WO2023065874A1 - 一种调度方法及装置 - Google Patents

一种调度方法及装置 Download PDF

Info

Publication number
WO2023065874A1
WO2023065874A1 PCT/CN2022/117646 CN2022117646W WO2023065874A1 WO 2023065874 A1 WO2023065874 A1 WO 2023065874A1 CN 2022117646 W CN2022117646 W CN 2022117646W WO 2023065874 A1 WO2023065874 A1 WO 2023065874A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
symbol
time unit
physical downlink
occupied
Prior art date
Application number
PCT/CN2022/117646
Other languages
English (en)
French (fr)
Inventor
刘智华
范闻达
杨坚
杨兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065874A1 publication Critical patent/WO2023065874A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present application relates to the field of communication technologies, and in particular to a scheduling method and device.
  • Dynamic spectrum sharing (dynamic spectrum sharing, DSS) technology is a new wireless (new radio, NR) system and long term evolution (long term evolution, LTE) system share the same spectrum technology, due to the scarcity of spectrum resources, this technology is used to Improve resource utilization.
  • the DSS technology realizes the gradual and smooth transition from the LTE system to the NR system. In the case of using the DSS technology, the resources available for the NR system are limited, and the resources allocated by the network equipment for the LTE system are not fully used, resulting in waste of resources and reducing resource utilization in the network.
  • the present application provides a scheduling method and device to solve the problem of how to improve network resource utilization.
  • the present application provides a scheduling method.
  • the execution body of the method may be a network device or a chip or a module in the network device.
  • the network device is used as an execution body as an example for description.
  • the method includes: the network device determines the number of symbols occupied by the first physical downlink control channel of the first cell within the time unit, and the network device can determine that the physical downlink shared channel of the second cell occupies the time unit according to the number of symbols The first symbol of ; wherein, the first cell and the second cell are cells of dynamic spectrum sharing.
  • the network device can adjust the physical downlink of the second cell according to the number of symbols occupied by the first physical downlink control channel
  • the first symbol occupied by the shared channel realizes flexible adjustment of the scheduling range of the physical downlink shared channel, and improves resource utilization and spectrum efficiency of the second cell.
  • determining the first symbol occupied by the physical downlink shared channel of the second cell in a time unit includes: if the number of symbols is 0, determining the physical downlink shared channel of the second cell The first symbol occupied within the time unit is the first symbol of the time unit.
  • the physical downlink shared channel of the second cell can be scheduled from the first symbol of the time unit, so that the physical downlink shared channel More resources can be occupied in the shared spectrum resources, thereby improving the resource utilization rate of the second cell in the shared spectrum resources.
  • the method further includes: using the resources corresponding to the PHARQ indication channel in the first cell to transmit the data of the second cell, and the PHARQ indication channel is located at time The first symbol of the cell.
  • no data is sent on the physical hybrid automatic repeat request indication channel in the first cell.
  • the resource corresponding to the physical hybrid automatic repeat request indication channel can be used for data transmission in the second cell, thereby improving the resource utilization rate of the second cell in the shared spectrum resource.
  • the method further includes: using the resource corresponding to the physical control format indication channel in the first cell to transmit data of the second cell, and the physical control format indication channel is located in the first symbol of the time unit .
  • data is not mapped in the resources corresponding to the physical control format indication channel, and the resources corresponding to the physical control format indication channel can be used for data transmission in the second cell, thereby improving the second cell.
  • the resource utilization rate of the second cell in the shared spectrum resource is not mapped in the resources corresponding to the physical control format indication channel, and the resources corresponding to the physical control format indication channel can be used for data transmission in the second cell, thereby improving the second cell.
  • determining the number of symbols occupied by the first physical downlink control channel of the first cell in a time unit includes: if it is determined that the first physical downlink control channel is not used in the first cell, the first The number of symbols occupied by the physical downlink control channel is 0.
  • the network device can accurately determine the number of symbols occupied by the first physical downlink control channel, thereby determining the physical downlink of the second cell The position of the first symbol that the shared channel can occupy.
  • determining the first symbol occupied by the physical downlink shared channel of the second cell within the time unit includes: if the number of symbols is 1, determining the physical downlink shared channel of the second cell The first symbol occupied in the time unit is the second symbol of the time unit, wherein the first physical downlink control channel of the first cell occupies the first symbol of the time unit.
  • the network device when the number of symbols occupied by the first physical downlink control channel is 1, the network device starts scheduling the physical downlink shared channel of the second cell from the second symbol of the time unit, so that the physical downlink The shared channel can occupy more resources in the shared spectrum resources, thereby improving the resource utilization rate of the second cell in the shared spectrum resources.
  • determining the number of symbols occupied by the first physical downlink control channel of the first cell in a time unit includes: if it is determined to use the first physical downlink control channel in the first cell, and determining the used If the number of symbols occupied by the first physical downlink control channel is less than 2, it is determined that the number of symbols occupied by the first physical downlink control channel is 1.
  • the second physical downlink control channel of the second cell is in the first symbol in the time unit symbol is the second or third symbol of the time unit.
  • the second physical downlink control channel of the second cell can be scheduled from the second symbol or the third symbol of the time unit, so that the second physical downlink control channel can be used in the shared spectrum resource More resources are occupied, thereby improving the resource utilization rate of the second cell in shared spectrum resources.
  • the method further includes: sending first information to a terminal device in the second cell, where the first information is used to indicate the first symbol of the physical downlink shared channel in the time unit.
  • the present application provides a method for message transmission.
  • the executing subject of the method may be a terminal device or a chip or a module in the terminal device.
  • the terminal device is used as an executing subject for description.
  • the method includes: a terminal device located in a second cell receives first information from a network device, the first information is used to indicate the first symbol of a physical downlink shared channel of the second cell in a time unit; through the first The symbol receives the physical downlink shared channel, and the dynamic spectrum of the first cell and the second cell share the same spectrum resource.
  • the first symbol of the physical downlink shared channel in the time unit is determined by the network device according to the number of symbols occupied by the first physical downlink control channel of the first cell in the time unit.
  • the first symbol occupied by the physical downlink shared channel of the second cell in the time unit is the first symbol of the time unit.
  • the method further includes: sending or receiving data in a resource corresponding to a physical hybrid automatic repeat request indication channel in the first cell, where the physical hybrid automatic repeat request indication channel is located at the first time unit of the time unit. symbols.
  • the method further includes: sending or receiving data in a resource corresponding to a physical control format indicator channel in the first cell, where the physical control format indicator channel is located in the first symbol of the time unit.
  • the present application provides a scheduling method.
  • the execution body of the method may be a network device or a chip or a module in the network device.
  • the network device is used as an execution body as an example for description.
  • the method includes: if the network device satisfies a preset condition, reconfiguring the number of cell-specific reference signal resources of the first cell, wherein the number of cell-specific reference signal resources after reconfiguration is smaller than the number of cell-specific reference signal resources before reconfiguration Quantity; sending reconfiguration information to the terminal equipment in the second cell, where the reconfiguration information is used to indicate the location and quantity of the cell-specific reference signal resources, wherein the resources shared by the first cell and the second cell except the cell-specific reference signal resources
  • the resource is used for data transmission of the terminal equipment in the second cell; the first cell and the second cell are cells of dynamic spectrum sharing.
  • the network device when the preset condition is met, increases the number of resources that can be used by the second cell by reducing the number of cell-specific reference signal resources in the first cell, thereby improving the resource utilization of the second cell. Spectral efficiency.
  • reconfiguring the number of cell-specific reference signal resources of the first cell includes: modifying the number of ports of the cell-specific reference signal of the first cell from a first number to a second number, where the first number is greater than second quantity.
  • the method further includes: changing the sending mode of the MBMSFN subframe of the first cell from the first mode to the second mode; wherein, the cycle duration corresponding to the first mode is The first duration, the number of multimedia broadcast multicast single frequency network subframes sent in one cycle corresponding to the first method is the third quantity; the cycle duration corresponding to the second method is the second duration, and the corresponding cycle of the second method The number of MBMSFN subframes included is the fourth quantity; the sending method of the MBMSFSN subframes of the first cell is changed from the first method to the second method, including: the first duration greater than the second duration, and/or, the third quantity is less than the fourth quantity.
  • the network device can increase the number of MBSFN subframes by reducing the period length of the transmission cycle of the MBSFN subframe, thereby reducing the number of cell-specific reference signal (CRS) resources .
  • CRS cell-specific reference signal
  • the CRS resources originally used to transmit CRS can be used for the transmission of the PDSCH data of the second cell, so as to increase the resources available for the PDSCH of the second cell, reduce resource overhead in the second cell, and improve The resource utilization rate of the second cell.
  • the network device increases the number of MBSFN subframes in each period, thereby reducing the number of CRS resources, reducing resource overhead in the second cell, and improving resource utilization of the second cell.
  • the preset condition includes at least one of the following: the service load of the first cell is less than or equal to the first load; the service load of the same-coverage neighboring cell of the first cell is less than or equal to the second load.
  • the method further includes: suspending providing services for terminal devices in the first cell.
  • the method further includes: the first symbol occupied by the physical downlink shared channel of the second cell within the time unit is the first symbol of the time unit.
  • the network device schedules the physical downlink shared channel of the second cell from the first symbol of the time unit, so that the physical downlink shared channel can occupy more resources in the shared spectrum resources, Therefore, the resource utilization rate of the second cell in the shared frequency spectrum resource is improved.
  • the present application provides a method for message transmission.
  • the executing subject of the method may be a terminal device or a chip or a module in the terminal device.
  • the terminal device is used as an executing subject for description.
  • the method includes: a terminal device located in a second cell receives reconfiguration information from a network device, the reconfiguration information is used to indicate the location and quantity of cell-specific reference signal resources of the first cell, wherein the first cell and the second cell Among the shared resources, resources except the cell-specific reference signal resources are used for data transmission of the terminal equipment in the second cell; the first cell and the second cell are cells for dynamic spectrum sharing.
  • the quantity of cell-specific reference signal resources after reconfiguration is smaller than the quantity of cell-specific reference signal resources before reconfiguration.
  • the present application further provides a communication device, where the communication device has any method or any implementation manner provided for implementing any one of the first aspect to the fourth aspect.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communications device includes: a processor, where the processor is configured to support the communications device to execute corresponding functions of the network device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as terminal equipment or network equipment.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform corresponding functions in the above-mentioned method examples.
  • these units can perform corresponding functions in the above-mentioned method examples.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is configured to execute the computer program or instruction stored in the memory to implement the method in any possible implementation manner of any one of the foregoing first to fourth aspects.
  • the apparatus further includes a memory in which computer programs or instructions are stored.
  • a computer-readable storage medium in which a computer program or an instruction is stored, and when the computer program or instruction is run on a computer, the computer is enabled to implement the aforementioned first aspect to the method in any possible implementation manner in any aspect of the fourth aspect.
  • a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer can implement any one of the aforementioned first to fourth aspects. A method in any possible implementation.
  • a chip in a ninth aspect, includes a processor, and may further include a memory, the processor is coupled to the memory, and is used to execute computer programs or instructions stored in the memory, so that the chip implements the aforementioned first aspect to A method in any possible implementation of any aspect in the fourth aspect.
  • a communication system in a tenth aspect, includes the device (such as a network device) for realizing the first aspect and the device (such as a terminal device) for realizing the second aspect.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a single RB resource in a subframe when the CRS is 4 ports in the LTE system;
  • FIG. 3 is a schematic diagram of a single RB resource in a subframe when the CRS is 2 ports in the LTE system;
  • FIG. 4 is a schematic diagram of a single RB resource in a subframe when the CRS is 1 port in the LTE system;
  • FIG. 5 is a schematic flow diagram of a scheduling method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a PDSCH scheduling provided by an embodiment of the present application (taking a single RB resource in a single subframe as an example);
  • FIG. 7 is a schematic diagram of a PDSCH scheduling provided by an embodiment of the present application (taking a single RB resource in a single subframe as an example);
  • FIG. 8 is a schematic diagram of a scenario where the number of terminal devices in the first cell changes according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a random access process provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a cell capacity change provided by an embodiment of the present application.
  • FIG. 11 is a schematic flow diagram of a scheduling method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of MBSFN subframe configuration in an LTE cell provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of MBSFN subframe configuration in an LTE cell provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Embodiments of the present application can be applied to various mobile communication systems, such as: NR system, LTE system, global system of mobile communication (GSM) system, code division multiple access (CDMA) system, general Packet radio service (general packet radio service, GPRS), future communication systems and other communication systems, specifically, are not limited here.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • GPRS general Packet radio service
  • the terminal device can be a device with wireless transceiver function or a chip that can be set in any device, and can also be called user equipment (user equipment, UE), access terminal, user unit, user station , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, etc.
  • VR virtual reality
  • AR augmented reality
  • the network device may be a wireless access device of various standards, for example, it may be a next-generation base station (next Generation node B, gNB) in the NR system, or it may be an evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) or node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (such as , home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless Backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be gNB or transmission point in 5G (NR) system, one or a group of base stations in 5G system (including multiple Antenna Panel)
  • NR next-
  • the base station in the 5G system can also be called a transmission reception point (transmission reception point, TRP) or a next-generation node B (generation Node B, gNB or gNodeB).
  • the base station in this embodiment of the present application may be an integrated base station, or may be a base station including a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • a base station including CU and DU may also be referred to as a base station with separated CU and DU, for example, the base station includes gNB-CU and gNB-DU.
  • CU can also be separated into CU control plane (CU control plane, CU-CP) and CU user plane (CU user plane, CU-CP), such as the base station includes gNB-CU-CP, gNB-CU-UP and gNB -DU.
  • CU control plane CU control plane, CU-CP
  • CU user plane CU user plane
  • the base station includes gNB-CU-CP, gNB-CU-UP and gNB -DU.
  • the network architecture includes network equipment and terminal equipment.
  • Network equipment can support multiple communication systems and can configure multiple cells.
  • network equipment can support LTE system and NR system, and LTE cells and NR cells can be configured at the same time.
  • LTE cells and NR cells can share the same spectrum resource.
  • the technology may be a dynamic spectrum sharing (dynamic spectrum sharing, DSS) technology.
  • DSS dynamic spectrum sharing
  • OFDM OFDM symbols may refer to a signal waveform generated by using the OFDM technology, and the length of the OFDM symbol in the time domain is equal to the reciprocal of the subcarrier spacing of the waveform. For the convenience of description, in the following description, OFDM symbols are simply referred to as symbols.
  • time unit, subframe and multimedia broadcast multicast single frequency network (multimedia broadcast multicast service single frequency network, MBSFN) subframe are introduced here first.
  • a subframe includes 14 symbols
  • a time slot includes 14 symbols.
  • the subframe in the LTE system and the time slot in the NR system can be Slots are collectively referred to as time units.
  • Subframes in LTE can be further divided into two types: MBSFN subframes and non-MBSFN subframes.
  • the resource element (resource element, RE) resources used to transmit CRS in MBSFN subframes are less than the RE resources used to transmit CRS in non-MBSFN subframes.
  • a non-MBSFN subframe includes 24 RE resources for CRS transmission
  • an MBSFN subframe only includes 8 RE resources for CRS transmission.
  • FIG. 2 shows a schematic diagram of the structure of a time slot.
  • a time slot includes 14 symbols, wherein the first symbol to the fourteenth symbol are called symbols 0 to 13 in turn, and the RE resources occupied by CRS are located in symbols 0, Symbol 1, symbol 4, symbol 7, symbol 8, and symbol 11.
  • the PDCCH in the NR system is configured in symbol 2
  • the PDSCH in the NR system can be scheduled from symbol 2 to symbol 13, and the first two symbols cannot be scheduled.
  • the RE resources occupied by the CRS are the same in other drawings described later.
  • FIG. 3 shows a time slot.
  • a time slot includes 14 symbols, which are symbol 0 to symbol 13 respectively.
  • the RE resources occupied by CRS are located in symbol 0, symbol 4, symbol 7 and symbol 11.
  • the PDCCH in the NR system is configured in symbol 1 and/or symbol 2 (the figure shows that the PDCCH in the NR system is configured in symbol 1 and symbol 2, and other The situation is not shown again), the PDSCH in the NR system can be scheduled to use symbols ranging from symbol 1 to symbol 13, and symbol 0 cannot be scheduled.
  • 1 ⁇ 8 represents the number of RE resources other than those occupied by CRSs on symbol
  • 4 ⁇ 4 represents the number of RE resources occupied by CRSs in symbols 0, 4, 7 and 11.
  • FIG. 4 shows a time slot, and a time slot includes 14 symbols, which are symbol 0 to symbol 13 respectively, and RE resources occupied by CRS are located in symbol 0, symbol 4, symbol 7 and symbol 11.
  • the PDCCH in the NR system is configured in symbol 1 and/or symbol 2 (the figure shows that the PDCCH in the NR system is configured in symbol 1 and symbol 2, and in other cases it is not As shown again), the PDSCH in the NR system can be scheduled to use symbols ranging from symbol 1 to symbol 13, and symbol 0 cannot be scheduled.
  • 1 ⁇ 10 represents the number of RE resources other than those occupied by CRS on symbol 0
  • 4 ⁇ 2 represents the number of RE resources occupied by CRS in symbol 0, symbol 4, symbol 7, and symbol 11.
  • the NR system since the NR system needs to share spectrum resources with the LTE system, the NR system cannot schedule the resources occupied by the LTE system, and the resources that can be scheduled by the PDSCH of the NR system are limited, resulting in a low resource utilization rate of the NR system. Low.
  • the embodiment of the present application provides a method, which can reduce the resource overhead of the NR system and improve the downlink rate and spectrum efficiency of the NR system in a DSS scenario.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the interaction between the network device and the terminal device is used as an example for illustration.
  • the operations performed by the network device can also be performed by chips or modules inside the network device, and the operations performed by the terminal device can also be performed by chips or modules inside the terminal device. implement.
  • the network device can support multiple communication systems, for example, the network device can support the LTE system and the NR system, and the network device can establish multiple cells, for example, establishing a first cell and a second cell.
  • the first cell and the second cell are dynamic spectrum sharing cells, or the first cell and the second cell dynamically share the same spectrum resource, that is, the first cell and the second cell share the same spectrum resource by using the DSS technology.
  • the first cell is an LTE cell
  • the second cell is an NR cell.
  • the first cell is an NR cell
  • the second cell is an LTE cell.
  • the first cell and the second cell may also be other types of cells, which is not limited in this embodiment of the present application.
  • the first cell includes the first PDCCH, physical hybrid automatic repeat request (hybrid automatic repeat request, HARQ) indicator channel (physical HARQ indicator channel, PHICH) and physical control format indicator channel (physical control format indicator channel, PCFICH) and other physical channel.
  • HARQ hybrid automatic repeat request
  • PHICH physical HARQ indicator channel
  • PCFICH physical control format indicator channel
  • the first PDCCH may carry information such as uplink and downlink resource scheduling information sent to the terminal device, and the PHICH may carry HARQ acknowledgment (acknowledgement, ACK) feedback or HARQ negative acknowledgment (negative acknowledgment, NACK) feedback.
  • the PCFICH is used to indicate the number of symbols occupied by the first PDCCH in the time unit.
  • the first cell is an LTE cell
  • the second cell is an NR cell as an example.
  • the method may include the following steps:
  • the network device determines the number of symbols occupied by the first PDCCH of the first cell within a time unit.
  • a symbol can be understood as a section of signal waveform, and the length of a symbol in the time domain is equal to the reciprocal of the subcarrier interval of the waveform.
  • the length of a symbol in the time domain can be used as a basic unit of a time unit, that is, a time unit can include multiple symbols.
  • the symbol in this application may refer to an OFDM symbol, or may refer to a symbol similar to an OFDM symbol, which is not limited in this application.
  • the time unit may refer to a period of time. Since the embodiment of the present application involves dynamic spectrum sharing between two different systems, the name of the time unit may be different in different systems. For example, in the NR system, the time unit may refer to a slot (slot), and in the LTE system, the time unit may refer to the duration of a subframe (subframe).
  • slot slot
  • subframe subframe
  • the number of symbols that can be occupied by the first PDCCH in the first cell is not a fixed value, and can occupy 2 symbols at most, and can occupy 0 symbols at least. How the network device specifically determines the number of symbols occupied by the first PDCCH is not limited by this embodiment of the present application.
  • the network device determines not to use the first PDCCH in the first cell, the number of symbols occupied by the first PDCCH is 0. For example, if the number of terminal devices in the radio resource control (radio resource control, RRC) connected state in the first cell is less than or equal to the first threshold, it is determined not to use the first PDCCH, and the number of symbols occupied by the first PDCCH is 0 .
  • RRC radio resource control
  • the PHICH and the PCFICH occupy the first symbol by default, and resources in the frequency domain occupied by the PHICH and the PCFICH are different.
  • the network device can use resources occupied by the PHICH and/or PCFICH for data transmission of the second cell, thereby further improving resource utilization efficiency of the network.
  • the network device may not send data in the PHICH.
  • PHICH occupies the first symbol of the time unit.
  • the network device can schedule the terminal device to perform data transmission in the resources corresponding to the PHICH, for example, the network device can transmit data to the terminal device in the resources corresponding to the PHICH, or receive data in the resources corresponding to the PHICH Data from end devices.
  • the PHICH occupies the first symbol of the time unit, when the network device does not send data in the PHICH, it can prevent the PHICH from being occupied by the first cell, so that the PHICH in the first cell can be used for data transmission in the second cell, improving The resource utilization rate of the second cell.
  • the network device may also not map data in resources corresponding to the PCFICH in the first cell.
  • PCFICH occupies the first symbol of the time unit.
  • Mapping data in resources may refer to modulating data in resources.
  • the network device can schedule the terminal device to perform data transmission in the resources corresponding to the PCFICH, for example, the network device can transmit data to the terminal device in the resources corresponding to the PCFICH, or receive data in the resources corresponding to the PCFICH Data from end devices.
  • the PCFICH occupies the first symbol of the time unit, when the resources corresponding to the PCFICH are not mapped to data in the first cell, the resources corresponding to the PCFICH can be used for data transmission in the second cell, improving the resource utilization of the second cell.
  • the network device determines to use the first PDCCH in the first cell and determines that the number of symbols occupied by the first PDCCH is less than 2, the number of symbols occupied by the first PDCCH may be 1. For example, if the number of terminal devices in the RRC connected state in the first cell is greater than the first threshold, the network device determines to use the first PDCCH in the first cell, and determines that the number of symbols occupied by the first PDCCH is less than 2, and then determines the second The number of symbols occupied by a PDCCH is 1.
  • the first threshold may be a number greater than or equal to 0, and the first threshold may be determined according to actual needs, and the present application does not limit the specific value of the first threshold. For example, if the first threshold is equal to 0, that is, as long as there is at least one terminal device in the RRC connected state in the first cell, then the network device determines to use the first PDCCH in the first cell.
  • the specific value of the number of symbols occupied by the first PDCCH may be determined according to factors such as service requirements of the terminal devices. For example, if the number of resources required by the terminal equipment in the RRC connection state in the first cell is less than or equal to the second threshold, the number of symbols occupied by the first PDCCH is 1; the terminal equipment in the RRC connection state in the first cell If the required number of resources is greater than the second threshold, the number of symbols occupied by the first PDCCH is 2.
  • the second threshold may be determined according to actual requirements, which is not limited in this application.
  • the second threshold is 10RB
  • the number of symbols occupied by the first PDCCH is 1; otherwise, the first The number of symbols occupied by the PDCCH is 2.
  • 10RB is a boundary value.
  • the network device may also determine that the number of symbols occupied by the first PDCCH is 1. This application is not limiting.
  • the network device may send information to the second cell through an internal interface, where the information includes the number of symbols occupied by the first PDCCH of the first cell,
  • the information may also include information such as the index of the first symbol occupied by the first PDCCH. This method facilitates the network device to subsequently determine the symbols occupied by the PDSCH of the second cell in the time unit according to the number of symbols occupied by the first PDCCH.
  • the network device determines the first symbol occupied by the PDSCH of the second cell within the time unit according to the number of symbols.
  • the specific position of the first symbol occupied by the PDSCH of the second cell within a time unit may be determined by the network device according to the number of symbols occupied by the first PDCCH of the first cell. Specifically, it may include but Not limited to the following situations:
  • the network device can configure the scheduling range of the PDSCH of the second cell within the time unit to be from the first symbol to the last symbol of the time unit, That is to say, the network device may configure the first symbol occupied by the PDSCH of the second cell within the time unit as the first symbol of the time unit.
  • the scheduling range of the PDSCH of the second cell within the time unit is from the first symbol to the fourteenth symbol of the time unit.
  • the network device configures the PDSCH of the second cell to occupy the first symbol of the time unit, which does not mean that the network device will definitely use the PDSCH of the second cell to occupy the first symbol of the time unit. Whether the network device sends data in the first symbol of the time unit through the PDSCH of the second cell needs to be determined according to actual data transmission requirements. Similarly, the network device configures the scheduling range of the PDSCH of the second cell from the first symbol to the last symbol of the time unit, which does not mean that the PDSCH of the second cell must be passed from the first symbol to the last symbol of the time unit. A symbol needs to be determined according to actual data transmission requirements.
  • the scheduling range of the second PDCCH of the second cell within the time unit is from the first symbol to the third symbol of the time unit, and the symbols occupied by the second PDCCH cannot match the CRS in the first cell.
  • the symbols used are the same.
  • FIG. 6 is a schematic diagram of PDSCH scheduling, and the resource shown in FIG. 6 includes a resource block (resource block, RB) in the frequency domain, and the RB includes 12 subcarriers; including a subframe in an LTE system or a time slot in an NR system in the time domain, where the length of a subframe in an LTE system is the same as the length of a time slot in an NR system.
  • the subframe in an LTE system includes 14 symbols as an example, and the first symbol to the fourteenth symbol in the 14 symbols are called symbol 0 to symbol 13 in sequence.
  • the number of CRS ports of the first cell is 4 as an example, and the first symbol and the second symbol of the time unit include the CRS of the first cell.
  • the network device may transmit data of the PDSCH of the second cell within the first symbol to the fourteenth symbol (ie, symbol 0 to symbol 13) in the time unit.
  • the symbol occupied by the second PDCCH of the second cell is a symbol that does not include the CRS of the first cell
  • the network device can configure the first symbol occupied by the second PDCCH of the second cell as the third symbol of the time unit. symbol, which is symbol 2.
  • the network device can configure the scheduling range of the second PDCCH of the second cell to be the second symbol to the third symbol of the time unit, and the network device can configure the scheduling range of the PDSCH of the second cell to be the second symbol of the time unit. symbols to fourteenth symbols.
  • the network device may configure the symbol occupied by the second PDCCH as the second symbol (that is, symbol 1) of the time unit, and the network device may configure the PDSCH of the second cell to occupy the first symbol of the time unit (that is, symbol 0), that is, the network device can send PDSCH data at the time of the first symbol.
  • the second PDCCH of the second cell does not occupy the symbol configured with the CRS of the first cell
  • the second PDCCH of the second cell is located in the first three symbols of a time unit
  • the PDSCH of the second cell can occupy the symbols originally occupied by the first PDCCH of the first cell, thus increasing the number of symbols of the second cell The number of symbols that the PDSCH can occupy, thereby improving the efficiency of network resource usage.
  • the network device may configure the first symbol of the first PDCCH occupied time unit of the first cell.
  • the network device can configure the scheduling range of the PDSCH of the second cell within the time unit to be from the second symbol to the last symbol of the time unit, that is, the network device can configure the PDSCH of the second cell to be within the time unit
  • the first symbol occupied within a cell is the second symbol for that time cell. Taking the time unit including 14 symbols as an example, the scheduling range of the PDSCH of the second cell within the time unit is from the second symbol to the fourteenth symbol of the time unit.
  • the scheduling range of the second PDCCH of the second cell within the time unit is from the second symbol to the third symbol of the time unit, and the symbols occupied by the second PDCCH cannot be matched with the CRS in the first cell. Occupied symbols do not overlap.
  • FIG. 7 is a schematic diagram of PDSCH scheduling, which is similar to FIG. 6.
  • the number of CRS ports in the first cell is 4, and the first cell
  • the first symbol and the second symbol of the time unit include the CRS of the first cell.
  • the network device may transmit data of the PDSCH of the second cell within the second symbol to the fourteenth symbol (symbol 1 to symbol 13 ) in the time unit.
  • the network device can configure the symbol occupied by the second PDCCH of the second cell as the third symbol of the time unit, that is, symbol 2 .
  • the network device can set the first cell occupied by the second PDCCH of the second cell to The symbols are configured as the third symbol of the time unit, and the first symbol occupied by the PDSCH of the second cell is configured as the second symbol of the time unit.
  • the network device configures the first PDCCH to occupy the first symbol of the time unit, and the network device configures the second PDCCH of the second cell to occupy the time The third symbol of the unit, and configure the PDSCH of the second cell to occupy the second symbol of the time unit, thereby increasing the number of symbols that can be used for the PDSCH of the second cell, and further improving the efficiency of network resource usage.
  • the network device may also indicate the first symbol occupied by the PDSCH to the terminal device in the second cell, and details may refer to the following description.
  • S503 The network device sends the first information to the terminal device in the second cell.
  • the first information is used to indicate the first symbol occupied by the PDSCH within the time unit, that is, to indicate the position of the first symbol occupied by the PDSCH within the time unit.
  • the first information may indicate the symbol number of the first symbol occupied by the PDSCH. For example, if the first symbol occupied by the PDSCH is the first symbol of the time unit, then the symbol number indicated by the first information is symbol 0; The first symbol of is the second symbol of the time unit, then the symbol number indicated by the first information is symbol 1.
  • the first information may also indicate the number of symbols occupied by the PDSCH, and the first information may be carried by downlink control information (DCI) or by RRC signaling, which is not limited in this embodiment of the present application.
  • DCI downlink control information
  • RRC signaling which is not limited in this embodiment of the present application.
  • the network device may also send second information to the terminal device in the second cell, the second information is used to indicate the first symbol occupied by the second PDCCH in the time unit and the symbol of the symbol occupied by the second PDCCH Quantity and other information.
  • the terminal equipment in the second cell can receive the data of the PDSCH at the first symbol occupied by the PDSCH according to the first information, and can also receive the data of the second PDCCH at the first symbol occupied by the second PDCCH according to the second information , the specific process is not limited, and will not be repeated here.
  • the network device can adjust the number of symbols occupied by the PDSCH of the second cell according to the number of symbols occupied by the first PDCCH of the first cell , realizing flexible allocation of resources, and improving resource utilization and spectrum efficiency of the second cell.
  • the method shown in FIG. 5 will be described in detail below through a specific embodiment. It is assumed that the first cell is an LTE cell, the second cell is an NR cell, and the first cell and the second cell share the same spectrum resource by using the DSS technology.
  • the network device may determine the number of terminal devices in the RRC connected state in the first cell.
  • the network device performs resource scheduling on the PDSCH of the second cell when the number of terminal devices in the RRC connection state in the first cell changes.
  • Four scenarios are illustrated in FIG. 8 , which will be described respectively below.
  • the number of terminal devices in the RRC connected state in the first cell is equal to 0, that is, equal to the first threshold, and the first cell is in a user idle state.
  • the number of symbols occupied by the first PDCCH of the first cell can be 0, and the first symbol occupied by the PDSCH of the second cell is the first symbol of the time unit, that is, the PDSCH of the second cell is within a time unit
  • the scheduling range is from symbol 0 to symbol 13 of the time unit, so as to maximize the downlink throughput of the second cell.
  • the network device may also not send data in the PHICH in the first cell.
  • the network device may use the PHICH of the first cell for data transmission of the second cell, thereby improving resource utilization of the second cell.
  • the network device may also not map data in resources corresponding to the PCFICH in the first cell. In this implementation manner, the network device may use resources corresponding to the PCFICH of the first cell for data transmission of the second cell, thereby improving resource utilization of the second cell.
  • the network device may not send data in the PHICH in subframes other than the need to send paging (paging) messages and system information block (system information block, SIB) system messages in the first cell, and/or , do not map data in the resources corresponding to the PCFICH.
  • paging paging
  • SIB system information block
  • not sending data in the PHICH can mean that the data to be carried in the PHICH is not generated, so that the data is not sent in the PHICH;
  • not mapping data in the resources corresponding to the PCFICH can mean that the data to be carried in the PCFICH is generated, but ultimately not The data is modulated into resources corresponding to the PCFICH.
  • the random access process may sequentially include a four-step message flow: the terminal device sends a message 1, which includes a preamble; the network device sends a message 2, and the message 2 may be a random access response (random access response, RAR) message; The device sends message 3, which may be a response message to message 2; the network device sends message 4, which may be a contention resolution message.
  • RAR random access response
  • the network device when the network device receives message 1 in the first cell, it may continue to map data in resources corresponding to the PCFICH. Before sending message 2 to the terminal device, the network device maps data in resources corresponding to the PCFICH in the first cell. After sending the message 2, the network device does not map data in the resource corresponding to the PCFICH in the first cell. When the network device receives the message 3 from the terminal device, it maps data in the resources corresponding to the PCFICH. After the terminal device accesses the first cell, the network device can send data in the PHICH.
  • the network device dynamically adjusts whether to map data in the resources corresponding to the PCFICH, so as to improve the resource utilization rate of the second cell and at the same time ensure that the data mapped in the resources corresponding to the PCFICH in the first cell can be
  • the terminal device receives, so that the terminal device can successfully access the first cell.
  • the network device maps data in the resources corresponding to PCFICH, and sends data in PHICH, and no longer shares the first symbol of the time unit with the second Used by the second district.
  • the network device may determine the number of symbols occupied by the first PDCCH of the first cell according to the service requirements of the terminal device, and may determine the first symbol occupied by the PDSCH of the second cell within the time unit according to the number of symbols. For how to determine the first symbol occupied by the PDSCH of the second cell within the time unit, reference may be made to the description of S502 in FIG. 5 , which will not be repeated here.
  • the number of symbols occupied by the first PDCCH of the first cell may be 0, and the PDSCH of the second cell is scheduled within a time unit ranging from symbol 0 to symbol 13 of the time unit.
  • the PDSCH of the second cell can occupy 0 first 2 symbols.
  • the number of RE resources that can be used in one time unit in the second cell increases from 128 to 144, resource overhead decreases from 23.81% to 14.29%, and resource utilization increases from 76.19% to 85.71%.
  • the number of symbols occupied by the first PDCCH in the first cell is 1, and the number of CRS ports in the first cell is 2, the number of RE resources that can be used in one time unit in the second cell increases from 144 to 152.
  • the overhead is reduced from 14.29% to 9.52%, and the resource utilization is increased from 85.71% to 90.48%.
  • the number of symbols occupied by the first PDCCH in the first cell is 1 and the number of CRS ports in the first cell is 1, the number of RE resources that can be used in one time unit in the second cell increases from 150 to 160, and the resources The overhead is reduced from 10.71% to 4.76%, and the resource utilization is increased from 89.29% to 95.24%.
  • the operator adopts the DSS solution, so that the network can meet the coverage of NR cells while taking into account the capacity of LTE cells.
  • the embodiment of the present application also provides a method that can improve the resource utilization rate of the NR cell and realize smooth evolution from the LTE network to the NR network.
  • the first cell can be an LTE cell
  • the second cell can be an NR cell as an example.
  • the first cell and the second cell dynamically
  • the frequency spectrum shares the same spectrum resource, and the method includes the following steps:
  • the network device determines that the first cell satisfies a preset condition, and then reconfigures the number of CRS resources of the first cell, where the number of CRS resources after reconfiguration is smaller than the number of CRS resources before reconfiguration.
  • the CRS resource may refer to the resource occupied by the CRS, and when the resource occupied by the CRS is an RE resource, one CRS resource may refer to one RE resource occupied by the CRS.
  • the preset condition may be determined according to the service load of the first cell itself and the service load of the co-coverage neighboring cells around the first cell.
  • preset conditions may include at least one of the following:
  • the service load of the first cell is less than or equal to the first load
  • the service load of the adjacent cell with the same coverage of the first cell is less than or equal to the second load.
  • the application does not limit the relationship between the first load and the second load, for example, the first load may be greater than the second load.
  • the network device may reconfigure the number of CRS resources in at least one of the following ways:
  • the network device modifies the number of ports of the CRS of the first cell from the first number to a second number, and the first number is greater than the second number. Since the greater the number of CRS ports, the greater the number of CRS resources. By reducing the number of CRS ports, the number of CRS resources can be reduced, thereby reducing the resource overhead in the second cell and further saving more resources that can be used for data transmission. resources, and improve the resource utilization rate of the second cell.
  • the network device changes the transmission mode of the MBSFN subframe in the first cell from the first mode to the second mode; wherein, the cycle duration corresponding to the first mode is the first time length, and a period corresponding to the first mode is The number of MBSFN subframes included in the cycle is the third number; the duration of the cycle corresponding to the second mode is the second duration, and the number of MBSFN subframes included in a cycle corresponding to the second mode is the fourth number.
  • the first duration is greater than the second duration, and the third quantity is smaller than the fourth quantity.
  • the number of CRS resources included in the MBSFN subframe is much smaller than the number of CRS resources included in the non-MBSFN subframe.
  • the number of MBSFN subframes can be increased, thereby reducing the number of CRS resources.
  • the CRS resources originally used to transmit CRS can be used for the transmission of the PDSCH data of the second cell, so as to increase the resources available for the PDSCH of the second cell, reduce resource overhead in the second cell, and improve The resource utilization rate of the second cell.
  • the number of CRS resources is reduced, reducing resource overhead in the second cell and improving resource utilization in the second cell.
  • the MBSFN subframe is sent in the following manner: the network device sends 2 MBSFN subframes every 40 milliseconds.
  • subframes marked with "M” represent MBSFN subframes
  • subframes not marked with "M” represent non-MBSFN subframes.
  • the structure of the non-MBSFN subframe is shown in (b) of FIG. 12 .
  • the number of CRS ports is 4, in this case, the number of CRS resources included in the non-MBSFN subframe is 24.
  • the structure of the MBSFN subframe is shown in (c) in Figure 12.
  • the number of CRS ports is 4, in this case, the number of CRS resources included in the MBSFN subframe is 8, which is smaller than the number of CRS resources included in the non-MBSFN subframe number of resources.
  • the MBSFN subframe sending mode is changed to: the network device sends 6 MBSFN subframes every 10 milliseconds.
  • subframes marked with "M” represent MBSFN subframes
  • subframes not marked with "M” represent non-MBSFN subframes.
  • the number of CRS ports in the first cell is changed from 4 to 1.
  • the number of CRS ports is 1, a schematic structural diagram of a non-MBSFN subframe. In this case, a non-MBSFN subframe
  • the number of CRS resources included in the MBSFN subframe is 8.
  • the number of CRS resources included in the MBSFN subframe is 2, which is less than the number of CRS resources included in the non-MBSFN subframe The number of CRS resources.
  • the method may include multiple implementations, for example, the network device only increases the sending period of the MBSFN subframe (that is, increases the MBSFN subframe number), or the network device only reduces the number of ports of the CRS resource, and can also be combined with increasing the number of MBSFN subframes and increasing the number of ports of the CRS resource in the MBSFN subframe, and finally increases the number of resources that the NR cell can use, thereby Improve the spectral efficiency of NR cells.
  • a network device may also perform at least one of the following processes:
  • the cell with the same coverage may refer to a cell with the same coverage as the first cell.
  • the first cell no longer bears new terminal devices, that is, the first cell is set to a barred state, and the RRC idle state terminal device is not allowed to initiate random access to the first cell.
  • the LTE same-frequency handover procedure is no longer triggered, but the inter-frequency/inter-system handover procedure is started , to migrate the terminal equipment to a different-frequency/different-standard cell instead of migrating the terminal equipment to the first cell, so as to eliminate the uplink and downlink co-frequency interference between the LTE and NR systems caused by the untimely switching of the terminal equipment.
  • the first cell is the strongest neighboring cell, which may indicate that the signal of the first cell is the strongest, for example, the reference signal receiving power (reference signal receiving power, RSRP) of the signal of the first cell is the largest.
  • S1102 The network device sends reconfiguration information to the terminal device in the second cell.
  • the reconfiguration information is used to indicate the location and quantity of CRS resources in the first cell.
  • resources other than the CRS resource may be used for data transmission of the terminal equipment in the second cell. Since the number of CRS resources in the first cell decreases, the number of available resources in the second cell increases, thereby improving spectrum efficiency and data throughput in the second cell.
  • the resources here may refer to time-frequency resources, for example, may refer to RE resources.
  • the network device may send reconfiguration information through a first RRC reconfiguration (reconfiguration) message, and the reconfiguration information may be a CRS rate matching pattern (CRS RateMatching Pattern) in the first RRC reconfiguration message.
  • the CRS rate matching pattern can be used to indicate the location and quantity of CRS resources in the first cell to the terminal device in the second cell, so that the terminal device in the second cell can determine which RE resources are occupied by CRS, so that the terminal device is in the CRS occupied Processing is performed at RE resources other than the RE resource, for example, the processing may be demodulation of data in a channel.
  • the network device may also cancel the first PDCCH in the first cell, and schedule the PDSCH from the first symbol of a time unit in the second cell, that is, in a time unit, the second
  • the PDSCH scheduling range of the cell is from symbol 0 to symbol 13 of the time unit.
  • the number of CRS ports in the first cell can also be restored to the number of CRS ports before the preset condition is met, and the MBSFN subframe transmission mode in the first cell can be restored to the MBSFN subframe transmission before the preset condition is met.
  • the network device detects that the service load of the same-coverage neighboring cell of the first cell is greater than the second load, the number of CRS ports in the first cell can be restored to the number of CRS ports before meeting the preset conditions, and the number of MBSFN sub- The frame sending mode is restored to the MBSFN subframe sending mode before the preset condition is satisfied.
  • the process for the network device to restore the first cell to the state before the preset condition is satisfied may include at least one of the following:
  • the network device modifies the CRS port configuration and MBSFN subframe configuration of the first cell. For example, the network device modifies the number of CRS ports of the first cell to 4 ports, and modifies the sending method of MBSFN subframes to: configure 2 every 40 milliseconds MBSFN subframe.
  • the network device allows the terminal device in the RRC idle state to normally access the first cell, for example, the network device no longer sets the first cell as a forbidden state, and allows the terminal device in the RRC idle state to initiate random access to the first cell; or the network device resumes the first cell
  • the priority of a cell enables the RRC idle state terminal equipment to migrate to the first cell.
  • the network device allows the RRC-connected terminal device in the surrounding neighboring cells to switch into the first cell normally.
  • the network device may also send a second RRC reconfiguration message to the terminal device in the second cell, and the second RRC reconfiguration message instructs the first cell to return to the number of CRS ports and the MBSFN subframe sending method before the preset condition is met. .
  • LTE cells can be deployed on demand, that is, when the LTE network capacity is large, activate the LTE cell to absorb LTE traffic, and when the LTE network capacity is low, turn off the LTE cell, effectively reducing the impact of the LTE cell on the performance of the NR cell in the DSS scenario.
  • it can reduce the uplink and downlink co-channel interference between the LTE system and the NR system caused by the switching of terminal equipment, and improve system stability.
  • the network device, terminal device or the above-mentioned communication device may include a hardware structure and/or a software module in the form of a hardware structure, a software module, or a hardware structure plus a software module. Realize the above functions. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • this embodiment of the present application further provides a communication device 1400 .
  • the communication apparatus 1400 may be the terminal device in FIG. 1 , and is configured to implement the method corresponding to the terminal device in the foregoing method embodiments.
  • the communication device may also be the network device in FIG. 1 , configured to implement the method corresponding to the network device in the foregoing method embodiments.
  • the communication device 1400 may include: a processing unit 1401 and a communication unit 1402 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the sending and receiving steps of the network device or the terminal device in the method embodiments above.
  • the communication device provided by the embodiment of the present application will be described in detail with reference to FIG. 14 to FIG. 15 .
  • a processing unit configured to determine the number of symbols occupied by the first physical downlink control channel of the first cell in a time unit
  • the processing unit is configured to determine the first symbol occupied by the physical downlink shared channel of the second cell within the time unit according to the number of symbols; wherein, the first cell and the second cell are dynamic Spectrum shared cells.
  • the processing unit is specifically configured to:
  • the number of symbols is 0, it is determined that the first symbol occupied by the physical downlink shared channel of the second cell within the time unit is the first symbol of the time unit.
  • the communication unit is further configured to: use resources corresponding to the physical hybrid automatic repeat request indication channel in the first cell to transmit data of the second cell, and the physical The HARQ indicates that the channel is located at the first symbol of the time unit.
  • the communication unit is further configured to: use the resources corresponding to the physical control format indication channel in the first cell to transmit data of the second cell, and the physical control format indication The channel is located at the first symbol of the time unit.
  • the processing unit is specifically configured to:
  • the number of symbols occupied by the first physical downlink control channel is 0.
  • the processing unit is specifically configured to;
  • the first symbol occupied by the physical downlink shared channel of the second cell in the time unit is the second symbol of the time unit, wherein the first cell
  • the processing unit is specifically configured to:
  • the number of symbols occupied by the first physical downlink control channel used is less than 2 If it is determined that the first physical downlink control channel is used in the first cell, and it is determined that the number of symbols occupied by the first physical downlink control channel used is less than 2, then determine the number of symbols occupied by the first physical downlink control channel is 1.
  • the communication unit is configured to send first information to terminal devices in the second cell, where the first information is used to indicate that the physical downlink shared channel is within the time unit the first symbol of .
  • a communication unit configured to receive first information from the network device in the second cell, where the first information is used to indicate the first symbol of the physical downlink shared channel of the second cell within a time unit;
  • the communication unit is configured to receive the physical downlink shared channel through the first symbol; wherein, the first symbol of the physical downlink shared channel in the time unit is based on the symbols occupied by the first physical downlink control channel of the first cell in the time unit The number of symbols is determined, and the dynamic spectrum of the first cell and the second cell share the same spectrum resource.
  • the first symbol occupied by the physical downlink shared channel of the second cell in the time unit is the first symbol of the time unit.
  • the communication unit is further configured to: send or receive data in a resource corresponding to a physical hybrid automatic repeat request indication channel in the first cell, where the physical hybrid automatic repeat request indication channel is located at the first time unit a symbol.
  • the communication unit is further configured to: send or receive data in a resource corresponding to a physical control format indicator channel in the first cell, where the physical control format indicator channel is located in the first symbol of the time unit.
  • a processing unit configured to reconfigure the number of cell-specific reference signal resources of the first cell if the preset condition is met, wherein the number of cell-specific reference signal resources after reconfiguration is smaller than the number of cell-specific reference signal resources before reconfiguration ;
  • a communication unit configured to send reconfiguration information to the terminal equipment in the second cell, where the reconfiguration information is used to indicate the location and quantity of cell-specific reference signal resources, where the resources shared by the first cell and the second cell except the cell-specific
  • the resource of the reference signal resource is used for data transmission of the terminal equipment in the second cell; the first cell and the second cell are cells of dynamic spectrum sharing.
  • reconfiguring the number of cell-specific reference signal resources of the first cell includes: modifying the number of ports of the cell-specific reference signal of the first cell from a first number to a second number, where the first number is greater than second quantity.
  • the processing unit is specifically configured to: change the sending method of the MBMSSFN subframe of the first cell from the first method to the second method; wherein, the cycle duration corresponding to the first method Be the first duration, the number of MBMSFN subframes sent in a cycle corresponding to the first method is the third quantity; the cycle duration corresponding to the second method is the second duration, and a cycle corresponding to the second method
  • the quantity of the MBMSFSN subframe included in is the 4th quantity;
  • the transmission mode of the MBMSSN subframe of the first cell is changed from the first method to the second method, including: the first The duration is greater than the second duration, and/or, the third quantity is less than the fourth quantity.
  • the preset condition includes at least one of the following: the service load of the first cell is less than or equal to the first load; the service load of the same-coverage neighboring cell of the first cell is less than or equal to the second load.
  • the communication unit is further configured to: suspend providing services to terminal devices in the first cell.
  • the first symbol occupied by the physical downlink shared channel of the second cell in the time unit is the first symbol of the time unit.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiving device, or the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the communication unit 1402 for realizing the receiving function may be regarded as a receiving unit
  • the device in the communication unit 1402 for realizing the sending function may be regarded as a sending unit, that is, the communication unit 1402 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit and the like.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • processing unit 1401 and the communication unit 1402 may also perform other functions.
  • processing unit 1401 and the communication unit 1402 may also perform other functions.
  • FIG. 15 a communication device 1500 provided in the embodiment of the present application is shown.
  • the communication device shown in FIG. 15 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 14 .
  • the communication device may be applicable to the flow chart shown above, and execute the functions of the terminal device or the network device in the above method embodiments.
  • FIG. 15 shows only the main components of the communication device.
  • a communication device 1500 includes a processor 1510 and an interface circuit 1520 .
  • the processor 1510 and the interface circuit 1520 are coupled to each other.
  • the interface circuit 1520 may be a transceiver or an input/output interface.
  • the communication device 1500 may further include a memory 1530 for storing instructions executed by the processor 1510 or storing input data required by the processor 1510 to execute the instructions or storing data generated by the processor 1510 after executing the instructions.
  • the processor 1510 is used to implement the functions of the above-mentioned processing unit 1401
  • the interface circuit 1520 is used to implement the functions of the above-mentioned communication unit 1402 .
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antenna) to send information, which is sent by the terminal device to the network device.
  • the network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by the terminal device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antenna) to send information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • memory can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable Programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Processors and storage media may also exist in network devices or terminal devices as discrete components.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种调度方法及装置,该方法包括:确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量;该符号表示该时间单元的单位;根据该符号数量,确定第二小区的物理下行共享信道在该时间单元内的第一个符号;其中,该第一小区和该第二小区动态频谱共享同一段频谱资源。通过上面的方法,第一小区和第二小区应用DSS技术共享同一段频谱资源时,网络设备可以根据第一小区的第一PDCCH占用符号的符号数量,调整第二小区的PDSCH占用的第一个符号,实现资源的灵活分配,提高第二小区的资源利用率以及频谱效率。

Description

一种调度方法及装置
相关申请的交叉引用
本申请要求在2021年10月19日提交中国专利局、申请号为202111217641.9、申请名称为“一种调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种调度方法及装置。
背景技术
动态频谱共享(dynamic spectrum sharing,DSS)技术为一种新无线(new radio,NR)系统和长期演进(long term evolution,LTE)系统共享同一段频谱的技术,由于频谱资源稀缺,该技术用以提高资源利用率。DSS技术实现了从LTE系统逐渐平滑过渡到NR系统。在使用该DSS技术的情况下,可供NR系统使用的资源是有限的,且网络设备为LTE系统分配的资源没有得到充分的使用,造成了资源的浪费,降低了网络中的资源利用率。
也就是说,LTE系统和NR系统共享重叠频谱资源时,为了避免所使用的资源冲突,NR系统的资源利用率并不高,因此如何提高网络的资源利用率是一个亟待解决的问题。
发明内容
本申请提供一种调度方法及装置,用以解决如何提高网络的资源利用率的问题。
第一方面,本申请提供一种调度方法,该方法的执行主体可以为网络设备或网络设备中的芯片或一个模块,这里以网络设备为执行主体为例进行描述。该方法包括:网络设备确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量,网络设备可以根据该符号数量,确定第二小区的物理下行共享信道在该时间单元内占用的第一个符号;其中,第一小区和第二小区为动态频谱共享的小区。
通过实施该实现方式所示的方法,第一小区和第二小区应用DSS技术共享同一段频谱资源时,网络设备可以根据第一物理下行控制信道占用符号的符号数量,调整第二小区的物理下行共享信道占用的第一个符号,实现灵活的调整物理下行共享信道的调度范围,提高第二小区的资源利用率以及频谱效率。
一种可能的实现方式中,根据符号数量,确定第二小区的物理下行共享信道在时间单元内占用的第一个符号,包括:若符号数量为0,则确定第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第一个符号。
通过实施该实现方式所示的方法,第一物理下行控制信道占用符号的符号数量为0时,从时间单元的第一个符号开始调度第二小区的物理下行共享信道,可以使得物理下行共享信道在共享频谱资源中能够占用更多数量的资源,从而提高第二小区在共享频谱资源中的资源利用率。
一种可能的实现方式中,该方法还包括:将第一小区中的物理混合自动重传请求指示信道对应的资源,用于传输第二小区的数据,物理混合自动重传请求指示信道位于时间单元的第一个符号。
通过实施该实现方式所示的方法,不在第一小区中的物理混合自动重传请求指示信道中发送数据。物理混合自动重传请求指示信道对应的资源,可以用于第二小区进行数据传输,从而提高第二小区在共享频谱资源中的资源利用率。
一种可能的实现方式中,该方法还包括:将第一小区中的物理控制格式指示信道对应的资源,用于传输第二小区的数据,物理控制格式指示信道位于时间单元的第一个符号。
通过实施该实现方式所示的方法,在第一小区中,不在物理控制格式指示信道对应的资源中映射数据,物理控制格式指示信道对应的资源可以用于第二小区进行数据传输,从而提高第二小区在共享频谱资源中的资源利用率。
一种可能的实现方式中,确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量,包括:若确定在第一小区内不使用第一物理下行控制信道,则第一物理下行控制信道占用符号的符号数量为0。
通过实施该实现方式所示的方法在第一小区内不使用第一物理下行控制信道时,网络设备可以准确的确定第一物理下行控制信道占用符号的符号数量,从而确定第二小区的物理下行共享信道可占用的第一个符号的位置。
一种可能的实现方式中,根据符号数量,确定第二小区的物理下行共享信道在时间单元内占用的第一个符号,包括;若符号数量为1,则确定第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第二个符号,其中,第一小区的第一物理下行控制信道占用时间单元的第一个符号。
通过实施该实现方式所示的方法,第一物理下行控制信道占用符号的符号数量为1时,网络设备从时间单元的第二个符号开始调度第二小区的物理下行共享信道,可以使得物理下行共享信道在共享频谱资源中能够占用更多数量的资源,从而提高第二小区在共享频谱资源中的资源利用率。
一种可能的实现方式中,确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量,包括:若确定在第一小区内使用第一物理下行控制信道,并且确定使用的第一物理下行控制信道占用的符号的数量小于2,则确定第一物理下行控制信道占用符号的符号数量为1。
一种可能的实现方式中,若在第一小区中,在时间单元内的第二个符号中未配置下行参考信号,则第二小区的第二物理下行控制信道在时间单元内的第一个符号为时间单元的第二个符号或第三个符号。
通过实施该实现方式所示的方法,从时间单元的第二个符号或第三个符号开始调度第二小区的第二物理下行控制信道,可以使得第二物理下行控制信道在共享频谱资源中能够占用更多数量的资源,从而提高第二小区在共享频谱资源中的资源利用率。
一种可能的实现方式中,该方法还包括:向第二小区内的终端设备发送第一信息,第一信息用于指示物理下行共享信道在时间单元内的第一个符号。
第二方面,本申请提供一种消息传输方法,该方法的执行主体可以为终端设备或终端设备中的芯片或一个模块,这里以终端设备为执行主体为例进行描述。该方法包括:位于第二小区中的终端设备接收来自网络设备的第一信息,第一信息用于指示第二小区的物理下行共享信道在时间单元内的第一个符号;通过该第一个符号接收物理下行共享信道,第一小区和第二小区动态频谱共享同一段频谱资源。
可以理解的是,物理下行共享信道在时间单元内的第一个符号,是网络设备根据第一 小区的第一物理下行控制信道在时间单元内占用符号的符号数量确定的。
一种可能的实现方式中,若符号数量为0,则第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第一个符号。
一种可能的实现方式中,该方法还包括:在第一小区中的物理混合自动重传请求指示信道对应的资源中发送或接收数据,物理混合自动重传请求指示信道位于时间单元的第一个符号。
一种可能的实现方式中,该方法还包括:在第一小区中的物理控制格式指示信道对应的资源中发送或接收数据,物理控制格式指示信道位于时间单元的第一个符号。
本方面的实施方式可以参考第一方面的实施方式的描述,此处不再赘述。
第三方面,本申请提供一种调度方法,该方法的执行主体可以为网络设备或网络设备中的芯片或一个模块,这里以网络设备为执行主体为例进行描述。该方法包括:网络设备若满足预设条件,重配置第一小区的小区特定参考信号资源的数量,其中,重配置后的小区特定参考信号资源的数量小于重配置前的小区特定参考信号资源的数量;向第二小区中的终端设备发送重配置信息,重配置信息用于指示小区特定参考信号资源的位置和数量,其中,第一小区和第二小区共享的资源中除了小区特定参考信号资源的资源用于第二小区中的终端设备的数据传输;第一小区和第二小区为动态频谱共享的小区。
通过实施该实现方式所示的方法,在满足预设条件时,网络设备通过减少第一小区中小区特定参考信号资源的数量,实现增加第二小区可以使用的资源数量,从而提高第二小区的频谱效率。
一种可能的实现方式中,重配置第一小区的小区特定参考信号资源的数量,包括:将第一小区的小区特定参考信号的端口数由第一数量修改为第二数量,第一数量大于第二数量。
一种可能的实现方式中,该方法还包括:将第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式;其中,第一方式对应的周期时长为第一时长,第一方式对应的一个周期内发送的多媒体广播多播单频网子帧的数量为第三数量;第二方式对应的周期时长为第二时长,第二方式对应的一个周期内包括的多媒体广播多播单频网子帧的数量为第四数量;将第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式,包括:第一时长大于第二时长,和/或,第三数量小于第四数量。
通过实施该实现方式所示的方法,网络设备通过减小MBSFN子帧的发送周期的周期时长,可以增加MBSFN子帧的数量,从而减少小区特定参考信号(cell-specific reference signal,CRS)资源数量。CRS资源数量减少,就可以将原来用于传输CRS的CRS资源用于第二小区的PDSCH的数据的传输,实现增加第二小区的PDSCH可以使用的资源,减少第二小区中的资源开销,提高第二小区的资源利用率。另外,网络设备通过增加每个周期中MBSFN子帧的数量,从而减少CRS资源数量,实现减少第二小区中的资源开销,提高第二小区的资源利用率。
一种可能的实现方式中,预设条件包括以下至少一项:第一小区的业务负载小于或等于第一负载;第一小区的同覆盖邻区的业务负载小于或等于第二负载。
一种可能的实现方式中,该方法还包括:暂停为第一小区的终端设备提供服务。
一种可能的实现方式中,该方法还包括:第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第一个符号。
通过实施该实现方式所示的方法,网络设备从时间单元的第一个符号开始调度第二小区的物理下行共享信道,可以使得物理下行共享信道在共享频谱资源中能够占用更多数量的资源,从而提高第二小区在共享频谱资源中的资源利用率。
第四方面,本申请提供一种消息传输方法,该方法的执行主体可以为终端设备或终端设备中的芯片或一个模块,这里以终端设备为执行主体为例进行描述。该方法包括:位于第二小区中的终端设备接收来自网络设备的重配置信息,重配置信息用于指示第一小区的小区特定参考信号资源的位置和数量,其中,第一小区和第二小区共享的资源中除了小区特定参考信号资源的资源用于第二小区中的终端设备的数据传输;第一小区和第二小区为动态频谱共享的小区。其中,重配置后的小区特定参考信号资源的数量小于重配置前的小区特定参考信号资源的数量。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面至第四方面中任一方面提供的任一方法或任一实现方式。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备或网络设备等设备之间的通信。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第三方面提供的方法中的描述,此处不做赘述。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器用于执行所述存储器中存储的计算机程序或指令,实现前述第一方面至第四方面中任一方面中任意可能的实现方式中的方法。可选地,该装置还包括存储器,所述存储器中存储计算机程序或指令。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现前述第一方面至第四方面中任一方面中任意可能的实现方式中的方法。
第八方面,提供了一种存储有计算机可读指令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得所述计算机实现前述第一方面至第四方面中任一方面中任意可能的实现方式中的方法。
第九方面,提供一种芯片,该芯片包括处理器,还可以包括存储器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得芯片实现前述第一方面至第四方面中任一方面中任意可能的实现方式中的方法。
第十方面,提供一种通信系统,所述系统包括实现第一方面所述的装置(如网络设备)以及实现第二方面所述的装置(如终端设备)。
附图说明
图1为适用于本申请实施例的一种网络架构示意图;
图2为LTE系统中CRS为4端口时的子帧中单个RB资源示意图;
图3为LTE系统中CRS为2端口时的子帧中单个RB资源示意图;
图4为LTE系统中CRS为1端口时的子帧中单个RB资源示意图;
图5为本申请实施例提供的一种调度方法流程示意图;
图6为本申请实施例提供的一种PDSCH调度示意图(以单个子帧中单个RB资源为例);
图7为本申请实施例提供的一种PDSCH调度示意图(以单个子帧中单个RB资源为例);
图8为本申请实施例提供的第一小区中终端设备数量变化场景示意图;
图9为本申请实施例提供的一种随机接入过程示意图;
图10为本申请实施例提供的一种小区容量变化示意图;
图11为本申请实施例提供的一种调度方法流程示意图;
图12为本申请实施例提供的一种LTE小区中MBSFN子帧配置示意图;
图13为本申请实施例提供的一种LTE小区中MBSFN子帧配置示意图;
图14为本申请实施例提供的一种通信装置结构示意图;
图15为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:NR系统、LTE系统、全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、通用分组无线业务(general packet radio service,GPRS)、未来通信系统等其它通信系统,具体的,在此不做限制。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端等。
在本申请实施例中,网络设备可以为各种制式下无线接入设备,例如可以是NR系统中的下一代基站(next Generation node B,gNB),可以是演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(NR)系统中的gNB或传输点,5G系统中的基站的一个或一组(包括多个天线面板)天线面板。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。本申请实 施例中的基站可以是一体化基站,或者可以是包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)的基站。包括CU和DU的基站还可以称为CU和DU分离的基站,如该基站包括gNB-CU和gNB-DU。其中,CU还可以分离为CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-CP),如该基站包括gNB-CU-CP、gNB-CU-UP和gNB-DU。
如图1所示,为适用于本申请实施例的网络架构的示意图。该网络架构包括网络设备和终端设备。网络设备可以支持多种通信系统,并可配置多个小区,例如网络设备可以支持LTE系统和NR系统,可以同时配置LTE小区和NR小区,其中LTE小区和NR小区可以共享同一段频谱资源,该技术可以为动态频谱共享(dynamic spectrum sharing,DSS)技术。以上技术只是示例。此外,本申请并不限定DSS技术所使用的场景,DSS技术也可以适用于其他网络中,本申请对此并不限定。终端设备可以为支持上述多种通信系统中的一种或多种的设备,该终端设备的种类并不限定。
以LTE系统和NR系统动态频谱共享场景为例,由于NR系统中的物理下行控制信道(physical downlink control channel,PDCCH)不能占用LTE系统中小区特定参考信号(cell-specific reference signal,CRS)的资源,因此NR系统中的PDCCH以及物理下行共享信道(physical downlink shared channel,PDSCH)可调度使用的正交频分复用(orthogonal frequency division multiplexing,OFDM)OFDM(symbol)会受到限制,下面结合附图进行描述。OFDM符号可以是指采用OFDM技术生成的信号波形,OFDM符号在时域上的长度等于该波形的子载波间隔的倒数。为了描述方便,以下描述中,将OFDM符号简称为符号。
为便于后续方案的理解,此处先介绍一下时间单元、子帧以及多媒体广播多播单频网(multimedia broadcast multicastservice single frequency network,MBSFN)子帧。在LTE系统中,一个子帧包括14个符号,在NR系统中,一个时隙包括14个符号,为了描述方便,本申请实施例中,可以将LTE系统中的子帧和NR系统中的时隙统称为时间单元。LTE中的子帧又可以分为两种类型:MBSFN子帧和非MBSFN子帧。MBSFN子帧中用于传输CRS的资源元素(resource element,RE)的资源比非MBSFN子帧中用于传输CRS的RE资源少,例如在CRS端口数为4时,在一个资源块(resource block,RB)范围内,一个非MBSFN子帧中包括24个用于传输CRS的RE资源,而MBSFN子帧中只包括8个用于传输CRS的RE资源。
假设LTE系统中CRS端口(port)数为4,那么LTE系统中CRS占用的资源可以如图2所示。图2示出了一个时隙的结构示意图,一个时隙包括14个符号,其中,第一个符号至第十四个符号依次称为符号0至符号13,CRS占用的RE资源位于符号0、符号1、符号4、符号7、符号8以及符号11。为了避免和LTE系统发生资源冲突,在该情况下,NR系统中的PDCCH配置在符号2,NR系统中的PDSCH可调度使用的符号范围为符号2至符号13,不能调度前2个符号。
结合图2,一个时隙中包括14×12=168个RE资源,其中,一个RE资源在图2中用一个小格子表示,黑色的小格子表示CRS占用的RE资源,白色的小格子表示没有被CRS占用的RE资源,后面描述的其他附图中也是同理。NR系统可以使用的RE资源的数量为:168-2×8-6×4=128。其中,2×8表示符号0和符号1上除了CRS占用的RE资源之外的RE资源的数量,6×4表示符号0、符号1、符号4、符号7、符号8以及符号11中CRS占用的RE资源的数量。
通过上面的过程可知,LTE系统中CRS端口数为4端口时,对于NR系统来说,RE资源开销率为(168-128)/168=23.81%,也就是说有至少23.81%的RE资源无法使用。
假设LTE系统中CRS端口数为2端口,那么LTE系统中CRS占用的RE资源可以如图3所示。图3示出了一个时隙,一个时隙包括14个符号,分别为符号0至符号13,CRS占用的RE资源位于符号0、符号4、符号7以及符号11。为了避免和LTE系统发生资源冲突,在该情况下,NR系统中的PDCCH配置在符号1和/或符号2(图中示出了NR系统中的PDCCH配置在符号1和符号2的情况,其他情况不再示出),NR系统中的PDSCH可调度使用的符号范围为符号1至符号13,不能调度符号0。
结合图3,一个时隙中NR系统可以使用的RE资源的数量为:168-1×8-4×4=144。其中,1×8表示符号0上除了CRS占用的RE资源之外的RE资源的数量,4×4表示符号0、符号4、符号7以及符号11中CRS占用的RE资源的数量。
通过上面的过程可知,LTE系统中CRS端口数为2端口时,对于NR系统来说,RE资源开销率为(168-144)/168=14.29%。
假设LTE系统中CRS端口数为1端口,那么LTE系统中CRS占用的RE资源可以如图4所示。图4示出了一个时隙,一个时隙包括14个符号,分别为符号0至符号13,CRS占用的RE资源位于符号0、符号4、符号7以及符号11。为了避免和LTE系统发生资源冲突,在该情况下,NR系统中的PDCCH配置在符号1和/或符号2(图中示出了NR系统中的PDCCH配置在符号1和符号2,其他情况不再示出),NR系统中的PDSCH可调度使用的符号范围为符号1至符号13,不能调度符号0。
结合图4,一个时隙中NR系统可以使用的RE资源的数量为:168-1×10-4×2=150。其中,1×10表示符号0上除了CRS占用的RE资源之外的RE资源的数量,4×2表示符号0、符号4、符号7以及符号11中CRS占用的RE资源的数量。
通过上面的过程可知,LTE系统中CRS端口数为1端口时,对于NR系统来说,RE资源开销率为(168-150)/168=10.71%。
通过上面的描述可知,在DSS技术中,由于NR系统需要与LTE系统共享频谱资源,NR系统不能调度LTE系统占用的资源,NR系统的PDSCH能够调度的资源有限,导致NR系统的资源利用率较低。
本申请实施例提供一种方法,在DSS场景中,可以降低NR系统的资源开销,提升NR系统下行速率和频谱效率。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,以网络设备以及终端设备之间交互为例进行说明,网络设备执行的操作也 可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行。
如图5所示,为本申请实施例提供的一种调度方法流程示意图,该方法中,网络设备可以支持多个通信系统,例如网络设备可以支持LTE系统和NR系统,网络设备可以建立多个小区,例如建立第一小区和第二小区。第一小区和第二小区为动态频谱共享的小区,或者说第一小区和第二小区动态共享同一段频谱资源,即第一小区和第二小区应用DSS技术共享同一段频谱资源。一种实现方式中,第一小区为LTE小区,第二小区为NR小区。另一种实现方式中,第一小区为NR小区,第二小区为LTE小区。第一小区和第二小区也可能为其他类型的小区,本申请实施例对此并不限定。
第一小区中包括第一PDCCH、物理混合自动重传请求(hybrid automatic repeat request,HARQ)指示信道(physical HARQ indicator channel,PHICH)以及物理控制格式指示信道(physical control format indicator channel,PCFICH)等物理信道。
其中,第一PDCCH可以承载向终端设备发送的上下行的资源调度信息等信息,PHICH可以承载HARQ确认(acknowledge,ACK)反馈或HARQ否定(negative acknowledgement,NACK)反馈。PCFICH用于指示时间单元中第一PDCCH占用的符号数量。
该实施例所示的方法中,以第一小区为LTE小区,第二小区为NR小区为例进行阐述,该方法可以包括以下步骤:
S501:网络设备确定第一小区的第一PDCCH在时间单元内占用符号的符号数量。
其中,一个符号可以理解为一段信号波形,一个符号在时域上的长度等于该波形的子载波间隔的倒数。符号在时域上的长度,可以作为时间单元的基本单位,也就是说,一个时间单元可以包括多个符号。本申请中的符号可以是指OFDM符号,也可以是指类似于OFDM符号的符号,本申请对此并不限定。
本申请实施例中,时间单元可以是指一段时长,由于本申请实施例涉及到两个不同的系统之间动态频谱共享,时间单元在不同系统中的名称可能不一样。例如,在NR系统中,时间单元可以是指时隙(slot),在LTE系统中,该时间单元可以是指子帧(subframe)的时长。
其中,第一小区中的第一PDCCH可以占用的符号数量不是固定值,最多占用2个符号,最少可以占用0个符号。网络设备具体如何确定第一PDCCH占用符号的符号数量,本申请实施例并不限定。
一种可能的实现方式中,若网络设备确定在第一小区不使用第一PDCCH,则第一PDCCH占用符号的符号数量为0。例如,若第一小区内处于无线资源控制(radio resource control,RRC)连接态的终端设备的数量小于或等于第一阈值,则确定不使用第一PDCCH,第一PDCCH占用符号的符号数量为0。
现有技术中,PHICH和PCFICH默认占用第一个符号,PHICH和PCFICH所占用的频域的资源是不一样的。在本申请所示的具体实施例中,网络设备可以将PHICH和/或PCFICH所占据的资源用于第二小区的数据的传输,从而进一步提升网络的资源利用效率。
具体的,一种可能的设计中,如果第一PDCCH占用符号的符号数量为0,在第一小区中,网络设备还可以不在PHICH中发送数据。其中,PHICH占用时间单元的第一个符号。相应的,在第二小区中,网络设备可以在PHICH对应的资源中调度终端设备进行数据传输,例如网络设备可以在PHICH对应的资源中向终端设备传输数据,或者,在PHICH 对应的资源中接收来自终端设备的数据。
由于PHICH占用时间单元的第一个符号,当网络设备不在PHICH中发送数据时,可以使得PHICH不会被第一小区占用,从而第一小区中的PHICH可以用于第二小区的数据传输,提高第二小区的资源利用率。
一种可能的设计中,如果第一PDCCH占用符号的符号数量为0,网络设备还可以在第一小区中,不在PCFICH对应的资源中映射数据。其中,PCFICH占用时间单元的第一个符号。在资源中映射数据,可以是指在资源中调制数据。相应的,在第二小区中,网络设备可以在PCFICH对应的资源中调度终端设备进行数据传输,例如网络设备可以在PCFICH对应的资源中向终端设备传输数据,或者,在PCFICH对应的资源中接收来自终端设备的数据。
由于PCFICH占用时间单元的第一个符号,当不在第一小区中PCFICH对应的资源映射数据时,可以使得PCFICH对应的资源用于第二小区的数据传输,提高第二小区的资源利用率。
一种可能的实现方式中,若网络设备确定在第一小区内使用第一PDCCH,并且确定第一PDCCH占用符号的符号数量小于2,则第一PDCCH占用符号的符号数量可以为1。例如若第一小区内处于RRC连接态的终端设备的数量大于第一阈值,则网络设备确定在第一小区内使用第一PDCCH,并且确定第一PDCCH占用符号的符号数量小于2,进而确定第一PDCCH占用符号的符号数量为1。其中,第一阈值可以为大于或等于0的数,第一阈值可以根据实际需求进行确定,本申请对第一阈值的具体取值并不限定。举例来说,若第一阈值等于0,也就是说,只要当第一小区内存在至少一个处于RRC连接态的终端设备,那么网络设备确定在第一小区内使用第一PDCCH。
本申请实施例中,当第一小区内处于RRC连接态的终端设备的数量大于第一阈值时,第一PDCCH占用符号的符号数量的具体取值,可以根据终端设备业务需求等因素确定。举例来说,第一小区内处于RRC连接态的终端设备所需的资源数量小于或等于第二阈值,则第一PDCCH占用符号的符号数量为1;第一小区内处于RRC连接态的终端设备所需的资源数量大于第二阈值,则第一PDCCH占用符号的符号数量为2。其中,第二阈值可以根据实际需求进行确定,本申请并不限定。举例来说,例如第二阈值为10RB,那么第一小区内处于RRC连接态的终端设备所需的资源数量小于或等于10RB时,则第一PDCCH占用符号的符号数量为1,否则,第一PDCCH占用符号的符号数量为2。可以理解的是,10RB为一个边界值,根据实际的需求,网络设备也可以按照第一小区内处于RRC连接态的终端设备所需的资源数量小于10RB时判定第一PDCCH占用符号的符号数量为1。本申请并不限定。
一种具体的方式,网络设备确定第一PDCCH占用符号的符号数量之后,网络设备可以通过内部接口,向第二小区发送信息,该信息中包括第一小区的第一PDCCH占用符号的符号数量,可选的,该信息还可以包括第一PDCCH占用的第一个符号的索引等信息。该方式便于网络设备后续根据第一PDCCH占用符号的符号数量,确定第二小区的PDSCH在该时间单元占用的符号。
S502:网络设备根据符号数量,确定第二小区的PDSCH在时间单元内占用的第一个符号。
本申请实施例中,第二小区的PDSCH在时间单元内占用的第一个符号的具体位置, 可以由网络设备根据第一小区的第一PDCCH占用符号的符号数量确定,具体的,可以包括但不限于以下几种情况:
情况一,如果第一小区的第一PDCCH占用符号的符号数量为0,网络设备可以配置第二小区的PDSCH在该时间单元内的调度范围为该时间单元的第一个符号至最后一个符号,也就是说,网络设备可以配置第二小区的PDSCH在时间单元内占用的第一个符号为该时间单元的第一个符号。以该时间单元包括14个符号为例,第二小区的PDSCH在该时间单元内的调度范围为该时间单元的第一个符号至第十四个符号。
可以理解的是,本申请实施例中,网络设备配置第二小区的PDSCH可以占用该时间单元的第一个符号,并不代表网络设备一定会通过第二小区的PDSCH在该时间单元的第一符号中发送数据,网络设备具体是否通过第二小区的PDSCH在该时间单元的第一符号中发送数据,需要根据实际的数据传输需求确定。同样的,网络设备配置第二小区的PDSCH的调度范围为该时间单元的第一个符号至最后一个符号,并不代表一定会通过第二小区的PDSCH在该时间单元的第一个符号至最后一个符号,需要根据实际的数据传输需求确定。
在情况一中,第二小区的第二PDCCH在该时间单元内的调度范围为该时间单元的第一个符号至第三个符号,且第二PDCCH占用的符号不能与第一小区中的CRS占用的符号一样。
结合图5所示的实施例的情况一的描述,举例来说,图6为一种PDSCH调度示意图,图6所示的资源在频域包括一个资源块(resource block,RB),该RB包括12个子载波;在时域上包括一个LTE系统中的子帧,或者一个NR系统中的时隙,其中一个LTE系统中的子帧的长度和一个NR系统中的时隙的长度相同。图6中以一个LTE系统中的子帧包括14个符号为例,这14个符号中的第一个符号至第十四个符号依次称为符号0至符号13。
图6以第一小区的CRS端口数为4为例,时间单元的第一个符号和第二个符号中包括第一小区的CRS。
结合图6,在情况一中,网络设备可以在该时间单元内的第一个符号至第十四个符号(即在符号0至符号13)内进行第二小区的PDSCH的数据的传输。另外,由于第二小区的第二PDCCH占用的符号为不包括第一小区的CRS的符号,网络设备可以将第二小区的第二PDCCH占用的第一个符号配置为该时间单元的第三个符号,即符号2。
此外,如果第一小区的CRS端口数为1或2,那么第一小区的CRS位于该时间单元的第一个符号。那么,网络设备可以配置第二小区的第二PDCCH的调度范围为该时间单元的第二个符号至第三个符号,网络设备可以配置第二小区的PDSCH的调度范围为该时间单元的第二个符号至第十四个符号。例如,网络设备可以配置第二PDCCH占用的符号为该时间单元的第二个符号(即,符号1),网络设备可以配置第二小区的PDSCH可以占用该时间单元的第一个符号(即,符号0),即网络设备可以在第一个符号所在的时间中发送PDSCH的数据。
也就是说,在满足第二小区的第二PDCCH不占用配置有第一小区的CRS的符号,且第二小区的第二PDCCH位于一个时间单元的前三个符号的条件下,若第一小区的第一PDCCH占用符号的符号数量为0,也就是第一PDCCH不占用任何一个符号,那么第二小区的PDSCH可以占用原来由第一小区的第一PDCCH占用的符号,从而增加了第二小区的PDSCH可以占用的符号的数量,从而提升了网络资源的使用效率。
情况二,如果第一小区的第一PDCCH占用符号的符号数量为1,那么网络设备可以 配置第一小区的第一PDCCH占用时间单元的第一个符号。相应的,网络设备可以配置第二小区的PDSCH在该时间单元内的调度范围为该时间单元的第二个符号至最后一个符号,也就是说,网络设备可以配置第二小区的PDSCH在该时间单元内占用的第一个符号为该时间单元的第二个符号。以该时间单元包括14个符号为例,第二小区的PDSCH在该时间单元内的调度范围为该时间单元的第二个符号至第十四个符号。
在情况二中,第二小区的第二PDCCH在该时间单元内的调度范围为该时间单元的第二个符号至第三个符号,且第二PDCCH占用的符号不能与第一小区中的CRS占用的符号不重叠。
结合图5所示的实施例的情况二的描述,举例来说,图7为一种PDSCH调度示意图,与图6类似,图7以第一小区的CRS端口数为4为例,第一小区的CRS端口数为4时,时间单元的第一个符号和第二个符号中包括第一小区的CRS。
结合图7,在情况二中,网络设备可以在该时间单元内的第二个符号至第十四个符号(符号1至符号13)内进行第二小区的PDSCH的数据的传输。另外,由于第二小区的第二PDCCH占用的符号内不包括第一小区的CRS,网络设备可以将第二小区的第二PDCCH占用的符号配置为该时间单元的第三个符号,即符号2。
和情况一类似,如果第一小区的CRS端口数为1或2,那么该时间单元的第一个符号中包括第一小区的CRS,网络设备可以将第二小区的第二PDCCH占用的第一个符号配置为该时间单元的第三个符号,将第二小区的PDSCH占用的第一个符号配置为该时间单元的第二个符号。
也就是说,在第一小区的第一PDCCH占用的符号数量为1,那么网络设备将第一PDCCH配置占用该时间单元的第一个符号,网络设备配置第二小区的第二PDCCH占用该时间单元的第三个符号,并且配置第二小区的PDSCH可以占用该时间单元的第二个符号,从而增加了可以用于第二小区的PDSCH的符号数量,进一步提升了网络资源的使用效率。
本申请实施例中,网络设备确定PDSCH在时间单元内占用的第一个符号之后,还可以向第二小区内的终端设备指示PDSCH占用的第一个符号,具体可以参考下面的描述。
S503:网络设备向第二小区内的终端设备发送第一信息。
其中,第一信息用于指示PDSCH在时间单元内占用的第一个符号,即指示PDSCH占用的第一个符号在时间单元内的位置。
第一信息可以指示PDSCH占用的第一个符号的符号编号,举例来说,PDSCH占用的第一个符号为时间单元的第一个符号,那么第一信息指示的符号编号为符号0;PDSCH占用的第一个符号为时间单元的第二个符号,那么第一信息指示的符号编号为符号1。
第一信息还可以指示PDSCH占用的符号数量,第一信息可以通过下行控制信息(downlink control information,DCI)携带,也可以通过RRC信令携带,本申请实施例对此并不限定。
本申请实施例中,网络设备还可以向第二小区内的终端设备发送第二信息,第二信息用于指示第二PDCCH在时间单元内占用的第一个符号以及第二PDCCH占用符号的符号数量等信息。
在第二小区内的终端设备可以根据第一信息在PDSCH占用的第一个符号处接收PDSCH的数据,还可以根据第二信息在第二PDCCH占用的第一个符号处接收第二PDCCH的数据,具体过程并不限定,在此不再赘述。
通过上面的方法,第一小区和第二小区应用DSS技术共享同一段频谱资源时,网络设备可以根据第一小区的第一PDCCH占用符号的符号数量,调整第二小区的PDSCH占用符号的符号数量,实现资源的灵活分配,提高第二小区的资源利用率以及频谱效率。
下面通过一个具体的实施例详细描述图5所示的方法。假设第一小区为LTE小区,第二小区为NR小区,第一小区和第二小区应用DSS技术共享同一段频谱资源。网络设备可以确定第一小区内处于RRC连接态终端设备的数量。
如图8所示,以第一阈值等于0为例,描述了第一小区内处于RRC连接态的终端设备的数量变化时,网络设备如何对第二小区的PDSCH进行资源调度。图8中示例了4个场景,下面分别进行描述。
在场景1中,第一小区内处于RRC连接态的终端设备的数量等于0,即等于第一阈值,第一小区处于用户空载状态。
此时,第一小区的第一PDCCH占用符号的符号数量可以为0,第二小区的PDSCH占用的第一个符号为时间单元的第一个符号,即第二小区的PDSCH在一个时间单元内调度的范围为该时间单元的符号0至符号13,实现最大化第二小区的下行吞吐率。
一种实现方式中,网络设备还可以在第一小区中不在PHICH中发送数据。在该实现方式中,网络设备可以将第一小区的PHICH用于第二小区的数据传输,提高第二小区的资源利用率。
一种实现方式中,网络设备还可以在第一小区中不在PCFICH对应的资源中映射数据。在该实现方式中,网络设备可以将第一小区的PCFICH对应的资源用于第二小区的数据传输,提高第二小区的资源利用率。
举例来说,网络设备可以在第一小区中不需要发送寻呼(paging)消息和系统信息块(system information block,SIB)系统消息之外的子帧中,不在PHICH中发送数据,和/或,不在PCFICH对应的资源中映射数据。
其中,不在PHICH中发送数据,可以表示不生成将要在PHICH中承载的数据,从而不在PHICH中发送数据;不在PCFICH对应的资源中映射数据,可以表示生成将要在PCFICH中承载的数据,但是最终不把该数据调制到PCFICH对应的资源中。
在场景2中,第一小区内存在终端设备发起随机接入过程,导致处于RRC连接态的终端设备的数量大于0,即终端设备的数量大于第一阈值。
随机接入过程可以依次包含4步消息流程:终端设备发送消息1,该消息1中包括前导码;网络设备发送消息2,消息2可以为随机接入响应(random access response,RAR)消息;终端设备发送消息3,消息3可以为消息2的响应消息;网络设备发送消息4,消息4可以为竞争解决消息。该场景2可以结合图9进行描述。
如图9所示,网络设备在第一小区中接收到消息1时,可以继续在PCFICH对应的资源中映射数据。网络设备在向终端设备发送消息2之前,在第一小区中PCFICH对应的资源中映射数据。网络设备发送消息2之后,在第一小区中不在PCFICH对应的资源中映射数据。网络设备接收到来自终端设备的消息3时,在PCFICH对应的资源中映射数据。其中终端设备接入第一小区后,网络设备可以在PHICH中发送数据。
上述过程中,网络设备通过动态地调整是否在PCFICH对应的资源中映射数据,可以实现提高第二小区的资源利用率的同时,保证在第一小区中的PCFICH对应的资源中映射的数据能够被终端设备接收,使得终端设备能够成功接入第一小区。
在场景3中,第一小区中存在处于RRC连接态的终端设备,网络设备在PCFICH对应的资源中映射数据,以及在PHICH中发送数据,并且不再将时间单元的第一个符号共享给第二小区使用。
网络设备可以根据终端设备业务需求确定第一小区的第一PDCCH占用的符号数量,并且可以根据符号数量,确定第二小区的PDSCH在时间单元内占用的第一个符号。具体如何确定第二小区的PDSCH在时间单元内占用的第一个符号,可以参考图5中S502的描述,在此不再赘述。
在场景4中,假设第一小区内处于RRC连接态的终端设备的数量又变为0,网络设备确定RRC连接态的终端设备的数量为0时,在第一小区内不在PCFICH对应的资源中映射数据,并不在PHICH中发送数据。
此时,第一小区的第一PDCCH占用符号的符号数量可以为0,第二小区的PDSCH在一个时间单元内调度的范围为该时间单元的符号0至符号13。
通过图5至图9所示的方法,如果第一小区的第一PDCCH占用符号的符号数量为0,以第一小区中CRS端口数为4为例,第二小区的PDSCH可以占用时间单元的前2个符号。此时第二小区中在一个时间单元内可以使用的RE资源的数量由128增加到144,资源开销由23.81%减少到14.29%,资源利用率由76.19%提高到85.71%。
如果第一小区的第一PDCCH占用符号的符号数量为1,第一小区中CRS端口数为2时,第二小区中在一个时间单元内可以使用的RE资源的数量由144增加到152,资源开销由14.29%减少到9.52%,资源利用率由85.71%提高到90.48%。
如果第一小区的第一PDCCH占用符号的符号数量为1,第一小区中CRS端口数为1时,第二小区中在一个时间单元内可以使用的RE资源的数量由150增加到160,资源开销由10.71%减少到4.76%,资源利用率由89.29%提高到95.24%。
也就是说,通过图5至图9所述的方法,在每个时间单元内,NR小区中的PDSCH能够占用的RE资源的数量会显著增加,进一步提升了网络资源的使用效率,从而可以提高NR小区的下行吞吐率。
DSS场景中,在网络运营初期,如图10所示,运营商采用DSS方案,使得该网络在兼顾LTE小区容量的同时,可以满足NR小区覆盖。随着NR的推广,NR小区中用户/话务走向上升阶段,LTE小区容量走向下降阶段。为了能够平衡LTE小区网络容量和NR小区网络性能,并满足上述通信网络的趋势,本申请实施例还提供一种方法,可以提高NR小区的资源利用率,实现LTE网络向NR网络的平滑演进。
如图11所示,为本申请实施例提供的一种调度方法流程示意图,该方法中以第一小区可以为LTE小区,第二小区可以为NR小区为例,第一小区和第二小区动态频谱共享同一段频谱资源,该方法包括以下步骤:
S1101:网络设备确定第一小区满足预设条件,则重配置第一小区的CRS资源的数量,其中,重配置后的CRS资源的数量小于重配置前的CRS资源的数量。
其中,CRS资源可以是指CRS占用的资源,CRS占用的资源为RE资源时,一个CRS资源可以是指CRS占用的一个RE资源。
本申请实施例中,预设条件可以根据第一小区自身的业务负载以及第一小区周边同覆盖邻区的业务负载确定。举例来说,预设条件可以包括以下至少一项:
第一小区的业务负载小于或等于第一负载;
第一小区的同覆盖邻区的业务负载小于或等于第二负载。其中,第一负载和第二负载之间的关系,本申请并不限定,例如第一负载可以大于第二负载。
在满足预设条件时,网络设备具体如何重配置CRS资源的数量可能存在多种实现方式,举例来说,网络设备可以通过但不限于以下至少一种方式重配置CRS资源的数量:
一种可能的实现方式,网络设备将第一小区的CRS的端口数由第一数量修改为第二数量,第一数量大于第二数量。由于CRS的端口数越大,CRS资源数量越多,通过减小CRS的端口数,可以减少CRS资源数量,从而减少第二小区中的资源开销,进一步节省出更多的可以用于数据传输的资源,提高第二小区的资源利用率。
一种可能的实现方式,网络设备将第一小区中MBSFN子帧的发送方式由第一方式变更为第二方式;其中,第一方式对应的周期时长为第一时长,第一方式对应的一个周期内包括的MBSFN子帧的数量为第三数量;第二方式对应的周期时长为第二时长,第二方式对应的一个周期内包括的MBSFN子帧的数量为第四数量。第一时长大于第二时长,第三数量小于第四数量。
由于MBSFN子帧中,除了第一小区的第一PDCCH占用的符号之外,其他符号中不包括CRS资源,因此MBSFN子帧包括的CRS资源数量远小于非MBSFN子帧包括的CRS资源数量。通过减小MBSFN子帧的发送周期的周期时长,可以增加MBSFN子帧的数量,从而减少CRS资源数量。CRS资源数量减少,就可以将原来用于传输CRS的CRS资源用于第二小区的PDSCH的数据的传输,实现增加第二小区的PDSCH可以使用的资源,减少第二小区中的资源开销,提高第二小区的资源利用率。另外,通过增加每个周期中MBSFN子帧的数量,从而减少CRS资源数量,实现减少第二小区中的资源开销,提高第二小区的资源利用率。
举例来说,在满足预设条件之前,如图12所示。见图12中的(a),在第一小区中,MBSFN子帧发送方式为:网络设备每40毫秒发送2个MBSFN子帧。其中,标记“M”的子帧表示MBSFN子帧,未标记“M”的子帧表示非MBSFN子帧。非MBSFN子帧的结构如图12中的(b)所示,当CRS端口数为4时,在该情况下,非MBSFN子帧中包括的CRS资源数量为24。MBSFN子帧的结构如图12中的(c)所示,当CRS端口数为4时,在该情况下,MBSFN子帧中包括的CRS资源数量为8,小于非MBSFN子帧中包括的CRS资源数量。
当满足预设条件时,如图13所示。见图13中的(a),在第一小区中,MBSFN子帧发送方式变更为:网络设备每10毫秒发送6个MBSFN子帧。其中,标记“M”的子帧表示MBSFN子帧,未标记“M”的子帧表示非MBSFN子帧。进一步的,如图13中的(b)所示,第一小区中CRS的端口数由4变更为1,当CRS端口数为1时,非MBSFN子帧的结构示意图,在该情况下,非MBSFN子帧中包括的CRS资源数量为8。如图13中的(c)所示,当CRS端口数为1时,MBSFN子帧的结构示意图,在该情况下,MBSFN子帧中包括的CRS资源数量为2,小于非MBSFN子帧中包括的CRS资源数量。
结合图12和图13所述的方法,本领域技术人员还可以理解的是,该方法可以包括多种的实现方式,例如,网络设备仅提升MBSFN子帧的发送周期(也即提升MBSFN子帧的数量),或者,网络设备仅减少CRS资源的端口数,也可以结合既增加MBSFN子帧的数量又增加MBSFN子帧中的CRS资源的端口数,最终增加NR小区可以使用的资源数量,从而提高NR小区的频谱效率。
网络设备确定第一小区满足预设条件时,可以认为满足关闭第一小区的条件,从而暂停为第一小区中的终端设备提供服务。网络设备还可以执行以下至少一项流程:
1、将已接入到第一小区的终端设备迁移到其他同覆盖小区,第一小区不再为终端设备提供服务。其中,同覆盖小区可以是指与第一小区覆盖范围相同的小区。
2、第一小区不再承载新的终端设备,即将第一小区设置为禁止(barred)状态,不允许RRC空闲态终端设备向第一小区发起随机接入。
3、将第一小区的优先级设置为最低,让RRC空闲态终端设备迁移到优先级高的小区。
一种可能的实现方式中,第一小区的周边LTE同频邻区,测量到第一小区为最强邻区时,不再触发LTE同频切换流程,而是启动异频/异系统切换流程,将终端设备迁移到异频/异制式小区,而不再将终端设备迁移到第一小区,从而可以消除由于终端设备切换不及时导致的LTE和NR系统间的上下行同频干扰。其中,第一小区为最强邻区,可以表示第一小区的信号最强,例如第一小区的信号的参考信号接收功率(reference signal receiving power,RSRP)最大。
S1102:网络设备向第二小区中的终端设备发送重配置信息。
其中,重配置信息用于指示第一小区中CRS资源的位置和数量。其中,所述第一小区和所述第二小区共享的资源中除了CRS资源之外的资源可以被用于第二小区中的终端设备的数据传输。由于第一小区中CRS资源数量减少,因此第二小区中可以使用的资源数量增加,从而提高第二小区中的频谱效率和数据吞吐率。其中,这里的资源可以是指时频资源,例如可以是指RE资源。
其中,网络设备可以通过第一RRC重配置(reconfiguration)消息发送重配置信息,重配置信息可以为第一RRC重配置消息中的CRS速率匹配图案(CRS RateMatching Pattern)。CRS速率匹配图案可以用于向第二小区中的终端设备指示第一小区中CRS资源的位置和数量,使得第二小区中的终端设备确定哪些RE资源被CRS占用,从而终端设备在CRS占用的RE资源以外的其他RE资源处进行处理,例如,该处理可以为对信道中的数据的解调。
一种可能的实现方式中,网络设备还可以在第一小区中取消第一PDCCH,在第二小区中从一个时间单元的第一个符号处开始调度PDSCH,即在一个时间单元中,第二小区的PDSCH调度范围为该时间单元的符号0至符号13。
本申请实施例中,还可以将第一小区的CRS端口数恢复到满足预设条件之前的CRS端口数,将第一小区中MBSFN子帧发送方式恢复到满足预设条件之前的MBSFN子帧发送方式。例如网络设备检测到第一小区的同覆盖邻区的业务负载大于第二负载时,可以将第一小区的CRS端口数恢复到满足预设条件之前的CRS端口数,将第一小区中MBSFN子帧发送方式恢复到满足预设条件之前的MBSFN子帧发送方式。
网络设备将第一小区恢复到满足预设条件之前的状态的过程可以包括以下中的至少一种:
a)网络设备修改第一小区的CRS端口配置和MBSFN子帧配置,例如网络设备将第一小区的CRS端口数修改为4端口,将MBSFN子帧的发送方式修改为:每40毫秒配置2个MBSFN子帧。
b)网络设备允许RRC空闲态终端设备正常接入第一小区,例如网络设备不再设置第一小区为禁止状态,允许RRC空闲态终端设备向第一小区发起随机接入;或者网络设备 恢复第一小区的优先级,让RRC空闲态终端设备能够迁移到第一小区。
c)网络设备允许周边邻区RRC连接态终端设备正常切换入第一小区。
同样的,网络设备还可以在第二小区中向终端设备发送第二RRC重配置消息,第二RRC重配置消息指示第一小区恢复到满足预设条件之前的CRS端口数量和MBSFN子帧发送方式。
通过上面的方法,LTE小区可以按需部署,即LTE网络容量大时,激活LTE小区吸收LTE话务量,LTE网络容量少时,关闭LTE小区,有效降低DSS场景中,LTE小区对NR小区性能的影响,同时可以降低由于终端设备切换导致的LTE系统和NR系统间的上下行同频干扰,提高系统稳定性。
上述各个实施例可以分别单独实施,或者也可以相互结合实施。上文中,在不同实施例中,侧重描述了各个实施例的区别之处,除区别之处的其它内容,不同实施例之间的其它内容可以相互参照。应理解,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
为了实现上述本申请实施例提供的方法中的各功能,网络设备、终端设备或上述通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图14所示,本申请实施例还提供一种通信装置1400。所述通信装置1400可以是图1中的终端设备,用于实现上述方法实施例中对应于终端设备的方法。所述通信装置也可以是图1中的网络设备,用于实现上述方法实施例中对应于网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
具体的,通信装置1400可以包括:处理单元1401和通信单元1402。本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。以下,结合图14至图15详细说明本申请实施例提供的通信装置。
一些可能的实施方式中,上述图5所示的方法实施例中网络设备的行为和功能通过通信装置1400来实现时:
处理单元,用于确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量;
所述处理单元,用于根据所述符号数量,确定第二小区的物理下行共享信道在所述时间单元内占用的第一个符号;其中,所述第一小区和所述第二小区为动态频谱共享的小区。
一种可能的实现方式中,所述处理单元具体用于:
若所述符号数量为0,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第一个符号。
一种可能的实现方式中,所述通信单元还用于:将所述第一小区中的物理混合自动重传请求指示信道对应的资源,用于传输所述第二小区的数据,所述物理混合自动重传请求 指示信道位于所述时间单元的第一个符号。
一种可能的实现方式中,所述通信单元还用于:将所述第一小区中的物理控制格式指示信道对应的资源,用于传输所述第二小区的数据,所述物理控制格式指示信道位于所述时间单元的第一个符号。
一种可能的实现方式中,所述处理单元具体用于:
若确定在所述第一小区内不使用第一物理下行控制信道,则所述第一物理下行控制信道占用符号的符号数量为0。
一种可能的实现方式中,所述处理单元具体用于;
若所述符号数量为1,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第二个符号,其中,所述第一小区的第一物理下行控制信道占用所述时间单元的第一个符号。
一种可能的实现方式中,所述处理单元具体用于:
若确定在所述第一小区内使用第一物理下行控制信道,并且确定使用的第一物理下行控制信道占用的符号的数量小于2,则确定所述第一物理下行控制信道占用符号的符号数量为1。
一种可能的实现方式中,所述通信单元,用于向所述第二小区内的终端设备发送第一信息,所述第一信息用于指示所述物理下行共享信道在所述时间单元内的第一个符号。
一些可能的实施方式中,上述图5所示的方法实施例中终端设备的行为和功能通过通信装置1400来实现时:
通信单元,用于在第二小区中接收来自网络设备的第一信息,第一信息用于指示第二小区的物理下行共享信道在时间单元内的第一个符号;
通信单元,用于通过第一个符号接收物理下行共享信道;其中,物理下行共享信道在时间单元内的第一个符号,是根据第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量确定的,第一小区和第二小区动态频谱共享同一段频谱资源。
一种可能的实现方式中,若符号数量为0,则第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第一个符号。
一种可能的实现方式中,通信单元还用于:在第一小区中的物理混合自动重传请求指示信道对应的资源中发送或接收数据,物理混合自动重传请求指示信道位于时间单元的第一个符号。
一种可能的实现方式中,通信单元还用于:在第一小区中的物理控制格式指示信道对应的资源中发送或接收数据,物理控制格式指示信道位于时间单元的第一个符号。
一些可能的实施方式中,上述图11所示的方法实施例中网络设备的行为和功能通过通信装置1400来实现时:
处理单元,用于若满足预设条件,重配置第一小区的小区特定参考信号资源的数量,其中,重配置后的小区特定参考信号资源的数量小于重配置前的小区特定参考信号资源的数量;
通信单元,用于向第二小区中的终端设备发送重配置信息,重配置信息用于指示小区特定参考信号资源的位置和数量,其中,第一小区和第二小区共享的资源中除了小区特定参考信号资源的资源用于第二小区中的终端设备的数据传输;第一小区和第二小区为动态频谱共享的小区。
一种可能的实现方式中,重配置第一小区的小区特定参考信号资源的数量,包括:将第一小区的小区特定参考信号的端口数由第一数量修改为第二数量,第一数量大于第二数量。
一种可能的实现方式中,处理单元具体用于:将第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式;其中,第一方式对应的周期时长为第一时长,第一方式对应的一个周期内发送的多媒体广播多播单频网子帧的数量为第三数量;第二方式对应的周期时长为第二时长,第二方式对应的一个周期内包括的多媒体广播多播单频网子帧的数量为第四数量;将第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式,包括:第一时长大于第二时长,和/或,第三数量小于第四数量。
一种可能的实现方式中,预设条件包括以下至少一项:第一小区的业务负载小于或等于第一负载;第一小区的同覆盖邻区的业务负载小于或等于第二负载。
一种可能的实现方式中,通信单元还用于:暂停为第一小区的终端设备提供服务。
一种可能的实现方式中,第二小区的物理下行共享信道在时间单元内占用的第一个符号为时间单元的第一个符号。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1402中用于实现接收功能的器件视为接收单元,将通信单元1402中用于实现发送功能的器件视为发送单元,即通信单元1402包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
以上只是示例,处理单元1401和通信单元1402还可以执行其他功能,更详细的描述可以参考图5或图11所示的方法实施例中相关描述,这里不加赘述。
如图15所示为本申请实施例提供的通信装置1500,图15所示的通信装置可以为图14所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图15仅示出了该通信装置的主要部件。
如图15所示,通信装置1500包括处理器1510和接口电路1520。处理器1510和接口电路1520之间相互耦合。可以理解的是,接口电路1520可以为收发器或输入输出接口。可选的,通信装置1500还可以包括存储器1530,用于存储处理器1510执行的指令或存储处理器1510运行指令所需要的输入数据或存储处理器1510运行指令后产生的数据。
当通信装置1500用于实现图5或图11所示的方法时,处理器1510用于实现上述处理单元1401的功能,接口电路1520用于实现上述通信单元1402的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种调度方法,其特征在于,包括:
    确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量;
    根据所述符号数量,确定第二小区的物理下行共享信道在所述时间单元内占用的第一个符号;其中,所述第一小区和所述第二小区为动态频谱共享的小区。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述符号数量,确定第二小区的物理下行共享信道在所述时间单元内占用的第一个符号,包括:
    若所述符号数量为0,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第一个符号。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    将所述第一小区中的物理混合自动重传请求指示信道对应的资源,用于传输所述第二小区的数据,所述物理混合自动重传请求指示信道位于所述时间单元的第一个符号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    将所述第一小区中的物理控制格式指示信道对应的资源,用于传输所述第二小区的数据,所述物理控制格式指示信道位于所述时间单元的第一个符号。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量,包括:
    若确定在所述第一小区内不使用第一物理下行控制信道,则所述第一物理下行控制信道占用符号的符号数量为0。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述符号数量,确定第二小区的物理下行共享信道在所述时间单元内占用的第一个符号,包括;
    若所述符号数量为1,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第二个符号,其中,所述第一小区的第一物理下行控制信道占用所述时间单元的第一个符号。
  7. 根据权利要求6所述的方法,其特征在于,所述确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量,包括:
    若确定在所述第一小区内使用第一物理下行控制信道,并且确定使用的第一物理下行控制信道占用的符号的数量小于2,则确定所述第一物理下行控制信道占用符号的符号数量为1。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    向所述第二小区内的终端设备发送第一信息,所述第一信息用于指示所述物理下行共享信道在所述时间单元内的第一个符号。
  9. 一种调度方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息,第一信息用于指示第二小区的物理下行共享信道在时间单元内的第一个符号,所述终端设备位于第二小区中;所述第一个符号根据第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量确定,所述第一小区和所述第二小区动态频谱共享同一段频谱资源;
    所述终端设备通过所述第一个符号接收物理下行共享信道。
  10. 根据权利要求9所述的方法,其特征在于,若所述符号数量为0,则所述第二小区 的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第一个符号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一小区中的物理混合自动重传请求指示信道对应的资源中发送或接收数据,所述物理混合自动重传请求指示信道位于所述时间单元的第一个符号。
  12. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一小区中的物理控制格式指示信道对应的资源中发送或接收数据,所述物理控制格式指示信道位于所述时间单元的第一个符号。
  13. 一种调度方法,其特征在于,包括:
    若满足预设条件,网络设备重配置第一小区的小区特定参考信号资源的数量,其中,重配置后的小区特定参考信号资源的数量小于重配置前的小区特定参考信号资源的数量;
    所述网络设备向第二小区中的终端设备发送重配置信息,所述重配置信息用于指示所述小区特定参考信号资源的位置和数量,其中,所述第一小区和所述第二小区共享的资源中除了所述小区特定参考信号资源的资源用于所述第二小区中的终端设备的数据传输;所述第一小区和所述第二小区为动态频谱共享的小区;所述预设条件包括以下至少一项:所述第一小区的业务负载小于或等于第一负载;所述第一小区的同覆盖邻区的业务负载小于或等于第二负载。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备重配置第一小区的小区特定参考信号资源的数量,包括:
    所述网络设备将第一小区的小区特定参考信号的端口数由第一数量修改为第二数量,第一数量大于第二数量。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述网络设备将所述第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式;其中,所述第一方式对应的周期时长为第一时长,所述第一方式对应的一个周期内发送的多媒体广播多播单频网子帧的数量为第三数量;所述第二方式对应的周期时长为第二时长,所述第二方式对应的一个周期内包括的多媒体广播多播单频网子帧的数量为第四数量;所述第一时长大于所述第二时长,和/或,所述第三数量小于所述第四数量。
  16. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述网络设备暂停为所述第一小区的终端设备提供服务。
  17. 根据权利要求13或14所述的方法,其特征在于,所述第二小区的物理下行共享信道在时间单元内占用的第一个符号为所述时间单元的第一个符号。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量;
    所述处理单元,用于根据所述符号数量,确定第二小区的物理下行共享信道在所述时间单元内占用的第一个符号;其中,所述第一小区和所述第二小区为动态频谱共享的小区。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    若所述符号数量为0,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第一个符号。
  20. 根据权利要求19所述的装置,其特征在于,所述通信装置还包括通信单元:
    所述通信单元将所述第一小区中的物理混合自动重传请求指示信道对应的资源,用于传输所述第二小区的数据,所述物理混合自动重传请求指示信道位于所述时间单元的第一个符号。
  21. 根据权利要求19或20所述的装置,其特征在于,所述通信装置还包括通信单元:
    所述通信单元将所述第一小区中的物理控制格式指示信道对应的资源,用于传输所述第二小区的数据,所述物理控制格式指示信道位于所述时间单元的第一个符号。
  22. 根据权利要求18至21任一所述的装置,其特征在于,所述处理单元具体用于:
    若确定在所述第一小区内不使用第一物理下行控制信道,则所述第一物理下行控制信道占用符号的符号数量为0。
  23. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于;
    若所述符号数量为1,则确定所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第二个符号,其中,所述第一小区的第一物理下行控制信道占用所述时间单元的第一个符号。
  24. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于:
    若确定在所述第一小区内使用第一物理下行控制信道,并且确定使用的第一物理下行控制信道占用的符号的数量小于2,则确定所述第一物理下行控制信道占用符号的符号数量为1。
  25. 根据权利要求18至24任一所述的装置,其特征在于,所述通信装置还包括通信单元:
    所述通信单元,用于向所述第二小区内的终端设备发送第一信息,所述第一信息用于指示所述物理下行共享信道在所述时间单元内的第一个符号。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元接收来自网络设备的第一信息,第一信息用于指示第二小区的物理下行共享信道在时间单元内的第一个符号,所述终端设备位于第二小区中;所述第一个符号根据第一小区的第一物理下行控制信道在时间单元内占用符号的符号数量确定,所述第一小区和所述第二小区动态频谱共享同一段频谱资源;
    通信单元,用于通过所述第一个符号接收物理下行共享信道。
  27. 根据权利要求26所述的装置,其特征在于,若所述符号数量为0,则所述第二小区的物理下行共享信道在所述时间单元内占用的第一个符号为所述时间单元的第一个符号。
  28. 根据权利要求26或27所述的装置,其特征在于,所述通信单元还用于:
    在所述第一小区中的物理混合自动重传请求指示信道对应的资源中发送或接收数据,所述物理混合自动重传请求指示信道位于所述时间单元的第一个符号。
  29. 根据权利要求26或27所述的装置,其特征在于,所述通信单元还用于:
    在所述第一小区中的物理控制格式指示信道对应的资源中发送或接收数据,所述物理控制格式指示信道位于所述时间单元的第一个符号。
  30. 一种通信装置,其特征在于,包括:
    处理单元,用于若满足预设条件,则重配置第一小区的小区特定参考信号资源的数量,其中,重配置后的小区特定参考信号资源的数量小于重配置前的小区特定参考信号资源的数量;
    通信单元,用于向第二小区中的终端设备发送重配置信息,所述重配置信息用于指示所述小区特定参考信号资源的位置和数量,其中,所述第一小区和所述第二小区共享的资源中除了所述小区特定参考信号资源的资源用于所述第二小区中的终端设备的数据传输;所述第一小区和所述第二小区为动态频谱共享的小区;所述预设条件包括以下至少一项:所述第一小区的业务负载小于或等于第一负载;所述第一小区的同覆盖邻区的业务负载小于或等于第二负载。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于:
    将第一小区的小区特定参考信号的端口数由第一数量修改为第二数量,第一数量大于第二数量。
  32. 根据权利要求30或31所述的装置,其特征在于,所述处理单元还用于:
    将所述第一小区的多媒体广播多播单频网子帧的发送方式由第一方式变更为第二方式;其中,所述第一方式对应的周期时长为第一时长,所述第一方式对应的一个周期内发送的多媒体广播多播单频网子帧的数量为第三数量;所述第二方式对应的周期时长为第二时长,所述第二方式对应的一个周期内包括的多媒体广播多播单频网子帧的数量为第四数量;所述第一时长大于所述第二时长,和/或,所述第三数量小于所述第四数量。
  33. 根据权利要求30或31所述的装置,其特征在于,所述处理单元还用于:
    暂停为所述第一小区的终端设备提供服务。
  34. 根据权利要求30或31所述的装置,其特征在于,所述第二小区的物理下行共享信道在时间单元内占用的第一个符号为所述时间单元的第一个符号。
  35. 一种通信装置,其特征在于,用于实现权利要求1至17中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求1至17中任意一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现如权利要求1至17中任意一项所述的方法。
  38. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得所述芯片实现权利要求1至17中任意一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机实现如权利要求1至17中任意一项所述的方法。
PCT/CN2022/117646 2021-10-19 2022-09-07 一种调度方法及装置 WO2023065874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111217641.9 2021-10-19
CN202111217641.9A CN116017734A (zh) 2021-10-19 2021-10-19 一种调度方法及装置

Publications (1)

Publication Number Publication Date
WO2023065874A1 true WO2023065874A1 (zh) 2023-04-27

Family

ID=86025311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117646 WO2023065874A1 (zh) 2021-10-19 2022-09-07 一种调度方法及装置

Country Status (2)

Country Link
CN (1) CN116017734A (zh)
WO (1) WO2023065874A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004232A (zh) * 2019-05-27 2020-11-27 中兴通讯股份有限公司 一种lte和nr资源共享方法及装置
WO2021033115A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Rate matching for non-coherent joint-transmission with dynamic spectrum sharing
US20210058953A1 (en) * 2019-08-23 2021-02-25 At&T Intellectual Property I, L.P. Demodulation reference signal patterns for dynamic spectrum sharing with increased spectral efficiency for 5g or other next generation network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004232A (zh) * 2019-05-27 2020-11-27 中兴通讯股份有限公司 一种lte和nr资源共享方法及装置
WO2021033115A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Rate matching for non-coherent joint-transmission with dynamic spectrum sharing
US20210058953A1 (en) * 2019-08-23 2021-02-25 At&T Intellectual Property I, L.P. Demodulation reference signal patterns for dynamic spectrum sharing with increased spectral efficiency for 5g or other next generation network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DL signals and channels for NR-U", 3GPP DRAFT; R1-1909296 DL SIGNALS AND CHANNELS FOR NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051765903 *
VIVO: "Discussion on physical DL channel design in unlicensed spectrum", 3GPP DRAFT; R1-1908138 DISCUSSION ON PHYSICAL DL CHANNEL DESIGN IN UNLICENSED SPECTRUM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051764757 *

Also Published As

Publication number Publication date
CN116017734A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN111345050B (zh) 对无线通信设备能力的临时处理
EP3883315B1 (en) Method for switching between uplinks, communication apparatus, and communication system
US10476586B2 (en) Sub-frame configuration in cellular system
JP6938390B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7074764B2 (ja) 送信方向構成方法、デバイス及びシステム
CN109152029B (zh) 一种通信方法、网络设备及用户设备
JP2022511296A (ja) 構成情報の伝送方法および端末機器
KR20100116125A (ko) 다중 반송파 시스템에서 무선통신의 수행장치 및 방법
JP2021503786A (ja) 情報を送信または受信するための方法および装置
WO2023030514A1 (zh) 无线通信方法和通信装置
JP2020513174A5 (zh)
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2022188638A1 (zh) 一种数据传输方法及装置
JP7503656B2 (ja) リソース決定方法及び装置
WO2023065874A1 (zh) 一种调度方法及装置
WO2022022673A1 (zh) 一种通信方法及装置
JP2021517427A (ja) リソーススケジューリング方法、データ送信方法及びその装置、通信システム
WO2023093827A1 (zh) 一种通信方法及装置
JP7416206B2 (ja) 上りリンク信号の送受信方法及び装置
JP7471342B2 (ja) 無線フレーム構成
CN112399622B (zh) 一种控制信息的发送、接收方法和通信装置
WO2024140366A1 (zh) 一种通信方法及装置
WO2024017376A1 (zh) 调度信息指示方法及通信装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
EP4354997A1 (en) Signal transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882489

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882489

Country of ref document: EP

Effective date: 20240417

NENP Non-entry into the national phase

Ref country code: DE