WO2020135898A1 - Derivados de oligosacáridos sintéticos como vacuna contra bordetella pertussis - Google Patents

Derivados de oligosacáridos sintéticos como vacuna contra bordetella pertussis Download PDF

Info

Publication number
WO2020135898A1
WO2020135898A1 PCT/CU2019/050001 CU2019050001W WO2020135898A1 WO 2020135898 A1 WO2020135898 A1 WO 2020135898A1 CU 2019050001 W CU2019050001 W CU 2019050001W WO 2020135898 A1 WO2020135898 A1 WO 2020135898A1
Authority
WO
WIPO (PCT)
Prior art keywords
deoxy
benzyl
mmol
compound
abc
Prior art date
Application number
PCT/CU2019/050001
Other languages
English (en)
French (fr)
Inventor
Vicente Guillermo VÉREZ BENCOMO
Chen GUANGWU
Sonsire FERNÁNDEZ CASTILLO
Lina GUO
Original Assignee
Instituto Finlay De Vacunas
Chengdu Olisynn Biotechnology Co.Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Finlay De Vacunas, Chengdu Olisynn Biotechnology Co.Ltd filed Critical Instituto Finlay De Vacunas
Priority to CN201980000706.9A priority Critical patent/CN111819184B/zh
Publication of WO2020135898A1 publication Critical patent/WO2020135898A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention provides synthetic oligosaccharide fragments from the Bordetella pertussis lipooligosaccharide (LOS) terminal pentasaccharide, a method of obtaining the synthetic oligosaccharide fragments and conjugates therefrom.
  • the oligosaccharide conjugates are immunogenic and immunoprotective against nasopharyngeal colonization of Bordetella pertussis and could be applied as part of a vaccine composition for whooping cough prophylaxis.
  • the present invention relates to carbohydrate-protein conjugates comprising synthetic oligosaccharide fragments conjugated to a suitable carrier protein, the method of preparing the synthetic oligosaccharide fragments and their conjugates, the pharmaceutical composition and vaccine composition containing such glycoconjugates.
  • the carbohydrate-protein conjugate is particularly effective in inducing anti-LOS pertussis antibodies that are particularly effective in reducing nasal colonization due to Bordetella pertussis. This feature is completely absent after immunization with acellular pertussis vaccines and present, but to a lesser extent, after immunization with the whole cell pertussis vaccine. Therefore, the present invention represents an important contribution to the prevention of whooping cough.
  • the present invention belongs to the field of antibacterial vaccines composed of glycoconjugates.
  • Bordetella pertussis is the causative agent whooping cough or pertussis, a highly contagious disease that affects the respiratory tract and is especially severe in infants and young children. Vaccines against the disease have been used since the 1950s, and global vaccination coverage today has reached more than 85%.
  • the high reactogenicity of inactivated whole cell vaccines and a better understanding of the molecular function mechanisms of the virulence factors of B. pertussis, which are also its main protective antigens, have led to the introduction of acellular vaccinesjT [.
  • the disease has not been controlled in any country and has even had a notable re-emergence in some developed countries, where cell vaccines First-generation completes have been replaced by more recent acellular vaccines and less reactive genes.
  • Adolescents and adults are important sources of B. pertussis transmission for unvaccinated infants.
  • a study conducted in Canada, France, Germany, and the United States showed that in infants with pertussis, household members, primarily parents, were the source of B. pertussis transmission for 76-83% of cases [41 .
  • Studies in non-human primates have shown that neither whole-cell nor acellular vaccines are able to prevent colonization of B. pertussis into the nasopharynx.
  • modeling of incidence data supports the situation in which asymptomatic transmission is an important driver of pertussis resurgence in highly vaccinated populations [5].
  • nasopharyngeal colonization is a prerequisite for infection, disease, and constitutes the source of transmission.
  • Conjugated polysaccharide-protein vaccines induce an immune response that acts at the mucosal level, playing a crucial role in reducing colonization and carrier status; 61.
  • LPS lipopolysaccharide
  • IgG antibodies against oligosaccharides were shown to be protective in humans and initiate complement-dependent bacterial death [8] [9] [10].
  • LPS is called lipooligosaccharide (LOS) in case of Bordetella pertussis since it has a very short oligosaccharide.
  • the oligosaccharide is a branched dodecasaccharide ( Figure 1) with a unique structure, but LOS alone has low immunogenicity.
  • the glycoconjugates described above despite showing promising preliminary bactericidal activity, are difficult to prepare as they involve culturing the bacteria, isolating and purifying the oligosaccharide, and conjugating to a carrier protein. That is why so far its practical application has not been carried out.
  • the fragment of the oligosaccharide containing the exact epitope recognized by protective antibodies can only be determined with the use of well-defined synthetic molecules. A Once the epitope is found, the fragment could be more easily and accurately synthesized and used for conjugation to a carrier protein.
  • the present invention provides all of the oligosaccharide fragments present in the terminal pentasaccharide of B. pertussis ( Figure 2). It also provides the glycoconjugates derived therefrom and the demonstration of the involvement of some of these oligosaccharides in the specific immune response against B. pertussis. Furthermore, the role of some of these oligosaccharides in the colonization of B. pertussis was also demonstrated.
  • glycoconjugates described in the present invention could also be part of new anti-pertussis vaccines aimed primarily at preventing infection and potentially disease as well.
  • the present invention provides a conjugate vaccine composed of a synthetic B. pertussis lipooligosaccharide (LOS) oligosaccharide that induces an immune response with a bactericidal effect that interferes with bacterial colonization and therefore has a significant impact on active transmission and status. asymptomatic carrier.
  • LOS B. pertussis lipooligosaccharide
  • Identifying ways to promote the bactericidal immune response is considered as a way to improve the efficacy of existing whole cell and acellular pertussis vaccines [10].
  • This bactericidal response has been detected in the polyclonal serum of individuals with whooping cough £ 9 ⁇ and has been correlated with the anti-LOS response.
  • other studies have found several monoclonal antibodies that exhibit bactericidal properties directed at LOS from Bordetella pertussis 16 j ⁇ 17
  • the present invention provides compositions and methods for chemically synthesizing the antigenic structure corresponding to oligosaccharides constituents of the lipooligosaccharide of B. pertussis, an important element of the outer membrane.
  • the clinical isolates of B. pertussis evolved under the pressure of vaccination; however, the structure of LOS has remained constant j 19 j
  • the present invention provides the synthetic antigenic structure of AB, ABC, and ABCDE shown in Table 1, which contain the epitope recognized by specific LOS-antibodies raised against Bordetella pertussis.
  • the present invention provides the AB, ABC and ABCDE oligosaccharides depicted in Table 1 attached to a spacer with a terminal maleimido function as shown in Figure 3.
  • the present invention contemplates and provides sufficiently detailed guidance to modify any of the maleimido products described above (AB-6b, ABC- ⁇ b, and ABCDE-5) based on the molecules AB, ABC, and ABCDE, with different linkers and / or or spacers.
  • the invention provides oligosaccharide-protein conjugates with at least one of the aforementioned oligosaccharides as a component of a vaccine for induction of an anti-pertussis immune response.
  • the present invention contemplates and provides sufficient guidance to modify any of the conjugated products using different proteins and / or other molecules typically used to enhance or modulate the anti-carbohydrate immune response.
  • the present invention provides glycoconjugates useful as a supplement to existing combination vaccines such as DTP, penta or hexavalent childhood vaccines.
  • the terminal pentasaccharide consists of a series of unusual monosaccharides, as shown in Figure 2.
  • the monosaccharide components are indicated here and below as A: GlcNAc (D-glucosamine N-Ac), B: Man2NAc3NAcA (2-acetamido- 3-acetamido-2,3, dideoxy-D-manuronic), C: Fuc2NAc4NMe (2-acetamido-4-N-methyl-2,4,6 -deoxy-L-galactose), D: Hep (L-glycero- D-mannoheptosa), E: GlcN (D-glucosamine).
  • the terminal disaccharide can also be represented as AB.
  • Synthetic oligosaccharides refer to material that is essentially free of components that normally accompany a compound when naturally isolated, such as, for example, endotoxins, glycolipids, or unrelated oligosaccharides.
  • the described synthetic compounds are at least 90% pure, the purity can be measured by HPLC and the identity can be determined by mass spectrometry and / or NMR spectroscopy.
  • Monosaccharide B (compound B-5) was prepared as described in Example 1, Figure 4. Methyl-D-glucopyranoside (Bl) was sequentially treated with Benzaldehyde dimethylacetal followed by mesylation of the free hydroxyl group at position 2, 3. Selective demesylation followed by internal substitution under basic conditions provided the corresponding epoxy B-2. E1 epoxide from B-2 was opened with azides sodium to provide the corresponding monoazide at position 2, followed by triflation of the hydroxyl group at position 3 and azido-substitution again with azidasodica.
  • Corresponding diazide (B-3) was subjected to acetolysis with acetic anhydride and sulfuric acid, followed by treatment with p-thiocresol in the presence of boron trifluoride-diethyl ether to provide the corresponding p-thiocreolglycoside. Removal of the acetyl groups at position 4 and 6 with sodium bicarbonate provided the corresponding compound B-4.
  • the last transformation set includes oxidation at the 6-position with Tempo followed by introduction of benzyl ester with benzyl bromide and potassium carbonate.
  • Compound B-5 is the basic component for the introduction of monosaccharide B into all oligosaccharides.
  • Monosaccharide C (compound C-7) was prepared as described in Example 2, Figure 5.
  • L-Rhamnose (Cl) was transformed into a p-thiocresyl glucoside (C-2) after acetylation followed by reaction with p -thiocresol in the presence of boron trifluoride.
  • De-acetylation and reaction with dimethoxypropane in the presence of camphor sulfonic acid provided compound C-3.
  • Oxidation with the Dess-Martin reagent followed by reaction with hydroxylamine hydrochloride gave the corresponding oxime at position 4 (C-4).
  • the oxime was converted to amine as shown in the example, by treatment with molybdenum oxide and sodium tetraborate followed by sodium hydroxide. The isopropylidene group was removed and the remaining diol was treated with triphosgene for the selective introduction of a carbonate obtaining the corresponding C-5 amide.
  • Monosaccharide D (compound D-5) was prepared as described in Example 3, Figure 6.
  • the l, 3,4,6-tetra-Oacetyl-2-azido-2-deoxy-D-glucopyranose was de-acetylated selectively at position 1 by the use of ammonia in tetrahydrofuran at 0 ° C followed by reaction with trichloroacetonitrile in the presence of cesium carbonate.
  • the corresponding trichloroacetimidate (D-2) was glycosylated with the spacer in the presence of trimethylsilyl triflate followed by deacetylation to D3.
  • the primary position of D-3 was selectively sililized with tert-butyldimethylchlorosilane and the remaining free hydroxyls 3 and 4, together with the amino group, were benzylated with benzyl bromide and sodium hydride in tetrahydrofuran to provide D-4.
  • the azido group of D-4 was reduced and protected in situ with a tert-butyloxycarbonyl group to provide the D-5 monosaccharide building block suitable for connection to the ABC trisaccharide.
  • the alternative monosaccharide D (D-7) building block suitable for addition of monosaccharide E at position 4 and ABC at position 6 was prepared as described in Example 4, Figure 7.
  • Derivative D-3 was subjected reaction with benzaldehyde dimethylacetal in the presence of camphor sulfonic acid followed by benzyl benzyl bromide in the presence of sodium hydride to provide D-6.
  • the benzylidene protecting group was removed by acid hydrolysis with acetic acid and the primary hydroxyl function was protected as tert-butyldimethylsilyl ether by using the corresponding chloride in the presence of imidazole.
  • Compound D-7 is a D-building block ready to spread on position 4 and / or 6.
  • the monosaccharide E building block (compound E-6) was prepared as described in Example 5, Figure 8.
  • Key intermediate E5 is presented as a mixture of LD isomers (the configuration present in LOS) and DD, a alternative configuration at position 6.
  • D-mannose was transformed into the corresponding acetobrom sugar by reaction with acetic anhydride and pyridine followed by hydrogen bromide in acetic acid.
  • the bromide was treated with TBAB and DIEA to provide the corresponding 1,2-orthoester E-1.
  • Compound El was de-acetylated, temporarily substituted at position 6 by the TBDPS group at E-2, followed by benzylation and removal of the TBDPS group at E-3.
  • the disaccharide (compound AB-6b) was prepared as described in Example 6, Figure 9. Building blocks A-10> B-5b were used to generate a disaccharide by treatment with triflic anhydride in the presence of PhiSO and TTBP. Elimination Additional thio-tolyl anomeric protecting groups in the presence of NBS gave compound AB-2 with excellent 90% yield.
  • the spacer precursor was introduced by triflic anhydride in the presence of PhiSO and TTBP to give the desired PAB-3 anomer with 58% of yield after separation of its isomer a.
  • the azido groups were reduced with Zn / CuS0 4 and in situ they were directly transformed into acetamide with acetic anhydride.
  • the benzyl groups in the sugar rings and the benzyloxycarbonyl group in the spacer were removed by Pd / C catalysed hydrogenolysis followed by introduction of the maleimido group to provide AB-6b.
  • the AB-2 disaccharide building block reacts with C-7 donor in the presence of -30 ° C triflyl anhydride to provide trisaccharide derivative ABC-1.
  • the thio group was oxidized with mCPBA to allow the introduction of a spacer as a separable oc / b mixture by reaction with -78 ° C triflic anhydride. All four groups were reduced in Zn / CuSCU followed by acetylation to acetamide and purification of the ABC-4 isomer. Finally, the Cbz protecting groups and benzyl groups were removed by Pd / C hydrogenation and the active maleimido group was introduced into the spacer to provide the desired ABC-ab.
  • the a-isomer of ABC-3 was isolated as a by-product as described in Examples 8 and 12, then was transformed following the same reaction sequence to provide the ABC-ab.
  • the disaccharide (compound DE-6LD) was prepared as described in Example 9, Figure l i from building blocks E-6LD and D-7 in the presence of trimethylsilyl triflate at 0 ° C.
  • the acetyl group was removed and benzylated to provide DE-2LD followed by removal of TBS from the main position of the D.E1 unit azidoDE-3LD group was converted to amino by reduction with NiCh and NaBPL followed by protection with Boc to provide DE-4LD which could be used for the synthesis of the terminal pentasaccharide ABCDE.
  • the benzyl and Cbz groups were then removed by hydrogenation under Pd / C and the maleimido group was introduced into the spacer, followed by deprotection with Boc to provide DE-6LD.
  • the disaccharide (compound DE-6DD) was prepared as described in Example 10, Figure l i from the E-6DD and D-7 building block according to the same sequence as for the LD isomer.
  • the donor trisaccharide ABC-2 reacts with the DE-4 building block in the presence of -78 ° C triflic anhydride to produce the derived pentasaccharide ABCDE-1.
  • the azido groups present in ABCDE-1 were cut and acct i 1 ring n in situ to provide ABCDE-2.
  • the Cbz and Bn protecting groups were removed by hydrogenation in the presence of Pd / C, followed by the introduction of the maleimido propionic ester into the amino terminal function of the spacer (ABCDE-4). Finally, the Boc group was removed by trifluoroacetic acid giving the pentasaccharide-spacer ABCDE-5.
  • the synthetic oligosaccharides of disaccharide AB, trisaccharide ABC, and pentasaccharide ABCDE were conjugated to tetanus toxoid to provide adequate vaccines. Immunization of mice and rabbits with these conjugates showed a strong anti-carbohydrate immune response that corresponds to the synthetic oligosaccharide as shown in Figure 16.
  • Another object of the invention is a glycoconjugate comprising a synthetic fragment of the B. pertussis LOS, preferably di or terminal trisaccharide coupled through a suitable spacer molecule to a carrier protein.
  • the synthetic carbohydrate fragment representing the epitope recognized by the anti-LPS immune response plays the essential role in the discovered properties.
  • Another combination and / or composition containing it, whether known or not, should be considered as a support for the immunogenic reaction in a host against the oligosaccharides of the present invention.
  • the spacer molecule plays a link role between the critical carbohydrate and the carrier protein.
  • Suitable spacer molecules are known to those skilled in the art and are commercially available, or can be designed as required and depending on the functional groups present, can be prepared by known methods.
  • Appropriate spacers are composed at one end by a group capable of establishing a stable covalent bond with a reactive functional group of the carrier protein, for example, amino, thiol or carboxyl groups; and at the other end a group equally capable of establishing a stable covalent bond with a hydroxyl group of an oligosaccharide according to the present invention.
  • a biocompatible bridging molecule of a length between 2 to 10 atoms suitable for its specific auxiliary function, for example, oligoalkylene glycol, alkylene, heteroalkylene.
  • Carrier proteins are also known to those skilled in the art and are either commercially available or used in some existing vaccines. They include, but are not limited to, bacterial toxoids, toxins, exotoxins, and non-toxic derivatives thereof, such as tetanus toxoid, pertussis toxoid, diphtheria toxoid, L fragment of tetanus toxin, CRM 197, cholera toxoid, or others.
  • the preferred carrier proteins for this particular glycoconjugate are tetanus toxoid or pertussis toxoid.
  • the methods for binding oligosaccharides to a carrier protein are conventional and conjugates according to the present invention can be created by one skilled in the art using conventional methods.
  • the oligosaccharides of the present invention are conjugated to tetanus toxoid (produced by the Linlay Institute for Vaccines). These glycoconjugates have the advantage of being easier to synthesize, purify and characterize and are strongly immunogenic.
  • Tetanus toxoid (TT) activation was performed by thiolation of the lysine side chain with N-hydroxysuccinimityithiopropionate followed by dithiothreitol as described i 20 j.
  • Thiolated tetanus toxoid can be functionalized with 15-30 thiol groups prior to conjugation.
  • Conjugation can be performed in PBS solution under conditions that prevent thiol oxidation (N2 atmosphere, EDTA).
  • the antigen-TT conjugate can be synthesized by reacting a maleimido-terminated antigen with thiol-activated TT.
  • TT conjugates can be purified by size exclusion to remove any unreacted carbohydrate.
  • the MBTH (specific for GINAc residues) and Bradford assays can be used to determine the carbohydrate-protein ratio and protein content, respectively.
  • a minimum carbohydrate content of approximately 10% by weight can be generated for each conjugate.
  • a glycoconjugate can include approximately 4-15 antigens per carrier protein.
  • Another aspect of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a glycoconjugate according to the invention and a pharmaceutically acceptable carrier.
  • Another object of the invention is a vaccine composition
  • a vaccine composition comprising glycoconjugate according to the invention, a pharmaceutically acceptable carrier and optionally an adjuvant.
  • Vaccine compositions comprising the glycoconjugates of this invention can be used to induce an immune response that reduces colonization of Bordetella pertussis in the nasopharyngeal cavity of the vaccine recipient.
  • Another aspect of the invention is an existing whole cell pertussis vaccine supplemented with the glycoconjugate according to this invention and is characterized by reduced colonization of Bordetella pertussis in the nasopharyngeal cavity of the vaccine recipient.
  • Another aspect of the invention is a combination vaccine containing a whole cell pertussis vaccine supplemented with the glycoconjugate according to the present invention and characterized by reduced colonization of Bordetella pertussis in the nasopharyngeal cavity of the vaccine recipient.
  • Another aspect of the invention is a glycoconjugate according to the invention, useful as an adjunct to an existing whole cell pertussis vaccine for the prevention and treatment of diseases caused by B. pertussis.
  • Another aspect of the invention is an existing acellular pertussis vaccine supplemented with the glycoconjugate according to this invention and characterized by reduced colonization of Bordetella pertussis in the nasopharyngeal cavity of the vaccine recipient.
  • Another aspect of the invention is a combination vaccine containing one of the existing acellular pertussis vaccines supplemented with the glycoconjugate according to the invention and characterized by reduced colonization of Bordetella pertussis in the nasopharyngeal cavity of the receptor for the vaccine.
  • Bordetella pertussis LOS terminal pentasaccharide Table 1 Synthetic structures of the AB, ABC and ABCDE oligosaccharide fragments of Bordetella pertussis LOS
  • Figure 14 Specificity by the ELISA method of 16 individual murine anti-pertussis cells sera for the synthetic oligosaccharide-BSA and LOS conjugates of B. pertussis.
  • FIG. 1 Immunogenicity of the ABb-TT and AB € b-TT conjugates.
  • A Scheme in BALB / c mice;
  • B Scheme in New Zeland rabbits;
  • C Response against pertussis cells (cP), rabbit scheme, serum dilutions 1/100 and 1/400.
  • FIG. 1 Anti-oligosaccharide IgG response (AB or ABC) from mice immunized with ABb-TT, ABOb-TT conjugates before and after applying a booster dose with pertussis cells (arrow).
  • Figure 19 Inhibition of nasopharyngeal colonization by serum from rabbits immunized with ABb-TT and whole cells.
  • the line represents the detection limit of the technique.
  • Methyl 2,3-anhydro-4,6-0-benzylidene-aD-allopyranoside (B-2, 71 g, 269 mmol) in DMF (1.50 1) was treated with sodium azide (52.4 g, 807 mmol) and ammonium chloride (174 g, 3.23 mol) at 80 ° C overnight and subsequently diluted with acetyl acetate, washed with brine and concentrated in vacuo. Purification using silica gel column chromatography provided 42 g of methyl 2-azido-4,6-0-benzylidene-2-deoxy-D-altropyranoside as a colorless syrup.
  • Methyl 2,3-diazido-4,6-0-benzylidene-2,3-dideoxy-aD-mannopyranoside (B-3, 28 g, 62.7 mmol) is triacetylated using acetic anhydride (110 ml) and sulfuric acid (0.90 mi) at 0 ° C. Dilution with acetyl acetate and saturated aqueous sodium bicarbonate followed by concentration and purification to give compound l, 4,6-tri-0-acetyl-2,3-diazido-2,3-dideoxy-a / bD-mannopyranose as a brownish oil (27 g).
  • the aqueous solution was extracted with ethyl acetate, and the organic phases were concentrated to provide a crude product.
  • Nickel (II) chloride hexahydrate (502 mg, 1.76 mmol) and sodium tetrahydroborate (334.4 mg, 5.02 mmol) were added to a solution of the above DE-3LD (2.2 g, 1.76 mmol) in dry methanol (50 ml). and stirred for 30 minutes at 0 ° C, followed by the addition of di-t-butyl dicarbonate (768.1 g, 3.52 mmol) and kept stirring at room temperature for 2 hours.
  • BSA bovine serum albumin
  • TT tetanus otoxoid
  • New Zeland rabbits were immunized subcutaneously with 100 OU of pertussis cells in 300 pL of complete Freund's adjuvant. A second dose was immunized using the same dose in 300 pL of Freund's Incomplete Adjuvant after 2 weeks. Serum was drawn from each animal on days 35 and 42 thereafter.
  • Balb / c mice were immunized subcutaneously with 32 OU of pertussis cells in 300 pL of complete Freund's adjuvant. A second and a third dose (separated by 2-week intervals) were immunized using the same inoculum in 100 pL of Freund's Incomplete Adjuvant. Serum was drawn from each animal on days 35 and 42 thereafter.
  • ELISA plates were coated with one of the following conjugates for antigenicity studies: ABa-BSA, ABb-BSA, ABCa-BSA, ABCP-BSA, D (DD) E-BSA, D (LD) E- BSA and ABCDE-BSA.
  • LOS (10 pg / ml) and pertussis cells (1 opalescence unit, OU) were used as controls.
  • BSA conjugates were diluted to a concentration of 1 pg / ml (based on carbohydrate, CHQ) in PBS and incubated overnight at 37 ° C. Subsequently, the plates were washed four times with 0.05% Tween 20 solution in PBS.
  • the plates were blocked with 1% skim milk in PBS and incubated for 30 minutes at 37 ° C.
  • the wells were washed four times and incubated with a 1: 100 or 1: 400 dilution of serum samples (mice or rabbit) diluted in PBS solution containing 0.3% Tween 20, 10mM EDTA and skim milk 1% for 90 min at room temperature. Plates were rinsed four times and horseradish peroxidase-conjugated anti-IgGide antibody) was added to each well.
  • the plates were washed again after 90 minutes incubation at room temperature, and the TMB / FbCU substrate solution in citrate buffer, pH 5 was added. After 20 minutes in the dark, the reaction was stopped with 2.5M H2SO4 and the plates they were read at 450 nm (Fig. 13 and Fig. 14).
  • Immunoblot 0.5 pg (CHO based) of the following conjugates were placed on nitrocellulose membranes: ABa-BSA, ABb-BSA, ABCa-BSA, ABCp-BSA, D (DD) E-BSA and ABCDE-BSA.
  • Pertussis cells (5 opalescence units) were used as a positive control and BSA as a negative control.
  • the membranes were blocked with 1% skimmed milk in PBS, incubated for 30 minutes at 37 ° C and washed four times with PBS. Thereafter, the membranes were incubated for 1 hour at 37 ° C with rabbit anti AB-TT and anti ABC-TT serum diluted 1/100 with a PBS solution containing 0.3% Tween 20. The membranes they were washed again with PBS-Tween solution.
  • an anti-rabbit IgG antibody conjugated to horseradish peroxidase and diaminobenzidine was used as substrate (Fig. 16).
  • New Zeland rabbits were immunized subcutaneously with one of the following formulations: ABb-TT, ABEb-TT, pertussis cells and 50 pg LPS in complete Freund's adjuvant. It was immunized with a second dose using the same formulations in Freund's Incomplete Adjuvant 2 weeks apart. Serum was drawn from each animal on days 35 and 42 thereafter.
  • C57BL / c mice were immunized subcutaneously with one of the following vaccines: ABb-TT, ABOb-TT, ABCDE-TT and whole cell pertussis. Animals were injected 3 times (separated by 2 week intervals) with 2.5 pg / 100 pl in PBS. The serum was withdrawn at 42 days.
  • Sera analysis was performed by ELISA as described in Example 14. Plates were coated with conjugates of the same oligosaccharides to BSA as a carrier protein. Whole cell pertussis (1 opalescence unit) and LOS (10 pg / ml) were used as control (Fig 17 A, B and C).
  • mice immunized with ABb-TT, ABCb-TT or PBS (Placebo) was analyzed at various time points by ELISA described in Example 14. Almost a year after the Primary immunization, animals received a booster dose containing 1 OU of the inactivated bacteria.
  • the IgG response against ABb or ABEb was analyzed 15 days after the ELISA boost described in Example 14 (Fig. 18).
  • Example 17 Inhibition of nasal colonization by conjugate-induced serum:
  • mice Groups of C57BL / c mice were inoculated intranasally with 20 ⁇ l of a mixture (1: 1) of a suspension of B. pertussis containing 10 5 -10 6 CFU and rabbit serum against ABb-TT or whole inactivated cells obtained in Example 15. The mixture with pre-immune serum from the same rabbit was used as a control. All mixtures were incubated 1 hour at 37 ° C before instillation.
  • mice were sacrificed 18-24 h after inoculation, the nasal cavities were aseptically extracted and homogenized in 1% aminoamino acid broth. The prepared dilutions were plated on Bordet Gengou agar. Results were expressed as UFC LoglO (Fig. 19).

Abstract

La presente invención proporciona fragmentos de oligosacáridos sintéticos provenientes del pentasacárido terminal del lipooligosacárido de Bordetella pertussis, un método para obtener los fragmentos de oligosacáridos sintéticos y los conjugados a partir de los mismos. También proporciona las composiciones vacunales que contienen tales glicoconjugados y que inducen una respuesta inmune capaz de reducir la colonización nasofaríngea de Bordetella pertussis.

Description

MEMORIA DESCRIPTIVA
DERIVADOS DE OLIGOSACÁRIDOS SINTÉTICOS COMO VACUNA CONTRA BORDETELLA PERTUSSIS
Campo de invención
La presente invención proporciona fragmentos de oligosacáridos sintéticos provenientes del pentasacárido terminal del lipooligosacárido (LOS) de Bordetella pertussis, un método para obtener los fragmentos de oligosacáridos sintéticos y los conjugados a partir de los mismos. Los conjugados de oligosacáridos son inmunogénicos e inmunoprotectores contra la colonización nasofaríngea de Bordetella pertussis y podrían ser aplicados como parte de una composición vacunal para la profilaxis de la tosferina.
La presente invención se refiere a conjugados carbohidrato-proteína que comprenden fragmentos de oligosacárido sintético conjugados a una proteína portadora adecuada, el método de preparación délos fragmentos sintético de oligosacárido y sus conjugados, la composición farmacéutica y composición de vacunas que contiene tales glicoconjugados. El conjugado carbohidrato-proteína es particularmente efectivo induciendo anticuerpos anti-LOS de pertussis que son particularmente efectivos reduciendo la colonización nasal debido a Bordetella pertussis. Esta característica está completamente ausente luego de la inmunización con vacunas de pertussis acelulares y presente, pero en un grado menor, luego de la inmunización con la vacuna de pertussis de célula completa. Por lo tanto, la presente invención representa una importante contribución a la prevención de la tos ferina.
La presente invención pertenece al campo de las vacunas antibacterianas compuestas por glicoconjugados.
Estado de la técnica anterior
Bordetella pertussis es el agente causal la tos ferina o pertussis, una enfermedad altamente contagiosa que afecta al tracto respiratorio y que es especialmente grave en infantes y niños pequeños. Las vacunas contra la enfermedad se han utilizado desde la década de 1950, y la cobertura mundial de vacunación en la actualidad ha alcanzado más del 85%. La alta reactogenicidad de las vacunas inactivadas de células enteras y una mejor comprensión de los mecanismos de función molecular de los factores de virulencia de B. pertussis que constituyen, además, sus principales antígenos protectores, han llevado a la introducción de las vacunas acelularesjT[. Sin embargo, la enfermedad no ha sido controlada en ningún país e incluso ha tenido una reemergencia notable en algunos países desarrollados, donde las vacunas de células completas de primera generación han sido reemplazadas por las vacunas acelulares más recientes y menos reacto génicas. Entre las razones para el resurgimiento de esta enfermedad prevenible por vacunación se encuentra la disminución de la inmunidad inducida por las actuales vacunas, los cambios genéticos en cepas de B. pertussis y la transmisión asintomática por parte de individuos colonizados con la bacteria. Considerando que se sabe poco sobre la duración de la protección después de la vacunación contra la tos ferina en los países en desarrollo, varios estudios realizados en países desarrollados muestran que la protección disminuye después de 4- 12 años, reportándose cada vez más casos en niños mayores, adolescentes y adultos 2j. Un estudio serológico realizado en los Estados Unidos mostró que el 21% (intervalo de confianza [IC] del 95%, 13-32%)de los adultos con tos prolongada (duración de más de 2 semanas) tenían pertussis[31.
Los adolescentes y adultos son importantes fuentes de transmisión de B. pertussis para los infantes no vacunados. Un estudio realizado en Canadá, Francia, Alemania y Estados Unidos demostró que en los infantes enfermos con tos ferina, los miembros del hogar, principalmente los padres, eran la fuente de transmisión de B. pertussis para 76-83% de los casos[41. Los estudios realizados en primates no humanos han demostrado que ni las vacunas de células enteras, ni vacunas acelulares son capaces de prevenir la colonización de B. pertussis a la nasofaringe. Igualmente, el modelado de los datos de incidencia respalda la situación en la cual la transmisión asintomática es un importante motor del resurgimiento de la tos ferina en poblaciones altamente vacunadas [5].
Para los patógenos encapsulados tales como Haemophilus influenzae tipo b, Streptococcus pneumoniae o Neisseria meningitidis, la colonización nasofaríngea es un requisito previo para la infección, enfermedad y constituye la fuente de transmisión. Las vacunas conjugadas polisacárido- proteína inducen una respuesta inmune que actúa a nivel mucosal, jugando un papel crucial en la reducción de la colonización y el estado portador; 61.
Para las bacterias no encapsuladas, la respuesta inmune contra los carbohidratos componentes del lipopolisacárido (LPS) podría desempeñar un papel similar; ? !, debido a que los carbohidratos se encuentran más expuestos en la estructura del LPS y ser éste una molécula abundante en la membrana extema. En Bordetella pertussis, más específicamente, se demostró que los anticuerpos IgG contra oligosacáridos son protectores en humanos e inician la muerte bacteriana dependiente del complemento [8][9][ 10] . El LPS es llamado lipooligosacárido (LOS) en caso de Bordetella pertussis al poseer un oligosacárido muy corto. El oligosacárido es un dodecasacárido ramificado (Figura 1) con una estructura única, pero el LOS por si solo tiene baja inmunogenicidad. Sin embargo, puede ser aislado mediante la hidrólisis ácida y una vez purificado puede ser conjugado a una proteína portadora para proporcionar una mejor inmunogenicidad anti-LQS[ l l ].Se ha observado que tales conjugados inducen anticuerpos bactericidas en ratones P 11.Los estudios realizados para definir la fracción dentro de la estructura del LOS de B. pertussis responsable de la actividad bactericida condujeron al pentasacárido terminal del oligosacárido. Los glicoconjugados obtenidos a partir del pentasacárido terminal mantuvieron las mismas propiedades bactericidas del dodccasacáridoj 12] .
La coexistencia de dos oligosacáridos diferentes en el LOS de B. pertussis, llamados por su perfil electroforético, banda A (dodecasacárido completo) y banda B (nonasacárido sin trisacárido terminal) [13 j, también se ha usado para refinar de manera indirecta el conocimiento sobre la especificidad de estos anticuerpos bactericidas. Por ejemplo, un estudio realizado con anticuerpos monoclonales (AcM) inducidos contra la bacteria, mostró que siete AcM obtenidos eran específicos al LOS. De ellos, cinco demostraron una potente actividad bactericida. Estos AcM bactericidas, al ser enfrentados a un panel de cepas de B. pertussis, mantuvieron un fuerte reconocimiento y actividad bactericida para todas las cepas, excepto para la cepa B. pertussis 134, que contiene únicamente la banda B del LOS.
Otra evidencia indirecta importante fue el hecho de que los mismos AcM reaccionaron de forma cruzada con B. bronchiseptica, que posee un polisacárido capsular compuesto por las mismas unidades repetitivas del trisacárido terminal del LOS de B. pertussis. Un intento adicional de refinar el epítopo para obtener un antígeno adecuado para el desarrollo de una vacuna se realizó mediante la fragmentación del LOS sin resultados claros y consistentes! 14]
A pesar de la importancia de todo lo anterior, no se han obtenido evidencias sobre el epítopo preciso involucrado en la actividad bactericida anti-LOS de B. pertussis hasta la fecha. Esto permitiría definir un antígeno a ser sintetizado para su uso como vacuna glicoconjugada.
Por otro lado, los glicoconjugados descritos anteriormente, a pesar de mostrar una actividad bactericida preliminar prometedora, son difíciles de preparar, ya que implican el cultivo de la bacteria, el aislamiento y purificación del oligosacárido y la conjugación a una proteína portadora. Es por ello que hasta el momento no se ha llevado a cabo su aplicación práctica.
Con el fin de desarrollar un antígeno sintético adecuado y su glicoconjugado, las moléculas implicadas en el epítopo bactericida deben ser definidas, y solo entonces, el proceso de obtención de un glicoconjugado basado en un oligosacárido sintético sería una opción más simple y práctica.
El fragmento del oligosacárido que contiene el epítopo exacto reconocido por anticuerpos protectores solo puede ser determinado con el uso de moléculas sintéticas bien definidas. Una vez que el epítopo sea encontrado, el fragmento podría sintetizarse más fácilmente y con mayor precisión y usarse para la conjugación a una proteína transportadora.
Breve descripción de la invención
La presente invención proporciona todos los fragmentos de oligosacáridos presentes en el pentasacárido terminal de B. pertussis (Figura 2). También proporciona los glicoconjugados derivados de los mismos y la demostración de la implicación de algunos de estos oligosacáridos en la respuesta inmune específica contra B. pertussis. Además, el papel de algunos de estos oligosacáridos en la colonización de B. pertussis fue demostrada igualmente.
Las vacuna contra la tos ferina existentes, a pesar de sus desventajas, podrían considerarse como una contribución importante para detener las epidemias de tos ferina! 15] . Sin embargo, el uso de los glicoconjugados descritos en la presente invención podrían contribuir con una propiedad que no está presente en las vacunas existentes para la prevención de la tos ferina: impacto directo sobre la colonización nasofaríngea y por lo tanto, reducción de la transmisión de B. pertussis de humanos infectados a la población más susceptible.
Los glicoconjugados descritos en la presente invención también podrían ser parte de nuevas vacunas anti-pertussis dirigidas principalmente a evitar la infección y potencialmente a la enfermedad también.
Descripción detallada de la invención
La presente invención proporciona una vacuna conjugada compuesta por un oligosacárido sintético del lipooligosacárido (LOS) de B. pertussis que induce una respuesta inmune con efecto bactericida que interfiere con la colonización bacteriana y por tanto, tiene un impacto significativo sobre la transmisión activa y el estado portador asintomático.
La identificación de formas de promover la respuesta inmune bactericida es considerada como una forma de mejorar la eficacia de las vacunas existentes de células enteras y de pertussis acelular [ 10] . Esta respuesta bactericida se ha detectado en el suero policlonal de individuos con tos ferina £9} y se ha correlacionado con la respuesta anti-LOS. Además, otros estudios han encontrado varios anticuerpos monoclonales que exhiben propiedades bactericidas dirigidas al LOS de Bordetella pertussis 16 j{ 17| [ 18|.
La presente invención proporciona composiciones y métodos para sintetizar químicamente la estructura antigénica correspondiente a oligosacáridos componentes del lipooligosacárido de B. pertussis, un elemento importante de la membrana externa. Los aislados clínicos de B. pertussis evolucionaron bajo la presión de la vacunación; sin embargo, la estructura del LOS se ha mantenido constante j 19 j
La presente invención proporciona la estructura antigénica sintética de AB, ABC y ABCDEque se muestra en la Tabla 1, las cuales contienen el epítopo reconocido por anticuerpos LOS- específicos generados contra Bordetella pertussis.
En otra realización, la presente invención proporciona los oligosacáridos AB, ABC y ABCDE representados en la Tabla 1 unidos a un espaciador con una función maleimido terminal como se muestra en la Figura 3.
Debe reconocerse que la presente invención contempla y proporciona una guía suficientemente detallada para modificar cualquiera de los productos maleimido descritos anteriormente (AB-6b, ABC-όb y ABCDE-5) basados en las moléculas AB, ABC y ABCDE, con diferentes enlazadores y/o espaciadores.
En un aspecto adicional, la invención proporciona conjugados oligosacárido-proteína con al menos uno de los oligosacáridos mencionados anteriormente como componente de una vacuna para la inducción de una respuesta inmune anti-tos ferina.
Debe reconocerse que la presente invención contempla y proporciona orientación suficiente para modificar cualquiera de los productos conjugados utilizando diferentes proteínas y/u otras moléculas típicamente usadas para aumentar o modular la respuesta inmune anti-carbohidrato.
En otra realización, la presente invención proporciona glicoconjugados útiles como complemento de las vacunas combinadas existentes como DTP, vacunas infantiles penta o hexavalente.
Síntesis de todos los fragmentos incluidos en el pentasacárido terminal
El pentasacárido terminal se compone de una serie de monosacáridos inusuales, como se muestra en la Figura 2. Los componentes monosacáridicos se indican aquí y a continuación como A: GlcNAc (D-glucosamina N-Ac), B: Man2NAc3NAcA (ácido 2-acetamido-3-acetamido-2,3, didesoxi-D-manurónico), C: Fuc2NAc4NMe (2-acetamido-4-N-metil-2,4,6 -deoxi-L- galactosa), D: Hep (L-glicero-D-manoheptosa), E: GlcN (D-glucosamina). De ese modo, por ejemplo, el disacárido terminal también se puede representar como AB. Métodos para sintetizar los oligosacáridos
Los oligosacáridos sintéticos se refieren al material que está esencialmente libre de componentes que normalmente acompañan a un compuesto cuando se aísla naturalmente, tales como, por ejemplo, endotoxinas, glicolípidos u oligosacáridos no relacionados.
Los compuestos sintéticos descritos son puros al menos al 90%, la pureza puede ser medida por HPLC y la identidad se puede determinar mediante espectrometría de masas y/o espectroscopia por RMN.
Síntesis de los componentes básicos de los monosacáridos A, B, C, D y E
El monosacárido B (compuesto B-5) fue preparado como se describe en el ejemplo 1, Figura 4. El Metil-D-glucopiranósido(B-l) se trató secuencialmente con Benzaldehído dimetilacetal seguido de la mesilación del grupo hidroxilo libre en la posición 2,3. La demesilación selectiva seguida de una sustitución interna en condiciones básicas proporcionó el epóxido correspondiente B-2.E1 epóxido de B-2 se abrió con azidasódicapara proporcionar la monoazida correspondiente en la posición 2, seguido de la triflación del grupo hidroxilo en la posición 3 y la azido-sustitución nuevamente con azidasódica.Ladiazida correspondiente (B-3)se sometió a acetólisis con anhídrido acético y ácido sulfúrico, seguido de tratamiento con p-tiocresol en presencia de boro trifluoruro-éter dietílico para proporcionar el p-tiocreolglicósido correspondiente. La eliminación de los grupos acetilo en la posición 4 y 6 con bicarbonato de sodio proporcionó el compuesto B-4 correspondiente. El último conjunto de transformación incluye la oxidación en la posición 6 con Tempo seguida por la introducción de éster de bencilo con bromuro de bencilo y carbonato de potasio. El compuesto B-5 es el componente básico para la introducción del monosacárido B en todos los oligosacáridos.
El monosacárido C (compuesto C-7) se preparó como se describe en el ejemplo 2, Figura 5. Se transformó L-ramnosa (C-l) en un p-tiocresil glucósido (C-2) después de la acetilación seguida de reacción con p -tiocresol en presencia de trifluoruro de boro. La des-acetilación y la reacción con dimetoxipropano en presencia de ácido canforsulfónico proporcionaron el compuesto C-3. La oxidación con el reactivo de Dess-Martin seguido de la reacción con hidrocloruro de hidroxilamina dio la oxima correspondiente en la posición 4 (C-4).La oxima se transformó en amina como se muestra en el ejemplo, por tratamiento con óxido de molibdeno y tetraborato de sodio seguido de hidróxido de sodio. El grupo isopropilidenose eliminó y el diol restante se trató con trifosgeno para la introducción selectiva de un carbonato obteniendo la correspondiente amida C-5.A continuación, el grupo hidroxilo en la posición 2 se protegió con terc- Butildimetilsililo, la función amida en la posición 4 se metilo con yoduro de metilo en presencia de hidruro de sodio y el grupo terc-Butildimetilsililose eliminó con ácido acético para dar el compuesto C-6.E1 grupo hidroxilo en la posición 2se transformó en el isómero azido por tratamiento con trifenilfosfina y difenilfosforilazidaen presencia de DIAD, y la carbonilamida correspondiente se sometió a hidrólisis básica recuperando el grupo hidroxilo libre en la posición 3. Finalmente, la metilamina se protegió con benciloxicarbonilo para proporcionar el correspondiente bloque de construcción C como compuesto C-7.
El monosacárido D (compuesto D-5) se preparó como se describe en el ejemplo 3, Figura 6. La l,3,4,6-tetra-Oacetil-2-azido-2-desoxi-D-glucopiranosa se des-acetiló selectivamente en la posición 1 por el uso de amoniaco en tetrahidrofuranoa 0°C seguido por la reacción con tricloroacetonitrilo en presencia de carbonato de cesio. El tricloroacetimidato correspondiente (D-2)fue glicosilado con el espaciador en presencia de triflato de trimetilsililo seguido de des- acetilación para llegar aD-3.La posición primaria de D-3 se sililizó selectivamente con terc- butildimetilclorosilanoy los restantes hidroxilos libres 3 y 4, junto con el grupo amino, sebencilaron con bromuro de bencilo e hidruro de sodio en tetrahidrofurano para proporcionar D-4.Después de la liberación del grupo 6-hidroxi, el grupo azido de D-4 se redujo y se protegió in situ con un grupo tert-butiloxicarbonilo para proporcionar el bloque de construcción monosacárido D-5 adecuado para la conexióndel trisacárido ABC.
El bloque de construcción del monosacárido alternativo D (D-7) adecuado para la adición del monosacárido E en la posición 4 y ABC en la posición 6 se preparó como se describe en el ejemplo 4, Figura 7. El derivado D-3 se sometió a reacción con benzaldehído dimetilacetal en presencia de ácido canforsulfónico seguido de bencilación con bromuro de bencilo en presencia de hidruro de sodio para proporcionar D-6. El grupo protector bencilideno se eliminó por hidrólisis ácida con ácido acético y la función hidroxilo primaria se protegió como éter terc- butildimetilsilílico mediante el uso del cloruro correspondiente en presencia de imidazol.El compuesto D-7 es un bloque de construcción D listo para extenderse en la posición 4 y/o 6.
El bloque de construcción del monosacárido E (compuesto E-6) se preparó como se describe en el ejemplo 5, Figura 8. El intermediario clave E5 se presenta como una mezcla de isómeros LD (la configuración presente en el LOS) y DD, una configuración alternativa en la posición 6. La D-manosa se transformó en la acetobromo-azúcar correspondiente por reacción con anhídrido acético y piridina seguido de bromuro de hidrógeno en ácido acético. El bromuro se trató con TBAB y DIEA para proporcionar el 1,2- ortoéster correspondienteE-1. El compuesto E-l fue des-acetilado, temporalmente sustituido en la posición 6 por el grupo TBDPS a E-2, seguido de bencilación y eliminación del grupo TBDPS a E-3. La función hidroxilo primaria libre en la posición 6 fue oxidada a aldehido por el reactivo de Dess-Martin seguido de olefinación de Wittig introduciendo de un grupo metileno obteniéndose el compuesto E-4correspondiente.La dihidroxilación de la olefina con tetraóxido de osmio seguido por bencilación proporcionó E-5 como diastereómeros. El ortoéster fue abierto por ácido y los isómeros resultantes se separaron ytratados por separado con tricloroacetonitrilo para proporcionar los correspondientesE-6 DD y E-6 LD.
Síntesis de un disacárido terminal AB-con un brazo espaciador (AB-6b, GlcNAca-(l-4)- Man2NAc3NAcA-P-espaciador)
El disacárido (compuesto AB-6b) se preparó como se describe en el ejemplo 6, Figura 9. Bloques de construcción A-10 >B-5b se utilizaron para generar un disacárido mediante el tratamientoconanhídrido tríflico en presencia de PhiSO y TTBP.La eliminación adicional de grupos protectores anoméricos de tio - tolilo en presencia de NBS dio el compuesto AB-2con excelente rendimiento del 90% .El precursor del espaciador fue introducido por anhídrido tríflicoen presencia de PhiSO y TTBP para dar el anómeroPAB-3 deseado con 58% de rendimiento después de la separación de su isómero a. Los grupos azido se redujeron con Zn/CuS04 e in situ se transformaron directamente en acetamido con anhídrido acético. Los grupos bencilo en los anillos de azúcar y el grupo benciloxicarboniloenel espaciador fueron eliminados mediante hidrogenólisis catalizada por Pd/C seguida de la introducción del grupo maleimido para proporcionar AB-6b.
El isómero a de AB-3 fue aislado como un producto secundario como se describe en el ejemplo 7y se transformó adicionalmente siguiendo la misma secuencia de reacción para proporcionar el correspondiente AB-6b.
Síntesis del trisacárido terminal ABC- con un brazo espaciador (GlcNAca-(l-4)- Man2NAc3NAcA^-(l-3)-Fuc2NAc4NMe^-espaciador)
Como se describe en el ejemplo 8, la Figura 10, el bloque de construcción disacárido AB-2 reacciona con donante C-7 en presencia de anhídrido tríflicoa -30°C para proporcionar el derivado trisacárido ABC-1. El grupo tio se oxidó con mCPBA para permitir la introducción de un espaciador como una mezcla oc/b separable por reacción con anhídrido tríflicoa -78°C. Los cuatrogruposazido se redujeron en Zn/CuSCU seguido de acetilación a acetamido y purificación dei isómero ABC-4. Por último, losgrupos protectores Cbz y grupos bencilo fueron eliminados por Pd/C hidrogenación y el grupo maleimido activo se introdujo en el espaciador para proporcionar el ABC-όb deseado. El isómero a de ABC-3 fue aislado como un producto secundario como se describe en los ejemplos 8 y 12, luego fue transformado siguiendo la misma secuencia de reacción para proporcionar el ABC-όb.
Síntesis del disacárido terminal DE (isómerosLDy DD) con un brazo espaciador (LD y DD- Hepa- ( 1 -4) - GlcNAc-a- -espaciador)
El disacárido (compuesto DE-6LD) se preparó como se describe en el ejemplo 9, Figura l i a partir de los bloques de construcción E-6LD y D-7 en presencia de triflato de trimetilsililo a 0°C. El grupo acetilo fue eliminado y bencilado para proporcionar DE-2LD seguido de la eliminación de TBS desde la posición principal de la unidad D.E1 grupo azidoDE-3LD se transformó en amino por reducción con NiCh y NaBPL seguido de la protección con Boc para proporcionar DE-4LDque podría usarse para la síntesis del pentasacárido terminal ABCDE. Los grupos bencilo y Cbz se eliminaron luego mediante hidrogenación bajo Pd/C y se introdujo el grupo maleimido en el espaciador, seguido de desprotección con Boc para proporcionar DE-6LD.
El disacárido (compuesto DE-6DD) se preparó como se describe en el ejemplo 10, Figura l i a partir del bloque de construcción E-6DD y D-7 de acuerdo con la misma secuencia que para el isómero LD.
Síntesis del pentasacárido ABCDE con un brazo espaciador (GlcNAca-(l-4)- Man2NAc3NAcA-P-(l-3)-Fuc2NAc4NMe-P-(l-6)-[LD-Hep-a-(l-4)]-GlcN-a-espaciador)
Como se describe en el ejemplo 11, figura 12, el trisacáridodonanteABC-2 reacciona con el bloque de construcción DE-4 en presencia de anhídrido tríflico -78°C para producir el pentasacárido derivado ABCDE-1. Los grupos azido presentes en ABCDE-1 se rcduj ero n y acct i 1 aro n in situ para proporcionar ABCDE-2. Los grupos protectores Cbz y Bn fueron removidos por hidrogenación en presencia de Pd/C, seguido de la introducción del éster propiónico de maleimido en la función amino terminal del espaciador (ABCDE-4). Finalmente, el grupo Boc se eliminó mediante ácido trifluoroacético dando el pentasacárido -espaciador ABCDE-5.
Descubrimiento del epítopo
Se inmunizaron conejos y ratones con células de B. pertussis. La respuesta inmune inducida contra el lipooligosacárido en su conformación en la membrana celular se estudió con los correspondientes conjugados de oligosacáridos sintéticos a BSA (seroalbúmina bovina) como proteína portadora. Se observó una reacción muy fuerte de reconocimiento de los sueros anti-bacteria a los conjugados obtenidos a partir del disacárido AB terminal, ya fuera en su conformación a o b en la unidad B. Se observaron reacciones similares para suero de conejo o de ratón con trisacárido ABC con diferente configuración en la unidad C y con el pentasacárido completo ABCDE sin diferencias importantes entre ellos. No se observó ninguna reacción para monosacárido A o disacárido interno DE independientemente de la configuración (DD o LD) de la unidad de heptosa E.
Los sueros individuales se estudiaron adicionalmente con los dos conjugados de BSA más relevantes: ABb -BSA y ABEb -BSA, mostrando diferencias entre ellos. Los sueros de un grupo de ratones reconocen mejor el disacárido terminal AB que al trisacárido ABC. Por otra parte, el suero de un menor número de ratones (ratones No. 3,9, 11, 13, 15) reconocen tanto AB y ABC de forma similar, como se muestra en la Figura 14.
En este punto, es evidente que los anticuerpos anti-LOS inducidos por las células completas reconocen un epítopo localizado en la región ABC del pentasacárido terminal.
Para confirmar la importancia del papel del disacárido terminal AB y el trisacárido ABC, el suero de conejo obtenido luego de la inmunización con células de B. pertussis se inhibió con conjugados obtenidos a partir del monosacárido terminal A, el disacárido AB y el trisacárido ABC a BSA como proteína portadora. Ambos, el disacárido AB y el trisacárido ABC redujeron el grado de reconocimiento del suero de conejo anti-células de pertussis al trisacárido terminal ABC y al pentasacárido ABCDE. Por otro lado, el monosacárido A no afectó el reconocimiento del epítopo (Figura 15).
Fragmentos sintéticos como vacunas
Los oligosacáridos sintéticos del disacárido AB, el trisacárido ABC y el pentasacárido ABCDE fueron conjugados a toxoide tetánico a fin de proporcionar vacunas adecuadas. La inmunización de ratones y conejos con estos conjugados mostró una fuerte respuesta inmune anti-carbohidrato que se corresponde con el oligosacárido sintético como se muestra en la Figura 16.
Además, los anticuerpos inducidos por inmunización con los conjugados AB-TT y ABC-TT en conejos reconocen a los conjugados a BSA obtenidos a partir del disacárido terminal AB y trisacárido ABC en cualquiera de sus conformaciones a o b en la unidad B. Se observaron reacciones igualmente intensas frente a los conjugados a BSA del tetrasacárido ABCD, el pentasacárido completo ABCDE y la célula entera de pertussis. De nuevo, el monosacárido A y el disacárido interno DE no fueron reconocidos por ningún suero. Otro objetivo de la invención es un glicoconjugado que comprende un fragmento sintético del LOS de B. pertussis, preferiblemente di o trisacárido terminal acoplado a través de una molécula espaciadora adecuada a una proteína portadora.
En esta composición típica de glicoconjugado de tres componentes, A-B-espaciador-proteína o A-B-C-espaciador-proteína, es importante aclarar el papel de cada componente de dicho glicoconjugado.
El fragmento de carbohidrato sintético que representa el epítopo reconocido por la respuesta inmune anti-LPS juega el papel esencial en las propiedades descubiertas. Otra combinación y/o composición que lo contiene, ya sea conocida o no, debe considerarse como un soporte para la reacción inmunogénica en un huésped contra los oligosacáridos de la presente invención.
La molécula espaciadora desempeña un papel de enlace entre el carbohidrato crítico y la proteína portadora. Moléculas espaciadoras adecuadas son conocidas por personas expertas y están disponibles comercialmente, o pueden diseñarse según se requiera y dependiendo de los grupos funcionales presentes, pueden prepararse por métodos conocidos.
Los espaciadores apropiados están compuestos en un extremo por un grupo capaz de establecer un enlace covalente estable con un grupo funcional reactivo de la proteína portadora, por ejemplo, grupos amino, tiol o carboxilo; y en el otro extremo un grupo igualmente capaz de establecer un enlace covalente estable con un grupo hidroxilo de un oligosacárido de acuerdo con la presente invención. Entre los dos grupos funcionales hay una molécula puente biocompatible de una longitud entre de 2 a 10 átomos adecuada para su función auxiliar específica, por ejemplo, oligoalquilenglicol, alquileno, heteroalquileno.
La proteína portadora desempeña el papel de inducir la respuesta inmune contra oligosacáridos no inmunogénicos. Las proteínas portadoras también son conocidas por personas expertas y están disponibles comercialmente o son usadas en algunas vacunas existentes. Incluyen, pero no se limitan, a toxoides bacterianos, toxinas, exotoxinas y derivados no tóxicos de los mismos, tales como toxoide tetánico, toxoide pertussis, toxoide diftérico, fragmento L de la toxina tetánica, CRM 197, toxoide del cólera u otros. Las proteínas portadoras preferidas para este glicoconjugado particular son el toxoide tetánico o el toxoide pertussis.
Los métodos para unir oligosacáridos a una proteína portadora son convencionales y un experto en la técnica puede crear conjugados de acuerdo con la presente invención usando métodos convencionales.
En una realización, los oligosacáridos de la presente invención se conjugan con toxoide tetánico (producido por el Instituto Linlay de Vacunas). Dichos glicoconjugados tienen la ventaja de ser más fáciles de sintetizar, purificar y caracterizar y son fuertemente inmunogénicos. La activación del toxoide tetánico (TT) se realizó mediante la tiolación de la cadena lateral de lisina con N- hidroxisuccinimidaditiopropionato seguido de ditiotreitol como se ha descrito i 20 j. El toxoide tetánico tiolado puede ser funcionalizado con 15-30 grupos tiol antes de la conjugación. La conjugación puede realizarse en solución de PBS en condiciones que eviten la oxidación de tiol (atmósfera de N2, EDTA). El conjugado de antígeno-TT se puede sintetizar haciendo reaccionar un antígeno terminado en maleimido con TT activado con tiol.
Los conjugados TT pueden purificarse por exclusión de tamaño para eliminar cualquier carbohidrato que no haya reaccionado. Los ensayos de MBTH (específico para residuos de GINAc) y de Bradford se pueden usar para determinar la proporción de carbohidrato-proteína y el contenido de proteína, respectivamente. En las realizaciones preferidas, puede generarse un contenido mínimo de carbohidrato de aproximadamente 10% en peso para cada conjugado. Típicamente, un glicoconjugado puede incluir aproximadamente 4-15 antígenos por proteína portadora.
Vacuna Glicoconjugada para reducir la colonización y transmisión de pertussis
Otro aspecto de la invención es una composición farmacéutica que comprende un glicoconjugado de acuerdo con la invención y un vehículo farmacéuticamente aceptable.
Otro objetivo de la invención es una composición de vacuna que comprende glicoconjugado de acuerdo con la invención, un vehículo farmacéuticamente aceptable y opcionalmente un adyuvante.
Las composiciones de vacuna que comprenden los glicoconjugados de esta invención se pueden usar para inducir una respuesta inmune que reduce la colonización de Bordetella pertussis en la cavidad nasofaríngea del receptor de la vacuna.
Otro aspecto de la invención es una vacuna contra la tos ferina de células enteras existente suplementada con el glicoconjugado de acuerdo con esta invención y se caracteriza por la reducción de la colonización de Bordetella pertussis en la cavidad nasofaríngea del receptor de la vacuna.
Otro aspecto de la invención es una vacuna combinada que contiene una vacuna de pertussis de células enteras suplementada con el glicoconjugado de acuerdo con la presente invención y se caracteriza por la reducción de la colonización de Bordetella pertussis en la cavidad nasofaríngea del receptor de la vacuna. Otro aspecto de la invención es un glicoconjugado de acuerdo con la invención, útil como complemento de una vacuna de pertussis de células enteras existente para la prevención y el tratamiento de enfermedades causadas por B. pertussis.
Otro aspecto de la invención es una vacuna acelular contra pertussis existente suplementada con el glicoconjugado de acuerdo con esta invención y que se caracteriza por la reducción de la colonización de Bordetella pertussis en la cavidad nasofaríngea del receptor de la vacuna.
Otro aspecto de la invención es una vacuna combinada que contiene uno de las vacunas acelulares contra la tos ferina existentes suplementada con el glicoconjugado de acuerdo con la invención y que se caracteriza por una reducción de la colonización de Bordetella pertussis en la cavidad nasofaríngea del receptor de la vacuna.
Descripción de las figuras
Figura 1 Dodecasacárido del lipooligosacárido (LOS) de Bordetella pertussis
Figura 2. Pentasacárido terminal del LOS de Bordetella pertussis Tabla 1. Estructuras sintéticas de los fragmentos oligosacarídicos AB, ABC y ABCDE del LOS de Bordetella pertussis
Figura 3. Derivados oligosacáridicos con un brazo espaciador AB-6b,ABO-6b and ABCDE-5
Figura 4. Síntesis del bloque de construcción del monosacáridoB (B-5)
Figura 5. Síntesis del bloque de construcción del monosacárido C (C-7) Figura 6. Síntesis del bloque de construcción del monosacáridoD (D-5)
Figura 7. Síntesis del bloque de construcción del monosacáridoD (D-7)
Figura 8. Síntesis del bloque de construcción del monosacáridoE (E-6LD y E-6DD)
Figura 9. Síntesis del disacárido terminal AB-6b y AB-6a Figura 10. Síntesis del trisacáridoABC^ Figural l. Síntesis del disacárido DE-6LD y DE-6DD Figural2. Síntesis del pentasacáridoABCDE-5 Figura 13. Especificidad por el método de ELISA del suero anti-células de pertussis por los conjugados de oligosacárido sintético-BSA. (A): mezcla de sueros de ratón, (B): mezcla de sueros de conejo
Figura 14. Especificidad por el método de ELISA de 16 sueros murinos individuales anti-células de pertussis por los conjugados de oligosacárido sintético-BSA y el LOS de B. pertussis.
Figura 15. Experimento de inhibición de la actividad del suero anti-células de pertussis con monosacárido A, disacárido AB y trisacárido ABC. (A): Placa recubierta con ABCP-BSA, (B): Placa recubierta con ABCDE-BSA
Figura 16. Inmunoblot realizado con suero de conejo contra AB-TT (1) y ABC-TT (2). cP: células inactivadas de B. pertussis.
Figura 17. Inmunogenicidad de los conjugados ABb-TT y AB€b-TT. (A): Esquema en ratones BALB/c; (B): Esquema en conejos New Zeland; (C): Respuesta contra células de pertussis (cP), esquema de conejos, diluciones de suero 1/100 y 1/400.
Figura 18. Respuesta IgG anti-oligosacáridos (AB o ABC)de ratones inmunizados con conjugados ABb-TT, ABOb-TT antes y después de aplicar una dosis de refuerzo con células de pertussis (flecha).
Figura 19. Inhibición de la colonización nasofaríngea por el suero de conejos inmunizados con ABb-TT y células enteras. La línea representa el límite de detección de la técnica.
Ejemplos de realización
Ejemplo 1 Síntesis del bloque de construcción de monosacáridosB:Bencil p-tolil 2,3- diazido-2,3-didesoxi-l-tio-P-D-manopiranosil uronato (B-5).
Una mezcla de metil a-D-glucopiranósido (B-l, 110 g, 567 mmol), benzaldehído dimetilacetal (103 g, 680 mmol) y ácido p-toluenosulfónico (9.75 g, 56.7 mmol) en DMF (700 mi) fue agitado a 60°C durante la noche. Después de inactivar con trietil amina y eliminar DMF al vacío, el residuo se diluyó con acetato de acetilo y luego se lavó con agua y salmuera. Después de eliminar el disolvente, el residuo se recristalizó para proporcionar 4,6-O-Bencilideno-a-D- glucopiranósido de metilo (148 g) como un sólido blanco. El sólido obtenido (148 g, 525 mmol) en piridina se mezcló con cloruro de metano sulfonilo (126 g, 1.10 mol) a 0°C y se agitó durante la noche a temperatura ambiente. Después de eliminar la piridina al vacío, el residuo se diluyó con acetato de acetilo y agua. La fracción orgánica se lavó con salmuera, se secó sobre sulfato de sodio y se concentró a vacío para proporcionar el compuesto bruto 4,6-0-bencilideno-2,3-di- O-metanosulfonil-a-D-glucopiranósido (220 g) como un sólido blanco. El crudo (502 mmol) en THF/metanol (500 mi, 2:3) se trató con hidróxido de potasio (84 g, 1.51 mol) a reflujo durante la noche, después de lo cual se añadió agua y se diluyó con acetato de acetilo. La fracción orgánica se separó y se lavó con salmuera, se secó sobre sulfato de sodio y se concentró al vacío. La cristalización usando EtOAc/PE proporcionó 2,3-anhidro-4,6-0-bencilideno-a-D- alopiranósido de metilo (B-2) como un sólido blanco (71 g, 47%).
Se trató 2,3-anhidro-4,6-0-benciliden-a-D-alopiranósido de metilo (B-2, 71 g, 269 mmol) en DMF (1.50 1) con azida sódica (52,4 g, 807 mmol) y cloruro de amonio (174 g, 3.23 moles) a 80°C durante la noche y posteriormente se diluyó con acetato de acetilo, se lavó con salmuera y se concentró al vacío. La purificación usando cromatografía en columna de gel de sílice proporcionó 42 g de 2-azido-4,6-0-bencilideno-2-desoxi-D-altropiranósido de metilo en forma de un jarabe incoloro. Una solución del compuesto anterior en diclorometano (900 mi) se agitó con piridina (213 g, 2,7 mol) y anhídrido trifluorometanosulfónico (87,7 g, 311 mmol) a -30°C durante 30 minutos, seguido de la adición de agua (5 mi). Después de concentrar, el producto bruto en DMF (350 mi) se trató con azida sódica (52,7 g, 810 mmol) y cloruro de amonio (27,4 g, 507 mmol) durante la noche a 80°C. Se añadieron acetato de acetilo y agua, y la fase orgánica se secó sobre sulfato de sodio y se concentró al vacío. La purificación usando cromatografía en columna de gel de sílice proporcionó el compuesto 2,3-diazido-4,6-0-benciliden-2,3-didesoxi- a-D-manopiranósido de metilo (B-3) como un sólido amorfo blanco (28 g, 62%)
El metil 2,3-diazido-4,6-0-bencilideno-2,3-didesoxi-a-D-manopiranósido (B-3, 28 g, 62.7 mmol) se triacetila utilizando anhídrido acético (110 mi) y ácido sulfúrico (0.90 mi) a 0°C. La dilución con acetato de acetilo y bicarbonato sódico acuoso saturado seguido de concentración y purificación para dar el compuesto l,4,6-tri-0-acetil-2,3-diazido-2,3-didesoxi-a / b-D- manopiranosa como una aceite parduzco (27 g). Una solución del compuesto anterior (27 g, 75.8 mmol) y p-tiocresol (10.3 g, 83.4 mmol) en diclorometano (270 mi) se trató con trifluoruro de boro dietil éter (38.0 mi, 303 mmol) a 35°C durante la noche. Después de la adición de bicarbonato de sodio acuoso saturado y acetato de acetilo, la capa orgánica separada se secó y se purificó para dar p-tolil 4,6-di-0-acetil-2,3-diazido-2,3-didesoxi-l-tio- a/b-D-manopiranósido como sólidos amarillos (22 g, 70%, a / b = 1 : 2.1). El b p-toliltio-D-manopiranósido anterior (15.2 g, 36.2 mmol) en metanol (180 mi) se trató con metilato de sodio (586 mg, 10.9 mmol) durante 2 h. Después de neutralizar mediante la adición de resina Amberlite-H +, filtrar y concentrar al vacío, el residuo se purificó por cromatografía sobre gel de sílice para obtener p- Tolil 2,3-Diazido-2,3-didcoxi- 1 -ΐίo-b-D- mannopiranósido (B-4) como un sólido amarillo (11.3 g, 93.4% de rendimiento).
El diol B-4 (11.3 g, 33.6 mmol) en acetato de acetilo y agua se trató con TEMPO (1.05 g, 6.72 mmol) y BAIB (27.0 g, 84.0 mmol) a 0°C-temperatura ambiente durante 2 h. La reacción se inactivó mediante la adición de tiosulfato de sodio acuoso saturado, y la capa orgánica se secó sobre sulfato de sodio y se concentró al vacío. El producto bruto se disolvió en DMF seco (330 mi) y se trató con bromuro de bencilo (17.2 g, 101 mmol) y carbonato de potasio (14 g, 101 mmol) a temperatura ambiente durante la noche. La mezcla se diluyó con acetato de acetilo y agua, y la capa orgánica se concentró al vacío. La purificación usando cromatografía en columna de gel de sílice proporcionó el bloque B correspondiente: compuesto bencil p-tolil 2,3-diazido- 2,3-didesoxi-l-tio^-D-manopiranosil-uronato (B-5) como un sólido amarillo (Fig. 4) (13.4 g, 90.5%). [a]20 D-32,69 (c 0, 104, DCM); 1H RMN (400 MHz, CDC13) d 7,44 - 7,37 (m, 7 H), 6,98 (d, J = 8,0 Hz, 2 H), 5,29 (d, J = 8,5 Hz, 1 H), 5,19 (d, J = 12,1 Hz , 1H), 4.73 (d, J = 0.9 Hz, 1H, H-l), 4.28 (td, J = 9.6, 2.4 Hz, 1H, H-4), 4.06 (dd, J = 3.3, 0.9 Hz, 1H , H-2), 3.77 (d, J = 9.5 Hz, 1H, H-5), 3.69 (dd, J = 9.7, 3.6 Hz, 1H, H-3), 3.43 (d, J = 2.6 Hz, 1H , -OH), 2,31 (s, 3H). LC- MS: [M + NH4] + Caled 458.16, Encontrado 458.2.
Ejemplo 2 Síntesis del bloque de construcción de monosacáridos C:p-Tolil 4-N- (benciloxicarbonil) -4-desoxi-4-metilamino-2-desoxi-2-azido-l-tio-a-L-fucopiranósido (C- 7).
Monohidrato de L-ramnosa (C-l, 18.2 g, 100 mmol) en piridina (500 mi) se agitó en presencia de anhídrido acético (61.3 g, 600 mol) a temperatura ambiente durante 12 horas. Después de eliminar el disolvente a vacío, la purificación por cromatografía en columna produjo 29.8 g de 1,2,3,4-O-tetraacetil-a, b-L-ramnpiranósido como un sólido blanco. A la solución de la ramnosa peracetilada (29.8 g, 90 mmol) y p-tiocresol (13.4 g, 108 mmol) en diclorometano seco (200 mi) se añadió trifluoruro de boro dietil éter (36 mi, 300 mmol) a 0°C y se agitó a temperatura ambiente durante 18 h. Después de inactivar con bicarbonato de sodio acuoso saturado, la capa orgánica se concentró y se purificó por cromatografía en columna de gel de sílice (éter de petróleo/EtOAc 3: 1) para dar p-Tolil 2,3,4-O-triacetil-l-tio-a- L-Rhamnopiranósido (C-2) (30.2 g, 77% en 2 etapas) como un sólido blanco.
La solución de 2,3,4-O-triacetil-l-p-Toliltio-a-L-Rhamnopiranósido (C-2) en metanol seco se trató con una cantidad catalítica de metilato de sodio durante 1 hora y luego se neutralizó añadiendo Amberlita IR- 120 (H +) y filtrado. El filtrado se concentró para dar 1-tio-l-L- Rhamnopiranósido de p-tolilo como un sólido blanco. La solución del crudo anterior (20.6 g, 66.5 mmol), ácido canfor- 10-sulfónico (1.54 g, 6.6 mmol) y dimetoxipropano (38 g, 380 mmol) en DCM se agitó a temperatura ambiente en atmósfera de N2 durante 4 h. Después de inactivarla con trietilamina (2 mi), la reacción se concentró, y recristalizó en éter de petróleo/EtOAc para producir p-Tolil 2,3-O-isopropilideno-l-tio-a-L-Rhamnopiranósido (C-3) como un sólido blanco (18.3 g, 77%).
La solución de p-Tolil 2,3-O-isopropiliden-l-tio-a-L-Rhamnopiranósido (C-3, 18.3 g, 59 mmol) en diclorometano seco (250 mi) se trató con reactivo Dess-Martin (28 g, 65 mmol) a 0 0 C- temperatura ambiente durante 2 h. La suspensión se filtró y el filtrado se concentró y se purificó usando una cromatografía en columna corta (3: 1 de éter de petróleo / EtOAc) para proporcionar 18g de p-Tolil 6-desoxi-2,3-0-isopropilideno-l-tio-a -L-lyxo-hexopiranosid-4-ulosa como un sólido blanco. La cetona de azúcar anterior (18 g, 59 mmol), hidrocloruro de hidroxilamina (12.6 g, 180 mmol) y acetato de sodio trihidratado (14.7g, 180 mmol) disueltos en una mezcla de agua (180 mi) y etanol (200 mi) se refluyeron durante aproximadamente 2 horas y se evaporó a presión reducida. La capa acuosa se extrajo con acetato de etilo tres veces. Las capas orgánicas se concentraron y purificaron usando cromatografía en columna (4: 1 de éter de petróleo / EtOAc) para dar un sólido blanco (16.5 g, 90%) de p-Tolil 6-desoxi-2,3-0-isopropilideno-l-tio. -a-L- lyxo-hexopyranosid-4-ulosa oxima (C-4).
A una solución agitada de p-Tolil 6-desoxi-2,3-0-isopropiliden-l-tio-a-L-lyxo-hexopiranosid- 4-ulosa oxima (C-4, 16.5, 50 mmol) en metanol/THL (5: 1, 200 mi) se añadieron óxido de molibdeno (VI) (21.6 g, 150 mmol) y tetrahidroborato de sodio (19 g, 500 mmol). Después de agitar durante 30 minutos, se añadió una solución de hidróxido sódico (2 N, 50 mi), se dejó durante 12 h, y luego se filtró. El filtrado se redujo a vacío a 100 mi, se transfirió a hielo/agua y se extrajo con dicloruro de metano tres veces. Las fases orgánicas combinadas se concentraron y se purificaron mediante una columna de cromatografía corta (éter de petróleo / EtOAc 1: 5) para proporcionar p-Tolil 6-desoxi-4-amino-4-desoxi-2,3-0-isopropilideno-l-tio -L- talopiranósido como un sólido blanco (12.3 g, 79.2%). La solución de la amina de azúcar anterior (12.3 g, 40 mmol) en metanol (100 mi) se trató con ácido clorhídrico en dioxano (4 M, 44 mi) a 0°C-temperatura ambiente durante 2 h. La concentración dio un p-tolil-6-desoxi-4-amino-4- desoxi-l-tio-a-L-talopiranósido en bruto usado directamente para la siguiente etapa. El crudo en acetonitrilo/agua (100 mi, 3: 1) se mezcló con bicarbonato sódico acuoso saturado (100 mi) a 0°C, seguido de la adición de tiofosgeno (13 g, 44 mmol) en porciones y se mantuvo a temperatura ambiente durante 2 h. La mezcla se extrajo con acetato de acetilo (100 mi) tres veces. Las capas orgánicas se concentraron y recristalizaron en éter de petróleo/EtOAc para producir p-Tolil 6-desoxi-4-N, 3-0-carbonil-4-desoxi-l-tio-aL-talopiranósido (C-5) (11.2 g, 90.4%) como un sólido blanco.
La solución de p-Tolil 6-desoxi-4-N, 3-0-carbonil-4-desoxi-l-tio-aL-talopiranósido (C-5, 11.2 g, 36 mmol) en diclorometano (200 mi) se trató con cloruro de terc-butildimetilsililo (6.5 g, 43.2 mmol) e imidazol (2.94 g, 43.2 mmol) a temperatura ambiente durante 16 h, posteriormente, se eliminó el solvente y se lavó con agua tres veces para obtener el p-Tolil 6-desoxi-4 en bruto -N, 3-0-carbonil-4-desoxi-2-0- (t-butildimetilsilil)-l-tio-aL-talopiranósido (11.2 g, 90.4%). Una solución del crudo anterior (11,2 g, 32,5 mmol) en tetrafurano seco (200 mi) se trató mediante la adición de hidruro de sodio (1,56 g, 60% en aceite mineral, 39 mmol) y yodometano (5,5 g, 39 mmol) a 0°C o temperatura ambiente por 16 h. Después de inactivar con cloruro de amonio acuoso saturado, la fase orgánica se lavó con agua y se concentró para dar un sólido blanco de p-Tolil 4,6-desoxi-4-amino-N-metil-4-N, 3-O-carbonil- 2-0- (t-butildimetilsilil) -1-tio-a-L- talopiranósido (11,6 g, 32,5 mmol), de los cuales se calentó una solución en 100 mi de ácido acético acuoso (80%) a 85°C durante 2 horas. Después de la eliminación del solvente en condiciones de vacío, el residuo se disolvió en acetato de etilo y se filtró. El filtrado resultante se concentró y se purificó mediante cromatografía en columna de gel de sílice (éter de petróleo / EtOAc 1: 4) para dar p-Tolil 4,6-desoxi-4-amino-N-metil-4-N, 3-O-carbonil- 1 -tio-a-L- talopiranósido (C-6) (9.6 g, 91.1%) como un líquido incoloro.
La solución de 4-6-desoxi-4-amino-N-metil-4-N, 3-O-carbonil-l-tio-aL-talopiranósido de p- tolilo (9,6 g, 29,6 mmol) y trifenilfosfina (11,63 g, 44,4 mmol) en tetrafurano seco (300 mi) se trató con azidodicarboxilato de diisopropilo (8,97 g, 44,4 mmol) y difenilfosforilazida (9,8 g, 35,5 mmol) a 0°C o temperatura ambientedurante 2 h, luego a reflujo durante 16 h. La mezcla de reacción se dejó enfriar a temperatura ambiente, y luego se concentró y purificó por cromatografía en columna (2: 1 de éter de petróleo / EtOAc) para dar p-Tolil 4-desoxi-4-amino- N-metil-4-N, 3 Se obtuvo -0-carbonil-2-desoxi-2-azido-l-tio-aL-fucopiranósido mezclado con óxido de trifenilfosfina como un jarabe amarillo. A una solución del producto anterior en dioxano (100 mi) se añadió hidróxido de potasio acuoso 1N (40 mi) y se agitó a 75°C durante 16 h, después de lo cual la solución se enfrió a temperatura ambiente y se neutralizó con una solución acuosa de HC1 1N. . La solución acuosa se extrajo con acetato de etilo y las fases orgánicas se concentraron para proporcionar un producto en bruto. El crudo obtenido, redisuelto en THF (50 mi) y mezclado con 50 mi de hidrogenocarbonato sódico acuoso (5,0 g, 59,2 mmol) se trató con cloroformato de bencilo (5,55 g, 32,56 mmol) a 0°C o temperatura ambientedurante 1 hora, tras lo cual la mezcla fue extraída por acetato de etilo tres veces. Las capas orgánicas se lavaron con salmuera saturada, se concentraron y se purificaron por cromatografía en columna de gel de sílice (8: 1 de éter de petróleo / EtOAc) para dar p-Tolil 4-N- (benciloxicarbonil) -4-desoxi-4- metilamino-2-desoxi. -2-azido-l-tio-aL-fucopiranósido (C-7) (Fig. 5) (9 g, 70,3% para 3 etapas) era un sólido blanco [a] 20 D -169.05 (c 0.210, DCM); 1H RMN (400 MHz, CDC13) d 7,40 - 7,33 (m, 9H), 7,14 (d, J = 7,9 Hz, 2H), 5,57 (d, J = 5,7 Hz, 1H, H-l), 5,17 (s, 2H, BnCH2), 4.80 (qd, J = 6.5, 3.5 Hz, 1H, H-5), 4.58 (dd, J = 5.3, 3.4 Hz, 1H, H-4), 4.22 (ddd, J = 10.8, 5.4 , 1.9 Hz, 1H), 4.07 (dd, J = 10.9, 5.7 Hz, 1H, H-2), 3.18 (s, 3H), 3.00 (d, J = 1.9 Hz, -OH), 233 (s, 3H ), 1,26 (d, J = 6,6 Hz, 3H). 13C RMN (101 MHz, CDC13) d 158.49, 137.16, 135.32, 132.04, 128.92, 128.56, 127.53, 127.07, 126.65, 86.91, 69.61, 66.85, 64.95, 60.19, 56.77, 32.35, 20.12, 15.63.ESI -MS m / z: 443,2 (M + H) +.
Ejemplo 3 Síntesis del bloque de construcción de monosacáridos D: 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi} etil 3,4-0-di-bencil-2 - [(terc- butoxicarbonil) amino] -2-desoxi-a-D- glucopiranósido (D-5).
A una solución agitada del compuesto l,3,4,6-tetra-0-acetil-2-azido-2-desoxi-D-glucopiranosa (D-l, 37,3 g, 100 mmol) en tetrahidrofurano (350 mi) se añadió amoníaco en metanol (7 M, 50 mi) y se agitó a 0°C durante 30 minutos y luego se purgó con nitrógeno durante 15 minutos. Después de concentrar hasta sequedad a presión reducida, se obtuvo el crudo de 3,4,6-tri-O- acetil-2-azido-2-desoxi-D-glucopiranosa y se usó para la siguiente etapa sin purificación adicional. El compuesto crudo anterior (34,2 g, 0,1 mol) en diclorometano (300 mi) se trató con carbonato de cesio (65,2 g, 0,2 mol) y tricloroacetonitrilo (72,2 g, 0,5 mol) a temperatura ambiente durante 2 h, tras lo cual se filtró la suspensión , concentrada y cristalizada en éter de petróleo / EtOAc para producir tricloroacetimidato de 3,4,6-tri-0-acetil-2-azido-2-desoxi-a-D- glucopiranosilo (D-2) como un sólido blanco (35 g, 74%).
Una solución de 3,4,6-tri-0-acetil-2-azido-2-desoxi-a-D-glucopiranosil tricloroacetimidato (D- 2, 35 g, 74 mmol) y bencilo 2- (2-hidroxietoxi) - etilcarbamato (35,3 g, 150 mmol) en diclorometano seco (300 mi), se agitó con tamices moleculares de 4A en polvo recién activados (10 g) y trifluorometanosulfonato de trimetilsililo (820 mg, 3,5 mmol) a temperatura ambiente durante 2 horas, después de lo cual la mezcla de reacción se inactivó con trietilamina y se filtra a través de una capade Celite. Después de la evaporación de los filtrados combinados, el residuo obtenido se purificó por cromatografía en gel de sílice para dar 2- [2- (benciloxicarbonilamino) etiloxi] etil 3,4,6-tri-0-acetil-2-azido-2-desoxi-a / b-D-glucopiranósido (30 g, 74%, a / b 1 : 1). Se trató una solución del anterior-D-glucopiranósido (14,9 g, 54 mmol) en metanol seco (100 mi) con una cantidad catalítica de metilato de sodio a 0°C durante 4 horas. La mezcla de reacción se neutralizó añadiendo Amberlite IR- 120 (H +) y se filtró. La concentración condujo a un crudo de 2- [2- (benciloxicarbonilamino) etiloxi] etil 2-azido-2-desoxi-a-D-glucopiranósido (D-3): (10.5 g, 91.3%) en forma de jarabe incoloro.
El 2- [2- (benciloxicarbonilamino) etiloxi] etil 2-azido-2-desoxi-a-D-glucopiranósido (D-3, 4,26 g, 10 mmol) en diclorometano seco (50 mi) se trató con cloruro de t-butildimetilsililo ( 1,64 g, 11,0 mmol) en presencia de imidazol (1,10 g, 20 mmol) a 0°C durante 2 h, y luego se inactivó con carbonato de sodio acuoso saturado (2 mi). La capa orgánica se secó sobre sulfato de sodio anhidro, se concentró y se purificó usando cromatografía en gel de sílice (éter de petróleo / EtOAc 2: 1) para proporcionar 2- [2- (benciloxicarbonilamino) etiloxi] etil-6-O- (t- butildimetilsililo) -2-azido-2-desoxi-a-D-glucopiranósido como un jarabe incoloro (4,12 g, 76,3%). A una solución agitada del líquido anterior (4,12 g, 7,63 mmol) en acetonitrilo seco (70 mi) se añadieron hidruro de sodio (1,10 g, 60% en aceite mineral, 27,48 mmol) y bromuro de bencilo (4,70 g, 27,48 mmol) y mantenido durante 12 h a 0°C o temperatura ambiente. Después de inactivar con agua con hielo y extraer con acetato de acetilo, la capa orgánica se concentró y se purificó por cromatografía en gel de sílice (5: 1 de éter de petróleo / EtOAc) para proporcionar 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino ] -etiloxi] etil 6-0- (t-butildimetilsilil) -3,4-0- di-bencil-2-azido-2-desoxi-a-D-glucopiranósido (D-4): (4.35 g, 87.8%) como jarabe incoloro.
La solución de 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 6-0- (t- butildimetilsilil) -3,4-0-di-bencil-2-azido-2 -desoxi-D-glucopiranósido (4,35 g, 5,37 mmol) en 50 mi de ácido acético acuoso (80%) se agitó a 85°C durante 2 horas y luego se diluyó con agua y se extrajo con acetato de etilo. La concentración de la fase orgánica seguida de purificación usando cromatografía en columna de gel de sílice (3: 1 éter de petróleo / EtOAc) para dar 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil-3,4 -0-di-bencil-2-azido-2-desoxi-a-D- glucopiranósido (3,60 g, 96%) como un jarabe incoloro. Una solución agitada del compuesto anterior (3,60 g, 5,17 mmol) en metanol seco (50 mi) se trató hexahidrato de cloruro de níquel (II) (148 mg, 0,52 mmol) y tetrahidroborato de sodio (392,9 mg, 10,34 mmol), y luego di-t-butilo dicarbonato (1.69 g, 7.76 mmol en 10 mL de metanol) a 0°C durante 2 horas. El residuo obtenido después de la evaporación se purificó mediante cromatografía en columna de gel de sílice (éter de petróleo / EtOAc 3: 1) para obtener 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino] -etiloxi} etilo 3,4-0 -di-bencil-2 - [(terc-butoxicarbonil) amino] -2-desoxi-a-D-glucopiranósido (D-5) (3,74 g, 94%) como un jarabe incoloro (Fig. 6). [a] 20 D +339,30 (c 0,115, DCM); 1H RMN (400 MHz, CDC13) d 7,32 - 7,14 (m, 19 H), 7,09 (d, J = 6,2 Hz, 1 H), 5,12 (s, 1 H), 5,08 (s, 1 H), 4,86 - 4,61 (m, 5H), 4.59 - 4.49 (m, 3H, H - 1), 3.85 (td, J = 10.2, 3.0 Hz, 1H), 3.74 - 3.58 (m, 5H), 3.55 - 3.38 (m, 7H), 3.33 ( d, J = 4,0 Hz, 1H), 1,33 (s, 9H). 13C RMN (101 MHz, CDC13) d 155.59, 155.29, 154.36, 137.39, 137.01, 136.85, 136.81, 135.70, 135.54, 127.51, 127.45, 127.26, 127.06, 126.92, 126.85, 126.54, 126.26, 97.4, 80.01, 78.57, 77.14, 74.17, 74.00, 70.51, 68.85, 68.79, 68.68, 68.39, 66.30, 66.13, 65.97, 59.37, 53.37, 50.57, 50.53, 45.81, 44.71, 27.36. LC-MS: [M+Na] ¨ Caled 793.37, Found 793.3.
Ejemplo 4 Síntesis del bloque de construcción monosacárido alternativo D: 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino] -etiloxi} etil 6-0- (t-butildimetilsilil) -3-0- bencil-2-azido-2-desoxi-a-D- glucopiranósido (D-7)
Una solución de 2- [2- (benciloxicarbonilamino) etiloxi] etil-2-azido-2-desoxi-a-D- glucopiranósido (D-3, 5,0 g, 11,7 mmol) en MeCN seco (100 mi) se trató con alcanfor Ácido 10-sulfónico (544 mg, 2,34 mmol) y dimetilacetal de benzaldehído (2,667 g, 17,55 mmol) a temperatura ambiente durante la noche. Después de inactivarse con trietilamina y concentrarse, la purificación usando cromatografía en columna de gel de sílice dio 2- [2-
(benciloxicarbonilamino) etiloxi] etil-4,6-0-bencilideno-2-azido-2-desoxi-a-D-glucopiranósido (6,0 g). , 99%) como un jarabe incoloro. A una solución del compuesto anterior (6,0 g, 11,6 mmol) en N, N-dimetilformamida seca (20 mi) se añadieron hidruro de sodio (696 mg, 17,4 mmol, 60% en aceite mineral) y bromuro de bencilo (2,38 g, 13,92 mmol) a 0°C. Después de agitar a temperatura ambiente durante la noche, la reacción se inactivó con cloruro de amonio acuoso saturado y se extrajo con acetato de etilo. La concentración a vacío y la purificación usando cromatografía en columna de gel de sílice (éter de petróleo / EtOAc 3: 1) proporcionó 2- {2 - [(N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 4,6-O-bencilideno- 3-0-bencil-2- azido-2-desoxi-a-D-glucopiranósido (D-6) (7,0 g, 86,4%) como un jarabe incoloro.
El 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 4,6-0-bencilideno-3-0-bencil-2- azido-2-desoxi-a-D-glucopiranósido (D -6, 7,0 g, 10,08 mmol) disueltos en 50 mi de ácido acético acuoso (80%) se agitó a 70°C durante 2 h, después de lo cual el solvente se eliminó a presión reducida y el residuo resultante se purificó por cromatografía en gel de sílice para obtener un jarabe incoloro de 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi} etil-3-0-bencil-2- azido-2-desoxi-a-D-glucopiranósido (5.3 g, 86.7 %). Una solución de compuesto anterior (5,3 g, 8,74 mmol) en diclorometano seco (150 mi) se trató con imidazol (1,78 g, 26,22 mmol) y cloruro de terc-butildimetilsililo (1,57 g, 10,48 mmol) a 0°C o temperatura ambiente por 1 h. Después de enfriar rápidamente con agua (100 mi), la capa orgánica se concentró y purificó por cromatografía en gel de sílice para proporcionar 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etilo 6-0- (t- butildimetilsilil) -3-0-bencil-2-azido-2-desoxi-a-D-glucopiranósido (D- 7) (4,8 g, 76,1%) en forma de jarabe incoloro (Fig-7). [a] 20 D + 50,63 (c 0,261, DCM); 1H RMN (400 MHz, CDC13) d 7,45 - 7,25 (m, 14 H), 7,20 (d, J = 6,8 Hz, 1 H), 5,22 (s, 1 H), 5,17 (s, 1 H), 4,92 (d, J = 3.1 Hz, 1H, H-l), 4.87 (d, J = 11.8 Hz, 2H), 4.62 (d, J = 9.6 Hz, 2H), 3.92 - 3.77 (m, 4H), 3.74 - 3.54 (m, 7H ), 3.52 - 3.46 (m, 1H), 3.43 (d, J = 5.0 Hz, 1H), 3.27 (brs, J = 6.5 Hz, 1H), 3.07 (brs, 1H), 0.91 (s, 9H), 0.09 (s, 6H). 13C NMR (101 MHz, CDC13) d 155.75, 155.32, 137.20, 136.90, 136.76, 135.69, 135.48, 127.50, 127.41, 127.07, 126.94, 126.86, 126.79, 126.29, 97.18, 96.91, 78.74, 78.58, 74.02, 71.95, 70.07 , 69.04, 68.83, 68.52, 66.32, 66.22, 62.81, 61.66, 50.41, 50.36, 45.92, 44.65, 24.87, 17.31, -6.43. LC-MS: [M + Na] + Caled 743,35, encontrado 743,2.
Ejemplo 5 Síntesis del bloque de construcción monosacárido E: 3,4,6,7-tetra-0-bencil-2-0-acetil-D / L-glicero-D-manno-heptopiranosilo tricloroacetimidato (E-6, DD y los correspondientes E-6, LDa y LDP)
Una mezcla de D-manosa (50 g, 277,7 mmol) en piridina (200 mi) se trató con anhídrido acético (100 mi) durante la noche. Después de eliminar el solvente, el producto bruto recogido en acetato de acetilo se lavó con HC1 acuoso (2%) y salmuera, se secó sobre NaiSCri, se filtró y se concentró. El residuo bruto se purificó por cromatografía sobre gel de sílice (éter de petróleo / EtOAc 3: 1) para obtener pentaacetato de D-manopiranosa (118 g, 90%) como un jarabe incoloro. La solución agitada de pentaacetato de mañosa (45 g, 115,4 mmol) en diclorometano (250 mi) se trató con anhídrido acético (10 mi) y bromuro de hidrógeno (250 mi, 30% en AcOH) a 0°C-temperatura ambiente durante 4 h, con lo que la reacción se vertió en el bicarbonato sódico acuoso saturado con hielo y se extrajo con acetato de etilo. Las capas orgánicas se concentraron a vacío para dar un crudo de bromuro de 2,3,4,6-tetra-O-acetil-D-manopiranosilo usado directamente para la siguiente etapa sin purificación adicional. Al bromuro de manosilo bruto (48 g) en DMF / MeOH (300 mi, 3: 1) se añadieron TBAB (43 g, 116,7 mmol) y DIPEA (30,1 g, 233,4 mmol) a 0°C y luego se agitaron a temperatura ambiente durante la noche. Después de eliminar el solvente y el residuo recogido con acetato de acetilo (200 mi), se lavó con agua salada saturada, secó con NaiSCE, y la capa orgánica se concentró y se recristalizó usando éter de petróleo / EtOAc para proporcionar 3,4,6- tri-O-acetil- 1,2-0- (exo-l-metoxietilideno) -b-D- manopiranosa (E-l) (38 g, 77% en 2 etapas) como un sólido blanco.
La solución de 3,4,6-tri-0-acetil-l,2-0- (exo-l-metoxietilideno) -b-D-manopiranosa (E-l, 24 g, 66,3 mmol) en metanol (200 mi) se trató con una cantidad catalítica de metilato de sodio a 0°C durante 1 h. Después de neutralizar con Amberlite IR- 120 (H +), la mezcla se filtró y los filtrados se evaporaron para proporcionar el residuo de 1,2-0- (exo-l-metoxietilideno) -b-D- manopiranosa utilizado para el siguiente paso sin purificación adicional. Una mezcla del crudo anterior (15 g, 63,5 mmol) en DMF (100 mi) se trató con cloruro de terc-butildimetilsililo (11,5 g, 76,2 mmol) en presencia de imidazol (6,5 g, 95,3 mmol) a 0°C-temperatura ambiente para 2 horas, después de lo cual la mezcla se extrajo con acetato de acetilo. Evaporación y purificación usando cromatografía sobre gel de sílice (2: 1 éter de petróleo / EtOAc) para proporcionar 6-0- (t-butildimetilsilil) -1,2-0- (exo-l-metoxietilideno) -b-D-manopiranosa (E- 2) (21.6 g, 68.7% en
2 pasos) como jarabe incoloro.
A una solución de 6-0- (t-butildimetilsilil) -1,2-0- (exo-l-metoxietilideno) -b-D-manopiranosa (E-2, 21,6 g, 45,5 mmol) en DMF seco (200 mi) ) se añadieron hidruro de sodio (4,56 g, 60% en aceite mineral, 136,7 mmol) y luego bromuro de bencilo (18,7 g, 109,2 mmol) a 0°C. La mezcla de reacción se agitó a temperatura ambiente durante 24 h, después de lo cual se añadió agua con hielo (100 mi) y se extrajo con acetato de acetilo. Las capas orgánicas se concentraron a vacío y se purificaron por cromatografía sobre gel de sílice (4: 1 de éter de petróleo / EtOAc) para proporcionar 3,4-di-0-bencil-6-0- (t-butildimetilsilil) -1,2-0- (exo-l-metoxietilideno) -b-D- manopiranosa (21.1 g, 71%) como un aceite incoloro. Se trató una solución del compuesto anterior (10,2 g, 15,06 mmol) en tetrafurano (100 mi) con fluoruro de tetrabutilamonio (18,07 mi, 18,07 mmol, 1M en tetrahidrofurano) durante la noche. Después de eliminar el disolvente, el residuo obtenido se volvió a disolver en acetato de acetilo, se filtró y se concentró. El residuo obtenido se purificó por cromatografía sobre gel de sílice (éter de petróleo / EtOAc 3: 1) para obtener 3,4-di-0-bencil-l,2-0- (exo-l-metoxietilideno) -b-D-manopiranosa (E-3) (6.0 g, 96%) como jarabe incoloro.
A una solución de 3,4-di-0-bencil-6-hidroxi-l,2-0- (exo-l-metoxietilideno) -b-D- manopiranosa (E-3, 21 g, 50,4 mmol) y piridina (10 g, 25,2 mmol) en 100 mi de diclorometano se añadió reactivo de Dess-Martin (23,5 g, 55,5 mmol) y se agitó a temperatura ambiente durante
3 horas. Con la adición de acetato de acetilo (500 mi), la mezcla se lavó con una solución acuosa de sulfito sódico (50 mi) y luego con bicarbonato sódico (50 mi). La capa orgánica se concentró para dar un crudo de 6-aldehydo-3,4-di-0-bencil- 1,2-0- (exo-l-metoxietilideno) -b-D- manopiranosa (20,1 g, 96,3%). Se trató una suspensión de bromuro de metiltrifenilfosfonio (29,4 g, 72,75 mmol) en 350 mi de tetrafurano seco con n-BuLi (18 mi, 72,75 mmol, 4 M en hexano) y luego el aldehido bruto en tetrafurano seco (100 mi) a -40°C -temperatura ambiente durante 8 h, después de lo cual se inactivó con una solución saturada de cloruro de amonio (150 mi) y se extrajo con acetato de etilo (2 x 300 mi). La evaporación a vacío y la purificación por cromatografía en columna ultrarrápida sobre gel de sílice (7: 1 de éter de petróleo / EtOAc) proporcionaron 3,4-di-0-bencil-6,7-didesoxi-l,2-0- (exo-l-metoxietilideno ) -D-manno-hepto- 6-enopiranosa (E-4) (8,4 g, 40,5% para dos etapas) como un sólido blanco.
Una solución de 3,4-di-0-bencil-6,7-didesoxi-l,2-0- (exo-l-metoxietilideno) -D-manno-hepto- 6-enopyranosa (E-4, 8.4 g, 20,4 mmol) en acetona-agua (9: 1, 120 mi) se trató con N-óxido de N-metilmorfolina (4,7 mg, 40,8 mmol) y un 4% en peso de tetraóxido de osmio (12,5 mi, 2,04 mmol) a 0 °C -temperatura ambiente durante 5 h y se vertió en la solución de sulfito de sodio (100 mi). Con la eliminación de la acetona, la capa acuosa se extrajo con acetato de etilo (3 x 100 mi) y las capas orgánicas combinadas se concentraron y purificaron mediante cromatografía en columna ultrarrápida sobre gel de sílice (2: 1 de éter de petróleo / EtOAc) para dar el diol 3. 4-di-O-bencil- (D, L) -glicero- 1,2-0- (exo-l-metoxietilideno) -b-D-mano-heptopiranosa (8,6 g, 94,5%) como una mezcla de diastereómeros (1,6: 1). A una solución del diol anterior (8,5 g, 19,1 mmol) en DMF seco (50 mi) se añadieron hidruro de sodio (2,3 g, 60% en aceite mineral, 57,3 mmol) y luego bromuro de bencilo (9,8 g, 57,3 mmol) a 0°C. La mezcla de reacción se agitó a temperatura ambiente durante 24 h, después de lo cual se añadió agua helada (50 mi) y se extrajo con acetato de acetilo. Las capas orgánicas se concentraron a vacío y se purificaron por cromatografía sobre gel de sílice (4: 1 de éter de petróleo / EtOAc) para proporcionar 3 ,4,6, 7- tetra-O-bencil- 1,2-0- (exo-l-metoxietilideno). ) - (D, L) -glicero^-D-manno-heptopiranosa (E- 5) (8,5 g, 71,2%) en forma de jarabe incoloro.
El 3,4,6,7-tetra-0-bencil-l,2-0- (exo-l-metoxietilideno) - (D, L) -glicero^-D-manno- heptopiranosa (E-5, 8.5 g , 13,6 mmol) en ácido acético acuoso (80%, 20 mi) se agitó a temperatura ambiente durante 2 h, después de lo cual la mezcla se inactivó con bicarbonato sódico acuoso saturado y se extrajo con acetato de acetilo (50 mi). La concentración y la purificación por cromatografía sobre gel de sílice (éter de petróleo / EtOAc 3: 1) proporcionaron
3.4.6.7-tetra-0-bencil-2-0-acetil- (D / L) -glicero^-D-manno -heptopiranosa en D, D-glicero- heptosa (5,4 g, 63,9%) y L, D-glicero-heptosa (2,86 g, 33,8%). Se trató una solución agitada de
3.4.6.7-tetra-0-bencil-2-0-acetil-D-glicero^-D-mano-heptopiranosa (4,36 g, 7,13 mmol) en diclorometano (50 mi) con carbonato de cesio (5,12 g, 14,26 mmol) y triclorometilcarbonitrilo (4,65 g, 35,65 mmol) durante 1 h a temperatura ambiente, después de lo cual la mezcla se filtró sobre Celite y el residuo obtenido se purificó por cromatografía en gel de sílice (éter de petróleo 85:15 / EtOAc) para obtener el a-isómero de 3,4,6,7-tetra-0-bencil-2-0-acetil-D-glicero-a-D- manno-heptopyranosilo tricloroacetimidato (E-6-DD) (4.12 g, 76.3%). 1H RMN (400 MHz, CDC13) d 8,66 (s, 1 H), 7,39 - 7,26 (m, 18 H), 7,19 (dd, J = 7,1, 2,3 Hz, 2 H), 6,27 (d, J = 2,0 Hz, 1 H) , 5,50 - 5,44 (m, 1 H), 4,86 (d, J = 10,6 Hz, 1 H), 4,81 - 4,66 (m, 3 H), 4,64 - 4,54 (m, 2 H), 4,52 - 4,41 (m, 2 H), 4,17 - 4,07 (m, 2 H), 4,07 - 4,00 (m, 2 H), 3,76 - 3,64 (m, 2 H), 2,14 (d, J = 4,7 Hz, 3 H).
Una solución agitada de L, D-glicero-heptosa (2,86 g, 4,67 mmol) en diclorometano (50 mi) se trató con carbonato de cesio (3,36 g, 9,35 mmol) y triclorometilcarbonitrilo (3,05 g, 23,4 mmol) durante 1 hora a temperatura ambiente, después de lo cual la mezcla se filtró sobre Celite y el residuo obtenido se purificó por cromatografía sobre gel de sílice (éter de petróleo / EtOAc 85:15) para obtener 3,4,6,7-tetra-0-bencil-2-0-acetil-L -glicero-a/p-D-manno-heptopyranosilo tricloroacetimidato (E-6-LD) (2,91 g, 83%) (Fig. 8).
E-6-LD-a:1 H NMR (400 MHz, CDC1 3 ) d 8.65 (s, 1H), 7.37 - 7.26 (m, 17H), 7.22 (d, / = 7.8 Hz, 3H), 6.31 (d, / = 1.6 Hz, 1H), 5.53 - 5.46 (m, 1H), 4.93 - 4.81 (m, 2H), 4.72 (d, / = 11.1 Hz, 1H), 4.59 - 4.45 (m, 4H), 4.35 (d, / = 10.9 Hz, 1H), 4.19 - 4.10 (m, 2H), 4.06 (dd, / = 9.4, 3.1 Hz, 1H), 4.03 - 3.98 (m, 1H), 3.81 (dd, / = 9.9, 6.4 Hz, 1H), 3.65 (dd, 7 = 9.9, 5.7 Hz, 1H), 2.19 (s, 3H).
E-6-LD-P:1 H NMR (400 MHz, CDC1 3 ) d 8.66 (s, 1H), 7.37 - 7.26 (m, 18H), 7.18 (dd, / = 7.1, 2.3 Hz, 2H), 6.27 (d, / = 2.0 Hz, 1H), 5.52 - 5.44 (m, 1H), 4.86 (d, / = 10.6 Hz, 1H), 4.77 (d, / = 11.9 Hz, 1H), 4.72 (d, / = 11.4 Hz, 1H), 4.67 (s, 1H), 4.61 (d, / = 10.7 Hz, 1H), 4.56 (d, / = 11.2 Hz, 1H), 4.48 (d, / = 12.1 Hz, 1H), 4.44 (d, / = 12.0 Hz, 1H), 4.15 - 4.02 (m, 4H), 3.74 - 3.65 (m, 2H), 2.14 (s, 3H).
Ejemplo 6 Síntesis del disacárido terminal ABb-con un brazo espaciador :(2-desoxi-2- acetilamino-aD-glucopiranosil)-(l 4)-[2-(2-P-maleimidopropilamidoetoxi) etil2,3-deoxi- 2,3-di-acetilamino-P-D-manopiranósido] ácido urónico(AB-6p)
Como se muestra en la Figura 9, una solución de 3,4,6-0-tri-bencil-2-desoxi-2-azido- a -D- glucopiranosa (A-10) (4.00 g, 8.4 mmol) en CHiChseco (40 mi), en presencia de PI12SO (4,76 g, 23,6 mmol) y TTBP (4,81 g, 25,2 mmol), se trató adecuadamente con Tf2Ü (3,32 g, 11,8 mmol) a -20 °C y luego se agitó durante 1 h, seguido de la adición de bencil p -tolil 2,3-diazido- 2,3-di desoxi-l-tio- b-D-manopiranosil uronato (B-5b) (3,07 g, 7,0 mmol). La mezcla de reacción se calentó a temperatura ambiente y se agitó durante 2 horas, se detuvo con gotas de Et3N y se filtró. El filtrado se concentró y se purificó por cromatografía en columna de gel de sílice para producir un crudo de bencil (3,4,6-0-tri-bencil-2-desoxi-2-azido- a -D- glucopiranosil)-(l 4) - (p -tolil 2,3-desoxi-2,3-di-azido-l-tio- b-D-manopiranósido) uronato (AB-1) (4,40 g, 70%) como un sólido blanco.
La solución agitada de bencilo (3,4,6-0-tri-bencil-2-deoxi-2-azido- a -D-glucopiranosilo)-(l 4)-(p -tolil 2,3- dideoxi- 2,3-di-azido-l-tio^-D-manopiranósido) uronato (AB-1) (160 mg, 0,18 mmol) en acetona (10 mi) a temperatura ambiente se trató con N-bromosuccinimida (47,6 mg, 0.27 mmol) durante 1 hora, se inactivó con tiosulfato de sodio acuoso en igual equivalencia, seguido de 3 extracciones con acetato de acetilo. La capa orgánica combinada se secó sobre sulfato de sodio y se concentró. El residuo se purificó por cromatografía en columna de gel de sílice para obtener bencilo (3,4,6-0-tri-bencil-2-deoxi-2-azido- a -D-glucopiranosilo)-(l 4)- (2,3)-uronatodi-desoxi-2,3-di-azido-D-manopirano (AB-2) (130 mg, 90%).
Una solución del AB-2 anterior (860 mg, 1.25 mmol), PI12SO (700 mg, 3.5 mmol) y TTBP (930 mg, 3.75 mmol) en CFUChscco (25 mi) se trató TE O (500 mg, 1,75 mmol) en presencia de tamices moleculares a -40 0 C durante 1 h, seguido de la adición del aceptor (450 mg, 1,87 mmol) y se dejó calentar a temperatura ambiente durante 4 h. La mezcla se inactivó con gotas de Et3N, se filtró y luego se concentró. El residuo se purificó por cromatografía en columna de gel de sílice para obtener bencilo (3,4,6-0-tri-bencil-2-deoxi-2-azido-a-D-glucopiranosil)-(l 4)- {2- [2- (benciloxicarbonilamino) ctiloxijctil 2,3-di deoxi-2,3-di-azido- b-D-manopiranósido} uronato (AB-3) (650 mg, 58.5%).
Una solución de AB-3 (830 mg, 0,82 mmol) en THF (30 mi) junto con una pequeña cantidad de AcOH y AciO se trató con Zn en polvo (4 g) y CuSCU saturado en agua (2 mi). Después de agitar durante 2 h, la mezcla de reacción se filtró y se evaporó. El residuo obtenido se purificó por cromatografía en gel de sílice para obtener bencilo (3,4,6-0-tri-bencil-2-deoxi-2- acetilamino - a -D-glucopiranosilo) - (1 4) - {2- [ 2- (benciloxicarbonilamino) etiloxi] etil 2,3-di deoxi-2,3- di- acetilamino - b -D-manopiranósido} uronato (AB-4) (410 mg, 49%) como jarabe incoloro. A una solución de AB-4 (300 mg, 0.283 mmol) en AcOH acuoso (16 mi, 80%) se añadió Pd/C (200 mg, que contiene 10% de Pd). La mezcla de reacción se agitó a temperatura ambiente en atmósfera de hidrógeno durante 12 h, seguido de filtración sobre Celite y se liofilizó a presión reducida para proporcionar 2-desoxi-2- acetilamino - a -D-glucopiranosilo- (1 4) - [2- Ácido urónico (AB-5) (151 mg, 94%) (2-aminoetiloxi) etil 2,3-di deoxi-2, 3 -di- acetilamino - b -D- manopiranósido] (151 mg, 94%) como un sólido blanco. Una solución agitada de AB-5 (30 mg, 0,05 mmol) en solución salina tamponada con fosfato (pH = 7,4, 5 mi) se trató con N- succinimidil-3-maleimidopropionato (14 mg, 0,05 mmol) en MeCN (1 mi) para 1 h, la mezcla se liofilizó y se purificó mediante cromatografía en gel C18 para obtener (2-desoxi-2- acetilamino - a -D-glucopiranosil) - (1 4) - [2- (2- b -maleimidopropilamido ácido etónico) etil) 2,3 di deoxi 2,3 di acetilamino - ino D manopiranósido] urónico (AB-6b) (28 mg, 73%) como un sólido blanco (Fig. 9). Ή NMR (400 MHz, D 2 O) d 6.85 (s, 2H), 5.12 (d, / = 3.8 Hz, 1H), 4.89 (brs, 1H), 4.33 (d, / = 2.7 Hz, 1H), 4.24 (dd, / = 9.9, 3.7 Hz, 1H), 3.99 - 3.89 (m, 2H), 3.88 - 3.70 (m, 8H), 3.69 - 3.61 (m, 3H), 3.49 (dt, J = 19.0, 7.4 Hz, 3H), 3.38 - 3.25 (m, 2H), 2.55 - 2.40 (m, 2H), 2.05 (s, 3H), 1.98 (s, 3H), 1.88 (s, 3H).LC-MS: [M+H] ¨ Caled 718.28, Found 718.2 .
Ejemplo 7 Síntesis de un disacárido terminal ABa con un brazo espaciador: (2-desoxi-2-acetilamino-aD-glucopiranosilo- (1 4) - [2- (2-P-maleimidopropilo
Ácido urónico amidoetoxi) etil2,3-desoxi-2,3-di-acetilamino-a-D-manopiranósido] (AB-
6a)
El compuesto AB-6a mostrado en la Figura 9, se obtuvo mediante una secuencia similar a la de la preparación de AB-6b pero a partir del isómero a de AB-3. El isómero producido como producto secundario se obtuvo durante la misma purificación cromatográfica. lü NMR (400 MHz, D20) d 6.87 (s, 2H), 5.12 (d, / = 3.9 Hz, 1H), 4.80 (brs, 1H), 4.42 (dd, / = 10.2, 3.9 Hz, 1H), 4.25 (dd, / = 3.8, 1.1 Hz, 1H), 4.07 (d, / = 9.7 Hz, 1H), 3.98 (t, / = 9.9 Hz, 1H), 3.87 - 3.65 (m, 11H), 3.59 (t, / = 5.2 Hz, 2H), 3.47 (t, / = 9.5 Hz, 1H), 3.34 (t, / = 5.2 Hz, 2H), 2.57 - 2.46 (m, 2H), 2.04 (s, 3H), 1.99 (s, 3H), 1.88 (s, 3H). LC-MS: [M+H]+ Calcd 718.28, Found 718.2.
Ejemplo 8 Síntesis del trisacárido ABC terminal con un brazo espaciador: 2- (2-male-maleimidopropilamidoetoxi) etil2-desoxi-2-acetilamino-a-D-glucopiranosil- (1 4) -2,3-didesoxi-2,3-di-acetilamino- -D-ácido manopiranosilurónico (1 3) -4-deoxi-4- metilamino-2-deoxi-2-acetilamino-p-L-fucopiranósido (ABC-όb)
Como se muestra en la Figura 10, una solución de bencilo (3,4,6-0-tri-bencil-2-deoxi-2-azido- a -D-glucopiranosilo) - (1 4) - (2,3-di desoxi-2,3-di-azido-D-manopirano) uronato AB-2 (416 mg, 0,53 mmol) en CFhChseco (10 mi), en presencia de PI12SO (319,2 mg, 1,58 mmol) y TTBP (365,7 mg, 1,47 mmol), se trató durante 1 h con Tf20 (207 mg, 0,74 mmol) a -30°C, seguido de la adición de p-Tolil 4-N - (benciloxicarbonil) -4-deoxi -4-metilamino-2-desoxi-2-azido-l-tio-a -L-fucopiranósido (C7) (341 mg, 0,79 mmol). La mezcla de reacción se agitó a temperatura ambiente durante la noche, se inactivó con gotas de Et3N y se filtró. El filtrado se concentró y se purificó mediante cromatografía en columna de gel de sílice para proporcionar (ABC-1) (407 mg, 63,7%).
Una solución de los anteriores ABC-1 (780 mg, 0,64 mmol) y m-CPBA (220,2 mg, 1,28 mmol) en cloruro de metileno (6 mi) se enfrió a -78°C y se agitó durante 30 minutos. La reacción se inactivó con tiosulfato de sodio acuoso y se extrajo con acetato de acetilo. Después de la concentración y la purificación por cromatografía en gel de sílice para obtener p -Tolil 3,4,6- O -tri-bencil-2-deoxi-2-azido- a -D-glucopiranosilo- (1 4) -bencil-2,3- di deoxi-2,3-di-azido- b- D-manopiranosiluronato-(l 3)-4- N - (benciloxicarbonil) -4-deoxi-4-metilamino-2-deoxi-2- azido-l-sulfinilo - a -L-fucopiranósido (ABC-2) (407 mg, 63.7%).
Una solución de los anteriores ABC-2 (300 mg, 0,25 mmol) y TTBP (150 mg, 0,60 mmol) en CtbChseco (15 mi) se trató con TLO (77 mg, 0,27 mmol) en presencia de tamices moleculares a -70 0 C durante 1 h, seguido de la adición de 2- (2-hidroxietoxi) etilcarbamato de bencilo (139 mg, 1 mmol) y luego se dejó calentar a temperatura ambiente durante 6 h. La mezcla se inactivó mediante la adición de gotas de Et3N y se filtró y luego se concentró, el residuo se purificó mediante cromatografía en columna de gel de sílice para dar 2- [2- (benciloxicarbonilamino) etiloxi] etil 3,4,6- O -tri-bencil- 2-deoxi-2-azido- a -D-glucopiranosil- (1 4) -bencil-2,3-di deoxi-2,3-di-azido- b -D-manopiranosiluronato- (1 3) - 4 - N - (benciloxicarbonil) -4-deoxi- 4-metilamino-2-deoxi-2-azido- b -L-fucopiranósido (ABC-3) (143 mg, 43%).
Una solución de ABC-3 (150 mg, 0.113 mmol) en THE (10 mi) junto con una pequeña cantidad de AcOH y AC2O se trató con Zn en polvo (50 mg) y CuSCL saturado en agua (0.5 mi). Después de agitar durante 2 h, la mezcla de reacción se filtró y se evaporó. El residuo obtenido se purificó por cromatografía en gel de sílice (10% MeOH / EtOAc) para proporcionar 2- [2- (benciloxicarbonilamino) etiloxi] etilo 3,4,6- O -tri-bencil-2-deoxi-2- acetilamino - a -D- glucopiranosil- (1 4) -bencil-2,3-di deoxi-2,3-di-acetilamino - b -D-manopiranosiluronato- (1 3) - 4- N - (benciloxicarbonil) -4- desoxi-4-metilamino-2-desoxi-2-acetilamino^-L- fucopiranósido (ABC-4) (110 mg, 70.2%).
A una solución del ABC-4 anterior (110 mg, 0.079 mmol) en AcOH acuoso (3 mi, 80%) se agregó Pd/C (20 mg, que contiene 10% de Pd). La mezcla de reacción se agitó a temperatura ambiente en atmósfera de hidrógeno durante 16 h, seguido de filtración sobre Celite y se liofilizó a presión reducida para proporcionar 2- (2-aminoetiloxi) etil-2-desoxi-2-acetilamino - a -D- glucopiranosilo ( 1 4) -2,3-di desoxi-2,3-di-acetilamino - b -D-manopiranosilurónico ácido - (1 3) - 4-deoxi-4-metilamino-2-deoxi-2-acetilamino- b -L-fucopyranoside (ABC-5) (44 mg, 72.7%) como un sólido blanco. Una solución agitada del anterior ABC-5 en solución salina tamponada con fosfato (pH = 7.4, 3 mi) se trató con N-succinimidil-3-maleimidopropionato (17 mg, 0.063 mmol) en MeCN (0.5 mi) durante 1 h, la mezcla se liofilizó y se purificó mediante cromatografía en gel C18 para obtener 2- (2- b - maleimidopropilamidoetoxi) etil-2-desoxi-2- acetilamino - a -D-glucopiranosil- (1 4) -2,3-deoxi-2,3-di - acetilamino - ácido b-D- manopiranosilurónico - (1 3) - 4-deoxi-4-metilamino-2-deoxi-2-acetilamino- b -L- fucopiranosida (AB€-6b)(26 mg, 72.3%) como un sólido blanco.
¾ NMR (400 MHz, D 2 O) d 6.84 (s, 1H), 6.29 (d, J = 12.3 Hz, 1H), 5.90 (d, J = 12.4 Hz, 1H), 5.09 (d, J = 2.9 Hz, 1H), 4.94 (s, 1H), 4.87 (d, J = 1.4 Hz, 1H), 4.29 - 4.17 (m, 3H), 4.02 (dd, J = 11.4, 2.6 Hz, 1H), 393 (t, J = 9.5 Hz, 1H), 3.81 - 3.72 (m, 7H), 3.68 - 3.64 (m, 4H), 3.60 (t, J = 4.8 Hz, 2H), 3.54 (t, J = 5.2 Hz, 1H), 3.47 - 3.42 (m, 2H), 3.30 (dt, J = 24.4, 12.3 Hz, 1H), 2.60 (s, 1H), 2.60 (s, 2H), 2.43 - 2.35 (m, 2H), 2.02 (s, 3H), 1.99 (s, 3H), 1.97.(s, 3H), 1.87 (s, 3H), 1.21 (d, 3H). LC-MS: [M + H] + Caled 918.4, Found 918.4.
Ejemplo 9 Síntesis del disacárido terminal DE (isómero LD) con un brazo espaciador:2- (2-P-maleimidopropilamidoetoxi) etil [L-glicero-a-D-manno-heptopiranosil- (1 4)] - 2- amino-2-deoxy-a-D-glucopiranoside (DE-6LD)
Como se muestra en la Figura 11, una mezcla de L-glicero-a-D-manno-heptopiranosilo tricloroacetimidato (E-6LD) (2.4 g, 3.17 mmol) y 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi y} etil 6- O - (t-butildimetilsilil) -3- 0-bencil-2-azido-2-deoxi-a-D-glucopiranosida (D- 7) (2,3 g, 3,17 mmol) en 30 mi el diclorometano seco se agitó en presencia de tamices moleculares de 4 A y se trató con una cantidad catalítica de trifluorometanosulfonato de trimetilsililo a 0°C y luego se agitó a temperatura ambiente durante 2 h, después de lo cual la mezcla resultante se detuvo con gotas de trietilamina y se filtró. Después de concentrarse al vacío, el residuo se purificó mediante cromatografía en columna de gel de sílice (4: 1 éter de petróleo / EtOAc) para proporcionar 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 2- O - acetil-3,4,6,7-tetra-0-bencil-L-glicero-a-D-manno-heptopiranosilo- (1 4) -6- O - (t - butildimetilsilil) -3- O -bencilo- 2-azido-2-desoxi-a-D-glucopiranosida (DE-1LD) (3,5 g, 83,1%) como jarabe incoloro. Una solución de 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi} etil 2- O -acetil-3,4,6,7- tetra-O-bencil-L-glicero-a - D-manno-heptopiranosilo- (1 4) -6- O - (t -butildimetilsilil) -3- 0-bencil-2-azido-2-deoxi-a-D-glucopiranosido (DE-1LD, 3,3 g, 2,50 mmol) en metanol seco (25 mi) se trató con una cantidad catalítica de metilato de sodio a temperatura ambiente durante 3 h. Después de neutralizar con Amberlite IR- 120 (H +), la solución se filtró y se concentró a vacío para proporcionar el producto bruto 2- {2- (N, N'-bencil-benciloxicarb onil) amino] - etiloxi] etilo 3,4,6 , 7-tetra-O-bencil-L-glicero-a-D-manno-heptopiranosilo- (1 4) -6- O - (t - butildimetilsilil) -3-0-bencil-2-azido-2-deoxi - a-D-glucopiranosido (3,18 g, 98,3%) como jarabe incoloro. Al disacárido crudo (3.18 g, 2.5 mmol) en 25 mi de DMF seco se le agregó hidruro de sodio (150 mg, 60% en aceite mineral, 3.75 mmol) y luego bromuro de bencilo (513 mg, 3.0 mmol) a 0°C y se mantuvo en agitación a temperatura ambiente durante 16 h. La mezcla de reacción se inactivó con agua con hielo y se extrajo con acetato de acetilo. Las capas orgánicas combinadas se concentraron al vacío y se purificaron mediante cromatografía en columna de gel de sílice (5: 1 éter de petróleo / EtOAc) para dar 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etilo 2, 3,4,6,7-penta-O-bencil-L-glicero-a-D-manno-heptopiranosilo- (1 4) -6- O - (t -butildimetilsilil) -3- O -bencil-2- azido-2-desoxi-a-D-glucopiranosido (2,8 g, 82,2%) como jarabe incoloro. La solución de disacárido sililado (2,8 g, 2,0 mmol) en 20 mi de ácido acético acuoso (80%) se agitó a 75°C durante 2 h, después de lo cual se evaporó y purificó por cromatografía en columna de gel de sílice (3: 1 éter de petróleo / EtOAc) proporcionando 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 2,3,4,6,7-penta-O-bencil-L-glicero-a-D- manno-heptopiranosilo - (1 4) -3-0-bencil-2-azido-2-deoxi-a-D-glucopiranosida (DE-3-LD) (2,2 g, 85,9%) como jarabe incoloro.
A una solución del DE-3LD anterior (2.2 g, 1.76 mmol) en metanol seco (50 mi) se le añadió cloruro de níquel (II) hexahidrato (502 mg, 1.76 mmol) y tetrahidroborato de sodio (334.4 mg, 5.02 mmol) y se agitó durante 30 minutos a 0°C, seguido de la adición de dicarbonato de di-t- butilo (768,1 g, 3,52 mmol) y se mantuvo agitando a temperatura ambiente durante 2 horas. Después de la eliminación del disolvente, el residuo obtenido se purificó mediante cromatografía en columna de gel de sílice (3: 1 éter de petróleo / EtOAc) para obtener 2- {2- (N, N'-bencil- benciloxicarbonil) amino] -etiloxi] etilo 2 , 3,4,6,7-penta-O-bencil-L-glicero-a-D-manno- heptopiranosilo- (1 4) -3-0-bencil-2 - [(terc-butoxicarbonil) amino] - 2-desoxi-a-D- glucopiranosido (DE-4LD) (1,76 g, 75,6%) como jarabe incoloro.
A una solución de disacárido de O-bencilo DE-4LD (350 mg, 0,26 mmol) en ácido acético acuoso (5 mi, 80%) se añadió Pd / C (20 mg, que contenía 10% de Pd) y se agitó a temperatura ambiente bajo hidrógeno. Atmósfera durante 16 h, después de lo cual se filtró sobre Celite y el filtrado se liofilizó al vacío para proporcionar 2- (2-aminoetiloxi) etil L-glicero-a-D-manno- heptopiranosilo- (1 4) -2- [(terc-butoxicarbonil) amino] -2-desoxi-a-D-glucopiranósido (DE- 5) (148 mg) como un sólido blanco. Una solución de disacárido (65 mg, 0,10 mmol) en PBS (pH = 7,4, 3 mi) se trató con N-succinimidil-3-maleimidopropionato (30 mg, 0,11 mmol, se disolvió en 0,5 mi de acetonitrilo) y se mantuvo a temperatura ambiente durante 1 h. Después de la liofilización, el disacárido t-Boc-amino bruto disuelto en ácido trifluoroacético / agua (1: 1, 3 mi) se agitó a temperatura ambiente durante 4 h, después de lo cual la solución se diluyó con agua (10 mi) y se liofilizó, seguido de purificación con cromatografía en gel de sílice C18 (100 ~ 90 %, 0.1% de TFA en agua / CH3CN) para proporcionar 2- (2- m - maleimidopropilamidoetoxi) etil L-glicero-a-D-manno-heptopiranosilo- (1 4) -2 - amino-2- desoxi-a-D-glucopiranosido (DE-6LD) (31 mg, 42% over 3 steps) como un sólido blanco.
1 H NMR (400 MHz, D 2 O) d 6.79 (s, 2H), 5.27 (d, 7 = 1.3 Hz, 1H, H-l E ), 5.09 (d, 7 = 3.6 Hz, 1H, H-l ° ), 4.00 (dd, 7 = 10.6, 8.7 Hz, 1H), 3.97 - 3.91 (m, 2H), 3.85 - 3.76 (m, 3H), 3.75 - 3.69 (m, 5H), 3.69 - 3.60 (m, 6H), 3.57 - 3.53 (m, 1H), 3.51 (t, 7 = 5.5 Hz, 2H), 3.30 (dd, 7 = 10.7, 3.6 Hz, 1H), 3.26 (t, 7 = 5.5 Hz, 2H), 2.45 (t, 7 = 6.5 Hz, 2H). LC-MS: [M+H] Caled 610.2, Found610.3.
Ejemplo 10 Síntesis del disacárido terminal DE (isómero DD) con un brazo espaciador:
Como se muestra en la Figura 11, a partir de D -glicero-a-D-manno-heptopiranosil tricloroacetimidato (E-6DD) y 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 6- O - (t-butildimetilsilil) -3-0-bencil-2-azido-2-deoxi-a-D-glucopiranosida (D-7) y utilizando la misma secuencia de reacción con la preparación de DE-6FD (ejemplo 9)se obtuvo 2- (2- m - maleimidopropilamidoetoxi) etil D-glicero- a -D-manno-heptopiranosilo- (1 4) -2- amino-2- deoxi-a-D-glucopiranosida (DE-6DD) :
Ή NMR (400 MHz, D 2 O) d 6.82 (s, 2H), 5.23 (s, 1H, H-l E ), 5.11 (d, 7 = 3.1 Hz, 1H, H-l ° ), 4.02 (dd, 7 = 19.3, 9.5 Hz, 3H), 3.87 - 3.80 (m, 3H), 3.78 - 3.73 (m, 4H), 3.73 - 3.64 (m, 8H), 3.54 (t, 7 = 5.3 Hz, 2H), 3.33 (dd, 7 = 10.9, 2.6 Hz, 1H), 3.31 - 3.26 (t, 7 = 4.8 Hz, 1H), 2.48 (t, 7 = 6.4 Hz, 2H).
Ejemplo 11 Síntesis de un pentasacárido ABCDE con un brazo espaciador: Ácido (2- (2-p-maleimidopropilamidoetoxi) etil2-desoxi-2-acetilamino-a-D- glucopiranosilo- (1 ® 4) -2,3-didesoxi-2,3-di-acetilamino-P-D-manopiranosilurónico - (1 ® 3) -4-desoxi-4-metilamino-2-deoxi-2-acetilamino-P-L-fucopiranosilo- (1 ® 6) - [L-glicero- a-D-manno-heptopiranosilo- (1 ® 4)] - 2-amino-2-desoxi-a-D-glucopiranósido (ABCDE-5)
Una solución de p -Tolil 3,4,6- O -tri-bencil-2-deoxi-2-azido- a -D-glucopiranosilo- (1 4) - bencil-2,3-di deoxi-2,3 -di-azido- b -D-manopiranosiluronato- (1 3) - 4- N - (benciloxicarbonil) -4-deoxi-4-metilamino-2-deoxi-2-azido-l-sulfinil -a-L-fucopiranósido (ABC-2) (850 mg, 0,69 mmol) y TTBP (428,4 mg, 1,72 mmol) en diclorometano (10 mi) se trató con anhídrido tríflico (31,1 mg, 0,11 mmol) en presencia de tamices moleculares a -78 0 C durante 1 h, seguido de la adición de 2- {2- (N, N'-bencil -benciloxicarbonil) amino] -etiloxi} etil 2,3,4,6,7-penta-O-bencil-L-glicero- a-D-manno-heptopiranosil- (1 4) -3- O-bencil-2 - [(terc- butoxicarbonil) amino] -2-deoxi-a-D-glucopiranosida (DE-3LD) (1,09 g, 0,83 mmol) y luego se dejó calentar a temperatura ambiente durante 3 h. La mezcla se inactivó mediante la adición de gotas de Et3N y se filtró y luego se concentró, el residuo se purificó mediante cromatografía en columna de gel de sílice para dar 2- {2- (N, N) '-bencil-benciloxicarbonil) amino] -etiloxi] etil 3,4,6- O -tri -bencil-2-deoxi-2-azido- a -D-glucopiranosil- (1 4) -bencil-2,3-di deoxi-2,3-di- azido- b -D-manopiranosiluronato- (1 3 ) - 4- N - (benciloxicarbonil) -4-deoxi-4-metilamino- 2-deoxi-2-azido- b -L-fucopiranosil- (1 6) - [2,3,4,6,7-penta - O-bencil-L-glicero- a-D- manno-heptopiranosilo- (1 4)] - 3- 0 -bencil-2 - [(terc-butoxicarbonil) amino] -2-deoxi-a-D- glucopiranosido (ABCDE-1) (770 mg, 46.2%).
Una solución del ABCDE-1 anterior (720 mg, 0,3 mmol) en THF (30 mi) junto con una pequeña cantidad de AcOH y AC2O se trató con Zn en polvo (1,90 g) y CuS04 saturado en agua (1,0 mi). Después de agitar durante 4 ha temperatura ambiente, la mezcla de reacción se filtró y se evaporó. El residuo obtenido se purificó por cromatografía en gel de sílice (MeOH/EtOAc 1: 6) para proporcionar 2- {2- (N, N'-bencil-benciloxicarbonil) amino] -etiloxi] etil 3,4,6- O -tri- bencil-2- deoxi-2-acetilamino - a -D-glucopiranosil- (1 4) -bencil-2, 3-di deoxi-2,3-di-acetilamino - b - D-manopiranosiluronato- (1 3) - 4- N - (benciloxicarbonil) -4-deoxi-4-metilamino-2-deoxi- 2-acetilamino- b -L-fucopiranosil- (1 6) - [2,3,4,6,7-penta- O-bencil-L-glicero-a-D-manno- heptopiranosilo- (1 4)] - 2 - [(terc-butoxicarbonil) amino] -3-0-bencil-2-deoxi-a-D- glucopiranosida (ABCDE-2) (443 mg, 59.6%).
A una solución del ABCDE-2 anterior (165 mg, 0,066 mmol) en AcOH acuoso (3 mi, 80%) se añadió Pd / C (20 mg, 10% Pd). La mezcla de reacción se agitó a temperatura ambiente en atmósfera de hidrógeno durante 16 h, seguido de filtración sobre Celite y se liofilizó a presión reducida para proporcionar 2- (2-aminoetiloxi) etil-2-desoxi-2-acetilamino - a -D- glucopiranosilo ( 1 4) -2,3-di deoxi-2,3-di-acetilamino - b -D-manopiranosilurónico ácido- (1 3) -4-deoxi-4-metilamino-2-deoxi-2-acetilamino- b -L-fucopyranosyl- (1 6) - [L-glycero- a -D-manno-heptopyranosyl- (1 4)] - 2 - [(tert-butoxycarbonyl) amino] -2-deoxy- a -D- glucopiranosida (ABCDE-3, 76 mg, 93,6%). Una solución agitada del residuo anterior (62 mg, 0,05 mmol) en solución salina tamponada con fosfato (pH = 7,4, 3 mi) se trató con N- succinimidil-3-maleimidopropionato ( 39 mg, 0,032 mmol) en MeCN (0,5 mi) durante 1 h, la mezcla se liofilizó y se purificó mediante cromatografía en gel C18 para obtener 2- (2- b- maleimidopropilamidoetoxi) etil-2-deoxi-2-acetilamino - a -D-glucopiranosilo - (1 4) -2,3- desoxi-2,3-di-acetilamino - ácido b-D-manopiranosilurónico- (1 3) -4-deoxi- 4-metilamino- 2-desoxi-2-acetilamino^-L-fucopiranosilo- (1 6) - [L-glicero- a-D-manno-heptopiranosilo- (1 4)] - 2 - [(tere butoxicarbonil) amino] -2-desoxi-a-D-glucopiranósido (ABCDE-4) (30 mg, 68.8%) como un sólido blanco. El compuesto se disolvió directamente en TFA / H2O (3: 1, 3 mi) y se mantuvo a temperatura ambiente durante 1 h, y se liofilizó después de la eliminación del ácido trifluoroacético. El residuo crudo se purificó por cromatografía en gel de sílice C18 (100 ~ 90 %, agua / CH3CN) para proporcionar 2- (2- m -maleimidopropilamidoetoxi) etil-2-desoxi- 2- acetilamino - a -D-glucopiranosilo- 4) -2,3-deoxi-2,3-di-acetilamino - b -D- manopiranosilurónico ácido- (1 3) -4-deoxi-4-metilamino-2-deoxi-2-acetilamino- b -L - fucopyranosyl- (1 6) - [L-glycero- a-D-manno-heptopyranosyl- (1— 4)] - 2-amino-2-deoxy- a -D-glucopyranoside (ABCDE-5) (25.4 mg) , 90.8%) (Fig. 12).
Ή NMR (400 MHz, D 2 O) d 6.82 (s, 2H), 5.22 (d, / = 0.9 Hz, 1H,H-1 E ), 5.10 (d, / = 4.0 Hz, 1H, H-l A ), 5.08 (d, / = 3.5 Hz, 1H, H-l B ), 5.04 (s, 1H, H-l ° ), 4.57 (d, / = 8.4 Hz, 1H, H-l c ), 4.39 (d, / = 2.9 Hz, 1H), 4.31 - 4.23 (m, 1H), 4.12 - 4.08 (m, 1H), 4.03 - 3.92 (m, 5H), 3.87 - 3.52 (m, 25H), 3.48 (d, / = 5.3 Hz, 1H), 3.31 - 3.22 (m, 3H), 2.81 (s, 3H), 2.48 (t, / = 6.5 Hz, 2H), 2.03 (s, 3H), 1.96 (d, / = 3.2 Hz, 6H), 1.87 (s, 3H), 1.40 (d, / = 6.6 Hz, 3H).
Ejemplo 12 Síntesis del trisacárido ABC-a-espaciador:
Ácido 2- (2-male-maleimidopropilamidoetoxi) etil2-desoxi-2-acetilamino-a-D- glucopiranosilo-(l 4)-2,3-didesoxi-2,3-di-acetilamino- -D-manopiranosilurónico - (1 3) -4-deoxi-4-metilamino-2-deoxi-2-acetilamino-a-L-fucopiranósido (ABC-6a)
Se usó un procedimiento similar a la síntesis descrita en el ejemplo 8: 26.8 mg de 2- (2- m - maleimidopropilamidoetoxi) etil-2-desoxi-2- acetilamino - a -D-glucopiranosilo- (1 4) -2,3- di ácido desoxi-2,3-di-acetilamino - b-D-manopiranosilurónico - (1 3) - 4-deoxi-4- metilamino-2-deoxi-2-acetilamino- a -L-fucopiranósido (ABC-6a)fue preparado como un sólido blanco.' H NMR (400 MHz, D 2 O) d 6.76 (s, 1H), 6.22 (d, J = 12.3 Hz, 1H), 5.82 (d, J = 12.3 Hz, 1H), 5.01 (d, / = 3.9 Hz, 1H), 4.88 (s, 1H), 4.83 (d, / = 3.6 Hz, 1H), 4.21 (dt, / = 10.2, 7.6 Hz, 3H), 3.95 (dd, / = 11.3, 3.7 Hz, 1H), 3.90 - 3.83 (m, 1H), 3.76 - 3.67 (m, 7H), 3.63 - 3.52 (m, 7H), 3.47 (s, 1H), 3.42 - 3.36 (m, 2H), 3.31 - 3.27 (m, 1H), 3.25 - 3.20 (m, 1H), 2.67(s, 1.5H), 2.65 (s, 1.5H), 2.41 (dt, J = 13.2, 6.6 Hz, 2H), 1.95 (s, 3H), 1.93 (s, 3H), 1.89 (s, 3H),
1.80 (s, 3H), 1.26 (d, / = 6.3 Hz, 3H).LC-MS: [M + H] + Caled 918.4, Found 918.4.
Ejemplo 13 Síntesis de glicoconjugados a BSA y TT :
Para la activación de las proteínas portadoras [albúmina sérica bovina (BSA) otoxoide tetánico (TT)] se preparó una solución de ellas a una concentración de 5 mg/ml en PBS pH 8.1 suplementado con 0,93 mg / mi de EDTA bajo atmósfera de nitrógeno a la cual se le añadió una solución de ditiobisuccinimidilpropionato (DSP) en dimetilsulfóxido (DMSO). Después de 2 horas a 4°C, se añadieron 3,856 mg/ml (25 mM) de ditiotreitol (DTT) y se continuó la incubación durante 1 hora más. La reacción se diafiltró con PBS pH = 7.4 (complementado con EDTA) a través de 10 kDa (para BSA) y 30 kDa (para TT). La reacción se controló mediante el ensayo colorimétrico de El Imán.
Para la conjugación, se disolvieron 5 mg de oligosacárido sintético en 0,5 mi de PBS pH 7,4 (suplementado con EDTA) y a esta solución se le añadió la proteína previamente modificada (0,5 mi, 31-44 moles de SH). La mezcla se incubó a 4°C durante 18 horas y el producto se diafiltró a través de 10 kDa frente a PBS pH 7. La solución se filtró de forma estéril y se conservó a 4-8°C. El producto se caracterizó por la relación de carbohidratos (CHO) a proteínas.
Se obtuvieron los siguientes conjugados:
Figure imgf000035_0001
Figure imgf000036_0001
Ejemplo 14 Especificidad del suero anti-células enteras de pertussis por los conjugados oligosacárido sintético-BSA:
Conejos New Zeland se inmunizaron por vía subcutánea con 100 UO de células de pertussis en 300 pL de adyuvante completo de Freund. Se inmunizó una segunda dosis usando la misma dosis en 300 pL de Adyuvante incompleto de Freund luego de 2 semanas. Se extrajo suero de cada animal a los días 35 y 42 posteriores.
Se inmunizaron ratones Balb/c por vía subcutánea con 32 UO de células de pertussis en 300 pL de adyuvante completo de Freund. Se inmunizaron una segunda y una tercera dosis (separadas por intervalos de 2 semanas) utilizando el mismo inoculo en 100 pL de Adyuvante incompleto de Freund. Se extrajo suero de cada animal a los días 35 y 42 posteriores.
Las placas de ELISA fueron recubiertas con uno de los siguientes conjugados para la realización de estudios de antigenicidad: ABa-BSA, ABb-BSA, ABCa-BSA, ABCP-BSA, D (DD) E-BSA, D (LD) E-BSA y ABCDE-BSA. Como controles se utilizaron LOS (10 pg/ml) y células de pertussis (1 unidad de opalescencia, UO). Los conjugados a BSA se diluyeron a una concentración 1 pg/ml (en base al carbohidrato, CHQ) en PBS y se incubaron durante la noche a 37°C. Posteriormente, las placas se lavaron cuatro veces con solución de Tween 20 al 0,05% en PBS. Las placas se bloquearon con leche descremada al 1% en PBS y se incubaron durante 30 minutos a 37°C. Los pocilios se lavaron cuatro veces y se incubaron con una dilución 1:100 o 1 :400 de las muestras de suero (ratones o conejo) diluidas en solución de PBS que contenía 0,3% de Tween 20, EDTA 10 mM y leche descremada al 1% durante 90 min a temperatura ambiente. Las placas se enjuagaron cuatro veces y se añadió a cada pocilio anticuerpo anti- IgGíde conejo o ratón) conjugado a peroxidasa de rábano picante. Las placas se lavaron nuevamente después de 90 minutos de incubación a temperatura ambiente, y se añadió la solución sustrato TMB /FbCUen tampón citrato, pH 5. Después de 20 minutos en oscuridad, la reacción se detuvo con H2SO4 2, 5 M y las placas se leyeron a 450 nm (Fig. 13 y Fig. 14).
Se realizó un estudio de inhibición incubando por separado el suero de conejo anti-células de pertussis con diferentes cantidades de monosacárido terminal A, disacárido AB o trisacárido ABC (diluciones en serie de 100 a 0.195 mg/nll) durante 1 hora a 37°C. Las placas se recubrieron con trisacárido terminal ABC o pentasacárido ABCDE y se realizó el procedimiento de ELISA descrito previamente (Fig. 15).
Inmunoblot: Se colocaron 0,5 pg (basado en CHO) de los siguientes conjugados en membranas de nitrocelulosa: ABa-BSA, ABb-BSA, ABCa-BSA, ABCp-BSA, D (DD)E-BSA y ABCDE- BSA. Se utilizaron células de pertussis (5 unidades de opalescencia) como control positivo y BSA como control negativo. Las membranas se bloquearon con leche desnatada al 1% en PBS, se incubaron durante 30 minutos a 37°C y se lavaron cuatro veces con PBS. Después de eso, las membranas se incubaron durante 1 hora a 37°C con un suero de conejo anti AB-TT y anti ABC- TT diluido 1/100 con una solución de PBS que contenía 0,3% de Tween 20. Las membranas se lavaron nuevamente con solución de PBS-Tween. Para desarrollar la aparición de color se utilizó un anticuerpo anti-IgG de conejo conjugado a peroxidasa de rábano picante y diaminobencidina como sustrato (Fig. 16).
Ejemplo 15 Inmunogenicidad de los conjugados ABb-TT, ABCp-TT and ABCDE-TT:
Conejos New Zeland se inmunizaron por vía subcutánea con una de las siguientes formulaciones: ABb-TT, ABEb-TT, células de pertussis y LPS 50 pg en adyuvante completo de Freund. Se inmunizó con una segunda dosis usando las mismas formulaciones en Adyuvante incompleto de Freund con 2 semanas de diferencia. Se extrajo suero de cada animal a los días 35 y 42 posteriores.
Se inmunizaron ratones C57BL/c por vía subcutánea con una de las siguientes vacunas: ABb- TT, ABOb-TT, ABCDE-TT y pertussis de células enteras. Los animales se inyectaron 3 veces (separadas por intervalos de 2 semanas) con 2,5 pg / 100 pl en PBS. El suero se retiró a los 42 días.
El análisis de los sueros se realizó por ELISA como se describe en el ejemplo 14. Las placas se recubrieron con conjugados de los mismos oligosacáridos a BSA como proteína portadora. Se usaron pertussis de células enteras (1 unidad de opalescencia) y LOS (10 pg/ml) como control (Fig 17 A, B y C).
Ejemplo 16 Persistencia de anticuerpos e inducción de memoria:
La respuesta de IgG anti-oligosacáridos (AB o ABC) de ratones inmunizados con ABb-TT, ABCb-TT o PBS (Placebo) se analizó en varios puntos de tiempo mediante ELISA descrito en el Ejemplo 14. Casi un año después del esquema de inmunización primaria, los animales recibieron una dosis de refuerzo que contenía 1 OU de la bacteria inactivada. La respuesta de IgG contra ABb o ABEb se analizó 15 días después del refuerzo por ELISA descrito en el Ejemplo 14(Fig. 18). Ejemplo 17 Inhibición de la colonización nasal por el suero inducido por conjugados:
Grupos de ratones C57BL/c fueron inoculados por vía intranasal con 20 pl de una mezcla (1: 1) de una suspensión de B. pertussis que contenía 105 -106 UFC y suero de conejo contra ABb-TT o células enteras inactivadas obtenidos en el ejemplo 15. La mezcla con suero pre-inmune del mismo conejo se usó como control. Todas las mezclas se incubaron 1 hora a 37°C antes de la instilación.
Los ratones se sacrificaron transcurridas 18-24 h luego de la inoculación, las cavidades nasales se extrajeron de forma aséptica y se homogeneizaron en caldo de casaaminoácido 1%. Las diluciones preparadas se plaquearon en agar Bordet Gengou. Los resultados se expresaron como LoglO de UFC (Fig. 19).
Referencias Bibliográficas
j 1 jWHO Expert Committee on Biological Standardization. Forty-seventh report. Geneva, World Health Organization, 1998 (WHO Technical Report Series No. 878). See Annex 2, Guidelines for the production and control of the acellular pertussis component of monovalent or combined vaccines, pp. 57-76.
[ j Wendelboe A.M.et al.Pediatric Infectious Disease Journal, 2005, 24(Suppl. 5):S58-S61
¡ 3 jWright S.W.et al. Journal of the American Medical Association, 1995, 273: 1044-1046
[4 i Wendelboe A.M.et al..Emerging Themes in Epidemiology, 2007, 4:15.
[ 5 lAlthouseBM,Scarpino SV,BMC Med.2015;13: 146
[6]Spijkerman J., PLOS One 2012, 7, e39730
P7]Weintraub A., Carbohydrate Research, 2003, 338, 2539
8]Trollfors B. et al, Clin.Diagn.Laboratorio.Immunol 2001, 8, 1015
j_9]Weiss A., etal, Infect Immun, 1999, 67, 1424
j I Q jWeiss A., et al, Infect Immun, 2004, 72, 7346
[ 1 IjRobbins JB, R. Schneerson, J. Kluber-Kileb, JMKeith, B. Trollfors, E, Vinogradov, J. Shiloach, PNAS, 2014, 111, 3213-16
J_12]Niedziela T. et al, Infect Immun, 2005, 73, 7381
j 13]Caroff M., JR Brisson, A. Martin, D. Karibian, FEBS Lett, 2000, 477, 8-14
Blay K., M. Caroff, F, Blanchard, MB Perry, R. Chaby, Microbiology, 1996, 142, 971 -978
Figure imgf000039_0001
15]WHO position paper, Weekly epidemiological record, 2010, 85, 385-400
j 16 jMountzourosK.T., A Kimura, JL Cowell Infect Immun 1992, 60, 5316-18
17]ArchambaultD., P. Rondeau, D. Martin, BR Brodeur J. Gen Micro 1991, 137, 905
j 18 IShahinRD, J. Hamel, MF Leef, BR Brodeur Infect Immun, 1994, 62, 722
G 19]Albitar-NehmeS..et al.Carbohvdr Res.2013.378:56-62
120 jFernandez-SantanaV., et al, MethodsEnzimology, 2006, 415, 153

Claims

REIVINDICACIONES DERIVADOS DE OLIGOSACÁRIDOS SINTÉTICOS COMO VACUNA CONTRA BORDETELLA PERTUSSIS
1. Compuesto representado por la fórmula ABXSY donde AB es N-Ac-Glucosamina a-(l- 4) -2,3-di-N-acetamido-2,3-di-desoxi-ácido-manurónicop-, de origen sintético; X es el grupo C¾, NH, O, S, PH, Se o SiEh; S es una molécula cuya función es alejar en el espacio al conjunto anterior de la macromolécula Y e Y es una molécula con funciones de proteína portadora.
Figure imgf000040_0001
2. Compuesto representado por la fórmula ABCXSY donde ABC es N-Ac-Glucosamina a- (l-4)-2,3-di-N-acetamido-2,3-di-desoxi-ácido-manurónicop-(l-3)-2-acetamido-4-N- metil-2,4,6-tri-desoxi-L-galactosa p-, de origen sintético; X es el grupo C¾, NH, O, S, PH, Se o S1H2; S es una molécula cuya función es alejar en el espacio al conjunto anterior de la macromolécula Y e Y es una molécula con funciones de proteína portadora.
Figure imgf000040_0002
ABCXSY
3. Compuesto representado por la fórmula ABCEDXSY donde ABCED es N-Ac- Glucosamina a-(l-4)-2,3-di-N-acetamido-2,3-di-desoxi-ácido-manurónicop-(l- 3) - 2- acetamido-4-N-metil-2,4,6-tri-desoxi-L-galactosa p- (1-6)- [L-glicero-D-manoheptosa a - (1-4) -glucosamina] a -, de origen sintético; X es el grupo C¾, NH, O, S, PH, Se o S1H2; S es una molécula cuya función es alejar en el espacio al conjunto anterior de la macromolécula Y e Y es una molécula con funciones de proteína portadora.
Figure imgf000041_0001
ABCEDXSY
4. Compuestos de las reivindicaciones 1-3, donde X más específicamente es un átomo de Oxigeno, donde la conexión a B, C o D es a través de un enlace alfa, beta o una mezcla de ambas.
5. Compuestos según las reivindicaciones 1-4, donde la función espadadora de S, o sea alejar en el espacio la macromolécula Y, se ejecuta con una composición que puede incluir una cadena alifática con un número de heteroátomos intercalados entre 0-5 y / o un anillo aromático, teniendo en el extremo que conecta a través de un enlace químico con la macromolécula Y un grupo funcional del tipo Nfh, COOR, CHO, SH o cualquiera de sus precursores.
6. Compuestos según las reivindicaciones 1-5, en los que la macromolécula Y puede ser una proteína, péptidos, lípidos, polímeros, dendrímeros, virosomas y partículas similares a virus o una combinación de los mismos que aseguren la estimulación de la respuesta inmune contra AB, ABC o ABCED.
7. Métodos para la preparación del compuesto ABXS, precursor de ABXSY según la reivindicación 1, caracterizado por la introducción del espaciador S sobre el compuesto que aparece en la fórmula AB-2 y que combina como precursores del acetamido grupos azido y grupos bencilos como grupos protectores.
Figure imgf000041_0002
AB-2
8. Métodos para la preparación del compuesto AB-2 que utilizan como precursores A10 y B5b descritos en las fórmulas.
Figure imgf000042_0004
9. Métodos para la preparación del compuesto ABCXS, precursor de ABCXSY según la reivindicación 2, caracterizado por la introducción del espaciador S sobre el compuesto que aparece en la fórmula ABC-2 y que combina como precursores del acetamido grupos azido y grupos bencilos y benciloxicarbonilo como grupos protectores.
Figure imgf000042_0001
10. Métodos para la preparación del compuesto ABC-2 que utilizan como precursores AB-2 y C-7 descritos en las fórmulas.
Figure imgf000042_0002
11. Métodos para la preparación del compuesto ABCEDXS, precursor de ABCDEXSY según la reivindicación 3, que utiliza como precursores ABC-2 y DE-6 descritos en las fórmulas.
Figure imgf000042_0003
12. Compuestos de acuerdo a las reivindicaciones 1-5 dónde la macromolécula Y es seleccionada del grupo que consiste en toxoide tetánico, toxoide diftérico, CRM197 o toxoide pertussis.
13. Composición farmacéutica que comprende al menos un compuesto según la reivindicación 12 en una cantidad efectiva para estimular una respuesta inmune antígeno específica.
14. Una composición farmacéutica según la reivindicación 13, que comprende adicionalmente un adyuvante.
15. Una composición de acuerdo con lo reivindicado en 13 y 14 como vacuna contra la infección causada por Bordetella pertussis.
16. Una composición de acuerdo con lo reivindicado en 13 y 14 en combinación con cualquiera de las vacunas de Bordetella pertussis de células enteras conocida y con uno o más antígenos que comprende: toxoide diftérico, toxoide tetánico, antígeno de superficie del virus de la hepatitis B, conjugado de fosfato de polirribosilribitol (PRP) de Haemophilus influenzae tipo b y virus de poliomielitis inactivado tipo 1, 2 y 3.
17. Una composición de acuerdo con lo reivindicado en 13 y 14 en combinación con cualquiera de las vacunas acelulares de Bordetella pertussis conocida y con uno o más antígenos que comprende: toxoide diftérico, toxoide tetánico, antígeno de superficie del virus de la hepatitis B, conjugado de fosfato de polirribosilribitol (PRP) de Haemophilus influenzae tipo b y virus de poliomielitis inactivado tipo 1, 2 y 3.
PCT/CU2019/050001 2018-12-28 2019-04-08 Derivados de oligosacáridos sintéticos como vacuna contra bordetella pertussis WO2020135898A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980000706.9A CN111819184B (zh) 2018-12-28 2019-04-08 合成寡糖衍生物作为抗博德特百日咳杆菌疫苗

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2018000159A CU20180159A7 (es) 2018-12-28 2018-12-28 Derivados de oligosacáridos sintéticos como vacuna contra la bordetella pertussis
CU2018-0159 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020135898A1 true WO2020135898A1 (es) 2020-07-02

Family

ID=66793711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2019/050001 WO2020135898A1 (es) 2018-12-28 2019-04-08 Derivados de oligosacáridos sintéticos como vacuna contra bordetella pertussis

Country Status (3)

Country Link
CN (1) CN111819184B (es)
CU (1) CU20180159A7 (es)
WO (1) WO2020135898A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106251A2 (en) * 2011-01-31 2012-08-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Pertussis vaccine
WO2014195881A1 (en) * 2013-06-07 2014-12-11 Wrocławskie Centrum Badań Eit+ Sp. Z O.O. Bordetella pertussis los-derived oligosaccharide with pertussis toxin glycoconjugate and its application in the prophylaxis and treatment of infections caused by bordetella pertussis
WO2016168815A1 (en) * 2015-04-16 2016-10-20 Iventprise LLC Bordetella pertussis immunogenic vaccine compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092280A1 (en) * 2000-06-02 2001-12-06 Pfizer Products Inc. Hygromycin a derivatives for the treatment of bacterial and protozoal infections
JP2018509384A (ja) * 2015-01-06 2018-04-05 イミューノヴァクシーン テクノロジーズ インコーポレイテッドImmunovaccine Technologies Inc. リピドa模倣体、調製方法、及びその使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106251A2 (en) * 2011-01-31 2012-08-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Pertussis vaccine
WO2014195881A1 (en) * 2013-06-07 2014-12-11 Wrocławskie Centrum Badań Eit+ Sp. Z O.O. Bordetella pertussis los-derived oligosaccharide with pertussis toxin glycoconjugate and its application in the prophylaxis and treatment of infections caused by bordetella pertussis
WO2016168815A1 (en) * 2015-04-16 2016-10-20 Iventprise LLC Bordetella pertussis immunogenic vaccine compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NILSSON M ET AL: "Synthesis of a spacer-containing disaccharide fragment of Bordetella pertussis lipopolysaccharide", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 327, no. 3, 24 July 2000 (2000-07-24), pages 261 - 267, XP004228867, ISSN: 0008-6215, DOI: 10.1016/S0008-6215(99)00318-3 *

Also Published As

Publication number Publication date
CU20180159A7 (es) 2020-10-20
CN111819184B (zh) 2024-01-12
CN111819184A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CA2961694C (en) Vaccines against streptococcus pneumoniae serotype 8
JP2016530212A (ja) ストレプトコッカス ニューモニエ3型に対するタンパク質およびペプチドフリーの合成ワクチン
KR20200106034A (ko) 클렙시엘라 뉴모니아에 대한 백신
US10864261B2 (en) Synthetic vaccines against Streptococcus pneumoniae serotype 2
EP3019513B1 (en) Synthetic vaccines against streptococcus pneumoniae type 1
CN107709343B (zh) 针对肺炎链球菌血清型5的疫苗
US10688169B2 (en) Vaccines against carbapenem-resistant Klebsiella pneumoniae
EP2911698B1 (en) Glycoconjugates and their use as potential vaccines against infection by shigella flexneri
JP6622804B2 (ja) ストレプトコッカス ニューモニアエ(Streptococcus pneumoniae)血清型4に対するワクチン
US20240024489A1 (en) Protected disaccharides, their process of preparation and their use in the synthesis of zwitterionic oligosaccharides, and conjugates thereof
WO2020135898A1 (es) Derivados de oligosacáridos sintéticos como vacuna contra bordetella pertussis
US20220152183A1 (en) Carbocyclic derivatives and conjugated derivatives thereof, and their use in vaccines
US20230346905A1 (en) Pentavalent vaccine against neisseria meningitidis comprising a synthetic men a antigen
EP3000820A1 (en) Synthetic vaccines against Streptococcus pneumoniae serotype 8
Fusari Synthesis of fragments of Salmonella typhi capsular polysaccharide and their zwitterionic analogues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19729154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19729154

Country of ref document: EP

Kind code of ref document: A1