WO2023093827A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023093827A1
WO2023093827A1 PCT/CN2022/134228 CN2022134228W WO2023093827A1 WO 2023093827 A1 WO2023093827 A1 WO 2023093827A1 CN 2022134228 W CN2022134228 W CN 2022134228W WO 2023093827 A1 WO2023093827 A1 WO 2023093827A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signaling
configuration
capability
carrier
Prior art date
Application number
PCT/CN2022/134228
Other languages
English (en)
French (fr)
Inventor
翟邦昭
丁梦颖
李新县
彭金磷
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023093827A1 publication Critical patent/WO2023093827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • carrier aggregation carrier aggregation
  • CA carrier aggregation
  • DC dual connectivity
  • MC multiple connectivity
  • multi-transmission reception point multi-transmission reception point, multi-TRP
  • RRC radio resource control
  • the terminal can use CC1 and CC2 to communicate with the base station at the same time.
  • the base station can simultaneously receive a physical downlink shared channel (physical downlink shared channel, PDSCH) from the base station through CC1 and CC2, for example, receive PDSCH1 through CC1, receive PDSCH2 through CC2, and so on. Due to the limited baseband processing capability of the terminal, for example, the terminal can only receive 5 PDSCHs at the same time. In solutions such as CA, DC, MC or Multi-TRP, how to realize the flexible switching of resources in the baseband processing capability is a problem to be solved in this application.
  • a physical downlink shared channel physical downlink shared channel
  • the present application provides a communication method and device, which can realize flexible switching of resources in the terminal baseband processing capability.
  • a communication method includes: a terminal receives a first signaling from a network device, and the first signaling is used to indicate at least one configuration; the terminal receives a second signaling from the network device The second signaling is used to indicate the first configuration included in the at least one configuration; the terminal communicates with the network device according to the first configuration; wherein the at least one configuration includes the following At least one item: the number of physical downlink shared channel PDSCH; the number of physical uplink shared channel PUSCH; the number of control resource pool CORESET POOL for blind detection of downlink control information DCI; the number of transmission layers for space division multiplexing; the tracked transmission configuration indication TCI The number of states; or the number of hybrid automatic repeat request HARQ processes.
  • the first signaling can be RRC signaling
  • the network device can configure at least one configuration for the terminal through the RRC signaling; after that, the network device can send real-time information to the terminal according to the network conditions, such as load and channel quality, etc. Indicates different configurations, so that the terminal works under the optimal configuration, which improves the utilization rate of the baseband processing capability of the terminal, thereby improving the uplink and downlink throughput of the terminal.
  • the first signaling includes radio resource control RRC signaling
  • the second signaling includes medium access control MAC control element CE signaling or DCI signaling.
  • the above-mentioned first signaling is RRC signaling
  • the second signaling is MAC CE signaling or DCI signaling.
  • the signaling period of RRC signaling is relatively long, and the terminal can configure semi-statically for the terminal through RRC signaling. At least one configuration. Because MAC CE signaling or DCI signaling can be sent in real time, the network device can send MAC CE signaling or DCI signaling to the terminal in real time according to the state of the network, instructing the terminal to switch between different configurations, improving the utilization rate of the terminal's baseband processing capability .
  • the first signaling is used to indicate the correspondence between at least one configuration of the first cell and an index; the second signaling includes indication information of the index corresponding to the first configuration .
  • the network device may pre-configure at least one configuration for at least one cell. For example, the network device configures at least one configuration for the first cell. Notifying the terminal of at least one configuration of the first cell through RRC signaling. Afterwards, the network device can notify the terminal to work in the optimal mode in the first cell according to the network conditions, thereby improving the utilization rate of the baseband processing capability.
  • the first signaling is used to indicate configuration of at least one bandwidth part BWP in the first cell; the second signaling includes indication information of an index corresponding to the BWP.
  • the network device can pre-set corresponding configurations for different BWPs of the terminal, and notify the terminal. Afterwards, the terminal device can activate the corresponding BWP according to the state of the network. When the terminal receives the instruction to activate the BWP, it can activate the indicated BWP. And according to the pre-configured information, the configuration corresponding to the activated BWP is determined, and the activated BWP works on the configuration corresponding to it. In this design, using the current BWP switching scheme, the switching of different configurations can be indirectly indicated to save signaling overhead.
  • the terminal reports the terminal capability to the network device, and the terminal capability includes at least one of the following capabilities: the capability of the PDSCH; the capability of the PUSCH; Ability to blindly detect DCI on the CORESET POOL; transmission capability for space division multiplexing; capability for tracked transmission configuration to indicate TCI status; or capability for Hybrid Automatic Repeat Request HARQ process.
  • the network device can configure at least one configuration for the terminal according to the terminal capability reported by the terminal, so that at least one configuration of the network device and the terminal configuration does not exceed the capability reported by the terminal, avoiding unavailable configurations appears, improving the accuracy of the configuration.
  • the multiple PDSCHs overlap partially or completely in the time domain; when there are multiple PUSCHs, the multiple PUSCHs overlap in the time domain.
  • the time domain overlaps partially or completely; when the number of the CORESET POOLs is multiple, the time units of the blind DCI detection on the multiple CORESET POOLs overlap partially or completely.
  • the second aspect provides a communication method, which is the network device side corresponding to the method of the first aspect above, and the beneficial effect can be referred to the description of the first aspect above, the method includes: the network device sends the first signaling to the terminal, so The first signaling is used to indicate at least one configuration; the network device sends second signaling to the terminal, and the second signaling is used to indicate the first configuration included in the at least one configuration; the network device according to The first configuration communicates with the terminal;
  • the at least one configuration includes at least one of the following: the number of physical downlink shared channel PDSCH; the number of physical uplink shared channel PUSCH; the number of control resource pool CORESET POOL for blind detection of downlink control information DCI; space division multiplexing The number of transmission layers; the number of transmission configuration indication TCI states tracked; or the number of hybrid automatic repeat request HARQ processes.
  • the first signaling includes radio resource control RRC signaling
  • the second signaling includes medium access control MAC control element CE signaling or DCI signaling.
  • the first signaling is used to indicate the correspondence between at least one configuration and an index in the first cell; the second signaling includes indication information of the index corresponding to the first configuration .
  • the first signaling is used to indicate configuration of at least one bandwidth part BWP in the first cell; the second signaling includes indication information of an index corresponding to the BWP.
  • the network device receives the terminal capability reported from the terminal, and the terminal capability includes at least one of the following capabilities of the terminal: PDSCH capability; PUSCH capability; Ability to blindly detect DCI on the CORESET POOL; transmission capability for space division multiplexing; capability for tracked transmission configuration to indicate TCI status; or capability for Hybrid Automatic Repeat Request HARQ process.
  • the multiple PDSCHs overlap partially or completely in the time domain; when there are multiple PUSCHs, the multiple PUSCHs overlap in the time domain.
  • the time domain overlaps partially or completely; when the number of the CORESET POOLs is multiple, the time units of the blind DCI detection on the multiple CORESET POOLs overlap partially or completely.
  • a communication device which is used to implement the method of the first aspect above, and includes corresponding functional modules or units, respectively used to implement the steps in the method of the first aspect above.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device includes a processor and a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to execute the method of the first aspect above.
  • a communication device which is used to implement the method of the second aspect above, and includes corresponding functional modules or units, respectively used to implement the steps in the method of the second aspect above.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device includes a processor and a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to execute the method of the second aspect above.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed by a device, the device executes the method of the second aspect above.
  • a computer program product includes a computer program or an instruction, and when the computer program or instruction is executed by a device, the device executes the method of the first aspect or the second aspect above.
  • a system in a ninth aspect, includes the device in the third aspect or the fourth aspect, and the device in the fifth aspect or the sixth aspect.
  • Fig. 1 is a schematic diagram of the architecture of the mobile communication system used in the present application.
  • Fig. 2 is a flowchart of the communication method provided by the present application.
  • FIG. 3 and Figure 4 are schematic diagrams of the device provided in this application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in Figure 1), and may also include at least one terminal (such as 120a-120j in Figure 1).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the wireless fidelity (wireless fidelity, WiFi) system etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the base station's radio resource control (radio resource control, RRC) protocol and packet data convergence protocol (PDCP), and can also complete the service data adaptation protocol (service data adaptation protocol, SDAP)
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • the function; the DU completes the functions of the radio link control (radio link control, RLC) layer and medium access control (medium access control, MAC) layer of the base station, and can also complete part of the physical (PHY) layer or all physical layers.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • a cell with which a terminal has established a wireless connection is called a serving cell of the terminal.
  • the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • a physical downlink shared channel (physical downlink shared channel, PDSCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical uplink shared channel (physical uplink shared channel, PUSCH)
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • data channel and control channel There may be different names, which are not limited in the embodiments of the present application.
  • CA Carrier aggregation
  • Carrier aggregation is a technology that aggregates at least two component carriers (CCs) together to support a larger transmission bandwidth.
  • carrier aggregation supports the aggregation between different carrier components, for example, the aggregation of carrier components with the same or different bandwidths, or the aggregation between adjacent or non-adjacent carrier components in the same frequency band, or the aggregation of different Aggregation between carrier units within a frequency band, etc.
  • the terminal maintains connection with two base stations at the same time and receives services, which is called dual connection architecture.
  • one base station is called a master node (MN)
  • the other base station is called a secondary node (SN).
  • the function of the primary station is stronger than that of the secondary station.
  • the terminal may first establish a connection with the primary station, and then establish a connection with the secondary station when certain conditions are met, for example, when the throughput of the terminal increases.
  • the cell group in which the master station provides air interface resources for the terminal is called the master cell group (MCG)
  • the cell group in which the secondary station provides air interface resources for the terminal is called the secondary cell group (SCG).
  • the primary cell group may include at least one cell, the at least one cell includes the primary cell and the secondary cell, and the number of the primary cell is one.
  • the secondary cell group includes at least one cell, and the at least one cell includes a primary secondary cell and a secondary cell, and the number of primary secondary cells is one.
  • a cell group includes at least one cell, and may also be referred to as a primary cell group associated with at least one cell.
  • the primary cell group includes the primary cell, which may be referred to as the primary cell group-associated primary cell.
  • a cell may be associated with at least one carrier (carrier), or referred to as a cell corresponding to at least one carrier.
  • carrier carrier
  • a cell corresponds to a carrier, and the carrier may also be called a CC as an example for illustration.
  • a dual-connection terminal can implement aggregation between different carriers.
  • the terminal can use the carrier corresponding to at least one cell included in the primary cell group corresponding to the primary station, and the carrier corresponding to at least one cell included in the secondary cell group corresponding to the secondary station to communicate with the base station at the same time.
  • receive PDSCH from the base station at the same time and send PUSCH to the base station at the same time.
  • the foregoing may be referred to as aggregation of carriers corresponding to cells in the primary cell group and carriers corresponding to cells in the secondary cell group.
  • aggregation between carriers corresponding to at least two cells in the primary cell group, or aggregation between carriers corresponding to at least two cells in the secondary cell group, etc. may also be implemented.
  • Multi-TRP Multiple transmission reception point
  • Multi-TRP transmission allows a serving cell to schedule a terminal through two TRPs. Through multi-site coordinated transmission, it can solve the problem of inter-cell interference, improve the throughput of cell-edge users, and improve the spectral efficiency of the cell-edge. That is to say, in a multi-TRP scenario, the terminal can use multiple TRPs to communicate with the base station.
  • the TRP is defined in 3GPP as an antenna array including one or more antenna elements available for the network, located at a specific geographic location in a specific area.
  • a signal generated by a base station can be transmitted through at least two TRPs at different locations.
  • a serving cell corresponds to a carrier of the base station, and the carrier signal can be transmitted to a terminal in the serving cell through at least two TRPs, that is, a serving cell schedules a terminal through at least two TRPs.
  • each TRP needs to send its own downlink control information (downlink control information, DCI), schedule their respective PDSCH, and perform data transmission.
  • DCI downlink control information
  • This method is generally called a multi-DCI based multi-TRP transmission scheme based on multiple downlink control information.
  • the terminal can report whether it supports multi-TRP on the corresponding CC through an information element (such as FeatureSetDownlinkPerCC) in RRC. If a certain CC supports multi-TRP, the terminal can transmit data with multiple TRPs on this CC.
  • an information element such as FeatureSetDownlinkPerCC
  • MC allows a terminal to use two or more different scheduling entities to schedule radio resources at the same time, thereby supporting aggregation between multiple frequency bands, multiple base stations, or multiple radio access technologies (radio access technology, RAT).
  • MC can break through the limitation that multiple DUs in CA need to be deployed at the same site or need an ideal backhaul, and can also break through the limitation that DC can only support up to two scheduling entities, so as to further improve network throughput and reduce service cell handover by mobile terminals Interruption time at any time, realizing flexible deployment of the network.
  • NR FR1 800MHz CC
  • NR FR1 3.5GHz CC
  • NR FR2 any CC in NR FR2 frequency band
  • NR FR1 any CC in NR FR1 frequency band
  • FR1 and FR2 please refer to the following content.
  • the communication device of the terminal generally includes core parts such as a baseband processor, a radio frequency transceiver, a radio frequency front end and an antenna.
  • a baseband processing architecture it mainly includes a micro controller unit (micro controller unit, MCU) and a digital signal processor (digital signal processor, DSP).
  • MCU is mainly used to run baseband protocol stack codes, such as media access control (media access control, MAC) layer scheduling algorithm and radio resource control (radio resource control, RRC), service data adaptation protocol (service data adaptation protocol, SDAP) , Packet data convergence protocol (PDCP), radio link control (radio link control, RLC), MAC, and physical (physical, PHY) layer and other protocol processes;
  • DSP is mainly used to realize the core of the PHY layer Algorithms, such as codec, Fourier transform/inverse Fourier transform, cyclic redundancy check, channel estimation, etc.
  • the total capability of the baseband processor of the terminal is limited.
  • the total capacity of the baseband processor has several meanings.
  • the total capability of the base station processor may include at least one of the following: on one time slot, on all carriers or frequency bands or cells or cell groups or bandwidth parts (bandwidth part, BWP), the number of simultaneous transmissions of PDSCH or PUSCH; Simultaneously transmit the number of layers of PDSCH or PUSCH; the total number of control resource sets (control resource set, CORESET) processed simultaneously; the number of DCI blind detection; simultaneously process various channel state information-reference signal (channel state informaiton-reference single, CSI) - the total number of RSs); the total number of CSI-RSs used for beam management simultaneously processed; the total number of simultaneously activated (transmission configuration indication, TCI) states; the simultaneously processed tracking reference signal (tracking reference signal, TRS) The total number of simultaneous processing of sounding reference signals (sounding reference signal, SRS) total number; the total number of simultaneously transmitted P
  • the BWP is a group of continuous frequency domain resources on the carrier.
  • the BWP is a group of continuous resource blocks (resource block, RB) on the carrier, or a group of continuous subcarriers on the carrier, or a group of continuous resource block groups (resource block group, RBG) on the carrier, etc.
  • resource block group RBG
  • a maximum of 4 BWPs can be configured for the terminal.
  • a BWP can be activated, and the terminal and the base station perform data transmission and reception on the activated BWP.
  • a BWP can be configured for a terminal, the bandwidth of the BWP is less than or equal to the terminal capability bandwidth, and the terminal capability bandwidth is less than or equal to the carrier bandwidth.
  • two BWPs may be configured for one terminal, namely BWP1 and BWP2, and the bandwidths of BWP1 and BWP2 may overlap, or the bandwidths of BWP1 and BWP2 may not overlap.
  • Control resource pool (CORESET POOL)
  • BWP is the working bandwidth of the terminal
  • CORESET is the time-frequency resource for the terminal to transmit control signaling in the BWP.
  • One BWP can include multiple CORESETs.
  • CORESET POOL In the multi-TRP scenario, there is the concept of CORESET POOL.
  • Each CORESET POOL is considered as a time-frequency resource for the terminal to transmit control signaling with a TRP on the BWP.
  • Each BWP includes at least one CORESET POOL.
  • Each CORESET POOL At least one CORESET is included in the POOL.
  • the unit of the time unit may be radio frame (radio frame), subframe (subframe), slot (slot), mini-slot (mini-slot), and symbol (symbol).
  • one time unit may include 2 time slots and so on.
  • a radio frame may include one or more subframes, and a subframe may include one or more time slots.
  • a slot may consist of one or more symbols.
  • a time slot under a normal cyclic prefix may include 14 time domain symbols, and a time slot under an extended CP may include 12 time domain symbols.
  • Time-domain symbols may be simply referred to as symbols.
  • the time-domain symbol can be an orthogonal frequency division multiplexing (OFDM) symbol, or an orthogonal frequency division multiplexing (discrete fourier transform spread orthogonal frequency division multiplexing, DFT-s- OFDM) symbols, in this embodiment of the present application, the time domain symbols are OFDM symbols as an example for illustration.
  • a mini-slot also known as a mini-slot, can be a unit smaller than a time slot, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols or 7 symbols and so on.
  • a slot can consist of one or more mini-slots.
  • the base station implements the above-mentioned configuration or reconfiguration of CA, DC, MC or multi-TRP, etc. through RRC signaling.
  • the base station can configure aggregation of CC1 and CC2 by sending RRC signaling to the terminal.
  • the terminal uses CC1 and CC2 to simultaneously transmit data with the base station.
  • CC1 and CC2 can be used to receive PDSCHs from the base station at the same time, so that the terminal can receive two PDSCHs at the same time. Since the baseband processing capability of the terminal is limited, for example, the terminal can only receive 5 PDSCHs from the base station at the same time.
  • the present application provides a communication method, including: pre-configuring at least one configuration for the terminal according to the baseband processing capability reported by the terminal; subsequently indicating different configurations to the terminal according to the network status in real time; using the indicated configuration, the terminal communicates with the base station communication.
  • the process of providing a communication method includes at least:
  • Step 200 the terminal reports the terminal capability to the base station.
  • the base station receives the terminal capability reported from the terminal, and the terminal capability may be the capability of a combination of frequency bands.
  • a frequency band combination includes one or more frequency bands or carriers, corresponding to at least one cell or cell group or BWP of the terminal. This step 200 is optional.
  • the terminal capabilities include at least one of the following capabilities of the terminal:
  • Capability of PDSCH for example, maximum number of received PDSCH
  • PUSCH capabilities for example, the maximum number of PUSCHs to send;
  • the transmission capability of space division multiplexing for example, the maximum number of transmission layers of space division multiplexing
  • the HARQ process or the capability of the HARQ process; for example, the maximum number of HARQ processes, etc.
  • the way for the terminal to report the terminal capability includes at least: taking the terminal capability including the PDSCH capability as an example, then for a combination of frequency bands, the terminal can report multiple sets of capabilities to the base station, and each set of capabilities corresponds to the simultaneous reception on the carrier. Maximum number of PDSCHs. For example, if a frequency band combination includes 3 carriers, the terminal may report 3 sets of capabilities to the base station, and each set of capabilities includes the capability of the terminal to receive PDSCH on the corresponding carrier.
  • a set of terminal capabilities reported by the terminal includes: the maximum number N1 of PDSCHs received by the terminal on carrier 1; for carrier 2, a set of terminal capabilities reported by the terminal includes: the maximum number of PDSCHs received by the terminal on carrier 2 Number N2; for carrier 3, the terminal reports a set of terminal capabilities, which includes: the maximum number N3 of PDSCH received by the terminal on carrier 3.
  • the terminal reports multiple capabilities, a set of capabilities includes multiple capability parameters, and each capability parameter includes the maximum number of PDSCH transmissions on the corresponding frequency band.
  • a frequency band combination includes two carriers, which are called carrier 1 and carrier 2 respectively, and the terminal reports two sets of capabilities, which are ⁇ 2, 0 ⁇ and ⁇ 1, 1 ⁇ respectively.
  • Each set of capabilities above includes two capability parameters, and each capability parameter represents the maximum number of PDSCH transmissions on the corresponding carrier.
  • ⁇ 2, 0 ⁇ specifically means that the terminal only supports transmission on carrier 1, and does not support transmission on carrier 2, that is, on carrier 1, the terminal supports at most two PDSCH transmissions at the same time, and on carrier 2, the terminal does not support transmission of PDSCH .
  • ⁇ 1, 1 ⁇ specifically indicates that the terminal supports the aggregation of carrier 1 and carrier 2, but only supports the transmission of one PDSCH on carrier 1 and carrier 2 at the same time.
  • the terminal reports a group of capabilities in a frequency band combination, and the group of capabilities is used to represent the sum of capabilities of all carriers included in the frequency band combination.
  • a frequency band combination includes 3 carriers
  • the maximum number of PDSCH received by the terminal on carrier 1 is N1
  • the maximum number of PDSCH received by the terminal on carrier 2 is N2
  • the maximum number of PDSCH received by the terminal on carrier 3 is N3
  • the terminal reports a set of capabilities to the base station.
  • This set of capabilities includes the maximum sum N of the maximum number of PDSCHs received by the terminal on the 3 carriers included in the frequency band combination.
  • the value of N is the sum of N1, N2, and N3.
  • the terminal reports a set of capabilities ⁇ 2 ⁇ , which indicates that the maximum number of PDSCHs that the terminal can simultaneously transmit on the above-mentioned carrier 1 and carrier 2 is 2.
  • the terminal reports multiple sets of parameters, and different sets of parameters indicate different capabilities of the terminal in the frequency band combination.
  • one set of parameter groups may be carried in a feature set combination (FeatureSetCombination) information element.
  • Each set of parameter sets includes a set of relevant capability parameters of the terminal on each frequency band or carrier.
  • the FeatureSetCombination information element includes a CC downlink feature set (FeatureSetDownlinkPerCC) information element.
  • the FeatureSetDownlinkPerCC information element indicates the PDSCH-related capabilities on the corresponding carrier. Specifically, it may include the maximum number of simultaneous PDSCH transmissions supported by the terminal on the corresponding carrier.
  • the above-mentioned multiple PDSCHs may completely overlap or partially overlap in the time domain, and may completely overlap, partially overlap or not overlap in the frequency domain.
  • the maximum number of simultaneously transmitted PDSCHs of different types may be reported independently or jointly.
  • the absence of PDSCH-related parameters means that the maximum number of PDSCHs supported by the terminal on this carrier is 0.
  • the terminal reports the maximum number of PDSCHs that are simultaneously transmitted and supported by it in total.
  • the above PDSCHs that can be transmitted simultaneously may partially or completely overlap in the time domain and/or frequency domain, including three situations: 1.
  • the maximum number of simultaneously transmitted PDSCHs of different types may be reported independently or jointly.
  • the way of combining frequency bands is used as an example to describe the terminal capability reported by the terminal, which is not intended to limit the present application.
  • the terminal also reports the capability of the terminal in a manner such as a combination of frequency bands, a combination of carriers, or a combination of frequency bands and carriers.
  • the terminal reports the terminal capability with the granularity of the carrier as an example.
  • the granularity of the terminal reporting capability can also be cell, frequency band, cell group or BWP, etc.
  • the terminal can report to the base station the maximum number of PDSCH transmission supported by each frequency band, or the maximum number of PDSCH transmission supported by each cell, etc. , or report the maximum number of PDSCHs supported by each cell group, or report the maximum number of PDSCHs transmitted by each BWP, etc.
  • the relationship among frequency band, carrier, CC, cell, cell group or BWP is explained as follows.
  • the frequency band range of FR1 is 410MHz-7125MHz, which includes dozens of frequency bands, for example, frequency band n18 is 815MHz-830MHz.
  • the frequency band range of FR2 is 24250MHz-52600MHz, which includes 6 frequency bands, such as frequency band n257 is 26500MHz-29500MHz.
  • Each frequency band contains multiple carriers, and each carrier corresponds to a transmission bandwidth and a center frequency.
  • CA aggregation of multiple carriers is involved.
  • Each carrier is called a component carrier (CC), and each CC corresponds to an independent cell.
  • a CC can be equivalent to a cell.
  • the DC scenario there is the concept of a cell group.
  • the cell group under the master station includes the primary cell group and the secondary cell group, and the cell group under the secondary station includes the primary and secondary cell groups and the secondary cell group.
  • Each cell group includes At least one cell.
  • BWP is a newly introduced concept in NR. Its Chinese meaning is partial bandwidth, which means that compared with the system bandwidth, the terminal only uses a part of the system bandwidth, which can save terminal costs and reduce terminal power consumption. Multiple BWPs are configured for each cell, but at the same time, one BWP is activated, and the terminal uses the activated BWP to communicate with the base station in this cell.
  • frequency bands, carriers, CCs, cells, cell groups or BWP have the following relationship: a frequency band includes one or more carriers, carriers can also be called CCs, a carrier corresponds to a cell, and a cell can belong to a cell Groups, that is, there may be a corresponding relationship between cells and cell groups.
  • a cell may include one or more BWPs, and there is a corresponding relationship between cells and BWPs.
  • Step 201 The terminal receives first signaling from a base station, where the first signaling is used to indicate at least one configuration.
  • the base station sends the first signaling to the terminal.
  • the first signaling is RRC signaling
  • the at least one configuration includes at least one of the following:
  • the number of PDSCHs for example, the number of received PDSCHs; optionally, when the number of PDSCHs is multiple, at the same moment or the same time unit, the multiple PDSCHs overlap partially or completely in the time domain.
  • the number of PUSCHs for example, the number of sent PUSCHs; optionally, when the number of the PUSCHs is multiple, at the same moment or the same time unit, the multiple PUSCHs overlap partially or completely in the time domain.
  • the number of CORESET POOLs for blind detection of DCI for example, the number of CORESET POOLs for blind detection of DCI; optionally, when the number of CORESET POOLs is multiple, at the same moment or the same time unit, the multiple CORESET POOLs are blinded
  • the time units for detecting DCI overlap partially or completely.
  • the terminal baseband processing capability is the total capability of the terminal to process PDSCH, PUSCH, etc. at a certain moment. If the transmission does not occur simultaneously in time, it cannot be called the sharing of baseband processing capability. Therefore, in this application In the description, the so-called complete overlap or partial overlap of the time domain is reflected in the sharing of terminal capabilities by multiple PDSCH, PUSCH, CORESET POOL, etc. at the same time or in the same time unit.
  • the base station may determine at least one configuration according to the terminal capability reported by the terminal.
  • the base station may indicate at least one configuration for each cell according to the terminal capability reported by the terminal.
  • the terminal indicates in the terminal capability reported to the base station that in cell 1, the maximum number of PDSCHs received by the terminal is 10, then the base station can configure multiple configurations for cell 1 according to the maximum number of 10 PDSCHs reported by the terminal.
  • the specific configurations are configuration 1, configuration 2 and configuration 3. In configuration 1, the number of PDSCHs received by the terminal in cell 1 is 5; in configuration 2, the number of PDSCHs received by the terminal in cell 1 is 6; in configuration 3, the number of PDSCHs received by the terminal in cell 1 is 7.
  • the capability reported by the terminal should be satisfied, that is, it is less than the maximum number 10 of receiving PDSCHs in cell 1 reported by the terminal.
  • the configuration is not limited by the capability reported by the terminal, but the subsequent activation needs to be limited by the capability reported by the terminal, that is, the base station does not activate configurations that exceed the capability reported by the terminal.
  • the base station configuring at least one configuration for the first cell the first signaling is used to indicate the correspondence between at least one configuration of the first cell and an index, and the at least one configuration of the first cell is based on The terminal capability reported by the terminal is determined.
  • the base station sends the second signaling to the terminal, where the second signaling includes indication information of the first index.
  • the terminal determines the first configuration corresponding to the first index according to the correspondence between at least one configuration of the first cell indicated by the base station and the index.
  • the terminal works on a first configuration in a first cell.
  • the base station can respectively determine three groups of configurations for carrier 1 and carrier 2, and the three groups of configurations of carrier 1 are respectively the first group configuration ⁇ 2 ⁇ , the second group Configuration ⁇ 1 ⁇ and third group configuration ⁇ 1 ⁇ , the three groups of configurations of carrier 2 are the first group configuration ⁇ 0 ⁇ , the second group configuration ⁇ 1 ⁇ and the third group configuration ⁇ 0 ⁇ .
  • the base station may first activate the first set of configurations of the two carriers for transmission.
  • the configuration of carrier 1 is changed from the first set to The configuration is switched to the second group of configurations, and the configuration of carrier 2 is switched from the first group of configurations to the second group of configurations, so that the base station activates the second group of configurations of the above two carriers for transmission.
  • a frequency band combination includes carrier 1 and carrier 2, and the base station determines three sets of configurations for the above-mentioned carrier 1 and carrier 2 respectively, then the first set of configurations ⁇ 2 ⁇ of carrier 1 and the first set of configurations of carrier 2 ⁇ 0 ⁇ can be considered as the same group configuration.
  • the above-mentioned second group configuration of carrier 1 and the above-mentioned second group configuration of carrier 2 are also considered as the same group configuration; the above-mentioned third group configuration of carrier 1 and the above-mentioned third group configuration of carrier 2 are also considered as the same group configuration .
  • the total number of simultaneously transmitted PDSCHs in the same group configuration should not exceed the total capability reported by the terminal in the second capability reporting solution above. Or, for this frequency band combination, each group of configurations does not need to comply with the capabilities reported by the terminal. But subsequently, the base station sends the second signaling in the following step 202 to the terminal. When dynamically activating different carriers, all carriers simultaneously activated by the terminal need to meet the capabilities reported by the terminal.
  • the maximum number of simultaneously transmitted PDSCHs on an activated primary carrier or primary cell or primary cell group is at least one.
  • the maximum number of simultaneously transmitted PDSCHs on an activated secondary carrier or secondary cell or secondary cell group may be 0.
  • the base station may determine the corresponding relationship between different BWPs and configurations according to the terminal capability reported by the terminal.
  • the configurations corresponding to different BWPs in the first cell are determined according to the terminal capability reported by the terminal. For example, if the terminal reports the terminal capability at the granularity of cell, carrier or CC, and the carrier or CC corresponds to a cell, and each cell includes at least one BWP, then the terminal reports the maximum number of received PDSCHs in a certain cell or carrier or CC, Configure corresponding configurations for at least one BWP in the cell, but should meet the capability reported by the terminal.
  • a certain cell includes the first BWP and the second BWP, and the terminal reports to the base station that the maximum number of PDSCHs received by the terminal in the cell is 5, then the base station determines the configuration of the first BWP included in the cell according to the capability of the cell as Configuration 1, the configuration of the second BWP included in the cell is configuration 2.
  • Configuration 1 means that the number of PDSCHs received by the terminal in the first BWP is 2
  • configuration 2 means that the number of PDSCHs received by the terminal in the second BWP is 3, and so on.
  • the base station sends the index corresponding to the activated BWP to the terminal, which may be referred to as the first index.
  • the terminal When determining the first index according to the first signaling, the terminal determines the first BWP corresponding to the first index, and activates the first BWP. And the terminal works on the configuration 1 in which the first BWP has a corresponding relationship with the first BWP. In this design, there is no need to design special signaling to indicate the switching of different configurations, and the existing BWP switching signaling can be used to indirectly indicate the switching of different configurations, saving signaling overhead.
  • each BWP should not exceed the capability for this frequency band or carrier or corresponding cell or cell group in the corresponding capability parameter group reported by the terminal.
  • the sum of the values in the BWP of the same group of all frequency bands or carriers or corresponding cells or cell groups or BWPs should not exceed the capability reported by the terminal.
  • the configured BWP does not need to comply with the capability reported by the terminal, but in the subsequent step 202, when the base station dynamically activates or switches different BWP , all BWPs activated by the terminal at the same time need to meet the capability reported by the terminal.
  • the maximum number of simultaneously transmitted PDSCHs on the BWP corresponding to the primary carrier or primary cell or primary cell group is at least one.
  • the maximum number of PDSCHs simultaneously transmitted on the secondary carrier or the secondary cell or the secondary cell group may be 0.
  • Step 202 The terminal receives second signaling from the base station, where the second signaling is used to indicate the first configuration in the above at least one configuration.
  • the base station sends the second signaling to the terminal.
  • the second signaling includes DCI or MAC control element (control element, CE) and so on.
  • the base station sends MAC CE or DCI to the terminal according to the state of the network, and dynamically switches between different configurations.
  • the base station can send MAC CE or DCI to the terminal in real time according to the state of the network, indicating different configurations to the terminal. For example, at time 1, the base station can determine that the terminal is working in the first configuration according to the state of the network, and can better utilize the baseband processing capability of the terminal, then the base station can send MAC CE or DCI to the terminal to indicate the first configuration .
  • the terminal receives the above MAC CE or DCI, it works in the first configuration.
  • the base station determines that the terminal works in the second configuration, which can better utilize the baseband processing capability of the terminal. Then the base station can send MAC CE or DCI etc. to the terminal to indicate the second configuration. When receiving the MAC CE or DCI, the terminal switches from the first configuration to the second configuration. The terminal can switch between different configurations in real time according to the instructions of the base station's MAC CE or DCI.
  • the RRC semi-static configuration method can improve the utilization rate of the baseband processing capability of the terminal, improve the uplink and downlink throughput, and the like.
  • the base station simultaneously uses two downlink carriers to transmit to the terminal, which are carrier 1 and carrier 2 respectively.
  • the three configurations of carrier 1 are ⁇ 2 ⁇ , ⁇ 1 ⁇ , ⁇ 1 ⁇ , and the three configurations of carrier 2 are ⁇ 0 ⁇ , ⁇ 1 ⁇ and ⁇ 0 ⁇ .
  • the base station may activate configuration 1 of the above two carriers for transmission. That is, on carrier 1, the number of PDSCHs simultaneously transmitted by the terminal is 2, and on carrier 2, the number of PDSCHs simultaneously transmitted by the terminal is 0.
  • the base station finds that carrier 1 is somewhat congested through the collection of network equipment, then the base station can send DCI or MAC CE signaling to the terminal, instructing the terminal to switch to the second group configuration on both carrier 1 and carrier 2, and the terminal is in the second group configuration.
  • one PDSCH is received on carrier 1 and carrier 2 respectively, thereby effectively alleviating the congestion of carrier 1 and increasing the transmission rate.
  • signaling such as MAC CE or DCI can specifically indicate the index of the mode that needs to be switched.
  • the above-mentioned MAC CE or DCI can indicate switching of different BWPs. For example, when the terminal receives MAC CE or DCI, the MAC CE or DCI instructs the terminal to switch to BWP2, then the terminal switches from the currently working BWP1 to BWP2, and obtains the BWP2 pre-configuration or the corresponding configuration. After that, work on the specific configuration on BWP2. In this design, MAC CE or DCI is used to indicate the index of BWP.
  • the base station uses two downlink carriers to transmit with the terminal at the same time, which are called CC1 and CC2 respectively.
  • Three BWPs are configured on each carrier, and the three BWPs on carrier 1 are BWP1_CC1, BWP2_CC1, and BWP3_CC1.
  • the configured maximum numbers of received PDSCHs are ⁇ 2 ⁇ , ⁇ 1 ⁇ , and ⁇ 1 ⁇ respectively.
  • the three BWPs of carrier 2 are respectively BWP1_CC2, BWP2_CC2 and BWP3_CC2, and the maximum numbers of transmission PDSCHs configured for them are respectively ⁇ 0 ⁇ , ⁇ 1 ⁇ and ⁇ 0 ⁇ .
  • the base station first activates BWP1_CC1 and BWP1_CC2. Afterwards, according to the real-time network status, such as load and channel quality, the base station sends MAC CE DCI signaling to the terminal, instructing the terminal to switch from BWP1_CC1 to BWP2_CC2, then the terminal switches from BWP1_CC2 to BWP2_CC2, and then works in BWP2_CC2 in its corresponding configuration.
  • Step 203 The terminal communicates with the base station according to the first configuration.
  • the base station communicates with the terminal according to the first configuration.
  • the first configuration including the maximum number of transmitted PDSCHs as an example.
  • a frequency band combination includes carrier 1 and carrier 2
  • the first group configuration in carrier 1 is ⁇ 2 ⁇
  • the first group configuration in carrier 2 is ⁇ 0 ⁇ . Then, when the terminal is working in the first configuration, it receives 2 PDSCHs in carrier 1 and does not receive PDSCH in carrier 2 at the same time.
  • the carrier is used as an example to report or configure the maximum number of PDSCHs transmitted by the terminal as an example.
  • the terminal reports the maximum number of PDSCHs transmitted by each carrier, or the base station allocates the maximum number of PDSCHs transmitted by each carrier to the terminal, etc., which is not a limitation of this application.
  • the capability of the terminal may be reported, or the base station may be configured for the terminal, etc. at granularities such as frequency band, cell, cell group, or BWP.
  • the terminal may report the maximum number of PDSCH transmissions on each frequency band, cell, cell group or BWP.
  • the base station may configure the maximum number of PDSCHs to be transmitted on each frequency band, cell, cell group or BWP.
  • the base station can dynamically adjust the frequency band or carrier for the terminal service in real time according to information such as channel and load, and apply the baseband capability of the terminal to the most suitable frequency band or carrier to avoid waste of terminal baseband processing capacity. It can increase the total transmission rate of the air interface, reduce service delay, and realize dynamic load balancing.
  • the base station configures at least one configuration to the terminal through the first signaling; subsequently, the base station indicates any one of the at least one configuration to the terminal through the second signaling.
  • the configuration is that the terminal works on the configuration indicated by the second signaling and communicates with the base station as an example, which is not intended to limit this application.
  • the base station configures a configuration to the terminal through the first signaling, and the terminal can directly work in the configuration without an instruction through the second signaling, further saving signaling overhead.
  • the above solution shown in FIG. 2 can be applied to a single-TRP scenario.
  • the impact of TRP may also need to be considered when reporting terminal capabilities and assigning configurations to terminals by the base station.
  • the impact of TRP may also need to be considered when reporting terminal capabilities and assigning configurations to terminals by the base station.
  • Single-TRP it only involves the sharing of baseband capabilities in the frequency domain.
  • the existence of multi-TRP introduces the dimension of airspace, which involves both the sharing of baseband capabilities in the frequency domain and the sharing of baseband capabilities in the air domain. Different frequency bands/carriers of the TRP are dynamically allocated to further improve the flexibility of baseband capability sharing.
  • the main difference between this multi-TRP scenario and the solution shown in Figure 2 above is that when the terminal reports the capability of the terminal to the base station, the capability needs to include the multi-TRP supported by the terminal on each frequency band or carrier.
  • TRP related parameters For example, the number of TRPs that the terminal can connect to simultaneously on this frequency band or carrier, or the maximum number of PDSCHs that each CORESET POOL can receive, etc.
  • the network device determines at least one configuration according to the capability reported by the terminal, the influence of the TRP needs to be considered.
  • the carrier may transmit the two PDSCHs in a frequency division manner. For example, the carrier is divided into two frequency domain resources, the first frequency domain resource transmits PDSCH1, the second frequency domain resource transmits PDSCH2, and so on.
  • the two PDSCHs can be space-divided.
  • the terminal can be configured to receive PDSCH1 through TRP1 under CC1, and receive PDSCH2 through TRP2 under CC1.
  • this application provides a method to enable dynamic sharing of PDSCH baseband processing capabilities in the frequency domain and air domain, at least including:
  • the terminal reports the terminal capability to the base station.
  • the terminal capability is the capability of the terminal within a combination of frequency bands.
  • a frequency band combination includes one or more frequency bands or carriers, corresponding to one or more cells or cell groups or BWPs of the terminal.
  • Terminal capability reporting method 1 The terminal reports multiple capability parameter groups, each capability parameter group corresponds to a frequency band or carrier in the frequency band combination, which includes the multi-TRP-related capabilities of the terminal on this frequency band or carrier .
  • the terminal reports multiple sets of capability parameters, and each capability parameter corresponds to a frequency band or carrier in the frequency band combination, which includes multiple sets of capabilities that the terminal has on this frequency band or carrier.
  • a terminal capability For example, the set of multiple capability parameter groups may be FeatureSetCombination, where each capability parameter group FeatureSetDownlinkPerCC includes multiple terminal capabilities on each frequency band or carrier, and among the multiple terminal capabilities includes multi-TRP-related capabilities,
  • the capability parameter group related to multi-TRP may be multi-TRP.
  • multi-TRP can include the maximum number of CORESET POOLs supported by the terminal on this frequency band or carrier or cell or cell group or BWP, which represents the maximum number of TRPs that the terminal can connect to simultaneously on this frequency band or carrier or cell .
  • the multi-TRP can include the maximum number of CORESETs that the terminal can configure on this frequency band or carrier or cell or BWP.
  • the multi-TRP can include the maximum number of CORESETs that the terminal can configure on each CORESET POOL of this frequency band or carrier or cell or BWP.
  • the muti-TRP can include the maximum number of PDSCHs that the terminal can send in this frequency band or carrier or cell or each CORESET POOL of the BWP.
  • Terminal capability reporting method 2 The terminal reports multiple capability parameters, each capability parameter corresponds to a capability, and the capability parameter group related to multi-TRP contains multiple sub-parameter groups, and each sub-parameter group corresponds to this frequency band combination Capabilities related to multi-TRP on a frequency band or carrier.
  • the terminal reports multiple capability parameter groups.
  • Each capability parameter group is a terminal capability
  • the parameter group multi-TRP-PerBC corresponds to the terminal capability corresponding to multi-TRP in the frequency band combination.
  • Each capability parameter group contains multiple sub-parameter groups, and each sub-parameter group corresponds to a frequency band or carrier.
  • the parameter group multi-TRP-PerBC includes a sub-parameter group multi-TRP-PerCC, and the sub-parameter group The terminal capability corresponding to each frequency band or carrier and multi-TRP.
  • multi-TRP-PerCC can include the maximum number of CORESET POOLs supported by the terminal in this frequency band or carrier or cell or BWP, which represents the maximum number of TRPs that the terminal can simultaneously connect to in this frequency band or carrier or cell.
  • the multi-TRP-PerCC may include the maximum number of CORESETs that the terminal can configure on this frequency band or carrier or cell or BWP.
  • multi-TRP-PerCC can include the maximum number of CORESETs that the terminal can configure on each CORESET POOL of this frequency band or carrier or cell or BWP.
  • the multi-TRP-PerCC can include the maximum number of PDSCHs that the terminal can send on each CORESET POOL of this frequency band or carrier or cell or BWP.
  • the base station receives the capability reported by the terminal, and configures and schedules it according to the capability reported by the terminal.
  • the base station implements the sharing of the terminal's PDSCH baseband capability in multiple frequency bands or TRPs through activation or deactivation of cell configuration. For example, for a frequency band or carrier in a frequency band combination, the base station can configure multiple sets of serving cell configurations for the terminal according to multiple parameter groups. Each set of serving cell configurations includes a set of secondary cell configurations without PDSCH, and does not include a set of secondary cell configurations without PDSCH primary cell configuration, but only one serving cell configuration can be activated at the same time. The number of PDSCHs that the base station activates simultaneously on all frequency bands or carriers in a frequency band combination can simultaneously transmit and the corresponding terminal capabilities that need to meet a parameter group.
  • the base station can realize the sharing of the terminal's PDSCH baseband capability in multiple frequency bands, carriers or TRPs by activating and/or deactivating the BWP.
  • the base station can configure multiple BWPs for the terminal according to multiple parameter groups, the secondary cell can include BWP without PDSCH, and the primary cell does not include BWP without PDSCH. BWP.
  • the PDSCH baseband capability sharing of the terminal between multiple frequency bands or carriers and TRPs is realized. Therefore, the base station can dynamically adjust the frequency bands, carriers and TRPs served by the terminal in real time according to information such as channels and loads, Apply the baseband capability of the terminal to the most suitable frequency band, carrier, and TRP to avoid wasting the baseband capability of the terminal. Ultimately, the total transmission rate of the air interface can be increased, the service delay can be reduced, and dynamic load balancing can be realized.
  • the baseband capability information related to multi-TRP and PDSCH reported by the terminal is added, so that the base station can perform precise dynamic regulation and terminal baseband capability sharing according to the increased reported information.
  • the base station in the multi-TRP scenario, is allowed to schedule more than two TRPs on one frequency band or carrier, and the base station is allowed to activate or deactivate different configurations through L1 layer signaling, enabling the terminal PDSCH baseband capability in Dynamic sharing of different frequency bands or carriers and different TRPs.
  • this application provides a method to enable dynamic sharing of TCI state (states) baseband processing capabilities in the frequency domain and air domain, at least including:
  • the terminal reports the terminal capability to the base station.
  • the terminal capability is the capability of the terminal within a combination of frequency bands.
  • a frequency band combination includes one or more frequency bands or carriers, corresponding to one or more cells or cell groups or BWP of the terminal.
  • Terminal capability reporting method 1 The terminal reports multiple capability parameter groups, each capability parameter group corresponds to a frequency band or carrier in the frequency band combination, and includes the multi-TRP-related capabilities of the terminal on this frequency band or carrier.
  • a set of multiple capability parameter groups can be FeatureSetCombination, where each capability parameter group FeatureSetDownlinkPerCC contains multiple terminal capabilities on each frequency band or carrier, and among multiple terminal capabilities, includes the same as multi -TRP-related capabilities, the capability parameter group related to multi-TRP may be multi-TRP.
  • the multi-TRP can include the maximum number of TCI states that the user can support on each CORESET POOL of this frequency band or carrier or cell or BWP.
  • Terminal capability reporting method 2 The terminal reports multiple capability parameter groups, each capability parameter group corresponds to a capability, and the capability parameter group related to multi-TRP contains multiple sub-parameter groups, and each sub-parameter group corresponds to this frequency band combination A multi-TRP-related capability on a frequency band or carrier.
  • the user reports multiple capability parameter groups.
  • Each capability parameter group corresponds to a terminal capability
  • the parameter group multi-TRP-PerBC corresponds to the terminal capability corresponding to multi-TRP in the frequency band combination.
  • Each capability parameter group contains multiple sub-parameter groups, and each sub-parameter group corresponds to a frequency band or carrier.
  • the parameter group multi-TRP-PerBC includes a sub-parameter group multi-TRP-PerCC, and the sub-parameter group The terminal capability corresponding to each frequency band or carrier and multi-TRP.
  • the base station receives the capability reported by the terminal, and configures and schedules it according to the capability reported by the terminal.
  • the base station can realize the sharing of the TCI states capability of the terminal in multiple frequency bands or carriers or TRP through activation or deactivation of cell configuration.
  • the base station can configure multiple sets of TCI state configurations for the terminal according to multiple parameters, but only one set of TCI state configurations can be activated at the same time. All TCI state configurations simultaneously activated by the base station on all frequency bands or carriers in a frequency band combination need to meet the terminal capabilities corresponding to a parameter group.
  • the base station can realize the sharing of the TCI state capability of the terminal in multiple frequency bands or carriers through the activation or deactivation of the BWP.
  • the base station can configure multiple BWPs for the terminal according to multiple parameter groups. terminal capabilities.
  • the TCI state capability sharing of the terminal among multiple frequency bands, carriers or multiple TRPs is realized. Therefore, the base station can dynamically adjust the terminal to track the TCI state on different frequency bands or carriers, and different TRPs in real time according to channel, load and other information, and apply the baseband capability of the terminal to the most suitable frequency band, carrier or TRP to avoid terminal baseband A waste of capacity. Ultimately, the transmission rate of the air interface is increased, the service delay is reduced, and dynamic balance is achieved.
  • the embodiment of the present application mainly makes the following improvements: first, the baseband capability information related to multi-TRP and TCI states reported by the terminal is added, so that the base station can perform precise dynamic regulation and terminal baseband capability sharing according to the increased reported information;
  • the base station is allowed to schedule terminals through more than two TRPs on one frequency band or carrier, and the terminal can track the TCI state on more than two TRPs;
  • Multiple sets of parameters or BWP are configured in the same serving cell, allowing the base station to activate and deactivate different configurations through L1 signaling, enabling the dynamic sharing of terminal TCI states tracking capabilities on different frequency bands or carriers and different TRPs.
  • the present application also provides a method for enabling dynamic sharing of HARQ processes in the frequency domain, at least including:
  • the terminal reports the terminal capability to the base station.
  • the terminal capability is the capability of the terminal within a combination of frequency bands.
  • a frequency band combination includes one or more frequency bands or carriers, corresponding to one or more cells or cell groups or BWP of the terminal.
  • the terminal reports multiple sets of capabilities, a set of capabilities includes multiple capability parameters, and one capability parameter corresponds to a frequency band or carrier in this frequency band combination, or corresponds to a cell or cell group or BWP, indicating that the terminal is in The maximum number of HARQ processes that can be simultaneously transmitted on this frequency band or carrier or cell or cell group or BWP.
  • the terminal reports multiple sets of parameter sets, and different parameter sets indicate different terminal capabilities of the terminal in the frequency band combination, for example, one set of parameter sets may be FeatureSetCombination.
  • Each set of parameter sets includes a related capability parameter set of the terminal on each frequency band or carrier, for example, FeatureSetCombination includes FeatureSetDownlinkPerCC.
  • FeatureSetDownlinkPerCC indicates the capabilities related to the HARQ process of the terminal on each frequency band or carrier. Specifically, it may include the maximum number of simultaneous transmission HARQ processes supported by the terminal on this frequency band or carrier.
  • the terminal reports a set of capabilities, and the set of capabilities includes a capability parameter.
  • This capability parameter indicates the terminal’s total maximum capacity on all frequency bands or carriers in this frequency band combination or corresponding cells or cell groups or BPW. The number of HARQ processes for simultaneous transmission.
  • the terminal reports the maximum number of simultaneously transmitted HARQ processes supported by it in total.
  • the base station receives the capability reported by the terminal, and configures and schedules it according to the capability reported by the terminal.
  • Configuration and scheduling method 1 For any frequency band or carrier or corresponding cell or cell group in this frequency band combination, the base station can perform multiple configurations, and each configuration indicates that the terminal is on this frequency band or carrier or the corresponding cell or cell group The maximum number of HARQ processes that can be transmitted at the same time can be different for configurations of different groups. Each set of configurations should satisfy the terminal reporting capability.
  • the values in each set of configurations should not exceed the capabilities for this frequency band or carrier or corresponding cell or cell group in the corresponding capability parameter group reported by the terminal.
  • the sum of values in all frequency bands or carriers or corresponding cells or cell groups or BWP configurations in the same group should not exceed the capability reported by the terminal.
  • the base station For this frequency band combination, or a certain frequency band or carrier or corresponding cell or cell group, the base station sends MAC CE or DCI signaling to the terminal to dynamically switch between different configurations.
  • each group configuration does not need to comply with the capabilities reported by the terminal.
  • the base station sends MAC CE or DCI signaling to the terminal to dynamically activate different frequency bands or carriers or cells or cell groups. All frequency bands or carriers or corresponding cells or cell groups activated by the terminal at the same time need to meet the capability of the terminal to report.
  • the terminal can configure multiple BWPs, and configure the maximum number of HARQ processes that can be transmitted simultaneously on each BWP.
  • the value of each BWP should not exceed the capability for this frequency band or carrier or corresponding cell or cell group in the corresponding capability parameter group reported by the terminal.
  • the sum of the values in the BWP of all frequency bands or carriers or corresponding cells or cell groups or BWPs in the same group should not exceed the capability reported by the terminal.
  • the base station For this frequency band combination, or a certain frequency band or carrier or cell or cell group, the base station sends MAC CE or DCI signaling to the terminal to dynamically switch between different BWPs.
  • the configured BWP does not need to comply with the capability reported by the terminal.
  • the base station sends MAC CE or DCI signaling to the terminal to dynamically activate or switch different BWPs, and the terminal must simultaneously activate all BWPs to meet the capability of the terminal to report.
  • the base station can dynamically adjust the frequency band or carrier serving the terminal in real time according to information such as channel and load, and apply the baseband capability of the terminal to the most suitable frequency band or carrier to avoid wasting the baseband capability of the terminal.
  • the total transmission rate of the air interface can be increased, the service delay can be reduced, and dynamic load balancing can be realized.
  • the baseband capability information related to the HARQ process reported by the terminal is added, and the total capability on multiple frequency bands or carriers is reported, or multiple groups of capabilities per frequency band or per carrier are reported according to the total capability, which is convenient for the base station to increase based on
  • the reported information of the terminal is used for precise dynamic regulation and terminal baseband capability sharing;
  • the base station configures multiple sets of parameters or BWP for the same serving cell of the terminal through RRC signaling, allowing the base station to activate or deactivate different configurations through L1 layer signaling Activation enables the dynamic sharing of terminal HARQ process processing capabilities on different frequency bands or carriers.
  • this application focuses on describing the dynamic sharing of baseband capabilities such as PDSCH transmission, TCI states tracking, and HARQ process maintenance in the frequency domain and/or air domain, and does not limit this application.
  • the solution of the present application is also applicable to the dynamic sharing of baseband capabilities such as PUSCH transmission, PDCCH detection, CSI-RS resource configuration, and the number of transmission layers processed simultaneously in the frequency domain and/or air domain.
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 3 and FIG. 4 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application. These communication devices can be used to implement the functions of the terminal or the base station in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, or the base station 110a or 110b shown in FIG. 1, or a terminal or a base station Modules (such as chips).
  • the communication device 300 includes a processing unit 310 and a transceiver unit 320 .
  • the communication device 300 is configured to implement functions of a terminal or a base station in the method embodiment shown in FIG. 2 above.
  • the transceiver unit 320 is used to receive a first signaling from a network device, the first signaling is used to indicate at least one configuration, and receiving second signaling from the network device, where the second signaling is used to indicate a first configuration included in the at least one configuration;
  • the processing unit 310 is configured to, according to the first configuration, communicate with the Network device communication; wherein, the at least one configuration includes at least one of the following:
  • control resource pools CORESET POOL for blind detection of downlink control information DCI
  • the terminal sends second signaling, where the second signaling is used to indicate the first configuration included in the at least one configuration; the processing unit 310 is configured to communicate with the terminal according to the first configuration; wherein , the at least one configuration includes at least one of the following:
  • control resource pools CORESET POOL for blind detection of downlink control information DCI
  • processing unit 310 and the transceiver unit 320 can be directly obtained by referring to the related descriptions in the method embodiment shown in FIG. 2 , and will not be repeated here.
  • the communication device 400 includes a processor 410 and an interface circuit 420 .
  • the processor 410 and the interface circuit 420 are coupled to each other.
  • the interface circuit 420 may be a transceiver or an input-output interface.
  • the communication device 400 may further include a memory 430 for storing instructions executed by the processor 410 or storing input data required by the processor 410 to execute the instructions or storing data generated after the processor 410 executes the instructions.
  • the processor 410 is used to implement the functions of the processing unit 310
  • the interface circuit 420 is used to implement the functions of the transceiver unit 320 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here can be the baseband chip of the base station, and can also be a DU or other modules, and the DU here can be a DU under the open radio access network (open radio access network, O-RAN) architecture.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,包括:终端接收来自网络设备的第一信令,所述第一信令用于指示至少一种配置;终端接收来自网络设备的第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;终端根据所述第一配置,与所述网络设备通信;其中,所述至少一种配置中包括以下至少一项:PDSCH的数目;PUSCH的数目;盲检DCI的CORESETPOOL的数目;空分复用的传输层数;跟踪的TCI状态的数目;或HARQ进程的数目。采用本申请的方法及装置,可实现对终端基带处理能力中的资源灵活和高效的切换。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年11月29日提交中国专利局、申请号为202111433803.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新空口(new radio,NR)中,为了高效的利用频域和空域等资源,提出了载波聚合(carrier aggregation,CA)、双连接(dual connectivities,DC)、多连接(multiple connectivities,MC)和多传输接收点(multiple transmission reception point,multi-TRP)等方案。以CA为例,基站可通过无线资源控制(radio resource control,RRC)信令为终端配置载波间聚合。以载波单元(component carrier,CC)1与CC2聚合为例,终端可同时采用CC1和CC2与基站通信。比如,基站可同时通过CC1和CC2接收来自基站的物理下行共享信道(physical down shared channel,PDSCH),例如通过CC1接收PDSCH1,通过CC2接收PDSCH2等。由于终端的基带处理能力有限,例如终端仅能同时接收5个PDSCH。在CA、DC、MC或Multi-TRP等方案中,如何实现基带处理能力中资源的灵活切换,是本申请待解决的问题。
发明内容
本申请提供一种通信方法及装置,可实现灵活的对终端基带处理能力中资源的切换。
第一方面,提供一种通信方法,该方法包括:终端接收来自网络设备的第一信令,所述第一信令用于指示至少一种配置;终端接收来自所述网络设备的第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;终端根据所述第一配置,与所述网络设备通信;其中,所述至少一种配置中包括以下至少一项:物理下行共享信道PDSCH的数目;物理上行共享信道PUSCH的数目;盲检下行控制信息DCI的控制资源池CORESET POOL的数目;空分复用的传输层数;跟踪的传输配置指示TCI状态的数目;或混合自动重传请求HARQ进程的数目。
通过上述设计,第一信令可为RRC信令,网络设备可通过RRC信令为终端配置至少一种配置;之后,网络设备可根据网络的状况,例如,负载和信道质量等,实时向终端指示不同的配置,使得终端工作在最优的配置下,提高了终端基带处理能力的利用率,从而提高终端的上下行吞吐。
在一种可能的设计中,所述第一信令包括无线资源控制RRC信令,所述第二信令包括媒体接入控制MAC控制元素CE信令,或者DCI信令。
通过上述设计,上述第一信令为RRC信令,第二信令为MAC CE信令或DCI信令, RRC信令的信令周期较长,终端可通过RRC信令为终端半静态的配置至少一种配置。由于MAC CE信令或DCI信令可实时发送,网络设备可根据网络的状态,实时向终端发送MAC CE信令或DCI信令,指示终端进行不同配置的切换,提高终端基带处理能力的利用率。
在一种可能的设计中,所述第一信令用于指示第一小区的至少一种配置与索引的对应关系;所述第二信令中包括所述第一配置对应的索引的指示信息。
在该设计中,网络设备可预先至少为一个小区配置至少一种配置。例如,网络设备为第一小区配置至少一种配置。通过RRC信令,将第一小区的至少一种配置通知终端。之后,网络设备可根据网络的状况,通知终端在第一小区工作在最优的模式下,从而提高基带处理能力的利用率。
在一种可能的设计中,所述第一信令用于指示第一小区中至少一个带宽部分BWP的配置;所述第二信令中包括所述BWP对应的索引的指示信息。
在该设计中,网络设备可预先为终端的不同BWP设置对应的配置,且通知终端。之后,终端设备可根据网络的状态,激活对应的BWP。在终端接收到激活BWP的指示时,可激活所指示的BWP。且根据预配置的信息,确定该激活的BWP对应的配置,在该激活的BWP上工作在与其存在对应关系的配置上。在该设计中,利用目前的BWP切换方案,可间接指示不同配置的切换,节省信令开销。
在一种可能的设计中,还包括:终端向所述网络设备上报终端能力,所述终端能力中包括以下能力中的至少一项:所述PDSCH的能力;所述PUSCH的能力;在所述CORESET POOL上盲检DCI的能力;空分复用的传输能力;跟踪的传输配置指示TCI状态的能力;或混合自动重传请求HARQ进程的能力。
在该设计中,网络设备可根据终端上报的终端能力,为终端配置至少一种配置,从而使得网络设备与终端配置的至少一种配置,不超过终端上报的能力,避免出现配置不可用的情况出现,提高了配置的准确度。
在一种可能的设计中,当所述PDSCH的数目为多个时,所述多个PDSCH在时域部分重叠或完全重叠;当所述PUSCH的数目为多个时,所述多个PUSCH在时域部分重叠或完全重叠;当所述CORESET POOL的数目为多个时,所述多个CORESET POOL上盲检DCI的时间单元部分重叠或完全重叠。
第二方面,提供一种通信方法,该方法为上述第一方面方法对应的网络设备侧,有益效果可参见上述第一方面的记载,该方法包括:网络设备向终端发送第一信令,所述第一信令用于指示至少一种配置;网络设备向所述终端发送第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;网络设备根据所述第一配置,与所述终端通信;
其中,所述至少一种配置中包括以下至少一项:物理下行共享信道PDSCH的数目;物理上行共享信道PUSCH的数目;盲检下行控制信息DCI的控制资源池CORESET POOL的数目;空分复用的传输层数;跟踪的传输配置指示TCI状态的数目;或混合自动重传请求HARQ进程的数目。
在一种可能的设计中,所述第一信令包括无线资源控制RRC信令,所述第二信令包括媒体接入控制MAC控制元素CE信令,或者DCI信令。
在一种可能的设计中,所述第一信令用于指示第一小区中至少一种配置与索引的对应关系;所述第二信令中包括所述第一配置对应的索引的指示信息。
在一种可能的设计中,所述第一信令用于指示第一小区中至少一个带宽部分BWP的配置;所述第二信令中包括所述BWP对应的索引的指示信息。
在一种可能的设计中,还包括:网络设备接收来自所述终端上报的终端能力,所述终端能力中包括所述终端的以下能力中的至少一项:PDSCH的能力;PUSCH的能力;在CORESET POOL上盲检DCI的能力;空分复用的传输能力;跟踪的传输配置指示TCI状态的能力;或混合自动重传请求HARQ进程的能力。
在一种可能的设计中,当所述PDSCH的数目为多个时,所述多个PDSCH在时域部分重叠或完全重叠;当所述PUSCH的数目为多个时,所述多个PUSCH在时域部分重叠或完全重叠;当所述CORESET POOL的数目为多个时,所述多个CORESET POOL上盲检DCI的时间单元部分重叠或完全重叠。
第三方面,提供一种通信装置,该装置用于实现上述第一方面的方法,包括相应的功能模块或单元,分别用于实现上述第一方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。
第四方面,提供一种通信装置,该装置包括处理器与存储器。其中,存储器用于存储计算机程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置执行上述第一方面的方法。
第五方面,提供一种通信装置,该装置用于实现上述第二方面的方法,包括相应的功能模块或单元,分别用于实现上述第二方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。
第六方面,提供一种通信装置,该装置包括处理器与存储器。其中,存储器用于存储计算机程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置执行上述第二方面的方法。
第七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第二方面的方法。
第八方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第二方面的方法。
第九方面,提供一种系统,该系统包括上述第三方面或第四方面的装置,以及,第五方面或第六方面的装置。
附图说明
图1是本申请应用的移动通信系统的架构示意图;
图2是本申请提供的通信方法的流程图;
图3和图4是本申请提供的装置示意图。
具体实施方式
图1是本申请应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接 入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理(physical,PHY)层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)只是作为下行数据信道、下行控制信道、上行数据信道和上行控制信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
为了便于理解,首先对本申请涉及的通信技术进行说明,可以理解的是,该通信技术也作为本申请内容的一部分。
一、载波聚合(carrier aggregation,CA)
载波聚合是将至少2个载波单元(component carrier,CC)聚合在一起,以支持更大传输带宽的技术。为了高效地利用零碎的频谱,载波聚合支持不同载波单元之间的聚合,比如,相同或不同带宽的载波单元的聚合,或者,同一频带内,邻接或非邻接载波单元间的聚合,或者,不同频带内载波单元间的聚合等。
二、双连接(dual connectivities,DC)
终端同时与两个基站保持连接,并接受服务,称之为双连接架构。在终端保持连接的两个基站中,一个基站称为主站(master node,MN),另一个基站称为辅站(secondary node,SN)。可选的,主站的功能要强于辅站。例如,终端可先与主站建立连接,在满足一定条件,例如,终端的吞吐量增加时,再与辅站建立连接。其中,主站为终端提供空口资源的小区组,称为主小区组(master cell group,MCG),辅站为终端提供空口资源的小区组,称为辅小区组(secondary cell group,SCG)。主小区组中可包括至少一个小区,该至少一个小区中包括主小区和辅小区,主小区的数量为一个。辅小区组中包括至少一个小区,该至少一个小区中包括主辅小区和辅小区,主辅小区的数量为一个。
应当指出,在本申请的描述中,小区组包括至少一个小区,还可称为主小区组关联至少一个小区。例如,主小区组包括主小区,可称为主小区组关联主小区。一个小区可以关联至少一个载波(carrier),或称为一个小区对应至少一个载波。在后续描述中,以一个小区对应一个载波,载波还可称为CC为例说明。
在本申请中,双连接的终端可实现不同载波间的聚合。举例来说,终端可利用主站对 应的主小区组中包括的至少一个小区对应的载波,与辅站对应的辅小区组中包括的至少一个小区对应的载波,同时与基站进行通信。例如,同时接收来自基站的PDSCH,和同时向基站发送PUSCH等。上述可称为主小区组中小区对应的载波,与辅小区组对应小区的载波的聚合。或者,还可实现,主小区组中至少两个小区对应的载波间的聚合,或者,辅小区组中至少两个小区对应的载波间的聚合等。
三、多传输接收点(multiple transmission reception point,multi-TRP)
multi-TRP传输允许一个服务小区通过两个TRP调度一个终端,通过多站协作传输,可以解决小区间干扰问题并提升小区边缘用户吞吐量,改善小区边缘的频谱效率。也就是说,在multi-TRP场景下,终端可采用多个TRP与基站进行通信。在3GPP中定义TRP是包括一个或多个天线阵子的可供网络使用的天线阵列,位于特定区域的特定地理位置。一个基站产生的信号可通过至少两个不同位置的TRP进行传输。一个服务小区对应于基站的一个载波,该载波信号可以通过至少两个TRP向服务小区的一个终端进行传输,即一个服务小区通过至少两个TRP调度一个终端。
在非理想回传场景下,两个TRP的通信时延是毫秒级别,与NR中毫秒级别的调度相比无法忽略,为了保证多站协作的性能,需要每个TRP各自发送下行控制信息(downlink control information,DCI),调度各自的PDSCH,进行数据传输。这种方式通常称为基于多下行控制信息的多传输接收点(multi-DCI based multi-TRP)传输方案。
在当前的方案中,终端可通过RRC中的信元(例如FeatureSetDownlinkPerCC),上报其在对应CC上是否支持multi-TRP。如果某个CC支持multi-TRP,则终端在该CC可与多个TRP传输数据。
四、多连接(multiple connectivities,MC)
MC允许一个终端同时使用两个以上不同的调度实体调度无线资源,从而支持多个频段、多个基站或多种无线接入技术(radio access technology,RAT)之间的聚合。MC可以突破CA中多个DU需要共站址部署或需要理想回程的限制,也可以突破DC中最多只能支持两个调度实体的限制,从而进一步提高网络吞吐量、减少移动终端进行服务小区切换时的中断时间、实现网络的灵活部署。例如,在MC中,支持NR FR1(800MHz的CC)+NR FR1(3.5GHz的CC)+NR FR2(NR FR2频段的任一个CC)之间的聚合,或者支持NR FR1(NR FR1频段的任一个CC)+NR FR2(28GHz的CC)+NR FR2(大于52GHz的CC)之间的聚合,或者支持LTE+NR FR1+NR FR2之间CC的聚合。关于FR1和FR2的具体说明,可参见后续内容。
五、终端基带处理能力
终端的通信器件一般包括基带处理器、射频收发器、射频前端和天线等核心部分。
在一种基带处理的架构中,其主要包括微控制单元(micro controller unit,MCU)和数字信号处理器(digital signal processor,DSP)。MCU主要用于运行基带协议栈代码,例如媒体接入控制(media access control,MAC)层调度算法和无线资源控制(radio resource control,RRC)、服务数据适配协议(service data adaptation protocol,SDAP)、分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、MAC、和物理(physical,PHY)层等协议流程实现;DSP主要用于实现PHY层核心算法,例如编解码、傅里叶变换/逆傅里叶变换、循环冗余校验、信道估计等。
其中,终端的基带处理器的总能力是有限的。基带处理器的总能力有多种含义。例如, 基站处理器的总能力可包括以下至少一项:在一个时隙上,在所有载波或频段或小区或小区组或带宽部分(bandwidth part,BWP)上,同时传输PDSCH或PUSCH的数目;同时传输PDSCH或PUSCH的层数;同时处理的控制资源集(control resource set,CORESET)的总数目;DCI盲检次数;同时处理各类信道状态信息-参考信号(channel state informaiton-reference single,CSI-RS)的总数目;同时处理的用于波束管理的CSI-RS的总数目;同时激活的(transmission configuration indication,TCI)状态的总数目;同时处理的跟踪参考信号(tracking reference signal,TRS)的总数目;同时处理探测参考信号(sounding reference signal,SRS)的总数目;同时发送的PUCCH的总数目;同时传输的SRS的总数目;同时传输的肯定性确认(acknowledge,ACK)/否定性确认(negative acknowledge,NACK)的总数目;同时反馈信道状态信息(channel state information,CSI)的总数目;同时支持的混合自动重传请求(hybrid automatic repeat request,HARQ)的进程数。
六、带宽部分(bandwidth part,BWP)
BWP是载波上一组连续的频域资源。例如,BWP是载波上一组连续的资源块(resource block,RB)、或载波上一组连续的子载波,或载波上一组连续的资源块组(resource block group,RBG)等。举例而言,在一个小区中,对于一个终端,最多可以为该终端配置4个BWP。在任一时刻,在一小区中,能激活一个BWP,终端和基站在激活的BWP上进行数据的收发。
例如,在载波带宽内,针对一个终端可配置一个BWP,所述BWP的带宽小于或等于终端能力带宽,终端能力带宽小于或等于载波带宽。或者,在载波带宽内,针对一个终端可配置两个BWP,分别称为BWP1和BWP2,且BWP1和BWP2的带宽可重叠,或者BWP1和BWP2的带宽不重叠。
七、控制资源池(CORESET POOL)
BWP是终端的工作带宽,CORESET是终端在BWP中传输控制信令的时频资源,一个BWP可包括多个CORESET。在multi-TRP的场景下,存在CORESET POOL的概念,每个CORESET POOL认为是终端在该BWP上与一个TRP传输控制信令的时频资源,每个BWP中包括至少一个CORESET POOL,每个CORESET POOL中包括至少一个CORESET。
八、时间单元
时间单元的单位可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(mini-slot)和符号(symbol)等单位。例如,一种具体实现中,一个时间单元可包括2个时隙等。一个无线帧可以包括一个或多个子帧,一个子帧可以包括一个或者多个时隙。针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个时域符号,扩展CP下一个时隙可以包括12个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号,本申请实施例中可以以时域符号是OFDM符号为例进行说明。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如一个微时隙可以包括2个符号,4个符号或7个符号等。一个时 隙可以包括一个或多个微时隙。
在一种方案中,基站通过RRC信令,实现上述CA、DC、MC或multi-TRP等的配置或重配置等。以CA为例,基站可通过向终端发送RRC信令,配置CC1与CC2的聚合。终端在接收到上述RRC信令时,利用CC1和CC2同时与基站传输数据。例如,利用CC1和CC2可同时接收来自基站的PDSCH,这样终端可同时接收2个PDSCH。由于终端的基带处理能力是有限的,比如终端只能同时接收来自基站的5个PDSCH。如何根据网络的状态,实时的切换终端的基带处理能力中的资源,从而实现终端的基带处理能力的高效利用,是本申请待解决的技术问题。例如,当网络的状态变化时,例如CC2对应的频段拥塞或者CC2对应的频段的信道质量较差时,可以将CC2中的接收1个PDSCH的配置,更改为不接收PDSCH的配置;将CC1中的接收1个PDSCH的配置,更改为接收2个PDSCH的配置,从而实现终端基带处理能力的高效利用。
本申请提供一种通信方法,包括:根据终端上报的基带处理能力,预先为终端配置至少一种配置;后续实时的根据网络状态,向终端指示不同的配置;终端利用所指示的配置,与基站通信。采用上述方案,可根据网络状态的不同,动态对终端基带处理能力对应的不同的配置进行切换,从而灵活和高效利用终端的基带处理能力,实现终端基带处理能力的高效利用,提高终端的上下行吞吐和用户体验。
如图2所示,提供一种通信方法的流程,至少包括:
步骤200:终端向基站上报终端能力。相应的,基站接收来自终端上报的终端能力,该终端能力可以是一个频段组合的能力。一个频段组合包括一个或多个频段或载波,对应终端的至少一个小区或小区组或BWP。该步骤200是可选的。
示例的,所述终端能力中包括所述终端的以下能力中的至少一项:
PDSCH的能力;例如,接收PDSCH的最大数目;
PUSCH的能力;例如,发送PUSCH的最大数目;
在CORESET POOL上盲检DCI的能力;例如,盲检DCI的CORESET POOL的最大数目;
空分复用的传输能力;例如,空分复用的最大传输层数;
跟踪的TCI状态的能力;例如,跟踪的TCI状态的最大数目;
或HARQ进程的能力;例如,HARQ进程的最大数目等。
在本申请中,关于终端上报终端能力的方式,至少包括:以终端能力包括PDSCH能力为例,则针对一个频段组合,终端可以向基站上报多组能力,每组能力对应于该载波上同时接收PDSCH的最大数目。举例来说,一个频段组合包括3个载波,则终端可以向基站上报3组能力,每组能力中包括该终端在对应载波接收PDSCH的能力。例如,对于载波1,终端上报的一组终端能力,其包括:终端在载波1接收PDSCH的最大数目N1;对于载波2,终端上报一组终端能力,其包括:终端在载波2接收PDSCH的最大数目N2;对于载波3,终端上报一组终端能力,其包括:终端在载波3接收PDSCH的最大数目N3。或者,对于一个频段组合,终端上报多种能力,一组能力中包括多个能力参数,每个能力参数中包括对应频段上传输PDSCH的最大数目。例如,一个频段组合中包括两个载波,分别称为载波1和载波2,则终端上报两组能力,分别为{2,0}和{1,1}。上述每组能力中包括两个能力参数,其每个能力参数代表在对应的载波上传输PDSCH的最大数目。例如,{2,0}具体表示终端仅支持在载波1上传输,对于载波2不支持传输,即在载波1上, 终端最多支持同时传输2个PDSCH,在载波2上,终端不支持传输PDSCH。{1,1}具体表示终端支持载波1和载波2的聚合,但在载波1和载波2上同时只支持传输1个PDSCH。
或者,终端在一个频段组合中上报一组能力,该组能力用于表示该频段组合所包括的全部载波的能力之和。沿用上述举例,一个频段组合中包括3个载波,在载波1上终端接收PDSCH的最大数目为N1,在载波2上终端接收PDSCH的最大数目为N2,在载波3上终端接收PDSCH的最大数目为N3,则终端向基站上报一组能力,该组能力包括终端在该频段组合上包括的3个载波上接收PDSCH的最大数目总和N,该N的取值为N1、N2与N3三者之和。或例如,对于一个包含载波1和载波2的频段组合,终端上报一组能力{2},其表示终端在上述载波1和载波2上总共能够同时传输的PDSCH最大数目为2。
示例的,针对一个频段组合,终端上报多组参数,不同组的参数指示了终端在所述频段组合中的不同能力。例如其中一组参数组可以携带于特征集组合(FeatureSetCombination)信元中。每组参数组中包含了终端在每个频段或载波上的相关能力参数组。例如,FeatureSetCombination信元中包含CC下行链路特征集(FeatureSetDownlinkPerCC)信元。FeatureSetDownlinkPerCC信元中指示了对应载波上的PDSCH相关的能力。具体的,可以包括终端在对应载波上最大支持的同时传输PDSCH数目。其中,当终端支持大于1个PDSCH同时传输时,上述多个PDSCH在时域上可以完全重叠或部分重叠,频域上可以完全重叠、部分重叠或不重叠。不同类型的最大同时传输的PDSCH数目可以独立上报,也可以联合上报等。可选的,PDSCH相关的参数空缺代表终端在这个载波上支持的PDSCH的最大数目为0。或者,对于一个频段组合中的所有载波,终端上报其总共支持的最大同时传输的PDSCH的数目。上述能够同时传输的PDSCH可以在时域和/或频域部分重叠或完全重叠等,包括三种情况:1、其中任意两个PDSCH时域完全或部分重叠,频域上重叠;2、其中任意两个PDSCH时域上全部或部分重叠,频域上部分重叠;3、其中任意两个PDSCH时域上全部或部分重叠,频域上完全不重叠。不同类型的最大同时传输的PDSCH数目可以独立上报,也可以联合上报等。
需要说明的是,在上述描述中,是以频段组合的方式为例,描述终端上报终端能力的,并不作为对本申请的限定。例如,终端还以以频段的组合、载波的组合、或频段与载波的组合等方式,上报终端能力等。
应当指出,在上述描述中,是以终端以载波为粒度上报终端能力为例描述的。终端上报能力的粒度还可以是小区、频段、小区组或BWP等,例如,终端可以向基站上报每个频段所支持传输PDSCH的最大数目等,或者上报每个小区所支持传输PDSCH的最大数目等,或者上报每个小区组所支持传输PDSCH的最大数目,或者上报每个BWP传输PDSCH的最大数目等。本申请的描述中,对于频段、载波、CC、小区、小区组或BWP的关系作如下说明。例如,FR1的频段范围是410MHz-7125MHz,其包括几十个频段,如频段n18为815MHz-830MHz。FR2的频段范围是24250MHz-52600MHz,其包括6个频段,如频段n257为26500MHz-29500MHz。每个频段包含多个载波,每个载波对应一个传输带宽(transmission bandwidth)和一个中心频率。在CA中,涉及多个载波的聚合,每个载波称为一个载波单元(component carrier,CC),每个CC对应一个独立的小区,通常可以将一个CC等同于一个小区。在DC场景下,存在小区组的概念,在主站下的小区组包括主小区组和辅小区组,在辅站下的小区组包括主辅小区组和辅小区组,每个小区组中包括至少一个小区。BWP是在NR中新引入的概念,其中文含义为部分带宽,其含义是相对于系统 带宽,终端只使用系统带宽的一部分带宽,这样可以节约终端成本,降低终端功耗,可以为每个终端的每个小区配置多个BWP,但在同一时刻,激活一个BWP,终端在该小区利用激活的BWP与基站进行通信。可以简单的认为,频段、载波、CC、小区、小区组或BWP存在以下关系:一个频段中包括一个或多个载波,载波还可称为CC,一个载波对应于一个小区,小区可属于一个小区组,即小区与小区组可存在对应关系。一个小区可包括一个或多个BWP,小区与BWP间存在对应关系。
步骤201:终端接收来自基站的第一信令,该第一信令用于指示至少一种配置。相应的,基站向终端发送第一信令。
在一种设计中,所述第一信令为RRC信令,所述至少一种配置包括以下至少一种:
PDSCH的数目;例如,接收PDSCH的数目;可选的,当所述PDSCH的数目为多个时,在同一时刻或同一时间单元,所述多个PDSCH在时域部分重叠或完全重叠。
PUSCH的数目;例如,发送PUSCH的数目;可选的,当所述PUSCH的数目为多个时,在同一时刻或同一时间单元,所述多个PUSCH在时域部分重叠或完全重叠。
盲检DCI的CORESET POOL的数目;例如,盲检DCI的CORESET POOL的数目;可选的,当CORESET POOL的数目为多个时,在同一时刻或同一时间单元,所述多个CORESET POOL上盲检DCI的时间单元部分重叠或完全重叠。
空分复用的传输层数;
跟踪的TCI状态的数目;
或HARQ进程的数目等。
应当指出,在本申请中,终端基带处理能力是终端在某一个时刻处理PDSCH、PUSCH等的总能力,如果传输不是在时间上同时发生,则不能称为基带处理能力的共享,因此在本申请的描述中,所谓时域完全重叠或部分重叠,体现在多个PDSCH、PUSCH、CORESET POOL等在同一时刻或同一时间单元对终端能力的共享。
在本申请中,基站可根据终端上报的终端能力,确定至少一种配置。
在一种设计中,基站可以根据终端上报的终端能力,为每个小区指示至少一种配置。例如,终端在向基站上报的终端能力中表明:在小区1中,终端接收PDSCH的最大数目为10,则基站根据终端上报的接收PDSCH的最大数目10,可以为小区1配置多种配置。例如,具体的配置为配置1、配置2和配置3。在配置1中,终端在小区1接收PDSCH的数目为5,在配置2中,终端在小区1中接收PDSCH的数目为6,在配置3中,终端在小区1中接收PDSCH的数目为7。应当指出,无论哪种配置,都应当满足终端上报的能力,即小于终端上报的在小区1中接收PDSCH的最大数目10。或者,在配置时不受上述终端上报的能力的限制,但在后续激活时,需要受到终端上报能力的限制,即基站不激活超出终端上报能力的配置。以基站为第一小区配置至少一种配置为例,则所述第一信令用于指示第一小区的至少一种配置与索引的对应关系,所述第一小区的至少一种配置是根据终端上报的终端能力确定的。在下述步骤202中,基站向终端发送的第二信令,该第二信令中包括第一索引的指示信息。终端根据基站指示的第一小区的至少一种配置与索引的对应关系,确定第一索引对应的第一配置。终端在第一小区中工作在第一配置上。
或者,对于一个频段组合中包括载波1和载波2,针对载波1和载波2,则基站可以分别确定三组配置,该载波1的三组配置分别为第一组配置{2}、第二组配置{1}和第三组配置{1},载波2的三组配置分别为第一组配置{0}、第二组配置{1}和第三组配置{0}。基 站可以先激活两个载波的第一组配置进行传输,当终端接收到基站发送的下述步骤202中的第二信令时,根据第二信令的指示,载波1的配置从第一组配置切换到第二组配置,载波2的配置由第一组配置切换到第二组配置,从而基站激活了上述两个载波的第二组配置进行传输。
应当指出,针对上述第一种能力上报方案,每组配置中的取值都应当不超过终端上报的相应能力参数组中针对这个载波的能力。针对上述第二种能力上报方案,所有载波的同组配置中取值的总和应当不超过终端上报的能力。仍沿用上述举例,一个频段组合中包括载波1和载波2,基站分别为上述载波1和载波2确定三组配置,则载波1的第一组配置{2}和载波2的第一组配置{0}可认为是同组配置。同样的,载波1的上述第二组配置和载波2的上述第二组配置也认为是同组配置;载波1的上述第三组配置和载波2的上述第三种配置也认为是同组配置。对于同组配置中同时传输PDSCH的总数目不应该超过终端上述第二种能力上报方案中上报的总能力。或者,对于这个频段组合,每组配置无需遵循终端上报的能力。但后续,基站向终端发送下述步骤202中的第二信令,动态激活不同载波时,终端同时激活的所有载波需要满足终端上报的能力。
在本申请中,对于激活的主载波或主小区或主小区组上最大同时传输的PDSCH的数目至少为1个。对于激活的辅载波或辅小区或辅小区组上最大同时传输的PDSCH的数目可以0。
在另一种设计中,基站可以根据终端上报的终端能力,确定不同BWP与配置的对应关系。所述第一小区中不同BWP对应的配置是根据所述终端上报的终端能力所确定的。例如,若终端以小区、载波或CC为粒度上报终端能力,载波或CC对应一个小区,每个小区包括至少一BWP,则终端根据在某一个小区或载波或CC上报的最大接收PDSCH的数目,为该小区中的至少一个BWP分别配置对应的配置,但应满足终端上报的能力。例如,某小区中包括第一BWP和第二BWP,终端向基站上报终端在该小区中最大接收PDSCH的数目为5,则基站根据该小区的能力,确定该小区包括的第一BWP的配置为配置1,该小区包括的第二BWP的配置为配置2。例如,配置1为终端在第一BWP中接收PDSCH的数目为2,配置2为终端在第二BWP中接收PDSCH的数目为3等。在该设计中,下述步骤202中,基站向终端发送对应激活的BWP的索引,可称为第一索引。终端在根据第一信令,确定第一索引时,确定第一索引对应的第一BWP,激活该第一BWP。且终端在第一BWP工作在该第一BWP存在对应关系的配置1上。在该设计中,无需设计专门的信令用于指示不同配置的切换,利用现有的BWP的切换信令,可间接指示不同配置的切换,节省信令开销。
在本申请中,对于不同的BWP,其配置可以相同或不同,并且应该满足终端上报的能力。对于上述第一种能力上报方案,每个BWP的取值应当不超过终端上报的相应能力参数组中针对这个频段或载波或对应的小区或小区组的能力。对于上述第二种能力上报方案,所有频段或载波或对应的小区或小区组或BWP的同组BWP中取值的总和应当不超过终端上报的能力。或者,对于某个频段组合,或其中的某个频段或载波或对应的小区或小区组,配置的BWP无需遵循终端上报的能力,但在后续步骤202中,基站动态激活或切换不同的BWP时,终端同时激活的所有BWP需要满足终端上报的能力。
应当指出,对于同时激活的BWP,主载波或主小区或主小区组对应的BWP上最大同时传输的PDSCH的数目至少为1个。辅载波或辅小区或辅小区组上最大同时传输的 PDSCH数目可以为0。
步骤202:终端接收来自基站的第二信令,该第二信令用于指示上述至少一种配置中的第一配置。相应的,基站向终端发送第二信令。
在本申请中,该第二信令包括DCI或MAC控制元素(control element,CE)等。基站根据网络的状态,向终端发送MAC CE或DCI等,动态切换不同的配置。基站可根据网络的状态,实时的向终端发送MAC CE或DCI等,向终端指示不同的配置。例如,在时刻1,基站可根据网络的状态,确定终端工作在第一配置下,可以较好的利用终端的基带处理能力,则基站可向终端发送MAC CE或DCI,用于指示第一配置。终端接收到上述MAC CE或DCI时,工作在第一配置。之后,在时刻2,网络的状态发生变化,则基站确定终端工作在第二配置下,可以更好的利用终端的基带处理能力。则基站可向终端发送MAC CE或DCI等,用于指示第二配置。终端在接收到该MAC CE或DCI时,由第一配置切换到第二配置。终端根据基站的MAC CE或DCI的指示,可实时的切换不同的配置。相对于,目前方案,通过RRC半静态配置的方式,可提高终端基带处理能力的利用率,提高上下行吞吐等。
例如,基站同时使用两个下行载波向终端进行传输,分别为载波1和载波2。载波1的三组配置为{2}、{1}、{1},载波2的三组配置为{0}、{1}和{0}。基站可激活上述两个载波的配置1进行传输。即在载波1上,终端同时传输的PDSCH的数目为2,在载波2上同时传输PDSCH的数目为0。基站通过对网络设备的采集,发现载波1有些拥塞,则基站可以向终端发送DCI或MAC CE信令,指示终端在载波1和载波2上均切换到第二组配置上,终端在第二组配置中,在载波1和载波2分别接收一个PDSCH,从而有效缓解了载波1的拥塞,提高了传输速率。在该设计中,MAC CE或DCI等信令,可具体指示需要切换的模式的索引。
或者,在另一种设计中,针对上述引入BWP的方案,预先为不同BWP配置不同的配置的方案。在该方法中,上述MAC CE或DCI,可指示不同BWP的切换。例如,终端在接收到MAC CE或DCI时,该MAC CE或DCI指示终端切换到BWP2,则终端由当前工作的BWP1切换到BWP2,获取该BWP2预配置或存在对应关系的配置。之后,在BWP2上工作在具体的配置上。在该设计中,MAC CE或DCI用于指示BWP的索引。举例来说,基站同时使用两个下行载波与终端进行传输,分别称为CC1和CC2,每个载波上分别配置了三个BWP,载波1上的三个BWP,分别为BWP1_CC1、BWP2_CC1、BWP3_CC1,其配置的接收PDSCH的最大数目分别为{2}、{1}、{1}。载波2的三个BWP,分别为BWP1_CC2、BWP2_CC2和BWP3_CC2,其配置的传输PDSCH的最大数目分别为{0}、{1}、{0}。在一种方案中,基站先激活BWP1_CC1和BWP1_CC2。之后,基站根据实时的网络状态,例如负载和信道质量等,基站向终端发送MAC CE DCI信令,指示终端由BWP1_CC1切换到BWP2_CC2,则终端由BWP1_CC2切换到BWP2_CC2,则在BWP2_CC2工作在其对应的配置上。
步骤203:终端根据所述第一配置,与基站进行通信。相应的,基站根据所述第一配置,与终端进行通信。
在本申请中,以上述第一配置包括传输PDSCH的最大数目为例。沿用上述举例,一个频段组合包括载波1和载波2,则在载波1中的第一组配置为{2},在载波2中的第一组配置为{0}。则终端在工作在第一配置时,在载波1中同时接收2个PDSCH,在载波2中 不接收PDSCH。
应当指出,在上述描述中,主要以载波为粒度上报或配置终端传输PDSCH的最大数目为例描述的。例如,终端上报每个载波传输PDSCH的最大数目,或者,基站为终端分配每个载波传输PDSCH的最大数目等,并不作为对本申请的限制。在本申请中,还可以频段、小区、小区组或BWP等粒度,上报终端能力,或者基站为终端配置等。例如,终端可以上报每个频段、小区、小区组或BWP上,传输PDSCH的最大数目。或者,基站可以配置每个频段、小区、小区组或BWP上,传输PDSCH的最大数目等。
在本申请中,可实现终端在多个频段或载波的PDSCH基带能力共享。因此,基站可以根据信道、负载等信息,实时动态地调整为终端服务的频段或载波,将终端的基带能力运用到最合适的频段或载波上,避免终端基带处理能力的浪费。能够提高空口总传输速率,降低服务时延,实现动态负载均衡。
需要说明的是,在上述图2的流程中,是以基站通过第一信令向终端配置至少一种配置;后续,基站通过第二信令向终端指示上述至少一种配置中的任一种配置,终端工作在第二信令所指示的配置上,与基站通信为例的,并不作为对本申请的限定。比如,在一种示例中,基站通过第一信令向终端配置一种配置,则终端可以直接工作在该配置即可,无需再通过第二信令指示,进一步节省信令开销。
在一种设计中,上述图2所示的方案,可应用于single-TRP场景。针对multi-TRP,可能在终端能力上报和基站为终端分配配置时,还需要考虑TRP的影响。Single-TRP情况下,只涉及基带能力在频域的共享,multi-TRP的存在引入了空域维度,既涉及基带能力在频域的共享,也涉及基带能力在空域的共享,基带能力要在不同TRP的不同频段/载波上进行动态分配,进一步提升基带能力共享的灵活性。例如,该multi-TRP场景,与上述图2所示方案的主要区别在于:在终端向基站上报终端的能力时,该能力中需要包括终端在每个频段或载波上,所支持的与multi-TRP相关的参数。例如,终端在这个频段或载波上能够同时连接的TRP的数目,或者,每个CORESET POOL能够接收的PDSCH的最大数目等。后续,网络设备根据终端上报的能力,确定至少一种配置时,需要考虑TRP的影响。以基站为终端配置PDSCH的数目为例,如果在single-TRP场景下,如果为一个载波同时配置接收2个PDSCH,则该载波可能采用频分的方式,传输该2个PDSCH。例如,将该载波划分为2个频域资源,第一个频域资源传输PDSCH1,第二个频域资源传输PDSCH2等。而在multi-TRP场景下,如果一个载波同时配置接收2个PDSCH,则该2个PDSCH可采用空分的方式。比如,将CC1配置给2个TRP,则可配置终端在CC1下,通过TRP1接收PDSCH1;同样在CC1下,通过TRP2接收PDSCH2等。当上述图2所示流程中的方法,应用于multi-TRP的场景时,本申请提供一种方法,使能PDSCH基带处理能力在频域和空域的动态共享,至少包括:
一、终端向基站上报终端能力。终端能力是该终端在一个频段组合内的能力。一个频段组合包含一个或多个频段或载波,对应终端的一个或多个小区或小区组或BWP。
终端能力上报方法一:终端上报多个能力参数组,每个能力参数组对应于所述频段组合中的一个频段或载波,其包含终端在这个频段或载波上具有的与multi-TRP相关的能力。
例如,在终端能力上报方法一中,对于一个频段组合,终端上报多组能力参数,每个能力参数对应所述频段组合中的一个频段或载波,其包含终端在这个频段或载波上具有的多种终端能力。例如,多个能力参数组的集合可以为FeatureSetCombination,其中的每个 能力参数组FeatureSetDownlinkPerCC包含每个频段或载波上的多种终端能力,在多种终端能力中,包含与multi-TRP相关的能力,与multi-TRP相关的能力参数组可以是multi-TRP。
1、multi-TRP可以包含终端在这个频段或载波或小区或小区组或BWP上的支持的最大CORESET POOL的个数,其代表终端在这个频段或载波或小区上能够同时连接的最大TRP的数目。
2、multi-TRP可以包含终端在这个频段或载波或小区或BWP上能够配置的最大CORESET数目。
3、multi-TRP可以包含终端在这个频段或载波或小区或BWP的每个CORESET POOL上能够配置的最大CORESET数目。
4、muti-TRP可以包含终端在这个频段或载波或小区或BWP的每个CORESET POOL能够发送的最大PDSCH数目。
终端能力上报方法二:终端上报多个能力参数,每个能力参数对应于一种能力,在与multi-TRP相关的能力参数组中,包含多个子参数组,每个子参数组对应这个频段组合中的一个频段或载波上具有的与multi-TRP相关的能力。
例如,在终端能力上报方法二中,对于一个频段组合,终端上报多个能力参数组。每个能力参数组一种终端能力,例如,参数组multi-TRP-PerBC对应了该频段组合中与multi-TRP对应的终端能力。每个能力参数组包含多个子参数组,每个子参数组对应一个频段或载波,例如,参数组multi-TRP-PerBC包含子参数组multi-TRP-PerCC,子参数组multi-TRP-PerCC对应每个频段或者载波与multi-TRP对应的终端能力。
1、multi-TRP-PerCC可以包含终端在这个频段或载波或小区或BWP的支持的最大CORESET POOL个数,其代表终端在这个频段或者载波或小区上能够同时连接的最大TRP数目。
2、multi-TRP-PerCC可以包含终端在这个频段或载波或小区或BWP上能够配置的最大CORESET数目。
3、multi-TRP-PerCC可以包含终端在这个频段或载波或小区或BWP的每个CORESET POOL上能够配置的最大CORESET数目。
4、multi-TRP-PerCC可以包含终端在这个频段或载波或小区或BWP的每个CORESET POOL上能够发送的最大PDSCH数目。
二、基站接收终端上报的能力,并根据终端上报的能力对其进行配置与调度。
配置与调度方法一:基站通过小区配置的激活或去激活来实现终端的PDSCH基带能力在多个频段或TRP的共享。例如,对于一个频段组合中的一个频段或载波,基站可以按照多个参数组给终端配置多组服务小区配置,每组服务小区配置中包括一套没有PDSCH的辅小区配置,不包含一套没有PDSCH的主小区配置,但同时只能激活一套服务小区配置。基站在一个频段组合中的所有频段或载波上同时激活的所有小区能够同时传输的PDSCH数目和需要满足一个参数组对应的终端能力。
配置与调度方法二:基站可以通过BWP的激活和/或去激活来实现终端的PDSCH基带能力在多个频段、载波或TRP的共享。在这种情况下,对于一个频段组合中的一个频段或载波或服务小区,基站可以按照多个参数组给终端配置多个BWP,辅小区可以包含没有PDSCH的BWP,主小区不包含没有PDSCH的BWP。基站同时激活的所有BWP能够同时传输的PDSCH数目和需要满足一个参数组对应的终端能力。
在该方法实施例中,实现终端在多个频段或载波和TRP之间的PDSCH基带能力共享,因此,基站可以根据信道和负载等信息,实时动态地调整为终端服务的频段、载波和TRP,将终端的基带能力运用到最合适的频段、载波和TRP上,避免终端基带能力的浪费。最终,能够提高空口总传输速率,降低服务时延,实现动态负载均衡。
在该实施例中,主要包括以下改进:第一方面,增加了终端上报的与multi-TRP和PDSCH相关的基带能力信息,便于基站依据增加的上报信息进行精确的动态调控和终端基带能力共享。第二方面,在multi-TRP场景下,允许基站在一个频段或载波上通过2个以上TRP调度,允许基站通过L1层信令对不同配置进行激活或去激活,使能了终端PDSCH基带能力在不同频段或载波和不同TRP的动态共享。
以基站为终端配置的至少一种模式中包括跟踪的TCI状态为例,本申请提供一种方法,使能TCI状态(states)基带处理能力在频域和空域的动态共享,至少包括:
一、终端向基站上报终端能力。终端能力是该终端在一个频段组合内的能力。一个频段组合包括一个或多个频段或载波,对应终端的一个或多个小区或小区组或BWP等。
终端能力上报方法一:终端上报多个能力参数组,每个能力参数组对应所述频段组合中的一个频段或载波,其包含终端在这个频段或载波上具有的与multi-TRP相关的能力。
例如,在终端能力上报方法一中,对于一个频段组合,用户上报多个能力参数组,每个能力参数组对应所述频段组合中的一个频段或载波,其包含用户在这个频段或载波上具有的多种终端能力,例如,多个能力参数组的集合可以为FeatureSetCombination,其中的每个能力参数组FeatureSetDownlinkPerCC包含每个频段或载波上的多种终端能力,在多种终端能力中,包含与multi-TRP相关的能力,与multi-TRP相关的能力参数组可以为multi-TRP。multi-TRP可以包含用户在这个频段或载波或小区或BWP的每个CORESET POOL上能够支持的最大的TCI state的数目。
终端能力上报方法二:终端上报多个能力参数组,每个能力参数组对应一种能力,在与multi-TRP相关的能力参数组中,包含多个子参数组,每个子参数组对应这个频段组合中的一个频段或载波上具有的与multi-TRP相关的能力。
例如,在终端能力上报方法二中,对于一个频段组合,用户上报多个能力参数组。每个能力参数组对应一种终端能力,例如,参数组multi-TRP-PerBC对应了该频段组合中与multi-TRP对应的终端能力。每个能力参数组包含多个子参数组,每个子参数组对应一个频段或者载波,例如,参数组multi-TRP-PerBC包含子参数组multi-TRP-PerCC,子参数组multi-TRP-PerCC对应每个频段或者载波与multi-TRP对应的终端能力。
二、基站接收终端上报能力,并根据终端上报的能力对其进行配置和调度。
配置与调度方法一:基站可以通过小区配置的激活或去激活来实现终端的TCI states能力在多个频段或载波或TRP的共享。在这种情况下,对于一个频段组合中的一个频段或载波,基站可以按照多个参数给终端配置多组TCI state配置,但同时只能激活一组TCI state配置。基站在一个频段组合中的所有频段或载波上同时激活的所有TCI state配置需要满足一个参数组对应的终端能力。
配置与调度方法二:基站可通过BWP的激活或去激活来实现终端的TCI state能力在多个频段或载波的共享。在这种情况下,对于一个频段组合中的一个频段或载波或服务小区,基站可按照多个参数组给终端配置多个BWP,基站同时激活的BWP上的所有TCI配 置需要满足一个参数组对应的终端能力。
在该方法实施中,实现终端在多个频段、载波或多个TRP之间的TCI state能力共享。因此,基站可以根据信道、负载等信息,实时动态地调整终端在不同频段或载波、和不同TRP上跟踪TCI state,将终端的基带能力运用到最合适的频段、载波或TRP上,避免终端基带能力的浪费。最终,提高空口传输速率,降低服务时延,实现动态均衡。
本申请实施例主要作如下改进:第一方面,增加了终端上报的与multi-TRP和TCI states相关的基带能力信息,便于基站依据增加的上报信息进行精准的动态调控和终端基带能力共享;第二方面,在multi-TRP场景下,允许基站在一个频段或载波上通过2个以上TRP调度终端,终端可以在2个以上TRP上跟踪TCI state;第三方面,基站通过RRC信令为终端的同一服务小区配置多套参数或BWP,允许基站通过L1信令对不同配置进行激活和去激活,使能了终端TCI states跟踪能力在不同频段或载波和不同TRP上的动态共享。
以基站为终端配置的至少一种模式中包括:HARQ进程的数目为例,本申请还提供一种方法,使能HARQ进程在频域的动态共享,至少包括:
一、终端向基站上报终端能力。终端能力是该终端在一个频段组合内的能力。一个频段组合包含一个或多个频段或载波,对应终端的一个或多个小区或小区组或BWP等。
终端能力上报方法一中,终端上报多组能力,一组能力包含多个能力参数,一个能力参数对应这个频段组合中的一个频段或载波,或对应于小区或小区组或BWP,指示了终端在这个频段或载波或小区或小区组或BWP上最大能够同时传输的HARQ进程数。
例如,针对一个频段组合,终端上报多组参数组,不同参数组指示了终端在所述频段组合中的不同终端能力,例如其中一组参数组可以为FeatureSetCombination。每组参数组包含了终端在每个频段或载波上的相关能力参数组,例如FeatureSetCombination包含了FeatureSetDownlinkPerCC。FeatureSetDownlinkPerCC中指示了终端在每个频段或载波上的HARQ进程相关的能力。具体的,可以包含终端在这个频段或载波上最大支持的同时传输的HARQ进程个数。
终端能力上报方法二中,终端上报一组能力,该组能力包含一个能力参数,这个能力参数指示了终端在这个频段组合中的所有频段或载波或对应的小区或小区组或BPW上总共最大能够同时传输的HARQ进行数目。
例如,对于一个频段组合中的所有频段或载波(或者对应的小区或小区组或BWP),终端上报其总共支持的最大同时传输的HARQ进程数目。
二、基站接收终端上报的能力,并根据终端上报的能力对其进行配置与调度。
配置与调度方法一:对于这个频段组合中的任意一个频段或载波或对应的小区或小区组,基站可以进行多组配置,每组配置指示了终端在这个频段或载波或对应小区或小区组上最大能够同时传输的HARQ进程数目,对于不同组的配置,其取值可以不同。每组配置都应当满足终端上报能力。
其中,对于终端能力上报方法一,每组配置中的取值应当不超过终端上报的相应能力参数组中针对这个频段或载波或对应的小区或小区组的能力。
对于终端能力上报方法二,所有频段或载波或对应的小区或小区组或BWP的同组配置中取值的总和应当不超过终端上报的能力。
对于这个频段组合,或其中的某个频段或载波或对应的小区或小区组,基站向终端发 送MAC CE或DCI信令,动态切换不同的配置。
或者,对于这个频段组合,或其中的某个频段或载波或对应的小区或小区组,每组配置无需遵循终端上报的能力。基站向终端发送MAC CE或DCI信令,动态激活不同的频段或载波或小区或小区组,终端同时激活的所有频段或载波或对应的小区或小区组需要满足终端上报的能力。
配置与调度方法二,对于这个频段组合中的任意一个频段或载波或对应的小区或小区组,终端可以配置多个BWP,并配置每个BWP上最大能够同时传输的HARQ进程数目。
对于不同的BWP,其取值可以不同,并且应当满足终端上报的能力。
对于终端能力上报方法一,每个BWP的取值应当不超过终端上报的相应能力参数组中针对这个频段或载波或对应的小区或小区组的能力。
对于终端能力上报方法二,所有频段或载波或对应的小区或小区组或BWP的同组BWP中取值的总和应当不超过终端上报的能力。
对于这个频段组合,或者其中的某个频段或载波或小区或小区组,基站向终端发送MAC CE或DCI信令,动态切换不同的BWP。
或者,对于这个频段组合,或其中的某个频段或载波或对应的小区或小区组,配置的BWP无需遵循终端上报的能力。基站向终端发送MAC CE或DCI信令,动态激活或切换不同的BWP,终端同时激活所有BWP需要满足终端上报的能力。
在本申请中,实现终端在多个频段/载波的HARQ进程处理能力共享。因此,基站可以根据信道、负载等信息,实时动态地调整为终端服务的频段或载波,将终端的基带能力运用到最合适的频段或载波上,避免终端基带能力的浪费。最终,能够提高空口总传输速率,降低服务时延,实现动态负载均衡。
本申请在以下多个方面进行了改进。第一方面,增加了终端上报的与HARQ进程相关的基带能力信息,上报在多个频段或载波上的总能力,或根据总能力上报多组每频段或每载波上的能力,便于基站依据增加的上报信息进行精确的动态调控和终端基带能力共享;第二方面,基站通过RRC信令为终端的同一服务小区配置多套参数或BWP,允许基站通过L1层信令对不同配置进行激活或去激活,使能了终端HARQ进程处理能力在不同频段或载波上的动态共享。
应当指出,本申请重点描述PDSCH传输、TCI states跟踪和HARQ进程维护等基带能力在频域和/或空域的动态共享,并不作限对本申请的限定。例如,本申请的方案还适用于PUSCH传输、PDCCH检测、CSI-RS资源配置、同时处理的传输层数等基带能力在频域和/或空域的动态共享等。
可以理解的是,为了实现上述实施例中的功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图3和图4为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯 片)。
如图3所示,通信装置300包括处理单元310和收发单元320。通信装置300用于实现上述图2中所示的方法实施例中终端或基站的功能。
当通信装置300用于实现图2所示的方法实施例中终端的功能时:收发单元320用于接收来自网络设备的第一信令,所述第一信令用于指示至少一种配置,以及接收来自所述网络设备的第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;处理单元310用于根据所述第一配置,与所述网络设备通信;其中,所述至少一种配置中包括以下至少一项:
物理下行共享信道PDSCH的数目;
物理上行共享信道PUSCH的数目;
盲检下行控制信息DCI的控制资源池CORESET POOL的数目;
空分复用的传输层数;
跟踪的传输配置指示TCI状态的数目;
或混合自动重传请求HARQ进程的数目。
当通信装置300用于实现图2所示的方法实施例中基站的功能时:收发单元320用于向终端发送第一信令,所述第一信令用于指示至少一种配置,以及向所述终端发送第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;处理单元310用于根据所述第一配置,与所述终端通信;其中,所述至少一种配置中包括以下至少一项:
物理下行共享信道PDSCH的数目;
物理上行共享信道PUSCH的数目;
盲检下行控制信息DCI的控制资源池CORESET POOL的数目;
空分复用的传输层数;
跟踪的传输配置指示TCI状态的数目;
或混合自动重传请求HARQ进程的数目。
有关上述处理单元310和收发单元320更详细的描述可以直接参考图2所示的方法实施例中相关描述直接得到,这里不加赘述。
如图4所示,通信装置400包括处理器410和接口电路420。处理器410和接口电路420之间相互耦合。可以理解的是,接口电路420可以为收发器或输入输出接口。可选的,通信装置400还可以包括存储器430,用于存储处理器410执行的指令或存储处理器410运行指令所需要的输入数据或存储处理器410运行指令后产生的数据。
当通信装置400用于实现图2所示的方法时,处理器410用于实现上述处理单元310的功能,接口电路420用于实现上述收发单元320的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模 块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先 后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (15)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一信令,所述第一信令用于指示至少一种配置;
    接收来自所述网络设备的第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;
    根据所述第一配置,与所述网络设备通信;
    其中,所述至少一种配置中包括以下至少一项:
    物理下行共享信道PDSCH的数目;
    物理上行共享信道PUSCH的数目;
    盲检下行控制信息DCI的控制资源池CORESET POOL的数目;
    空分复用的传输层数;
    跟踪的传输配置指示TCI状态的数目;
    或混合自动重传请求HARQ进程的数目。
  2. 如权利要求1所述的方法,其特征在于,所述第一信令包括无线资源控制RRC信令,所述第二信令包括媒体接入控制MAC控制元素CE信令,或者DCI信令。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信令用于指示第一小区的至少一种配置与索引的对应关系;所述第二信令中包括所述第一配置对应的索引的指示信息。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一信令用于指示第一小区中至少一个带宽部分BWP的配置;所述第二信令中包括所述BWP对应的索引的指示信息。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,还包括:
    向所述网络设备上报终端能力,所述终端能力中包括以下能力中的至少一项:
    所述PDSCH的能力;
    所述PUSCH的能力;
    在所述CORESET POOL上盲检DCI的能力;
    空分复用的传输能力;
    跟踪的传输配置指示TCI状态的能力;
    或混合自动重传请求HARQ进程的能力。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,当所述PDSCH的数目为多个时,所述多个PDSCH在时域部分重叠或完全重叠;当所述PUSCH的数目为多个时,所述多个PUSCH在时域部分重叠或完全重叠;当所述CORESET POOL的数目为多个时,所述多个CORESET POOL上盲检DCI的时间单元部分重叠或完全重叠。
  7. 一种通信方法,其特征在于,包括:
    向终端发送第一信令,所述第一信令用于指示至少一种配置;
    向所述终端发送第二信令,所述第二信令用于指示所述至少一种配置中包括的第一配置;
    根据所述第一配置,与所述终端通信;
    其中,所述至少一种配置中包括以下至少一项:
    物理下行共享信道PDSCH的数目;
    物理上行共享信道PUSCH的数目;
    盲检下行控制信息DCI的控制资源池CORESET POOL的数目;
    空分复用的传输层数;
    跟踪的传输配置指示TCI状态的数目;
    或混合自动重传请求HARQ进程的数目。
  8. 如权利要求7所述的方法,其特征在于,所述第一信令包括无线资源控制RRC信令,所述第二信令包括媒体接入控制MAC控制元素CE信令,或者DCI信令。
  9. 如权利要求7或8所述的方法,其特征在于,所述第一信令用于指示第一小区中至少一种配置与索引的对应关系;所述第二信令中包括所述第一配置对应的索引的指示信息。
  10. 如权利要求7或8所述的方法,其特征在于,所述第一信令用于指示第一小区中至少一个带宽部分BWP的配置;所述第二信令中包括所述BWP对应的索引的指示信息。
  11. 如权利要求7至10中任一项所述的方法,其特征在于,还包括:
    接收来自所述终端上报的终端能力,所述终端能力中包括所述终端的以下能力中的至少一项:
    PDSCH的能力;
    PUSCH的能力;
    在CORESET POOL上盲检DCI的能力;
    空分复用的传输能力;
    跟踪的传输配置指示TCI状态的能力;
    或混合自动重传请求HARQ进程的能力。
  12. 如权利要求7至11中任一项所述的方法,其特征在于,当所述PDSCH的数目为多个时,所述多个PDSCH在时域部分重叠或完全重叠;当所述PUSCH的数目为多个时,所述多个PUSCH在时域部分重叠或完全重叠;当所述CORESET POOL的数目为多个时,所述多个CORESET POOL上盲检DCI的时间单元部分重叠或完全重叠。
  13. 一种通信装置,其特征在于,包括用于执行如权利要求1至6中的任一项所述方法的单元,或者用于执行如权利要求7至12中任一项所述方法的单元。
  14. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至6中任一项所述的方法,或者用于实现如权利要求7至12中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至6中任一项所述的方法,或者实现如权利要求7至12中任一项所述的方法。
PCT/CN2022/134228 2021-11-29 2022-11-25 一种通信方法及装置 WO2023093827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111433803.2 2021-11-29
CN202111433803.2A CN116209082A (zh) 2021-11-29 2021-11-29 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023093827A1 true WO2023093827A1 (zh) 2023-06-01

Family

ID=86513397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134228 WO2023093827A1 (zh) 2021-11-29 2022-11-25 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116209082A (zh)
WO (1) WO2023093827A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278134A (zh) * 2014-07-28 2020-06-12 Lg 电子株式会社 在无线通信系统中收发无线信号的方法及其设备
WO2020164321A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 基于多个下行控制信息的传输方法、设备及系统、存储介质
WO2021157938A1 (ko) * 2020-02-07 2021-08-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278134A (zh) * 2014-07-28 2020-06-12 Lg 电子株式会社 在无线通信系统中收发无线信号的方法及其设备
WO2020164321A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 基于多个下行控制信息的传输方法、设备及系统、存储介质
WO2021157938A1 (ko) * 2020-02-07 2021-08-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "FL summary #2 for Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-2002730, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 18 April 2020 (2020-04-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051876683 *

Also Published As

Publication number Publication date
CN116209082A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN111543097B (zh) 无线网络中的波束管理
US20220240260A1 (en) Method and user equipment for determining resource for sidelink communication
CN116261911A (zh) 用于条件主辅小区添加/改变配置的信令
WO2021227755A1 (zh) 一种切换方法及装置
JP2022534992A (ja) 拡張メークビフォアブレークハンドオーバ中の拡張ユーザ機器能力交換
CN115735348A (zh) 无线通信中双工模式之间的智能切换
WO2023030514A1 (zh) 无线通信方法和通信装置
US20230361835A1 (en) Beam information reporting and receiving method and apparatus
WO2022151018A1 (en) Enhanced physical uplink shared channel transmission in wireless communications
CN115918144A (zh) 用于上行链路发送切换的峰值数据速率计算
CN113261380A (zh) 预保留资源管理
JP2022553586A (ja) 測定管理方法及び装置、通信デバイス
US11197223B2 (en) Method and apparatus for determining transmission path of packet in wireless communication
WO2022082589A1 (en) Multimedia broadcast and multicast service (mbms) transmission and reception in connected state during wireless communications
CN115443721A (zh) 确定用于至少一个载波上的无线通信的传输准备时间
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
US20230276411A1 (en) Method and device for transmitting or receiving data by using dual connectivity of iab node in wireless communication system
WO2023093827A1 (zh) 一种通信方法及装置
WO2022133869A1 (en) Apparatuses and methods for flexible spectrum
WO2022133870A1 (en) Apparatuses and methods for flexible spectrum
CN116746071A (zh) 用于用户设备(ue)处网络发起的面板激活或去激活的技术
WO2023024982A1 (zh) 一种通信方法及装置
WO2023065874A1 (zh) 一种调度方法及装置
WO2024032301A1 (zh) 一种通信方法以及装置
CN112314030B (zh) 设备对设备(d2d)通信管理技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897909

Country of ref document: EP

Kind code of ref document: A1