Family

ID=71127302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050250 WO2020137932A1 (ja) 2018-12-28 2019-12-23 造粒粉末の製造方法及び造粒粉末

Country Status (3)

Country Link
EP (1) EP3903592A4 (ja)
JP (1) JP7550650B2 (ja)
WO (1) WO2020137932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121376B1 (ja) * 2021-12-27 2022-08-18 株式会社Nkホールディングス ホエイ蛋白含有食品の品質調整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080475A1 (ja) * 2003-03-14 2004-09-23 Meiji Dairies Corporation 抗ロタウィルス感染組成物、およびその製法
JP4827987B2 (ja) 2008-11-13 2011-11-30 株式会社明治 酸性可溶タンパク含有飲用組成物及びその製造方法
JP2018191557A (ja) * 2017-05-16 2018-12-06 森永製菓株式会社 タンパク質含有顆粒の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336230A (ja) 2004-05-24 2005-12-08 Morinaga Milk Ind Co Ltd 脂肪球皮膜物質中の脂質の分離回収方法
FI129567B (en) 2015-08-31 2022-04-29 Valio Oy Method of making a milk - based product
EP3356544A4 (en) * 2015-10-02 2019-08-14 Glanbia Nutritionals (Ireland) Ltd. PROTEIN HYDROLYZATE, METHOD FOR THE PRODUCTION AND USE THEREOF
CA3036967A1 (en) * 2016-09-14 2018-03-22 Glanbia Nutritionals (Ireland) Ltd. Agglomerated protein products and method for making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080475A1 (ja) * 2003-03-14 2004-09-23 Meiji Dairies Corporation 抗ロタウィルス感染組成物、およびその製法
JP4827987B2 (ja) 2008-11-13 2011-11-30 株式会社明治 酸性可溶タンパク含有飲用組成物及びその製造方法
JP2018191557A (ja) * 2017-05-16 2018-12-06 森永製菓株式会社 タンパク質含有顆粒の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3903592A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121376B1 (ja) * 2021-12-27 2022-08-18 株式会社Nkホールディングス ホエイ蛋白含有食品の品質調整方法

Also Published As

Publication number Publication date
JP7550650B2 (ja) 2024-09-13
JPWO2020137932A1 (ja) 2021-11-11
EP3903592A1 (en) 2021-11-03
EP3903592A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP5014137B2 (ja) ナノ粒子化ホエイタンパク質
JP6301407B2 (ja) 固形乳の製造方法及び固形乳の圧縮成形性及び溶解性改善方法
KR20070038100A (ko) 고형 우유, 및 그 제조 방법
US20230200423A1 (en) Agglomerated protein products and method for making
WO2012038913A1 (en) A method for processing a powder
US20230270127A1 (en) Foaming and emulsifying properties of high pressure jet processing pasteurized milk
WO2016102315A1 (en) Oil filler compositions and uses thereof
JP7550650B2 (ja) 造粒粉末の製造方法及び造粒粉末
EP2950660B1 (en) Process for the manufacture of edible water-in-oil emulsions
JP7389620B2 (ja) 造粒物の製造方法
JP6189567B1 (ja) タンパク質含有顆粒の製造方法
JP4618813B2 (ja) 固形乳,及びその製造方法
JP2007097430A (ja) 合成クリーム
JP5255805B2 (ja) 代用乳の製造方法
EP0953289A2 (en) High fat and high protein content milk replacer and process for its production
JP4605665B2 (ja) 固形乳,及びその製造方法
JP4603029B2 (ja) 固形乳,及びその製造方法
JP4603028B2 (ja) 固形乳,及びその製造方法
JP5926647B2 (ja) 代用乳及びその製造方法
JP6609393B1 (ja) 水への沈降溶解性を高めた高蛋白質含有プロテイン粉末
JP2007259825A (ja) 粉末状又は顆粒状食品組成物
US20160330990A1 (en) Liquid comprising animal protein and a carboxy-c1-c3-alkyl cellulose
JP2010029154A (ja) プロセスチーズ
KR20190127386A (ko) 카제인을 함유한 유기가공식품용 커피 크리머 유화제 및 그 제조 방법
CN118266504A (zh) 包含脂肪球的婴儿配方组合物及其静态混合制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901809

Country of ref document: EP

Effective date: 20210728