CN110521139B - 波束失效恢复 - Google Patents

波束失效恢复 Download PDF

Info

Publication number
CN110521139B
CN110521139B CN201880013893.XA CN201880013893A CN110521139B CN 110521139 B CN110521139 B CN 110521139B CN 201880013893 A CN201880013893 A CN 201880013893A CN 110521139 B CN110521139 B CN 110521139B
Authority
CN
China
Prior art keywords
wtru
trp
beams
recovery request
failure recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880013893.XA
Other languages
English (en)
Other versions
CN110521139A (zh
Inventor
凯尔·正林·潘
郗风君
阿夫欣·哈吉卡特
李文一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to CN202410546403.XA priority Critical patent/CN118473492A/zh
Priority to CN202410546405.9A priority patent/CN118509018A/zh
Publication of CN110521139A publication Critical patent/CN110521139A/zh
Application granted granted Critical
Publication of CN110521139B publication Critical patent/CN110521139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Hardware Redundancy (AREA)

Abstract

公开了用于WTRU发起的波束恢复的系统、方法和手段,波束恢复包括波束切换和/或波束扫描。WTRU可以被配置成检测波束失效条件,标识用于解决波束失效条件的候选波束,以及发送波束失效恢复请求给网络实体。WTRU可以在波束失效恢复请求中包括候选波束并可以从网络实体接收关于针对波束失效条件的请求和/或解决方案的响应。WTRU发起的波束恢复可以用于通过避免执行获取过程的必要性解决无线电链路失效并改善系统性能。此外,可以在子时间单元级执行波束扫描以提供快速扫描机制。

Description

波束失效恢复
相关申请的交叉引用
本申请要求2017年6月14日申请的美国临时专利申请号62/519,614,2017年5月3日申请的美国临时专利申请号62/500,884,2017年2月3日申请的美国临时专利申请号62/454,486,以及2017年1月6日申请的美国临时专利申请号62/443,382的权益,其公开的内容整体结合于此。
背景技术
移动通信系统持续演进。第五代可以称为5G。移动通信系统可以实施各种无线电接入技术(RAT),例如新无线电(NR)。NR的用例可以包括例如,增强移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类通信(mMTC)。
发明内容
公开了用于WTRU发起的波束恢复的系统、方法和手段,该波束恢复包括波束切换和/或波束扫描。无线发射接收单元(WTRU)可以被配置成确定与WTRU与网络实体(例如gNB)之间的传输相关联的波束失效条件已经发生。WTRU可以基于确定与WTRU与网络实体之间的传输相关联的一个或多个(例如所有)服务波束已失效来确定发生波束失效。WTRU可以监视信道状态信息参考信号(CSI-RS)或同步信号块(SSB)的至少一者来评估是否满足波束失效条件。CSI-RS或SSB可以通过空间准同位(quasi-collocation,QCL)而与物理下行链路控制信道(PDCCH)解调参考信号(DM-RS)相关联。
WTRU可以识别用于解决上述的波束失效条件的候选波束,并可以向网络实体传送波束失效恢复请求。这样的波束失效恢复请求在本申请中也可以称为波束恢复请求。WTRU可以通过测量CSI-RS或SSB的至少一者上的波束质量来识别候选波束。WTRU可以在波束失效恢复请求中指示该候选波束。可以使用物理随机接入信道(PRACH)资源或物理上行链路控制信道(PUCCH)资源来传送波束失效恢复请求。用于传送波束失效恢复请求的PRACH资源或PUCCH资源可以与参考信号或同步信号块的至少一者相关联。WTRU可以基于上行链路同步状态选择PRACH资源或PUCCH资源。
WTRU可以从网络实体接收关于波束失效恢复请求的响应。WTRU可以针对来自网络实体的响应监视下行链路控制信道。下行链路控制信道可以与WTRU的所有服务波束相关联。WTRU可以在发送波束失效恢复请求的预定义数量的时隙之后从网络实体接收响应。WTRU可以响应于从网络实体接收与控制区相关联的波束指示和包括在下行链路控制信息(DCI)或介质接入控制(MAC)控制元素(CE)中的显式信号来确定用于接收下行链路传输的波束。
附图说明
从通过示例方式给出并结合附图的以下描述中可以得到更详细理解,在附图中:
图1A是示出可以在其中实施公开的一个或多个实施方式的示例通信系统的系统图;
图1B是示出根据实施方式的可以在图1A示出的通信系统内使用的示例无线发射/接收单元(WTRU)的系统图;
图1C是示出根据实施方式的可以在图1A示出的通信系统内使用的示例无线电接入网(RAN)和示例核心网(CN)的系统图;
图1D是示出根据实施方式的可以在图1A示出的通信系统内使用的另一示例无线电接入网(RAN)和另一示例核心网(CN)的系统图;
图2是示出用于传输/接收点(TRP)和/或WTRU的示例天线模型的图;
图3是示出在下行链路(DL)中WTRU发起的波束恢复(例如波束切换)的示例的图;
图4是示出在DL中视情况而定的WTRU发起的波束切换和波束扫描的示例的图;
图5是示出使用波束对链路集合和WTRU波束对应的WTRU指示的波束切换的示例的图;
图6是示出在DL中TRP控制的、WTRU发起的波束扫描/切换的示例的图;
图7是示出在DL中WTRU控制的、WTRU发起的波束扫描/切换的示例的图;
图8是示出WTRU基于TRP/WTRU波束对应隐式指示TRP Tx波束(例如针对下一个DL传输)的示例的图;
图9是示出可以在WTRU发生的用于使用混合方式在DL中提供波束相关指示的示例操作的图;
图10是示出可以在TRP发生的用于使用混合方式在DL中提供波束相关指示的示例操作的图;
图11是示出可以在WTRU发生的用于在UL中提供波束相关指示的示例操作的图;
图12是示出可以在TRP发生的用于在UL中提供波束相关指示的示例操作的图;
图13是示出使用离散傅里叶变换扩展正交频分复用(DFT-s-OFDM)或DFT扩展的波束参考信号(BRS)的示例的图;
图14是DFT-s-OFDM符号的K个分段(或K个子时间单元(STU))上的波束扫描的示例的图;
图15是示出DFT-s-OFDM或OFDM符号的8个STU上的波束扫描的示例的图;
图16A是示出被配置成使用OFDM的STU波束发生器的示例的框图;
图16B是示出使用相同波束的数据和波束成形信道状态信息参考信号(CSI-RS)的同时传输的示例的框图;
图16C是示出使用不同波束同时传送波束CSI-RS和数据的示例的框图;
图17是示出具有8个STU的基于DTF的STU CSI-RS的示例的图;
图18A是显示示例STU生成机制的性能评估结果的图;
图18B是显示在针对波束恢复/修正的CSI-RS传输被进行以产生图18A示出的结果时的示例数据链路的性能评估结果的图;
图19是示出使用IFDMA的STU波束发生器的示例的框图;
图20是示出使用波束切换的RFL检测时间轴的示例的图;
图21是示出用于使用波束切换的RFL检测的触发机制的示例的图。
具体实施方式
图1A是示出可以在其中实施公开的一个或多个实施方式的示例通信系统100的图示。该通信系统100可以是为多个无线用户提供诸如语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源而使多个无线用户能够访问此类内容。举例来说,通信系统100可以采用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块过滤OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的实施方式设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中工作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上工作的设备等等。WTRU 102a、102b、102c、102d中的任意者可被可交换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。每一个基站114a、114b可以是被配置成通过与WTRU 102a、102b、102c、102d中的至少一个无线对接来促进其接入一个或多个通信网络(例如CN 106/115、因特网110、和/或其他网络112)的任何类型的设备。举例来说,基站114a、114b可以是基站收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、gNB、NR节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个部件,然而应该了解。基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104/113的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在可被称为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于授权频谱、无授权频谱或是授权与无授权频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个实施方式中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在实施方式中,基站114a可以采用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区利用多个收发信机。举例来说,波束成形可以被用于在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一个或多个进行通信,其中所述空中接口116可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、微米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以采用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在实施方式中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTA Pro(LTE-A Pro)来建立空中接口116。
在实施方式中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其可以使用新型无线电(NR)来建立空中接口116。
在实施方式中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。举例来说,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c利用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他实施方式中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如IEEE 802.11(即无线高保真(WiFi))、IEEE 802.16(即全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强数据速率(EDGE)以及GSM EDGE(GERAN)等等。
图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以利用任何适当的RAT来促进局部区域中的无线连接,例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个实施方式中,基站114b与WTRU102c、102d可以通过实施IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在实施方式中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施方式中,基站114b和WTRU 102c、102d可通过利用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN106/115来接入因特网110。
RAN 104/113可以与CN 106/115进行通信,其中所述CN可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、延迟需求、容错需求、可靠性需求、数据吞吐量需求以及移动性需求等等。CN 106/115可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN104/113和/或CN 106/115可以直接或间接地和其他那些与RAN 104/113采用相同RAT或不同RAT的RAN进行通信。例如,除了与可利用NR无线电技术的RAN 104/113相连之外,CN106/115还可以与采用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106/115还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如TCP/IP网际协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和/或网际协议(IP))的全球性互联计算机网络设备系统。网络112可以包括由其他服务供应商拥有和/或运营的有线和/或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104/113采用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与可以采用基于蜂窝的无线电技术的基站114a通信,以及与可以采用IEEE 802无线电技术的基站114b通信。
图1B是示出示例WTRU 102的系统图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他外围设备138。应该了解的是,在保持符合实施方式的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号译码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以集成在一个电子组件或芯片中。
发射/接收部件122可被配置成通过空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施方式中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在另一个实施方式中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施方式中,发射/接收部件122可被配置成发射和/或接收RF和光信号两者。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以采用MIMO技术。由此,在一个实施方式中,WTRU 102可以包括两个或多个通过空中接口116来发射和接收无线信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,举例而言,收发信机120可以包括用于使得WTRU102能够经由多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施方式中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以通过空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或更多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施方式的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他外围设备138,其中所述外围设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针、卫星收发信机、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动跟踪器等等。外围设备138可以包括一个或多个传感器,所述传感器可以是以下的一个或多个:陀螺仪、加速度计、霍尔效应传感器、磁强计、方位传感器、接近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、姿态传感器、生物测定传感器和/或湿度传感器。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)两者的特定子帧相关联)的接收或传输可以是并发和/或同时的。全双工无线电设备可以包括经由硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减小和/或基本消除自干扰的接口管理单元。在实施方式中,WTRU 102可以包括传输和接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出根据实施方式的RAN 104和CN 106的系统图。如上所述,RAN 104可以采用E-UTRA无线电技术来通过空中接口116与WTRU 102a、102b、102c进行通信。所述RAN104还可以与CN 106进行通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持符合实施方式的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c都可以包括通过空中接口116来与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施方式中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c都可以关联于一个特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B 160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理实体(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个部件都被描述成是CN 106的一部分,然而应该了解,这其中的任一部件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。MME 162还可以提供用于在RAN 104与采用其他无线电技术(例如GSM和/或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。并且,SGW 164还可以执行其他功能,例如在eNB间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW166可以为WTRU 102a、102b、102c提供至分组交换网络(例如因特网110)的接入,以便促进WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促进与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供至电路交换网络(例如PSTN 108)的接入,以便促进WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供至其他网络112的接入,其中该网络112可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在某些典型实施方式中,此类终端与通信网络可以使用(例如临时或永久性)有线通信接口。
在典型的实施方式中,所述其他网络112可以是WLAN。
采用基础架构基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以接入或是对接到分布式系统(DS)或是将业务量(traffic)送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务量可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务量可被发送至AP,以便递送到相应的目的地。处于BSS内部的STA之间的业务量可以通过AP来发送,例如源STA可以向AP发送业务量并且AP可以将业务量递送至目的地STA。处于BSS内部的STA之间的业务量可被认为和/或称为点到点业务量。所述点到点业务量可以在源STA与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在某些典型实施方式中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式有时可被称为“自组织”通信模式。
在使用802.11ac基础设施工作模式或类似的工作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或是经由信令动态设置的宽度。主信道可以是BSS的工作信道,并且可被STA用来与AP建立连接。在某些典型实施方式中,所实施的可以是具有冲突避免的载波感测多址接入(CSMA/CA)(例如在802.11系统中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在给定的BSS中,在任何给定时间可有一个STA(例如只有一个站)进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信(例如经由将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道)。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过一个分段解析器,所述分段解析器可以将数据分成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由执行传输的STA来传送。在执行接收的STA的接收机上,用于80+80配置的上述操作可以是相反的,并且组合数据可被发送至介质接入控制(MAC)。
802.11af和802.11ah支持次(sub)1GHz工作模式。与802.11n和802.11ac相比,在802.11af和802.11ah中使用信道工作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。依照典型实施方式,802.11ah可以支持仪表类控制/机器类通信(例如宏覆盖区域中的MTC设备)。MTC可以具有某种能力,例如包含了支持(例如只支持)某些和/或有限带宽在内的受限能力。MTC设备可以包括电池,并且该电池的电池寿命高于阈值(例如用于保持很长的电池寿命)。
对于可以支持多个信道和信道带宽(例如,802.11n、802.11ac、802.11af以及802.11ah)的WLAN系统来说,所述WLAN系统包括可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共工作带宽。主信道的带宽可以由STA设置和/或限制,其中所述STA源自在支持最小带宽工作模式的BSS中工作的所有STA。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽工作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz工作模式)对AP进行传输),那么即使大多数的频带保持空闲并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出根据实施方式的RAN 113和CN 115的系统图。如上所述,RAN 113可以采用NR无线电技术来通过空中接口116与WTRU 102a、102b、102c进行通信。RAN 113还可以与CN 115进行通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该了解,在保持符合实施方式的同时,RAN 113可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU 102a、102b、102c通信。在一个实施方式中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、180b可以利用波束成形来向和/或从gNB 180a、180b、180c发射和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。在实施方式中,gNB180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(未显示)。这些分量载波的子集可以处于无授权频谱上,而剩余分量载波则可以处于授权频谱上。在实施方式中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU102a可以接收来自gNB 180a和gNB 180b(和/或gNB 180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩参数集(numerology)相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的传输、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包含了不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B 160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以利用gNB 180a、180b、180c中的一个或多个作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用无授权频带中的信号来与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c可以在与别的RAN(例如e节点B 160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B 160a、160b、160c进行通信。在非独立配置中,e节点B 160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便为WTRU 102a、102b、102c提供服务。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过Xn接口通信。
图1D所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF 184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述部件都被描述了CN 115的一部分,但是应该了解,这其中的任一部件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、1823b可以使用网络切片,以便基于WTRU 102a、102b、102c利用的服务类型来定制为WTRU 102a、102b、102c提供的CN支持。举例来说,针对不同的用例,可以建立不同的网络切片,所述用例例如为依赖于超可靠低时延(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于机器类通信(MTC)接入的服务等等。AMF 162可以提供用于在RAN 113与采用其他无线电技术(例如LTE、LTE-A、LTE-A Pro和/或诸如WiFi之类的非3GPP接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以配置通过UPF 184a、184b的业务量路由。SMF 183a、183b可以执行其他功能,例如管理和分配UE IP地址,管理PDU会话,控制策略实施和QoS,以及提供下行链路数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,这样可以为WTRU 102a、102b、102c提供至分组交换网络(例如因特网110)的接入,以便促进WTRU 102a、102b、102c与启用IP的设备之间的通信。UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、以及提供移动性锚定等等。
CN 115可以促进与其他网络的通信。例如,CN 115可以包括充当CN 115与PSTN108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)或者与之进行通信。此外,CN115可以为WTRU 102a、102b、102c提供至其他网络112的接入,该其他网络112可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。在一个实施方式中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与DN 185a、185b之间的N6接口并通过UPF 184a、184b连接到本地数据网络(DN)185a、185b。
有鉴于图1A-1D以及关于图1A-1D的相应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的其他任何设备(一个或多个)。这些仿真设备可以是被配置成模拟这里一个或多个或所有功能的一个或多个设备。举例来说,这些仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施/部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
所述一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施/部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试装备。所述仿真设备可以使用直接的RF耦合和/或经由RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
可以在无线通信系统中实施多天线传输和波束成形。多天线技术可以包括多输入多输出(MIMO)和MIMO的变型(例如单输入多输出(SIMO)和多输入单输出(MISO)等),其可以在次6GHz传输中使用。MIMO技术可以与分集增益、复用增益、波束成形、阵列增益等相关联。蜂窝通信中的用户终端(UT)可以与中心节点(例如单中心节点)通信。MU-MIMO可以例如通过促进到不同UT的多个数据流的同时传输和/或在相同和/或重叠的资源集(例如在时间和/频率方面)上的传输来增加系统吞吐量。实施SU-MIMO的中心节点可以向同一个UT传送多个数据流。实施MU-MIMO的中心节点可以向多个UT进行传送。
在毫米波频率的多个天线传输可以不同于使用次6GHz多天线技术。这可以是由于在毫米波频率的不同传播特性和/或收发信机基站(BTS)/WTRU与天线元件相比可能具有有限数量的RF链。
图2是示出用于TRP和/或WTRU的示例天线模型的图。注意,这里使用的术语TRP可以覆盖能够发送和/或接收无线信号的各种设备。例如,TRP可以是网络实体,例如基站(例如,gNB)。如图2所示,大规模天线模型可以被配置成每垂直维度包括Mg个天线板,以及每水平维度包括Ng个天线板。(例如每个)天线板可以被配置有或没有极化的N列M行的天线元件(例如如图2所示)。板间可以不校准定时和相位,但是多个板可以与同一个基站相关联(例如,基站可以装配多个板)。基线大规模天线配置可以根据操作频带(例如如表1中所示)而变化。表1提供了针对密集城区和宏观城市的基线大规模天线配置的示例。
表1
在毫米波(mmW)频率的预编码可以使用数字技术、模拟技术或数字和模拟的混合技术。数据预编码可以是精确的且可以与均衡化相结合。数字预编码可以实现单用户(SU)、多用户(MU)和多小区预编码并类似于在次6GHz中使用的(例如,在IEEE 802.11n中及以外以及在3GPP LTE中及以外)。与天线元件相比存在有限数量的RF链以及信道的稀疏性质可能使得使用数字波束成形(例如在mmW频率中)变得复杂。模拟波束成形可以克服有限数量的RF链,例如通过在每个天线元件上使用模拟相位移位器。可以在扇区级扫描(例如以识别最佳扇区)、波束修正(例如,以将扇区修正为天线波束)以及波束跟踪(例如以随时间调节子波束以考虑信道变化)过程期间,在IEEE 802.11ad中使用模拟波束成形。混合波束成形可以在模拟和数字域之间划分预编码器。每个域可以使用用于在模拟域中组合矩阵的不同结构约束(例如常数模约束)来预编码和组合矩阵。这可以导致在硬件复杂性和系统性能之间折中。混合波束成形可以由于信道的稀疏性质和对多用户/多流复用的支持而实现数字预编码性能。混合波束可以受到RF链数量的限制,这在mmW信道在角度域中是稀疏的情况下不是个问题。
可以在NR中执行波束管理和恢复。使用更高频带可以意味着其传播特性可以影响系统设计。随着频率增加,例如由于通过多数对象的传输可能降低,反射被放大,和/或可能发生阻挡、WTRU转动和/或WTRU运动的事实,信道可能经历更高路径损耗和更多突然改变。
可以使用大规模天线阵列(例如在高频带中)来实现高波束成形增益。这种高波束成形增益可以补偿高传播损耗。最终的耦合损耗可以保持在高水平,例如以支持期望的数据吞吐量或覆盖。使用基于方向波束的通信可以涉及精确波束配对。正确的波束方向可以与实际信道相关联(例如在方位和高度的到达角和离去角方面)。可以随着信道变化(例如动态)调整正确的波束方向。
技术或DL波束管理过程(例如P-1)可以用于使得对不同TRP Tx波束的WTRU测量能够例如支持TRP Tx波束/WTRU Rx波束的选择。P-1可以包括从不同波束集合进行TRP Tx内/间的波束扫描,例如用于在TRP的波束成形。P-1可以包括从不同波束集合进行WTRU Rx波束扫描,例如用于在WTRU的波束成形。TRP Tx波束和WTRU Rx波束可以联合或顺次被确定。
技术或DL波束管理过程(例如P-2)可以用于使得对不同TRP Tx波束的WTRU测量能够例如改变TRP Tx间/内的(一个或多个)波束,例如来自比P-1更小的波束集合,用于波束修正。P-2可以是P-1的特殊情况。技术或DL波束管理过程(例如P-3)可以用于例如当WTRU使用波束成形时,使得对同一个TRP Tx波束的WTRU测量能够改变WTRU Rx波束。技术或UL波束管理过程(例如U-1)可以用于使得对不同WTRU Tx波束的TRP测量例如能够支持WTRU Tx波束/TRP Rx波束的选择。技术或UL波束管理过程(例如U-2)可以用于使得对不同TRP Rx波束的TRP测量例如能够改变/选择TRP Rx间/内的(一个或多个)波束。技术或UL波束管理过程(例如U-3)可以用于例如当WTRU使用波束成形时,使得对同一个TRP Rx波束的TRP测量能够例如改变WTRU Tx波束。这里P-1/P-2/P-3可以与P1/P2/P3互换使用。这里U-1/U-2/U-3可以与U1/U2/U3互换使用。
CSI-RS可以用于支持DL Tx波束扫描和/或WTRU Rx波束扫描。CSI-RS例如可以与P-1、P-2和/或P-3相关联来被使用。NR CSI-RS可以支持每时间单元或子时间单元可以映射NP个CSI-RS端口的映射结构。在多个时间单元或子时间单元映射一个或多个CSI-RS天线端口。在配置或参考参数集(numerology)中,“时间单元”可以对应于n个OFDM符号(例如,n≥1)。时间单元中包括的OFDM符号可以是或可以不是连续的。端口复用过程可以利用频分复用(FDM)、时分复用(TDM)或码分复用(CDM)中的一者或多者。
时间单元可以被分成子时间单元。划分过程可以利用TDM、IFDMA或OFDM中的一者或多者。OFDM符号级划分与参考OFDM符号长度相比可以具有相同或更短的OFDM符号长度。OFDM符号长度可以与子载波间隔相关联。更短的OFDM符号长度可以与更大的子载波间隔相关联。
例如上述的映射结构可以用于支持多个板和/或Tx链。例如上述的映射结构可以被配置一个或多个CSI-RS资源配置。
可以针对Tx和Rx波束扫描映射CSI-RS。Tx波束在时间单元内的子时间单元间可以是相同的或可以是不同的。Tx波束在时间单元间可以是相同的或可以是不同的。Tx波束在第一个时间单元中的子时间单元间可以是相同的,且在第二个时间单元中的子时间单元间可以是不同的。例如在数量和周期方面,可以组合不同的时间单元。可以实施仅Tx或仅Rx的扫描。
依赖波束成形的信号传播(例如在高频带或系统中)对WTRU运动、转动、阻挡和/或其他类型的干扰可以是敏感的。可以执行周期性波束管理。快速波束恢复机制(例如事件驱动波束恢复机制)可以降低(例如最小化)服务中断。可以触发波束恢复的事件可以包括例如,由于WTRU移动性、WTRU转动、阻挡、链路质量动态变化、链路失效等导致的波束质量降级。网络触发的波束恢复可能不够快到处理这些事件。作为网络触发的波束恢复的附加或替代,可以使用WTRU发起(例如WTRU触发)的波束恢复(例如WTRU发起的波束切换和/或波束扫描)。这里术语“波束恢复”可以与术语“波束失效恢复”互换使用。
使用WTRU发起的波束恢复机制,WTRU可以发送波束恢复请求(例如波束失效恢复请求)到网络实体(例如TRP)。波束恢复请求可以与波束扫描有关。波束恢复请求可以包括波束失效的指示和/或可以用于从波束失效恢复(例如解决波束失效)的候选波束的指示。TRP(例如基站)可以接受(例如确认)或推翻(override)来自WTRU的波束恢复(例如波束切换)推荐。TRP可以指示(例如在DL传输中)用于波束切换的波束有关信息。波束有关信息可以包括例如供WTRU使用的替换波束。TRP可以指示与DL控制、DL数据接收、UL控制和/或UL数据传输相关联的信息。
WTRU发起的波束恢复请求可以与波束扫描有关。当波束切换不是立即可用或被执行时(例如,由于缺少对波束关联或波束配对的知识),可以发送波束扫描请求。WTRU可以在波束切换之前发起波束扫描。可以及时地完成波束扫描,例如当天线系统具有高度空间维度和/或高频谱效率时。快速波束扫描可以提供对波束配对和WTRU发起的波束切换的支持。
由于各种原因可能发生波束质量降级,包括WTRU移动、WTRU转动、阻挡、链路失效等。这些事件可以随机和/或定期发生。降级可以导致无线电链路失效(RLF)和RRC连接重建,这会增加延迟并降低吞吐量。例如,当WTRU检测到RLF时,WTRU可能尝试与RRC连接重建实体重连。当RRC连接重建尝试失效时,可以丢弃会话。
可以执行以波束为中心的RLF检测。快速波束恢复机制(例如波束切换)可以用于避免与获取过程(例如初始获取过程)的性能相关联的负担和/或通信中断(例如,由于无线电链路失效和/或RRC连接重建)。通过波束恢复(例如波束切换)之后或低频地,可以检测并声明无线电链路失效。
波束对链路可以包括Tx波束和Rx波束。Rx波束可以与空间QCL参数、Rx接收权重和/或接收机配置相关联。(一个或多个)波束成形权重的集合可以被应用于物理天线和/或天线板的特定集合。Tx波束可以与参考信号(例如CSI-RS)相关联。可以对CSI-RS进行波束成形。波束切换可以涉及Tx波束切换和/或Rx波束切换。在这里波束配对可以与波束关联或波束对链路集合(BPLS)互换使用。
可以在针对DL和UL传输的各种情况中执行波束切换(例如当波束对应或波束相互性不保持时)。例如,在DL传输场景中,当一个或多个当前波束(例如所有当前波束)不再良好(例如波束质量低于阈值)时,WTRU可能不会成功解码DL信号。波束质量降级可以是由于WTRU运动、阻挡或转动,等等。用于DL传输的波束切换可以被发起,如在以下示例情况的一个或多个中示出的。
在示例中(例如当WTRU经历转动)时,WTRU Rx波束可以被切换,而TRP Tx波束可以被保持。在这些示例中,由于当前WTRU Tx或Rx波束的关联丢失,波束关联或BPLS可能不再合适。TRP Tx或Rx波束可能仍然合适。WTRU可以切换其Rx波束和Tx波束,而TRP可以保持其Tx或Rx波束。
WTRU可以执行Rx波束切换或扫描以成功接收和解码来自TRP的DL信号。WTRU可以例如通过切换到其他Rx波束来尝试一个或多个候选Rx波束或所有Rx波束。WTRU可以首先尝试一个或多个候选Rx波束,且如果候选Rx波束是好的(例如如果候选Rx波束的质量高于阈值),则继续尝试剩余的Rx波束。
在示例中,可以切换TRP Tx和WTRU Rx波束两者。该切换可以在有或没有波束关联或BPLS丢失的情况下被执行。在前者情况中,WTRU可以正经历移动,例如BPLS可以由于当前TRP Tx和WTRU Rx波束的波束关联丢失而过时。在后者情况中,WTRU可以正经历阻挡,例如BPLS的部分可以对于下一个传输的波束切换来说仍然是可用的,但是当前TRP Tx和/或WTRU Rx波束可以被阻挡。
当波束关联丢失时,WTRU可以(例如当WTRU没有成功解码DL信号时)执行Rx波束扫描和/或波束切换以成功接收并解码来自TRP的DL信号。WTRU可以例如切换到其他Rx波束以增加WTRU接收DL信号的能力来尝试一个或多个(例如所有)候选Rx波束或WTRU的一个或多个(例如所有)Rx波束。TRP可以例如通过切换到其他Tx波束以增强TRP传输DL信号的能力来尝试一个或多个(例如所有)候选Tx波束或TRP的一个或多个(例如所有)Tx波束。
当波束关联没有丢失时,WTRU可以(例如当WTRU没有成功解码DL信号时)切换波束关联内的Rx波束以成功接收并解码来自TRP的DL信号。WTRU可以例如通过切换到波束关联内的其他Rx波束来尝试一个或多个候选Rx波束。WTRU可以向TRP通知(例如指示)WTRU可以切换到那个(些)WTRU Rx波束,由此TRP可以确定TRP可以切换到哪个(些)Tx波束(例如基于波束关联或BPLS)。
在示例中,可以切换TRP Tx波束而WTRU Rx波束可以保持不变。这种技术可以被使用在各种情形中,包括例如,当WTRU经历移动时,当WTRU具有比TRP的Tx波束宽度更大的Rx波束宽度时,等等。当当前TRP Tx波束不再适合WTRU的候选Rx波束时,WTRU可以(例如当WTRU仍然不能成功解码DL信号时)发起TRP Tx波束扫描和/或切换。
在示例中(例如在UL传输场景中),WTRU可以发起波束切换以完成到TRP的UL传输。例如,当TRP不能解码来自WTRU的UL信号时(例如由于波束质量降级),WTRU可以发起波束切换。可以发起针对UL传输的波束切换,如下面情况所示。在示例中(例如当WTRU经历转动导致波束质量降级时和/或当波束关联或BPLS变得不合适导致波束质量降级时),可以切换WTRU Tx波束而可以保持TRP Rx波束。这可以是因为即使当前WTRU Tx或Rx波束不再合适,TRP Tx或Rx波束仍然可以是满意的(例如TRP Tx或Rx波束的质量高于阈值)。
在示例中,可以切换(一个或多个)WTRU Tx波束和(一个或多个)TRP Rx波束。可以在有或没有波束关联或BPLS丢失的情况下发生TRP Rx和WTRU Tx波束切换。当WTRU移动导致切换时,可以在有波束关联丢失的情况下发生TRP Rx和WTRU Tx波束切换。当没有丢失当前TRP Tx和WTRU Tx波束的波束关联时,BPLS可能变得过时。当WTRU阻挡导致切换时,可以在没有丢失波束关联或BPLS的情况下发生TRP Rx和WTRU Tx波束切换。这可以是因为即使当前TRP Rx和/或WTRU Tx波束被阻挡,BPLS的部分对于下一个传输的波束切换来说仍然可以是可用的。
在示例中,可以切换TRP Rx波束而可以保持WTRU Tx波束。这可以例如在WTRU经历移动时或当WTRU具有比TRP的Rx波束宽度更大的Tx波束宽度时发生。
这里描述的示例波束切换场景中的一个或多个可应用于DL和UL传输两者。例如,例如当Tx/Rx波束对应在TRP和WTRU两者保持的时候,在UL中也可以使用从DL波束扫描得到的好的波束对。
图3是示出下行链路中WTRU发起的波束恢复(例如波束切换)的示例的流程图。WTRU可以发起这种波束切换来实现波束恢复。由此,这里示出的示例技术一般可以应用于波束恢复操作,包括波束扫描和波束切换。可以经由以下的一者或多者执行WTRU发起的波束失效恢复。在302,可以触发波束切换。触发可以基于与一个或多个当前波束相关联的一个或多个测量或统计。触发可以基于与一个或多个波束对链路相关联的一个或多个测量或统计。触发可以基于这里描述其他条件(例如所有服务波束失效)。在304,WTRU可以识别用于发送与TRP Tx波束相关联的波束切换请求的WTRU Tx波束。可以从已知UL波束对链路集合或通过UL波束扫描(例如U1和/或U3)识别WTRU Tx波束。在306,WTRU可以向TRP发送波束切换请求以发起波束切换。波束切换请求可以包括来自WTRU的针对TRP Tx波束的推荐。在308,TRP可以从WTRU接收波束切换请求。在310,TRP可以向WTRU发送响应,其可以包括关于波束切换请求的指示。指示可以确认、拒绝或推翻来自WTRU的波束切换请求/推荐。可以通过这里描述的一个或多个过程传送指示。在312,例如,在下一个DL传输中,TRP可以切换Tx波束和/或WTRU可以切换Rx波束。
一个或多个条件(例如关于当前波束或波束对链路的测量或统计)可以触发波束恢复请求,例如波束切换请求或波束扫描请求。这些条件可以指示波束失效并提醒WTRU确定、发起和/或传送波束恢复请求信号。一个示例条件可以是WTRU监视的下行链路控制信道(例如新无线电物理下行链路控制信道或NR-PDCCH)的当前服务波束(例如波束对链路)的质量已经降到低于阈值。另一示例条件可以是WTRU已经识别满足某些波束质量要求(例如波束质量高于阈值)的可替换波束候选(例如新波束对链路)。另一示例条件可以是WTRU已经被配置要监视的波束公共NR-PDCCH搜索空间(例如,回退搜索空间)。当波束失效条件发生时,WTRU可能不能接收下行链路控制信息(例如WTRU的服务BPL不在覆盖区)。在波束恢复(例如以维持连接和/或降低延迟)期间可以引入并使用回退传输方案或模式。可以为回退操作配置时间窗(例如一个或多个子帧)。公共搜索空间可以与一个或多个(例如所有)服务波束相关联,由此WTRU可以在时间窗中例如经由波束中的至少一个波束仍然接收DCI。
例如将由WTRU发送的波束失效恢复请求的触发条件可以被预定义,预先指定,和/或由网络实体(例如基站(诸如gNB))配置。定义、指定和/或配置可以基于WTRU的能力。例如,第一触发条件可以是WTRU监视的与NR-PDCCH相关联的一个或多个(例如所有)服务波束或波束对链路失效(例如,所有服务波束的各自质量已降到低于阈值)。WTRU可以使用参考信号(例如CSI-RS)或同步信号块(SSB)的至少一者测量波束质量。参考信号或SSB可以经由准同位(QCL)而与监视的NR-PDCCH的解调参考信号(DM-RS)相关联。这在本申请中可以称为参考信号或SSB与DM-RS是QCL的。第二触发条件可以是WTRU已经识别波束质量高于阈值(例如预定义或配置的阈值)的新波束候选或新波束对链路候选。可以例如基于与CSI-RS和/或SSB相关联的L1参考信号接收功率(L1-RSRP)来确定波束质量。第三触发条件可以是WTRU已经不能确定合适的波束候选或波束对链路候选。第四触发条件可以是已经配置了波束公共NR-PDCCH。波束公共NR-PDCCH可以称为回退NR-PDCCH、与所有波束相关联的NR-PDCCH和/或具有全向波束的NR-PDCCH。NR-PDCCH可以与公共搜索空间相关联,而公共搜索空间可以与一个或多个配置的SSB相关联。第五触发条件可以是WTRU具有波束对应能力。第六触发条件可以是WTRU缺少波束对应能力。
这里描述的条件的一个或多个(例如这些条件的组合)可以触发波束恢复请求。触发条件的组合可以是预定义的,预先指定的,和/或例如由网络实体(例如gNB)配置。例如,条件的组合可以包括上述的第一和第二示例条件,上述的第一和第四示例条件,上述第一、第四和第六示例条件,等等。
WTRU可以基于满足的条件的不同组合采取相同的动作或可以采取不同的动作。例如,如果满足上述的第一和第二示例条件,则WTRU可以在上行链路信号(例如PRACH信号或PUCCH信号)中发送波束恢复请求。这样的上行链路信号可以与WTRU识别或确定的用于解决波束失效的候选波束相关联。如果满足上述的第一和第四示例条件,WTRU可以在上行链路信号(例如PRACH信号或PUCCH信号)中发送波束恢复请求,且上行链路信号可以不是波束特定的(例如,信号可以与所有波束相关联)。如果满足上述的第一和第三示例条件,WTRU可以向较高层报告(例如通过发送信号)波束失效,且WTRU可以不发送波束恢复请求。如果满足上述的第一和第三示例条件,WTRU可以执行初始小区搜索。WTRU可以请求基于子时间单元(Sub-TU)的快速波束扫描或基于常规时间单元的波束扫描来找到一个或多个候选波束(例如在发送指示候选波束的波束恢复请求之前)。如果满足上述的第一和第三示例条件,则WTRU可以发送具有默认候选波束的波束恢复请求。该默认候选波束可以是预定义的或配置的。
上行链路信道(例如在上行链路信道上传送的一个或多个信号)可以用于在检测到波束失效时提交波束恢复请求。如果满足上述触发条件的一个或多个,则可以检测到波束失效。用于传送波束恢复请求的上行链路信道或上行链路资源可以如下选择。可以使用一个或多个上行链路资源(例如每个上行链路资源可以与波束相关联)传送波束恢复请求信号。例如,可以针对波束恢复请求信号传输配置上行链路资源的数量(例如Nb个)。每个上行链路资源可以与下行链路参考信号或SS块相关联。WTRU可以使用该数量的上行链路资源传送波束恢复请求信号。用于传送波束恢复请求的波束可以对应于与参考信号或SS块相关联的Rx波束。用于传送波束恢复请求信号的上行链路资源可以包括PRACH资源和/或PUCCH资源(例如PRACH资源或PUCCH资源的至少一者)。上行链路资源可以包括PRACH资源和/或PUCCH资源的组合。
WTRU可以一次使用一个上行链路资源传送波束恢复请求,并可以等待/监视来自网络实体(例如基站(诸如gNB))的对应于波束恢复请求的响应。WTRU可以监视PDCCH(例如,WTRU可以假设对应的PDCCH DM-RS与WTRU识别或推荐的一个或多个候选波束的RS是空间QCL的)。WTRU可以在为这个目的配置的多个(例如所有)上行链路资源上传送波束恢复请求,并等待/监视来自网络实体的响应。上行链路资源的每一个可以与NR-PDCCH相关联,且WTRU可以为响应监视一个或多个(例如所有)NR-PDCCH。如果WTRU在时间窗内没有接收到响应,则WTRU可以向较高层报告或指示。
用于传送波束恢复请求的(一个或多个)上行链路资源可以被配置用于检测和/或声明波束失效的一个或多个服务波束。如果WTRU没有波束对应能力(例如在上述的第六示例条件下),则可以使用用于当前服务波束的(一个或多个)上行链路资源。如果WTRU有波束对应能力,则可以使用为波束恢复请求目的配置的(一个或多个)其他上行链路资源。用于(一个或多个)当前服务波束的(一个或多个)上行链路资源可以包括为上行链路控制信息信令配置的一个或多个上行链路资源。
WTRU发起的波束恢复(例如波束切换和/或波束扫描)可以是视情况而定的。WTRU可以针对要切换到的TRP和/或WTRU识别和/或指示候选波束或波束对链路(例如可替换波束或波束对链路)。WTRU可以基于候选的波束质量高于阈值来确定候选波束或波束对链路。例如,可以基于参考信号来确定波束质量。例如,当波束关联、波束配对和/或波束对链路集合不可用或不可知或需要被更新时,WTRU可以发起针对波束扫描的请求。图4是示出在下行链路中视情况而定的WTRU发起的波束切换和波束扫描的示例的图。
波束关联和/或波束配对可以变得过时的。波束对链路集合(BPLS)可以变得未知。WTRU可以如下所示发起视情况而定的波束切换和波束扫描。
在示例中(例如当波束关联仍然有效时),可以执行WTRU发起的快速波束切换。WTRU可以基于BPLS对WTRU Rx波束(例如仅对WTRU Rx波束)执行波束切换。WTRU可以基于BPLS对TRP Tx波束(例如仅对TRP Tx波束)发起波束切换。WTRU可以基于BPLS对TRP Tx波束和WTRU Rx波束两者发起波束切换。
在示例中(例如当波束关联和/或BPLS不再有效时),可以在执行WTRU发起的波束切换之后执行WTRU发起的波束切换。WTRU可以仅对(一个或多个)WTRU Rx波束、对TRP Tx和WTRU Tx波束两者或仅对(一个或多个)TRP Tx波束执行波束扫描。在仅WTRU Rx波束扫描和波束切换的情况中,WTRU可以请求发起全、粗或全向(例如360度)波束扫描过程(例如这里称为P1)以找到或选择WTRU Rx波束。WTRU Rx波束的选择可以基于来自P1的TRP Tx波束和/或(一个或多个)WTRU Rx波束的选择。此外或可替换地,WTRU Rx波束的选择可以基于针对测量和报告的潜在定向或精细的波束扫描过程(例如这里称为P3)。可以经由波束扫描过程P3修正WTRU Rx波束的选择。可以重建和/或更新波束对链路集合。可以基于新波束对链路集合发起WTRU Rx波束切换。
在针对TRP Tx和WTRU Rx两者的波束扫描和波束切换的情况中,WTRU可以请求发起全、全向、或粗的波束扫描过程(例如,P1)以找到或选择TRP Tx和(一个或多个)WTRU Rx波束。此外或可替换的,WTRU可以请求发起针对测量和报告的精细波束扫描过程(例如P2或P3)(例如以修正来自P2和P3的(一个或多个)TRP Tx和WTRU Rx波束的选择)。可以重建和/或更新波束对链路集合。可以基于新波束对链路集合发起TRP Tx和WTRU Rx波束切换。
在仅TRP Tx波束扫描和波束切换的情况中,WTRU可以请求发起仅TRP Tx波束的全或全向波束扫描过程(例如P1)以基于从P1选择TRP Tx波束和/或(一个或多个)WTRU Rx波束而找到或选择TRP Tx波束。此外或可替换地,WTRU可以请求发起针对测量和报告的潜在定向或精细过程(例如P2)(例如如果WTRU使用来自P2的波束成形,则修正(一个或多个)WTRU Rx波束的选择)。可以重建和/或更新波束对链路集合。可以基于新波束对链路集合发起TRP Tx波束切换。
在示例中(例如当波束关联状态可以是未知的),可以执行硬波束切换。如果硬波束切换不起作用,且WTRU仍然不能解码DL信号,则WTRU可以执行波束扫描和/或波束切换,就像波束关联和/或BPLS不是令人满意的一样。可以经由全波束切换、相邻波束切换或基于在先BPLS的波束切换中的一者或多者执行硬波束切换。可以如下所示,以视情况而定的方式执行硬波束切换。
WTRU可以发起仅WTRU Rx波束的快速波束切换。WTRU可以针对TRP Tx波束和WTRURx波束两者发起快速波束切换。WTRU可以发起仅TRP Tx波束的快速波束切换。这些技术的一种或多种可以被应用以改善例如DL信号接收。
可以如下执行视情况而定的WTRU发起的波束恢复(例如波束切换和/或波束扫描)。例如,可以通过波束质量降级事件触发WTRU发起的波束恢复。WTRU可以确定要被执行的波束恢复(例如波束切换)类型,例如仅TRP Tx,TRP Tx和WTRU Rx,或仅WTRU Rx。WTRU可以(例如当波束关联或波束对链路集合已知时)切换当前WTRU Rx波束并通知TRP切换其当前Tx波束。如这里所述,波束切换可以被执行为视情况而定的WTRU发起的快速波束切换。如这里所述,WTRU可以(例如,当波束关联或波束对链路集未知时)执行视情况而定的WTRU发起的波束扫描或视情况而定的WTRU发起的硬波束切换。WTRU可以基于延迟要求,基于波束配置(例如要被扫描的波束数量),基于波束扫描能力(例如当可以执行快速波束扫描(例如子时间单元波束扫描)时)等来确定要被执行的波束恢复类型。
WTRU可以为测量和报告目的执行WTRU发起的波束扫描,以更新DL波束关联或BPLS等。可以重建和/或更新波束关联或BPLS。WTRU可以基于新BPLS使用用于接收的新Rx波束。TRP可以基于新BPLS使用用于传输的新Tx波束。当由于延迟原因不能执行全波束扫描时,WTRU可以执行硬波束切换。当通过硬波束切换WTRU仍然不能解码DL传输时,WTRU可以执行WTRU发起的波束扫描以更新波束关联并可以执行波束切换。
WTRU可以在波束恢复请求中向TRP指示波束恢复(例如波束切换)。WTRU可以(例如当TRP Rx波束可以是已知的时)向TRP发送关于针对下一个DL传输要切换到的可替换波束或波束对链路的指示。如这里所述,WTRU可以识别可替换波束或波束对链路。可替换波束或波束对链路可以包括WTRU Rx波束、TRP Tx波束、或WTRU Rx波束和TRP Tx波束两者。TRP和/或WTRU可以在接收和/或传送波束恢复请求之后的某时间段之后切换到可替换波束或波束对链路。时间段可以包括多个TTI或OFDM符号。时间段可以是预定义的,配置的,和/或用信号动态通知的。TRP可以开始使用新TRP Tx波束(例如如WTRU推荐的)且WTRU可以开始使用新WTRU Rx波束用于下一个DL信号。
WTRU可以(例如当TRP Rx波束未知时)使用相同的WTRU Rx波束或不同WTRU Tx波束多次发送波束恢复请求(例如,其可以包括针对可替换波束或波束对链路的指示)。TRP可以尝试不同的TRP Rx波束接收波束恢复请求。这可以通过UL波束管理过程(例如U1、U2和/或U3)来完成。
WTRU可以(例如当存在波束相互性或波束对应时)经由WTRU可以已经识别为用于波束切换的候选的可替换Tx波束来发送波束恢复请求(例如其可以包括波束切换指示)。这样的可替换WTRU Rx波束可以与对应的可替换WTRU Rx波束相关联。TRP可以扫描其Rx波束以尝试从WTRU接收请求。使用这种机制,可以隐式提供波束恢复请求,因为当TRP在TRP Rx波束从WTRU接收请求时,TRP可以基于UL波束配对链路集合推定WTRU Tx波束。然后假设在WTRU保持波束相互性,可以得到对应的WTRU Rx波束。针对得到WTRU Rx波束的情况,可以基于WTRU Rx波束(例如基于DL波束配对链路集合)确定TRP Tx波束。
当WTRU向TRP指示其波束相互性且UL/DL波束对链路集合已知时,波束切换可以称为WTRU辅助的波束切换。当在WTRU和TRP两者保持波束相互性时,UL和DL波束对链路集合可以相同。在该情况中,只要WTRU的波束相互性和UL和DL波束对链路集合中的一个已知,就可以实施WTRU辅助的波束切换。UL信号的内容可以用作波束相互性的指示。
图5是示出使用波束对链路集合和WTRU波束对应的WTRU指示的波束切换的示例的图。
WTRU可以发送针对波束扫描的请求。例如当针对Tx/Rx波束的关联丢失或需要更新时,可以发送这种请求。可以作为波束扫描请求发送UL信号。UL信号可以指示要被执行的波束扫描的类型,例如基于时间单元的,或基于子时间单元的。UL信号可以指示是应该执行面向TRP的还是面向WTRU的波束扫描。DL波束扫描可以在TRP Tx波束与WTRU Rx波束之间建立关联。UL波束扫描可以在TRP Rx波束与WTRU Tx波束之间建立关联。(UL,DL)关联可以被保持并更新(例如经由WTRU发起的波束切换)。
WTRU发送到网络实体(例如TRP)的请求消息可以向网络实体指示WTRU想要发起波束恢复,例如波束切换和/或波束扫描。请求消息可以包括以下的一者或多者。请求消息可以包括WTRU发起的波束扫描和/或切换请求是TRP控制的还是WTRU控制的(例如如图6和7所示)的指示。请求消息可以包括请求是针对波束扫描还是针对波束切换的指示。请求消息可以包括请求是针对基于TU的还是基于STU的波束扫描的指示。请求消息可以包括每时间单元中子时间单元的数量的指示(例如针对基于STU的波束扫描)。请求消息可以包括每波束扫描中时间单元的数量的指示。请求消息可以包括使用的波束切换/扫描过程的指示(例如是P1、P2还是P3)。请求消息可以包括是否使用U1、U2和/或U3的指示。请求消息可以包括所请求的波束切换或扫描是面向TRP的还是面向WTRU的指示(例如针对P1或U1)。
图6是示出下行链路中TRP控制的、WTRU发起的波束扫描/切换的示例的图。在602和622,TRP可以在接收到来自WTRU的波束扫描或切换请求时向WTRU发送关于所请求的波束扫描或切换的响应(例如指示)。响应可以指示请求被确认还是推翻。响应可以指示扫描和/或切换是基于时间单元还是子时间单元,涉及的重复次数等。在604和624,TRP可以经由DL指派或UL授权调度所请求的波束扫描或切换。在606和626,TRP可以在随后的波束扫描时机中扫描/切换TRP Tx波束和/或WTRU可以扫描/切换WTRU Rx波束。时机可以被调度或预定义。在608,TRP可以响应于波束扫描请求采取并报告测量。
图7是示出在DL中WTRU控制的、WTRU发起的波束扫描/切换的示例的图。在702和722,WTRU可以向TRP发送命令TRP执行波束切换或扫描的消息。消息可以指示波束切换或扫描是基于时间单元还是基于子时间单元,涉及的重复次数等。在704和724,TRP可以向WTRU发送关于波束切换或扫描的响应。响应可以是对例如波束切换或扫描命令的应答。在706和726,TRP可以经由DL指派或UL授权调度波束切换或扫描。在708和728,TRP和/或WTRU可以在后续时机中切换/扫描WTRU Tx波束和/或TRP Tx波束。时机可以被调度或预定义。如果命令是波束扫描命令,则在729,TRP可以采取并报告测量。
当WTRU不能解码DL信号时,如果波束关联良好或部分良好,则WTRU可以向TRP传送波束切换请求。如果波束关联不再良好,则WTRU可以向TRP发送波束扫描请求。WTRU可以识别用于传送和/或接收波束恢复请求的WTRU Tx波束和/或TRP Rx波束,并可以在找到(一个或多个)合适波束时发起波束恢复。
WTRU向网络实体(例如TRP)传送波束恢复请求以向网络实体通知或指示在WTRU和/或网络实体处可以执行波束切换和/或波束扫描。WTRU可以使用网络可以配置的WTRUTx波束来传送请求。可以从通过目前波束扫描操作识别的候选Tx波束中选择WTRU Tx波束。网络可以存储这些WTRU Tx波束,例如用于波束管理的目的。可以从通过目前波束扫描操作识别的候选Rx波束中选择用于接收波束恢复请求的TRP Rx波束。WTRU Tx波束与TRP Rx波束之间的关联可以在TRP和/或网络被建立、更新和/或存储。RRC可以配置用于WTRU Tx波束和TRP Rx波束的波束关联或波束关联的子集。网络实体(例如TRP)可以向WTRU指示用于WTRU发送波束恢复请求或指示的一个或多个UL链路。这样的(一个或多个)UL链路可以包括例如作为链路或波束对的WTRU Tx波束和TRP Rx波束的关联。
WTRU可以自发尝试一个或多个(例如所有)UL链路或波束对关联来用于发送波束恢复(例如波束切换或波束扫描)请求。WTRU可以从WTRU知道的最佳波束或链路开始。当网络实体没有指示用于WTRU发送波束恢复请求的波束或链路时,WTRU可以请求或要求网络实体(例如TRP)执行Rx波束扫描。网络实体可以在该实体知道的多个候选Rx波束间执行Rx波束扫描。对此的一个原因是当WTRU可以使用多个UL链路或波束中的一个自发传送信号时,网络实体可能不确切地知道在哪个Rx波束上可以从WTRU接收UL信号。
WTRU可以使用WTRU的Tx波束的所有来自发传送波束恢复请求。当用于传送波束恢复请求的WTRU Tx波束在当前波束关联和/或当前候选波束对链路集合之外且在网络实体的当前候选Rx波束不适合WTRU Tx波束时,网络实体(例如TRP)可以执行全Rx波束扫描。
WTRU可以基于以下的一者或多者发起到网络实体(例如TRP)的波束恢复请求。WTRU可以从当前Tx波束切换到备选Tx波束以发送波束恢复请求。然后WTRU可以等待来自网络实体的响应(例如应答)。WTRU可以从当前Tx波束切换到备选Tx波束以发送波束恢复请求到网络实体且同时通知网络实体根据UL波束关联切换其Rx波束以接收请求。WTRU可以从当前Tx波束切换到备选Tx波束以向网络实体发送波束恢复请求。网络实体和/或WTRU然后可以在网络实体(例如针对Rx波束)和/或WTRU(例如针对WTRU Tx波束)处执行全波束扫描,由此可以接收波束恢复请求。WTRU可以发起针对测量和/或报告目的(例如以更新UL波束关联)的波束扫描。
调度请求(SR)或NR-PUCCH可以用于传送波束恢复请求,例如波束切换请求。例如,可以使用NR-PUCCH,其中WTRU能够保持与网络实体(TRP)的上行链路定时同步。前序码(例如PRACH)可以用于在不在保持定时同步时传送波束恢复请求(例如波束切换或扫描请求)。WTRU可以检查其定时同步状态(例如,上行链路定时同步状态)并决定应当使用上述技术中的哪一种或多种(例如资源)。可以在NR-PUSCH中嵌入波束恢复请求(例如波束切换或扫描请求)。这里描述的前序码可以包括PRACH前序码、PRACH类前序码(例如不同的参数可以用于来自PRACH的前序码序列),等等。
WTRU可以提供针对DL波束恢复(例如DL波束切换)的推荐。例如,WTRU可以识别候选DL波束(例如从列表中选择)并向网络实体(例如TRP)指示候选DL波束。WTRU可以向TRP发送请求信号以切换TRP Tx波束。WTRU可以在请求中包括关于用于下一个DL传输的建议的可替换或候选TRP Tx波束的指示。WTRU可以(例如部分地)刷新存储的DL波束的列表并可以向网络实体指示该列表。RRC控制器可以配置TRP Tx波束和WTRU Rx波束之间的DL波束关联。WTRU可以例如给网络实体推荐多个可替换波束和/或波束链路,以便在网络实体可以决定不用特定波束的情况下进行选择。
WTRU对波束关联排名。WTRU可以根据排名向网络实体(例如TRP)建议/指示(例如在波束恢复请求中)候选波束关联。响应于该建议/指示,网络实体可以切换到建议/指示的波束关联中的Tx波束以发送DL信号。WTRU可以根据波束关联经由WTRU Rx波束接收DL信号。
WTRU可以推荐在候选波束列表中不是第二高排名的波束。WTRU可以向网络实体(例如TRP)指示哪个TRP Tx波束应当用于后续DL传输。可以例如基于涉及指示的TRP Tx波束的波束关联来得到用于接收后续DL传输的WTRU Rx波束。
WTRU可以向网络实体显式或隐式建议或命令使用Tx波束。可以如这里描述的提供显式建议或命令。可以基于TRP/WTRU波束对应(例如当TRP/WTRU波束对应保持时)提供隐式建议或命令。WTRU可以使用与WTRU Tx波束相关联的波束索引来指示或建议TRP Tx波束。可以基于相关联的TRP Rx波束来选择WTRU Tx波束。TRP Rx波束可以对应于WTRU可以偏好的TRP Tx波束。TRP/WTRU对应可以基于函数。TRP可以通过执行TRP Rx波束扫描来从WTRU接收相关信号,以获取WTRU对TRP Tx波束的偏好的知识。基于该信号,TRP可以确定(例如隐式得到)用于完成后续DL传输的TRP Tx波束。
图8是示出WTRU基于TRP/WTRU波束对应隐式指示TRP Tx波束(例如针对DL传输(例如下一个DL传输))的示例的图。
波束对应属性可以用于支持和/或实现波束恢复,例如波束切换。WTRU可以(例如当在WTRU和TRP两者上存在波束对应时,和/或当波束关联是令人满意的时)基于WTRU Rx波束确定WTRU Tx波束。这样的WTRU Rx波束可以由TRP来指示。例如,TRP可以知道哪个TRP Tx波束用于DL传输。TRP可以基于TRP Tx波束得到TRP Rx波束,并可以使用得到的TRP Rx波束来从WTRU接收信号。TRP可以向WTRU发送关于使用WTRU Rx波束和/或WTRU Tx波束的指示(例如单个指示)。WTRU可以经由WTRU Tx波束(例如波束#x)向TRP传送信号。如果基于当前波束对应波束#x对应于TRP Rx波束(例如波束#y),则WTRU使用波束#x的传输可以意味着TRP应当切换到TRP Tx波束#y以进行DL传输以及WTRU可以预期使用WTRU Rx波束#x来接收DL传输。TRP可以采取类似的动作来发送和接收来自WTRU的传输。
波束对应可以是一侧的。当波束对应仅对WTRU保持时,WTRU可以基于WTRU经由其接收DL信号的Rx波束得到其Tx波束。WTRU可以使用得到的WTRU Tx波束来向TRP发送UL传输(例如波束恢复请求)。TRP可以基于WTRU Tx-TRP Rx波束关联确定用于接收UL传输的TRPRx波束。如果Rx波束在关联中不存在,则TRP可以执行波束切换和/或扫描以接收UL传输。
当波束对应仅对TRP保持时,WTRU可以经由WTRU Rx波束接收DL信号并可以在没有波束对应信息的情况下确定用于UL传输的WTRU Tx波束。WTRU可以如下确定WTRU Tx波束。WTRU可以基于经由其发送DL信号的TRP Tx波束来确定TRP Rx波束。WTRU然后可以基于WTRUTx-TRP Rx波束关联得到WTRU Tx波束。如果WTRU Tx波束在关联中不存在,则WTRU可以执行Tx波束切换或扫描以完成UL传输。
网络实体(例如TRP)可以响应于WTRU波束恢复请求(例如其可以包括波束切换推荐)。网络实体可以通过确认或推翻推荐来进行响应。可以通过经由WTRU可能已经推荐的TRP Tx波束/WTRU Rx波束发送/接收DL信号来执行确认。单个比特或单个状态可以用于指示DL传输包括波束恢复确认消息。使用单个比特或单个状态来指示确认消息可以减少信令开销。
在波束恢复响应中,网络实体可以通知WTRU切换到新链路(例如,新TRP Tx波束和/或WTRU Rx波束)。WTRU可以使用当前Rx波束来接收响应,并可以基于响应中包含的信息从当前Rx波束切换到不同的Rx波束。在响应中可以使用一个或多个比特或状态来指示TRP已经决定哪个(些)新波束用于DL传输和/或WTRU预计哪个(些)新波束来接收DL传输。一个或多个比特或状态可以代表多个波束或波束索引。
波束确认消息和波束指示消息可以分开被发送或可以联合被编码。在联合编码的波束确认和波束指示消息中可以指示不同状态。例如,联合编码的波束确认和波束指示消息可以使用比特“1”来指示确认波束恢复推荐,或比特“0”来指示没有确认波束恢复推荐。联合编码的波束确认和波束指示消息可以包括以下比特组合的一者或多者。比特“000”可以代表应当使用状态0或波束索引0。比特“001”可以代表应当使用状态1或波束索引1。比特“010”可以代表应当使用状态2或波束索引3。“011”可以代表应使用状态3或波束索引4。比特“100”可以代表应当使用状态4或波束索引5。比特“101”可以代表应当使用状态5或波束索引6。比特“110”可以代表应当使用状态6或波束索引7。比特“111”可以代表状态7或WTRU确认推荐。在确认的情况中,TRP和/或WTRU可以假设应当使用在UL信号中WTRU推荐的(一个或多个)相同波束(例如在UL波束失效恢复请求中推荐的候选波束)。在指示的另一状态的情况中(例如状态0-6),TRP和/或WTRU可以假设应当使用(一个或多个)状态指示的(一个或多个)波束。例如,WTRU可以响应于被指示的状态#j假设应当使用波束#j。
可以如下提供与下行链路中波束切换相关联的指示。TRP可以向WTRU传送关于用于接收DL信号或信道的WTRU Rx波束的信息(例如指示)。WTRU Rx波束可以与TRP Tx波束相关联。TRP可以向WTRU传送关于用于传送UL信号或信道的WTRU Tx波束的信息(例如指示)。WTRU Tx波束可以与TRP Rx波束相关联
可以如下提供用于WTRU Rx和/或WTRU Tx波束的指示。可以在来自网络实体的响应消息中包含该指示。可以使用DL控制资源、DL数据资源和/或参考信号(RS)中的一者或多者来提供该指示。例如,DL RS可以用于指示用于当前或后续DL信号或DL信道(例如用于DL控制、DL数据和/或DL RS)的WTRU Rx波束。DL RS可以用于指示用于当前或后续UL信号或UL信道(例如用于UL控制、UL数据和/或UL RS)的WTRU Tx波束。用于WTRU Rx波束的指示可以向进行接收的WTRU通知用于接收当前或后续DL信号或DL信道(例如DL控制、DL数据或DLRS)的WTRU Rx波束。用于WTRU Tx波束的指示可以向进行接收的WTRU通知用于传送当前或后续UL信号或UL信道(例如UL控制(例如NR-PUCCH或PUCCH)、UL数据或UL RS(例如SRS))的WTRU Tx波束。用于WTRU Rx和/或WTRU Tx波束的指示可以基于搜索空间、DCI、混合搜索空间、混合控制区、混合DCI,等等。
可以如下提供用于TRP Rx和/或TRP Tx波束的指示。可以在来自WTRU的请求消息中包含该指示。可以使用UL控制资源、UL数据资源、RS和/或WTRU请求(例如前序码、正交覆盖码(OCC)等)中的一者或多者提供该指示。用于TRP Rx波束的指示可以向TRP通知关于用于接收当前或后续UL信号或UL信道(例如UL控制、UL数据和/或UL RS)的TRP Rx波束。用于TRP Tx波束的指示可以向TRP通知关于用于传送当前或后续DL信号或DL信道(例如DL控制、DL数据和/或DL RS)的TRP Tx波束。用于TRP Rx波束和/或TRP Tx波束的指示可以基于控制区、控制区分区、UCI、混合控制区、混合控制区分区、混合UCI、循环移位,等等。指示(例如当使用WTRU请求前序码提供时)可以基于前序码集合、前序码子集、混合前序码集合、混合前序码子集和/或OCC。OCC可以指示波束集合或波束子集。前序码索引或净荷可以指示波束集合或波束子集内的波束。
控制宽波束可以用于指示数据窄波束集合或数据窄波束子集。DCI可以用于指示波束集合或波束子集内的数据窄波束。搜索空间可以用于指示所指示的波束集合或子集内的波束子集。
可以如下实施基于搜索空间的波束指示。网络实体(例如TRP)可以使用搜索空间(例如控制区)来指示用于接收DL信号或信道的WTRU Rx波束。搜索空间可以包括(例如被划分成)多个搜索区或搜索空间分区。(例如每个)搜索区(例如控制资源集合或CORESET)或搜索空间分区可以与WTRU Rx波束索引相关联。WTRU可以在特定控制区或搜索空间分区中解码DL控制信道。这可以指示与特定控制区(例如基于每个CORESET)或搜索空间分区相关联的WTRU Rx波束可以用于接收DL信号或信道。例如,WTRU可以在区#k或搜索空间分区#k中解码控制信道。这可以指示WTRU Rx波束#k可以用于接收后续DL信号或信道。
混合过程可以用于提供波束相关指示。TRP可以使用搜索空间(例如控制区)结合控制信令(例如一个或多个显式控制信号或信令比特)来指示用于接收DL传输(例如DL信号或DL信道)的WTRU Rx波束。搜索空间可以包括(例如被划分为)多个区或搜索空间分区。(例如每个)搜索区或搜索空间分区(例如包括控制区,诸如CORESET)可以与RX波束索引集合相关联。WTRU可以在特定控制区(例如基于每个CORESET)或搜索空间分区中解码控制信道。这可以指示与控制区或搜索空间分区相关联的WTRU Rx波束集合可以用于接收后续DL信号或信道。
可以在下行链路控制信息(DCI)或介质接入控制(MAC)控制元素(CE)中插入一个或多个显式信号(例如指示比特)以指示所指示的WTRU Rx波束集合内的特定WTRU Rx波束。例如,WTRU可以在控制区#m或搜索空间分区#m中解码控制信道。这可以指示WTRU Rx波束集合#m可以用于接收当前或后续DL信号或信道。可以用于接收当前或后续DL信号或信道的WTRU Rx波束#m内的WTRU Rx波束可以通过DCI中的n个比特(例如DCI中n个比特的传输配置指示(TCI)字段)或MAC CE来指示。例如,MAC CE可以从波束集合m中选择2n个波束。波束可以通过DCI中n个比特的TCI来指示用于DL数据信道(例如PDSCH)接收。当波束集合m内的Rx波束的数量大于1时,MAC CE可以指示(例如直接指示)波束集合m内的哪个Rx波束应当用于DL控制信道(例如PDCCH)接收。
图9是示出可以在WTRU发生的用于使用混合方式在下行链路中提供波束相关指示的示例操作的图。WTRU可以在控制区或搜索空间分区中解码NR-PDCCH。可以通过RRC配置WTRU来基于(例如根据)控制区(例如基于每个CORESET)或搜索空间分区确定WTRU Rx波束集合。WTRU可以在NR-PDCCH中读取DCI(例如波束相关比特,诸如NR-DCI中的TCI字段)。WTRU可以基于在DCI中包含的信息(例如波束相关比特)确定WTRU Rx波束集合中的WTRU Rx波束。WTRU可以切换到所确定的WTRU Rx波束以用于DL数据信道PDSCH接收。
图10是示出可以在TRP发生的用于使用混合方式在下行链路中提供波束相关指示的示例操作的图。TRP可以确定用于接收DL信号或信道的WTRU Rx波束。可以通过TRP给WTRU配置WTRU Rx波束(例如TRP可以向WTRU指示WTRU Rx波束)。TRP可以基于WTRU Rx波束来确定WTRU Rx波束集合。TRP可以确定要被包含在DCI中的波束相关信息(例如NR-DCI中的一个或多个波束相关比特)。TRP可以在控制区或搜索空间分区中发送携带DCI的NR-PDCCH。可以根据例如WTRU Rx波束集合来选择控制区或搜索空间分区。
图11是示出可以在WTRU发生的用于使用混合方式在上行链路中提供波束相关指示的示例动作的图。WTRU可以在控制区或搜索空间分区中解码NR-PDCCH。可以通过RRC配置WTRU来例如根据控制区或搜索空间分区确定WTRU Rx波束集合。WTRU可以读取NR-PDCCH中的DCI(例如NR-DCI中的波束相关指示比特)。WTRU可以基于波束相关指示比特确定WTRU Tx波束集合中的WTRU Tx波束。WTRU可以切换到所确定的WTRU Tx波束。
图12是示出可以在TRP发生的用于使用混合方式在上行链路中提供波束相关指示的示例动作的图。TRP可以确定用于接收DL信号或信道的WTRU Tx波束。可以通过TRP给WTRU配置WTRU Tx波束(例如,TRP可以向WTRU指示WTRU Tx波束)。TRP可以基于WTRU Tx波束来确定WTRU Tx波束集合。TRP可以确定要包含在DCI中的波束相关信息(例如,NR-DCI中的一个或多个波束相关指示比特)。TRP可以在控制区或搜索空间分区中发送携带DCI的NR-PDCCH。可以根据WTRU Tx波束集合来选择控制区或搜索空间分区。
TRP可以提供用于经由WTRU Rx波束接收DL控制信道(例如PDCCH或NR-PDCCH)传输的波束相关指示。DL控制信道传输可以是当前或后续DL控制信道传输。TRP可以使用之前的控制信道(例如NR-PDCCH或NR增强物理下行链路控制信道(NR-ePDCCH))来指示WTRU Rx波束。TRP可以在NR-PDSCH中嵌入关于WTRU Rx波束的信息(例如在数据、MAC CE等中嵌入的波束指示比特和/或控制比特)。TRP可以使用可在控制信道之前的波束参考信号(BRS)、移动性参考信号(MRS)和/或解调参考信号(DMRS)来指示用于接收控制信道的WTRU Rx波束。
TRP可以提供用于经由WTRU Rx波束接收DL数据信道(例如NR-PDSCH或PDSCH)传输的波束相关指示。DL数据信道传输可以是当前或后续DL数据信道传输。TRP可以使用搜索空间指示WTRU Rx。搜索空间可以被划分成多个区或搜索空间分区。(例如每个)区或搜索空间分区可以与Rx波束索引相关联。WTRU可以在特定区或搜索空间分区中解码控制信道。WTRU可以推定与控制区或搜索空间分区相关联的对应WTRU Rx波束可以用于接收后续DL数据信道。例如,WTRU可以在区#k或搜索空间分区#k中解码控制信道。基于该解码,WTRU可以推定WTRU Rx波束#k可以用于接收后续DL数据信道。
TRP可以使用之前或当前控制信道(例如NR-PDCCH或NR-ePDCCH)指示用于接收当前DL数据信道传输的WTRU Rx波束。TRP可以在NR-PDSCH中嵌入关于WTRU Rx波束的信息(例如,在数据、MAC CE等中嵌入波束指示比特和/或控制比特)。TRP可以使用可以在数据信道之前的BRS、MRS和/或DMRS来指示用于接收数据信道的WTRU Rx波束。
例如可以在DCI、MAC CE和/或RRC信令中包括与DL传输相关联的波束相关指示,且其可以通过NR-PDCCH、NR-ePDCCH、MAC和/或RRC中的一者或多者携带。
TRP可以提供用于经由WTRU Tx波束传送UL数据信道传输的波束相关指示。UL数据信道传输可以是当前或后续UL数据信道传输。TRP可以使用搜索空间来指示WTRU Tx波束。搜索空间可以被划分成多个区或搜索空间分区。(例如每个)区或搜索空间分区可以与WTRUTx波束索引相关联。WTRU可以在特定控制区或搜索空间分区中解码用于上行链路授权的控制信道。WTRU可以基于该解码推定与控制区或搜索空间分区相关联的WTRU Tx波束可以用于传送当前或后续UL数据信道。例如,WTRU可以在区#j或搜索空间分区#j中解码控制信道。基于该解码,WTRU可以推定WTRU Tx波束#j可以用于传输当前或后续UL数据信道。
TRP可以使用之前或当前DL控制信道(例如NR-PDCCH或NR-ePDCCH)来指示用于接收当前或后续UL数据信道传输的WTRU Tx波束。TRP可以在NR-PDSCH中嵌入关于WTRU Tx波束的信息(例如在数据、MAC CE等中嵌入波束指示比特和/或控制比特)。TRP可以使用可在UL数据信道之前的BRS、MRS和/或DMRS来指示WTRU Tx波束。
TRP可以提供用于传送UL控制信道的波束相关指示。TRP可以使用搜索空间来指示WTRU Tx波束。搜索空间可以被划分为多个区或搜索空间分区。(例如每个)区或搜索空间分区可以与WTRU Tx波束索引相关联。WTRU可以在特定控制区或搜索空间分区中解码用于上行链路授权的DL控制信道。基于该解码,WTRU可以推定与控制区或搜索空间分区相关联的对应WTRU Tx波束可以用于传送当前或后续UL控制信道。例如,WTRU可以在区#i或搜索空间分区#i中解码DL控制信道。基于该解码,WTRU可以推定WTRU Tx波束#i可以用于传输当前或后续UL控制信道。
TRP可以使用之前或当前DL控制信道(例如NR-PDCCH或NR-ePDCCH)来指示用于传送当前或后续UL控制信道的WTRU Tx波束。TRP可以在NR-PDSCH中嵌入关于WTRU Tx波束的信息(例如在数据、MAC CE等中嵌入波束指示比特和/或控制比特)。TRP可以使用可在UL控制信道之前的BRS、MRS和/或DMRS来指示用于传送控制信道的WTRU Tx波束。
例如,可以在DCI、MAC CE和/或RRC信令中包括具有UL传输的波束相关指示,且其可以例如由NR-PDCCH、NR-ePDCCH、MAC和/或RRC中的一者或多者携带。
可以使用用于控制和/或数据信道的多阶段指示。在第一阶段的示例中,TRP可以使用L1/2控制、RRC、MAC CE或搜索空间中的一者或多者来指示波束集合(或子集)。在第二阶段的示例中,TRP可以使用DCI或RS来指示在阶段1中指示的波束集合(或子集)内的WTRURx波束和/或WTRU Tx波束。基于控制区的混合技术可以用于波束指示。这些技术可以利用RRC来配置波束集合,利用MAC CE来指示来自波束集合的子集,和/或利用DCI来指示来自子集的一个或多个波束。
WTRU可以发起波束扫描。波束扫描可以基于子时间单元(STU)。常规时间单元(RTU)可以指OFDM符号、SC-FDMA符号等。RTU可以与配置的参考参数集(numerology)相关联。RTU可以与时间单元(TU)互换使用。子时间单元(STU)可以指比RTU短的时间段。在RTU中可以包含一个或多个STU。
基于STU的波束扫描可以允许快速执行操作。例如,当波束切换不是立即可用或被执行时(例如由于缺少关于波束关联、波束配对和/或波束对链路集合的知识),WTRU可以在波束切换之前发起波束扫描。基于STU的波束扫描可以支持快速实施波束配对。WTRU可以在RTU级或STU级针对DL传输发起(例如触发)TRP Tx波束扫描和/或WTRU Rx波束扫描。WTRU可以在RTU级或STU级针对UL传输发起(例如触发)TRP Rx波束扫描和/或WTRU Tx波束扫描。
不管波束扫描时间或持续时间被定义为RTU还是STU,可以使用同一个波束作为波束参考信号。WTRU可以确定在RTU内同一个波束被用作波束参考信号(例如,如果波束持续时间被定义为RTU),且WTRU可以在时域或频域中测量波束质量。WTRU可以确定在STU内同一个波束被用作波束参考信号。在这种情况中,WTRU可以测量NS个STU的NB波束质量,且一个或多个STU(例如NC个连续STU)可以被配置、确定或用作波束持续时间。WTRU可以确定在NC个连续STU内同一个波束可以用作波束参考信号。
WTRU可以被配置NS个STU作为波束扫描持续时间,其可以与NR个RTU相关联。NR可以是包括1的正整数。
WTRU可以被配置成基于(一个或多个)STU或(一个或多个)RTU测量一个或多个波束参考信号。可以基于波束管理过程(例如波束管理或波束恢复要求)来确定时间单元的类型(例如RTU或STU)。例如,第一类型的时间单元(例如STU)可以用于P-1和/或U-1,而第二类型的时间单元(例如RTU)可以用于P-2和P-3或U-2和U-3。每个过程(例如P-1,P-2,P-3或U1-,U-2,U-3)可以使用RTU或STU。
可以基于波束测量是否与CSI报告(例如CQI)相关联来确定时间单元类型(例如RTU或STU)。例如,如果波束测量不与CSI报告相关联,则可以使用第一类型的时间单元(例如STU),而如果波束测量与CSI报告相关联,则可以使用第二类型的时间单元(例如RTU)。如果波束测量用于Tx和/或Rx波束配对和/或确定用于控制和/或数据信道的波束对链路,则可以使用没有CSI报告的波束测量。
可以基于在传送方中使用的Tx波束数量(例如最大数量)确定时间单元类型(例如RTU或STU)。例如,如果传送方(例如gNB或WTRU)具有的Tx波束的数量(例如最大数量)大于预定义阈值,则可以使用第一类型的时间单元(例如STU)。否则,可以使用第二类型的时间单元(例如RTU)。
可以基于时间位置(例如时隙号、子帧号、无线电帧号等)来确定时间单元类型(例如RTU或STU)。可以基于至少一个系统参数(包括子载波间隔、频带、小区ID、虚拟小区ID、TRP-ID、系统带宽和/或用于时隙(或迷你时隙)的OFDM符号数量)来确定时间单元类型(例如RTU或STU)。
可以基于参考信号类型确定时间单元类型(例如RTU或STU)。例如,第一类型的时间单元(例如RTU)可以用于移动性参考信号(MRS),其可以用于TRP选择、gNB选择或小区选择,而第二类型的时间单元(例如STU)可以用于CSI-RS,其可以用于测量和/或报告。
波束参考信号(BRS)、波束测量参考信号(BMRS)、CSI-RS、SRS、DMRS、移动性参考信号、测量参考信号以及参考信号可以互换使用。波束质量测量、波束测量、波束监视、最佳波束检测以及波束选择可以互换使用。
在OFDM传输之前可以基于DFT扩展来构建波束参考信号。例如,可以用NFFT长度DFT或FFT过滤具有NFFT长度的参考信号序列s,以及输出序列q可以被映射到OFDM传输的NIFFT个子载波。如图13的示例示出,基于资源映射矩阵M(NFFT≤NIFFT),NFFT长度输出序列q的资源映射可以被映射到OFDM传输的NIFFT长度输入u。可以用NIFFT长度IDFT或IFFT得到输出序列w。
序列s、q、u或w的至少一者可以被认为是波束参考信号和/或CSI-RS。当NFFT=NIFFT时,资源映射矩阵M可以是单位矩阵或者可以绕过资源映射处理。可以基于对应的NIFFT尺寸来确定NFFT尺寸。例如,可以基于在广播信号(例如新无线电物理广播信道(NR-PBCH)等)中指示的系统带宽来确定NIFFT尺寸,且可以根据NIFFT尺寸确定NFFT尺寸。
可以预定义NFFT尺寸的集合,且可以基于NIFFT尺寸来确定NFFT尺寸的子集。可以经由较高层信令配置或可以指示(例如动态指示)NFFT尺寸子集内的NFFT尺寸的至少一个。
可以基于使用的Tx波束和/或Rx波束的数量来确定NFFT尺寸。例如,传送方(例如gNB、TRP或WTRU)可以指示、配置或识别Tx波束数量,以及可以基于指示的、配置的或识别的Tx波束数量来确定NFFT尺寸。可以基于NIFFT尺寸和/或使用的Tx波束数量来确定NFFT尺寸。可以预定义NFFT尺寸集合且可以基于NIFFT尺寸确定NFFT尺寸子集。可以基于使用的Tx波束数量来确定NFFT尺寸子集内的NFFT尺寸。Tx波束和/或Rx波束数量可以包括以下至少一者:用于控制信道(例如NR-PDCCH等)的Tx波束和/或Rx波束的数量,与当前服务小区或TRP相关联的Tx波束和/或Rx波束的数量,同步信号,公共搜索空间,控制资源集合,等等。
可以基于涉及的传输的方向来确定NFFT尺寸。例如,可以基于涉及的传输是上行链路还是下行链路传输来确定NFFT尺寸。可以在下行链路中使用第一NFFT尺寸,而在上行链路中可以使用第二NFFT尺寸。可以基于NIFFT尺寸和使用的Tx波束和/或Rx波束的数量的至少一者来确定用于下行链路传输的NFFT尺寸。gNB或TRP可以指示用于上行链路传输的NFFT尺寸。可以通过下行链路控制信息(例如DCI或MAC-CE)配置(例如触发)周期或半持久波束参考信号,以及可以在下行链路控制信息中指示NFFT尺寸。周期波束参考信号可以包括一次传输或多次传输。半持久波束参考信号可以包括具有激活/去激活的周期传输。上行链路中的波束参考信号可以称为探测参考信号(SRS)。下行链路中的波束参考信号可以称为CSI-RS。
可以根据最大传输功率确定NFFT尺寸。例如,当最大传输功率高于预定义阈值时,可以使用第一NFFT尺寸,以及当最大传输功率低于预定义阈值时,可以使用第二NFFT尺寸。
图13是示出使用DFT-s-OFDM或DFT扩展的BRS生成的示例的图。示出了示例DFT-s-OFDM发射机。输入信号s可以通过FFT函数扩展,通过资源映射矩阵M(例如子载波映射矩阵)映射到频域中的特定位置,以及通过IFFT函数变换回时域信号。可以与示例DFT-s-OFDM发射机使用CP插入块(例如伴随或作为一部分)。根据等式1,矩阵M可以具有维度NIFFT×NFFT
其中,单位矩阵可以沿着竖直列映射。
DFT-s-OFDM发射机的输出信号w可以被认为是输入信号s(例如其可以是向量)的插值版本,插值比为信号可以表现可以促进在DFT-s-OFDM符号内以可变长度创建时间单元(TU)的特性(例如灵活性)。这些特性(例如灵活性)可以被利用来支持快速波束扫描机制的实施。
图14是示出DFT-s-OFDM符号或OFDM符号的K个分段(例如K个STU)上的波束扫描的示例的图。基于输入信号s(例如经由这里所述的示例DFT-s-OFDM发射机)生成的向量w可以在DFT-s-OFDM符号的持续时间内被波束成形到多个空间方向。DFT-s-OFDM发射机可以与波束成形器耦合。DFT-s-OFDM符号的K个分段可以与K个不同波束进行波束成形。(例如,每个)分段可以被认为是子TU。分段、子TU和STU可以互换使用。
DFT-s-OFDM符号(例如OFDM符号)中的K个分段在时域上可以是不重叠的。DFT-s-OFDM符号(或OFDM符号)内的每个分段的时间长度可以具有相同或不同的时间长度。
波束数量可以等于或小于分段数量。与波束相关联的分段数量可以基于以下至少一者来确定、配置或使用。NC个分段(或STU)可以与波束相关联,其中NC个分段在DFT-s-OFDM符号(或OFDM符号)内可以是连续的或分布的。可以基于使用的Tx波束和/或Rx波束的数量来确定NC的值。可以基于以下至少一者来确定NC的值:Tx波束和/或Rx波束的数量、分段或STU的数量、和/或用于波束参考信号传输的DFT-s-OFDM符号(或OFDM符号)的数量。
与波束相关联的一个或多个分段可以包括波束参考信号、与波束相关联的控制信息或与波束相关联的数据信息中的至少一者。波束参考信号可以基于预定义序列。可以使用、配置和/或预定义序列集合。可以基于波束标识或波束索引选择或确定序列集合中的一个。WTRU可以(例如不需要来自TRP的指示)检测用于波束参考信号的序列并识别波束索引。WTRU可以基于波束参考信号的测量和/或检测到的波束索引报告优选波束索引。优选波束索引可以是可以提供最高接收信号强度的波束索引。接收信号强度可以由参考信号接收功率(RSRP)(例如L1-RSRP)来指示或从其得出。
可以在与波束相关联的一个或多个分段中传送与该波束相关联的控制信息。例如,可以在与波束相关联的一个或多个分段中传送HARQ-ACK信息。DFT-s-OFDM(或OFDM)符号中的一个或多个分段中的序列可以包括波束相关信息。
可以在分段或多个分段中传送波束参考信号(BRS)。可以基于用于BRS传输的分段数量来确定BRS序列长度。例如,如果在K1个分段上传送BRS,则可以使用第一BRS序列长度,以及如果在K2个分段上传送BRS,则可以使用第二BRS序列长度。如果K1<K2,第一BRS序列长度可以短于第二BRS序列。对于更宽的波束宽度可以使用更长的BRS序列长度。
信号s可以被设计和/或可以被配置以创建时间上有K个分段的DFT-s-OFDM(OFDM)符号。波束成形器可以应用波束成形参数的K个不同集合来针对(例如每个)分段或子TU重新调整波束。生成的波束图案(pattern)在符号之间可以是相同或不同的。分段的DFT-s-OFDM符号或OFDM符号可以被映射到与相同矩阵M相关联的相同频率位置或映射到符号之间不同的频率位置。
图13中输出序列q的频率位置可以基于这里示出的矩阵M来确定。而矩阵M可以如下确定。可以从可以被预定义、配置或使用的一个或多个矩阵中选择矩阵M。矩阵M可以与BRS传输的频率位置映射或确定相关联(例如,被称为BRS传输的频率位置映射或确定)。可以基于一个或多个系统参数来确定矩阵M,该系统参数包括小区ID、时隙号、子帧号、迷你时隙号、虚拟小区ID和/或TRP-ID。可以以降低小区间干扰的方式确定矩阵M。可以基于一个或多个WTRU特定参数确定矩阵M,包括WTRU-ID、调度子帧号、时隙号和/或迷你时隙号。可以经由较高层信令配置、指示或用信号通告矩阵M。较高层信令可以包括广播信号例如NR-PBCH、辅助NR-PBCH、系统信息和/或WTRU特定RRC信令。可以基于一个或多个波束相关参数(例如Tx波束数量)来确定矩阵M。矩阵M可以用于指示波束集合。例如,可以使用一个或多个波束集合,且M可以指示哪个波束集合用于BRS传输。WTRU可以检测(例如盲检测)M来确定哪个波束集合被使用。
图13中的输入信号s可以被分成一个或多个部分,例如其中si’s可以具有不同长度。si可以以一定数量的0元素开始或结束,例如其中,/>可以是非零向量。用零填充si可以促进一个波束到另一波束的转变。可以应用以下的一者或多者。分段输入si中的零元素的数量可以基于在来si中传送的比特的数据来确定。分段输入si中的零元素的数量可以由发射机来配置和/或指示。si可以包括所有非零元素。si可以包括所有零元素。例如,偶数编号的分段输入si可以包括所有非零元素,而奇数编号的分段输入si可以包括所有零元素。零填充的输入分段可以用作非零输入分段之间的间隙。
参考信号和数据可以在分段输入si中的非零向量σi内复用。例如,一个或多个非零元素的第一集合(例如,σ1,σ2)可以用于参考信号,以及一个或多个非零元素的第二集合(例如,剩余的非零元素)可以用于数据传输。数据传输可以包括控制信息、单播业务信息、HARQ-ACK信令(例如,PHICH、NR-PHICH等)等等。可以用于参考信号和/或数据的分段输入si内的非零元素的位置可以基于分段输入信号中的非零元素的数量来确定。
图15是示出DFT-s-OFDM或OFDM符号的8个STU上的波束扫描的示例的图。可以用唯一图案来波束成形STU的一个或多个(例如每一个STU)。输入分段si可以被填充一个或多个零,例如,以创建STU之间的一定等级的隔离(例如间隙)。隔离可以给予WTRU或TRP更多时间来执行波束重配置。
可以从预定义码本选择和/或可以基于一个或多个配置参数确定输入向量s或其子部分si,配置参数包括小区ID、波束数量、信道/服务类型标识、子帧号、系统帧号、时隙号、迷你时隙号、TX天线数量等等。输入向量s可以通过FFT函数过滤以产生输出向量序列q,例如如图13所示。
图16A是示出被配置成使用OFDM的STU波束发生器的示例的框图。如这里描述的,向量q可以从预先计算的码本集合中选择。预先计算的码本可以存储在发射机。发射机可以是OFDM发射机。分段输入向量si的相同集合可以被应用到一个或多个(例如所有)STU,以例如促进系统功能,例如信道探测、同步和/或系统信息的传输(例如系统信息携带),系统信息例如是小区ID、TX天线数量、系统帧号、子帧号、时隙号、迷你时隙号、信道/服务类型,等等。分段输入向量si可以携带STU特定(对于STU唯一)标识信息。这样的信息可以用于指示传送到接收机的波束的标识,以例如促进波束配对。分段输入向量si可以携带STU特定(例如对于STU唯一)标识信息和可以对于多个STU是公共的信息的组合。
分段输入si内的向量σi的内容(例如非零向量)可以针对多个(例如所有)STU是相同的,以例如辅助系统功能,例如信道探测、同步或系统信息(例如小区ID、TX天线数量、系统帧号、子帧号、时隙号、迷你时隙号、信道/服务类型等)的传输(例如系统信息的携带)。向量σi的内容可以包括唯一标识信息,例如以指示传送到接收机的波束的标识。标识信息可以例如用于促进波束配对。向量σi的内容可以包括STU指定信息(例如唯一标识信息)和可以对于多个STU是公共的信息的组合。
可以与数据传输同时执行波束扫描。图16B是示出用于同时传送波束CSI-RS输入q和数据向量d的示例结构的图。矩阵M数据可以代表在传输带的特定部分映射数据向量d的子载波映射函数。传输带的部分可以是波束扫描操作没有使用的部分。矩阵M数据可以具有维度NIFFT×NFFT。矩阵M和M数据可以部分重叠或可以完全正交。
数据传输和数据扫描可以采用相同波束。图16B示出了使用相同波束的波束CSI-RS和数据的同时传输的示例。波束CSI-RS可以是基于DFT的STU CSI-RS并可以用于WTRU发起的波束扫描。与波束CSI-RS传输同时的数据传输可以利用与用于波束CSI-RS和/或波束扫描不同的波束(例如假设涉及的WTRU或TRP被配置独立的波束成形能力)。图16C是示出使用不同波束同时传送波束CSI-RS和数据的示例的图。
可以利用基于DFT的STU CSI-RS来执行WTRU发起的波束扫描。WTRU可以通过向TRP或gNB发送波束扫描请求来发起波束扫描。波束扫描请求可以在调度请求(例如NR-PUCCH、PRACH前序码和/或PRACH类请求)上被发送。如这里所述,gNB可以将波束扫描配置为基于RTU的和/或基于STU的。
可以使用较大子载波间隔、IFDMA或基于DFT的STU方案(例如如果配置了基于STU的快速波束扫描)中的一者或多者来生成SUT CSI-RS。如这里所述,可以生成基于DFT的STUCSI-RS。图17是示出具有8个STU的基于DTF的STU CSI-RS的示例的图。具有长度NFFT的参考信号u可以被映射到频域中的位置,并可以通过IFFT函数转换成时域信号。u可以是输入向量s的DFT变换。s可以本分成K个部分,例如s=[s1s2…sK]1×NFFT。在图17示出的示例中,K可以具有值8。通过对输入分段si中的一个或多个进行零填充可以促进一个波束到另一波束的转变。每个输入分段si可以携带不同的信息,例如波束ID、小区ID等。IFFT函数的输出w可以被切分成每OFDM符号K个独立STU,以例如允许独立波束成形和/或支持快速波束扫描的实施。例如,可以在一个OFDM符号内生成并传送八个STU CSI-RS。
WTRU可以接收配置信息,例如波束扫描类型(例如RTU或STU)和/或每Tx符号(例如每OFDM符号)的STU的相关联数量。例如如果配置了基于DFT的STU CSI-RS,则WTRU可以接收该配置。WTRU可以基于CSI-RS配置来执行波束测量。WTRU可以例如在执行波束测量时执行波束配对。这里描述的示例系统、方法和/或实施可以被应用于OFDM,DFT-s-OFDM,UW-OFDM和/或UW-DFT-s-OFDM波形。
例如可以根据基于的DFT IFDMA STU生成机制的仿真结果来评估基于DFT的STUCSI-RS的性能。作为示例这里提供基于OFDM符号的测量。可以说明数据和CSI-RS的同时传输。
图18A是显示示例STU生成机制的性能评估结果的图。示出了IFDMA STU CSI-RS、基于DFT的STU CSI-RS以及基于符号的OFDM STU CSI-RS的各自性能。IFDMA STU CSI-RS的性能可以类似于基于DFT的STU CSI-RS的性能。可以通过针对波束选择和配对具有长的间隔(比普通长四倍)来改善基于符号的OFDM STU CSI-RS的性能。对于基于DFT和IFDMA STUCSI-RS,(例如每个)符号可以被分成4个STU。可以在强(例如最强)群集的方向指明Tx波束。针对接收机,在波束搜索期间可以考虑4个Rx波束。针对每个丢弃,RX波束中的一者可以被指向最强群集,而其他可以从围绕最强群集均等展开的角度集合中选择(例如随机选择)。度量(r-r0)可以用作性能度量,其中r和r0可以是针对选择的波束和理想波束的对应的RSPR测量。可以基于r-r0小于Δ的时间所占百分百来评估选择的不精确度,其中Δ可以为设置在-1dB。
图18B是显示在针对波束恢复/修正的CSI-RS传输被进行以产生图18A示出的结果时的示例数据链路的性能的图。在该示例中,在数据链路上使用QPSK调制发送具有净荷尺寸170比特的LDPC编码分组。CSI-RS和QPSK符号在512个子载波的分开的群集上被映射。
图19是示出使用IFDMA的STU波束发生器的示例的框图。可以用IFDMA实施基于STU的波束扫描。具有长度L的输入向量u可以被过采样K次以在时域中产生K个分段(例如K个相似分段)来用于波束扫描。向量u可以携带序列以辅助其他系统功能,例如信道探测、同步和/或系统信息(例如小区ID、TX天线数量、系统帧号、子帧号、TRP标识、波束群组标识、时隙号、迷你时隙号、信道/服务类型,等)的传输。可以在向量u中携带的示例序列可以是Zadoff-Chu(ZC)序列或具有良好相关属性的类似序列。
可以产生输出向量w。如果w的内容针对一个或多个波束是相似的,则向量w可以用正交覆盖码来标记。标记可以将波束与其他(K-1)个波束进行区分。正交覆盖码的示例可以包括基于哈达玛(Hadamard)或基于DFT的向量。
可以检测以波束为中心的无线电链路失效(RLF)。RLF可以是波束质量降级造成的,而这可以是由WTRU移动/转动,阻挡,链路失效等造成的。降级可以随机发生。RLF和RRC连接重建可以造成延迟并可能影响吞吐量。快速波束恢复机制(例如波束切换)可以用于避免与必须执行获取过程相关联的负担和中断。通过波束切换可以检测和补救RLF。当WTRU不能经由当前波束解码DL信号时,WTRU可以触发并发起波束恢复(例如波束切换和/或扫描)。可以在声明RLF之前触发或发起波束切换和/或扫描。
RLF参数(例如,诸如N310)可以用于触发波束切换。该参数可以与误块率(BLER)阈值有关。这样的BLER阈值(例如,针对不同步声明,10%)可以与无线电链路监视相关联,并可以针对波束失效恢复被重新使用。参数可以被设置为指示允许的间隔数(例如200ms间隔),在该间隔期间WTRU不能成功解码PDCCH或NR-PDCCH(例如由于低RSRP检测)。WTRU可以在WTRU针对某数量的不同步指示(例如连续不同步指示)不能解码DL信号时开启RLF计时器。RLF计时器(例如T310)可以由网络来配置。不同步指示的数量可以由上述的RLF参数(例如N310)来指定。WTRU可以在检测到RLF时(例如在RLF的开始)发起波束切换。WTRU能够在WTRU能够成功切换波束并再次解码DL信号时避免RLF。这种机制可以例如适合为了后向兼容性(例如使用LTE)的非独立的NR系统。
一个或多个其他参数可以专用于触发波束切换。例如,参数NR-N1可以被设置以指示一定数量的连续波束切换测量(BSM),在此期间WTRU预期解码DL信号。NR-N1可以指示与波束质量降级相关联的预定义或配置的阈值。NR-N1可以指示WTRU由于波束质量降级可能没有成功解码下行链路信号的次数。BSM可以是波束质量相关测量或指示,例如与服务波束相关联的SINR,RSSI,RSRP,RSRQ和/或CQI。如果NR-N1被设置且WTRU针对NR-N1指定的连续BSM的数量不能解码DL信号,则WTRU可以声明波束恢复并发起波束切换。
图20是示出使用波束切换的RFL检测时间轴的示例的图。NR-T310、NR-N310、NR-N311可以是与使用波束切换的RLF检测有关的参数和/或计时器。这些参数和/或计时器可以是预先指定的或配置的。“不同步”指示可以指发生连续NR-PDCCH解码失效的持续时间X。“同步”指示可以指发生连续NR-PDCCH解码成功的持续时间Y。“BSM”指示可以指进行波束切换测量的持续时间Z。X,Y和Z可以具有相同或不同的值。在示例中,X可以是20个子帧,Y可以是10个子帧,以及Z可以是1个子帧。BSM指示可以指示与相关联的控制信道(例如NR-PDCCH)和/或相关联的数据信道(例如NR-PDSCH)中的一者或多者相关联的(一个或多个)波束对链路的波束质量。针对配置的多个波束对链路,如果预定义或预先配置数量的波束对链路降到低于达到波束失效条件的某阈值,则可以声明波束失效,且可以在RLF声明之前请求波束恢复,例如波束切换。
图21是示出用于使用波束切换的RLF检测的触发机制的示例的图。例如当NR-N1被设置且当WTRU针对NR-N1中指定的某数量的连续BSM指示没有解码DL信号时,WTRU可以声明波束失效并发起波束恢复,例如波束切换。当WTRU针对参数NR-N310指定的某数量的连续不同步指示没有解码DL信号时,WTRU可以开启计时器NR-T310(例如,其可以是网络配置的)。当WTRU的物理层可以报告一数量的连续同步指示(例如由参数NR-N311指定)时,可以停止计时器。当计时器NR-T310终止时,可以声明RLF且RLF可以发生。WTRU可以例如经由RACH执行RRC连接重建。
参数NR-N1可以被设置为在值上小于NR-N310,例如在BSM可以使用不同步而不是BSM的例如来实现快速波束切换的情况中。WTRU可以在NR-310之前和RLF计时器开启之前发起波束切换。这可以使得WTRU有足够的时间来在可以声明RLF之前执行波束切换。
通过非限制性示例的方式描述了特征、要素和动作(例如过程和手段)。虽然示例涉及LTE、LTE-A、新无线电(NR)或5G协议,但是这里的主题可以应用于其他无线通信、系统、服务和协议。所述的主题的每个特征、要素、动作或其他方面不管在图中还是描述中,可以单独实施,或者不管已知还是未知,以任意顺序,不管这里提供的示例,与其他主题以任意组合实施。
这里描述的计算系统的每一个可以具有一个或多个计算机处理器,其具有存储器,存储器被配置具有可执行指令或硬件,用于完成这里描述的功能,包括确定这里描述的参数以及在实体(例如WTRU与网络)之间发送和接收消息以完成描述的功能。上述的过程可以在结合在由计算机和/或处理器执行的计算机可读介质中的计算机程序、软件和/或固件来实施。
上述的过程可以在结合在由计算机和/或处理器执行的计算机可读介质中的计算机程序、软件和/或固件来实施以由。计算机可读介质的示例包括但不限于电子信号(通过有线和/或无线连接传输)和/或计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、磁介质(例如但不限于,内部硬盘和可移除磁盘)、磁光介质和/或光学介质(例如CD-ROM盘和/或数字通用盘(DVD))。与软件相关联的处理器可用于实施用于WTRU、UE、终端、基站、RNC和/或任何主计算机的射频收发信机。

Claims (17)

1.一种在无线发射接收单元WTRU中实施的方法,所述方法包括:
确定波束失效条件已经发生,其中所述波束失效条件与所述WTRU和网络实体之间的传输相关联,并且其中确定所述波束失效条件已经发生包括监视信道状态信息参考信号CSI-RS和同步信号块SSB中的至少一个来评估波束失效条件是否已经发生;
使用物理随机接入信道PRACH资源向所述网络实体发送波束失效恢复请求,其中所述波束失效恢复请求指示所述WTRU识别的候选波束,
其中,如果通过测量到CSI-RS或SSB中的至少一者上的波束质量超过用于解决所述波束失效条件的阈值而识别出所述候选波束,则发送所述波束失效恢复请求,用于发送所述波束失效恢复请求的PRACH资源与测量到的CSI-RS或SSB中的至少一者相关联;以及
通过监视物理下行链路控制信道PDCCH从所述网络实体接收与所述波束失效恢复请求相关联的响应,并且在所述WTRU在时间窗内没有接收到响应的情况下向较高层报告或指示。
2.根据权利要求1所述的方法,其中在发送所述波束失效恢复请求时的预定义数量的时隙之后从所述网络实体接收所述响应。
3.根据权利要求1或2所述的方法,其中所述响应包括关于波束切换请求的指示,所述指示指示确认、拒绝或推翻来自所述WTRU的波束切换请求/推荐。
4.根据权利要求1所述的方法,其中确定所述波束失效条件已经发生包括:确定与所述WTRU和所述网络实体之间的传输相关联的所有服务波束已经失效。
5.根据权利要求1所述的方法,其中所述CSI-RS或所述SSB通过空间准同位QCL而与物理下行链路控制信道PDCCH解调参考信号DM-RS相关联。
6.根据权利要求1所述的方法,其中用于发送所述波束失效恢复请求的所述PRACH资源是基于上行链路同步状态被选择的。
7.根据权利要求1所述的方法,其中所述候选波束是由所述WTRU通过基于子时间单元STU的波束扫描识别的。
8.一种无线发射接收单元WTRU,包括:
处理器,被配置成:
确定波束失效条件已经发生,其中所述波束失效条件与所述WTRU和网络实体之间的传输相关联,并且其中确定所述波束失效条件已经发生包括监视信道状态信息参考信号CSI-RS和同步信号块SSB中的至少一个来评估波束失效条件是否已经发生;
使用物理随机接入信道PRACH资源向所述网络实体发送波束失效恢复请求,其中所述波束失效恢复请求指示所述WTRU识别的候选波束,
其中,如果通过测量到CSI-RS或SSB中的至少一者上的波束质量超过用于解决所述波束失效条件的阈值而识别出所述候选波束,则发送所述波束失效恢复请求,用于发送所述波束失效恢复请求的PRACH资源与测量到的CSI-RS或SSB中的至少一者相关联;以及
通过监视物理下行链路控制信道PDCCH从所述网络实体接收与所述波束失效恢复请求相关联的响应,并且在所述WTRU在时间窗内没有接收到响应的情况下向较高层报告或指示。
9.根据权利要求8所述的WTRU,其中所述处理器被配置成确定所述波束失效条件已经发生包括:所述处理器被配置成确定与所述WTRU和所述网络实体之间的传输相关联的所有服务波束已经失效。
10.根据权利要求8所述的WTRU,其中所述CSI-RS或所述SSB通过空间准同位QCL而与物理下行链路控制信道PDCCH解调参考信号DM-RS相关联。
11.根据权利要求8所述的WTRU,其中所述处理器被配置成确定所述波束失效条件已经发生包括:所述处理器被配置成确定已经配置了与所述WTRU的所有服务波束相关联的物理下行链路控制信道PDCCH。
12.根据权利要求11所述的WTRU,其中所述处理器还被配置成针对来自所述网络实体的所述响应监视所述PDCCH。
13.根据权利要求8所述的WTRU,其中所述处理器被配置成基于上行链路同步状态选择所述PRACH资源。
14.根据权利要求8所述的WTRU,其中所述处理器还被配置成响应于从所述网络实体接收到与控制区相关联的波束指示和包括在下行链路控制信息DCI或介质接入控制MAC控制元素CE中的显式信号,确定用于接收下行链路传输的波束。
15.根据权利要求8所述的WTRU,其中所述候选波束是由所述WTRU通过基于子时间单元STU的波束扫描识别的。
16.一种在基站中实施的方法,所述方法包括:
发送信道状态信息参考信号CSI-RS或同步信号块SSB,以用于由无线发射接收单元WTRU确定波束失效条件已经发生,其中所述波束失效条件与所述WTRU和所述基站之间的传输相关联;
使用物理随机接入信道PRACH资源从所述WTRU接收波束失效恢复请求,其中所述波束失效恢复请求指示所述WTRU识别的候选波束,
其中,如果通过测量到CSI-RS或SSB中的至少一者上的波束质量超过用于解决所述波束失效条件的阈值而识别出所述候选波束,则接收所述波束失效恢复请求,用于接收所述波束失效恢复请求的PRACH资源与测量到的CSI-RS或SSB中的至少一者相关联;以及
在时间窗内向所述WTRU发送与所述波束失效恢复请求相关联的响应。
17.一种基站,包括:
处理器,被配置成:
发送信道状态信息参考信号CSI-RS或同步信号块SSB,以用于由无线发射接收单元WTRU确定波束失效条件已经发生,其中所述波束失效条件与所述WTRU和所述基站之间的传输相关联;
使用物理随机接入信道PRACH资源从所述WTRU接收波束失效恢复请求,其中所述波束失效恢复请求指示所述WTRU识别的候选波束,
其中,如果通过测量到CSI-RS或SSB中的至少一者上的波束质量超过用于解决所述波束失效条件的阈值而识别出所述候选波束,则接收所述波束失效恢复请求,用于接收所述波束失效恢复请求的PRACH资源与测量到的CSI-RS或SSB中的至少一者相关联;以及
在时间窗内向所述WTRU发送与所述波束失效恢复请求相关联的响应。
CN201880013893.XA 2017-01-06 2018-01-05 波束失效恢复 Active CN110521139B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202410546403.XA CN118473492A (zh) 2017-01-06 2018-01-05 波束失效恢复
CN202410546405.9A CN118509018A (zh) 2017-01-06 2018-01-05 波束失效恢复

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762443382P 2017-01-06 2017-01-06
US62/443,382 2017-01-06
US201762454486P 2017-02-03 2017-02-03
US62/454,486 2017-02-03
US201762500884P 2017-05-03 2017-05-03
US62/500,884 2017-05-03
US201762519614P 2017-06-14 2017-06-14
US62/519,614 2017-06-14
PCT/US2018/012563 WO2018129300A1 (en) 2017-01-06 2018-01-05 Beam failure recovery

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202410546403.XA Division CN118473492A (zh) 2017-01-06 2018-01-05 波束失效恢复
CN202410546405.9A Division CN118509018A (zh) 2017-01-06 2018-01-05 波束失效恢复

Publications (2)

Publication Number Publication Date
CN110521139A CN110521139A (zh) 2019-11-29
CN110521139B true CN110521139B (zh) 2024-05-24

Family

ID=61074545

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202410546405.9A Pending CN118509018A (zh) 2017-01-06 2018-01-05 波束失效恢复
CN201880013893.XA Active CN110521139B (zh) 2017-01-06 2018-01-05 波束失效恢复
CN202410546403.XA Pending CN118473492A (zh) 2017-01-06 2018-01-05 波束失效恢复

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202410546405.9A Pending CN118509018A (zh) 2017-01-06 2018-01-05 波束失效恢复

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202410546403.XA Pending CN118473492A (zh) 2017-01-06 2018-01-05 波束失效恢复

Country Status (4)

Country Link
US (3) US11082286B2 (zh)
EP (1) EP3566336A1 (zh)
CN (3) CN118509018A (zh)
WO (1) WO2018129300A1 (zh)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN108289016B (zh) * 2017-01-09 2023-10-24 华为技术有限公司 无线通信的方法、终端设备和网络设备
WO2018143391A1 (ja) * 2017-02-03 2018-08-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7017312B2 (ja) * 2017-02-20 2022-02-08 株式会社Nttドコモ 無線基地局、及び、無線通信方法
CN116318301A (zh) * 2017-03-09 2023-06-23 Lg 电子株式会社 无线通信系统中执行波束恢复的方法及其设备
CN117221061A (zh) * 2017-03-22 2023-12-12 交互数字专利控股公司 用于下一代无线通信系统的参考信号的方法及装置
US10686505B2 (en) * 2017-03-23 2020-06-16 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery of single/multi-beam pair link (BPL) in multi-beam based system
US10602520B2 (en) * 2017-03-24 2020-03-24 Qualcomm Incorporated Multi-link control beam switching
WO2018183991A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation Beam management procedure triggering and signaling delivery in fall-back mode
EP3556041B1 (en) 2017-04-03 2020-08-05 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (ptrs) ports
CN118338425A (zh) * 2017-05-03 2024-07-12 交互数字专利控股公司 用于新无线电(nr)中的寻呼过程的方法和设备
CN108809369B (zh) * 2017-05-05 2023-11-03 华为技术有限公司 无线通信的方法、网络设备和终端设备
CA3062523C (en) 2017-05-05 2024-01-30 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network
US10992367B2 (en) * 2017-05-05 2021-04-27 Motorola Mobility Llc Indicating a beam switch request
WO2018201457A1 (en) * 2017-05-05 2018-11-08 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
WO2018204571A1 (en) 2017-05-05 2018-11-08 National Instruments Corporation Wireless communication system that performs beam reporting based on a combination of reference signal receive power and channel state information metrics
CN109151869B (zh) * 2017-06-19 2021-12-14 维沃移动通信有限公司 一种随机接入资源的配置方法、终端及网络设备
EP3649743A1 (en) * 2017-07-05 2020-05-13 Telefonaktiebolaget LM Ericsson (publ) A method and device for analog beamfinding
KR102474522B1 (ko) * 2017-07-10 2022-12-06 삼성전자 주식회사 이동 통신 시스템에서 rsrp을 측정하는 방법 및 장치
CN109391984B (zh) * 2017-08-10 2020-10-27 维沃移动通信有限公司 一种波束切换方法、移动终端及计算机可读存储介质
WO2019028734A1 (en) * 2017-08-10 2019-02-14 Mediatek Singapore Pte. Ltd. APPARATUS AND MECHANISM FOR PERFORMING BEAM MANAGEMENT AND BEAM FAILURE RECOVERY IN A NR SYSTEM
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US10855359B2 (en) 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US10567065B2 (en) * 2017-08-11 2020-02-18 National Instruments Corporation Radio frequency beam management and failure pre-emption
CN110710311B (zh) * 2017-08-11 2023-05-23 富士通株式会社 波束失败事件的触发条件的配置方法、装置和通信系统
US11277301B2 (en) 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
WO2019047152A1 (en) * 2017-09-08 2019-03-14 Qualcomm Incorporated TECHNIQUES AND APPARATUS TO IMPROVE NEW RADIO COVERAGE
US10567064B2 (en) * 2017-09-08 2020-02-18 At&T Intellectual Property I, L.P. Beam recovery for partial control channel failure
US10873862B2 (en) * 2017-09-12 2020-12-22 Mediatek Inc. Reference signal design for beamforming in wireless communication systems
JP7161832B2 (ja) * 2017-09-28 2022-10-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバ実行におけるマルチビームランダムアクセス手順
US11611468B2 (en) 2017-09-28 2023-03-21 Comcast Cable Communications, Llc Beam management with DRX configuration
CN109863700B (zh) * 2017-09-30 2022-08-19 北京小米移动软件有限公司 数据传输方法及装置
US11647493B2 (en) * 2017-10-06 2023-05-09 Qualcomm Incorporated Techniques and apparatuses for using a second link for beam failure recovery of a first link
CN109699034B (zh) * 2017-10-20 2022-03-29 维沃移动通信有限公司 一种波束失败恢复的处理方法及终端
US10582503B2 (en) 2017-11-10 2020-03-03 Apple Inc. UE initiated beam management procedure
CA3024596A1 (en) 2017-11-16 2019-05-16 Comcast Cable Communications, Llc Beam paging assistance
CN109803423A (zh) 2017-11-17 2019-05-24 华为技术有限公司 信号传输方法、相关设备及系统
KR20190070146A (ko) * 2017-12-12 2019-06-20 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 이용하여 신호를 송수신하기 위한 장치 및 방법
EP3735019A4 (en) * 2017-12-27 2021-08-04 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND RADIO COMMUNICATION PROCEDURES
US10863570B2 (en) 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
US10784944B2 (en) 2018-01-09 2020-09-22 Ofinno, Llc Timing advance in beam failure recovery request transmission
KR102463553B1 (ko) * 2018-01-12 2022-11-04 삼성전자 주식회사 차세대 통신 시스템에서 빔 정보 보고 방법 및 장치
CN110034844B (zh) * 2018-01-12 2021-03-09 电信科学技术研究院有限公司 一种信息传输方法、装置、第一设备及第二设备
US11540150B2 (en) * 2018-01-19 2022-12-27 Qualcomm Incorporated Beam recovery procedure using a second component carrier
US11239893B2 (en) * 2018-01-24 2022-02-01 Qualcomm Incorporated Quasi co-location assumptions for aperiodic channel state information reference signal triggers
US11089487B2 (en) * 2018-01-31 2021-08-10 Qualcomm Incorporated Cross-band QCL beam determination
EP3751889B1 (en) * 2018-02-07 2022-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CA3033533A1 (en) 2018-02-09 2019-08-09 Ali Cirik Beam failure recovery procedure in carrier aggregation
EP3528398A1 (en) * 2018-02-15 2019-08-21 Comcast Cable Communications LLC Beam failure report
US10863582B2 (en) * 2018-02-16 2020-12-08 Apple Inc. Methods to signal antenna panel capability of user equipment (UE) for carrier aggregation (CA) in millimeter-wave (MMWAVE) frequency bands
WO2019161784A1 (en) * 2018-02-23 2019-08-29 Mediatek Inc. Default beam for uplink transmission after connection reestablishment
WO2019166016A1 (en) * 2018-03-02 2019-09-06 FG Innovation Company Limited Scell selection for beam failure recovry
US11051353B2 (en) * 2018-03-19 2021-06-29 Apple Inc. PUCCH and PUSCH default beam considering beam failure recovery
US10972952B2 (en) * 2018-03-22 2021-04-06 Asustek Computer Inc. Method and apparatus for PDCCH monitoring in a wireless communication system
US10764932B2 (en) * 2018-03-23 2020-09-01 Qualcomm Incorporated Beam switch and beam failure recovery
EP4132185B1 (en) 2018-03-30 2024-06-26 ResMed, Inc. Scheduling request based beam failure recovery
EP3547566B1 (en) 2018-03-30 2023-07-05 Comcast Cable Communications, LLC Configuration for beam failure recovery
US11039350B2 (en) 2018-04-02 2021-06-15 Comcast Cable Communications, Llc Beam failure recovery
MX2019013702A (es) * 2018-04-02 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para determinar señal de referencia, dispositivo de red, equipo de usuario y medio de almacenamiento informatico.
US11336357B2 (en) * 2018-04-05 2022-05-17 Nokia Technologies Oy Beam failure recovery for serving cell
KR102495977B1 (ko) 2018-04-12 2023-02-03 삼성전자 주식회사 무선 통신 시스템에서 단말 및 이의 제어 방법
US11095355B2 (en) 2018-05-10 2021-08-17 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures
US11310816B2 (en) * 2018-07-10 2022-04-19 Qualcomm Incorporated Associating a downlink reference signal for positioning of a user equipment with an uplink reference signal for transmission by the user equipment
AU2018432105B2 (en) 2018-07-13 2024-08-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for indicating beam failure recovery, device, and storage medium
CN111801969A (zh) * 2018-07-13 2020-10-20 Oppo广东移动通信有限公司 波束失败恢复实现方法、装置、芯片及计算机程序
CN110719635B (zh) 2018-07-13 2021-09-17 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
ES2932269T3 (es) 2018-07-16 2023-01-17 Beijing Xiaomi Mobile Software Co Ltd Método de control de temporizador, aparato de control de temporizador y medio legible por ordenador
CN110740480B (zh) * 2018-07-18 2021-08-24 维沃移动通信有限公司 用于波束失败恢复的方法、终端设备和网络侧设备
JP7136897B2 (ja) * 2018-07-20 2022-09-13 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11856422B2 (en) 2018-07-20 2023-12-26 Beijing Xiaomi Mobile Software Co., Ltd. Beam failure recovery request sending and response methods and devices, and storage medium
CN109076556B (zh) * 2018-07-25 2019-11-15 北京小米移动软件有限公司 随机接入方法、装置、电子设备和计算机可读存储介质
US11546867B2 (en) 2018-07-25 2023-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and apparatus
JP6961073B2 (ja) 2018-07-31 2021-11-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける端末の制御信号モニタリング方法、及び前記方法を用いる端末
JP7170836B2 (ja) * 2018-07-31 2022-11-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 初期アクセスを確立するための端末、基地局及び方法
EP3821538B1 (en) * 2018-08-07 2022-05-04 Ofinno, LLC Cell grouping in beam failure recovery procedure
US11304077B2 (en) * 2018-08-09 2022-04-12 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
US11012137B2 (en) 2018-08-09 2021-05-18 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
WO2020031343A1 (ja) * 2018-08-09 2020-02-13 株式会社Nttドコモ ユーザ端末および無線通信方法
WO2020029162A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Beam failure recovery request transmission for repetitious communication
EP3836418A4 (en) * 2018-08-10 2022-03-30 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN110536429B (zh) * 2018-08-10 2023-04-18 中兴通讯股份有限公司 直通链路波束管理方法、装置、设备、及可读存储介质
KR20200020567A (ko) * 2018-08-17 2020-02-26 삼성전자주식회사 무선 통신 시스템에서의 기준 신호 빔 정보 설정 및 지시 방법 및 장치
EP3644521A4 (en) * 2018-08-22 2020-08-26 LG Electronics Inc. METHOD FOR UPLINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR IT
JP2022501859A (ja) * 2018-08-30 2022-01-06 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 上り信号の送信方法及びデバイス
WO2020048443A1 (en) * 2018-09-07 2020-03-12 Intel Corporation Apparatus and method for beam failure recovery
US12028144B2 (en) 2018-09-10 2024-07-02 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for reporting beam failure of secondary serving cell, and storage medium
CN112567843B (zh) 2018-09-14 2023-04-28 Oppo广东移动通信有限公司 一种链路恢复过程的处理方法及装置、终端
EP3627721A1 (en) 2018-09-24 2020-03-25 Comcast Cable Communications LLC Beam failure recovery procedures
CA3056608A1 (en) 2018-09-25 2020-03-25 Comcast Cable Communications, Llc Beam configuration for secondary cells
US11405929B2 (en) * 2018-09-28 2022-08-02 Mediatek Inc. Electronic device and method for beam failure recovery
US11696275B2 (en) * 2018-09-28 2023-07-04 Apple Inc. Spatial assumption configuration for new radio (NR) downlink transmission
WO2020062085A1 (en) * 2018-09-28 2020-04-02 Nokia Shanghai Bell Co., Ltd. Carrier selection for beam failure recovery
CN110972171B (zh) * 2018-09-28 2022-05-06 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
WO2020070238A1 (en) 2018-10-05 2020-04-09 Nokia Technologies Oy Prioritizing beam recovery measurements over other measurements
US11265949B2 (en) * 2018-10-08 2022-03-01 Qualcomm Incorporated Fast secondary cell recovery for ultra-reliable low-latency communication
WO2020073160A1 (en) * 2018-10-08 2020-04-16 Qualcomm Incorporated Radio link and beam failure management
CN111083738B (zh) 2018-10-22 2022-10-21 中国移动通信有限公司研究院 一种负载均衡方法及设备
US11201661B2 (en) * 2018-10-24 2021-12-14 Qualcomm Incorporated Beam failure recovery with supplementary uplink
JP7431229B2 (ja) * 2018-11-01 2024-02-14 インターデイジタル パテント ホールディングス インコーポレイテッド 障害のないセルでのビーム障害回復
US20210410185A1 (en) * 2018-11-02 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive sensing mechanism for unlicensed networks
CN117202270A (zh) * 2018-11-02 2023-12-08 株式会社Ntt都科摩 用户终端以及无线通信方法
US11172457B2 (en) 2018-11-14 2021-11-09 Qualcomm Incorporated Transmission configuration indication state ordering for an initial control resource set
WO2020102975A1 (en) * 2018-11-20 2020-05-28 Qualcomm Incorporated Random access channel (rach) -less procedure
EP3888410A1 (en) * 2018-11-30 2021-10-06 Nokia Technologies Oy Failure recovery of sidelink with beamforming
US11337225B2 (en) * 2018-12-27 2022-05-17 Qualcomm Incorporated Beam recovery procedure for full duplex operation
CN111277378B (zh) 2018-12-29 2021-08-17 维沃移动通信有限公司 信息的接收方法、发送方法、终端及网络侧设备
CN111385890B (zh) * 2018-12-29 2023-05-02 成都华为技术有限公司 一种波束失败恢复方法及装置
US11438887B2 (en) * 2019-01-11 2022-09-06 Qualcomm Incorporated Default beam identification and beam failure detection in cross carrier scheduling
US10992364B2 (en) * 2019-01-18 2021-04-27 Verizon Patent And Licensing Inc. Systems and methods for adaptive beamforming management
KR20200100002A (ko) * 2019-02-15 2020-08-25 현대자동차주식회사 사이드링크 통신에서 빔 관리 방법 및 장치
CN111786757B (zh) * 2019-04-04 2022-05-31 大唐移动通信设备有限公司 Dmrs端口的传输配置指示方法、相关装置及存储介质
CN111867136B (zh) * 2019-04-30 2022-08-26 大唐移动通信设备有限公司 一种波束切换方法和设备
US11349548B2 (en) * 2019-05-31 2022-05-31 Center Of Excellence In Wireless Technology Method for detecting beam failure event by base station in wireless network
US11638255B2 (en) 2019-06-21 2023-04-25 Qualcomm Incorporated Techniques updating beams in periodic transmissions
US11258547B2 (en) 2019-06-21 2022-02-22 Qualcomm Incorporated Techniques for performing retransmission based on a beam sweep
WO2020259838A1 (en) * 2019-06-27 2020-12-30 Apple Inc. Techniques for user equipment beamforming
US11444680B2 (en) 2019-07-18 2022-09-13 Qualcomm Incorporated Beam switching in a high radio frequency spectrum band
US20220303795A1 (en) * 2019-08-13 2022-09-22 Idac Holdings, Inc. Power saving signal operations
US10973044B1 (en) * 2019-10-03 2021-04-06 Qualcomm Incorporated Default spatial relation for SRS/PUCCH
US11985515B2 (en) * 2019-11-04 2024-05-14 Qualcomm Incorporated Methods and apparatuses for dynamic antenna array reconfiguration and signaling in millimeter wave bands
US11552691B2 (en) * 2019-12-16 2023-01-10 Qualcomm Incorporated Beam recovery grouping
US11943777B2 (en) * 2019-12-20 2024-03-26 Qualcomm Incorporated Determining a default uplink (UL) transmission configuration indicator (TCI) state
US12040860B2 (en) 2020-01-21 2024-07-16 Qualcomm Incorporated Techniques for antenna subset selection in upper millimeter wave bands
US11916725B2 (en) * 2020-02-07 2024-02-27 Qualcomm Incorporated Determining a duration of a resetting time period after uplink beam failure
US11838778B2 (en) * 2020-05-20 2023-12-05 Qualcomm Incorporated Wireless node self-interference measurements and uplink beam management for full duplex transmissions
JP7534452B2 (ja) 2020-06-22 2024-08-14 ノキア テクノロジーズ オサケユイチア マルチ送受信ポイントシナリオにおける送受信ポイント固有ビーム障害指示
EP4186193A2 (en) * 2020-08-06 2023-05-31 Huawei Technologies Co., Ltd. Methods and apparatus for user equipment-anticipated common beam switching
US20220086857A1 (en) * 2020-09-16 2022-03-17 Qualcomm Incorporated Beam pair indication and beam reset after beam failure recovery
WO2022057461A1 (en) * 2020-09-21 2022-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for beam failure recovery, user equipment
CN114338314A (zh) * 2020-09-30 2022-04-12 中兴通讯股份有限公司 信号发送方法、频偏估计方法、通信网络系统、终端
EP4222906A4 (en) * 2020-10-02 2024-07-03 Apple Inc CONFIGURATION AND DEPLOYMENT OF PHYSICAL DOWNLINK CONTROL CHANNEL COMMUNICATIONS WITH IMPROVED RELIABILITY
US20240155719A1 (en) * 2021-05-18 2024-05-09 Qualcomm Incorporated Uplink channel transmissions using per-transmit-receive-point-and-panel power control parameters
EP4113857A1 (en) 2021-06-28 2023-01-04 Nokia Technologies Oy Beam switching
EP4381615A1 (en) * 2021-08-04 2024-06-12 Qualcomm Incorporated Digital beamforming based on unique pre-discrete fourier transform spreading sequences
US12068832B2 (en) * 2021-11-30 2024-08-20 Qualcomm Incorporated Beam selection and codebook learning based on XR perception
KR20230170364A (ko) * 2022-06-10 2023-12-19 삼성전자주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247291A (zh) * 2012-04-19 2014-12-24 三星电子株式会社 用于协作多点通信系统的参考符号端口的准同位识别的方法和装置
WO2016165128A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 传输信息的方法、基站和用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088329A1 (en) * 2009-01-30 2010-08-05 Interdigital Patent Holdings, Inc. Method and apparatus for performing physical dedicated channel establishment and monitoring procedures
JP6121931B2 (ja) * 2014-03-20 2017-04-26 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
US10476563B2 (en) * 2014-11-06 2019-11-12 Futurewei Technologies, Inc. System and method for beam-formed channel state reference signals
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
US10116349B2 (en) * 2016-05-26 2018-10-30 Futurewei Technologies, Inc. System and method for time division duplexed multiplexing in transmission-reception point to transmission-reception point connectivity
CN107734678B (zh) * 2016-08-12 2023-05-23 中兴通讯股份有限公司 一种信息传输方法、装置和系统
US11696272B2 (en) * 2016-11-03 2023-07-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method, terminal device and network device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247291A (zh) * 2012-04-19 2014-12-24 三星电子株式会社 用于协作多点通信系统的参考符号端口的准同位识别的方法和装置
WO2016165128A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 传输信息的方法、基站和用户设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MediaTek Inc..R1-1612131 Beam Recovery Considerations for Above-6 GHz.《3GPP TSG RAN WG1 Meeting #87》.2016,第2-3节. *
R1-1608675 On Qusai-Co-Location/Beam for NR MIMO;ZTE Corporation等;《3GPP TSG RAN WG1 Meeting #86bis》;20161014;全文 *
R1-1611422 Discussion on beam recovery mechanism;ZTE等;《3GPP TSG RAN WG1 Meeting #87》;20161118;第2节 *
R1-1612131 Beam Recovery Considerations for Above-6 GHz;MediaTek Inc.;《3GPP TSG RAN WG1 Meeting #87》;20161118;第2-3节 *
R1-1612189 Discussion on beam recovery for NR;CMCC;《3GPP TSG RAN WG1 #87》;20161118;第2-5节 *

Also Published As

Publication number Publication date
CN118473492A (zh) 2024-08-09
CN118509018A (zh) 2024-08-16
US11082286B2 (en) 2021-08-03
CN110521139A (zh) 2019-11-29
US11722361B2 (en) 2023-08-08
US20200059398A1 (en) 2020-02-20
US12068909B2 (en) 2024-08-20
WO2018129300A8 (en) 2019-08-22
WO2018129300A1 (en) 2018-07-12
US20210359900A1 (en) 2021-11-18
EP3566336A1 (en) 2019-11-13
US20230344701A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
CN110521139B (zh) 波束失效恢复
US20230362968A1 (en) Beam management in a wireless network
TWI710227B (zh) 多trp之波束管理
CN110089044B (zh) 基于群组的波束管理
US20210159966A1 (en) Beam indication for 5g new radio
US20200136708A1 (en) Uplink beam management
US20240097942A1 (en) Interference reduction for reference symbols in urllc/embb multiplexing
WO2018232090A1 (en) Unified beam management in a wireless network
TW201906466A (zh) 彈性的基於srs的上鏈波束管理
WO2024173491A1 (en) Prach transmission associated with mac ce and pdcch order

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant