WO2020135641A1 - 用于确定控制资源集合的频域位置的方法及相关设备 - Google Patents

用于确定控制资源集合的频域位置的方法及相关设备 Download PDF

Info

Publication number
WO2020135641A1
WO2020135641A1 PCT/CN2019/128916 CN2019128916W WO2020135641A1 WO 2020135641 A1 WO2020135641 A1 WO 2020135641A1 CN 2019128916 W CN2019128916 W CN 2019128916W WO 2020135641 A1 WO2020135641 A1 WO 2020135641A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
terminal device
starting
downlink bandwidth
control
Prior art date
Application number
PCT/CN2019/128916
Other languages
English (en)
French (fr)
Inventor
高飞
余书静
张旭
李伟华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19903925.6A priority Critical patent/EP3905810A4/en
Priority to KR1020217023695A priority patent/KR102625787B1/ko
Priority to BR112021012780-1A priority patent/BR112021012780A2/pt
Priority to JP2021538295A priority patent/JP7181411B2/ja
Publication of WO2020135641A1 publication Critical patent/WO2020135641A1/zh
Priority to US17/360,347 priority patent/US12010676B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and related equipment for determining a frequency domain position of a control resource set.
  • the common control resource set (commonControlResourceSet) can carry scheduling information of random access response, paging, and system messages. For terminal devices, you can monitor the scheduling information of random access responses, paging, and system messages on the common control resource set. For network devices, you can send random access responses, paging, and paging on the common control resource set. Scheduling information of system messages. In the existing solution, the frequency domain position of more than one common control resource set is determined, which increases the complexity of determining the frequency domain bits of the common control resource set.
  • Embodiments of the present application provide a method and related equipment for determining a frequency domain position of a control resource set, with a view to reducing the complexity of determining the frequency domain position of a first control resource set.
  • an embodiment of the present application provides a possible method for determining a frequency domain position of a control resource set.
  • the method is performed by a terminal device and a network device, and includes:
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device; correspondingly, before the initial access of the terminal device is successful, the terminal device receives the configuration information of the first control resource set;
  • the network device Before the initial access of the terminal device is successful or after the initial access of the terminal device is successful, the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set; corresponding Before the initial access of the terminal device is successful, the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the first starting common resource block included in the first common resource block set is determined according to the configuration information of the second starting common resource block and the first control resource set of the first downlink bandwidth part.
  • the configuration information is used to indicate the first A position of the physical resource block occupied by the control resource set in the first downlink bandwidth part;
  • the frequency domain position of the first set of control resources before and after the successful initial access of the terminal device is the same, so that the terminal device and the network device only need to calculate the frequency domain position of the first set of control resources once.
  • the successful initial access of the terminal device recognized by the terminal device is used to indicate one of the following moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the moment when the configuration information indicating DCI to be blindly detected by the C-RNTI scrambling is successfully received.
  • the successful initial access of the terminal device recognized by the network device is used to indicate one of the following moments:
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling.
  • the first downlink bandwidth part is defined according to the control resource set coreset#0 or configured according to the system message block SIB1.
  • the identifier of the first control resource set is not 0.
  • the second starting common resource block of the first downlink bandwidth part is based on the first downlink bandwidth part.
  • the two starting physical resource blocks and the first offset are determined; where the first offset is used to indicate the number of physical resource blocks that differ between the second starting physical resource block and the reference point, and the reference point is a resource block grid Is a common reference point, the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals.
  • the first offset is based on the second offset between the second starting physical resource block of the first downlink bandwidth portion and the third starting physical resource block of the SS/PBCH block
  • the common resource block offset of the SS/PBCH block is determined; where the second offset is used to indicate the difference between the physical resource block PRB of the second starting physical resource block and the third starting physical resource block of the SS/PBCH block Quantity; the common resource block offset of the SS/PBCH block is used to indicate the number of physical resource blocks that differ between the third starting physical resource block and the reference point.
  • the second starting common resource block of the first downlink bandwidth part is based on the second of the first downlink bandwidth part
  • the starting physical resource block and the third offset are determined; wherein, the third offset is used to indicate the number of physical resource blocks different from the second starting physical resource block and the reference point, the reference point is the resource block grid A common reference point.
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals.
  • the embodiments of the present application provide another possible method for determining the frequency domain position of a control resource set.
  • the method is performed by a terminal device and a network device, and includes:
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device; correspondingly, before the initial access of the terminal device is successful, the terminal device receives the configuration information of the first control resource set;
  • the network device Before the initial access of the terminal device is successful, the network device will not broadcast the uplink and downlink scheduling control information on the downlink physical control channel according to the common resource block set occupied by the first control resource set; accordingly, before the initial access of the terminal device is successful, The terminal device will not monitor the downlink physical control channel according to the common resource block set occupied by the first control resource set;
  • the network device After the initial access of the terminal device is successful, the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the first set of common resource blocks occupied by the first set of control resources; correspondingly, after the initial access of the terminal device is successful , The terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth part and the first control resource set, and the configuration information is used to indicate the first control The position of the physical resource block occupied by the resource set in the first downlink bandwidth part.
  • neither the network device nor the terminal device needs to determine the frequency domain position of the first set of control resources before the initial access of the terminal device is successful.
  • the frequency domain position of the first set of control resources after the initial access of the terminal device is It is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the complexity of determining the frequency domain bits of the first control resource set.
  • the successful initial access of the terminal device recognized by the terminal device is used to indicate one of the following moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the moment when the configuration information indicating DCI to be blindly detected by the C-RNTI scrambling is successfully received.
  • the successful initial access of the terminal device recognized by the network device is used to indicate one of the following moments:
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling.
  • the first downlink bandwidth part is defined according to the control resource set coreset#0 or configured according to the system message block SIB1.
  • the identifier of the first control resource set is not 0.
  • the second starting common resource block of the first downlink bandwidth portion is based on the first downlink bandwidth portion. Two are determined by the initial physical resource block and the first offset;
  • the first offset is used to indicate the number of physical resource blocks that differ between the second starting physical resource block and the reference point
  • the reference point is a common reference point of the resource block grid
  • the reference point is used to indicate a preset The center position of subcarrier 0 in the common resource block CRB 0 configured with subcarrier intervals.
  • the first offset is based on the second offset between the second starting physical resource block of the first downlink bandwidth portion and the third starting physical resource block of the SS/PBCH block
  • the common resource block offset of the SS/PBCH block is determined; where the second offset is used to indicate the difference between the physical resource block PRB of the second starting physical resource block and the third starting physical resource block of the SS/PBCH block Quantity; the common resource block offset of the SS/PBCH block is used to indicate the number of physical resource blocks that differ between the common resource block corresponding to the third starting physical resource block and the reference point.
  • the second starting common resource block of the first downlink bandwidth portion is based on the second The starting physical resource block and the third offset are determined; wherein, the third offset is used to indicate the number of physical resource blocks different from the second starting physical resource block and the reference point, the reference point is the resource block grid A common reference point.
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals.
  • an embodiment of the present application provides a possible method for determining a frequency domain position of a control resource set.
  • the method is performed by a terminal device and a network device, and includes:
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device; correspondingly, before the initial access of the terminal device is successful, the terminal device receives the configuration information of the first control resource set;
  • the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the first set of common resource blocks occupied by the first set of control resources; correspondingly, before the initial access of the terminal device is successful , The terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set; the first starting common resource block contained in the first common resource block set is based on the first The configuration information of the second starting common resource block and the first control resource set of the line bandwidth part is determined, and the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth part;
  • the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the third set of common resource blocks occupied by the first set of control resources; correspondingly, after the initial access of the terminal device is successful , The terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the third common resource block set occupied by the first control resource set; the third starting common resource block included in the third common resource block set is based on the second The configuration information of the fourth starting common resource block of the downlink bandwidth part and the first control resource set is determined, and the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set within the second downlink bandwidth part;
  • the second starting common resource block of the first downlink bandwidth part is the same as the fourth starting common resource block of the second downlink bandwidth part.
  • the frequency domain position of the first control resource set may be determined according to the frequency domain position of different downlink bandwidth parts, but due to different settings
  • the common resource block positions are the same, and the frequency domain position of the first control resource set referenced by different downlink bandwidth parts can still be the same, so that the terminal device and the network device only need to calculate the frequency of the first control resource set once
  • the location of the domain reduces the complexity of determining the frequency domain bits of the first control resource set.
  • the successful initial access of the terminal device recognized by the terminal device is used to indicate one of the following moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the first downlink bandwidth part switches To the moment when the handover of the second downlink bandwidth is completed;
  • the first downlink bandwidth part switches To the moment when the handover of the second downlink bandwidth is completed;
  • the terminal device When the common resource blocks occupied by the first downlink bandwidth part and the second downlink bandwidth part are different, after the terminal device successfully receives the initially transmitted message 4 and switches from the first downlink bandwidth part to the second downlink bandwidth part At the time when the configuration information indicating DCI to be blindly scrambled by the C-RNTI is received.
  • the successful initial access of the terminal device recognized by the network device is used to indicate one of the following moments:
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device the configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device receives the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device. The moment when the switching of the line bandwidth part is switched to the second downlink bandwidth part;
  • the network device receives the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the first The moment when the switching of the line bandwidth part is switched to the second downlink bandwidth part;
  • the network device receives the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device and the first downlink After the bandwidth part is switched to the second downlink bandwidth part, the moment when DCI configuration information indicating that blind detection of C-RNTI scrambling is required is sent to the terminal device;
  • the network device receives the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device and the first downlink After the bandwidth part is switched to the second downlink bandwidth part, the time when the configuration information indicating DCI to be blindly detected by the C-RNTI scrambling is sent to the terminal device.
  • the first downlink bandwidth part is defined according to the control resource set coreset#0, and the second downlink bandwidth part is configured according to the system message block SIB1.
  • the identifier of the first control resource set is not 0.
  • the second starting common resource block of the first downlink bandwidth portion is based on the first downlink bandwidth portion.
  • the two starting physical resource blocks and the first offset are determined; where the first offset is used to indicate the number of physical resource blocks that differ between the second starting physical resource block and the reference point, and the reference point is a resource block grid Is a common reference point, the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals.
  • the first offset is based on the second offset between the second starting physical resource block of the first downlink bandwidth portion and the third starting physical resource block of the SS/PBCH block
  • the common resource block offset of the SS/PBCH block is determined; where the second offset is used to indicate the difference between the physical resource block PRB of the second starting physical resource block and the third starting physical resource block of the SS/PBCH block Quantity; the common resource block offset of the SS/PBCH block is used to indicate the number of physical resource blocks that differ between the third starting physical resource block and the reference point.
  • the fourth starting common resource block of the second downlink bandwidth portion is based on the fourth starting physical
  • the resource block and the third offset are determined; where the third offset is used to indicate the number of physical resource blocks that differ between the fourth starting physical resource block and the reference point, and the reference point is a common reference of the resource block grid
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals.
  • an embodiment of the present application provides a possible method for determining a frequency domain position of a control resource set.
  • the method is performed by a terminal device and a network device, and includes:
  • the network device After the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device; correspondingly, after the initial access of the terminal device is successful, the terminal device receives the configuration information of the first control resource set;
  • the network device After the initial access of the terminal device is successful, the network device broadcasts uplink and downlink scheduling control information on the downlink physical control channel according to the first set of common resource blocks occupied by the first set of control resources; correspondingly, after the initial access of the terminal device is successful , The terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set;
  • the first starting common resource block included in the first common resource block set is determined according to the configuration information of the second starting common resource block and the first control resource set of the first downlink bandwidth part.
  • the configuration information is used to indicate the first A position of the physical resource block occupied by the control resource set in the first downlink bandwidth part.
  • neither the network device nor the terminal device needs to determine the frequency domain position of the first set of control resources before the terminal device has successfully accessed initially.
  • the frequency domain position of the first set of control resources after the initial access of the terminal device is It is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the complexity of determining the frequency domain bits of the first control resource set.
  • the successful initial access of the terminal device recognized by the terminal device is used to indicate one of the following moments:
  • the terminal device After the terminal device successfully receives the initial message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device After the terminal device successfully receives the retransmitted message 4, it receives the configuration information indicating DCI that needs to be blindly detected by C-RNTI scrambling.
  • the successful initial access of the terminal device recognized by the network device is used to indicate one of the following moments:
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling.
  • the first downlink bandwidth part is configured according to the system message block SIB 1 configuration or other messages configuring the downlink bandwidth part after the initial access of the terminal device is successful.
  • the identifier of the first control resource set is not 0.
  • the second starting common resource block of the first downlink bandwidth portion is based on the second of the first downlink bandwidth portion Determined by the starting physical resource block and the third offset;
  • the third offset is used to indicate the difference between the number of physical resource blocks between the second starting physical resource block and the reference point.
  • the reference point is a common reference point of the resource block grid.
  • the reference point is used to indicate a preset The center position of subcarrier 0 in the common resource block CRB 0 configured with subcarrier intervals.
  • the configuration information of the first control resource set and the configuration information of the first downlink bandwidth part are received at the same time.
  • an embodiment of the present application provides an apparatus for determining a frequency domain position of a control resource set.
  • the apparatus may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiver unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may further include a storage unit, the storage unit may be a memory; the storage unit is used to store instructions, the processing The unit executes the instructions stored in the storage unit, so that the terminal device executes the method executed by the terminal device in any one of the first to fourth aspects and any possible implementation manner thereof.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the terminal
  • the device executes the method performed by the terminal device in any one of the first to fourth aspects and any possible implementation manner thereof.
  • the storage unit may be a storage unit in the chip (for example, registers, caches, etc.), or It may be a storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the terminal device.
  • an embodiment of the present application provides an apparatus for determining a frequency domain position of a control resource set.
  • the apparatus may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the network device may further include a storage unit, which may be a memory; the storage unit is used to store instructions, the processing The unit executes the instructions stored by the storage unit, so that the network device executes the method executed by the network device in any one of the first to fourth aspects and any possible implementation manner thereof.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the network
  • the device executes the method performed by the network device in any one of the first to fourth aspects and any possible implementation manner thereof.
  • the storage unit may be a storage unit in the chip (for example, registers, caches, etc.), or It may be a storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the network device.
  • an embodiment of the present application provides a computer program product.
  • the computer program product includes: computer program code, which, when the computer program code runs on a computer, causes the computer to perform any one of the first aspect to the fourth aspect And the method executed by the terminal device in any possible implementation manner.
  • an embodiment of the present application provides a computer program product.
  • the computer program product includes: computer program code, which causes the computer to perform any one of the first to fourth aspects when the computer program code runs on the computer And any possible implementation of the method performed by the network device.
  • an embodiment of the present application provides a computer-readable medium that stores program code, and when the computer program code runs on a computer, causes the computer to perform any one of the first to fourth aspects above Aspects and methods implemented by the terminal device in any possible implementation manner.
  • an embodiment of the present application provides a computer-readable medium that stores program code, and when the computer program code runs on a computer, causes the computer to perform any one of the first to fourth aspects above Aspects and any possible implementation of the method performed by the network device.
  • FIG. 1 is a schematic diagram of a possible communication system architecture provided by an embodiment of this application.
  • FIG. 2 is an example diagram of a frequency domain position of a possible common control resource set provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for determining a frequency domain position of a control resource set according to an embodiment of this application;
  • FIG. 4 is an exemplary diagram of a frequency domain position of a control resource set provided by an embodiment of the present application.
  • FIG. 5 is an exemplary diagram of a frequency domain position of a control resource set provided by an embodiment of this application.
  • FIG. 6 is an exemplary diagram of a frequency domain position of a downlink bandwidth part and a first control resource set provided by an embodiment of this application;
  • FIG. 7 is an exemplary diagram of a time domain and a frequency domain location of a first set of control resources provided by an embodiment of the present application
  • FIG. 8 is an example diagram of determining a frequency domain position of a downlink bandwidth part provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for determining a frequency domain position of a control resource set according to an embodiment of this application.
  • FIG. 10 is an example diagram of a frequency domain position of a control resource set provided by an embodiment of this application.
  • FIG. 11 is an example diagram of a frequency domain position of a control resource set provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for determining a frequency domain position of a control resource set according to an embodiment of this application;
  • FIG. 13 is an example diagram of a frequency domain position of a control resource set provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart of a method for determining a frequency domain position of a control resource set according to an embodiment of this application;
  • 15 is an example diagram of a frequency domain position of a control resource set provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • 17 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • 19 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a possible communication system according to an embodiment of the present application.
  • the communication system includes a network device 101 and a terminal device 102.
  • the network device 101 and the terminal device 102 can communicate through the air interface technology of the communication system, which includes a scenario where uplink and downlink scheduling control information is transmitted on a downlink physical control channel (physical downlink control channel, PDCCH).
  • PDCCH physical downlink control channel
  • the PDCCH includes the time-frequency position of commonControlResourceSet.
  • the frequency domain position of commonControlResourceSet that is, the position of a common resource block (common resource block, CRB), is determined with reference to the currently activated downlink bandwidth portion. For example, when the currently activated downlink bandwidth part is the initial downlink bandwidth part, the CRB position of the commonControlResourceSet is determined with reference to the initial downlink bandwidth part.
  • the downlink physical control channel can be monitored in the frequency domain of the commonControlResourceSet to obtain uplink and downlink scheduling control information.
  • the uplink and downlink scheduling control information can be sent in the downlink physical control channel in the frequency domain of the commonControlResourceSet.
  • the uplink and downlink scheduling control information may be control information for scheduling random access responses, control information for scheduling paging messages, or control information for scheduling system messages.
  • initial downlink bandwidth part initial DL BWP
  • CORESET#0 the size and frequency domain of the initial downlink bandwidth part
  • SIB System Information Block 1
  • the initial downlink bandwidth defined by CORESET#0 takes effect; after the initial access of the terminal device is successful, the initial DL BWP configured in SIB 1 takes effect, and the initial DL BWP configured in SIB 1 can be used with
  • the initial DL and BWP defined by CORESET#0 are different, but the frequency domain position of the initial DL and BWP configured in SIB1 should include the frequency domain position of CORESET#0.
  • this embodiment of the present application provides an example diagram of a possible frequency domain position of a common control resource set.
  • the frequency domain position of CORESET#0 is inconsistent with the frequency domain position of the initial DL BWP configured by SIB1, and the starting resource block position RB-x of CORESET#0 is consistent with the initial DL BWP configured by SIB1
  • the starting resource block position RB-y is different.
  • the starting resource block position of commonControlResourceSet1 determined according to the initial downlink bandwidth defined by CORESET#0 is different from the starting point of commonControlResourceSet2 determined by initialDL configured by SIB1.
  • the resource block location is also different.
  • the terminal device Before the initial access of the terminal device is successful, monitor and control the random access response, paging, and system message control information according to the frequency domain position of commonControlResourceSet1; after the initial access of the terminal device is successful, follow the commonControlResourceSet
  • the frequency-domain location of 2 monitors information such as scheduling random access response, paging, and system messages.
  • the network device For network devices, if there are terminal devices with initial access success and terminal devices with unsuccessful access within the coverage of the network device, the network device needs to send the terminal devices with unsuccessful access to the frequency domain of commonControlResourceSet1 Send random access response, scheduling information of paging and system messages, etc.; and need to send random access response, scheduling information of paging and system messages to the terminal device with initial access success in the frequency domain position of commonControlResourceSet2.
  • FIGS. 3 to 15 of the present application can realize that the frequency domain position of the commonControlResourceSet calculated before and after the initial access of the terminal device is the same, so that the terminal device and the network device only need to calculate the frequency domain position of the commonControlResourceSet once. Reduced the complexity of determining the frequency domain bits of commonControlResourceSet. For details, please refer to the detailed description of the embodiments of FIGS. 3 to 15 of the present application.
  • the terminal equipment involved in this application may refer to user equipment (UE), which may be a handheld terminal, a notebook computer, a subscriber unit, a subscriber unit, a cellular phone, a smart phone, and a personal digital assistant ( personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer (laptop), cordless phone (cordless phone) or wireless local loop (wireless local loop (WLL ) Station, machine type communication (MTC) terminal or other equipment that can access the mobile network.
  • PDA personal digital assistant
  • modem wireless modem
  • handheld device handheld
  • laptop computer laptop
  • cordless phone cordless phone
  • WLL wireless local loop
  • MTC machine type communication
  • a certain air interface technology is used for communication between terminal equipment and network equipment.
  • the network equipment involved in this application may refer to the access network equipment, which is mainly responsible for the functions of wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • the network equipment may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, and access points.
  • base stations such as macro base stations, micro base stations (also called small stations), relay stations, and access points.
  • the names of devices with base station functions may be different.
  • 5G 5th generation
  • gNB in the fourth generation (4th) Generation (4G) system, called evolved Node B (evolved NodeB, eNB or eNodeB), etc.
  • first control resource set involved in the present application may also be a common control resource set or a control resource set named in other ways, which is not limited in this embodiment of the present application.
  • the embodiments of the present application can also be applied to other communication systems that need to determine the frequency domain position of the control resource set.
  • system can be used interchangeably with "network”.
  • the system architecture described in the embodiments of the present application is for the convenience of explaining the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application. Those of ordinary skill in the art may know that as the network architecture evolves, The technical solutions provided in the application examples are also applicable to similar technical problems.
  • “plurality” means two or more than two, and “at least two” means two or more than two.
  • FIG. 3 provides a schematic flowchart of a method for determining a frequency domain position of a control resource set for an embodiment of the present application.
  • the method shown in FIG. 3 includes steps 301 to 303.
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device.
  • the terminal device receives the configuration information of the first control resource set.
  • the network device Before the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set.
  • the network device After the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set.
  • the embodiment of the present application does not limit the number of execution steps 302 and 303.
  • the configuration information is used to indicate the location of the physical resource block (PRB) occupied by the first control resource set in the first downlink bandwidth portion.
  • PRB physical resource block
  • the identifier of the first control resource set in this application is not 0.
  • the configuration information of the first control resource set can be obtained from the SIB 1, and the configuration information can take effect before and after the initial access of the terminal device is successful.
  • the validity means that the terminal device can be based on the first control resource
  • the frequency domain position of the set monitors the downlink physical control channel to obtain uplink and downlink scheduling control information; or, the network device may send uplink and downlink scheduling control information on the downlink physical control channel according to the frequency domain position of the first control resource set.
  • the configuration information of the first downlink bandwidth part can also be obtained from SIB1, but the first configuration of SIB1
  • the configuration information of the line bandwidth part takes effect after the initial access of the terminal device is successful.
  • the effect here refers to: the downlink control information can be received according to the frequency domain position of the first downlink bandwidth part configured by SIB 1, or the network device can The frequency domain position of the first downlink bandwidth part configured by SIB1 sends downlink control information.
  • the terminal device may use a high-level signaling locationAndBandwidth and/or other parameters of the first downlink bandwidth part to determine the frequency domain position of the first downlink bandwidth part.
  • the first common resource block occupied by the first control resource set includes the first starting common resource block and the common resource block occupied by the first control resource set.
  • both the network device and the terminal device can implement the determination of the first starting common resource block, and both can implement the determination of the first control resource set occupation according to the configuration information and the starting common resource block of the reference downlink bandwidth part
  • the common resource block starting from the first starting common resource block. How to determine the first starting common resource block can be divided into the following two cases (case A1 and case A2).
  • the first downlink bandwidth part is the initial DL BWP defined by CORESET#0
  • the first starting common resource block of the first control resource set is the second starting common resource block and the first according to CORESET#0.
  • the configuration information of the control resource set is determined. Specifically, after determining the second starting common resource block of CORESET#0, the detailed process of determining the first starting common resource block can be referred to the detailed introduction of FIG. 6, where the fourth offset refers to the second of CORESET#0 The number of common resource blocks where the starting common resource block differs from the first starting common resource block of the first control resource set.
  • the second starting common resource block of CORESET#0 refers to the minimum CRB occupied by CORESET#0; the first starting common resource block of the first control resource set refers to the smallest CRB occupied by the first control resource set.
  • the second starting common resource block of CORESET#0 is determined according to the second starting physical resource block of CORESET#0 and the first offset.
  • the first offset is used to indicate the relationship between the second starting physical resource block and the reference point The number of physical resource blocks that are different from each other.
  • the reference point is a common reference point of the resource block grid.
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals. As shown in FIG. 4, the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • the first offset is between the second starting physical resource block of the first downlink bandwidth part and the third starting physical resource block of the SS/PBCH block (Synchronization/Physical Broadcast Channel block, synchronization/physical broadcast channel block)
  • the second offset and the SS/PBCH block common resource block offset are determined.
  • the second offset is used to indicate the difference between the number of physical resource blocks between the second start physical resource block and the third start physical resource block of the SS/PBCH block;
  • the common resource block offset of the SS/PBCH block is used to Indicates the number of physical resource blocks that differ between the third starting physical resource block and the reference point, as shown in FIG. 4 with respect to the offset of reference point A So that the first offset is equal to The value of the second offset is subtracted.
  • the third starting physical resource block is the RB with the smallest RB index value of the CRB overlapping with the first RB of the SS/PBCH block.
  • the first downlink bandwidth part can be obtained only by CORESET#0, so that the first control resource set can only be determined by the first downlink bandwidth part defined by CORESET#0 Frequency domain position.
  • the first downstream bandwidth part can be defined by CORESET#0 and the first downstream bandwidth part is configured by SIB1. In this case, the first one defined by CORESET#0 is selected.
  • the line bandwidth part determines the frequency domain position of the first set of control resources.
  • the configuration information of the first control resource set can be obtained in the SIB 1 message.
  • the configuration information can be The message carries configuration information of the first control resource set.
  • the terminal device and the network device may determine the position of the first starting common resource of the first control resource set according to the second starting common resource block of CORESET#0.
  • the terminal device A control resource set 1 monitors the downlink physical control channel to obtain uplink and downlink scheduling control information, and the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first control resource set 1 shown in FIG. 4.
  • the terminal device monitors the downlink physical control channel according to the first control resource set 2 shown in FIG. 4 to obtain uplink and downlink scheduling control information, and the network device according to the first control resource set 2 shown in FIG. 4 Send uplink and downlink scheduling control information on the downlink physical control channel.
  • the frequency domain position of the first control resource set determined in this way is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the embodiment of the present application does not limit the determination time of the frequency domain position of the first control resource set, and the frequency domain position of the first downlink bandwidth part defined according to the configuration information and CORESET#0 may be determined before the terminal device is successfully accessed initially
  • the frequency domain position of the first control resource set is determined, or the frequency domain position of the first control resource set may be determined according to the configuration information and the frequency domain position of the first downlink bandwidth part defined by CORESET#0 after the initial access is successful.
  • the first downlink bandwidth part is the initial DL BWP configured by SIB 1
  • the first starting common resource block of the first control resource set is the second start of the first downlink bandwidth part configured according to SIB 1.
  • the configuration information of the common resource block and the first control resource set is determined. Specifically, after determining the second starting common resource block of the first downlink bandwidth portion configured by SIB1, the detailed process of determining the first starting common resource block of the first control resource set can be referred to the detailed introduction in FIG. 6, where
  • the fifth offset refers to the number of common resource blocks that are different from the second starting common resource block of the first downlink bandwidth portion configured by SIB1 and the first starting common resource block of the first control resource set.
  • the second starting common resource block of the first downlink bandwidth part is based on the second starting physical resource block and the first Three offsets are determined; where the third offset is used to indicate the number of physical resource blocks that differ between the second starting physical resource block and the reference point, the reference point is a common reference point of the resource block grid, the reference point It is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals. As shown in FIG. 5, the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • point A point A
  • the first downlink bandwidth part can be configured through CORESET#0 and SIB1.
  • the first downlink bandwidth part configured with SIB1 is selected to determine the first control resource set Location in the frequency domain.
  • the configuration information of the first control resource set can be obtained in the SIB 1 message.
  • the configuration information can be The message carries configuration information of the first control resource set.
  • the terminal device and the network device may determine the first starting common resource location of the first set of control resources according to the second starting common resource block of the first downlink bandwidth portion configured by SIB 1.
  • the terminal device Monitor the downlink physical control channel according to the first control resource set 1 shown in FIG. 5 to obtain uplink and downlink scheduling control information, and the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first control resource set 1 shown in FIG. 5 .
  • the terminal device monitors the downlink physical control channel according to the first control resource set 2 shown in FIG. 5 to obtain uplink and downlink scheduling control information, and the network device according to the first control resource set 2 shown in FIG. 5 Send uplink and downlink scheduling control information on the downlink physical control channel.
  • the frequency domain position of the first control resource set determined in this manner is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the embodiment of the present application does not limit the determination time of the frequency domain position of the first control resource set by the terminal device, and may be based on the configuration information and the frequency of the first downlink bandwidth portion configured by the SIB1 before the initial access of the terminal device is successful
  • the domain position determines the frequency domain position of the first control resource set, or the frequency of the first control resource set can be determined according to the configuration information and the frequency domain position of the first downlink bandwidth portion configured by SIB1 after the initial access of the terminal device is successful Domain location.
  • the time T in FIG. 3, FIG. 4 and FIG. 5 represents the time when the initial access of the terminal device is successful.
  • the identification of the time T by the network device and the terminal device may be different.
  • the time when the terminal device determines that the initial access is successful is used to indicate the following (3-1), (3-2), (3-3), (3-4) , (3-5), (3-6) one of the moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell radio network temporary identification C-RNTI;
  • the moment when the network device determines that the initial access is successful is used to indicate one of the following moments (3-7), (3-8), (3-9), and (3-10):
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating DCI that needs to be blindly detected by C-RNTI scrambling;
  • the network device receives the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, and then sends the terminal device configuration information indicating the DCI to be blindly detected by the C-RNTI scrambling.
  • the frequency domain position of the first control resource set before and after the terminal device is successfully accessed is the same, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once.
  • the complexity of determining the frequency domain bits of the first set of control resources is reduced.
  • FIG. 6 provides an example diagram of the downlink bandwidth portion and the frequency domain position of the first control resource set for this application.
  • the network device may indicate the resource allocation of the first control resource set in 1 BWP through high-level signaling frequencyDomainResources.
  • the frequencyDomainResources here is the configuration information of the first control resource set involved in this application.
  • frequencyDomainResources is a 45-bit bitmap (bit-map).
  • the 45-bitmap indicates the frequency domain resource allocation of the first control resource set in the first downlink bandwidth portion, and each 1 bit indicates six consecutive non-overlapping physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the first starting common resource block index of the first control resource set is aligned with a multiple of 6 of the common resource block index.
  • the starting common resource block index of the downlink bandwidth part is Then, since the index of the first starting common resource block of the first control resource set must be a multiple of 6, the starting common resource block of frequencyDomainResources is Specifically, it means that the six PRBs indicated by the first bit of the 45-bitmap start from CRB 36 and go up in order. If the bit value is 1, the corresponding 6 consecutive PRBs are allocated to the first control resource set, and if the bit value is 0, the corresponding 6 consecutive PRBs are not allocated to the first control resource set. If the PRB part indicated by the bit exceeds the downlink bandwidth part, the excess part is all set to 0, indicating that it is not allocated to the first control resource set.
  • the downlink bandwidth part (DL BWP) involved in FIG. 6 may be the initial downlink bandwidth part defined by CORESET#0, or may be the initial downlink bandwidth part configured by SIB 1, or may be the newly configured initial DL BWP, or other DL BWP, etc.
  • DL BWP downlink bandwidth part
  • SIB initial downlink bandwidth part
  • the network device may configure a first control resource set for the terminal device through high-level signaling (such as radio resource control (RRC) signaling) first control resource set configuration message, which includes the first Parameters such as CORESET id of control resource set, frequency domain resource indication, number of continuous OFDM symbols in time domain, etc.
  • the number of continuous OFDM symbols in the time domain can be one of 1, 2, and 3.
  • the frequency domain resource indication may be the 45-bit bitmap shown in FIG. 6.
  • the network device configures a search space set to the terminal device through high-level signaling (such as RRC signaling) SearchSpace configuration message, which includes search space set id, 1 slot monitoring time indication, aggregation level, and aggregation level And the corresponding parameters such as the number of candidate PDCCHs.
  • high-level signaling such as RRC signaling
  • SearchSpace configuration message which includes search space set id, 1 slot monitoring time indication, aggregation level, and aggregation level And the corresponding parameters such as the number of candidate PDCCHs.
  • searchSpace configuration message which includes search space set id, 1 slot monitoring time indication, aggregation level, and aggregation level And the corresponding parameters such as the number of candidate PDCCHs.
  • searchSpace configuration message which includes search space set id, 1 slot monitoring time indication, aggregation level, and aggregation level And the corresponding parameters such as the number of candidate PDCCHs.
  • the time domain position of the first control resource set blindly searched in searchSpace
  • the downstream bandwidth part is defined by CORESET#0 or configured by SIB1
  • the initial downstream bandwidth part defined by CORESET#0 is represented by the downstream bandwidth part one
  • the initial downstream bandwidth part configured by SIB1 is assumed to be the downstream bandwidth part Two
  • the common resource block of the downlink bandwidth part 1 is represented by a fifth common resource block
  • the fifth common resource block includes a fifth starting common resource block and other common resource blocks occupied by the downlink bandwidth part 1.
  • the common resource block of the downlink bandwidth part two is represented by a sixth common resource block
  • the sixth common resource block includes the sixth starting common resource block and other common resource blocks occupied by the downlink bandwidth part two.
  • the ssb-SubcarrierOffset (K SSB ) in the MIB indicates the RB and SS/ with the smallest RB index value of the CRB overlapping the first RB of the SS/PBCH block
  • Subcarrier offset between the first RB of the PBCH block; the RB with the smallest index value of the CRB overlapping the first RB of the SS/PBCH block is the third from the SS/PBCH block involved in this application Start physical resource block.
  • the second offset here refers to the difference in the number of physical resource blocks between the fifth starting physical resource block of the downlink bandwidth part 1 and the third starting physical resource block of the SS/PBCH block, and the second offset is in units of PRB .
  • the fifth starting physical resource block of the downlink bandwidth part 1 can be determined according to the third starting physical resource block of the SS/PBCH block and the second offset.
  • the scheduling information of SIB 1 is obtained, and the SIB 1 message is received on the scheduled time-frequency resource.
  • the following information can be obtained:
  • Offset relative to reference point A used to indicate the PRB offset between the third starting physical resource location of the cell-defining SS/PBCH block and Point A; the third starting physical here
  • the resource location refers to the smallest index value RB of the CRB overlapping with the first RB of the SS/PBCH block.
  • the third starting common resource block of the SS/PBCH block can be determined according to the offsetToPointA and the third starting physical resource position of the SS/PBCH block.
  • the third starting common resource block refers to the first with the SS/PBCH block The RB with the smallest index value of CRBs with overlapping RBs.
  • offsetToPointA can be combined with the second offset in (2) to determine the first offset
  • the fifth offset of the downlink bandwidth part 1 can be determined according to the first offset and the fifth starting physical resource block of the downlink bandwidth part one
  • the starting common resource block, and the fifth starting common resource block refers to the lowest common resource block occupied by the downlink bandwidth part one.
  • locationAndBandwidth used to indicate information such as the starting physical resource block containing downlink bandwidth part 2 and the number of common resource blocks occupied, as shown in FIG. 8.
  • carrierBandwidth used to indicate a group of carriers corresponding to different subcarrier intervals and the width of each carrier in the frequency domain;
  • OffsetToCarrier used to indicate the frequency domain offset of the lowest available subcarrier of each carrier from point A, where Point A is the center position of subcarrier 0 of Common RB.
  • the sixth starting common resource block of downlink bandwidth part 2 and other common resource blocks occupied by downlink bandwidth part 2 can be determined.
  • the sixth starting common resource block refers to the lowest common resource occupied by downlink bandwidth part two Piece.
  • the resource block grids involved in various embodiments of the present application are used to map physical resources.
  • the time-frequency resource unit (Resource, Element) is the basic unit.
  • a RE is composed of a symbol in the time domain and a subcarrier in the frequency domain, and all OFDM symbols in a time slot and frequency domain 12 subcarriers form a resource block (Resource Block, RB), the position of the RE is represented by (k, l), k represents the sequence number of OFDM, l represents the sequence number of the subcarrier, and can be located by giving the coordinates (k, l) To the specified RE.
  • the terminal device may obtain the configuration information of the first control resource set through the ServingCellConfigCommonSIB in the SIB 1 message, and then Determine the first starting common resource block of the first control resource set with reference to the lower bandwidth part one, or determine the first starting common resource block of the first control resource set with reference to the lower bandwidth part two.
  • FIG. 9 provides a schematic flowchart of another method for determining a frequency domain position of a control resource set for an embodiment of the present application.
  • the method shown in FIG. 9 includes step 901 and step 902.
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device.
  • the terminal device receives the configuration information of the first control resource set.
  • the network device After the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set.
  • the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth part.
  • the identifier of the first control resource set in this application is not 0.
  • the terminal device Before the initial access of the terminal device is successful, the terminal device will not monitor the downlink physical control channel according to the common resource block set occupied by the first control resource set.
  • the frequency domain position of the first control resource set is determined with reference to a downlink bandwidth portion.
  • the configuration information of the first control resource set can be obtained from SIB1, and the configuration information can take effect after the initial access of the terminal device is successful.
  • the validity refers to: the terminal device can be based on the first control resource set The frequency domain position monitors the downlink physical control channel to obtain uplink and downlink scheduling control information; or, the network device may send uplink and downlink scheduling control information on the downlink physical control channel according to the frequency domain position of the first control resource set.
  • the configuration information of the first downlink bandwidth part can also be obtained from SIB1, but the first configuration of SIB1
  • the configuration information of the line bandwidth part takes effect after the initial access of the terminal device is successful.
  • the effect here refers to: the downlink control information can be received according to the frequency domain position of the first downlink bandwidth part configured by SIB 1, or the network device can The frequency domain position of the first downlink bandwidth part configured by SIB1 sends downlink control information.
  • the terminal device may use a high-level signaling locationAndBandwidth and/or other parameters of the first downlink bandwidth part to determine the frequency domain position of the first downlink bandwidth part.
  • the first common resource block occupied by the first control resource set includes a first starting common resource block and other common resource blocks occupied by the first control resource set.
  • both the network device and the terminal device can implement the determination of the first starting common resource block, and both can implement the determination of the first control resource set occupation according to the configuration information and the starting common resource block of the reference downlink bandwidth part
  • the common resource block starting from the first starting common resource block. How to determine the first starting common resource block can be divided into the following two cases (case B1 and case B2).
  • the first downlink bandwidth part is the initial DL BWP defined by CORESET#0
  • the first starting common resource block of the first control resource set is the second starting common resource block and the first according to CORESET#0.
  • the configuration information of the control resource set is determined. Specifically, after determining the second starting common resource block of CORESET#0, the detailed process of determining the first starting common resource block can be referred to the detailed introduction of FIG. 6, where the fourth offset refers to the second of CORESET#0 The number of common resource blocks where the starting common resource block differs from the first starting common resource block of the first control resource set.
  • the second starting common resource block of CORESET#0 refers to the minimum CRB occupied by CORESET#0; the first starting common resource block of the first control resource set refers to the smallest CRB occupied by the first control resource set.
  • the second starting common resource block of CORESET#0 is determined according to the second starting physical resource block of CORESET#0 and the first offset.
  • the first offset is used to indicate the relationship between the second starting physical resource block and the reference point The number of physical resource blocks that are different from each other.
  • the reference point is a common reference point of the resource block grid.
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals. As shown in FIG. 10, the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • the first offset is based on the second offset between the second starting physical resource block of the first downlink bandwidth portion and the third starting physical resource block of the SS/PBCH block and the common resource block offset of the SS/PBCH block Move ok.
  • the second offset is used to indicate the difference between the number of physical resource blocks between the second start physical resource block and the third start physical resource block of the SS/PBCH block;
  • the common resource block offset of the SS/PBCH block is used to The number of physical resource blocks indicating the difference between the third starting physical resource block and the reference point, as shown in FIG. 10 with respect to the offset of reference point A So that the first offset is equal to The value of the second offset is subtracted.
  • the third starting physical resource block is the RB with the smallest RB index value of the CRB overlapping the first RB of the SS/PBCH block.
  • the first downstream bandwidth part can be configured/defined through CORESET#0 and SIB1.
  • the first downstream bandwidth part defined by CORESET#0 is selected to determine the first Control the frequency domain position of the resource set.
  • the configuration information of the first control resource set can be obtained in the SIB 1 message.
  • the configuration information can be The message carries configuration information of the first control resource set.
  • the terminal device and the network device may determine the first starting common resource location of the first control resource set according to the second starting common resource block of CORESET#0.
  • the terminal device A control resource set monitors the downlink physical control channel to obtain uplink and downlink scheduling control information, and the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first control resource set shown in FIG.
  • the frequency domain position of the first control resource set determined in this way is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the embodiment of the present application does not limit the determination time of the frequency domain position of the first control resource set, and the frequency domain position of the first downlink bandwidth part defined according to the configuration information and CORESET#0 may be determined before the terminal device is successfully accessed initially
  • the frequency domain position of the first control resource set is determined, or the frequency domain of the first control resource set may be determined according to the configuration information and the frequency domain position of the first downlink bandwidth part defined by CORESET#0 after the initial access of the terminal device is successful position.
  • the first downlink bandwidth part is the initial DL BWP configured by SIB 1
  • the first common resource block of the first control resource set is the second start of the first downlink bandwidth part configured according to SIB 1.
  • the configuration information of the common resource block and the first control resource set is determined. Specifically, after determining the second starting common resource block of the first downlink bandwidth portion configured by SIB1, the detailed process of determining the first starting common resource block of the first control resource set can be referred to the detailed introduction in FIG. 6, where
  • the fifth offset refers to the number of common resource blocks that are different from the second starting common resource block of the first downlink bandwidth portion configured by SIB1 and the first starting common resource block of the first control resource set.
  • the second starting common resource block of the first downlink bandwidth part is based on the second starting physical resource block and the first Three offsets are determined; where the third offset is used to indicate the number of physical resource blocks that differ between the second starting physical resource block and the reference point, the reference point is a common reference point of the resource block grid, the reference point It is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals. As shown in FIG. 11, the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • point A point A
  • the first downlink bandwidth part is configured through SIB1.
  • the first downlink bandwidth part can be configured through CORESET#0 and SIB1.
  • the first downlink bandwidth part configured with SIB1 is selected to determine the first control resource set Location in the frequency domain.
  • the configuration information of the first control resource set can be obtained in the SIB 1 message.
  • the configuration information can be The message carries configuration information of the first control resource set.
  • the terminal device and the network device may determine the first starting common resource location of the first control resource set according to the second starting common resource block of the first downlink bandwidth portion configured by SIB 1.
  • the terminal device After the terminal device has successfully accessed the terminal, the terminal device According to the first control resource set shown in FIG. 11, the downlink physical control channel is monitored to obtain uplink and downlink scheduling control information, and the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first control resource set shown in FIG. 11.
  • the frequency domain position of the first control resource set determined in this way is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the embodiment of the present application does not limit the determination time of the frequency domain position of the first control resource set, and may be determined according to the configuration information and the frequency domain position of the first downlink bandwidth portion configured by the SIB 1 before the terminal device is successfully accessed initially.
  • the frequency domain position of the first control resource set, or the frequency domain position of the first control resource set may be determined according to the configuration information and the frequency domain position of the first downlink bandwidth portion configured by the SIB1 after the terminal device has successfully accessed initially.
  • the time T in FIGS. 9, 10 and 11 represents the time when the terminal device successfully accesses initially.
  • the identification of the time T by the network device and the terminal device may be different.
  • the time when the terminal device determines that the initial access is successful is used to indicate the following (10-1), (10-2), (10-3), (10-4) , (10-5), (10-6) one of the moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the moment when the network device determines that the initial access is successful is used to indicate one of the following moments (10-7), (10-8), (10-9), (10-10):
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI to be scrambled by the blind detection C-RNTI;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI that needs to be blindly detected by C-RNTI scrambling.
  • the network device before the initial access of the terminal device is successful, the network device does not send uplink and downlink scheduling control information on the downlink physical control channel according to the common resource block set occupied by the first control resource set, and the terminal device does not
  • the downlink physical control channel will be monitored according to the frequency domain position of the first control resource set, so that neither the network device nor the terminal device needs to determine the frequency domain position of the first control resource set before the terminal device successfully accesses the initial access.
  • the frequency domain position of the subsequent first control resource set is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the determination of the first control resource set
  • the complexity of the frequency domain bits is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the determination of the first control resource set The complexity of the frequency domain bits.
  • FIG. 12 is a schematic flowchart of another method for determining a frequency domain position of a control resource set for an embodiment of the present application.
  • the method shown in FIG. 12 includes steps 1201 to 1203.
  • the network device Before the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device.
  • the terminal device receives the configuration information of the first control resource set.
  • the network device Before the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set.
  • the network device After the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the third common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel according to the third common resource block set occupied by the first control resource set to obtain uplink and downlink scheduling control information.
  • the first starting common resource block included in the first common resource block set is the configuration information of the second starting common resource block and the first control resource set according to the first downlink bandwidth part It is determined that the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the first downlink bandwidth part here may be defined by CORESET#0.
  • the third starting common resource block included in the third common resource block set is determined according to the configuration information of the fourth starting common resource block of the second downlink bandwidth part and the first control resource set
  • the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set in the second downlink bandwidth portion.
  • the second downlink bandwidth part here may be configured by SIB1.
  • the second starting common resource block of the first downlink bandwidth portion is the same as the fourth starting common resource block of the second downlink bandwidth portion.
  • the downlink bandwidth part referenced by the first control resource set before and after the successful initial access of the terminal device is different, by setting the starting common resource blocks of the two downlink bandwidth parts to be the same, it can still be made according to the first downlink bandwidth part
  • the first starting common resource block of the first control resource set is determined to be the same as the third starting common resource block of the second control resource set determined according to the second downlink bandwidth portion.
  • the identifier of the first control resource set in this application is not 0.
  • the configuration information of the first control resource set can be obtained from SIB1, and the configuration information can take effect before or after the initial access of the terminal device is successful.
  • the validity means that the terminal device can be controlled according to the first control
  • the frequency domain position of the resource set monitors the downlink physical control channel to obtain uplink and downlink scheduling control information; or, the network device may send uplink and downlink scheduling control information on the downlink physical control channel according to the frequency domain position of the first control resource set.
  • the configuration information of the first downlink bandwidth part can also be obtained from SIB1, but the first configuration of SIB1
  • the configuration information of the line bandwidth part takes effect after the initial access of the terminal device is successful.
  • the effect means that the terminal device can determine the first downlink bandwidth by using a high-level signaling locationAndBandwidth and/or other parameters of the first downlink bandwidth part Part of the frequency domain location, and can receive downlink control information according to the frequency domain location of the first downlink bandwidth portion configured by SIB 1, or the network device can send downlink according to the frequency domain location of the first downlink bandwidth portion configured by SIB 1. Control information.
  • the first common resource block occupied by the first control resource set includes the first starting common resource block and other common resource blocks occupied by the first control resource set.
  • the third common resource block occupied by the first control resource set includes a third starting common resource block and other common resource blocks occupied by the first control resource set.
  • both the network device and the terminal device can implement the determination of the first starting common resource block and the third starting common resource block, and both can implement the starting common resource according to the configuration information and the referenced downlink bandwidth part
  • the block determines the common resource block occupied by the first starting common resource block occupied by the first control resource set, and both can implement the determination of the first control resource set occupation according to the configuration information and the starting common resource block of the reference downlink bandwidth part
  • the common resource block starting from the third starting common resource block.
  • the first downlink bandwidth part is the initial DL BWP defined by CORESET#0
  • the first starting common resource block of the first control resource set 1 is the second starting common resource block and the first starting common resource block according to CORESET#0. 1.
  • the configuration information of the control resource set is determined.
  • the second downlink bandwidth part is the initial DL BWP configured by SIB1
  • the third starting common resource block of the first control resource set 2 is the fourth starting common resource block and the first control resource of the initial DL BWP configured according to SIB1
  • the configuration information of the collection is determined.
  • the second starting common resource block of the first downlink bandwidth portion is the same as the fourth starting common resource block of the second downlink bandwidth portion.
  • the detailed process of determining the first starting common resource block of the first control resource set 1 can be referred to the detailed introduction in FIG. 6.
  • the detailed process of determining the third starting common resource block of the first control resource set 2 can be referred to the detailed introduction in FIG. 6, where the fourth deviation Shift refers to the number of common resource blocks where the second starting common resource block of CORESET#0 is different from the first starting common resource block of the first control resource set.
  • the second starting common resource block of CORESET#0 refers to the minimum CRB occupied by CORESET#0; the first starting common resource block of the first control resource set refers to the smallest CRB occupied by the first control resource set.
  • the second starting common resource block of CORESET#0 is determined according to the second starting physical resource block of CORESET#0 and the first offset.
  • the first offset is used to indicate the relationship between the second starting physical resource block and the reference point The number of physical resource blocks that are different from each other.
  • the reference point is a common reference point of the resource block grid.
  • the reference point is used to indicate the center position of subcarrier 0 in the common resource block CRB 0 configured at preset subcarrier intervals. As shown in FIG. 4, the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • the first offset is determined according to the second offset between the second starting physical resource block of CORESET#0 and the third starting physical resource block of the SS/PBCH block and the common resource block offset of the SS/PBCH block .
  • the second offset is used to indicate the difference between the number of physical resource blocks between the second starting physical resource block and the third starting physical resource block of the SS/PBCH block;
  • the common resource block offset of the SS/PBCH block is used to The number of physical resource blocks indicating the difference between the third starting physical resource block and the reference point, as shown in FIG. 10, is offset from the reference point A So that the first offset is equal to The value of the second offset is subtracted.
  • the fourth starting common resource block of the second downlink bandwidth part (initial DL BWP configured in SIB1 in FIG. 13) is based on the second downlink bandwidth part
  • the fourth starting physical resource block and the third offset are determined; where the third offset is used to indicate the number of physical resource blocks that differ between the fourth starting physical resource block and the reference point, the reference point is shown in FIG. 13
  • the location of reference point A point A.
  • the configuration information of the first control resource set can be obtained in the SIB 1 message.
  • the configuration information can be The message carries configuration information of the first control resource set.
  • the terminal device and the network device may determine the first starting common resource location of the first control resource set 1 according to the second starting common resource block of CORESET#0, and the fourth starting common resource of the initial DL BWP that may be configured according to SIB1 The block determines the third starting common resource location of the first control resource set 2.
  • the terminal device Before the initial access of the terminal device is successful, the terminal device monitors the downlink physical control channel according to the first control resource set 1 shown in FIG. 13 to obtain uplink and downlink scheduling control information, and the network device according to the first control resource set 1 shown in FIG. 13 Send uplink and downlink scheduling control information on the downlink physical control channel.
  • the terminal device monitors the downlink physical control channel according to the first control resource set 2 shown in FIG. 13 to obtain uplink and downlink scheduling control information, and the network device according to the first control resource set 2 shown in FIG. 13 Send uplink and downlink scheduling control information on the downlink physical control channel.
  • the frequency domain position of the first control resource set determined in this way is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the embodiment of the present application does not limit the determination time of the frequency domain position of the first control resource set, for example, the frequency domain position of the first control resource set is monitored/transmitted on the first control resource set 1 or the first control resource set 2 It may be determined beforehand, which is not limited in the embodiments of the present application.
  • the time T in FIG. 12 and FIG. 13 represents the time when the initial access of the terminal device is successful.
  • the identification of the time T by the network device and the terminal device may be different.
  • the time when the terminal device determines that the initial access is successful is used to indicate the following (13-1), (13-2), (13-3), (13-4) , (13-5), (13-6), (13-7), (13-8), (13-9), (13-10) one of the moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell radio network temporary identification C-RNTI;
  • the terminal device When the common resource blocks occupied by the first downlink bandwidth part and the second downlink bandwidth part are different, the terminal device successfully receives the initial transmission message 4 and sends a confirmation message to the network device. The moment when the switching of the downlink bandwidth part is switched to the second downlink bandwidth part;
  • the terminal device When the common resource blocks occupied by the first downlink bandwidth part and the second downlink bandwidth part are different, the terminal device successfully receives the retransmitted message 4 and sends a confirmation message to the network device. The moment when the switching of the downlink bandwidth part is switched to the second downlink bandwidth part;
  • the terminal device successfully receives the initial transmission message 4 and switches from the first downlink bandwidth part to the first After the second downlink bandwidth part, the moment when the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device When the common resource blocks occupied by the first downlink bandwidth part and the second downlink bandwidth part are different, the terminal device successfully receives the retransmitted message 4 and switches from the first downlink bandwidth part to the first After the second downlink bandwidth part, the moment when the terminal device successfully receives the downlink control information DCI scrambled by the cell wireless network temporary identification C-RNTI;
  • the terminal device successfully receives the initially transmitted message 4 and switches from the first downlink bandwidth part to the first After the second downlink bandwidth part, the moment when the terminal device successfully receives the configuration information indicating DCI to be scrambled blindly by C-RNTI;
  • the terminal device successfully receives the initial transmission message 4 and switches from the first downlink bandwidth part to the first After the second downlink bandwidth part, the moment when the terminal device successfully receives the configuration information indicating the DCI to be scrambled blindly by the C-RNTI.
  • the moment when the network device determines that the initial access is successful is used to indicate one of the following moments (13-11), (13-12), (13-13), (13-14):
  • the network device After receiving the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating that DCI scrambling for blind detection C-RNTI is required;
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating the DCI to be scrambled by the blind detection C-RNTI;
  • the network device receives the confirmation message sent by the terminal device for the initial transmission message 4 sent by the network device and After switching from the first downlink bandwidth part to the second downlink bandwidth part, the moment when DCI configuration information indicating that blind detection C-RNTI scrambling is required is sent to the terminal device;
  • the network device receives the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device and After switching from the first downlink bandwidth part to the second downlink bandwidth part, the time when the configuration information indicating the DCI to be blindly detected by the C-RNTI scrambling is sent to the terminal device.
  • the frequency domain position of the first control resource set may be determined according to the frequency domain positions of different downlink bandwidth parts, but due to the setting of different downlink bandwidth parts
  • the position of the starting common resource block is the same, and the frequency domain position of the first control resource set referenced to different downlink bandwidth parts can still be the same, so that the terminal device and the network device only need to calculate the first control resource set once Location in the frequency domain reduces the complexity of determining the frequency domain bits of the first set of control resources.
  • FIG. 14 is a schematic flowchart of another method for determining a frequency domain position of a control resource set for an embodiment of the present application.
  • the method shown in FIG. 14 includes step 1401 and step 1402.
  • the network device After the initial access of the terminal device is successful, the network device sends the configuration information of the first control resource set to the terminal device.
  • the terminal device receives the configuration information of the first control resource set.
  • the network device After the initial access of the terminal device is successful, the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set.
  • the terminal device monitors the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set.
  • the configuration information is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth part.
  • the identifier of the first control resource set in this application is not 0.
  • the configuration information of the first control resource set will not be configured until the terminal device is successfully accessed initially.
  • the configuration information of the first set of control resources will be configured only after the initial access of the terminal device is successful.
  • the terminal device may monitor the downlink physical control channel according to the common resource block set occupied by the first control resource set.
  • the frequency domain position of the first control resource set is determined with reference to a downlink bandwidth portion.
  • the configuration information of the first control resource set may be obtained from the SIB 1 after the terminal device has successfully accessed initially, and the configuration information may take effect after the terminal device has successfully accessed initially.
  • the effect here refers to: the terminal device
  • the downlink physical control channel may be monitored according to the frequency domain position of the first control resource set to obtain uplink and downlink scheduling control information; or, the network device may send the uplink and downlink scheduling control information on the downlink physical control channel according to the frequency domain position of the first control resource set .
  • the configuration information of the first control resource set may be configured from other messages that configure the downlink bandwidth part after the initial access of the terminal device is successful, which is not limited in the embodiment shown in FIG. 14.
  • the configuration information of the first control resource set and the configuration information of the first downlink bandwidth portion are received at the same time, and the configuration information of the first control resource set It is included in the configuration information of the first downlink bandwidth part.
  • the determination of the frequency domain position of the first control resource set is based on the first set bandwidth containing the configuration information of the first control resource set. That is, after the initial access of the terminal device is successful, the configuration information of the first control resource set and the configuration information of the first downlink bandwidth part can be obtained in one configuration message at the same time.
  • the frequency domain position of the first control resource set is determined according to the first downlink bandwidth part and the configuration information of the first control resource set.
  • the first common resource block occupied by the first control resource set includes a first starting common resource block and other common resource blocks occupied by the first control resource set.
  • both the network device and the terminal device can implement the determination of the first starting common resource block, and both can implement the determination of the first control resource set occupation according to the configuration information and the starting common resource block of the reference downlink bandwidth part
  • the common resource block starting from the first starting common resource block.
  • FIG. 15 provides another exemplary diagram of the frequency domain position of the control resource set for the embodiment of the present application.
  • the first downlink bandwidth part is configured by SIB 1 or other configuration messages
  • the first starting common resource block of the first control resource set is the second starting common resource according to the first downlink bandwidth part
  • the configuration information of the block and the first control resource set is determined.
  • the detailed process of determining the first starting common resource block can be referred to the detailed introduction in FIG. 6, where the fifth offset refers to SIB 1 or The number of common resource blocks that are different from the second starting common resource block of the first downlink bandwidth portion configured by other configuration messages and the first starting common resource block of the first control resource set.
  • the second starting common resource block of the first downlink bandwidth part is determined according to the second starting physical resource block of the first downlink bandwidth part and the third offset; where the third offset is used to indicate the first 2.
  • the reference point is a common reference point of the resource block grid.
  • the reference point is used to indicate the common resource block CRB configured at preset subcarrier intervals.
  • the common reference point may be the position of reference point A (point A), which indicates the center position of subcarrier 0 in common resource block CRB0.
  • the first downlink bandwidth part can be configured through CORESET#0 and other configuration messages.
  • the first downlink bandwidth configured after the initial access of the terminal device is successfully selected Partially determine the frequency domain position of the first set of control resources.
  • the configuration information of the first control resource set may be obtained in the configuration message, and for the network device, after the initial access of the terminal device is successful, the configuration message may be Carry the configuration information of the first set of control resources.
  • the terminal device and the network device may determine the first starting common resource position of the first control resource set according to the second starting common resource block of the first downlink bandwidth part in the configuration message.
  • the terminal device After the terminal device has successfully accessed the terminal, the terminal device According to the first control resource set shown in FIG. 15, the downlink physical control channel is monitored to obtain uplink and downlink scheduling control information, and the network device sends uplink and downlink scheduling control information on the downlink physical control channel according to the first control resource set shown in FIG. 15.
  • the frequency domain position of the first control resource set determined in this way is the same, and the terminal device and the network device only need to calculate the position of the first control resource set once, which reduces the complexity of determining the frequency domain position of the first control resource set.
  • the time T in FIG. 14 and FIG. 15 represents the time when the initial access of the terminal device is successful.
  • the identification of the time T by the network device and the terminal device may be different.
  • the time when the terminal device determines that the initial access is successful is used to indicate the following (15-1), (15-2), (15-3), (15-4) , (15-5), (15-6) one of the moments:
  • the terminal device After the terminal device successfully receives the retransmitted message 4, the terminal device successfully receives the downlink control information DCI scrambled by the cell radio network temporary identification C-RNTI;
  • the moment when the network device determines that the initial access is successful is used to indicate one of the following moments (15-7), (15-8), (15-9), (15-10):
  • the network device After receiving the confirmation message sent by the terminal device for the retransmission message 4 sent by the network device, the network device sends the terminal device configuration information indicating DCI to be scrambled by the C-RNTI for blind detection.
  • the network device before the initial access of the terminal device is successful, the network device does not send uplink and downlink scheduling control information on the downlink physical control channel according to the common resource block set occupied by the first control resource set, and the terminal device does not
  • the downlink physical control channel will be monitored according to the frequency domain position of the first control resource set, so that neither the network device nor the terminal device needs to determine the frequency domain position of the first control resource set before the terminal device successfully accesses the initial access.
  • the frequency domain position of the subsequent first control resource set is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the determination of the first control resource set
  • the complexity of the frequency domain bits is determined by the referenced downlink bandwidth part, so that the terminal device and the network device only need to calculate the frequency domain position of the first control resource set once, which reduces the determination of the first control resource set The complexity of the frequency domain bits.
  • the time at which the network device configures the first set of control resources is not limited. That is to say, the configuration message of the first control resource set may be configured before the initial access of the terminal device is successful, or may be configured after the initial access of the terminal device is successful. In this scenario, various implementable solutions described in FIGS. 3 to 15 may be included.
  • the terminal device may listen to the channel to obtain configuration information of the first set of control resources before initial access; the first control resource set is obtained at the terminal device In the case that the configuration information of the first control resource set or the configuration information of the first control resource set is not obtained, the terminal device may monitor the channel after initial access to obtain the configuration information of the first control resource set.
  • the time at which the downlink bandwidth part referenced by the first control resource set is configured may not be limited.
  • the terminal device receives
  • the position of the first control resource set may be determined by referring to the frequency domain position of the new downlink bandwidth part.
  • the time at which the network device configures the first set of control resources may be restricted.
  • the configuration message that limits the first set of control resources may be configured after the initial access of the terminal device is successful.
  • FIG. 14 and FIG. 15 reference may be made to the implementation solutions described in FIG. 14 and FIG. 15.
  • the terminal device since the moment when the network device configures the first set of control resources is after the initial access of the terminal device is successful, the terminal device does not need to monitor the channel before the initial access, but after the initial access of the terminal device is successful, The terminal device starts monitoring the channel to obtain configuration information of the first control resource set. This can reduce the power loss caused by the uncertain monitoring of the terminal equipment.
  • the time to configure the downlink bandwidth part referenced by the first control resource set may be restricted.
  • the configuration time to limit the downlink bandwidth part is when the terminal device initially accesses successfully After that, once the network device is configured with a new downlink bandwidth part, when the terminal device receives the configuration information of the new downlink bandwidth part, the frequency domain position of the new downlink bandwidth part may be referred to to determine the first control resource set position.
  • the network device configures the first control resource set, the newly configured initial DL BWP or other DL BWP (non-initial DL BWP or BWP with BWP_ID not 0) to the terminal device through high-level signaling (such as RRC signaling) At least one of:
  • the frequency domain position of the first control resource set is referenced by CORESET#0 or the newly configured initial DL BWP. That is, in the embodiments shown in FIG. 3 to FIG. 15, after the initial access of the terminal device is successful, the network device configures the terminal device with the newly configured initial DL BWP through high-level signaling (such as RRC signaling), and When the newly configured initial DL BWP and the initial DL BWP configured in SIB1 have the same subcarrier spacing, the frequency domain position of the first control resource set is referenced by CORESET#0 or the newly configured initial DL BWP.
  • high-level signaling such as RRC signaling
  • the initial DL BWP is configured by the SIB 1 before the initial access of the terminal device is successful, and the first control resource set is configured in other DL BWP, including the following two cases (1) and (2):
  • the frequency domain position of other DL BWP includes the frequency domain position of CORESET#0 or the frequency domain position of the initial DL BWP configured by SIB 1, and the subcarrier spacing of other DL BWP and the initial DL BWP configured by SIB1 is the same Then, the frequency domain position of the first control resource set is referenced according to the downlink bandwidth part that is referenced before the initial access is successful.
  • the frequency domain position of other DL BWP does not include the frequency domain position of CORESET#0 or the frequency domain position of the initial DL BWP configured by SIB1 or the frequency domain position of other DL BWP includes the frequency domain position of CORESET#0 Or if it contains the frequency domain position of the initial DL BWP configured by SIB1 and the subcarrier spacing of other DL BWP is different from the initial DL BWP configured by SIB1, the other DL BWP is used as a reference.
  • the terminal device when it successfully receives the message sent by the network device, it feeds back a 1-bit message to confirm/acknowledge (ACK) or negative (Negative ACKnowledgment, NACK) the received message.
  • the network device decides whether to send new data or retransmit based on whether the feedback from the terminal device is ACK (bit value 1) or NACK message (bit value 0).
  • the time involved in sending a certain message in the embodiments of the present application may be the time when the sending of the message starts or the time when the sending of the message is confirmed to be completed, which is not limited in the present application.
  • the time for sending the confirmation message designed in the embodiments of FIG. 3 to FIG. 15 may refer to the time for sending the confirmation message or the time for confirming the completion of sending the confirmation message.
  • the frequency domain resource position of the first control resource set is limited to the frequency domain resource range of CORESET#0, that is, less than or equal to CORESET#0. Frequency domain resource size. If the first control resource set is not configured in SIB1, but is configured in other high-level signaling (such as RRC signaling), the frequency domain resource position of the first control resource set may be within the frequency domain resource range of CORESET#0 , May not be within the frequency domain resources of CORESET#0.
  • the network device configures the terminal device with other downlink bandwidth parts through high-level signaling (such as RRC signaling).
  • the frequency domain resource range includes the frequency domain resource range of the first downlink bandwidth part, and the subcarrier spacing of other downlink bandwidth parts is the same as the subcarrier interval of the first downlink bandwidth part, if there is no configuration in the currently activated downlink bandwidth part
  • the network device may configure the terminal device in the other downlink bandwidth section for random access channels configured in the first downlink bandwidth section through higher-layer signaling (such as RRC signaling).
  • the identifier of the currently activated downlink bandwidth part takes a non-zero value. In this process, the terminal device does not need to change the radio frequency bandwidth or switch the carrier center frequency.
  • the terminal device and the network device include hardware structures and/or software modules corresponding to performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. A person skilled in the art may use different devices to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solutions of the embodiments of the present application.
  • the terminal device and the network device may be divided into functional modules or functional units according to the foregoing device examples.
  • each functional module or functional unit may be divided corresponding to each function, or two or more functions may be integrated In a processing module or processing unit.
  • the above integrated modules or units can be implemented in the form of hardware or software function modules. It should be noted that the division of modules or units in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device is used to implement the device embodiments of FIGS. 3 to 15.
  • the terminal device 1600 includes a transceiver module 1601 and a processing module 1602.
  • the transceiver module 1601 and the processing module 1602 are used to implement the content of the embodiments shown in FIGS. 3 to 5. among them:
  • the transceiver module 1601 is configured to receive the configuration information of the first control resource set before the initial access of the terminal device is successful;
  • the processing module 1602 is configured to monitor the downlink physical control channel according to the first set of common resource blocks occupied by the first set of control resources before the initial access of the terminal device is successful or after the initial access of the terminal device is successful To obtain uplink and downlink scheduling control information;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, the configuration information It is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the transceiver module 1601 and the processing module 1602 are used to implement the content of the embodiments shown in FIGS. 9 to 11. among them:
  • the transceiver module 1601 is configured to receive the configuration information of the first control resource set before the initial access of the terminal device is successful;
  • the processing module 1602 is configured to not monitor the downlink physical control channel according to the common resource block set occupied by the first control resource set before the initial access of the terminal device is successful;
  • the processing module 1602 is further configured to monitor the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set after the initial access of the terminal device is successful;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, the configuration information It is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the transceiver module 1601 and the processing module 1602 are used to implement the content of the embodiments shown in FIGS. 12 to 13. among them:
  • the transceiver module 1601 is configured to receive the configuration information of the first control resource set before the initial access of the terminal device is successful;
  • the processing module 1602 is configured to monitor the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set before the initial access of the terminal device is successful;
  • the first starting common resource block included in a common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, and the configuration information is used to indicate The position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion;
  • the processing module 1602 is further configured to monitor the downlink physical control channel to obtain uplink and downlink scheduling control information according to the third common resource block set occupied by the first control resource set after the initial access of the terminal device is successful;
  • the third starting common resource block included in the third common resource block set is determined according to configuration information of the fourth starting common resource block of the second downlink bandwidth portion and the first control resource set, and the configuration information is used for Indicating the position of the physical resource block occupied by the first control resource set in the second downlink bandwidth portion;
  • the second starting common resource block of the first downlink bandwidth portion is the same as the fourth starting common resource block of the second downlink bandwidth portion.
  • the transceiver module 1601 and the processing module 1602 are used to implement the content of the embodiments shown in FIG. 14 to FIG. 15. among them:
  • the transceiver module 1601 is configured to receive configuration information of the first control resource set after initial terminal device access is successful;
  • the processing module 1602 is configured to monitor the downlink physical control channel to obtain uplink and downlink scheduling control information according to the first common resource block set occupied by the first control resource set after the initial access of the terminal device is successful;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, the configuration information It is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the terminal device 1600 is used to implement the steps performed by the terminal device in the embodiments of FIGS. 3 to 15.
  • the transceiver module may be a receiver or a receiving circuit.
  • the transceiver module may also be a communication interface of the terminal device.
  • the processing module may be a processor.
  • the terminal device 1600 in the embodiment shown in FIG. 16 described above may be implemented by the terminal device 1160 shown in FIG. 17. As shown in FIG. 17, it is a schematic structural diagram of another terminal device provided in the embodiment of the present application.
  • the terminal device 1160 shown in FIG. 17 includes: a processor 1701 and a transceiver 1702.
  • the transceiver 1702 is used to support information transmission between the terminal device 1160 and other terminal devices or other devices involved in the foregoing embodiments.
  • the processor 1701 is used to control and manage the operation of the terminal device.
  • the transceiver 1702 is used to implement receiving the messages in steps 301, 302, and 303 in the embodiment shown in FIG. 3; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps .
  • the transceiver 1702 is used to implement receiving the messages in steps 901 and 902 in the embodiment shown in FIG. 9; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps.
  • the transceiver 1702 is used to implement receiving the messages in steps 1201, 1202, and 1203 in the embodiment shown in FIG. 12; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps .
  • the transceiver 1702 is used to implement receiving the messages in steps 1401 and 1402 in the embodiment shown in FIG. 14; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps.
  • the processor 1701 and the transceiver 1702 are communicatively connected, for example, through a bus 1704.
  • the bus 1704 may be a PCI bus, an EISA bus, or the like.
  • the bus 1704 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the terminal device 1160 may further include a memory 1703.
  • the memory 1703 is used to store program codes and data for execution by the terminal device 1160, and the processor 1701 is used to execute the application program code stored in the memory 1703 to implement the actions of the terminal device provided in any of the embodiments shown in FIG. 3 to FIG. 15. .
  • the terminal device may include one or more processors, and the structure of the terminal device 1160 does not constitute a limitation on the embodiments of the present application.
  • the processor 1701 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the transceiver 1704 may be a communication interface or a transceiver circuit, etc., wherein the transceiver is collectively referred to, and in a specific implementation, the transceiver may include multiple interfaces.
  • the memory 1703 may include volatile memory (volatile memory), such as random access memory (random access memory, RAM); the memory 1703 may also include non-volatile memory (non-volatile memory), such as read-only memory (read-memory) only memory (ROM), flash memory (flash memory), hard disk (hard disk drive) or solid-state drive (SSD); the memory 1703 may also include a combination of the aforementioned types of memory.
  • volatile memory such as random access memory (random access memory, RAM
  • non-volatile memory such as read-only memory (read-memory) only memory (ROM), flash memory (flash memory), hard disk (hard disk drive) or solid-state drive (SSD); the memory 1703 may also include a combination of the aforementioned types of memory.
  • a computer storage medium is also provided, which can be used to store computer software instructions used by the terminal device in the embodiment shown in FIG. 17, which includes instructions for executing the terminal device in the above embodiment. program of.
  • the storage medium includes but is not limited to flash memory, hard disk, and solid state hard disk.
  • a computer program product is also provided.
  • the computer product When the computer product is run by a computing device, it can execute the data processing device designed for the terminal device in the embodiment shown in FIG. 17 described above.
  • FIG. 18 is a schematic structural diagram of another network device according to an embodiment of the present application. Used to implement the embodiments of FIGS. 8 and 9.
  • the network device 1800 includes a transceiver module 1801 and a processing module 1802.
  • the transceiver module and the processing module are used to implement the contents of the embodiments shown in FIG. 3 to FIG. 5.
  • the transceiver module 1801 is configured to send the configuration information of the first control resource set to the terminal device before the initial access of the terminal device is successful;
  • the processing module 1802 is configured to, according to the first set of common resource blocks occupied by the first set of control resources, before the initial access of the terminal device succeeds or after the initial access of the terminal device succeeds, in the downlink physical control channel Uplink and broadcast uplink and downlink scheduling control information;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, the configuration information It is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the transceiver module and the processing module are used to implement the contents of the embodiments shown in FIGS. 9 to 11. among them:
  • the transceiver module 1801 is configured to send the configuration information of the first control resource set to the terminal device before the initial access of the terminal device is successful;
  • the processing module 1802 is configured to not broadcast uplink and downlink scheduling control information on the downlink physical control channel according to the common resource block set occupied by the first control resource set before the initial access of the terminal device is successful;
  • the processing module 1802 is further configured to broadcast uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set after the initial access of the terminal device is successful;
  • the first starting common resource block included in the first common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, the configuration information It is used to indicate the position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion.
  • the transceiver module and the processing module are used to implement the contents of the embodiments shown in FIGS. 12 to 13. among them:
  • the transceiver module 1801 is configured to send the configuration information of the first control resource set to the terminal device before the terminal device successfully accesses the terminal device;
  • the processing module 1802 is configured to broadcast uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set before the initial access of the terminal device is successful; the first The first starting common resource block included in a common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, and the configuration information is used to indicate The position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion;
  • the processing module 1802 is further configured to broadcast uplink and downlink scheduling control information on the downlink physical control channel according to the third common resource block set occupied by the first control resource set after the initial access of the terminal device is successful;
  • the third starting common resource block included in the third common resource block set is determined according to configuration information of the fourth starting common resource block of the second downlink bandwidth portion and the first control resource set, and the configuration information is used for Indicating the position of the physical resource block occupied by the first control resource set in the second downlink bandwidth portion;
  • the second starting common resource block of the first downlink bandwidth portion is the same as the fourth starting common resource block of the second downlink bandwidth portion.
  • the transceiver module and the processing module are used to implement the contents of the embodiments shown in FIG. 14 to FIG. 15. among them:
  • the transceiver module 1801 is configured to send the configuration information of the first control resource set to the terminal device after the initial access of the terminal device is successful;
  • the processing module 1802 is configured to broadcast uplink and downlink scheduling control information on the downlink physical control channel according to the first common resource block set occupied by the first control resource set after the initial access of the terminal device is successful; the first The first starting common resource block included in a common resource block set is determined according to configuration information of the second starting common resource block of the first downlink bandwidth portion and the first control resource set, and the configuration information is used to indicate The position of the physical resource block occupied by the first control resource set in the first downlink bandwidth portion;
  • the network device 1800 is used to implement the steps performed by the network device in the embodiments of FIGS. 3 to 15.
  • the functional blocks included in the network device of FIG. 16 and corresponding beneficial effects reference may be made to the specific introduction of the foregoing embodiments of FIGS. 3 to 15, and details are not described here.
  • the transceiver module may be a receiver or a receiving circuit.
  • the transceiver module may also be a communication interface of the terminal device.
  • the processing module may be a processor.
  • the above network device shown in FIG. 18 may be implemented by the network device 1900 shown in FIG. 19. As shown in FIG. 19, it provides a schematic structural diagram of another network device according to an embodiment of the present application.
  • the network device 1900 shown in FIG. 19 includes: a processor 1901 and a transceiver 1902.
  • the transceiver 1902 is used to support information transmission between the network device 1900 and other devices involved in the foregoing embodiments, and the processor 1901 is used to control and manage the actions of the network device 1900.
  • the transceiver 1702 is used to implement sending the messages in steps 301, 302, and 303 in the embodiment shown in FIG. 3; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps .
  • the transceiver 1702 is used to implement the sending of the messages in steps 901 and 902 in the embodiment shown in FIG. 9; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps.
  • the transceiver 1702 is used to implement the sending of the messages in steps 1201, 1202, and 1203 in the embodiment shown in FIG. 12; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps .
  • the transceiver 1702 is used to implement the sending of the messages in steps 1401 and 1402 in the embodiment shown in FIG. 14; the processing unit 1701 is used to support the transceiver 1702 to perform the above steps.
  • the processor 1901 and the transceiver 1902 are communicatively connected, for example, via a bus.
  • the network device 1900 may further include a memory 1903.
  • the memory 1903 is used to store program codes and data for execution by the network device 1900, and the processor 1901 is used to execute the application program code stored in the memory 1903 to implement the actions of the network device provided in any of the embodiments shown in FIG. .
  • the network device may include one or more processors, and the structure of the network device 1900 does not constitute a limitation on the embodiments of the present application.
  • the processor 1901 may be a CPU, NP, hardware chip, or any combination thereof.
  • the above-mentioned hardware chip may be ASIC, PLD or a combination thereof.
  • the above PLD may be CPLD, FPGA, GAL or any combination thereof.
  • the memory 1903 may include volatile memory, such as RAM; the memory 1903 may also include non-volatile memory, such as ROM, flash memory, hard disk, or solid-state hard disk; the memory 1903 may also include a combination of the aforementioned types of memory.
  • a computer storage medium which can be used to store computer software instructions used by the network device described in the embodiment shown in FIG. program of.
  • the storage medium includes but is not limited to flash memory, hard disk, and solid state hard disk.
  • a computer program product is also provided in an embodiment of the present application.
  • the computer product When the computer product is run by a computing device, it can execute the data processing device designed for the network device in the embodiment shown in FIG. 18 described above.
  • a and/or B refers to one of the following situations: A, B, A, and B.
  • At least one of refers to the listed items or any combination of any number of the listed items, for example, “at least one of A, B, and C” refers to one of the following situations: Any one of the seven cases of A, B, C, A and B, B and C, A and C, A, B and C.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种用于确定控制资源集合的频域位置的方法及相关设备,其中方法包括:在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息;在终端设备初始接入成功之前或者在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息,其中,第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置。采用本申请,可以降低确定第一控制资源集合的频域位置的复杂度。

Description

用于确定控制资源集合的频域位置的方法及相关设备
本申请要求于2018年12月29日提交中国国家知识产权局、申请号为201811642765.X、申请名称为“用于确定控制资源集合的频域位置的方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于确定控制资源集合的频域位置的方法及相关设备。
背景技术
公共控制资源集合(commonControlResourceSet)可以承载随机接入响应、寻呼和系统消息的调度信息。对于终端设备而言,可以在公共控制资源集合上监听随机接入响应、寻呼和系统消息的调度信息,对于网络设备而言,可以在公共控制资源集合上发送随机接入响应、寻呼和系统消息的调度信息。在现有方案中,会确定出不止一个公共控制资源集合的频域位置,增加了确定公共控制资源集合的频域位的复杂度。
发明内容
本申请实施例提供一种用于确定控制资源集合的频域位置的方法及相关设备,以期降低确定第一控制资源集合的频域位置的复杂度。
第一方面,本申请实施例提供了一种可能的用于确定控制资源集合的频域位置的方法,该方法由终端设备和网络设备完成,包括:
在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的配置信息;相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息;
在终端设备初始接入成功之前或者在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之前,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息。
其中,第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置;
在第一方面中,在终端设备初始接入成功之前后的第一控制资源集合的频域位置是相同的,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
结合第一方面,可选的,对于终端设备而言,终端设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标 识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第一方面,可选的,对于网络设备而言,网络设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第一方面,可选的,第一下行带宽部分为根据控制资源集合coreset#0定义的或者根据系统消息块SIB 1配置的。
结合第一方面,可选的,第一控制资源集合的标识不为0。
结合第一方面,可选的,在第一下行带宽部分为根据coreset#0定义的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第一偏移确定的;其中,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
结合第一方面,可选的,第一偏移是根据第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的;其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块PRB数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块与参考点之间相差的物理资源块的数量。
结合第一方面,可选的,在第一下行带宽部分为根据SIB 1配置的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
第二方面,本申请实施例提供了另一种可能的用于确定控制资源集合的频域位置的方法,该方法由终端设备和网络设备完成,包括:
在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的配置信息;相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息;
在终端设备初始接入成功之前,网络设备不会根据第一控制资源集合占用的公共资源块集合在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之前,终端设备不会根据第一控制资源集合占用的公共资源块集合监听下行物理控制信道;
在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置。
在第二方面中,在终端设备初始接入成功之前网络设备和终端设备均无需确定第一控制资源集合的频域位置,在终端设备初始接入之后的第一控制资源集合的频域位置是以所参考的下行带宽部分来确定,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
结合第二方面,可选的,对于终端设备而言,终端设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第二方面,可选的,对于网络设备而言,网络设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第二方面,可选的,第一下行带宽部分为根据控制资源集合coreset#0定义的或者根据系统消息块SIB 1配置的。
结合第二方面,可选的,第一控制资源集合的标识不为0。
结合第二方面,可选的,在第一下行带宽部分为根据coreset#0定义的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第一偏移确定的;
其中,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
结合第二方面,可选的,第一偏移是根据第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的;其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块PRB数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块对应的公共资源块与参考点之间相差的物理资源块的数量。
结合第二方面,可选的,在第一下行带宽部分为根据SIB 1配置的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
第三方面,本申请实施例提供了一种可能的用于确定控制资源集合的频域位置的方法,该方法由终端设备和网络设备完成,包括:
在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的配置信息;相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息;
在终端设备初始接入成功之前,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之前,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置;
在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第三公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第三公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;第三公共资源块集合包含的第三起始公共资源块是根据第二下行带宽部分的第四起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第二下行带宽部分内占用的物理资源块的位置;
第一下行带宽部分的第二起始公共资源块与第二下行带宽部分的第四起始公共资源块相同。
在第三方面中,在终端设备初始接入成功之前和之后,第一控制资源集合的频域位置可以依据不同的下行带宽部分的频域位置来确定,但由于设定不同下定带宽的起始公共资源块位置是相同的,依旧可以使得以不同的下行带宽部分为参考的第一控制资源集合的频域位置是相同的,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置, 降低了确定第一控制资源集合的频域位的复杂度。
结合第三方面,可选的,对于终端设备而言,终端设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,终端设备成功接收初传的消息4并向网络设备发送确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,终端设备成功接收重传的消息4并向网络设备发送确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收重传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第三方面,可选的,对于网络设备而言,网络设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
网络设备接收到户设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息且由第一下行带宽部分切换至第二下行带宽部分之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息且由第一下行带宽部分切换至第二下行带宽部分之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第三方面,可选的,第一下行带宽部分为根据控制资源集合coreset#0定义的,第二下行带宽部分是根据系统消息块SIB 1配置的。
结合第三方面,可选的,第一控制资源集合的标识不为0。
结合第三方面,可选的,在第一下行带宽部分为根据coreset#0定义的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第一偏移确定的;其中,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
结合第三方面,可选的,第一偏移是根据第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的;其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块PRB数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块与参考点之间相差的物理资源块的数量。
结合第三方面,可选的,在第二下行带宽部分为根据SIB 1配置的情况下,第二下行带宽部分的第四起始公共资源块是根据第二下行带宽部分的第四起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第四起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
第四方面,本申请实施例提供了一种可能的用于确定控制资源集合的频域位置的方法,该方法由终端设备和网络设备完成,包括:
在终端设备初始接入成功之后,网络设备向终端设备发送第一控制资源集合的配置信息;相应的,在终端设备初始接入成功之后,终端设备接收第一控制资源集合的配置信息;
在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
其中,第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第 二起始公共资源块和第一控制资源集合的配置信息确定的,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置。
在第四方面中,在终端设备初始接入成功之前网络设备和终端设备均无需确定第一控制资源集合的频域位置,在终端设备初始接入之后的第一控制资源集合的频域位置是以所参考的下行带宽部分来确定,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
结合第四方面,可选的,对于终端设备而言,终端设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
终端设备在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
终端设备成功接收初传的消息4之后接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
终端设备成功接收重传的消息4之后接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第四方面,可选的,对于网络设备而言,网络设备认定的终端设备初始接入成功用于指示以下的其中一个时刻:
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
结合第四方面,可选的,第一下行带宽部分为根据系统消息块SIB 1配置或者终端设备初始接入成功后其他配置下行带宽部分的消息来配置的。
结合第四方面,可选的,第一控制资源集合的标识不为0。
结合第四方面,可选的,在第一下行带宽部分为根据SIB 1配置的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;
其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
结合第四方面,可选的,第一控制资源集合的配置信息与第一下行带宽部分的配置信息是同时接收到的。
第五方面,本申请实施例提供了一种用于确定控制资源集合的频域位置的装置,该装 置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中终端设备所执行的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中终端设备所执行的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,本申请实施例提供了一种用于确定控制资源集合的频域位置的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中网络设备所执行的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该网络设备执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中网络设备所执行的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中终端设备所执行的方法。
第八方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中网络设备所执行的方法。
第九方面,本申请实施例提供了一种计算机可读介质,计算机可读介质存储有程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中终端设备所执行的方法。
第十方面,本申请实施例提供了一种计算机可读介质,计算机可读介质存储有程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面及其任意可能的实现方式中网络设备所执行的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1为本申请实施例提供了一种可能的通信系统架构示意图;
图2为本申请实施例提供了一种可能的公共控制资源集合的频域位置的示例图;
图3为本申请实施例提供了一种用于确定控制资源集合的频域位置的方法的流程示意图;
图4为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图5为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图6为本申请实施例提供了一种下行带宽部分与第一控制资源集合的频域位置的示例图;
图7是本申请实施例提供的一种第一控制资源集合的时域和频域位置的示例图;
图8是本申请实施例提供的一种确定下行带宽部分的频域位置的示例图;
图9为本申请实施例提供了一种用于确定控制资源集合的频域位置的方法的流程示意图;
图10为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图11为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图12为本申请实施例提供了一种用于确定控制资源集合的频域位置的方法的流程示意图;
图13为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图14为本申请实施例提供了一种用于确定控制资源集合的频域位置的方法的流程示意图;
图15为本申请实施例提供了一种控制资源集合的频域位置的示例图;
图16是本申请实施例提供的一种终端设备的结构示意图;
图17是本申请实施例提供的另一种终端设备的结构示意图;
图18是本申请实施例提供的一种网络设备的结构示意图;
图19是本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
请参见图1,图1是本申请实施例涉及的一种可能的通信系统的架构示意图。如图1所示,该通信系统包括网络设备101和终端设备102。网络设备101和终端设备102可以通过通信系统的空口技术进行通信,其中包括在下行物理控制信道(physical downlink control channel,PDCCH)传输上下行调度控制信息的场景。
其中PDCCH包括commonControlResourceSet的时频位置。对于commonControlResourceSet的频域位置,即公共资源块(common resource block,CRB)的位置,是以当前激活的下行带宽部分为参考确定的。例如,当前激活下行带宽部分是初始下行带宽部分时,commonControlResourceSet的CRB位置是以初始下行带宽部分为参考确定的。对于终端设备而言,在commonControlResourceSet的频域位置可以监听下行物理控制信道以获得上下行调度控制信息,对于网络设备而言,在commonControlResourceSet的频域位置可以在下行物理控制信道发送上下行调度控制信息,例如上下行调度控制信息可以为调度随机接入响应的控制信息、调度寻呼消息的控制信息或者调度系统消息的控制信 息等。
在现有的技术方案中,初始下行带宽部分(initial downlink bandwidth part,initial DL BWP)存在两种配置方式,一种是通过CORESET#0定义,这一情况下初始下行带宽部分的大小和频域位置与CORESET#0相同,其中CORESET为控制资源集合(control resource set);另一种是在系统消息块1(System Information Block 1,SIB 1)中配置initial DL BWP。在终端设备初始接入成功之前,以CORESET#0定义的初始下行带宽部分生效;在终端设备初始接入成功之后,以SIB 1中配置的initial DL BWP生效,SIB 1配置的initial DL BWP可以与CORESET#0定义的initial DL BWP不同,但SIB 1中配置的initial DL BWP的频域位置要包含CORESET#0的频域位置。
当CORESET#0的频域位置与SIB 1配置的initial DL BWP的频域位置不一致时,分别以这两种配置确定的commonControlResourceSet的频域位置也是不同的。如图2所示,为本申请实施例提供了一种可能的公共控制资源集合的频域位置的示例图。
如图2所示,可以看出CORESET#0的频域位置与SIB1配置的initial DL BWP的频域位置不一致,且CORESET#0的起始资源块位置RB-x与SIB1配置的initial DL BWP的起始资源块位置RB-y不同,这一情况下根据CORESET#0定义的初始下行带宽部分确定的commonControlResourceSet 1的起始资源块位置,与根据SIB1配置的initial DL BWP确定的commonControlResourceSet 2的起始资源块位置也是不同的。
对于终端设备而言,在终端设备初始接入成功之前,按照commonControlResourceSet 1的频域位置监听调度随机接入响应、寻呼和系统消息的控制信息等;在终端设备初始接入成功之后,按照commonControlResourceSet 2的频域位置监听调度随机接入响应、寻呼和系统消息的信息等。
对于网络设备而言,在网络设备的覆盖范围内如果存在初始接入成功的终端设备和未接入成功的终端设备,网络设备需要在commonControlResourceSet 1的频域位置上向未接入成功的终端设备发送随机接入响应、寻呼和系统消息的调度信息等;以及需要在commonControlResourceSet 2的频域位置上向初始接入成功的终端设备发送随机接入响应、寻呼和系统消息的调度信息等。
可以看出,在图2的场景下,现有方案中在终端设备初始接入成功前后,计算出的commonControlResourceSet的频域位置不同。这样导致相同的公共信息会在不同的频域资源上发送,而且终端设备和网络设备均会针对是否接入成功的情况来分别计算commonControlResourceSet的频域位置,增加了确定commonControlResourceSet的频域位置的复杂度。
本申请的图3至图15的实施例,可以实现在终端设备初始接入成功前后计算出的commonControlResourceSet的频域位置是相同的,这样终端设备和网络设备仅需要计算一次commonControlResourceSet的频域位置,降低了确定commonControlResourceSet的频域位的复杂度。具体可以以下参见本申请图3至图15的实施例的详细描述。
本申请涉及的终端设备可以指用户设备(user equipment,UE),可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、 手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他可以接入移动网络的设备。终端设备与网络设备之间采用某种空口技术相互通信。
本申请涉及的网络设备可以指接入网设备,主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。网络设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第五代(5th generation,5G)系统中,称为gNB;在第四代(4th generation,4G)系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB)等。
可以理解的是,本申请涉及的第一控制资源集合还可以是公共控制资源集合或者其他方式命名的控制资源集合,本申请实施例对此不做限定。
本申请实施例还可应用于其它需要确定控制资源集合的频域位置的通信系统中。术语“系统”可以和“网络”相互替换。本申请实施例描述的系统架构是为了便于说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。在本申请的描述中,“多个”是指两个或多于两个,“至少两个”是指两个或多于两个。
接下来对本申请实施例的具体实现方式进行介绍。
基于图1所示的通信系统,请参见图3,为本申请实施例提供了一种用于确定控制资源集合的频域位置的方法的流程示意图。图3所示的方法包括步骤301至步骤303。
301,在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的配置信息。
相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息。
302,在终端设备初始接入成功之前,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之前,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
303,在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
由于网络设备发送上下行调度控制信息数量是不确定的,因此本申请实施例对步骤302、步骤303的执行次数不做限定。
其中,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块(physical resource block,PRB)的位置。本申请的第一控制资源集合的标识不为0。
可选的,第一控制资源集合的配置信息可以从SIB 1中获得,且该配置信息在终端设备初始接入成功之前后均可以生效,这里的生效是指:终端设备可以根据第一控制资源集 合的频域位置监听下行物理控制信道以获得上下行调度控制信息;或者,网络设备可以根据第一控制资源集合的频域位置在下行物理控制信道发送上下行调度控制信息。
可选的,在包含第一下行带宽部分是由SIB 1配置的initial DL BWP的场景中,第一下行带宽部分的配置信息也可以从SIB 1中获得,但SIB 1配置的第一下行带宽部分的配置信息是在终端设备初始接入成功之后生效,这里的生效是指:可以根据SIB 1配置的第一下行带宽部分的频域位置接收下行控制信息,或者,网络设备可以根据SIB 1配置的第一下行带宽部分的频域位置发送下行控制信息。其中,终端设备可以利用第一下行带宽部分的一个高层信令locationAndBandwidth和/或其他参数确定第一下行带宽部分的频域位置。
第一控制资源集合占用的第一公共资源块包括第一起始公共资源块和第一控制资源集合占用的公共资源块。在本申请实施例中,网络设备和终端设备均可以实现确定第一起始公共资源块,以及均可以实现根据配置信息和所参考的下行带宽部分的起始公共资源块确定第一控制资源集合占用的由第一起始公共资源块起始的公共资源块。对于如何确定第一起始公共资源块可以分为以下两种情况(第A1种情况和第A2种情况)来介绍。
在第A1种情况中,请参见图4,为本申请实施例提供了一种控制资源集合的频域位置的示例图。在图4中,第一下行带宽部分是由CORESET#0定义的initial DL BWP,第一控制资源集合的第一起始公共资源块是根据CORESET#0的第二起始公共资源块和第一控制资源集合的配置信息确定的。具体的,在确定CORESET#0的第二起始公共资源块之后,确定第一起始公共资源块的详细过程可以参见图6的详细介绍,其中,第四偏移是指CORESET#0的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,CORESET#0的第二起始公共资源块是指CORESET#0占用的最小CRB;第一控制资源集合的第一起始公共资源块是指第一控制资源集合占用的最小CRB。CORESET#0的第二起始公共资源块是根据CORESET#0的第二起始物理资源块和第一偏移确定的,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图4所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。
第一偏移是根据第一下行带宽部分的第二起始物理资源块与SS/PBCH block(Synchronization/Physical Broadcast Channel block,同步/物理广播信道块)的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的。其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块与参考点之间相差的物理资源块的数量,如图4所示的相对于参考点A的偏移
Figure PCTCN2019128916-appb-000001
这样第一偏移等于
Figure PCTCN2019128916-appb-000002
减去第二偏移的值。其中,第三起始物理资源块为与SS/PBCH block的第一个RB重叠的CRB的RB索引值最小的RB。
这里仅简单介绍了CORESET#0的第二起始公共资源块的确定方式,进一步可以请参见图8的详细描述。
基于第A1种情况,可选的,在实际应用中可以只通过CORESET#0来第一下行带宽部 分,这样只能以CORESET#0定义的第一下行带宽部分确定第一控制资源集合的频域位置。或者,可选的,在实际应用中可以通过CORESET#0定义第一下行带宽部分和由SIB 1配置第一下行带宽部分,在这一情况下,选择以CORESET#0定义的第一下行带宽部分确定第一控制资源集合的频域位置。
对于终端设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据CORESET#0的第二起始公共资源块确定第一控制资源集合的第一起始公共资源位置,在终端设备初始接入成功之前,终端设备根据图4所示的第一控制资源集合1监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图4所示的第一控制资源集合1在下行物理控制信道发送上下行调度控制信息。在终端设备初始接入成功之后,终端设备根据图4所示的第一控制资源集合2监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图4所示的第一控制资源集合2在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
本申请实施例对第一控制资源集合的频域位置的确定时刻不做限定,可以在终端设备初始接入成功之前根据该配置信息和CORESET#0定义的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置,或者可以在初始接入成功之后根据该配置信息和CORESET#0定义的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置。
在第A2种情况中,请参见图5,为本申请实施例提供了另一种控制资源集合的频域位置的示例图。在图5中,第一下行带宽部分是由SIB 1配置的initial DL BWP,第一控制资源集合的第一起始公共资源块是根据SIB 1配置的第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的。具体的,在确定SIB 1配置的第一下行带宽部分的第二起始公共资源块之后,确定第一控制资源集合的第一起始公共资源块的详细过程可以参见图6的详细介绍,其中,第五偏移是指SIB 1配置的第一下行带宽部分的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,在第一下行带宽部分为根据SIB 1配置的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图5所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。这里仅简单介绍了SIB 1配置的第一下行带宽部分的第二起始公共资源块的确定方式,详细的介绍,请参见图8的详细描述。
基于第A2种情况,可选的,在实际应用中可以只有一种通过SIB 1来配置第一下行带宽部分的方式,在该情况中只能以SIB 1配置的第一下行带宽部分确定第一控制资源集合的频域位置。或者,可选的,在实际应用中可以通过CORESET#0和SIB 1配置第一下行带宽部分,在这一情况下,选择以SIB 1配置的第一下行带宽部分确定第一控制资源集合的频域位置。
对于终端设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据SIB 1配置的第一下行带宽部分的第二起始公共资源块确定第一控制资源集合的第一起始公共资源位置,在终端设备初始接入成功之前,终端设备根据图5所示的第一控制资源集合1监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图5所示的第一控制资源集合1在下行物理控制信道发送上下行调度控制信息。在终端设备初始接入成功之后,终端设备根据图5所示的第一控制资源集合2监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图5所示的第一控制资源集合2在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
本申请实施例对终端设备对第一控制资源集合的频域位置的确定时刻不做限定,可以在终端设备初始接入成功之前根据该配置信息和SIB 1配置的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置,或者可以在终端设备初始接入成功之后根据该配置信息和SIB 1配置的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置。
其中,图3、图4和图5中时刻T表示终端设备初始接入成功的时刻。网络设备和终端设备对于时刻T的认定可能不同。在可选的实现方式中,对于终端设备而言,终端设备确定初始接入成功的时刻用于指示以下(3-1)、(3-2)、(3-3)、(3-4)、(3-5)、(3-6)的其中一个时刻:
(3-1)终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
(3-2)在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的下行控制信息DCI的时刻;
(3-3)终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
(3-4)终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(3-5)终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(3-6)终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
对于网络设备而言,网络设备确定初始接入成功的时刻用于指示以下(3-7)、(3-8)、(3-9)、(3-10)的其中一个时刻:
(3-7)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
(3-8)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
(3-9)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(3-10)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息 之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
在本申请实施例中,在终端设备初始接入成功之前后的第一控制资源集合的频域位置是相同的,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
请参见图6,为本申请提供了一种下行带宽部分与第一控制资源集合的频域位置的示例图。在1个小区的1个DL BWP内,网络设备可以通过高层信令frequencyDomainResources来指示第一控制资源集合在1个BWP内的资源分配。这里的frequencyDomainResources即为本申请涉及的第一控制资源集合的配置信息。根据协议描述,frequencyDomainResources是1个45比特的位图(bit-map)。45-bitmap指示第一控制资源集合在第一下行带宽部分内的频域资源分配,每1比特指示了连续6个不重叠的物理资源块(Physical Resource block,PRB)。第一控制资源集合的第一起始公共资源块索引是与公共资源块索引的6的倍数对齐的。
如图6所示,假设下行带宽部分的起始公共资源块索引为
Figure PCTCN2019128916-appb-000003
则由于第一控制资源集合的第一起始公共资源块的索引(index)必须是6的倍数,因此frequencyDomainResources的起始公共资源块是
Figure PCTCN2019128916-appb-000004
具体是指45-bitmap的第1个比特指示的6个PRB从CRB 36开始,依次往上排。如果比特值取值为1表示对应的6个连续的PRB分配给第一控制资源集合,如果比特值取值为0表示对应的6个连续的PRB不分配给第一控制资源集合。如果比特指示的PRB部分超过了下行带宽部分,那么超过的部分就都置为0,表示不分配给第一控制资源集合。
举例来说,frequencyDomainResources=“00000111111110……”的情况下,可以看出前5个bit对应的30个PRB均未跟配给第一控制资源集合,第一控制资源集合的第一起始公共资源块的索引为36+30=66,即第一控制资源集合的第一起始公共资源块为CRB 66。以图6的下行带宽部分为图4所示情况中由CORESET#0定义的第一带宽的情况下,这样图4的第四偏移可以为CRB 66-CRB 33=CRB 33,具体是指第一控制资源集合的第一起始公共资源块与下行带宽部分的起始公共资源块之间相差33个公共资源块。
可选的,图6中涉及的下行带宽部分(DL BWP)可以为由CORESET#0定义的初始下行带宽部分,或者可以为由SIB 1配置的初始下行带宽部分,或者可以为新配置的initial DL BWP,或者可以为其他DL BWP等。对于上述下行带宽部分的各种可能的配置情况,均可以参考图6描述的根据下行带宽部分的公共起始位置和第一控制资源集合的配置信息,来确定第一控制资源集合的第一起始公共资源块。
进一步的,请参见图7,为本申请实施例提供了一种第一控制资源集合的时域资源的示例图。在具体实现中,网络设备可以通过高层信令(例如无线资源控制(Radio Resource Control,RRC)信令)第一控制资源集合的配置消息为终端设备配置一个第一控制资源集合,其中包含第一控制资源集合的CORESET id、频域资源指示、时域上持续OFDM符号个数、等参数。时域上持续OFDM符号个数可以取值为1,2和3中的1个值。频域资源指示可以为图6所示的45-bit的位图。网络设备通过高层信令(例如RRC信令)SearchSpace配置消息配置给终端设备1个搜索空间集合,其中包含search space set id、1个时隙(slot) 的监听时刻(monitoring occasion)指示、聚集级别以及对应的备选PDCCH个数等参数。例如:在searchSpace内盲检的第一控制资源集合的时域位置如图7所示,搜索空间在1个slot 0内的监听时刻指示在1个slot 0内的第一个符号上,且搜索空间中的CORESET id对应的第一控制资源集合在时域上持续3个符号,如图7中的符号0至符号2。第一控制资源集合的频域资源位置由45-bit位图确定。另外,确定第一控制资源集合的频域位置的具体过程可以参考如图6所示方法的介绍。
而下行带宽部分是由CORESET#0定义或者由SIB 1配置的情况下,假设CORESET#0定义的初始下行带宽部分用下行带宽部分一表示,假设由SIB 1配置的初始下行带宽部分用下行带宽部分二表示,则下行带宽部分一和下行带宽部分二的频域位置的详细确定过程可以参见图8的详细描述。为了便于适用于各个实施例,这里下行带宽部分一的公共资源块用第五公共资源块来表示,第五公共资源块包括第五起始公共资源块以及下行带宽部分一占用的其他公共资源块;这里下行带宽部分二的公共资源块用第六公共资源块来表示,第六公共资源块包括第六起始公共资源块以及下行带宽部分二占用的其他公共资源块。
(1)终端设备在工作带宽内检测到SS/PBCH block后,MIB中ssb-SubcarrierOffset(K SSB)指示与SS/PBCH block的第一个RB重叠的CRB的RB索引值最小的RB和SS/PBCH block的第一个RB之间的子载波偏移量;与SS/PBCH block的第一个RB重叠的CRB的索引值最小的RB即为本申请中涉及的SS/PBCH block的第三起始物理资源块。
(2)获得MIB中pdcch-ConfigSIB 1的高4比特,高四位比特指示了SS/PBCH block与下行带宽部分一之间的第二偏移。
这里的第二偏移是指下行带宽部分一的第五起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量,第二偏移以PRB为单位。
这样,可以根据SS/PBCH block的第三起始物理资源块和第二偏移,确定下行带宽部分一的第五起始物理资源块。
(3)根据在下行带宽部分一里面监听SI-RNTI加扰的DCI format 1_0,得到SIB 1的调度信息,在调度的时频资源上接收SIB 1消息。通过获得SIB 1消息中的ServingCellConfigCommonSIB,可以获得以下信息:
I、相对于参考点A的偏移(offsetToPointA):用于指示cell-defining SS/PBCH block的第三起始物理资源位置到Point A之间的PRB偏移量;这里的第三起始物理资源位置是指与SS/PBCH block的第一个RB重叠的CRB的最小的索引值RB。
这样,可以根据offsetToPointA和SS/PBCH block的第三起始物理资源位置确定出SS/PBCH block的第三起始公共资源块,第三起始公共资源块是指与SS/PBCH block的第一个RB重叠的CRB的索引值最小的RB。
进一步的,offsetToPointA结合(2)中的第二偏移可以确定出第一偏移,根据第一偏移和下行带宽部分一的第五起始物理资源块可以确定出下行带宽部分一的第五起始公共资源块,第五起始公共资源块是指下行带宽部分一占用的最低公共资源块。
II、locationAndBandwidth:用于指示包含下行带宽部分二的起始物理资源块和所占的公共资源块的数量等信息,如图8所示。
III、carrierBandwidth:用于指示不同子载波间隔对应的一组载波以及每一个载波在频 域上的宽度;
OffsetToCarrier:用于指示每一个载波的最低可用的子载波到point A的频域偏移量,其中,Point A是Common RB的子载波0的中心位置。
这样结合II和III可以确定出下行带宽部分二的第六起始公共资源块和下行带宽部分二占用的其他公共资源块,第六起始公共资源块是指下行带宽部分二占用的最低公共资源块。
其中,本申请各个实施例中涉及的资源块网格是用于映射物理资源的。物理层进行资源映射的时候以时频资源单元(Resource Element,RE)为基本单位,一个RE由时域上一个符号和频域上一个子载波组成,一个时隙上所有OFDM符号和频域上12个子载波组成一个资源块(Resource Block,RB),RE的位置用(k,l)表示,k表示OFDM的序号,l表示子载波的序号,通过给出坐标(k,l)就可以定位到指定的RE上。
可选的,在终端设备初始接入之前,网络设备配置了第一控制资源集合的配置信息的情况下,终端设备可以通过SIB 1消息中的ServingCellConfigCommonSIB获得第一控制资源集合的配置信息,进而可以确定以下行带宽部分一为参考的第一控制资源集合的第一起始公共资源块,或者确定以下行带宽部分二为参考的第一控制资源集合的第一起始公共资源块。
基于图1所示的通信系统,请参见图9,为本申请实施例提供了另一种用于确定控制资源集合的频域位置的方法的流程示意图。图9所示的方法包括步骤901和步骤902。
901,在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的配置信息。
相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息。
902,在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
其中,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置。本申请的第一控制资源集合的标识不为0。
其中,在终端设备初始接入成功之前,终端设备不会根据第一控制资源集合占用的公共资源块集合监听下行物理控制信道。而且第一控制资源集合的频域位置是以一个下行带宽部分为参考来确定的,具体可以参见图10和图11的具体介绍。
可选的,第一控制资源集合的配置信息可以从SIB 1中获得,且该配置信息在终端设备初始接入成功之后可以生效,这里的生效是指:终端设备可以根据第一控制资源集合的频域位置监听下行物理控制信道以获得上下行调度控制信息;或者,网络设备可以根据第一控制资源集合的频域位置在下行物理控制信道发送上下行调度控制信息。
可选的,在包含第一下行带宽部分是由SIB 1配置的initial DL BWP的场景中,第一下行带宽部分的配置信息也可以从SIB 1中获得,但SIB 1配置的第一下行带宽部分的配置信息是在终端设备初始接入成功之后生效,这里的生效是指:可以根据SIB 1配置的第一下 行带宽部分的频域位置接收下行控制信息,或者,网络设备可以根据SIB 1配置的第一下行带宽部分的频域位置发送下行控制信息。其中,终端设备可以利用第一下行带宽部分的一个高层信令locationAndBandwidth和/或其他参数确定第一下行带宽部分的频域位置。
第一控制资源集合占用的第一公共资源块包括第一起始公共资源块和第一控制资源集合占用的其他公共资源块。在本申请实施例中,网络设备和终端设备均可以实现确定第一起始公共资源块,以及均可以实现根据配置信息和所参考的下行带宽部分的起始公共资源块确定第一控制资源集合占用的由第一起始公共资源块起始的公共资源块。对于如何确定第一起始公共资源块可以分为以下两种情况(第B1种情况和第B2种情况)来介绍。
在第B1种情况中,请参见图10,为本申请实施例提供了另一种控制资源集合的频域位置的示例图。在图10中,第一下行带宽部分是由CORESET#0定义的initial DL BWP,第一控制资源集合的第一起始公共资源块是根据CORESET#0的第二起始公共资源块和第一控制资源集合的配置信息确定的。具体的,在确定CORESET#0的第二起始公共资源块之后,确定第一起始公共资源块的详细过程可以参见图6的详细介绍,其中,第四偏移是指CORESET#0的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,CORESET#0的第二起始公共资源块是指CORESET#0占用的最小CRB;第一控制资源集合的第一起始公共资源块是指第一控制资源集合占用的最小CRB。CORESET#0的第二起始公共资源块是根据CORESET#0的第二起始物理资源块和第一偏移确定的,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图10所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。
第一偏移是根据第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的。其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块与参考点之间相差的物理资源块的数量,如图10所示的相对于参考点A的偏移
Figure PCTCN2019128916-appb-000005
这样第一偏移等于
Figure PCTCN2019128916-appb-000006
减去第二偏移的值。其中,第三起始物理资源块为与SS/PBCH block的第一个RB重叠的CRB的RB索引值最小的RB。
这里仅简单介绍了CORESET#0的第二起始公共资源块的确定方式,进一步可以请参见图8的详细描述。
基于第B1种情况,可选的,在实际应用中可以只有一种配置第一下行带宽部分的方式,在该情况中是通过CORESET#0来定义的。或者,可选的,在实际应用中可以通过CORESET#0和SIB 1配置/定义第一下行带宽部分,在这一情况下,选择以CORESET#0定义的第一下行带宽部分确定第一控制资源集合的频域位置。
对于终端设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据CORESET#0的 第二起始公共资源块确定第一控制资源集合的第一起始公共资源位置,在终端设备初始接入成功之后,终端设备根据图10所示的第一控制资源集合监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图10所示的第一控制资源集合在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
本申请实施例对第一控制资源集合的频域位置的确定时刻不做限定,可以在终端设备初始接入成功之前根据该配置信息和CORESET#0定义的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置,或者可以在终端设备初始接入成功之后根据该配置信息和CORESET#0定义的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置。
在第B2种情况中,请参见图11,为本申请实施例提供了另一种控制资源集合的频域位置的示例图。在图11中,第一下行带宽部分是由SIB 1配置的initial DL BWP,第一控制资源集合的第一起始公共资源块是根据SIB 1配置的第一下行带宽部分的第二起始公共资源块和第一控制资源集合的配置信息确定的。具体的,在确定SIB 1配置的第一下行带宽部分的第二起始公共资源块之后,确定第一控制资源集合的第一起始公共资源块的详细过程可以参见图6的详细介绍,其中,第五偏移是指SIB 1配置的第一下行带宽部分的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,在第一下行带宽部分为根据SIB 1配置的情况下,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图11所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。这里仅简单介绍了SIB 1配置的第一下行带宽部分的第二起始公共资源块的确定方式,详细的介绍,请参见图8的详细描述。
基于第B2种情况,可选的,在实际应用中可以只有一种配置第一下行带宽部分的方式,在该情况中是通过SIB 1来配置的。或者,可选的,在实际应用中可以通过CORESET#0和SIB 1配置第一下行带宽部分,在这一情况下,选择以SIB 1配置的第一下行带宽部分确定第一控制资源集合的频域位置。
对于终端设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据SIB 1配置的第一下行带宽部分的第二起始公共资源块确定第一控制资源集合的第一起始公共资源位置,在终端设备初始接入成功之后,终端设备根据图11所示的第一控制资源集合监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图11所示的第一控制资源集合在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
本申请实施例对第一控制资源集合的频域位置的确定时刻不做限定,可以在终端设备 初始接入成功之前根据该配置信息和SIB 1配置的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置,或者可以在终端设备初始接入成功之后根据该配置信息和SIB 1配置的第一下行带宽部分的频域位置确定第一控制资源集合的频域位置。
其中,图9、图10和图11中时刻T表示终端设备初始接入成功的时刻。网络设备和终端设备对于时刻T的认定可能不同。在可选的实现方式中,对于终端设备而言,终端设备确定初始接入成功的时刻用于指示以下(10-1)、(10-2)、(10-3)、(10-4)、(10-5)、(10-6)的其中一个时刻:
(10-1)终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
(10-2)在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(10-3)终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
(10-4)终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(10-5)终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(10-6)终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
对于网络设备而言,网络设备确定初始接入成功的时刻用于指示以下(10-7)、(10-8)、(10-9)、(10-10)的其中一个时刻:
(10-7)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
(10-8)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
(10-9)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(10-10)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
在本申请实施例中,在终端设备初始接入成功之前,网络设备不会根据所述第一控制资源集合占用的公共资源块集合在下行物理控制信道上发送上下行调度控制信息,终端设备不会根据第一控制资源集合的频域位置监听下行物理控制信道,这样在终端设备初始接入成功之前网络设备和终端设备均无需确定第一控制资源集合的频域位置,在终端设备初始接入之后的第一控制资源集合的频域位置是以所参考的下行带宽部分来确定,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
基于图1所示的通信系统,请参见图12,为本申请实施例提供了另一种用于确定控制资源集合的频域位置的方法的流程示意图。图12所示的方法包括步骤1201至步骤1203。
1201,在终端设备初始接入成功之前,网络设备向终端设备发送第一控制资源集合的 配置信息。
相应的,在终端设备初始接入成功之前,终端设备接收第一控制资源集合的配置信息。
1202,在终端设备初始接入成功之前,网络设备根据第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之前,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
1203,在终端设备初始接入成功之后,网络设备根据第一控制资源集合占用的第三公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第三公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
其中,在步骤1202中,所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。这里的第一下行带宽部分可以是由CORESET#0定义的。
在步骤1203中,所述第三公共资源块集合包含的第三起始公共资源块是根据第二下行带宽部分的第四起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第二下行带宽部分内占用的物理资源块的位置。这里的第二下行带宽部分可以是SIB 1配置的。
在图12所示的实施例中,所述第一下行带宽部分的所述第二起始公共资源块与所述第二下行带宽部分的所述第四起始公共资源块相同。这样虽然在终端设备初始接入成功前后第一控制资源集合所参考的下行带宽部分不同,通过设定这两个下行带宽部分的起始公共资源块相同,依旧可以使得根据第一下行带宽部分确定第一控制资源集合的第一起始公共资源块,与根据第二下行带宽部分确定的第二控制资源集合的第三起始公共资源块是相同的。
本申请的第一控制资源集合的标识不为0。
可选的,第一控制资源集合的配置信息可以从SIB 1中获得,且该配置信息在终端设备初始接入成功之前或后均可以生效,这里的生效是指:终端设备可以根据第一控制资源集合的频域位置监听下行物理控制信道以获得上下行调度控制信息;或者,网络设备可以根据第一控制资源集合的频域位置在下行物理控制信道发送上下行调度控制信息。
可选的,在包含第一下行带宽部分是由SIB 1配置的initial DL BWP的场景中,第一下行带宽部分的配置信息也可以从SIB 1中获得,但SIB 1配置的第一下行带宽部分的配置信息是在终端设备初始接入成功之后生效,这里的生效是指:终端设备可以利用第一下行带宽部分的一个高层信令locationAndBandwidth和/或其他参数确定第一下行带宽部分的频域位置,并可以根据SIB 1配置的第一下行带宽部分的频域位置接收下行控制信息,或者,网络设备可以根据SIB 1配置的第一下行带宽部分的频域位置发送下行控制信息。
在终端设备初始接入成功之前,第一控制资源集合占用的第一公共资源块包括第一起始公共资源块和第一控制资源集合占用的其他公共资源块,在终端设备初始接入成功之后,第一控制资源集合占用的第三公共资源块包括第三起始公共资源块和第一控制资源集合占 用的其他公共资源块。在本申请实施例中,网络设备和终端设备均可以实现确定第一起始公共资源块与第三起始公共资源块,以及均可以实现根据配置信息和所参考的下行带宽部分的起始公共资源块确定第一控制资源集合占用的由第一起始公共资源块起始的公共资源块,以及均可以实现根据配置信息和所参考的下行带宽部分的起始公共资源块确定第一控制资源集合占用的由第三起始公共资源块起始的公共资源块。对于如何确定第一起始公共资源块、第三起始公共资源块可以参见图13的详细介绍。
请参见图13,为本申请实施例提供了另一种控制资源集合的频域位置的示例图。在图13中,第一下行带宽部分是由CORESET#0定义的initial DL BWP,第一控制资源集合1的第一起始公共资源块是根据CORESET#0的第二起始公共资源块和第一控制资源集合的配置信息确定的。第二下行带宽部分是由SIB 1配置的initial DL BWP,第一控制资源集合2的第三起始公共资源块是根据SIB1配置的initial DL BWP的第四起始公共资源块和第一控制资源集合的配置信息确定的。所述第一下行带宽部分的所述第二起始公共资源块与所述第二下行带宽部分的所述第四起始公共资源块相同。
具体的,在确定CORESET#0的第二起始公共资源块之后,确定第一控制资源集合1的第一起始公共资源块的详细过程可以参见图6的详细介绍。以及在确定SIB1配置的initial DL BWP的第四起始公共资源块之后,确定第一控制资源集合2的第三起始公共资源块的详细过程可以参见图6的详细介绍,其中,第四偏移是指CORESET#0的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,CORESET#0的第二起始公共资源块是指CORESET#0占用的最小CRB;第一控制资源集合的第一起始公共资源块是指第一控制资源集合占用的最小CRB。CORESET#0的第二起始公共资源块是根据CORESET#0的第二起始物理资源块和第一偏移确定的,第一偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图4所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。
第一偏移是根据CORESET#0的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和SS/PBCH block的公共资源块偏移确定的。其中,第二偏移用于指示第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量;SS/PBCH block的公共资源块偏移用于指示第三起始物理资源块与参考点之间相差的物理资源块的数量,如图10所示的相对于参考点A的偏移
Figure PCTCN2019128916-appb-000007
这样第一偏移等于
Figure PCTCN2019128916-appb-000008
减去第二偏移的值。
这里仅简单介绍了CORESET#0的第二起始公共资源块的确定方式,进一步可以请参见图8的详细描述。
其中,在第二下行带宽部分为根据SIB 1配置的情况下,第二下行带宽部分(图13中的SIB1配置的initial DL BWP)的第四起始公共资源块是根据第二下行带宽部分的第四起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第四起始物理资源块与参考点之间相差的物理资源块的数量,参考点是图13中参考点A(point A)的位置。这里仅简单介绍了SIB 1配置的第二下行带宽部分的第四起始公共资源块的确定方式,详细的介绍, 请参见图8的详细描述。
对于终端设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之前,可以在SIB 1消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据CORESET#0的第二起始公共资源块确定第一控制资源集合1的第一起始公共资源位置,以及可以根据SIB 1配置的initial DL BWP的第四起始公共资源块确定第一控制资源集合2的第三起始公共资源位置。
在终端设备初始接入成功之前,终端设备根据图13所示的第一控制资源集合1监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图13所示的第一控制资源集合1在下行物理控制信道发送上下行调度控制信息。在终端设备初始接入成功之后,终端设备根据图13所示的第一控制资源集合2监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图13所示的第一控制资源集合2在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
本申请实施例对第一控制资源集合的频域位置的确定时刻不做限定,例如,第一控制资源集合的频域位置在第一控制资源集合1或第一控制资源集合2上监听/发送之前确定即可,本申请实施例对此不做限定。
其中,图12和图13中时刻T表示终端设备初始接入成功的时刻。网络设备和终端设备对于时刻T的认定可能不同。在可选的实现方式中,对于终端设备而言,终端设备确定初始接入成功的时刻用于指示以下(13-1)、(13-2)、(13-3)、(13-4)、(13-5)、(13-6)、(13-7)、(13-8)、(13-9)、(13-10)的其中一个时刻:
(13-1)终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
(13-2)在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(13-3)终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
(13-4)终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(13-5)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,终端设备成功接收初传的消息4并向网络设备发送确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
(13-6)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,终端设备成功接收重传的消息4并向网络设备发送确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
(13-7)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(13-8)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下, 在终端设备成功接收重传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(13-9)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(13-10)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,在终端设备成功接收初传的消息4且由第一下行带宽部分切换至第二下行带宽部分之后,终端设备成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
对于网络设备而言,网络设备确定初始接入成功的时刻用于指示以下(13-11)、(13-12)、(13-13)、(13-14)的其中一个时刻:
(13-11)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
(13-12)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
(13-13)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(13-14)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(13-15)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
(13-16)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,由第一下行带宽部分切换至第二下行带宽部分的切换完成时刻;
(13-17)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息且由第一下行带宽部分切换至第二下行带宽部分之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(13-18)在第一下行带宽部分和第二下行带宽部分所占用的公共资源块不同的情况下,网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息且由第一下行带宽部分切换至第二下行带宽部分之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
在本申请实施例中,在终端设备初始接入成功之前和之后,第一控制资源集合的频域位置可以依据不同的下行带宽部分的频域位置来确定,但由于设定不同下行带宽部分的起始公共资源块位置是相同的,依旧可以使得以不同的下行带宽部分为参考的第一控制资源集合的频域位置是相同的,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
基于图1所示的通信系统,请参见图14,为本申请实施例提供了另一种用于确定控制资源集合的频域位置的方法的流程示意图。图14所示的方法包括步骤1401和步骤1402。
1401,在终端设备初始接入成功之后,网络设备向所述终端设备发送第一控制资源集合的配置信息。
相应的,在终端设备初始接入成功之后,终端设备接收第一控制资源集合的配置信息。
1402,在所述终端设备初始接入成功之后,所述网络设备根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息。
相应的,在终端设备初始接入成功之后,终端设备根据第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息。
其中,配置信息用于指示第一控制资源集合在第一下行带宽部分内占用的物理资源块的位置。本申请的第一控制资源集合的标识不为0。
其中,在终端设备初始接入成功之前,不会配置第一控制资源集合的配置信息。在终端设备初始接入成功之后,才会配置第一控制资源集合的配置信息。在终端设备初始接入成功之后,终端设备可以根据第一控制资源集合占用的公共资源块集合监听下行物理控制信道。而且第一控制资源集合的频域位置是以一个下行带宽部分为参考来确定的,具体可以参见图15的具体介绍。
可选的,第一控制资源集合的配置信息可以在终端设备初始接入成功之后从SIB 1中获得,且该配置信息在终端设备初始接入成功之后可以生效,这里的生效是指:终端设备可以根据第一控制资源集合的频域位置监听下行物理控制信道以获得上下行调度控制信息;或者,网络设备可以根据第一控制资源集合的频域位置在下行物理控制信道发送上下行调度控制信息。
或者,可选的,第一控制资源集合的配置信息可以在终端设备初始接入成功之后从其他配置下行带宽部分的消息来配置的,图14所示实施例对此不做限定。
进一步,可选的,图14所示实施例中,所述第一控制资源集合的配置信息与所述第一下行带宽部分的配置信息是同时接收到的,第一控制资源集合的配置信息是包含在第一下行带宽部分的配置信息中的,第一控制资源集合的频域位置的确定是根据包含第一控制资源集合的配置信息的第一下定带宽为参考的。也就是说,在终端设备初始接入成功之后,在一个配置消息中可以同时获得第一控制资源集合的配置信息与所述第一下行带宽部分的配置信息。第一控制资源集合的频域位置是根据第一下行带宽部分和第一控制资源集合的配置信息确定的。
第一控制资源集合占用的第一公共资源块包括第一起始公共资源块和第一控制资源集合占用的其他公共资源块。在本申请实施例中,网络设备和终端设备均可以实现确定第一起始公共资源块,以及均可以实现根据配置信息和所参考的下行带宽部分的起始公共资源块确定第一控制资源集合占用的由第一起始公共资源块起始的公共资源块。对于如何确定第一起始公共资源块可以参见图15的具体介绍。
请参见图15,为本申请实施例提供了另一种控制资源集合的频域位置的示例图。在图15中,第一下行带宽部分是由SIB 1或者其他配置消息来配置的,第一控制资源集合的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和第一控制资源集合的 配置信息确定的。具体的,在确定第一下行带宽部分的第二起始公共资源块之后,确定第一起始公共资源块的详细过程可以参见图6的详细介绍,其中,第五偏移是指SIB 1或者其他配置消息配置的第一下行带宽部分的第二起始公共资源块与第一控制资源集合的第一起始公共资源块相差的公共资源块的数量。
其中,第一下行带宽部分的第二起始公共资源块是根据第一下行带宽部分的第二起始物理资源块和第三偏移确定的;其中,第三偏移用于指示第二起始物理资源块与参考点之间相差的物理资源块的数量,参考点是资源块网格的一个公共参考点,参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。如图15所示,公共参考点可以为参考点A(point A)的位置,指示的是公共资源块CRB 0中的子载波0的中心位置。这里仅简单介绍了第一下行带宽部分的第二起始公共资源块的确定方式,详细的介绍,请参见图8的详细描述。
可选的,在实际应用中可以只有一种配置第一下行带宽部分的方式。或者,可选的,在实际应用中可以通过CORESET#0和其他配置消息来配置第一下行带宽部分,在这一情况下,选择在终端设备初始接入成功之后配置的第一下行带宽部分确定第一控制资源集合的频域位置。
对于终端设备而言,在终端设备初始接入成功之后,可以在配置消息中获得第一控制资源集合的配置信息,对于网络设备而言,在终端设备初始接入成功之后,可以在配置消息中携带第一控制资源集合的配置信息。终端设备和网络设备可以根据配置消息中的第一下行带宽部分的第二起始公共资源块确定第一控制资源集合的第一起始公共资源位置,在终端设备初始接入成功之后,终端设备根据图15所示的第一控制资源集合监听下行物理控制信道以获得上下行调度控制信息,网络设备根据图15所示的第一控制资源集合在下行物理控制信道发送上下行调度控制信息。这一方式所确定第一控制资源集合的频域位置是相同的,终端设备和网络设备只需要计算一次第一控制资源集合的位置,降低了确定第一控制资源集合的频域位置复杂度。
其中,图14、图15中时刻T表示终端设备初始接入成功的时刻。网络设备和终端设备对于时刻T的认定可能不同。在可选的实现方式中,对于终端设备而言,终端设备确定初始接入成功的时刻用于指示以下(15-1)、(15-2)、(15-3)、(15-4)、(15-5)、(15-6)的其中一个时刻:
(15-1)终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
(15-2)在终端设备成功接收初传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(15-3)终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
(15-4)终端设备在终端设备成功接收重传的消息4之后,终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
(15-5)终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(15-6)终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
对于网络设备而言,网络设备确定初始接入成功的时刻用于指示以下(15-7)、(15-8)、(15-9)、(15-10)的其中一个时刻:
(15-7)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息的时刻;
(15-8)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息的时刻;
(15-9)网络设备接收到终端设备发送的针对网络设备发送的初传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
(15-10)网络设备接收到终端设备发送的针对网络设备发送的重传消息4的确认消息之后,向终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
在本申请实施例中,在终端设备初始接入成功之前,网络设备不会根据所述第一控制资源集合占用的公共资源块集合在下行物理控制信道上发送上下行调度控制信息,终端设备不会根据第一控制资源集合的频域位置监听下行物理控制信道,这样在终端设备初始接入成功之前网络设备和终端设备均无需确定第一控制资源集合的频域位置,在终端设备初始接入之后的第一控制资源集合的频域位置是以所参考的下行带宽部分来确定,这样终端设备和网络设备仅需要计算一次第一控制资源集合的频域位置,降低了确定第一控制资源集合的频域位的复杂度。
针对图3至图15所示的方法实施例,需要说明的是,在实际应用中,在第一种可能的实现方式中,不限制网络设备配置第一控制资源集合的时刻。也就是说,第一控制资源集合的配置消息可以在终端设备初始接入成功之前配置,也可以在终端设备初始接入成功之后配置。在这一场景下,可以包含图3至图15描述的各种可实现方案。
举例来说,由于网络设备配置第一控制资源集合的时刻不确定,因此,终端设备可以在初始接入之前监听信道以获得第一控制资源集合的配置信息;在终端设备获得第一控制资源集合的配置信息或者没有获得第一控制资源集合的配置信息的情况下,终端设备均可以在初始接入之后可以监听信道以获得第一控制资源集合的配置信息。
基于第一种可能的实现方式,进一步的,可以不限制配置第一控制资源集合所参考的下行带宽部分的时刻,这一场景中,若网络设备配置了新的下行带宽部分,在终端设备接收到新的下行带宽部分的配置信息的情况下,可以参考新的下行带宽部分的频域位置来确定第一控制资源集合的位置。
在第二种可能的实现方案中,可以限制网络设备配置第一控制资源集合的时刻。例如,限制第一控制资源集合的配置消息可以在终端设备初始接入成功之后配置,在这一场景下,可以参考图14和图15描述的实现方案。举例来说,由于网络设备配置第一控制资源集合的时刻是在终端设备初始接入成功之后,因此,终端设备在初始接入之前不需要监听信道,而是在终端设备初始接入成功之后,终端设备开始监听信道以获得第一控制资源集合的配置信息。这样可以减少终端设备由于不确定监听带来的功率损耗。
基于第二种可能的实现方式,进一步的,可以限制配置第一控制资源集合所参考的下行带宽部分的时刻,这一场景中,若限制下行带宽部分的配置时刻是在终端设备初始接入 成功之后,则一旦网络设备配置了新的下行带宽部分,在终端设备接收到新的下行带宽部分的配置信息的情况下,可以参考新的下行带宽部分的频域位置来确定第一控制资源集合的位置。
在另一种可能的实现方式中,不管第一控制资源集合在终端设备初始接入成功之前还是在终端设备初始接入成功之后配置,不管SIB 1中是否配置了initial DL BWP,在终端设备初始接入成功之后,网络设备通过高层信令(例如RRC信令)给终端设备配置第一控制资源集合、新配置的initial DL BWP或者其他DL BWP(非initial DL BWP或BWP_ID不为0的BWP)中的至少一个:
如果第一控制资源集合的配置在新配置的initial DL BWP中,则第一控制资源集合的频域位置以CORESET#0参考或以新配置的initial DL BWP为参考。也就是说,在图3-图15所示的实施例中,在终端设备初始接入成功之后,网络设备通过高层信令(例如RRC信令)给终端设备配置新配置的initial DL BWP,且新配置的initial DL BWP与SIB1中配置的initial DL BWP的子载波间隔相同时,则第一控制资源集合的频域位置以CORESET#0参考或以新配置的initial DL BWP为参考。
如果在终端设备初始接入成功之前由SIB 1配置了initial DL BWP,且第一控制资源集合的配置在其他DL BWP中,包括以下(1)和(2)两种情况:
(1)若其他DL BWP的频域位置包含CORESET#0的频域位置或包含SIB 1配置的initial DL BWP的频域位置,且其他DL BWP与SIB1配置的initial DL BWP的子载波间隔相同时,则第一控制资源集合的频域位置按照初始接入成功之前所参考的下行带宽部分来参考。
(2)若其他DL BWP的频域位置不包含CORESET#0的频域位置或不包含SIB 1配置的initial DL BWP的频域位置或其他DL BWP的频域位置包含CORESET#0的频域位置或包含SIB 1配置的initial DL BWP的频域位置且其他DL BWP与SIB1配置的initial DL BWP的子载波间隔不相同时,则以其他DL BWP为参考。
又一需要说明的是,终端设备在成功接收到网络设备发送的消息时,反馈1个比特的消息对接收到的消息进行肯定/确认(Acknowledgement,ACK)或否定(Negative ACKnowledgment,NACK)。网络设备根据终端设备的反馈的是ACK(比特取值1)还是NACK消息(比特取值0)来决定是发送新的数据还是进行重传。本申请实施例中涉及发送某一个消息的时刻可以为开始发送这一个消息的时刻或者确认这一消息发送完成的时刻,本申请对此不做限定。举例来说,图3-图15实施例中设计的发送确认消息的时刻,可以是指发送确认消息的时刻或者确认这一确认消息发送完成的时刻。
又一需要说明的是,如果第一控制资源集合在SIB 1中配置,则第一控制资源集合的频域资源位置限制在CORESET#0的频域资源范围内,即小于或等于CORESET#0的频域资源大小。如果第一控制资源集合不在SIB 1中配置,而是在其他高层信令中配置(例如RRC信令),则第一控制资源集合的频域资源位置可以在CORESET#0的频域资源范围内,也可以不在CORESET#0的频域资源范围内。
如果在第一下行带宽部分中配置了用于随机接入信道的搜索空间高层参数,当初始接入成功之后网络设备通过高层信令(例如RRC信令)给终端设备配置其他下行带宽部分的 频域资源范围包括第一下行带宽部分的频域资源范围,且其他下行带宽部分的子载波间隔与第一下行带宽部分的子载波间隔相同时,如果当前激活下行带宽部分中没有配置用于随机接入信道的搜索空间高层参数,网络设备可以通过高层信令(例如RRC信令)在其他下行带宽部分中给终端设备配置在第一下行带宽部分中配置的用于随机接入信道的搜索空间中监听对应的下行控制信息,例如RA-RNTI加扰的下行控制信息。所述当前激活下行带宽部分的标识取非零值。在这个过程中终端设备不需要更改射频带宽或切换载波中心频率。
上文主要从设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端设备、网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的设备来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述设备示例对终端设备、网络设备进行功能模块或功能单元的划分,例如,可以对应各个功能划分各个功能模块或功能单元,也可以将两个或两个以上的功能集成在一个处理模块或处理单元中。上述集成的模块或单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参见图16,图16是本申请实施例提供的一种终端设备的结构示意图。该终端设备用于实现图3至图15的设备实施例。如图16所示,该终端设备1600包括收发模块1601和处理模块1602。
在第一种可能的实现方案中,收发模块1601和处理模块1602用于实现图3至图5所示实施例内容。其中:
收发模块1601,用于在终端设备初始接入成功之前,接收第一控制资源集合的配置信息;
处理模块1602,用于在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
在第二种可能的实现方案中,收发模块1601和处理模块1602用于实现图9至图11所示实施例内容。其中:
收发模块1601,用于在终端设备初始接入成功之前,接收第一控制资源集合的配置信息;
处理模块1602,用于在所述终端设备初始接入成功之前,不会根据所述第一控制资源集合占用的公共资源块集合监听下行物理控制信道;
处理模块1602,还用于在所述终端设备初始接入成功之后,根据所述第一控制资源集 合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
在第三种可能的实现方案中,收发模块1601和处理模块1602用于实现图12至图13所示实施例内容。其中:
收发模块1601,用于在终端设备初始接入成功之前,接收第一控制资源集合的配置信息;
处理模块1602,用于在所述终端设备初始接入成功之前,根据所述第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置;
处理模块1602,还用于在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第三公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;所述第三公共资源块集合包含的第三起始公共资源块是根据第二下行带宽部分的第四起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第二下行带宽部分内占用的物理资源块的位置;
所述第一下行带宽部分的所述第二起始公共资源块与所述第二下行带宽部分的所述第四起始公共资源块相同。
在第四种可能的实现方案中,收发模块1601和处理模块1602用于实现图14至图15所示实施例内容。其中:
收发模块1601,用于在终端设备初始接入成功之后,接收第一控制资源集合的配置信息;
处理模块1602,用于在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
可以理解的,该终端设备1600用于实现图3至图15实施例中终端设备所执行的步骤。关于图16的终端设备包括的功能块的具体实现方式及相应的有益效果,可参考前述图3至图15的实施例的具体介绍,这里不赘述。
在本申请的实施例中,收发模块可以是接收器或者接收电路。收发模块还可以是该终端设备的通信接口。处理模块可以是处理器。
上述图16所示实施例中的终端设备1600可以以图17所示的终端设备1160实现。如图17所示,为本申请实施例提供了另一种终端设备的结构示意图,图17所示的终端设备1160包括:处理器1701和收发器1702。
所述收发器1702用于支持终端设备1160与上述实施例中涉及的其他终端设备或其他设备之间的信息传输。
处理器1701用于对终端设备的动作进行控制管理。
例如在图3所示实施例中,所述收发器1702用于实现图3所示实施例中接收步骤301、302、303中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图9所示实施例中,所述收发器1702用于实现图9所示实施例中接收步骤901、902中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图12所示实施例中,所述收发器1702用于实现图12所示实施例中接收步骤1201、1202、1203中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图14所示实施例中,所述收发器1702用于实现图14所示实施例中接收步骤1401、1402中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
处理器1701和收发器1702通信连接,例如通过总线1704相连。总线1704可以是PCI总线或EISA总线等。所述总线1704可以分为地址总线、数据总线和控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述终端设备1160还可以包括存储器1703。存储器1703用于存储供终端设备1160执行的程序代码和数据,处理器1701用于执行存储器1703中存储的应用程序代码,以实现图3至图15所示任一实施例提供的终端设备的动作。
需要说明的是,实际应用中终端设备可以包括一个或者多个处理器,该终端设备1160的结构并不构成对本申请实施例的限定。
处理器1701可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
收发器1704可以是通信接口或收发电路等,其中,该收发器是统称,在具体实现中,该收发器可以包括多个接口。
存储器1703可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器1703也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1703还可以包括上述种类的存储器的组合。
在本申请实施例中还提供了一种计算机存储介质,可以用于存储图17所示实施例中所述终端设备所用的计算机软件指令,其包含用于执行上述实施例中为终端设备所设计的程序。该存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
在本申请实施例中还提供了一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图17所示实施例中为终端设备所设计的数据处理设备。
请参见图18,图18是本申请实施例提供的另一种网络设备的结构示意图。用于实现图8和图9的实施例。如图18所示,该网络设备1800包括收发模块1801和处理模块1802。
在第一种可能的实现方案中,收发模块和处理模块用于实现图3至图5所示实施例内容。
收发模块1801,用于在终端设备初始接入成功之前,向所述终端设备发送第一控制资源集合的配置信息;
处理模块1802,用于在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;
所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
在第二种可能的实现方案中,收发模块和处理模块用于实现图9至图11所示实施例内容。其中:
收发模块1801,用于在终端设备初始接入成功之前,向所述终端设备发送第一控制资源集合的配置信息;
处理模块1802,用于在所述终端设备初始接入成功之前,不会根据所述第一控制资源集合占用的公共资源块集合在下行物理控制信道上广播上下行调度控制信息;
处理模块1802,还用于在在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;
所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
在第三种可能的实现方案中,收发模块和处理模块用于实现图12至图13所示实施例内容。其中:
收发模块1801,用于在终端设备初始接入成功之前,网络设备向所述终端设备发送第一控制资源集合的配置信息;
处理模块1802,用于在所述终端设备初始接入成功之前,根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置;
处理模块1802,还用于在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第三公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;所述第三公共资源块集合包含的第三起始公共资源块是根据第二下行带宽部分的第四起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第二下行带宽部分内占用的物理资源块的位置;
所述第一下行带宽部分的所述第二起始公共资源块与所述第二下行带宽部分的所述第 四起始公共资源块相同。
在第四种可能的实现方案中,收发模块和处理模块用于实现图14至图15所示实施例内容。其中:
收发模块1801,用于在终端设备初始接入成功之后,向所述终端设备发送第一控制资源集合的配置信息;
处理模块1802,用于在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置;
可以理解的,该网络设备1800用于实现图3至图15实施例中网络设备所执行的步骤。关于图16的网络设备包括的功能块的具体实现方式及相应的有益效果,可参考前述图3至图15的实施例的具体介绍,这里不赘述。
在本申请的实施例中,收发模块可以是接收器或者接收电路。收发模块还可以是该终端设备的通信接口。处理模块可以是处理器。
上述图18所示的网络设备可以以图19所示的网络设备1900实现。如图19所示,为本申请实施例提供了另一种网络设备的结构示意图,图19所示的网络设备1900包括:处理器1901和收发器1902。
所述收发器1902用于支持网络设备1900与上述实施例中涉及的其他设备之间的信息传输,处理器1901用于对网络设备1900的动作进行控制管理。
例如在图3所示实施例中,所述收发器1702用于实现图3所示实施例中发送步骤301、302、303中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图9所示实施例中,所述收发器1702用于实现图9所示实施例中发送步骤901、902中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图12所示实施例中,所述收发器1702用于实现图12所示实施例中发送步骤1201、1202、1203中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
例如在图14所示实施例中,所述收发器1702用于实现图14所示实施例中发送步骤1401、1402中的消息;处理单元1701用于支持所述收发器1702执行上述步骤。
处理器1901和收发器1902通信连接,例如通过总线相连。所述网络设备1900还可以包括存储器1903。存储器1903用于存储供网络设备1900执行的程序代码和数据,处理器1901用于执行存储器1903中存储的应用程序代码,以实现图8或图9所示任一实施例提供的网络设备的动作。
需要说明的是,实际应用中网络设备可以包括一个或者多个处理器,该网络设备1900的结构并不构成对本申请实施例的限定。
处理器1901可以是CPU,NP,硬件芯片或者其任意组合。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。
存储器1903可以包括易失性存储器,例如RAM;存储器1903也可以包括非易失性存储器,例如ROM,快闪存储器,硬盘或固态硬盘;存储器1903还可以包括上述种类的存 储器的组合。
在本申请实施例中还提供了一种计算机存储介质,可以用于存储图18所示实施例中所述网络设备所用的计算机软件指令,其包含用于执行上述实施例中为网络设备所设计的程序。该存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
在本申请实施例中还提供了一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图18所示实施例中为网络设备所设计的数据处理设备。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中,“A和/或B”是指下述情况之一:A,B,A和B。“……中至少一个”是指所列出的各项或者任意数量的所列出的各项的任意组合方式,例如,“A、B和C中至少一个”是指下述情况之一:A,B,C,A和B,B和C,A和C,A、B和C这七种情况中的任一种。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。

Claims (30)

  1. 一种用于确定控制资源集合的频域位置的方法,其特征在于,包括:
    在终端设备初始接入成功之前,所述终端设备接收第一控制资源集合的配置信息;
    在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,所述终端设备根据所述第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
    所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述第一下行带宽部分为根据控制资源集合coreset #0定义的或者根据系统消息块1 SIB 1配置的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制资源集合的标识不为0。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述终端设备初始接入成功用于指示以下的其中一个时刻:
    所述终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
    在所述终端设备成功接收初传的消息4之后,所述终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
    所述终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
    所述终端设备在所述终端设备成功接收重传的消息4之后,所述终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
    所述终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
    所述终端设备成功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    在所述第一下行带宽部分为根据coreset #0定义的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第一偏移确定的;
    其中,所述第一偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  6. 根据权利要求5所述的方法,其特征在于,所述第一偏移是根据所述第一下行带宽 部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和所述SS/PBCH block的公共资源块偏移确定的;
    其中,所述第二偏移用于指示所述第二起始物理资源块与所述SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量;
    所述SS/PBCH block的公共资源块偏移用于指示所述第三起始物理资源块与所述参考点之间相差的物理资源块的数量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,在所述第一下行带宽部分为根据SIB 1配置的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第三偏移确定的;
    其中,所述第三偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  8. 一种用于确定控制资源集合的频域位置的方法,其特征在于,包括:
    在终端设备初始接入成功之前,网络设备向所述终端设备发送第一控制资源集合的配置信息;
    在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,所述网络设备根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上发送上下行调度控制信息;
    所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
  9. 根据权利要求8所述的方法,其特征在于,所述第一下行带宽部分为根据控制资源集合coreset #0定义的或者根据系统消息块SIB 1配置的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一控制资源集合的标识不为0。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述终端设备初始接入成功用于指示以下的其中一个时刻:
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的初传消息4的确认消息的时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的重传消息4的确认消息的时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的初传消息4的确认消息之后,向所述终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的 时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的重传消息4的确认消息之后,向所述终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,
    在所述第一下行带宽部分为根据coreset #0定义的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第一偏移确定的;
    其中,所述第一偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  13. 根据权利要求12所述的方法,其特征在于,所述第一偏移是根据所述第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和所述SS/PBCH block的公共资源块偏移确定的;
    其中,所述第二偏移用于指示所述第二起始物理资源块与所述SS/PBCH block的第三起始物理资源块之间相差的物理资源块数量;
    所述SS/PBCH block的公共资源块偏移用于指示所述第三起始物理资源块对应的公共资源块与所述参考点之间相差的物理资源块的数量。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,在所述第一下行带宽部分为根据SIB 1配置的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第三偏移确定的;
    其中,所述第三偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  15. 一种终端设备,其特征在于,包括:
    收发模块,用于在终端设备初始接入成功之前,接收第一控制资源集合的配置信息;
    处理模块,用于在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,监听下行物理控制信道以获得上下行调度控制信息;
    所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
  16. 根据权利要求15所述的设备,其特征在于,所述第一下行带宽部分为根据控制资源集合coreset #0定义的或者根据系统消息块SIB 1配置的。
  17. 根据权利要求15或16所述的设备,其特征在于,所述第一控制资源集合的标识不为0。
  18. 根据权利要求15-17任一项所述的设备,其特征在于,所述终端设备初始接入成功用于指示以下的其中一个时刻:
    所述终端设备成功接收初传的消息4并向网络设备发送确认消息的时刻;
    在所述终端设备成功接收初传的消息4之后,所述终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
    所述终端设备成功接收重传的消息4并向网络设备发送确认消息的时刻;
    所述终端设备在所述终端设备成功接收重传的消息4之后,所述终端设备成功接收到由小区无线网络临时标识C-RNTI加扰的下行控制信息DCI的时刻;
    所述终端设备成功接收初传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
    所述终端设备成项功接收重传的消息4之后成功接收到用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
  19. 根据权利要求15-18任一所述的设备,其特征在于,
    在所述第一下行带宽部分为根据coreset #0定义的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第一偏移确定的;
    其中,所述第一偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  20. 根据权利要求19所述的设备,其特征在于,所述第一偏移是根据所述第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和所述SS/PBCH block的公共资源块偏移确定的;
    其中,所述第二偏移用于指示所述第二起始物理资源块与所述SS/PBCH block的第三起始物理资源块之间相差的物理资源块PRB数量;
    所述SS/PBCH block的公共资源块偏移用于指示所述第三起始物理资源块与所述参考点之间相差的物理资源块的数量。
  21. 根据权利要求15-20任一项所述的设备,其特征在于,在所述第一下行带宽部分为根据SIB 1配置的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所 述第一下行带宽部分的第二起始物理资源块和第三偏移确定的;
    其中,所述第三偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  22. 一种网络设备,其特征在于,包括:
    收发模块,用于在终端设备初始接入成功之前,向所述终端设备发送第一控制资源集合的配置信息;
    确定模块,用于在所述终端设备初始接入成功之前或者在所述终端设备初始接入成功之后,根据所述第一控制资源集合占用的第一公共资源块集合,在下行物理控制信道上广播上下行调度控制信息;
    所述第一公共资源块集合包含的第一起始公共资源块是根据第一下行带宽部分的第二起始公共资源块和所述第一控制资源集合的配置信息确定的,所述配置信息用于指示所述第一控制资源集合在所述第一下行带宽部分内占用的物理资源块的位置。
  23. 根据权利要求22所述的设备,其特征在于,所述第一下行带宽部分为根据控制资源集合coreset #0定义的或者根据系统消息块SIB 1配置的。
  24. 根据权利要求22或23所述的设备,其特征在于,所述第一控制资源集合的标识不为0。
  25. 根据权利要求22-24任一项所述的设备,其特征在于,所述终端设备初始接入成功用于指示以下的其中一个时刻:
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的初传消息4的确认消息的时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的重传消息4的确认消息的时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的初传消息4的确认消息之后,向所述终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻;
    所述网络设备接收到所述终端设备发送的针对所述网络设备发送的重传消息4的确认消息之后,向所述终端设备发送用于指示需盲检C-RNTI加扰的DCI的配置信息的时刻。
  26. 根据权利要求22-25任一项所述的设备,其特征在于,
    在所述第一下行带宽部分为根据coreset #0定义的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第一偏移确定的;
    其中,所述第一偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  27. 根据权利要求26所述的设备,其特征在于,所述第一偏移是根据所述第一下行带宽部分的第二起始物理资源块与SS/PBCH block的第三起始物理资源块之间的第二偏移和所述SS/PBCH block的公共资源块偏移确定的;
    其中,所述第二偏移用于指示所述第二起始物理资源块与所述SS/PBCH block的第三起始物理资源块之间相差的物理资源块PRB数量;
    所述SS/PBCH block的公共资源块偏移用于指示所述第三起始物理资源块对应的公共资源块与所述参考点之间相差的物理资源块的数量。
  28. 根据权利要求22-27任一项所述的设备,其特征在于,在所述第一下行带宽部分为根据SIB 1配置的情况下,所述第一下行带宽部分的第二起始公共资源块是根据所述第一下行带宽部分的第二起始物理资源块和第三偏移确定的;
    其中,所述第三偏移用于指示所述第二起始物理资源块与参考点之间相差的物理资源块的数量,所述参考点是资源块网格的一个公共参考点,所述参考点用于指示以预设子载波间隔配置的公共资源块CRB 0中的子载波0的中心位置。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令使得通信设备执行权利要求1-14中任一项所述的方法。
  30. 一种用于确定控制资源集合的频域位置的装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行根据权利要求1-14中任一项所述的方法。
PCT/CN2019/128916 2018-12-29 2019-12-26 用于确定控制资源集合的频域位置的方法及相关设备 WO2020135641A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19903925.6A EP3905810A4 (en) 2018-12-29 2019-12-26 METHOD AND RELATED APPARATUS USED TO DETERMINE THE FREQUENCY DOMAIN LOCATION OF A CONTROL RESOURCE SET
KR1020217023695A KR102625787B1 (ko) 2018-12-29 2019-12-26 제어 자원 세트의 주파수 도메인 위치를 결정하기 위한 방법 및 관련 디바이스
BR112021012780-1A BR112021012780A2 (pt) 2018-12-29 2019-12-26 Método para determinar localização de domínio de frequência de conjunto de recursos de controle e dispositivo relacionado
JP2021538295A JP7181411B2 (ja) 2018-12-29 2019-12-26 制御リソースセットの周波数領域ロケーションを決定するための方法および関係するデバイス
US17/360,347 US12010676B2 (en) 2018-12-29 2021-06-28 Method for determining frequency domain location of control resource set and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811642765.X 2018-12-29
CN201811642765.XA CN111385901B (zh) 2018-12-29 2018-12-29 用于确定控制资源集合的频域位置的方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,347 Continuation US12010676B2 (en) 2018-12-29 2021-06-28 Method for determining frequency domain location of control resource set and related device

Publications (1)

Publication Number Publication Date
WO2020135641A1 true WO2020135641A1 (zh) 2020-07-02

Family

ID=71127753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128916 WO2020135641A1 (zh) 2018-12-29 2019-12-26 用于确定控制资源集合的频域位置的方法及相关设备

Country Status (7)

Country Link
US (1) US12010676B2 (zh)
EP (1) EP3905810A4 (zh)
JP (1) JP7181411B2 (zh)
KR (1) KR102625787B1 (zh)
CN (3) CN111385901B (zh)
BR (1) BR112021012780A2 (zh)
WO (1) WO2020135641A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202107619XA (en) * 2019-02-22 2021-08-30 Ntt Docomo Inc User apparatus and base station apparatus
US20220338176A1 (en) * 2019-08-16 2022-10-20 Lenovo (Beijing) Limited Method and apparatus for designing a coreset for a ue supporting nr iot application
CN116250323A (zh) * 2020-10-16 2023-06-09 华为技术有限公司 一种通信方法及装置
WO2023146261A1 (en) * 2022-01-28 2023-08-03 Samsung Electronics Co., Ltd. Method for detecting downlink control channel
CN114666902A (zh) * 2022-02-11 2022-06-24 华为技术有限公司 资源配置方法、通信装置及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN108365928A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站
CN108631934A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法、终端设备及基站系统
CN108737050A (zh) * 2017-04-24 2018-11-02 中国移动通信有限公司研究院 一种控制信息的发送、接收方法、网络侧设备及终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279289A1 (en) 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
CN110786045B (zh) * 2017-06-16 2023-12-05 韩国电子通信研究院 通信系统中用于支持宽带载波的带宽设定方法
CN109041229B (zh) * 2017-11-10 2019-09-20 华为技术有限公司 一种通信方法、装置以及系统
US20190349060A1 (en) * 2018-05-11 2019-11-14 Mediatek Inc. Methods of Efficient Bandwidth Part Switching in a Wideband Carrier
JP7237486B2 (ja) * 2018-07-31 2023-03-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
AU2018437328B2 (en) * 2018-08-20 2024-05-09 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN108365928A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置
CN108631934A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法、终端设备及基站系统
CN108737050A (zh) * 2017-04-24 2018-11-02 中国移动通信有限公司研究院 一种控制信息的发送、接收方法、网络侧设备及终端
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905810A4

Also Published As

Publication number Publication date
CN111385901B (zh) 2022-06-28
CN115175356A (zh) 2022-10-11
BR112021012780A2 (pt) 2021-09-08
JP2022515877A (ja) 2022-02-22
EP3905810A1 (en) 2021-11-03
KR20210102447A (ko) 2021-08-19
KR102625787B1 (ko) 2024-01-15
US12010676B2 (en) 2024-06-11
US20210329669A1 (en) 2021-10-21
JP7181411B2 (ja) 2022-11-30
CN111385901A (zh) 2020-07-07
CN115175357A (zh) 2022-10-11
EP3905810A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020135641A1 (zh) 用于确定控制资源集合的频域位置的方法及相关设备
JP6147308B2 (ja) 免許不要帯域における伝送を扱う装置及び方法
WO2017170889A1 (ja) ユーザ端末及び無線通信方法
US11102714B2 (en) Method and apparatus for obtaining system information
US20150349929A1 (en) Evolved node-b, user equipment, and methods for hybrid automatic repeat request (harq) communication
US11212057B2 (en) Device and method for handling physical downlink shared channels in bandwidth parts
JP2020502918A (ja) 上りリンク伝送制御方法及びその装置、通信システム
WO2021024922A1 (en) Multiplexing harq-ack of different service types on a single pusch
US10492209B2 (en) Control information sending or receiving method, apparatus, and system
JP2022531281A (ja) マルチキャストフィードバック構成方法及び装置
JP2018137792A (ja) ユーザ端末及び無線通信方法
EP3826215A1 (en) Communication method and device
WO2018193777A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
EP3089392B1 (en) Device and method of handling harq operation for unlicensed band
WO2021230193A1 (en) User equipments, base stations and methods for priority rules of channel state information reports
WO2021060413A1 (en) User equipments, base stations and methods for a priority of uplink transmission(s)
JP2019522417A (ja) 識別子管理方法、装置およびシステム
WO2018059305A1 (zh) Pusch的发送方法及装置、dci的指示方法及装置
US20190364574A1 (en) Data transmission method and apparatus
WO2021060231A1 (en) User equipments, base stations and methods for transmission(s) of a physical uplink control channel (pucch) and a physical uplink shared channel (pusch)
WO2021065692A1 (en) User equipments, base stations and methods for cancellation of uplink signal(s)
WO2023065874A1 (zh) 一种调度方法及装置
WO2020206617A1 (zh) 信息传输方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012780

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217023695

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019903925

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019903925

Country of ref document: EP

Effective date: 20210729

ENP Entry into the national phase

Ref document number: 112021012780

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210628