CN111543097B - 无线网络中的波束管理 - Google Patents
无线网络中的波束管理 Download PDFInfo
- Publication number
- CN111543097B CN111543097B CN201880085050.0A CN201880085050A CN111543097B CN 111543097 B CN111543097 B CN 111543097B CN 201880085050 A CN201880085050 A CN 201880085050A CN 111543097 B CN111543097 B CN 111543097B
- Authority
- CN
- China
- Prior art keywords
- wtru
- pdsch
- coreset
- dci
- data transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 132
- 238000000034 method Methods 0.000 claims description 33
- 238000012544 monitoring process Methods 0.000 claims description 30
- 238000005259 measurement Methods 0.000 abstract description 53
- 238000004891 communication Methods 0.000 description 50
- 238000010586 diagram Methods 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 25
- 230000000737 periodic effect Effects 0.000 description 25
- 230000011664 signaling Effects 0.000 description 21
- 230000001960 triggered effect Effects 0.000 description 20
- 230000006870 function Effects 0.000 description 16
- 241000760358 Enodes Species 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 230000015654 memory Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 108010015046 cell aggregation factors Proteins 0.000 description 11
- 238000007726 management method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 238000012913 prioritisation Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 235000019731 tricalcium phosphate Nutrition 0.000 description 5
- 230000009849 deactivation Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000007420 reactivation Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 235000019527 sweetened beverage Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0092—Indication of how the channel is divided
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/231—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
无线发射/接收单元(WTRU)可以监视控制资源集(CORESET)以接收具有下行链路控制信息(DCI)的物理下行链路控制信道(PDCCH),所述DCI包括用于调度的物理下行链路共享信道(PDSCH)接收的调度偏移和指示的波束。当调度的PDSCH的调度偏移小于阈值时,可以使用传输配置指示(TCI)状态的默认波束来接收调度的PDSCH。当调度PDSCH的调度偏移大于阈值时,在测量质量高于测量阈值的条件下,利用指示的波束来接收调度PDSCH,或者当测量质量低于测量阈值时,可以利用默认波束来接收调度PDSCH。
Description
相关申请的交叉引用
本申请要求以下申请的权益:2017年11月15日递交的美国临时申请序列号62/586,612;2018年01月10日递交的美国临时申请序列号62/615,715;2018年02月14日递交的美国临时申请序列号62/630,649;2018年04月04日递交的美国临时申请序列号62/652,805;以及2018年08月08日递交的美国临时申请序列号62/716,215,这些申请的内容通过引用并入本文。
背景技术
下一代移动通信和应用可以利用增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)、或超可靠低等待时间通信(URLLC)等。范围从700MHz到80GHz的频谱带可以被配置并用于下一代移动通信和应用,以向设备传递更高的速度和可靠性。频谱可以是许可的、未许可的、或混合使用的等。波束选择、形成、或操纵等可以被配置用于下一代移动通信和应用的下行链路或上行链路通信。
发明内容
一种无线发射/接收单元(WTRU),该WTRU可以被配置成在波束选择过程中利用状态。波束选择可基于WTRU移动还是固定,并且配置有下行链路控制信息(DCI),WTRU也可利用预先配置的用于波束选择的设置或利用先前由DCI指示的波束。
附图说明
从以下结合附图以示例方式给出的描述中可以获得更详细的理解,其中附图中相同的附图标记表示相同的元素,并且其中:
图1A是示出了可以实施所公开的一个或多个实施例的示例通信系统的系统图;
图1B是示出了根据实施例的可以在图1A所示的通信系统内部使用的示例的无线发射/接收单元(WTRU)的系统图;
图1C是示出了根据实施例的可以在图1A所示的通信系统内部使用的示例无线电接入网络(RAN)和示例核心网络(CN)的系统图;
图1D是示出了根据实施例的可以在图1A所示的通信系统内部使用的另一示例RAN和另一示例CN的系统图;
图2是传输接收点(TRP)和WTRU天线模型的示例的示意图;
图3是用于物理下行链路共享信道(PDSCH)波束指示的时隙结构的示例的图;
图4是针对多时隙PDSCH配置的准共址(QCL)假设的示例的图;
图5是针对新的无线电PDSCH(NR-PDSCH)配置的空间QCL假设更新的示例的图;
图6是针对NR-PDSCH配置的空间QCL假设更新的示例的图;
图7是针对NR-PDSCH配置的空间QCL假设更新的另一示例的图;
图8是用于确定用于PDSCH通信的波束的过程的示例;
图9是在调度偏移之前确定下行链路(DL)接收(Rx)波束的过程的示例;
图10是在一个或多个波束上进行的NR-PDCCH通信的示例图;
图11是参考信号(RS)资源的示例的图;以及
图12是复用波束报告和信道状态信息(CSI)类型II报告的部分2的示例的图。
具体实施方式
图1A是示出了可以实施所公开的一个或多个实施例的示例通信系统100的图。该通信系统100可以是为多个无线用户提供诸如语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源而使多个无线用户能够访问此类内容。举例来说,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、无线电接入网络(RAN)104、核心网络(CN)106、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络元件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中操作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成传送和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订阅单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Wi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中操作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上操作的设备等等。WTRU 102a、102b、102c、102d的任一者可被可互换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。每一个基站114a、基站114b可以是被配置成通过以无线方式与WTRU 102a、102b、102c、102d中的至少一者对接来促使其接入一个或多个通信网络(例如CN 106、因特网110、和/或其他网络112)的任何类型的设备。例如,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、下一代节点B(gNB)、新无线电(NR)节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个元件,然而应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络元件。
基站114a可以是RAN 104的一部分,并且所述RAN还可以包括其他基站和/或网络元件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于许可频谱、未许可频谱或是许可与未许可频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在实施例中,基站114a可以使用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区使用多个收发信机。例如,通过使用波束成形,可以在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一者或多者进行通信,其中所述空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、毫米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速上行链路(UL)分组接入(HSUPA)。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其中所述技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTE Pro(LTE-A Pro)来建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其中所述无线电技术可以使用新无线电(NR)来建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如电气与电子工程协会(IEEE)802.11(即无线高保真(WiFi))、IEEE 802.16(即全球微波接入互操作性(WiMAX))、CDMA2000、CDMA20001X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强数据速率(EDGE)、以及GSM EDGE(GERAN)等等。
图1A中的基站114b例如可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,所述局部区域例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施诸如IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在实施例中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU 102c、102d可通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN 106来接入因特网110。
RAN 104可以与CN 106进行通信,所述CN可以是被配置成向一个或多个WTRU102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、时延需求、容错需求、可靠性需求、数据吞吐量需求、以及移动性需求等等。CN 106可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN 104和/或CN106可以直接或间接地和其他那些与RAN 104使用相同RAT或不同RAT的RAN进行通信。例如,除了与可以使用NR无线电技术的RAN 104相连之外,CN 106还可以与使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如传输控制协议/网际协议(TCP/IP)网际协议族中的TCP、用户数据报协议(UDP)和/或IP)的全球性互联计算机网络设备系统。其他网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,其他网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是示出了示例WTRU 102的系统图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收元件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136和/或其他外围设备138等等。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述元件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号译码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中操作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收元件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以一起集成在一个电子封装或芯片中。
发射/接收元件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收元件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在实施例中,发射/接收元件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收元件122可被配置成发射和/或接收RF和光信号。应该了解的是,发射/接收元件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收元件122描述成是单个元件,但是WTRU 102可以包括任何数量的发射/接收元件122。更具体地说,WTRU 102可以使用MIMO技术。由此,在一个实施例中,WTRU 102可以包括两个或多个通过空中接口116来传送和接收无线信号的发射/接收元件122(例如多个天线)。
收发信机120可被配置成对发射/接收元件122所要传送的信号进行调制,以及对发射/接收元件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些元件的用户输入数据。处理器118还可以向扬声器/麦克风124、数字键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将数据存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订阅身份模块(SIM)卡、记忆棒、和安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置成分发和/或控制用于WTRU 102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118可以进一步耦合到其他外围设备138,其中所述外围设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动跟踪器等等。外围设备138可以包括一个或多个传感器,所述传感器可以是以下的一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁强计、方位传感器、邻近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、姿势传感器、生物测定传感器、和湿度传感器等。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)的特定子帧相关联)的接收或传输可以是并发或同时的等。全双工无线电设备可以包括借助于硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减小和/或基本消除自干扰的干扰管理单元。在实施例中,WTRU 102可以包括传送或接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出了根据实施例的RAN 104和CN 106的系统图。如上所述,RAN 104可以使用E-UTRA无线电技术来通过空中接口116与WTRU 102a、102b、102c进行通信。所述RAN104还可以与CN 106进行通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持符合实施例的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c都可以包括通过空中接口116与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施例中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c都可以关联于特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理实体(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个元件都被描述成是CN 106的一部分,然而应该了解,这其中的任一元件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B 162a、162b、162c,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附接过程中选择特定的服务网关等等。MME 162还可以提供用于在RAN 104与使用其他无线电技术(例如GSM或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。SGW 164还可以执行其他功能,例如在e节点B间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促成与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供对电路交换网络(例如PSTN 108)的接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在某些典型实施例中,此类终端与通信网络可以使用(例如临时或永久性地使用)有线通信接口。
在典型的实施例中,其他网络112可以是WLAN。
采用基础设施基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以访问或是对接到分布式系统(DS)或是将业务送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务可被发送至AP,以便递送到对应的目的地。处于BSS内部的STA之间的业务可以通过AP来发送,例如在源STA可以向AP发送业务并且AP可以将业务递送至目的地STA的情况下。处于BSS内部的STA之间的业务可被认为和/或称为点到点业务。所述点到点业务可以在源与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在某些典型实施例中,DLS可以使用802.11eDLS或802.11z隧道化DLS(TDLS))。使用独立BSS(IBSS)模式的WLAN可以不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式也可被称为“自组织(ad-hoc)”通信模式。
在使用802.11ac基础设施操作模式或类似的操作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或经由信令设置的动态设置的宽度。主信道可以是BSS的操作信道,并且可被STA用来与AP建立连接。在某些典型实施例中,所实施的可以是具有冲突避免的载波侦听多址接入(CSMA/CA)(例如在802.11系统中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在给定的BSS中,一个STA(例如只有一个站)可以在任何给定时间进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信,例如,借助于将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过分段解析器,所述分段解析器可以将数据分成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由发射STA来传送。在接收STA的接收机上,用于80+80配置的上述操作可以被颠倒,并且组合数据可被发送至媒体访问控制(MAC)。
802.11af和802.11ah支持次1千兆赫兹(GHz)的操作模式。相比于802.11n和802.11ac,在802.11af和802.11ah中使用的信道操作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。依照典型实施例,802.11ah可以支持仪表类型控制/机器类型通信(例如宏覆盖区域中的MTC设备)。MTC设备可以具有某种能力,例如包括了支持(例如只支持)某些和/或有限带宽在内的有限的能力。MTC设备可以包括电池或移动电源存储,并且该电池或移动电源存储的电池寿命高于阈值(例如以用于维持很长的电池寿命或电源寿命)。
对于可以支持多个信道和信道带宽的WLAN系统(例如802.11n、802.11ac、802.11af以及802.11ah)来说,这些系统包括了可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共操作带宽。主信道的带宽可以由某一个STA设置和/或限制,其中所述STA源自在BSS中操作的所有STA且支持最小带宽操作模式。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz操作模式)对AP进行传输),那么即使大多数的频带保持空闲并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出了根据实施例的RAN 104和CN 106的系统图。如上所述,RAN 104可以使用NR无线电技术通过空中接口116来与WTRU 102a、102b、102c进行通信。RAN 104还可以与CN 106进行通信。
RAN 104可以包括gNB 180a、180b、180c,但是应该了解,在保持符合实施例的同时,RAN 104可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU 102a、102b、102c通信。在一个实施例中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、180b、180c可以使用波束成形处理来向和/或从gNB 180a、180b、180c传送和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a传送无线信号,和/或接收来自WTRU 102a的无线信号。在实施例中,gNB 180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(CC)(未显示)。这些CC的一子集可以处于未许可频谱上,而剩余CC则可以处于许可频谱上。在实施例中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU 102a可以接收来自gNB 180a和gNB 180b(和/或gNB 180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩参数配置相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的通信、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔(SCS)可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包括了不同数量的OFDM符号和/或持续不同的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B 160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用未许可频带中的信号来与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c会在与别的RAN(例如e节点B 160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B 160a、160b、160c进行通信。在非独立配置中,e节点B 160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便服务WTRU 102a、102b、102c。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通处理、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过Xn接口通信。
图1D所示的CN 106可以包括至少一个AMF 182a、182b,至少一个UPF 184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述元件都被描述了CN 106的一部分,但是应该了解,这其中的任一元件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 104中的一个或多个gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、182b可以使用网络切片处理,以便基于WTRU 102a、102b、102c使用的服务类型来定制为WTRU 102a、102b、102c提供的CN支持。作为示例,针对不同的用例,可以建立不同的网络切片,例如依赖于超可靠低等待时间通信(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于MTC接入的服务等等。AMF 182a/182b可以提供用于在RAN 104与使用其他无线电技术(例如LTE、LTE-A、LTE-A Pro和/或诸如WiFi之类的非第三代合作伙伴项目(3GPP)接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 106中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 106中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以通过UPF 184a、184b来配置业务路由。SMF 183a、183b可以执行其他功能,例如管理和分配WTRU IP地址,管理PDU会话,控制策略实施和QoS,以及提供下行链路数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 104中的一个或多个gNB 180a、180b、180c,这样可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信,UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲DL分组、以及提供移动性锚定处理等等。
CN 106可以促成与其他网络的通信。例如,CN 106可以包括充当CN 106与PSTN108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)或者可以与之进行通信。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,这其中可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。在一个实施例中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与本地数据网络(DN)185a、185b之间的N6接口通过UPF 184a、184b连接到DN 185a、185b。
有鉴于图1A-1D以及关于图1A-1D的对应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的一个或多个其他任何设备。仿真设备可以是被配置成模拟这里描述的一个或多个或所有功能的一个或多个设备。举例来说,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施或部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施或部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试设备。所述仿真设备可以使用直接的RF耦合和/或借助了RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
在用于eMBB、大规模机器类型通信(mMTC)、或URLLC等的下一代移动通信和应用中,可以配置或利用范围从700MHz到80GHz的频谱带。频谱带可以是许可的、未许可的、或混合使用的等等。对于次6GHz通信,可以配置或利用多天线、MIMO、单用户MIMO(SU-MIMO)、多用户MIMO(MU-MIMO)、单输入多输出(SIMO)、多输入单输出(MISO)等技术。
多个天线可以传递分集增益、复用增益、波束成形、阵列增益等。在WTRU与单个中心节点通信的配置中,MU-MIMO可以通过在时间或频率上相同或重叠的资源集合上同时将多个数据流通信至不同WTRU而增加系统吞吐量。从SU-MIMO来看,相同的中心节点可以向相同的WTRU发送多个数据流,而不是像MU-MIMO那样向多个WTRU发送多个数据流。
在毫米波(毫米波)频率的多天线通信可以不同于次6GHz。例如,毫米波频率可以经历不同的传播特性。相比于天线元件,毫米波网络设备、基站、网络节点、或WTRU等也可以被配置有有限数量的RF链。
图2示出了传输接收点(TRP)和WTRU天线模型200的示例。大规模天线模型202可以被配置为每垂直维度Mg个天线面板和每水平维度Ng个天线面板。每个天线面板可以被配置成具有N列和M行天线元件,其具有或不具有极化。定时和相位可以在面板之间进行校准,并且多个面板可以配备在相同网络设备、或eNB等中。基线大规模天线配置可以根据操作频带而不同,如表1中给出的。
表1
在毫米波频率的预编码可以是数字的、模拟的、或数字和模拟的混合。数字预编码可以利用均衡来提供SU、MU或多小区预编码。预编码可被配置成诸如IEEE 802.11n、802.11x、3GPP、或LTE等中。然而,毫米波频率中,与天线元件相比的有限数量的RF链以及信道的稀疏性质增加了数字波束成形的复杂性。通过在一个或多个天线单元中使用模拟移相器,可以针对有限数量的RF链来配置模拟波束成形。在扇区级扫描期间,这种技术可以用于IEEE 802.11ad,其可以识别最佳扇区,或者可以在波束细化期间使用,其可以将扇区细化成天线波束。该技术还可用于波束跟踪,其可在用于改变信道过程的时间调整上调整子波束。
在混合波束成形中,在模拟和数字域之间划分预编码器。每个域可以包括具有不同结构的矩阵和组合矩阵,例如用于在模拟域中组合矩阵的恒定模数。由于稀疏信道特性和对多用户或多流复用的支持,混合波束成形可以实现期望的数字预编码性能。除了在角度域中可能稀疏的毫米波信道之外,混合波束成形还可以受到RF链的数量的限制。
在新无线电的波束管理(BM)中,随着频率增加,信道可能经历更高的路径损耗和更突然的变化。在高频带中,大规模天线阵列可以用于实现高波束成形增益以补偿高传播损耗。可以针对期望的数据吞吐量或覆盖来管理耦合损耗。基于定向波束的通信可能需要精确的波束配对、真实的信道条件、或者方位角和仰角中的到达角和离开角等。波束方向可以随着信道改变而动态地调整。
BM可以包括用于在一个或多个TRP中选择TRP Tx/WTRU Rx波束DL层1(L1)/层2(L2)BM过程、用于波束选择的一个或多个高层过程(P-1,P-2,P-3)、Tx波束细化、Rx波束改变、TRP Tx和WTRU Rx波束扫描、针对NR的WTRU触发的波束故障恢复、或者基于波束群组的报告和WTRU特定配置的BM等等。BM还可以包括对以下的利用:信道状态信息-参考信号(CSI-RS)、用于NR环境中的TxOR Rx波束扫描的同步信号或序列(SS)块配置、或者针对UL传输(一个或多个)的用于BM的NW控制的机制等。
物理下行链路共享信道(PDSCH)或物理下行链路控制信道(PDCCH)波束指示、无线电资源控制(RRC)消息或信号可以配置M个候选传输配置指示(TCI)状态的集合。TCI状态可以包括对包括一个或多个DL RS指示的RS集合的引用,其中,DL RS指示可以用作针对PDSCH或PDCCH接收的准共址(QCL)参考。在某些配置中,TCI状态可以是指针,WTRU使用所述指针确定WTRU可以利用哪个RS集合或DL RS索引来确定与PDSCH或PDCCH相关联的一个或多个DM-RS端口的QCL参考。
对于PDCCH接收,QCL参考可以通过用信号通知核心资源集(CORESET)或搜索空间与TCI状态的关联来配置。与TCI状态链接的RS集可以提供用于PDCCH的QCL参考。NR可以针对PDSCH利用动态波束指示,其可能需要DL相关DCI字段中的N比特指示符状态或TCI状态字段来进行PDSCH波束指示。
在这里给出的任何示例中,尽管可以参考NR-PDSCH,但是在这些给定示例中可以配置PDSCH或者任何物理或传输下行链路共享或数据信道。对于用于NR-PDSCH波束指示的定时,当配置或指示空间QCL时,独立于相同时隙调度或跨时隙调度,在用于NR-PDSCH调度的相关联DCI中设置预定TCI字段。对于本文给出的示例,参数或变量K可以用作阈值、水平、或数字点等。当调度偏移>=阈值K时,NR-PDSCH可以使用由分配DCI中的N比特TCI字段所表示的波束或空间QCL参数。当调度偏移<阈值K时,NR-PDSCH可以使用预配置的、预定义的、基于规则的、或类似的空间假设,而各种QCL参数可以从DCI中的N比特TCI状态字段获得。在某些配置中,当阈值K的一个或多个候选值可用时,阈值K可以基于WTRU能力。
在这里给出的任何示例中,尽管可以参考NR-PDCCH,但是可以在这些给定示例中配置PDCCH或者任何物理或传输下行链路控制信道。用于NR-PDCCH传输的DL波束指示可以被配置为防止波束对链路(BPL)阻塞。BPL阻塞可能是由WTRU在不同NR-PDCCH OFDM符号中的不同BPL上监视NR-PDCCH引起的。QCL配置可以在RRC或RRC和MAC控制元素(CE)(MAC-CE)消息或信号中指示。针对NR-PDCCH的QCL配置可以包括对TCI状态的引用,诸如当QCL配置或指示是基于每个CORESET时。例如,例如,WTRU可以在相关联的CORESET监视时机上应用空间QCL假设,或者当QCL配置或指示基于每个搜索空间时,CORESET内的基本上所有搜索空间可以利用类似的QCL。WTRU还可以在相关联的搜索空间上应用空间QCL假设,并且在CORESET内存在一个或多个搜索空间的情况下,WTRU可以被配置有针对不同搜索空间的不同空间QCL假设以在多个不同BPL(一个或多个)上监视NR-PDCCH,从而在提供鲁棒性的同时减少了开销。
在某些配置中,QCL假设、QCL信息、QCL参考等可以与各种类型相关联。例如,类型可以包括:QCL-类型A{多普勒频移,多普勒扩展,平均延迟,延迟扩展};QCL-类型B{多普勒频移,多普勒扩展},QCL-类型C{多普勒频移,平均延迟};或者QCL-类型D{空间Rx参数}。
针对NR-PDSCH的DL波束指示可以包括在DCI中的N比特TCI字段中,该DCI利用对DLRS的空间QCL参考(例如CSI-RS或同步信号块(SSB))来解调NR-PDSCH或NR-PDCCH。SSB也可以称为SS块、SS块或SS/PBCH。指示符的给定值可以被称为指示符状态,并且可以与DL RS索引、CSI-RS的索引、或SSB的索引等相关联。DL RS索引可以通过显式信令、RRC消息或信号、或者RRC和MAC-CE消息或信号与指示符状态相关联。例如当网络为WTRU进行的测量配置DLRS子集时,在WTRU测量期间,DL RS索引还可以与指示符状态隐含地相关联。WTRU可以基于测量结果来将DL RS索引和指示符状态相关联。
当NR-PDSCH调度分配DCI携带为WTRU处的NR-PDSCH接收提供波束指示或空间QCL参考指示的TCI字段时,可以考虑相应的NR-PDSCH分配的调度偏移或调度延迟。这种影响可能是由于完成TCI解码、RF调谐、或基于解码的TCI指示从当前Rx波束切换到新的Rx波束等所需的WTRU时间。
调度偏移可以是N个符号、N个时隙、或N个资源等。调度偏移取决于相应的NR-PDSCH分配是在与调度分配DCI相同的时隙还是不同的时隙中被调度。在某些配置中,N可以是大于或等于1的整数。调度偏移可小于、等于或大于一预先指定或设定的阈值K,其可为WTRU完成TCI解码、RF调谐、或从当前Rx波束到新的Rx波束的波束切换等所需的一估计持续时间。
如果需要新的Rx波束,则阈值K还可以是WTRU执行TCI解码、盲解码、RF调谐、或波束切换等的估计持续时间的值。盲解码时间可以取决于所配置的频率。例如,当在较高频率上操作时,WTRU可以被配置有较高数量的搜索空间。当在较高频率上操作时,RF调谐时间和波束切换时间可能也不同。
阈值K可以取决于WTRU能力、网络设计、WTRU支持的参数配置、QoS、或WTRU服务类型(例如eMBB、URLLC、MTC)等。在某些配置中,对于低等待时间,URLLC可以比eMBB需要更小的阈值K值。WTRU能力可以包括用于DCI接收和解码的WTRU处理时间、用于波束切换的WTRU处理时间、WTRU RF链调谐时间、同时/非同时配备和使用的面板数量、或固定Rx波束配置等。WTRU可报告WTRU能力以辅助网络设备、gNB、或TRP等,以为NR-PDSCH的接收或调制配置适当调度偏移或时间偏移。
阈值K可以是基于相同时隙或跨时隙调度而预先指定、配置或类似的。在相同时隙调度中,阈值K的值可以指示整数个符号或资源。作为另一示例,对于跨时隙调度,阈值K的值可以指示整数个时隙。当WTRU将时域行为从基于时隙的调度改变为基于非时隙的调度时,阈值K可被动态地配置或指示。例如,基于非时隙的调度可以具有特定的符号持续时间,并且可以相应地调整阈值K并将其指示给WTRU。
在某些配置中,WTRU可以配置有一个或多个阈值K。阈值K的一个或多个值可以预先指定或配置用于不同类型的服务,例如URLLC或eMBB。一个或多个阈值K可以同时、持续、半持续、交替等方式被使用。例如,WTRU可以能够同时或交替地提供多种类型的服务,例如URLLC或eMBB,其中可以相应地为多种服务配置一个或多个阈值K。每种类型的服务可以具有类似的不同阈值K值。
阈值K可以由网络设备、gNB、TRP、WTRU、或移动设备等配置、选择、确定、或计算等。在某些配置中,WTRU可以向网络报告关于阈值K的信息以辅助网络设备、gNB、TRP或类似设备选择或确定阈值K。报告的信息可以包括WTRU能力、WTRU操作、WTRU状态、当前WTRU参数配置、或定制的WTRU设置等等。网络可以选择或确定阈值K并通过高层信令、更高层消息、RRC消息、MAC CE、L1信令或aDCI等来发送给WTRU。
WTRU可确定网络控制环境中的阈值K的值。例如,一个或多个阈值K可以基于WTRU能力、WTRU类别、参数配置、业务类型、或实现等而被预先指定。在RRC连接建立、配置、或重新配置等期间,网络和WTRU可以交换能力信息,并且WTRU可以选择阈值K值。网络还可以配置具有阈值K的若干值,并且WTRU可以基于网络配置来选择或确定阈值K的值。每个阈值K可以与可能的条件相关联,例如当阈值K的值是通过组合TCI解码时间和波束切换时间而得到的最接近的舍入整数时间时。一旦WTRU选择了阈值K,该值可以被报告、或用信号发送等到网络以用于调度资源,例如随后的NR-PDSCH分配。
阈值K可以预先指定或配置成针对基本上所有WTRU、WTRU群组、或特定的WTRU等是类似值或公共值。此外,类似的或不同的阈值K可基于WTRU能力、WTRU操作、WTRU状态、当前WTRU参数配置、或定制的WTRU设置等而配置给WTRU。如果WTRU实现一个固定的Rx模拟波束,或者不能实现Rx波束扫描能力,则可以不配置阈值K,或者WTRU可以忽略该阈值。
PDSCH或NR-PDSCH的波束指示可以基于针对调度偏移的阈值。可以基于调度偏移和阈值Threshold-Sched-Offset来执行选择DCI中携带的TCI状态指示的空间QCL还是随后的用于具有最低ID的CORESET的空间QCL。所述阈值可以基于WTRU能力、参数配置、或SCS等来确定。
可以指定、预先配置、或配置等一个或多个表以确定阈值K或Threshold-Sched-Offset。这些参数可以基于一个或多个表所覆盖的维度,一个或多个表可以是WTRU群组公共的或者可以是WTRU特定的。可基于类似能力、QoS、等待时间要求、或SCS等将WTRU分组。表2和表3是确定或选择阈值K的示例。
表2
可以为针对Threshold-Sched-Offset在表中找到的特定值考虑一个或多个因素。例如,表可以包括四个WTRU类别、三个SCS或者三个延迟要求。在某些配置中,表2值可以是基本上所有WTRU的基线。例如,给定的WTRU具有工作分量载波/带宽部分(CC/BWP)且具有更高的SCS(从60kHz到120kHz SCS)的等待时间要求,该值可能更高,因为1个符号/时隙的时间长度较小。表2中的低等待时间和高等待时间的值对于给定的参数配置可以是不同的。如果高、中和低等待时间的WTRU对于基本上所有参数配置都是相同的,那么对于基线WTRU和高级WTRU,它们中的任何两个可以被合并或忽略。
在表3中,对于给定的参数配置和等待时间要求,对表2中值的支持可以被报告为WTRU能力。对于给定的参数配置和等待时间,表3中的值可以等于或小于表2中的值。
表3
WTRU可以遵循表中定义的指定值并且报告优选的Threshold-Sched-Offset值。对于适用于在载波频率下的PDCCH接收的每个SCS,WTRU报告的值可以基于在给定载波频率下的WTRU能力。在某些配置中,PDCCH接收可以包括DCI解码和获得DCI中携带的TCI信息。WTRU可动态地切换操作能力。例如,为了节能,WTRU可以从高级模式切换到基线模式。WTRU可以由网络设备gNB、TRP或类似设备启动或配置,以从6GHz以上到6GHz以下工作,其中SCS可以从60/120kHz切换到15/30kHz。
Threshold-Sched-Offset可以是与执行DCI解码、获得TCI信息、或波束切换等时由WTRU经历的不同定时延迟相关联的参数。WTRU可以针对WTRU监控、载波频率、聚合等级、处理时间、或DCI监控期间的搜索时间,或者用于DL DCI中携带的TCI字段等,基于配置的搜索空间的数量和CORESET报告不同的Threshold-Sched-Offset值。WTRU可以检查激活的TCI状态表以找到QCL信息、RS(一个或多个)、或RS集合中的RS(一个或多个)等。当激活的TCI表具有无效信息时,表检查和处理时间可以不同。波束切换所需的时间延迟可能取决于用于PDCCH接收的载波频率或BWP。接收到的信号在控制或数据信道之间可能具有不同的信号功率差水平,并且AGC增益可以收敛得足够快,以便进行类似CC/BWP内的波束切换,但是AGC增益可以缓慢收敛,以便从CC1/BWP1中的波束切换到CC2/BWP2中的波束。
对于PDCCH盲解码,检测PDCCH格式或聚合的定时延迟可以基于不同的WTRU硬件能力。具有不同配置的CORESET或搜索空间的使用类似硬件的WTRU也可能导致不同的处理定时。例如,假设配置的CORESET的数目类似,与配置有15个搜索空间的WTRU相比,配置有5个搜索空间WTRU需要更多的时间用于DCI解码。DCI解码时间可基于配置和WTRU硬件能力的组合值。对于波束切换,定时延迟还取决于WTRU实现和配置/操作的组合,例如类似或不同CC/BWP内的波束切换。在某个配置中,针对在BWP上操作的WTRU的值Threshold-Sched-Offset可以被计算为:
对于等式(1),是上限或舍入上函数,其将内部值转换为大于所述内部值的下一最小整数。
图3是用于PDSCH波束指示的时隙结构300的示例的图。变量或参数d可以是WTRU的基本上所有被配置的受监视的CORESET或搜索空间302的最后符号之间的时间。变量或参数d可以是WTRU针对用于完成DCI解码的时间、获得TCI信息、潜在的波束切换时间、或WTRU的类似操的估计时间而报告的时间长度。
由于WTRU可能不知道对波束切换的需要,例如如果PDCCH和PDSCH接收使用类似的波束则可能使得切换不必要,因此在完成DCI解码或获得TCI信息之前,波束切换时间可能是WTRU估计。WTRU还可能不知道在波束切换过程中所需的波束切换时间,例如新旧波束之间的空间角度。如果不需要波束切换,则波束切换时间可以等于0,如果需要波束切换,则波束切换时间可以是非零值。
获得TCI信息的时间可以取决于WTRU硬件,例如对读取TCI表或者WTRU配置的缓冲访问,并且可以作为d的一部分被报告。WTRU报告值d可以基于表4中的与传送的PDSCH的下行链路的CSC相对应的μ。符号长度可以是BWP上的时隙内的每个符号的时间长度,并且6可以是补偿或调整阈值的偏移值。
表4
μ | PDCCH解码时间[符号] |
0(例如,30kHz) | 值1 |
1(例如,60kHz) | 值2 |
2(例如,120kHz) | 值3 |
可以基于配置的TCI状态的数量来确定Threshold-Sched-Offset或阈值K值。例如,如果配置的TCI状态的数量小于第一阈值,则可以使用第一Threshold-Sched-Offset值。如果配置TCI状态的数量大于第一阈值且小于第二阈值,那么可使用第二Threshold-Sched-Offset值。如果配置的TCI状态的数量大于第二阈值,那么可使用第三Threshold-Sched-Offset值。第二阈值可以大于第一阈值。第三阈值可存在且大于第二阈值。基于一个或多个系统参数或WTRU参数,可以预定义、配置、或确定阈值等。可以基于SS突发内的发送的SS块的数量来确定Threshold-Sched-Offset值。所发送的SS块的数量可以被指示在广播消息或信号中。
WTRU可报告WTRU能力、用于执行DCI解码、获得TCI信息、或RF调谐和波束切换(如果需要新的Rx波束)等中的一者或多者的估计持续时间,以辅助网络设备gNB或TRP配置用于PDSCH的接收和解调的适当的调度偏移或时间偏移。WTRU可以在从所接收的PDCCH解码DCI之后接收用于PDSCH接收或解调的调度偏移或时间偏移信息。
WTRU可以确定用于PDSCH接收的波束或空间QCL参数。如果调度偏移<阈值K,则PDSCH可以使用由默认TCI状态指示的波束,该默认TCI状态对应于用于相应时隙中的最低CORESET ID的控制信道QCL指示的TCI状态。如果调度偏移>=阈值K,则PDSCH可以使用由使用的DCI或分配中的N比特TCI字段指示的波束或空间QCL参数。在这些示例中,阈值K可以是变量或参数Threshold-Sched-Offset。
在某些配置中,如果WTRU将不同的波束用于PDCCH接收和PDSCH接收,则WTRU可以切换到不同的波束。否则,WTRU使用当前波束而不切换。WTRU可以在应用所确定的波束之后接收PDSCH。如果在WTRU解码DCI或TCI并切换到新的所需Rx波束之前,NR-PDSCH已被调度并通过新波束传送,则可能会不适当地缓冲NR-PDSCH分配的前几个符号,从而损害后续数据解码。如果可以由调度分配DCI指示的相应NR-PDSCH的调度偏移等于或大于阈值K,则NR-PDSCH可以使用由分配DCI中的N比特TCI指示的波束或空间QCL假设。如果可以由分配DCI指示的相应NR-PDSCH的调度偏移小于阈值K,则WTRU可以从调度NR-PDSCH的起始符号开始应用合适的Rx波束。该操作可以避免在阈值K之前调度的NR-PDSCH符号的丢失。
专用波束可以被预配置,使得WTRU可以切换到预配置的波束以缓冲NR-PDSCH的前几个符号。用于WTRU切换到特定波束的信息以及WTRU在特定波束上执行接收和缓冲需要的时间可以预配置并且为WTRU所知。该预配置波束可为WTRU特定、为WTRU群组所共有,或可被设定用于小区或区域内的基本上全部WTRU。预配置波束可通过较高层信令(诸如RRC)配置、由WTRU通过经由广播、特别请求等的系统信息来获得。预配置波束可在初始配置之后被设置为默认波束,并在稍后的时间根据需要被重新配置。
WTRU可以通过各种操作应用合适的Rx波束,而不使用预配置波束、或默认波束等。例如,WTRU可以使用用于在相同时隙中接收DCI或NR-PDCCH的类似波束或者用于在先前时隙中接收NR-PDCCH或NR-PDSCH的类似波束作为合适的Rx波束。例如,假设当前时隙是X,则WTRU可以使用在前一时隙Y中使用的用于NR-PDCCH的类似波束,其中Y<=X并且时隙差是β=X-Y。在该配置中,β的值是配置的。为了减少信令开销,可以将WTRU配置为继续使用合适的Rx波束或配置为在未来的NR-PDSCH传输中的时间段内使用合适的Rx波束。该配置可以指示或者可以不指示在阈值K之前WTRU用于接收NR-PDSCH符号的Rx波束。
WTRU可以使用半持久波束,例如当用于NR-PDSCH的Tx或Rx波束缓慢或不频繁地改变,使得在每个调度的NR-PDSCH中的波束的指示不必要。作为示例,空间QCL假设或在时隙t1发送到WTRU的波束可由WTRU重新使用,以接收多个后续调度的NR-PDSCH分配直到条件满足。对于低开销,可以通过使用DCI或TCI向WTRU指示空间QCL假设。为了高可靠性,可以利用高层信令来指示空间QCL假设。一条件可以是相同的空间QCL假设或波束重用来接收N个随后调度的NR-PDSCH分配,其中N可以是可配置的或与QCL指示一起被携带,诸如WTRU可以被配置有参数:aggregationFactorDL>1。在这种配置中,WTRU可以将所指示的波束用于aggregationFactorDL个连续时隙。另一条件可以是利用每个空间QCL假设配置的定时器。当定时器期满时,空间QCL假设可以变得无效。新的空间QCL假设也可以是直接重写旧的空间QCL假设的条件指示或配置。默认空间QCL假设也可以是可以在一些或基本上所有的aggregationFactorDL个时隙中使用的条件。
WTRU可以基于预定义的规则来获得合适的Rx波束信息。可以由相关联的参数触发预先定义的规则,所述参数例如WTRU速度、WTRU业务负载、或当前参数配置等。每个触发的规则可以导致特定波束确定操作内的波束改变,例如从一个预配置的波束切换到另一个预先配置的波束。触发规则还可以在不同的波束确定操作中应用,例如从半持续波束到NR-PDCCH波束或最后的NR-PDSCH波束。WTRU也可以初始使用预配置的波束以及随着WTRU移动切换为使用持续波束。持续时间可以与WTRU速度相关,并且可以被配置或指示为DCI、MAC-CE消息或信号、或RRC消息等中的特定时间段或定时器。对于高速度的WTRU,可以配置更小的时间段或更短的定时器。对于低速度的WTRU,可以配置更大的时间段或更长的定时器。
一旦WTRU接收到DCI中指示的空间QCL假设,其可以用于某一时段NR-PDSCH的接收,直到定时器期满或者接收到具有波束指示的新DCI。对于高速情况,WTRU可以使用宽波束和单个固定的Rx波束或全向波束。在该配置中,WTRU可以使用用于NR-PDCCH接收的类似波束来接收NR-PDSCH,以减少开销或等待时间。WTRU还可以将操作从基于时隙的模式切换到非基于时隙的模式。在基于时隙的模式中,WTRU可以使用用于接收NR-PDSCH的类似Rx波束来接收CORESET或NR-PDCCH。在非基于时隙的模式中,WTRU可以使用由一个包含波束指示的先前DCI指示的Rx波束。例如,所述先前DCI可以是具有波束指示的最后的DCI或用于最后NR-PDSCH的接收的Rx波束。
对于多时隙PDSCH,可以存在波束假设。当WTRU被配置有高层参数PDSCH-AggregationFactor(可以与PHY层参数aggregationFactorDL相对应)并且该参数的值大于1时,则WTRU可以使用默认波束而不是指示的波束来用于PDSCH接收。默认波束可以在部分或基本上全部的配置的aggregationFactorDL个连续时隙中使用。
图4是用于多时隙PDSCH配置400的空间QCL的假设的示例的图。尽管图4中引用了PDSCH(一个多个),但是NR-PDSCH(一个多个)可以类似地应用或替代。在WTRU获得并应用指示的波束之前可以存在阈值,例如,由于DCI解码或RF调谐时间而引起。如果多时隙PDSCH402是利用时隙聚合调度的,且第一调度时隙中的调度PDSCH的调度偏移小于阈值404,则用于PDSCH接收的空间QCL假设、空间Rx参数、或Rx波束等可以基于默认假设、或预定义规则等。作为另一个示例,即使所配置的aggregationFactorDL个连续时隙跨越了阈值,WTRU也可以保持对基本上所有被调度时隙使用类似的默认波束。
在多时隙PDSCH 406中,对于其中所调度的PDSCH的第一符号小于阈值408的时隙,WTRU可以应用默认波束进行PDSCH接收,并且因此可以对于其中所调度PDSCH的第一符号晚于阈值408的所有后续调度时隙应用指示的波束。在多时隙PDSCH 410中,当第1时隙和第2时隙的调度偏移大于阈值412时,可以针对每个PDSCH利用指示的波束。
默认波束可以是用于在WTRU接收DCL中的调度的相同时隙中、在与WTRU接收第一调度的PDSCH相同的时隙中、或在当WTRU接收每个调度的PDSCH的时隙中等接收特定CORESET(例如,作为调度的PDSCH的在类似的CC/BWP内配置的具有最低ID的CORESET)的波束。在每个调度时隙中应用于PDSCH接收的默认波束对于aggregationFactorDL个连续时隙可以是类似的或不同的。
在每个调度时隙中,WTRU可以使用与在该时隙中接收特定CORESET类似的波束。例如,在一个调度时隙中,WTRU可以在该时隙中使用波束X作为PDSCH接收的默认波束,而在另一个调度时隙中,WTRU可以使用波束Y作为PDSCH接收的默认波束。由于WTRU可配置有在每个时隙中分别用于进行PDCCH接收这两个波束,因此可以确定波束X和Y。也可以确定波束X和Y,由于两个波束用于监视类似BWP内具有特定ID(例如最低ID或默认ID)的CORESET。在某些配置中,即使在一些或基本上所有的配置的aggregationFactorDL个连续时隙中,调度的PDSCH在阈值之后被发送,WTRU也可以被配置为使用默认波束而不是指示的波束。
如果对指示的波束的测量指示的波束质量(例如层1参考信号接收功率(L1-RSRP)、L1参考信号接收质量(L1-RSRQ)、或L1信号对噪声和干扰比(L1-SINR)等)低于可配置阈值,则WTRU可以针对aggregationFactorDL个连续时隙,在一个或多个调度时隙中使用默认波束进行PDSCH接收。与针对时隙中的PDSCH的调度偏移小于阈值的情况指定的默认波束相比,针对该配置的默认波束可以是类似的或不同的波束。
预先定义的规则可以指定WTRU使用特定波束。例如,为了对指示的波束进行负载平衡或拥塞检测,WTRU可以切换到默认波束。当WTRU以高速行进时,可以使用默认宽波束,例如由SSB索引指示的波束。当WTRU被配置成具有一个或多个面板时,为了避免不同面板之间的干扰,WTRU可以针对每个面板选择专用波束而不是指示的波束。
如果WTRU由于在不同时隙中的PDCCH接收而执行BWP切换,则BWP切换延迟在波束切换之前被考虑。例如,在时隙n,如果WTRU使用波束X在BWP1接收PDCCH,并且默认波束或指示的波束是波束Y,则WTRU可以使用波束X。WTRU可以被配置为以这种方式操作,因为切换至波束Y涉及从BWP1或的另一BWP(诸如BWP2)的BWP切换以用于PDSCH接收。
类似于为多时隙PDSCH传输的每个时隙进行默认波束确定的某些配置,也可以为每个时隙确定指示的波束。在一些或所有配置的aggregationFactorDL个连续时隙中,指示的波束可以相同或不同。如果针对多时隙PDSCH的指示的波束的数量多于一个,则指示的波束可以来自相同的TRP或不同的TRP。对于PDSCH传输,相干联合传输、或波束分集等可能需要这种配置。接收的波束可以具有窄波束宽度,并且由移动的障碍、干扰、UE旋转、移动、动态阻塞等,波束可用性可以动态地改变。在多波束传输中,鲁棒性和可靠性可以被认为是指示用于PDSCH的aggregationFactorDL个连续时隙中应用的多个波束、或波束分集等或由其实现。当在aggregationFactorDL个连续时隙内的指示的波束来自相同的TRP或不同的TRP时,等待时间可以是因素,因为其可能影响阈值Threshold-Sched-Offset的确定。
在某些配置中,参数或变量Threshold-Sched-Offset可以由报告的WTRU能力来确定。当WTRU切换至特定波束、默认波束、指示的波束或类似者时,可基于BWP切换、变量bwp-SwitchingDelay、目标波束的质量评估、干扰避免、WTRU能力或类似者。如果基于一个或多个因素,默认波束或指示的波束不合适,则WTRU可以省略在aggregationFactorDL个连续时隙的一个或多个时隙中的PDSCH接收。
对于PDSCH,QCL参考可以由DCI中的TCI字段动态地指示。对于PDCCH,QCL参考可以通过参考特定TCI状态来半动态地配置。可以基于WTRU测量或报告来动态地初始化和更新RS集中用于空间QCL目的DL RS。空间QCL假设可以由于WTRU移动性、WTRU旋转、WTRU业务负载、波束拥塞状态、波束阻塞、WTRU活动带宽部分(一个或多个)的改变、或WTRU分量载波(一个或多个)的改变等而被更新。
空间QCL假设更新可以是显式的、隐式的或事件触发的。显示的更新可以包含对周期性或半持续DL RS、CSI-RS、SSB或类似的参考,其可以由网络基于通过RRC、RRC和MAC-CE信令等的最近的WTRU波束测量报告来更新和发送。显式的更新可以是网络发起的或WTRU发起的。
隐式的更新可以由网络、TRP、gNB等执行,包括触发对周期性、半持续、或非周期性DL RS、CSI-RS、SSB等的非周期性波束测量的信令。在接收到测量触发时,WTRU可以基于预定义操作或基于规则的波束确定来更新QCL参考。事件触发的更新可包括WTRU在波束上何时经历较大的业务负载或业务拥塞,使得预定义波束可能不维持容量要求,或者WTRU不能使用类似波束来接收NR-PDCCH。
在TCI解码或流切换之前,可以执行用于NR-PDSCH接收的空间QCL假设更新。在某些配置中,WTRU可以预先配置有波束X,用于在应用由所分配的DCI中N比特TCI字段所指示的波束之前的过渡时段(TP)期间,接收在WTRU完成DCI解码以获得TCL或空间QCL信息之前调度的NR-PDSCH符号。如果新的Rx波束被调度用于NR-PDSCH,则TP可以用于NR-PDSCH接收,并且可以指示用于WTRU DCI解码、TCI解码、RF调谐、或波束切换等。
图5是NR-PDSCH配置500的空间QCL假设更新的示例的图。网络设备、gNB、TRP或类似设备可以利用新的的QCL参考向WTRU发送显式更新。在502中,用于TP的QCL参考可以变得无效或者预配置波束504可以被阻塞。波束可由于WTRU旋转、或移动等而被阻塞。WTRU可以使用与用于接收分配DCI、PDCCH、或NR-PDCCH等的波束类似的波束506。为了在TP或后续调度的NR-PDSCH(一个或多个)接收期间恢复或更新用于NR-PDSCH接收的QCL参考,用于NR-PDSCH接收的空间QCL假设更新可以涉及网络基于最近的波束测量报告而向WTRU发送显示的更新空间QCL假设。WTRU还可以检测预配置波束上的波束故障,并请求网络在TP期间发送用于接收NR-PDSCH的显式的更新空间QCL假设。
图6是针对NR-PDSCH配置的空间QCL假设更新的示例600的图。事件触发的更新可用于针对NR-PDSCH接收的空间QCL假设。在602中,用于TP的QCL参考可以变得无效,或者预配置波束604可以被阻塞。基于某些预先指定或配置的事件触发,例如PDCCH波束拥塞等,WTRU可以根据先前配置的规则(例如网络在较早时间配置的规则)、RRC配置等,自动决定新的QCL参考606。用于NR-PDSCH接收的空间QCL假设更新可以使用与接收最后NR-PDSCH分配类似的波束。这可以在波束的L1-RSRP、SINR、或块误码率(BLER)在最后或先前测量(一个或多个)期间高于某个阈值的条件下执行。在600中,WTRU可以将关于确定的波束的反馈发送到到网络。
图7是针对NR-PDSCH配置的空间QCL假设更新的示例700的图。网络设备可以隐式恢复和更新针对NR-PDSCH的WTRU的QCL参考。在702中,用于NR-PDSCH接收的空间QCL假设更新可以假设用于TP的QCL参考变为无效,或者预配置波束704可以被阻塞。网络可以在具有或不具有配置的RS资源(例如专门为WTRU从无效QCL参考中恢复的某些非周期性CSI-RS资源)的情况下诸如利用RRC、MAC-CE或DCI向WTRU发送触发信令。利用触发信令,WTRU可以对诸如CSI-RS之类的非周期性RS资源执行波束测量和报告,以及执行对可以用于接收在TP期间调度的未来NR-PDSCH分配的QCL参考的更新。可以将更新的QCL参考发送到网络,以便网络可以使用更新的QCL参考在TP内传送NR-PDSCH分配。
更新的QCL参考706可隐式或显式地被应用于NR-PDCCH、NR-PDSCH等。在隐式应用中,WTRU可以在后续时隙中直接为随后的NR-PDCCH应用更新的QCL参考。WTRU还可以在当前时隙、户NR-PDSCH的TP之内或之外、或后续的时隙中,直接为NR-PDSCH应用更新的QCL参考。在显示应用中,WTRU可以依赖于显式信令来将用于TP内的NR-PDSCH分配的更新的QCL参考扩展到后续时隙中的NR-PDCCH或NR-PDSCH。用于NR-PDCCH或NR-PDSCH接收的空间QCL参考或假设的显式和隐式更新可以组合的方式被配置。
在WTRU成功解码TCI或DCI 708之后,它可以在相关DCI或分配DCI的TCI字段中指示诸如空间QCL参数的Rx波束710,用于接收或解调调度的NR-PDSCH。WTRU还可以继续将在TP期间使用的波束施加到随后的调度的NR-PDSCH。另外,WTRU可以使用与当WTRU在相同时隙中的DCI或NR-PDCCH中接收调度时的类似的波束。WTRU还可以使用与WTRU在先前时隙中接收到NR-PDCCH或NR-PDSCH类似的波束。如果WTRU错误地解码了TCI或DCI,则当前NR-PDCCH的解码错误可能导致NR-PDSCH的接收失败。对于这种情况,WTRU可以继续将在TP期间使用的波束施加到随后的NR-PDSCH。
图8是用于确定用于PDSCH通信的波束的过程的示例800。尽管图8中引用了PDSCH(一个或多个),然而NR-PDSCH(一个或多个)可以类似地适用或被替代。最初,WTRU可以接收调度一个或多个PDSCH的DCI,该DCI指示用于PDSCH接收的波束偏移和波束指示(802)。对于调度的或重复的PDSCH,如果起始符号不晚于阈值(804),则WTRU可以使用默认波束来接收PDSCH(806)。默认波束可以是用于WTRU接收参考CORESET的波束。当在该时隙和CC/BWP中配置一个或多个CORESET时,参考CORESET可以是与调度的PDSCH类似的CC/BWP中的第一个CORESET。
如果起始符号晚于阈值,则当指示的波束的测量的质量(例如L1-RSRP、L1-RSRQ或L1-SINR)高于测量阈值时(810),WTRU可以使用指示的波束来接收PDSCH(812),或者当指示的波束的测量的质量低于测量阈值时,WTRU可以使用默认波束来接收PDSCH(806)。
如果配置了具有时隙聚合的多时隙PDSCH,则在所述一个或多个调度时隙跨越阈值的情况下,WTRU可以针对调度时隙应用默认波束,而不是针对每个调度的或重复的PDSCH执行确定。例如,如果第一调的度PDSCH的起始符号小于阈值,则WTRU可以针对基本上所有aggregationFactorDL个连续时隙应用默认波束。否则,WTRU可以针对基本上所有aggregationFactorDL个连续时隙应用指示的波束或一个或多个指示的波束。此外,利用时隙聚合,用于每个调度时隙的默认波束可以类似的使用与第一时隙中的PDSCH接收相同的默认波束,或者在每个调度时隙的开始确定默认波束的情况下可以不同。
在814或816中,如果PDSCH的调度偏移小于阈值,则WTRU可以应用与参考CORESET相关联的默认波束或TCI状态。参考CORESET可以在配置的CORESET内处于预定义位置,诸如配置的CORESET中的第一CORESET,用于时隙中的NR-PDSCH接收。参考CORESET还可以在最近的时间位置,诸如最接近NR-PDSCH区域。
取决于WTRU能力,WTRU可以被RRC为每个网络设备、每个TRP、每个gNB、每个BWP、或每个小区等具有M个TCI状态。在使用RRC配置的TCI状态或由携带TCI指示的DCI指示使用RRC配置的TCI状态之前,可以通过MAC-CE消息或信号选择并激活RRC配置的M个TCI状态的子集。如果值M(RRC配置的TCI状态数)大于最大可配置子集大小,则可以使用选择消息或命令(例如MAC-CE)。然而,如果M的值等于或小于特定大小,则WTRU可以执行不同的操作。
WTRU可以等待激活或选择命令。例如,如果M=7,则可能需要MAC-CE来选择更小的数,例如2,以减少WTRU监视波束指示的可能开销。如果激活的TCI状态的数量少,则可以在TCI状态数据访问期间以较低的延迟和低功率将数量较少的激活的TCI状态信息存储在缓存器中。当不需要选择或激活TCI状态的子集时,WTRU可以不需要等待选择或激活命令,例如MAC-CE。
TCI状态选择或激活定时器可以由更高层消息、RRC消息来定义或指定和配置、或者在系统信息中指示等。如果WTRU在定时器的时间段之前或期间没有接收到选择或激活命令,则WTRU可以假设选择或激活命令是不必须要的且基本上配置的所有M个TCI状态都可以被认为是被激活。
当发生波束故障时,先前配置或激活的TCI状态可以在一持续时间内变得无效,直到重新配置、或重新激活一个或多个TCI状态等。可以为WTRU接收PDSCH或PDCCH定义默认TCI。对于波束故障之后的PDCCH接收,WTRU可以在波束故障恢复期间监视专用控制信道CORESET。当WTRU被网络重新配置为另一个CORESET以接收专用PDCCH并且如果配置的CORESET具有K>1个配置的TCI状态时WTRU被具有TCI状态的MAC-CE消息或信号激活,则WTRU然后可以基于激活的TCI状态监视新配置的CORESET。代替重新配置或重新激活,WTRU还可以由网络在波束故障之前由MAC-CE重新指示为另一个TCI状态(一个或多个)。
在初始RRC配置或随后的RRC重新配置期间,可以用更新的TCI状态来配置WTRU。配置的、重新配置的、更新的或类似的TCI状态可以由随后的MAC-CE消息或信号激活。在TCI状态的RRC配置、重新配置、更新或类似操作与TCI状态的随后MAC-CE激活之间的时间段期间,PDCCH接收可能需要默认或回退空间QCL参考。
在RRC重新配置或更新之前激活并使用的TCI状态可以用于PDCCH,直到新MAC-CE激活、去激活、重新激活等命令的接收和应用为止。TCI状态的特定的新RRC配置、重新配置、更新等可以用于PDCCH接收,诸如新RRC TCI状态的最低条目。
最近的TCI状态和DL RS可以由任何现有的CORESETS中的MAC-CE激活,并且可以用于PDCCH接收的QCL空间参考,直到应用新的MAC-CE激活、去激活、重新激活或类似命令。如果最近激活的TCI状态或DL RS超过一个,则可以使用针对特定CORESET激活的DL RS。例如,可以使用针对具有最低CORESET ID的CORESET的DL RS,其中最低CORESET ID可以是除了‘0’之外的最低CORESET ID数或者是相同BWP中的CORESET内的最低CORESET ID。
一旦确定了用于PDCCH接收的TCI状态,诸如通过用于PDCCH的TCI重新配置或重新激活,也可能需要用于PDSCH接收的TCI状态。WTRU可以假设PDSCH的解调参考信号(DMRS)与在波束故障恢复请求中WTRU识别的候选波束的DL RS进行了空间QCL。在这种情况下,通过使用与在波束故障恢复请求中WTRU标识的用于PDSCH接收的候选波束的DL RS的假设的QCL关系,可能不需要TCI状态。
如果用于PDSCH的TCI状态重新配置和激活或选择完成,则WTRU可以依赖于用于PDSCH接收的DCI或TCI消息。如果在DL DCI和对应PDSCH的接收之间的偏移等于或大于阈值Threshold-Sched-Offset,则WTRU可以使用DCI中指示的TCI。如果偏移小于阈值Threshold-Sched-Offset,则WTRU可以基于在为WTRU配置了一个或多个CORESET的最近时隙中指示最低CORESET-ID的用于PDCCH QCL的TCI状态,假设服务小区的PDSCH的一个DM-RS端口群组的天线端口被QCL。
如果TCI状态重新配置完成,但是PDSCH的激活或选择正在进行中,则WTRU可能不依赖DCI对TCI的指示,因为可能仍激活了RRC配置的TCI状态。对于该配置,WTRU可以使用针对PDCCH接收被激活的类似的TCI状态。WTRU还可以使用默认的TCI状态,该默认的TCI状态例如对应于RRC配置的PDSCH TCI状态中的第一TCI状态,或者用于来自先前或最近接收的PDSCH接收的类似TCI状态。
一个或多个控制信道CORESET可被配置用于WTRU监视,并且每个CORESET可被配置具有一个或多个QCL参数,诸如空间Rx参数,以指示或确定用于下行链路波束指示的相关联的下行链路信号,诸如SCI-RS或SS块。下行链路信道、CORESET、PDCCH、PDSCH等与下行链路参考信号、CSI-RS、SS块等之间的QCL关联可以用于指示下行链路信道接收所用的下行链路波束或接收波束。如果一个或多个下行链路信道使用类似的波束,则一个或多个下行链路信道可以与相同的下行链路参考信号相关联或进行QCL。
WTRU可被配置成监视时隙中的一个或多个CORESET。时隙中的一个或多个CORESET可以与类似的下行链路波束、相同的CSI-RS资源、或相同的SS块等相关联。如果一个或多个CORESET与相同的下行链路波束相关联,诸如与相同的下行链路参考信号相关联,则CORESET可以被配置在类似的或不同的位置。CORESET可以在不同的频率位置被定位、分配、传输或监视。CORESET也可以被配置在类似的时间位置、或相同的OFDM符号等中。时隙中的一个或多个CORESET可以与不同的下行链路波束、不同的CSI-RS资源、或SS块等相关联。如果一个或多个CORESET与不同的下行链路波束相关联,则CORESET可以被配置为时隙、符号、符号组内或跨不同时隙的不同的时间位置。
作为用于NR-PDSCH接收的默认波束,可以用与其相关联的CORESET相同的波束来配置WTRU。如果调度偏移小于阈值,则可以使用默认波束,或者在WTRU接收其相关联的DCI的时间段内可以使用默认波束。可以基于一个或多个系统参数、SCS、时隙长度、或用于调度的符号数量等来预定义、配置或隐式地确定该时间段。当WTRU使用默认波束来接收NR-PDSCH并且默认波束是类似于相关联的CORESET的波束时,WTRU可以使用或假设用于NR-PDSCH的一个或多个QCL参数,该参数类似于用于其相关联的CORESET的一个或多个QCL参数。
如果一个或多个CORESET被配置为监视NR-PDSCH调度,并且CORESET与类似的波束相关联、或与相同下行链路参考信号进行QCL,则用于NR-PDSCH接收的默认波束可以基于用于CORESET的波束。在某些配置中,CORESET和其相关联的NR-PDSCH之间的偏移值可以是类似的,而与WTRU在DCI中接收调度的CORESET数目无关。
如果将CORESET与一个以上的波束相关联、用一个以上的下行链路信号或下行链路参考信号进行QCL等,则用于NR-PDSCH接收的默认波束可以基于配置的CORESET内部的参考CORESET。可以经由较高层消息、高层信令、或RRC消息等来配置参考CORESET。可以基于系统参数、参数配置、小区ID、WTRU特定参数、WTRU-ID、小区无线电网络临时标识符(C-RNTI)、加扰ID、定时参数、位置参数、时隙号、帧号、无线电帧号、BWP号等来隐式确定参考CORESET。
参考CORESET的QCL参数或QCL参数的子集可以用作用于NR-PDSCH接收的默认波束。例如,用于NR-PDSCH接收的QCL参数可以与参考CORESET的QCL参数类似。参考CORESET的QCL参数可以在时隙中被重用于NR-PDSCH接收,或者参考CORESET在每个时隙中可以是不同的。例如,配置的CORESET中的第一CORESET可以在时隙中被使用或确定为参考CORESET,并且配置的CORESET中的第二CORESET可以在另一时隙中被使用或确定为参考CORESET。当参考CORESET跨时隙改变时,参考CORESET可以在配置的CORESET之间循环地切换。另外,参考CORESET可以是配置的CORESET内的预定义位置,而与时隙无关,并且配置的CORESET可以基于时隙号而不同。
可以使用、确定或指定配置的CORESET内的位于最近时间位置(例如最接近NR-PDSCH区域)的CORESET作为参考CORESET。CORESET和其相关联的NR-PDSCH之间的调度偏移可以基于CORESET类型而不同。例如,如果WTRU在参考CORESET中接收到用于NR-PDSCH调度的DCI,则可以使用第一调度偏移。如果WTRU在作为非参考CORESET的CORESET中接收到用于NR-PDSCH调度的DCI,则可以配置或使用第二调度偏移。第二调度偏移可以比第一调度偏移长。例如,当WTRU在时隙#n中,在参考CORESET中接收到用于NR-PDSCH调度的DCI时,WTRU可以在时隙#n中接收、解码或尝试解码调度的NR-PDSCH。如果WTRU在非参考CORESET中接收到用于NR-PDSCH调度的DCI,则WTRU可以在时隙#n+x中接收、解码或尝试解码调度的NR-PDSCH。在某些配置中,x可以被预定义、配置、指示或报告为WTRU能力。
如果多于一个波束用于对于多个CORESET,则TCI字段可以不存在于参考CORESET中而存在于配置的其它CORESET中。在该配置中,WTRU可以假设参考CORESET中的经由DCI调度的NR-PDSCH可以是与参考CORESET类似的波束、或与和参考CORESET相同的下行链路参考信号进行QCL等。WTRU可假设经由可在配置的其它CORESET中接收的经由DCI调度的NR-PDSCH可以是与参考CORESET不同的波束、或与和参考CORESET不同的下行链路参考信号进行QCL等。
在调度偏移之前使用预先配置的波束、预先定义的波束、基于规则的波束确定或更新空间QCL假设来进行的Rx波束确定可以是按照预先确定的顺序联合或混合应用的。在某些配置中,基于规则的波束确定可以具有最高优先级、预配置的波束具有第二高优先级、或预定义的波束具有第三高优先级等。
图9是在调度偏移之前确定DL Rx波束的过程的示例900。WTRU可检查(902)一个或多个特殊状况(904)。特殊状况可以包括运动、旋转、速度、海拔等。如果是,则可以使用基于规则的方案(906)。否则,WTRU可以检查任何半静态DCI配置的Rx波束(908)。如果是,则可以使用半静态配置的Rx波束(910)。否则,WTRU可以检查任何预先配置的或预先定义的Rx波束(912)。如果是,则可以利用预先配置的或预先定义的Rx波束(914)。否则,WTRU可以确定DL数据信道是否处于良好状况(916)。如果是,则可以使用与PDSCH类似的Rx波束(918),或者可以使用(920)如先前DCI中指示的类似的波束。
为了防止BPL阻塞,WTRU可以被配置成在不同的NR-PDCCH OFDM符号中监视不同的BPL(一个或多个)上的NR-PDCCH。对于NR-PDCCH接收,CORESET和搜索空间配置可包括对一个TCI状态的参考。换句话说,NR-PDCCH的QCL配置可以包含提供对TCI状态的参考的信息。链接到该TCI状态的DL RS索引可以在针对关联的CORESET和搜索空间的监视时机期间提供用于NR-PDCCH DMRS接收的QCL参考。在CORESET内的基本上所有搜索空间(一个或多个)利用与类似的空间QCL假设的条件下,WTRU在相关联的CORESET监视时机上应用空间QCL假设。WTRU也可将空间QCL假设应用于相关联的搜索空间。在CORESET内的某些配置或一个或多个搜索空间中,WTRU可以被配置有针对不同搜索空间的不同空间QCL假设。
在为NR-PDCCH配置了一个或多个候选BPL时,可以为WTRU配置一个CORESET以及该CORESET内的一个或多个搜索空间,其中空间QCL假设可以基于每个搜索空间。也可以为WTRU配置一个或多个CORESET,其中空间QCL假设基于每个CORESET,或者一个CORESET内的基本上所有搜索空间共享类似的空间QCL假设。
WTRU可以将与多个候选波束相关联的一个或多个QCL参考用于NR-PDCCH监视,并且WTRU可以被配置有与不同Tx波束相关联的一个或多个搜索空间,以防止BPL阻塞。如果QCL参考基于每个搜索空间,则WTRU的一个或多个配置的搜索空间可以来自类似的或不同的CORESET。如果QCL参考基于每个CORESET,则一个或多个配置的搜索空间可来自不同的CORESET。
为了节省资源,可以在其他候选NR-PDCCH监视波束之上利用WTRU的主服务波束。为了提高频谱效率,一个或多个配置的搜索空间可具有不同的监视周期。如果需要NR-PDCCH,则可以频繁地发送与主服务波束(一个或多个)相关联的搜索空间(一个或多个),并且可以更不频繁地发送与备份波束(一个或多个)相关联的其他搜索空间(一个或多个)。可以引入预先指定的的或半静态的配置的时域模式,以配置WTRU利用一个或多个波束或多个QCL关联的监视NR-PDCCH。对于一个或多个搜索空间的监视周期可以不同,其中主服务波束的周期可以短于辅助服务波束或相邻波束的周期。
在NR-PDCCH的QCL配置或指示基于每个CORESET的配置中,WTRU可以在相关联的CORESET监视时机上应用空间QCL假设。CORESET内的基本上所有搜索空间都可以利用类似的QCL。不同的CORESET可以对应于不同的BPL,并且每个CORESET可以链接到不同的TCI状态。可以通过MAC-CE消息或信号来激活或去激活辅助服务波束或相邻波束,以为WTRU功率节省和改善的性能提供更长的监视周期。
为了促进关于WTRU利用多个CORESET的一个或多个波束或一个或多个QCL参考监视NR-PDCCH的配置和指示,可以利用MAC-CE来激活或去激活资源集中的一个或多个半持续CSI-RS资源。在某些配置中,激活的CSI-RS资源可以用于TCI状态以用于监视NR-PDCCH而无需监视去激活的CSI-RS资源。对于一个或多个CORESET的监视周期可以不同,其中主服务波束的周期可以短于辅助服务波束或相邻波束的周期。
图10是在一个或多个波束上NR-PDCCH通信的示例的示图(1000)。WTRU可以被配置有用于NR-PDCCH监视的一个或多个QCL关联。对于帧1002,监视一个或多个搜索空间的周期性可以是不同的。例如,主服务波束的周期可以比辅助服务波束或相邻波束的周期短,其中T辅助可以是T主的两倍长。在主服务波束上的NR-PDCCH监视可以有规律地存在,而在另外两个候选波束上的NR-PDCCH监视用于接收。随着更频繁地监视主服务波束和交替地监视辅助服务波束,可以减少开销和功耗,同时保持一个或多个NR-PDCCH监视的鲁棒性。
由于对搜索空间的盲解码可能导致大的等待时间和功耗,因此即使存在,WTRU也直接跳过NR-PDCCH监视实例,以减少开销。例如,基于来自最近波束测量的SNR值、BLER值、或L1-RSRP等,WTRU可以知道主服务波束的质量以及在主服务波束上的NR-PDCCH接收或解码是否可以是成功的。另外,如果NR-PDCCH在一个时隙成功接收或解码,则可以跳过对下一时隙或下M个时隙中的其他候选搜索空间的监视。M可以是可配置的值,或者可以基于一些预先定义的规则(例如,主服务波束的质量的阈值)来评估M的值。监视一个或多个搜索空间的优化可以是BM过程的一部分,其中周期性或非周期性波束测量和报告可以确定是否可以跳过NR-PDCCH监视。跳过NR-PDCCH监视的指示可以被包括在DCI的字段中,并且可以借助于HARQ ACK/NACK反馈来确认在主服务波束上的NR-PDCCH监视。
可以将不同的操作用于BM的DL参考信号的配置。对于CSI获取和BM,非周期性资源设置(一个或多个)可包含多于一个的CSI-RS资源集。另外,对于BM,存在这样的配置:每个资源设置最多可以有S=16个CSI-RS资源集,每个资源集最多可以有Ks=1~64个CSI-RS资源集。
对于波束扫描,在时隙内可能有一个或多个CSI-RS资源被发送。CSI-RS资源可以包括OFDM符号。时隙内的可用OFDM符号总数可能不足以传输一个CSI-RS资源集内部的基本上所有配置的资源。通过动态数量的CSI-RS资源,可以将周期性、半持续、非周期性或类似的CSI-RS传输用于有效的BM。
对于波束指示,每个TCI状态可以与一个RS集合相关联。另外,可以配置一个或多个RS ID。每个RS ID可以与TCI状态和RS ID(一个或多个)或资源之间的QCL关联有关。
可以配置用于BM的CSI-RS资源的多时隙配置。资源设置可以包含一个以上的CSI-RS资源集,例如S>=1个资源集被配置为一个资源设置,每个资源集可以包括Ks>=1个CSI-RS资源。对于波束扫描,时隙内的一个CSI-RS资源可能会占用OFDM符号。如果时隙内的可用OFDM符号总数不足以传输一个CSI-RS资源集内部的基本上所有配置的资源,则可以使用多时隙配置。
WTRU还可以被配置有多符号和多时隙CSI-RS传输。对于周期性的CSI-RS传输,可以将WTRU配置为测量单个CSI-RS资源集。例如,一个或多个资源集可以被配置到一次测量一个资源集的WTRU。周期性CSI-RS传输的配置可以包括传输周期性,例如每X个时隙一次,符号位置(例如用于第一CSI-RS资源的每个时隙的第1符号、第2符号),直到资源集中的基本上所有资源都被传送为止。周期性CSI-RS传输的配置还可包括时隙位置,诸如取决于每个时隙内配置用于CSI-RS传输资源总数和符号数量、或映射的天线端口等。在某些配置中,诸如传输周期之类的参数在所配置的CSI-RS资源集中的不同CSI-RS资源上可能具有相同的值。在某些配置中,参数(例如符号位置)可能具有灵活的值,该值可能取决于资源集中的资源索引。
对于半持续CSI-RS传输,网络可以在MAC CE或RRC中用于信号通告以用于选择用于WTRU测量的单个CSI-RS资源集。在CSI-RS资源集的激活或去激活期间,WTRU可以根据配置的参数,例如符号偏移、时隙偏移值等,动态地确定在选择的CSI-RS资源集内部的相应K个CSI-RS资源的符号位置或时隙位置。对于不同的CSI-RS资源,符号偏移或时隙偏移值可以是相同或不同的。而且,当在半持续时间内针对每次重复发送所选择的CSI-RS资源集合时,偏移值可以保持相同。
对于非周期性的CSI-RS传输,网络可以在DCI中用信号通知(例如以低等待时间)以用于选择并触发一个CSI-RS资源集的传输。非周期性CSI-RS触发偏移X可以是可配置的值,并且以时隙、符号、帧、子帧等为单位定义。如果针对每个资源定义了非周期性CSI-RS触发偏移X,则可能已经知道资源集中每个CSI-RS资源的符号位置和时隙位置。例如,偏移值可以是WTRU已知的符号级别或符号位置。
如果针对每个资源集定义了非周期性CSI-RS触发偏移X,则资源集内每个CSI-RS资源的符号位置或时隙位置可以由WTRU具体推导。例如,一些DCI字段可以通过WTRU以位图的形式携带时隙或符号位置信息以用于推导。推导也可以基于默认符号偏移值和时隙偏移值。这些值可以在资源设置的较高层配置期间配置。推导还可以基于显式的较高层配置的参数,例如RRC显式信令指示的符号和时隙位置,或者在类似DCI触发信令中携带,其中某些DCI字段可以在位图中携带时隙或符号位置信息。
对于周期性的、半持续的、非周期性的或类似的CSI-RS传输,集合中的资源可以占用相邻的符号或被分散。如果某些CSI-RS资源占用了相邻符号,则这些资源可以是调度群组。CSI-RS资源集可以包含一个或多个调度群组。对于每个调度群组,可能需要一条符号或时隙位置信息,并且可以以时分复用(TDM)的方式发送类似调度群组内的资源。
WTRU还可以配置有一个或多个资源设置,每个资源设置包括一个或多个资源集,并且每个资源集的配置可以包含指示重复是否“打开/关闭”的信息元素(IE)。如果重复“打开”,则WTRU可以假设网络维持类似的Tx波束。如果WTRU执行诸如P3之类的DL Rx波束扫描,则WTRU可能需要知道资源集中的传送的资源的符号或位置。例如,WTRU可能需要知道何时不在相邻符号中传送资源内的CSI-RS资源。
在某些配置中,当网络传输整个资源集时,WTRU可能需要知道开始符号或时隙位置以及结束符号或时隙位置。如果WTRU不执行DL Rx波束扫描,则当网络传输整个或完整的资源集时,WTRU可能需要知道起始符号或时隙位置。对于该配置,WTRU可能不需要测量资源集中的基本上所有资源,因为那些资源基本上都是在类似波束上发送的。
如果重复“关闭”,则WTRU可以假设网络执行DL Tx波束扫描。对于此配置,WTRU可以执行或不执行DL Rx波束扫描,例如P1或P2。然而,WTRU可能需要知道在资源集中传输的每个资源的符号或位置,并执行用于资源配置的过程。
为了配置用于BM的DL参考信号,WTRU可以报告期望数量的CSI-RS资源。利用该或其他辅助信息,网络可以用CSI-RS配置来配置WTRU。对于周期性和半持续CSI-RS传输,WTRU可以执行重复的波束测量或报告。对于该配置,由于网络知道WTRU可以测量的期望量的CSI-RS资源,因此网络可以配置更有效的周期性波束报告。例如,可以根据发送的CSI-RS资源来配置报告周期性。
对于具有辅助信息的非周期性CSI-RS传输,网络可以为WTRU配置期望量的CSI-RS资源。在这种情况下,在资源集被DCI触发以进行测量之前,WTRU可以知道正在发送的资源数量。可以将时隙或符号位置信息重新用于每个触发的非周期性CSI-RS传输。例如,当WTRU被触发以在X个时隙中测量非周期性CSI-RS传输时,其中X是触发偏移,如果WTRU报告期望Y个资源,且仅具有一个值(例如用于传送的资源的符号间隔Z),则可以通过WTRU在i*Z/7时隙和i*Z%7符号中发送第i个资源。
可以配置或发送针对CSI-RS的QCL指示。对于DL BM,为了灵活性或效率,可以动态地触发参考信号非周期性CSI-RS。如果非周期性地触发一个或多个CSI-RS资源集(一个或多个)的触发消息的接收与传送的CSI-RS资源(一个或多个)的第一个符号之间的时域偏移大于WTRU能力,例如该WTRU能力类似于为PDSCH接收和WTRU能力定义的阈值K,则如果在初发消息或状态中包括控件QCL参考,WTRU可能有时间获得用于接收触发的CSI-RS资源的空间QCL参考。
如果时域偏移小于WTRU能力,或者如果BM参考信号(例如非周期性CSI-RS资源)以小于WTRU能力的偏移调度,则在触发状态下的空间QCL参考(例如与每个触发状态相关联的每个非周期性CSI-RS(AP-CSI-RS)资源)、QCL配置可以通过与用于PDSCH接收的M个候选TCI状态之一的关联来提供。在此配置中,也可以使用默认或回退空间QCL参考。作为示例,WTRU可以假设利用与QCL-类型D、或空间QCL参数等,触发的CSI-RS资源与在触发的CSI-RS资源被调度的相同时隙中的用于PDSCH接收的相同的DL RS进行QCL。
此外,如果以小于WTRU能力的偏移来调度触发的CSI-RS,则当WTRU在同一时隙中接收PDSCH时,WTRU可以使用类似的波束来接收CSI-RS资源。在该配置中,触发消息中携带的或由触发消息指示的空间QCL参考(例如触发消息指示TCI状态,而TCI状态指示空间QCL参考)可以覆盖WTRU假设。例如,假设可以是WTRU假设在相同时隙中将用于PDSCH接收的类似的波束用于CSI-RS接收。
如果相关联的PDCCH和触发的CSI-RS资源之间的偏移小于阈值,则WTRU还可以忽略触发的CSI-RS资源。可以基于相关联的PDCCH的最后符号和CSI-RS资源的第一符号的时间位置来确定偏移。例如,阈值可以是Threshold-Sched-Offset。在某些配置中,由于偏移,WTRU可能不报告与触发的CSI-RS资源相关联的触发的CSI。
对于用于BM的DL参考信号,可能存在TCI状态与RS资源的关联。网络可以向WTRU发送RRC消息(一个或多个)以用于配置一个或多个TCI状态,并且网络可以激活或选择部分或基本上所有的配置TCI状态。每个TCI状态可以是配置有一个RS集作为QCL参考的RRC。
当WTRU执行波束测量或报告时,WTRU可以测量配置的RS资源的L1-RSRP。网络可以使用配置的或激活的TCI状态来基于WTRU报告的波束测量结果来实现波束指示。RS资源和TCI状态之间的关联可以用于映射WTRU报告的波束测量结果和网络指示的TCI状态。RS资源可以是SSB资源或CSI-RS资源。CSI-RS资源可以用于周期性传输,非周期性传输或半持续传输。对于周期性的CSI-RS传输,可以通过对配置的TCI状态的引用(例如,TCI状态索引)来配置所传输的CSI-RS资源的空间QCL。
对于非周期性CSI-RS传输,基本上非周期性CSI-RS资源的空间QCL,例如非零功率CSI-RS(NZP-CSI-RS)或零功率CSI-RS(ZP-CSI-RS)基准干扰测量资源(IMR),可以首先通过与所配置的TCI状态的关联来RRC配置。当部分或基本上所有的非周期性CSI-RS资源被DCI触发用于WTRU非周期波束测量和报告时,可以通过DCI、AP-CSI-报告触发状态指示等来指示那些被发送的非周期性CSI-RS资源的空间QCL。
对于半持续CSI-RS传输,所发送的CSI-RS半持续资源的空间QCL可以位于激活SP-CSI-RS的相同MAC-CE消息或信号中。因此,半持续CSI-RS的空间QCL可以通过RRC来配置并且通过MAC-CE来激活或去激活。
对于SSB传输,所传输的SSB资源的空间QCL可以由较高层或RRC配置通过对配置的TCI状态的引用或TCI状态索引来提供。该配置可以在初始化WTRU时的类似时间执行,或者随后在配置有一个或多个TCI状态的RRC的WTRU初始访问之后执行。也可以在以后的RRC更新或一个或多个TCI状态的重新配置时执行此配置。在某些配置中,当MAC-CE用于从基本上所有配置的TCI状态中选择多达2^N个TCI状态时,它也可以用于在RS资源上配置用于WTRU波束测量或报告。
RS资源的空间QCL关系可以被包括在TCI表中。可以为具有一个或多个TCI状态的空间QCL配置相同或不同的RS资源。如果相同的RS资源(一个或多个)具有带有一个或多个TCI状态的空间QCL,则在空间QCL假设方面,TCI状态可以是类似的,例如与那些TCI状态相关联的DL波束在地理上彼此接近并且具有类似的空间QCL假设。表5是TCI状态表的示例,其中可以针对单个TCI状态配置一个或多个RS ID。每个RS ID可以与与RS资源相关联的RS类型相关联。RS资源可以在一个或多个TCI状态上重叠。例如,可以为TCI状态0和TCI状态2都配置周期性CSI-RS资源0。
表5
在某些配置中,可以配置波束报告优先级。波束报告优先级可以在能量消耗、信令、开销、等待时间、或系统鲁棒性等方面改善报告性能和效率。基于WTRU特定的配置的CSI-RS资源,例如周期性的、半持续的或非周期性的资源,WTRU可以相应地执行不同类型的波束报告。波束报告的优先级可以基于等待时间、能量消耗、鲁棒性、冗余控制、内部冲突、或外部冲突等。
对于等待时间敏感的URLLC、高速移动性或类似通信,可以有规律地执行波束报告以补偿快速变化的无线电环境。由于延迟的波束报告可能包含无效、过期或旧的波束测量结果,因此可以执行有规律的报告。每个波束报告的不同部分,例如内容的关键部分或不同的实例,可以被优先考虑以实现低开销和具有较低等待时间的有效波束报告。
为了减少能量消耗,针对低移动性、低功率、低剩余电池、低剩余电源、静态、基本固定、低速或类似的WTRU,可以减少波束测量报告的内容或长度,以节省能量消耗。为了性能,尽管X个波束可以用于PDCCH和PDSCH传输,但是WTRU可以在波束报告期间报告Y个波束,其中Y>X。考虑到波束阻塞、或波束拥塞等,额外报告的波束可以提供鲁棒性或灵活性。
为了冗余控制和通过额外的波束报告来减少开销,在某些配置中,WTRU可以报告多达4个Tx波束和相应的L1-RSRP,它们被部分地用于后续的PDCCH和PDSCH传输。如果波束质量基本上是稳定的,例如在低移动性、视线或宽无线电环境下,则仅报告所需数量的波束即可提高性能。
如果被调度用于携带一个或多个报告的物理信道的时间占用重叠,则报告可能在内部发生冲突。例如,当在PUCCH上携带一个或多个报告或者在PUCCH上携带一个报告,并且在至少一个OFDM符号中重叠并且在相同载波上发送的另一个报告在PUSCH上时,可能发生内部冲突。当发送不同类型的波束报告(例如非周期性、半持续、周期性或类似的波束报告)时、以及在打算用于PDSCH和PDCCH的波束报告之间,也会发生内部冲突。
对于外部冲突,除了波束报告之外,WTRU还可以利用CSI报告、SRS传输等。如果PUCCH和PUSCH上的容量有限,则WTRU可以被配置用于UL传输的一个UL传输或子集,以用于波束报告、CSI报告、或SRS传输等。对于此配置,可以配置预定义或配置的波束报告优先级和丢弃规则。可以根据波束报告的内容或长度确定波束报告的优先级。例如,可以确定要报告的波束的最小数量,并为其分配最高优先级。最小数量的值可以是直接可配置的,取决于同时用于后续的PDCCH和PDSCH传输的波束的实际数量等。最小数目的值还可取决于WTRU能力、面板数目、可配置阈值,特定于具有高于阈值Y的L1-RSRP的波束等。
可以确定用于报告的额外数量的波束并为其分配较低的优先级。WTRU可以被配置为报告多达4个波束,但是仅存在测量的L1-RSRP高于L1-RSRP阈值的1个波束。为了鲁棒性、灵活性、减荷等目的,即使报告波束具有最高的L1-RSRP,网络也可能不将一个波束用于后续的PDSCH传输。WTRU可以将优先级1分配给第二报告的波束,并将优先级2和3分配给第三报告的波束和第四报告的波束,其中优先级1可以高于优先级2或3。
测量的波束可以被确定为最小报告波束或额外报告波束。为了后续PDCCH、PDSCH、NR-PDCCH、NR-PDSCH等类似传输的BPL建立,由波束测量指示的具有期望的质量的波束可以是最小报告波束。为了评估PDCCH/NR-PDCCH波束训练的波束质量,可以考虑波束质量稳定性或可靠性。在某些配置中,在周期性SSB资源上测量的波束,诸如基于SSB的波束,在初始接入和连接模式下都可用,并且比更可靠的可用性具有更大的波束宽度,或者在时间窗的最近可配置值中测量的L1-RSRP值方面具有更低变化的波束,可被选择作为具有更高优先级的最小报告波束。
为了评估PDSCH/NR-PDSCH波束训练的波束质量,波束质量稳定性和可靠性可以被认为类似于PDCCH/NR-PDCCH。对于PDSCH/NR-PDSCH,优选的是可能的波束成形增益,以便足够的传输容量能够满足WTRU数据传输的要求。例如,使用在可配置时间窗内最近测量的L1-RSRP值的分布概率统计,选择为用于PDCCH/NR-PDCCH传输的最小报告波束的波束满足:
在等式(2)中,N/2可以是在可配置的时间窗口内特定波束的基本上所有测量的L1-RSRP值的下半部分,而是类似时间窗口内基本上所有测量的L1-RSRP的平均值。第一个等式可以确定基本上所有测量值的下半部分的波束的平均L1-RSRP值是否大于阈值Th1,以便波束的质量足以进行操作。第二个等式可以确定在类似的时间窗口内波束的基本上所有测量的L1-RSRP值的标准偏差是否小于阈值Th2,波束的质量对于操作而言可足够稳定。
选择为用于PDSCH/NR-PDSCH传输的最小报告波束的波束满足:
在等式(3)中,阈值Th3和Th4可以与Th1和Th2类似或不同。例如,可能期望PDSCH/NR-PDSCH波束具有较高的更坏情况L1-RSRP值(Th3>Th1),但是容许较高的标准偏差值(Th2>Th4)。
最小报告波束可以来确定:对基本上所有测量的波束的L1-RSRP值进行排序,这些L1-RSRP值来自当前测量值或者是多个最近测量的平均;以及选择最高值。例如,网络可以将类似的波束用于WTRU的后续PDCCH/NR-PDCCH和PDSCH/NR-PDSCH传输,以减少BM开销。可以使用RSRQ、RSSI或其他测量值来代替RSRP值,或者可以共同考虑对波束质量进行排序。
在波束训练期间,诸如DL Tx波束、DL Rx波束或两者的波束切换的成本可能随时间而显著变化。在TRP内波束切换中,如果将网络设备或gNB的无线电前端部署在TRP上,则它可能比gNB管理一个或多个TRP时的TRP间波束切换要快,因为可能需要转发数据从一个TRP到另一个。由于控制平面业务、切换信令、较高层协商、数据平面业务、数据路径重建、数据转发、核心网络信令、或WTRU服务订阅检查等,gNB间波束切换可能比gNB内波束切换产生更多的开销和延迟。
对于基于内容或长度的波束选择和优先级排序,可以根据第一规则选择波束作为最小报告波束,如果第一规则相同,则根据第二规则选择波束,对于任意数量的波束规则依此类推。规则可以考虑波束的测量质量,L1-RSRP高于阈值Thx,波束可用,波束与当前服务波束(一个或多个)属于同一TRP,波束的测量质量实质上高于阈值Thy,其中Thy>Thx等。其他规则可以包括属于同一网络设备、TRP、gNB或小区的波束,或者在最近的Y个测量结果中的波束的平均测量质量等等。
可以根据一个或多个预定义、指定或配置的波束报告条件或规则确定波束报告的优先级。在某些配置中,可以以最高优先级报告具有最高L1-RSRP值变化的波束(一个或多个)。在其他配置中,可以以最高优先级报告X个新波束,例如以前尚未报告的波束。
如果当前报告中报告的波束与上一次报告部分或完全相同,则该波束ID(一个或多个)可能具有较低的优先级,而L1-RSRP值可能具有较高的优先级。如果报告的波束的L1-RSRP值相似或在可配置的偏移范围内,例如高或小于1dB,则可以为整个波束报告分配较低的优先级以节省资源,因为当前的波束报告类似于先前的报告。整个波束也可以合并为简化版本以减少开销,例如使用短固定值00来指示与上次报告类似的L1-RSRP值,而不是L1-RSRP值。
如果电源受限或电池受限的WTRU指示剩余的电源或电池电量低,则WTRU可以分配具有最高优先级的最佳X(X>=1)各波束,即使WTRU在没有功率或能量限制的情况下能够同时利用Y(Y>=X)个波束。这可以由WTRU以省电或电池节约模式执行。由于用于WTRU的DL有源BWP动态变化,因此频带和相应的波束属性、衰减、路径损耗可能会影响波束质量。相应地,波束报告频率和有效载荷也可能改变。随着用于WTRU的UL活动BWP动态地变化,用于波束报告的PUCCH或PUSCH资源可以动态地变化。可以对波束报告内容进行优先级排序,以使开销适合可用的UL资源,并且可以针对每个UL BWP候选指定波束报告内容。
对于波束报告优先级排序,WTRU可以确定用于计划的UL传输(例如不同类型的CSI报告、波束报告、或SRS传输等)的UL、UL-SCH、PUCCH、或PUSCH等资源在时隙中重叠。重叠可以在不同的波束报告类型期间在波束成形报告和CSI报告之间、或在波束成形报告和SRS传输之间发生。在UL资源在时间上没有重叠的情况下,可以根据能量消耗、等待时间要求等来发送波束报告。在某些配置中,可以用某个优先级阈值来配置WTRU,并且可以传送具有优先级值高于配置的优先级值的波束报告内容的不同部分。
图11是RS资源1100的示例的图。波束报告可以是完整的或宽的DLBWP频带测量,使得结果反映了波束质量的完整的DL BWP频带。用于波束测量报告的现有RS资源可能覆盖不到整个DL BWP频段,并且可能需要附加的RS资源。在1102中,在时隙x处在波束1和波束2上发送的RS资源可能无法覆盖当前活动DL BWP的整个频带。在第一配置中,在时隙x处的波束测量之后,WTRU可以利用时隙y进行波束报告,使得时隙x和时隙y处的组合参考信号资源提供全频带测量1104。时隙x处的符号1和符号2上的RS资源可以与时隙y处的符号1和符号2上的RS资源进行QCL或者与其在相同波束上被传送。在第二配置中,当时隙x完成时,WTRU可以在波束测量之后立即发送波束报告。
在1100中,第一配置可以提供更准确的波束测量结果,但是经历更高的波束报告延迟。第二配置可能具有较低的波束报告延迟,而波束测量结果的准确性较差。当期望较低的波束报告等待时间时,WTRU可以利用第二配置并在时隙x之后立即报告子带波束测量报告。此配置可以为网络DL波束选择提供一般参考。另外,在时隙y之后,WTRU可以发送分配有较低优先级的波束报告,因为先前的报告对于DL波束选择可能已经足够准确。
如果至少两个UL传输在时间上至少部分重叠,则可以按优先级对波束报告的不同部分进行排序。如果至少两个重叠的UL传输包括不止一个波束报告,例如非周期性波束报告和周期性波束报告,则可以在排序之前解决波束报告的内部冲突。在配置中,如果多个波束报告属于同一类型,例如,两个半持续波束报告,则可以利用合并为单个波束报告的方式。例如,WTRU可以从一个或多个波束报告中的一组或多组最小报告波束中确定一组最小报告波束,并为每个所选波束报告一个值。可以将类似的配置应用于额外报告的波束的集合。
在合并相似类型的波束报告之后,如果仍然存在至少两个重叠的波束报告,则除了具有最高优先级的波束报告之外,基本上所有的波束报告都可以被丢弃。可以定义、指定或配置不同类型的波束报告的优先级,以遵循例如以下的顺序:包含在波束故障恢复请求中的波束报告、非周期性波束报告,PUSCH上的半持续波束报告、PUCCH上的半持续束报告、或周期性波束报告等。在某些配置中,在优先级划分之后,一个波束报告可以留给UL传输,并且WTRU可以按照优先级顺序对其余波束报告的不同部分进行排序。可以将类似的合并配置应用于SRS传输、或CSI报告等。合并后,可以将一个CSI报告或SRS传输留给UL传输。
基于波束报告的不同部分的排序的优先级顺序,对于重叠的UL传输,可以基于以下顺序或以下顺序的任何变形来丢弃不同的部分:周期性或半持续SRS;周期性CSI报告;周期性波束报告;PUCCH上的半持续CSI报告;PUSCH上的半持续CSI报告;PUCCH上的半持续波束报告;PUSCH上的半持续波束报告;非周期性SRS;以及非周期性CSI报告或波束报告。
在丢弃部分之后,剩余的部分可以是包含在现有波束故障恢复请求中的波束报告。波束故障恢复请求可具有最高优先级,因为在波束恢复期间,触发的非周期性传输可能变得无效。在某些配置中,在传输报告之前,可能必须恢复WTRU与网络之间的BPL。在PUSCH上丢弃传输可能是在时域中的部分的。例如,在某些配置中,仅需要丢弃与PUCCH冲突的那些OFDM符号,例如在PUCCH上的非周期性波束报告。
当两个UL传输具有类似的传输配置时,例如周期性波束报告和周期性CSI报告,周期性CSI报告可以丢弃某些配置。对于非周期性CSI报告和周期性波束报告相关的丢弃,如果波束报告的内容类似于先前的波束报告,则丢弃该波束报告。波束报告之间的相似度可以基于当前报告和先前报告中L1-RSRP的差异。如果当前波束报告的内容中具有来自相同TRP和不同TRP的波束,或者来自相同小区/gNB和不同小区/gNB的波束,则该波束报告可以被丢弃。当属于服务网络设备、TRP、gNB、小区等的波束的测量质量类似或者偏移值处于在先前报告中报告的波束的可配置阈值内时,也可以丢弃波束报告。在某些配置中,对于类似或稍微类似的报告,CSI报告可在时隙中跳过且在具有充分UL资源的之后时隙中调度。
图12是复用波束报告和CSI II型报告的部分2的示例1200的图。波束报告和CSI报告可以被合并被复用。如果非周期性波束报告与非周期性CSI报告复用,则两个报告可以在PUSCH或长PUCCH上发送。如果非周期性CSI支持类型I,其中类型1 CSI可以被配置为子带CSI,并且如果波束报告基于全频带或宽频带测量1202,则波束报告可以被放在CSI报告的部分1之前。在传输期间,可以首先从部分1中选择尽可能多的内容,然后从部分2中选择,而不超过PUSCH资源所支持的最大比特数目,并且CSI报告的其余部分可以被丢弃。如果波束报告基于部分频带测量1204,则波束报告可以被放入在CSI报告的部分1之前。对于这种配置,在传输期间,可以选择相同或相邻子带的部分1,例如靠近波束报告测量的部分频带、CSI。
如果非周期性CSI配置支持类型II CSI,波束报告可以放置在部分1之前或宽带CSI之前。在传输期间,首先从最高优先级中尽可能多地选择部分2的内容,而不超过由可用PUSCH资源支持的最大比特数目,并且丢弃CSI报告的剩余部分。CSI类型II的部分2可以从最低优先级开始每级别的跳过直到最高优先级级别。当波束报告是基于部分频带测量时,对于最接近基于波束测量的部分频带的子带CSI可以被指定为对于其它子带CSI的最高优先级的优先级1。部分1可以根据从部分2发送的信息比特的实际数目来更新,并且部分1的大小可以具有固定的有效载荷大小,包括RI、包括CQI、包括用于类型II CSI的每层非零宽带幅度效率的数目的指示等。
当较层参数ReportQuantity被配置有值‘CRI/RSRP’或‘SSBRI/RSRP’中的一个时,CSI报告可以包括单个部分,并且可以在波束报告之后被传送。如果非周期CSI报告支持类型I CSI,则可以丢弃CSI报告。如果非周期CSI报告支持类型II CSI,则可以复用并发送CSI报告和波束报告。在某些配置中,如果波束报告基于部分频带波束测量,并且部分频带与CSI报告的类型I CSI所报告的子带重叠,则CSI报告可以被保持并与波束报告复用。
可以基于这里给出的波束报告优先级排序规则对波束报告优先级排序进行分组。为了满足不同的WTRU需求,例如能量消耗、等待时间、服务类型、反馈容量限制等等,WTRU可以能够基于不同的分组标准或规则来进行可扩展的波束报告、不同的波束报告类别等等。分组标准或规则可以基于波束报告有效载荷大小、处理延迟、处理等待时间、WTRU计算复杂度、短期测量、长期加权平均、频带、BWP的数量、来自相同或不同网络设备的波束、或来自相同或不同小区的波束等。
表6、表7和表8中示出了基于分组的波束报告优先级排序或波束报告类别。在表6中,如果使用了差分RSRP值,则指定了相应的参考值。例如,4个比特可以用于表示差分RSRP值并且该4个比特可允许16个状态。16个状态的一个状态可用于指示相应的差分RSRP在范围之外。因此,对于差分L1-RSRP报告,当最大L1-RSRP被报告为在范围之外时,7比特表示的最大值可用作参考值,以用于计算剩余L1-RSRP值的差分L1-RSRP值。7比特表示的特定值可以用作参考,例如,剩余RSRP值的最高值具有7比特或4比特表示。
此外,范围的上限可以用作参考值。例如,所有报告的L1-RSRP值的范围的上限可以是在范围[-140,-15]中的所有报告值,并且-15是用于参考值的上限。4比特表示的上限可以服从该参考。例如,考虑到4比特表示16个状态和2dB作为步长,当最小报告值为-100时,4比特表示的上限可以是-70或15个状态。
表6
表7
表8
尽管以上以特定的组合描述了特征和元素,但是本领域的普通技术人员将理解,每个特征或元素可以单独使用或与其它特征和元素任意组合使用。另外,本文描述的方法可以在计算机程序、软件或固件中实现,所述计算机程序、软件或固件并入计算机可读介质中以由计算机或处理器执行。计算机可读介质的示例包括电子信号(通过有线或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓冲存储器、半导体存储设备、诸如内部硬盘和可移动磁盘的磁介质、磁光介质、以及诸如CD-ROM盘的光介质、以及数字多功能盘(DVD)。可以将与软件相关联的处理器用于实现在WTRU、UE、终端、基站、RNC或任何主计算机中使用的射频收发信机。
Claims (15)
1.一种无线发射/接收单元(WTRU),该WTRU包括:
处理器,被配置为确定第一波束与第一控制资源集(CORESET)相关联以及第二波束与第二CORESET相关联,以及
收发信机,被配置成监视多个配置的控制资源集(CORESET)以接收物理下行链路控制信道(PDCCH)上的下行链路控制信息(DCI),其中所述DCI包括用于物理下行链路共享信道(PDSCH)上的数据传输的调度信息,所述DCI包括用于经由所述PDSCH传输接收所述数据传输的波束的指示;
其中所述处理器被配置成:
确定是经由包括在所述DCI中的所述指示指示的所述波束还是经由与参考CORESET相关联的参考波束来接收所述数据传输,其中所述WTRU被配置为基于与经由所述PDSCH传输接收的所述数据传输相关联的调度偏移小于阈值来经由与所述参考CORESET相关联的所述参考波束接收所述数据传输,并且所述WTRU被配置成基于与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移大于或等于所述阈值,经由经由所述DCI中的所述指示指示的所述波束接收所述数据传输,
在所述PDSCH上的所述数据传输的调度偏移小于所述阈值的条件时,确定所述第一CORESET还是所述第二CORESET是用于经由所述PDSCH传输接收的所述数据传输的所述参考CORESET,其中所述WTRU被配置成基于时隙来确定哪个CORESET为所述参考CORESET,并且其中所述第一CORESET基于所述时隙被确定为用于所述数据传输的所述参考CORESET;以及
其中所述收发信机被配置成:
当与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移小于所述阈值时,使用与所述第一CORESET相关联的所述第一波束经由所述PDSCH传输接收所述数据传输,或者
当与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移大于或等于所述阈值时,使用经由所述DCI中包括的所述指示指示的所述波束经由所述PDSCH传输接收所述数据传输。
2.根据权利要求1所述的WTRU,其中所述参考CORESET的所述第一波束基于相对于所述PDSCH上的所述数据传输的CORESET时间位置被确定,并且其中相对于所述PDSCH上的所述数据传输的所述CORESET时间位置是与所述多个配置的CORESET的最近的时间位置。
3.根据权利要求1所述的WTRU,其中当多个数据传输被调度用于在多个PDSCH上传输时,所述第二波束被用于在所述PDCCH上的所述DCI的接收,并且所述第一波束被用于所述多个PDSCH上的所述多个数据传输。
4.根据权利要求3所述的WTRU,其中当使用所述多个PDSCH的多个数据传输通过所述DCI而在多个时隙上被调度时,用于所述多个数据传输的接收的波束是不同的。
5.根据权利要求1所述的WTRU,其中所述第一波束基于最低CORESET标识(ID)被确定。
6.根据权利要求1所述的WTRU,其中所述DCI中包括的所述指示经由所述DCI中包括的传输配置(TCI)字段被指示。
7.根据权利要求1所述的WTRU,其中所述调度偏移对应于包括所述DCI的所述PDCCH传输的接收与经由所述PDSCH传输的所述数据传输的接收之间的时间量。
8.一种由无线发射/接收单元(WTRU)执行的方法,该方法包括:
确定第一波束与第一控制资源集(CORESET)相关联以及第二波束与第二CORESET相关联;
监视多个配置的控制资源集(CORESET)以接收物理下行链路控制信道(PDCCH)上的下行链路控制信息(DCI),其中所述DCI包括用于物理下行链路共享信道(PDSCH)上的数据传输的调度信息,所述DCI包括用于经由所述PDSCH传输接收所述数据传输的波束的指示;
确定是经由包括在所述DCI中的所述指示指示的所述波束还是基于与经由所述PDSCH传输接收的所述数据传输相关联的调度偏移小于阈值经由与参考CORESET相关联的参考波束来接收所述数据传输,其中所述WTRU被配置成基于与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移大于或等于所述阈值,经由经由所述DCI中的所述指示指示的所述波束接收所述数据传输;以及
在所述PDSCH上的所述数据传输的调度偏移小于所述阈值的条件时,确定所述第一CORESET还是所述第二CORESET是用于经由所述PDSCH传输接收的所述数据传输的所述参考CORESET,其中所述WTRU被配置成基于时隙来确定哪个CORESET为所述参考CORESET,并且其中所述第一CORESET基于所述时隙被确定为用于所述数据传输的所述参考CORESET;以及
当与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移小于所述阈值时,使用与所述第一CORESET相关联的所述第一波束经由所述PDSCH传输接收所述数据传输,或者
当与经由所述PDSCH传输接收的所述数据传输相关联的所述调度偏移大于或等于所述阈值时,使用经由所述DCI中包括的所述指示指示的所述波束经由所述PDSCH传输接收所述数据传输。
9.根据权利要求8所述的方法,相对于所述PDSCH上的所述数据传输的所述CORESET时间位置是与所述多个配置的CORESET的最近的时间位置。
10.根据权利要求8所述的方法,其中当多个数据传输被调度用于在多个PDSCH上传输时,所述第二波束被用于在所述PDCCH上的所述DCI的接收,并且所述第一波束被用于所述多个PDSCH上的所述多个数据传输。
11.根据权利要求10所述的方法,其中当使用所述多个PDSCH的多个数据传输通过所述DCI而在多个时隙上被调度时,用于接收的波束是不同的。
12.根据权利要求8所述的方法,其中所述第一波束基于最低CORESET标识(ID)被确定。
13.根据权利要求8所述的方法,其中所述参考CORESET基于以下各项中的一者或多者被确定:所述时隙、时隙号、在所述时隙中监视的配置CORESET以及相对于所述PDSCH的CORESET时间位置。
14.根据权利要求8所述的方法,其中所述参考CORESET基于时隙号被确定。
15.根据权利要求8所述的方法,其中所述参考CORESET基于在所述时隙中监视的一个或多个配置的CORESET被确定。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311665785.XA CN117896830A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
CN202311671962.5A CN117858233A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762586612P | 2017-11-15 | 2017-11-15 | |
US62/586,612 | 2017-11-15 | ||
US201862615715P | 2018-01-10 | 2018-01-10 | |
US62/615,715 | 2018-01-10 | ||
US201862630649P | 2018-02-14 | 2018-02-14 | |
US62/630,649 | 2018-02-14 | ||
US201862652805P | 2018-04-04 | 2018-04-04 | |
US62/652,805 | 2018-04-04 | ||
US201862716215P | 2018-08-08 | 2018-08-08 | |
US62/716,215 | 2018-08-08 | ||
PCT/US2018/061267 WO2019099659A1 (en) | 2017-11-15 | 2018-11-15 | Beam management in a wireless network |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311665785.XA Division CN117896830A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
CN202311671962.5A Division CN117858233A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111543097A CN111543097A (zh) | 2020-08-14 |
CN111543097B true CN111543097B (zh) | 2023-12-26 |
Family
ID=64755701
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880085050.0A Active CN111543097B (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
CN202311665785.XA Pending CN117896830A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
CN202311671962.5A Pending CN117858233A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311665785.XA Pending CN117896830A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
CN202311671962.5A Pending CN117858233A (zh) | 2017-11-15 | 2018-11-15 | 无线网络中的波束管理 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11723049B2 (zh) |
EP (2) | EP3711411B1 (zh) |
KR (2) | KR102650783B1 (zh) |
CN (3) | CN111543097B (zh) |
ES (1) | ES2960620T3 (zh) |
FI (1) | FI3711411T3 (zh) |
WO (1) | WO2019099659A1 (zh) |
Families Citing this family (185)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI720052B (zh) * | 2015-11-10 | 2021-03-01 | 美商Idac控股公司 | 無線傳輸/接收單元和無線通訊方法 |
US11082105B2 (en) * | 2017-03-17 | 2021-08-03 | Qualcomm Incorporated | RLM monitoring using signaled dynamic parameter |
EP3668143B1 (en) * | 2017-08-08 | 2022-10-26 | Sony Group Corporation | Communication device and communication method |
CN109392120B (zh) * | 2017-08-10 | 2023-06-09 | 株式会社电装 | 信息指示方法及相关设备 |
WO2019090775A1 (en) * | 2017-11-13 | 2019-05-16 | Nec Corporation | Methods and devices for beam report transmission and receiving |
EP3711179B1 (en) * | 2017-11-16 | 2024-05-22 | Telefonaktiebolaget LM Ericsson (publ) | Medium access control (mac) signaling for reference signal activation and quasi co-location indication in wireless communication networks |
CN116112050A (zh) | 2017-11-17 | 2023-05-12 | 华为技术有限公司 | 一种波束配置方法和装置 |
US10966101B2 (en) * | 2018-01-10 | 2021-03-30 | Apple Inc. | Mobile communication system, user equipment, base station, base band circuitry, methods, machine readable media and computer programs to communicate in a mobile communication system |
CN110035504B (zh) * | 2018-01-11 | 2022-02-01 | 维沃移动通信有限公司 | 一种空间关系的确定方法、终端及基站 |
EP3739788B1 (en) * | 2018-01-11 | 2024-03-20 | Fujitsu Limited | Signal receiving device and communication system |
CN110034798A (zh) * | 2018-01-11 | 2019-07-19 | 索尼公司 | 电子设备、无线通信方法和计算机可读存储介质 |
AU2018402168B2 (en) * | 2018-01-12 | 2022-12-01 | Ntt Docomo, Inc. | User terminal and radio communication method |
CN111869127B (zh) * | 2018-01-12 | 2023-09-01 | 诺基亚技术有限公司 | 在波束恢复过程中利用干扰测量 |
US10966183B2 (en) * | 2018-01-12 | 2021-03-30 | Apple Inc. | Beam indication considering beam failure recovery in new radio |
CN110062395B (zh) * | 2018-01-18 | 2020-10-30 | 维沃移动通信有限公司 | 用于信道侦听的方法和通信设备 |
CN110061768B (zh) * | 2018-01-19 | 2021-01-29 | 成都华为技术有限公司 | 一种波束配置方法和装置 |
US11239893B2 (en) | 2018-01-24 | 2022-02-01 | Qualcomm Incorporated | Quasi co-location assumptions for aperiodic channel state information reference signal triggers |
AU2018407142A1 (en) | 2018-02-07 | 2020-09-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for link reconfiguration and terminal device |
CN111757410B (zh) * | 2018-02-11 | 2022-11-25 | 维沃移动通信有限公司 | 下行信道的接收方法、发送方法、终端和基站 |
KR102543422B1 (ko) | 2018-02-14 | 2023-06-13 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 무선 통신 방법 및 기기 |
TW202118323A (zh) | 2018-02-23 | 2021-05-01 | 美商Idac控股公司 | 頻寬部分操作系統及方法 |
CN108199819A (zh) * | 2018-02-26 | 2018-06-22 | 中兴通讯股份有限公司 | 控制信令的发送、接收以及信息的确定方法及装置 |
CN111919409B (zh) * | 2018-03-26 | 2023-05-05 | Lg电子株式会社 | 在无线通信系统中发送和接收物理信号和/或信道的方法和用于该方法的设备 |
CN114124170B (zh) * | 2018-04-08 | 2022-08-26 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的用户设备、基站中的方法和装置 |
KR102495977B1 (ko) | 2018-04-12 | 2023-02-03 | 삼성전자 주식회사 | 무선 통신 시스템에서 단말 및 이의 제어 방법 |
US11139880B2 (en) * | 2018-05-04 | 2021-10-05 | Qualcomm Incorporated | Dynamic beam-switching latency for beam refinement procedures |
US11856432B2 (en) * | 2018-06-08 | 2023-12-26 | Qualcomm Incorporated | Acknowledgement design for multi-transmission configuration indicator state transmission |
CN110636542B (zh) * | 2018-06-22 | 2021-01-08 | 维沃移动通信有限公司 | 非授权频段上波束管理的方法、设备和介质 |
EP3821543B1 (en) * | 2018-07-13 | 2023-08-30 | Sony Group Corporation | Time-overlapping beam-swept transmissions |
US10972972B2 (en) * | 2018-07-17 | 2021-04-06 | FG Innovation Company Limited | Methods and apparatuses for operating multiple antenna panels |
EP3826197A4 (en) * | 2018-07-20 | 2022-02-23 | NTT DoCoMo, Inc. | USER TERMINAL AND BASE STATION |
CN112567785B (zh) * | 2018-08-03 | 2024-04-02 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
JP7042904B2 (ja) * | 2018-08-06 | 2022-03-28 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムのコアセットで信号を受信する方法及び前記方法を利用する装置 |
WO2020033439A1 (en) * | 2018-08-07 | 2020-02-13 | Intel Corporation | Physical downlink shared channel (pdsch) repetition transmission for reliable communications |
US11330620B2 (en) * | 2018-08-10 | 2022-05-10 | Qualcomm Incorporated | Beam determination for a slot aggregation |
CN110839290B (zh) * | 2018-08-17 | 2022-04-22 | 成都华为技术有限公司 | 信号传输的方法和通信装置 |
US12101766B2 (en) | 2018-09-24 | 2024-09-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Control of DRX using layer-1 signaling |
US12047168B2 (en) | 2018-09-28 | 2024-07-23 | Lenovo (Singapore) Pte. Ltd. | Method and apparatus for generating a CSI report |
US20210391912A1 (en) * | 2018-09-28 | 2021-12-16 | Nokia Technologies Oy | Beam diversity for multi-slot communication channel |
CN113170490A (zh) * | 2018-09-28 | 2021-07-23 | 瑞典爱立信有限公司 | 在不同的调度延迟假设之间转变 |
US11405943B2 (en) * | 2018-09-28 | 2022-08-02 | Apple Inc. | Cross-slot scheduling for New Radio |
US12047930B2 (en) * | 2018-10-26 | 2024-07-23 | Qualcomm Incorporated | Spatial quasi co-location indication for control resource set and downlink bandwidth part |
CN111132314B (zh) * | 2018-10-30 | 2022-06-24 | 维沃移动通信有限公司 | 非周期信道状态信息参考信号配置方法、网络设备及终端 |
US11191068B2 (en) * | 2018-11-12 | 2021-11-30 | Qualcomm Incorporated | Per transmission configuration channel sensing |
US11770806B2 (en) * | 2018-11-12 | 2023-09-26 | Qualcomm Incorporated | Spatial quasi co-location conflict handling |
US11115110B2 (en) * | 2018-12-14 | 2021-09-07 | Qualcomm Incorporated | Default beam selection based on a subset of coresets |
US11324041B2 (en) * | 2018-12-14 | 2022-05-03 | Qualcomm Incorporated | Signaling of default and scheduled beam in cot |
US11201663B2 (en) * | 2018-12-20 | 2021-12-14 | Qualcomm Incorporated | Transmission configuration indication determination for a shared data channel |
JP6843110B2 (ja) * | 2018-12-26 | 2021-03-17 | シャープ株式会社 | 端末装置、基地局装置及び通信方法 |
US12069657B2 (en) * | 2019-01-08 | 2024-08-20 | Beijing Xiaomi Mobile Software Co., Ltd. | Downlink data receiving method and device, downlink data transmitting method and device, and storage medium |
EP3681086A1 (en) * | 2019-01-09 | 2020-07-15 | Comcast Cable Communications, LLC | Methods, systems, and apparatuses for beam management |
US11405152B2 (en) * | 2019-01-11 | 2022-08-02 | Qualcomm Incorporated | QCL relationship and/or DMRS port identification |
KR20210100718A (ko) * | 2019-01-17 | 2021-08-17 | 애플 인크. | 멀티-송신/수신(trp) 송신을 위한 시스템들 및 방법들 |
US12047150B2 (en) * | 2019-02-01 | 2024-07-23 | Lg Electronics Inc. | Beam failure reporting method of terminal in wireless communication system, and terminal and base station supporting same |
CN110536435A (zh) * | 2019-02-15 | 2019-12-03 | 中兴通讯股份有限公司 | 一种传输信息的方法和装置 |
KR102671061B1 (ko) * | 2019-02-15 | 2024-05-31 | 에프쥐 이노베이션 컴퍼니 리미티드 | 빔 장애 복구를 위한 방법들 및 장치들 |
US11606721B2 (en) * | 2019-02-28 | 2023-03-14 | Qualcomm Incorporated | Timing configuration of a layer-1 millimeter wave repeater |
BR112021017989A2 (pt) * | 2019-03-11 | 2021-11-16 | Beijing Xiaomi Mobile Software Co Ltd | Método, aparelho e dispositivo para indicar a transmissão, e, mídia de armazenamento legível por computador não transitória |
US10492130B1 (en) * | 2019-03-20 | 2019-11-26 | Qualcomm Incorporated | Search scheduling for wireless communications |
US11456831B2 (en) * | 2019-03-22 | 2022-09-27 | Samsung Electronics Co., Ltd. | Method and apparatus for CSI-RS enhancement for NR unlicensed spectrum |
US11510082B2 (en) | 2019-03-29 | 2022-11-22 | Qualcomm Incorporated | Beam indication reuse |
US11751205B2 (en) | 2019-04-04 | 2023-09-05 | Qualcomm Incorporated | Beam indication for semi-persistent transmissions |
CN114009080A (zh) * | 2019-04-26 | 2022-02-01 | 日本电气株式会社 | 用于信道状态信息传输的方法、设备和计算机可读介质 |
US11330617B2 (en) * | 2019-04-29 | 2022-05-10 | Qualcomm Incorporated | Scheduling threshold report for multi-transmit/receive points |
US11576052B2 (en) * | 2019-05-03 | 2023-02-07 | Qualcomm Incorporated | Panel specific uplink transmission |
US11457350B2 (en) * | 2019-05-10 | 2022-09-27 | Qualcomm Incorporated | Signaling user equipment multi-panel capability |
US10897752B2 (en) * | 2019-06-14 | 2021-01-19 | Qualcomm Incorporated | Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals |
US11425648B2 (en) * | 2019-06-14 | 2022-08-23 | Samsung Electronics Co., Ltd. | Operation with power saving in connected mode discontinuous reception (C-DRX) |
US11356881B2 (en) | 2019-06-20 | 2022-06-07 | Samsung Electronics Co., Ltd. | Method and apparatus for aperiodic reference signal transmission and reception |
US11496260B2 (en) * | 2019-06-21 | 2022-11-08 | Qualcomm Incorporated | Methods and apparatus to facilitate dual stage channel state information reference signal (CSI-RS) selection for CSI feedback |
KR20230170154A (ko) * | 2019-06-25 | 2023-12-18 | 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 | 데이터 전송 방법, 장치, 시스템 및 저장 매체 |
WO2020258046A1 (en) * | 2019-06-25 | 2020-12-30 | Nec Corporation | Methods, devices and computer storage media for communication |
US11777581B2 (en) | 2019-07-03 | 2023-10-03 | Lg Electronics Inc. | Operation method in V2X device mounted on vehicle |
WO2021008433A1 (en) * | 2019-07-12 | 2021-01-21 | FG Innovation Company Limited | Method and apparatus for beam management |
KR20220037414A (ko) * | 2019-07-25 | 2022-03-24 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 데이터를 전송하기 위한 방법 및 단말 장치 |
CN112312547B (zh) * | 2019-07-26 | 2024-09-13 | 大唐移动通信设备有限公司 | 资源分配、确定方法及装置 |
EP3991489A1 (en) * | 2019-08-02 | 2022-05-04 | Sony Group Corporation | Communications device, infrastructure equipment and methods |
US11284385B2 (en) | 2019-08-13 | 2022-03-22 | Acer Incorporated | Device and method for handling a reception |
CN112399569A (zh) * | 2019-08-14 | 2021-02-23 | 华为技术有限公司 | 一种通信方法及通信装置 |
CN111082909B (zh) * | 2019-08-15 | 2024-06-07 | 中兴通讯股份有限公司 | 准共址假设的确定方法及装置、存储介质和电子装置 |
WO2021040338A1 (en) | 2019-08-23 | 2021-03-04 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system |
US11445514B2 (en) * | 2019-08-23 | 2022-09-13 | Qualcomm Incorporated | Beam determination prior to beam activation indication |
US11722181B2 (en) * | 2019-08-27 | 2023-08-08 | Qualcomm Incorporated | Default quasi co-location assumption for cross carrier reference signal triggering |
WO2021035678A1 (en) * | 2019-08-30 | 2021-03-04 | Qualcomm Incorporated | Beam management for bandwidth part not including synchronization signal block |
CN112533230B (zh) * | 2019-09-18 | 2022-07-15 | 中国移动通信有限公司研究院 | 一种测量配置方法、终端及基站 |
CN113302968A (zh) * | 2019-09-23 | 2021-08-24 | Oppo广东移动通信有限公司 | 确定信道状态信息报告的优先级的方法及装置、用户终端 |
KR20210037466A (ko) * | 2019-09-27 | 2021-04-06 | 삼성전자주식회사 | 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치 |
WO2021062709A1 (zh) * | 2019-09-30 | 2021-04-08 | 华为技术有限公司 | 数据传输的方法和装置 |
CN114503498B (zh) * | 2019-10-03 | 2024-01-09 | Lg电子株式会社 | 在无线通信系统中发送和接收物理下行链路共享信道的方法及其设备 |
US11516814B2 (en) * | 2019-10-04 | 2022-11-29 | Qualcomm Incorporated | Beam selection for communication in a multi-transmit-receive point deployment |
US11758547B2 (en) | 2019-10-04 | 2023-09-12 | Qualcomm Incorporated | Default PDSCH beam selection |
US11910416B2 (en) | 2019-10-11 | 2024-02-20 | Qualcomm Incorporated | Default quasi-colocation for single downlink control information-based multiple transmission reception points |
EP4046312A1 (en) * | 2019-10-14 | 2022-08-24 | Nokia Technologies Oy | Wireless communication system |
KR20210045884A (ko) * | 2019-10-17 | 2021-04-27 | 삼성전자주식회사 | 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치 |
US11425701B2 (en) * | 2019-10-25 | 2022-08-23 | Qualcomm Incorporated | Default spatial relation determination for a sounding reference signal or an uplink control channel beam |
WO2021078398A1 (en) * | 2019-10-25 | 2021-04-29 | Nokia Technologies Oy | Pdcch monitoring in unlicensed spectrum for a terminal device with a single active panel |
US11290174B2 (en) * | 2019-10-31 | 2022-03-29 | Qualcomm Incorporated | Beam selection for communication in a multi-transmit-receive point deployment |
US20210084669A1 (en) * | 2019-11-06 | 2021-03-18 | Intel Corporation | Setting default physical downlink shared channel (pdsch) beams |
US20220408470A1 (en) * | 2019-11-07 | 2022-12-22 | Samsung Electronics Co., Ltd. | Method and device for transmitting or receiving multiple data in wireless cooperative communication system |
WO2021087845A1 (en) | 2019-11-07 | 2021-05-14 | Apple Inc. | Default PUCCH and SRS Beam Determination |
US11743926B2 (en) * | 2019-11-08 | 2023-08-29 | Mediatek Inc. | Method and apparatus for dynamic physical downlink control channel monitoring in mobile communications |
CN112788625B (zh) * | 2019-11-08 | 2024-04-19 | 联发科技股份有限公司 | 用于动态控制信号监测的方法及装置 |
CN112787734B (zh) * | 2019-11-08 | 2022-04-15 | 维沃移动通信有限公司 | 信干噪比测量方法、装置、设备及介质 |
US12022476B2 (en) | 2019-11-20 | 2024-06-25 | Qualcomm Incorporated | Beamforming in multicast communications |
US11616558B2 (en) * | 2019-11-20 | 2023-03-28 | Qualcomm Incorporated | Procedural delays and scheduling restriction based on component carrier groups |
US11395236B2 (en) * | 2019-12-13 | 2022-07-19 | Qualcomm Incorporated | Path loss reference signal ready time for a downlink control information based activation command |
US11849473B2 (en) * | 2019-12-13 | 2023-12-19 | Qualcomm Incorporated | Beam ready time for downlink control information based beam activation command |
US11509383B2 (en) * | 2019-12-23 | 2022-11-22 | Qualcomm Incorporated | Default physical downlink shared channel downlink beam determination with self-interference |
US11751174B2 (en) * | 2020-01-16 | 2023-09-05 | Qualcomm Incorporated | Signaling for configuring downlink transmissions |
CN111901808A (zh) * | 2020-01-17 | 2020-11-06 | 中兴通讯股份有限公司 | 参数信息确定方法、通信节点和存储介质 |
CN111212437B (zh) * | 2020-01-22 | 2022-07-19 | 北京紫光展锐通信技术有限公司 | Pdsch接收波束的确定方法及装置、存储介质、终端 |
CN113163438B (zh) * | 2020-01-23 | 2023-12-19 | 维沃移动通信有限公司 | 信息上报方法、终端设备和网络侧设备 |
US11751184B2 (en) * | 2020-01-29 | 2023-09-05 | Qualcomm Incorporated | Indication of degraded transmit beam group in group-based reporting |
US20210242925A1 (en) * | 2020-01-31 | 2021-08-05 | Qualcomm Incorporated | Uplink beam failure report for a default uplink beam |
CN115226117B (zh) * | 2020-02-07 | 2024-07-02 | 维沃移动通信有限公司 | 波束指示方法、装置、设备及介质 |
US11665722B2 (en) * | 2020-02-13 | 2023-05-30 | Qualcomm Incorporated | QCL assumption for A-CSI-RS configured with multi-TRP |
CN115152294A (zh) * | 2020-02-14 | 2022-10-04 | 高通股份有限公司 | 用于简化信道状态信息反馈的技术 |
US11601965B2 (en) | 2020-02-24 | 2023-03-07 | Qualcomm Incorporated | Applied beam updated before a triggered transmission time |
CN115211200A (zh) | 2020-03-03 | 2022-10-18 | 高通股份有限公司 | 具有多个传输配置指示状态的信道状态信息-参考信号资源 |
CN115244875B (zh) * | 2020-03-06 | 2023-11-10 | Lg 电子株式会社 | 在无线通信系统中基于空间参数发送或接收信号的方法和设备 |
EP4120718A4 (en) * | 2020-03-13 | 2023-12-06 | Ntt Docomo, Inc. | TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION |
US11824613B2 (en) | 2020-03-26 | 2023-11-21 | Samsung Electronics Co., Ltd. | Method and apparatus for a multi-beam downlink and uplink wireless system |
US11671994B2 (en) * | 2020-04-10 | 2023-06-06 | Qualcomm Incorporated | Reusing PDSCH TCI and QCL for dynamic coresets |
CN115398848A (zh) * | 2020-04-10 | 2022-11-25 | 瑞典爱立信有限公司 | 接收与下行链路参考信号和信道重叠的时间 |
US11546902B2 (en) | 2020-04-13 | 2023-01-03 | Samsung Electronics Co., Ltd. | Method and apparatus for dynamic multi-beam operations |
KR20230006490A (ko) * | 2020-04-14 | 2023-01-10 | 아이디에이씨 홀딩스, 인크. | 고주파수 범위에서 커버리지의 개선 |
CN115398959A (zh) * | 2020-04-30 | 2022-11-25 | 中兴通讯股份有限公司 | 先验信道信息传输的方法 |
US11979752B2 (en) * | 2020-05-13 | 2024-05-07 | Qualcomm Incorporated | Beam switching in a time domain |
EP4133653A4 (en) * | 2020-05-14 | 2023-05-10 | Apple Inc. | DEFAULT BEAM DETERMINATION AND QCL COLLISION MANAGEMENT |
US20230254856A1 (en) * | 2020-05-15 | 2023-08-10 | Lenovo (Beijing) Ltd. | Default beam determination for reception of pdsch transmissions with repetition |
US11595921B2 (en) * | 2020-05-19 | 2023-02-28 | Qualcomm Incorporated | Methods and apparatus for QCL assumptions for cross carrier multiple DCI |
CN113766643B (zh) * | 2020-06-02 | 2024-08-09 | 维沃移动通信有限公司 | 波束失败恢复方法、装置及设备 |
EP4169321A4 (en) * | 2020-06-17 | 2024-03-13 | QUALCOMM Incorporated | PROCESSING TWO-STAGE DOWNLINK CONTROL INFORMATION |
US20220007384A1 (en) * | 2020-07-01 | 2022-01-06 | Qualcomm Incorporated | Csi-rs triggering offset determination for ue |
CN111901401B (zh) * | 2020-07-14 | 2021-08-17 | 广州爱浦路网络技术有限公司 | 一种会话管理功能smf负载均衡的方法及其设备 |
CN113949481B (zh) * | 2020-07-15 | 2023-04-18 | 大唐移动通信设备有限公司 | 一种信道状态信息反馈方法及装置 |
US20230318686A1 (en) * | 2020-07-27 | 2023-10-05 | Interdigital Patent Holdings, Inc. | Methods, architectures, apparatuses and systems for dynamic determination of processing time |
WO2022029369A1 (en) * | 2020-08-04 | 2022-02-10 | Nokia Technologies Oy | Indication of feasible quasi-colocation (qcl) sources for fast beam indication |
CN116114209A (zh) * | 2020-08-06 | 2023-05-12 | 华为技术有限公司 | 用于用户设备预期的公共波束切换的方法和装置 |
US11799604B2 (en) | 2020-08-21 | 2023-10-24 | Qualcomm Incorporated | Techniques for adapting a number of tracking reference signal symbols |
WO2022059072A1 (ja) | 2020-09-15 | 2022-03-24 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN116210317A (zh) * | 2020-09-16 | 2023-06-02 | 苹果公司 | 使用非周期性参考信号进行空间关系更新 |
WO2022061118A2 (en) * | 2020-09-20 | 2022-03-24 | Cirik Ali Cagatay | Downlink signal reception in control channel repetition |
US20230336234A1 (en) * | 2020-09-23 | 2023-10-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Fast beam switch |
US11937107B2 (en) * | 2020-09-29 | 2024-03-19 | Samsung Electronics Co., Ltd. | Method and apparatus for fast beam measurement and reporting |
WO2022070346A1 (ja) * | 2020-09-30 | 2022-04-07 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN116325850A (zh) * | 2020-09-30 | 2023-06-23 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
WO2022070344A1 (ja) * | 2020-09-30 | 2022-04-07 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
WO2022083773A1 (en) * | 2020-10-23 | 2022-04-28 | FG Innovation Company Limited | Method and user equipment for beam indication for downlink reception |
US11515927B2 (en) * | 2020-10-30 | 2022-11-29 | Qualcomm Incorporated | Beam management with backtracking and dithering |
US11902802B2 (en) * | 2020-11-05 | 2024-02-13 | Qualcomm Incorporated | Combined beam sweeping procedure |
WO2022106428A1 (en) * | 2020-11-17 | 2022-05-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Channel profiles for quasi-stationary device |
CN116636273A (zh) * | 2020-12-21 | 2023-08-22 | 高通股份有限公司 | 用于具有重复配置的下行链路控制信道的默认下行链路或上行链路波束 |
EP4027565A1 (en) * | 2021-01-12 | 2022-07-13 | Nokia Technologies Oy | Facilitating downlink control information (dci) repetition on linked physical downlink control channel (pdcch) candidates of different search space sets |
WO2022154502A1 (ko) * | 2021-01-14 | 2022-07-21 | 엘지전자 주식회사 | 무선 통신 시스템에서 공간 파라미터 적용 방법 및 장치 |
WO2022151190A1 (en) * | 2021-01-14 | 2022-07-21 | Apple Inc. | Default beams for pdsch, csi-rs, pucch and srs |
CN116711416A (zh) | 2021-01-15 | 2023-09-05 | 中兴通讯股份有限公司 | 在可预测移动性场景中进行波束测量和报告的系统和方法 |
US20240089984A1 (en) * | 2021-01-17 | 2024-03-14 | JRD Communication (Shenzhen) Ltd. | Method for configuring tci state in multi-trp system |
US11956791B2 (en) * | 2021-01-25 | 2024-04-09 | Qualcomm Incorporated | Coverage enhancements for physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) |
US12108369B2 (en) * | 2021-02-23 | 2024-10-01 | Qualcomm Incorporated | Reporting switching gaps for beamforming |
US11647509B2 (en) * | 2021-03-24 | 2023-05-09 | Qualcomm Incorporated | Gap between downlink control information and corresponding downlink and uplink communications |
US20220311572A1 (en) * | 2021-03-25 | 2022-09-29 | Qualcomm Incorporated | Reference signal resource sets for subband measurements |
WO2022205003A1 (zh) * | 2021-03-30 | 2022-10-06 | 北京小米移动软件有限公司 | 默认波束的确定方法、装置及通信设备 |
US20240187082A1 (en) * | 2021-03-30 | 2024-06-06 | Beijing Xiaomi Mobile Software Co., Ltd. | Default beam determination method and apparatus, and communication device |
CN117099352A (zh) * | 2021-03-31 | 2023-11-21 | 中兴通讯股份有限公司 | 用于确定跨分量载波的波束信息的方法、装置和系统 |
CN115190595A (zh) * | 2021-04-02 | 2022-10-14 | 索尼集团公司 | 电子设备、通信方法、存储介质和计算机程序产品 |
CN117083945A (zh) * | 2021-04-02 | 2023-11-17 | Oppo广东移动通信有限公司 | 无线通信方法、终端设备和网络设备 |
CN117099452A (zh) * | 2021-04-06 | 2023-11-21 | Lg 电子株式会社 | 在无线通信系统中用于发送/接收信号的方法和装置 |
CN115225225B (zh) * | 2021-04-21 | 2024-03-01 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
US11617178B2 (en) * | 2021-04-21 | 2023-03-28 | Qualcomm Incorporated | Sib PDSCH beam clustering for initial access information |
WO2022258134A1 (en) * | 2021-06-07 | 2022-12-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Skipped channel buffering |
US11831387B2 (en) * | 2021-06-24 | 2023-11-28 | Qualcomm Incorporated | Full duplex default beam for wireless communication |
US20220416977A1 (en) * | 2021-06-28 | 2022-12-29 | Samsung Electronics Co., Ltd. | Method and apparatus for beam measurement reporting |
WO2023004765A1 (en) * | 2021-07-30 | 2023-02-02 | Lenovo (Beijing) Limited | Method and apparatus for physical downlink control channel (pdcch) and channel state information (csi) -reference signal (rs) monitoring |
WO2023012998A1 (ja) * | 2021-08-05 | 2023-02-09 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
US20230058859A1 (en) * | 2021-08-17 | 2023-02-23 | Qualcomm Incorporated | Wireless transmission reception point (trp) information exchange |
WO2022246339A2 (en) * | 2021-09-30 | 2022-11-24 | Futurewei Technologies, Inc. | Method and apparatus to address timing related issues in beam management for b52 ghz communications |
EP4409757A1 (en) * | 2021-10-01 | 2024-08-07 | Qualcomm Incorporated | Techniques for using beams in multiple transport block scheduling |
US20230132954A1 (en) * | 2021-11-02 | 2023-05-04 | Media Tek Singapore Pte. Ltd. | Default beam assumption for multi-pdsch scheduling |
WO2023081547A1 (en) * | 2021-11-05 | 2023-05-11 | Qualcomm Incorporated | Beam switch capability indication and gap time management for higher frequency bands |
CN118542041A (zh) * | 2022-01-04 | 2024-08-23 | 苹果公司 | 用于统一发送控制指示符(tci)框架中的波束指示的系统和方法 |
US20230309085A1 (en) * | 2022-02-04 | 2023-09-28 | Qualcomm Incorporated | Transmission configuration indicator state determination based on multiple control channel repetitions |
US20230421337A1 (en) * | 2022-06-24 | 2023-12-28 | Qualcomm Incorporated | Ue initiated update of active transmission configuration indicator states and spatial relation configurations |
WO2024178333A1 (en) * | 2023-02-24 | 2024-08-29 | Interdigital Patent Holdings, Inc. | Switching measurement beams resources set type |
CN117015039B (zh) * | 2023-09-28 | 2024-02-06 | 武汉世炬信息技术有限公司 | 数据传输方法及系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104620551A (zh) * | 2012-04-30 | 2015-05-13 | 三星电子株式会社 | 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法 |
CN105659687A (zh) * | 2013-08-07 | 2016-06-08 | 交互数字专利控股公司 | 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强 |
CN106031051A (zh) * | 2014-02-19 | 2016-10-12 | 三星电子株式会社 | 用于选择和分配具有优先级的传送波束索引的方法和装置 |
CN106576253A (zh) * | 2014-09-16 | 2017-04-19 | 联发科技股份有限公司 | 波束成形中用于无线通信系统的csi收集 |
GB201704762D0 (en) * | 2017-03-24 | 2017-05-10 | Nec Corp | Communication system |
WO2017086922A1 (en) * | 2015-11-17 | 2017-05-26 | Intel IP Corporation | Devices for and methods of beam tracking for 5g high frequency bands |
TW201722182A (zh) * | 2015-12-02 | 2017-06-16 | 英特爾Ip公司 | 用於波束聚合系統中的下行鏈路控制指示符設計之系統及方法 |
WO2017180336A1 (en) * | 2016-04-13 | 2017-10-19 | Qualcomm Incorporated | System and method for beam management |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140011820A (ko) | 2012-07-20 | 2014-01-29 | 삼성전자주식회사 | 무선 통신 시스템에서 제어 정보 송/수신 방법 및 장치 |
CN105471487B (zh) * | 2014-07-01 | 2020-07-24 | 索尼公司 | 通信设备、基站和通信方法 |
US10700752B2 (en) * | 2016-01-14 | 2020-06-30 | Samsung Electronics Co., Ltd. | System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system |
EP3606235B1 (en) * | 2017-05-01 | 2021-12-08 | LG Electronics Inc. | Method and device for allocating resources in wireless communication system |
US10912111B2 (en) * | 2017-05-04 | 2021-02-02 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting remaining minimum system information in multibeam-based system |
US11743879B2 (en) * | 2017-11-03 | 2023-08-29 | Futurewei Technologies, Inc. | System and method for indicating wireless channel status |
US20190239093A1 (en) * | 2018-03-19 | 2019-08-01 | Intel Corporation | Beam indication information transmission |
-
2018
- 2018-11-15 US US16/763,609 patent/US11723049B2/en active Active
- 2018-11-15 ES ES18825813T patent/ES2960620T3/es active Active
- 2018-11-15 KR KR1020207015627A patent/KR102650783B1/ko active IP Right Grant
- 2018-11-15 CN CN201880085050.0A patent/CN111543097B/zh active Active
- 2018-11-15 KR KR1020247008511A patent/KR20240038150A/ko active Application Filing
- 2018-11-15 CN CN202311665785.XA patent/CN117896830A/zh active Pending
- 2018-11-15 EP EP18825813.1A patent/EP3711411B1/en active Active
- 2018-11-15 CN CN202311671962.5A patent/CN117858233A/zh active Pending
- 2018-11-15 FI FIEP18825813.1T patent/FI3711411T3/fi active
- 2018-11-15 WO PCT/US2018/061267 patent/WO2019099659A1/en unknown
- 2018-11-15 EP EP23182425.1A patent/EP4243325A3/en active Pending
-
2023
- 2023-06-30 US US18/345,237 patent/US20230362968A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104620551A (zh) * | 2012-04-30 | 2015-05-13 | 三星电子株式会社 | 用于具有大量天线的无线系统中的控制信道波束管理的装置和方法 |
CN105659687A (zh) * | 2013-08-07 | 2016-06-08 | 交互数字专利控股公司 | 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强 |
CN106031051A (zh) * | 2014-02-19 | 2016-10-12 | 三星电子株式会社 | 用于选择和分配具有优先级的传送波束索引的方法和装置 |
CN106576253A (zh) * | 2014-09-16 | 2017-04-19 | 联发科技股份有限公司 | 波束成形中用于无线通信系统的csi收集 |
WO2017086922A1 (en) * | 2015-11-17 | 2017-05-26 | Intel IP Corporation | Devices for and methods of beam tracking for 5g high frequency bands |
TW201722182A (zh) * | 2015-12-02 | 2017-06-16 | 英特爾Ip公司 | 用於波束聚合系統中的下行鏈路控制指示符設計之系統及方法 |
WO2017180336A1 (en) * | 2016-04-13 | 2017-10-19 | Qualcomm Incorporated | System and method for beam management |
TW201739187A (zh) * | 2016-04-13 | 2017-11-01 | 高通公司 | 用於波束管理的系統和方法 |
GB201704762D0 (en) * | 2017-03-24 | 2017-05-10 | Nec Corp | Communication system |
Non-Patent Citations (13)
Title |
---|
"R1-1712377";CATT;《3GPP tsg_ran\WG1_RL1》;20170812;正文第1-2节 * |
"R1-1713595-DL_Beam_Indication_V1".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1716692".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1717634-QCL v2".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1718177 RAN1 Work plan for NR".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1718238".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1718433 On beam indication, measurement, and reporting".《3GPP tsg_ran\WG1_RL1》.2017, * |
"R1-1718984_V1";Samsung;《3GPP tsg_ran\WG1_RL1》;20171013;正文2-6页 * |
"R2-1711451 Beam management".3GPP tsg_ran\WG2_RL2.2017,全文. * |
CATT."R1-1712377".《3GPP tsg_ran\WG1_RL1》.2017, * |
Nokia, Alcatel-Lucent Shanghai Bell.R2-1707197 "Beam management".3GPP tsg_ran\WG2_RL2.2017,(TSGR2_AHs),全文. * |
R1-1707987 "Multi-beam Transmission for NR-PDCCH";Samsung;《3GPP tsg_ran\WG1_RL1》;20170506;全文 * |
R1-1711604 "Beam management for PDCCH";Samsung;《3GPP tsg_ran\WG1_RL1》;20170624;全文 * |
Also Published As
Publication number | Publication date |
---|---|
US20230362968A1 (en) | 2023-11-09 |
EP4243325A2 (en) | 2023-09-13 |
FI3711411T3 (fi) | 2023-10-04 |
KR20240038150A (ko) | 2024-03-22 |
CN117896830A (zh) | 2024-04-16 |
ES2960620T3 (es) | 2024-03-05 |
EP3711411B1 (en) | 2023-08-16 |
EP3711411A1 (en) | 2020-09-23 |
KR20200096763A (ko) | 2020-08-13 |
WO2019099659A1 (en) | 2019-05-23 |
KR102650783B1 (ko) | 2024-03-22 |
CN111543097A (zh) | 2020-08-14 |
EP4243325A3 (en) | 2023-10-25 |
CN117858233A (zh) | 2024-04-09 |
US11723049B2 (en) | 2023-08-08 |
US20200288479A1 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111543097B (zh) | 无线网络中的波束管理 | |
RU2755825C1 (ru) | Указание луча для технологии новой радиосвязи 5g | |
JP7160125B2 (ja) | Csi報告提供の可否を決定するための装置および方法 | |
CN111758278B (zh) | 用于带宽部分操作的系统和方法 | |
CN110521139B (zh) | 波束失效恢复 | |
CN110612751B (zh) | 用于在新型无线电(nr)系统中执行功率控制的方法 | |
US20240291609A1 (en) | Handling positioning reference signals in wireless systems | |
TW201907680A (zh) | 無線網路中統一波束管理 | |
KR20220045200A (ko) | 뉴 라디오 사이드링크 채널 상태 정보 획득을 위한 장치 및 방법들 | |
CN115245019A (zh) | 用于hst场景中的多trp发射的方法和装置 | |
WO2020033622A1 (en) | Reliable sidelink data transmission | |
EP4233262A1 (en) | Methods for wireless communication in higher frequencies | |
JP2023537706A (ja) | 同時送受信のための方法及び手順 | |
KR20240056610A (ko) | 교차 분할 이중(xdd)에 연관된 전력 제어 및 링크 적응 | |
TW202341684A (zh) | 用於包括同時bfr之mtrp的統一tci更新 | |
WO2024102627A1 (en) | Apparatus and methods of beam management for an access link in a new radio network-controlled repeater (nr-ncr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230403 Address after: Delaware Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc. Address before: Wilmington, Delaware, USA Applicant before: IDAC HOLDINGS, Inc. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |