WO2020135521A1 - 电动汽车hvh驱动方法、车载空调控制器及整车控制器 - Google Patents

电动汽车hvh驱动方法、车载空调控制器及整车控制器 Download PDF

Info

Publication number
WO2020135521A1
WO2020135521A1 PCT/CN2019/128365 CN2019128365W WO2020135521A1 WO 2020135521 A1 WO2020135521 A1 WO 2020135521A1 CN 2019128365 W CN2019128365 W CN 2019128365W WO 2020135521 A1 WO2020135521 A1 WO 2020135521A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pressure heater
controller
heating
power
Prior art date
Application number
PCT/CN2019/128365
Other languages
English (en)
French (fr)
Inventor
刘喜明
王舵
单明远
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2020135521A1 publication Critical patent/WO2020135521A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices

Definitions

  • the invention relates to the technical field of new energy vehicle control, in particular to an electric vehicle HVH driving method, a vehicle-mounted air-conditioning controller and a vehicle controller.
  • HVH High Voltage Heater
  • the control of HVH can generally be controlled by the HVH controller.
  • the HVH controller can monitor the actual working state of the HVH, the actual power consumption of the HVH, and use the power when driving according to the power signal uploaded by the HVH in power use; in addition, there are currently some models that are driven based on the absence of the HVH controller HVH, but it is only controlled by HVH single gear relay, which can only perform corresponding opening and closing operations directly based on user operation.
  • the vehicle controller receives the heating start signal, and then closes the HVH relay based on the start signal under normal conditions, and accordingly the VCU will allocate power to it, but when the HVH relay is faulty and not closed, the VCU will continue Distribute heating power to HVH, which leads to power waste and safety problems.
  • the present invention aims to propose a method for driving a high-pressure heater of an electric vehicle to at least solve the current increase in production and R&D costs of HVH controllers in the related art, and the inability to control the heating power distribution without HVH controllers, and Possible power waste and safety issues.
  • An electric vehicle high-pressure heater driving method is applied to an on-vehicle air-conditioning controller, wherein the electric vehicle high-pressure heater driving method includes: receiving a heating start instruction, and sending a high voltage to the vehicle controller based on the heating start instruction Heater turn-on request; receive an enable permission command in response to the high-pressure heater turn-on request from the vehicle controller; trigger closing of the high-pressure heater relay based on the enable permission command; detect the high-pressure heater relay The switch state of the switch, and send the closed state information corresponding to the closed state of the high-pressure heater relay to the vehicle controller, so that the vehicle controller can allocate power to the high-pressure heater based on the closed state information .
  • the driving method of the high-pressure heater of the electric vehicle further includes: acquiring a heating stop instruction, and based on the control The thermal stop command turns off the high-pressure heater relay; the heating stop command is sent to the vehicle controller so that the vehicle controller stops assigning the high-pressure heater based on the heating stop command power.
  • the heating stop command is automatically generated by the high-pressure heater due to over-temperature protection.
  • the driving method of the high-pressure heater of an electric vehicle according to the present invention has the following advantages:
  • the method for driving a high-pressure heater of an electric vehicle after operating and closing a high-pressure heater relay in response to an enable permission instruction, also detects the switching state of the high-pressure heater relay, and when the high-pressure heater relay is in the closed state
  • the closed state information is sent to the vehicle controller to ensure that the vehicle controller only distributes power when it is determined that the high-pressure heater relay is closed, avoiding the problem of energy waste when the HVH relay fails to respond to the enable permission signal, This also ensures that the line where the high-pressure heater is located will not have power distribution and over-high voltage when the fault is disconnected, which improves the safety performance during the driving of the high-pressure heater.
  • Another object of the present invention is to propose a method for driving a high-pressure heater of an electric vehicle to at least solve the current increase in production and R&D costs of HVH controllers in related technologies, and the inability to control the heating power distribution without HVH controllers, and possible Power waste and safety issues.
  • An electric vehicle high-pressure heater driving method is applied to a vehicle controller.
  • the electric vehicle high-pressure heater driving method includes: receiving a high-pressure heater turn-on request from a vehicle air-conditioning controller; and judging based on the high-pressure heater turn-on request Whether the vehicle power condition is satisfied; when the judgment result indicates that the vehicle power condition is satisfied, send an enable permission instruction to the vehicle air conditioning controller for triggering to close the high-voltage heater relay; receive an instruction from the vehicle air conditioning controller The closed state information of the high-pressure heater relay being in a closed state, and allocating power to the high-pressure heater based on the closed state information.
  • the high-pressure heater start request includes a target heating temperature
  • the determining whether the vehicle power condition is met includes: parsing the target heating temperature included in the high-pressure heater start request; based on the pre-configured target
  • the table data table of the high-pressure heater determines the target required heating power corresponding to the target heating temperature, wherein the target required heating power is the power to be distributed to the high-pressure heater, and the table
  • the data table includes multiple heating temperatures and corresponding multiple required heating powers; according to the current vehicle power and the target required heating power, it is determined whether the current vehicle power conditions are met.
  • the driving method of the high-pressure heater of the electric vehicle further includes: receiving a heating stop instruction from the in-vehicle air-conditioning controller, and based on the control The thermal stop command stops allocating power to the high-pressure heater.
  • the driving method of the high-pressure heater of an electric vehicle according to the present invention has the following advantages:
  • the vehicle controller may first determine whether the power condition of the vehicle is satisfied, and then send the The enable permission command to start the high-pressure heater avoids the high-voltage underpressure of the entire vehicle caused by the high-pressure heater being connected; then, it is high-voltage after receiving the closed state message indicating that the high-pressure heater relay is closed.
  • the heater distributes power, which ensures the effective distribution of the vehicle power and also improves the safety performance during the driving of the high-pressure heater.
  • An object of the present invention is to propose an on-vehicle air-conditioning controller to at least solve the current increase in production and R&D costs of HVH controllers in the related art, as well as the inability to control the heating power distribution without HVH controllers, and the possible waste of power And security issues.
  • the in-vehicle air-conditioning controller includes a heating request sending unit for receiving a heating start instruction, and based on the heating start instruction, sends a high-pressure heater start request to the vehicle controller; An enabling command receiving unit for receiving an enabling permission command in response to the high-pressure heater start request from the vehicle controller; a relay closing triggering unit for triggering closing high-pressure heating based on the enabling permission command Relay; closed state sending unit, used to detect the switching state of the high-pressure heater relay, and send the closed-state information corresponding to the closed state of the high-pressure heater relay to the vehicle controller, so that the vehicle The controller can allocate power to the high-pressure heater based on the closed state information.
  • the in-vehicle air-conditioning controller further includes: a heating shutdown request unit for acquiring a heating stop command, and disconnecting the high-pressure heater relay based on the heating stop command; a heat stop command sending unit, used Sending off state information indicating that the high-pressure heater relay is in an off state to the vehicle controller, so that the vehicle controller stops allocating power to the high-pressure heater based on the off state information .
  • Another object of the present invention is to propose a vehicle controller to at least solve the increase in production and R&D costs of HVH controllers in the current related art, as well as the inability to control the heating power distribution without the HVH controller and the power that may result Waste and safety issues.
  • a vehicle controller including: a heating request receiving unit for receiving a high-pressure heater turn-on request from an on-vehicle air-conditioning controller; a condition judgment unit for based on the high-pressure heater turning-on request, Determine whether the vehicle's power condition is satisfied; the enable command sending unit is used to send an enable permission instruction to the vehicle air conditioning controller when the judgment result indicates that the vehicle's power condition is satisfied, for triggering to close the high-voltage heater relay; power distribution The unit is configured to receive closed state information indicating that the high-voltage heater relay is in a closed state from the vehicle-mounted air conditioner controller, and allocate power to the high-pressure heater based on the closed state information.
  • the vehicle controller further includes: a power distribution stop unit, configured to receive a heating stop instruction from the vehicle-mounted air conditioner controller, and stop distributing power to the high-pressure heater based on the heating stop instruction.
  • a power distribution stop unit configured to receive a heating stop instruction from the vehicle-mounted air conditioner controller, and stop distributing power to the high-pressure heater based on the heating stop instruction.
  • the in-vehicle air-conditioning controller and the whole-vehicle controller have the same advantages as the above-mentioned electric vehicle high-pressure heater driving method over the prior art, and will not be repeated here.
  • an embodiment of the present invention further provides a machine-readable storage medium, the machine-readable storage medium includes a memory, and the memory stores instructions, the instructions are used to enable the machine to perform the above-mentioned high-pressure heating of an electric vehicle Drive method.
  • FIG. 1 is a flowchart of a method for driving a high-pressure heater of an electric vehicle applied to an on-board air-conditioning controller according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for driving a high-pressure heater of an electric vehicle applied to a vehicle controller according to another embodiment of the present invention
  • FIG. 3 is a flowchart of an example of the implementation principle of S22 in the driving method of the high-pressure heater of the electric vehicle in FIG. 2;
  • FIG. 4 is a principle flow chart of a driving method of a high-pressure heater of an electric vehicle according to an embodiment of the invention
  • FIG. 5 is a timing signal control diagram for driving the opening relay by applying the driving method of the high-pressure heater of an electric vehicle according to an embodiment of the present invention
  • FIG. 6 shows a timing signal control diagram for driving and closing the relay by applying the driving method of the high-pressure heater of an electric vehicle according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a vehicle-mounted air-conditioning controller according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a vehicle controller according to an embodiment of the invention.
  • a method for driving a high-pressure heater of an electric vehicle applied to an on-vehicle air-conditioning controller includes:
  • the execution subject of the method of the embodiment of the present invention may be an on-board air-conditioning controller.
  • the on-board air-conditioning controller can control heating and cooling of the vehicle, for example, by controlling the high-pressure heater HVH in the on-board air conditioning
  • the cooling function is realized by controlling the compressor in the vehicle air conditioner.
  • it mainly relates to the start-stop control of the high-pressure heater, and is particularly used to realize the optimization of the start-stop control process of the high-pressure heater HVH without the HVH controller.
  • the vehicle controller can assist the vehicle air conditioning controller to manage the turning on and turning off of the high-pressure heater.
  • the heating start command it can be triggered by the user by touching the heating button on the vehicle's air conditioning panel.
  • the vehicle air conditioning controller After the vehicle air conditioning controller receives the heating start command, it will not directly close the high-pressure heater relay, but instead The vehicle controller sends a high-pressure heater start request to prepare the vehicle controller to start the high-pressure heater, for example, to calculate the target required heating power to be allocated to the high-pressure heater.
  • the heating start instruction may also include the target heating temperature requested by the user, thereby enabling the vehicle controller to determine the heating power corresponding to the target heating temperature.
  • the vehicle controller may be that the vehicle controller generates an enable permission instruction when the high-pressure heater startup condition is permitted, and then sends the enable permission instruction to the vehicle air conditioning controller.
  • the vehicle air-conditioning controller can trigger to close the high-voltage heater relay.
  • the onboard air-conditioning controller may not control the closing of the high-pressure heater relay based on the enable permission command.
  • the vehicle controller in the related art does not know about high-pressure heating Whether the relay is closed, so it will continue to distribute power to the HVH; in this way, there is a situation in the current related art that because the high-pressure heater relay is off and the vehicle controller will also allocate power to the high-pressure heater , Leading to power waste and safety issues.
  • the detection of the switching state of the high-voltage heater relay it can be implemented by various means, for example, it can be detected based on the switching state detector, and so on.
  • the switching state of the high-pressure heater relay is also detected, and when the high-pressure heater relay is in the closed state, the closed state information is sent to the whole
  • the vehicle controller ensures that the vehicle controller only distributes power when it determines that the high-pressure heater relay is closed, avoiding the problem of energy waste caused by the HVH relay not responding to the enable permission signal, and also guarantees high-pressure heating
  • the line where the device is located will not have power distribution and over-high voltage when the fault is disconnected, which improves the safety performance during the driving of the high-pressure heater.
  • the high-pressure heater needs to be turned off. It may be recommended to use the following method to shut down or stop the operation of the high-pressure heater: first, obtain the heating stop command, and based on The heating stop command turns off the high-pressure heater relay; then, the heating stop command is sent to the vehicle controller so that the vehicle controller stops allocating power to the high-pressure heater based on the heating stop command.
  • the heating stop command may be issued due to the user's interactive operation of the heating stop control of the vehicle air conditioning panel
  • the heating stop command may also be a high-pressure heater automatically due to over-temperature protection. generate.
  • the high-pressure heater has a PTC (Positive Temperature Coefficient, positive temperature coefficient) characteristic. When the temperature of the high-pressure heater HVH exceeds the thermal protection temperature threshold, the heating stop command is automatically generated.
  • the closed state information is used to trigger the vehicle controller to perform power distribution to ensure that the relay is closed to allocate power to the high-pressure heater to avoid energy waste and hidden safety hazards;
  • the heating stop command is used to directly disconnect the relay. At this stage, it is not necessary to detect the status of the relay and report it to the vehicle controller for processing, but directly disconnect the high-pressure heater relay according to the heating stop command.
  • the vehicle air conditioning controller may also send a heating stop command to the vehicle controller, so that the vehicle controller is based on the control
  • the thermal stop command quickly stops allocating power to the high-pressure heater to efficiently save power consumption of the entire vehicle.
  • a method for driving a high-voltage heater of an electric vehicle applied to a vehicle controller includes:
  • the determination condition on whether the vehicle power condition is satisfied may be whether the vehicle is in a high-voltage power-on state, or may be other conditions, for example, whether the vehicle power is sufficient for distribution to a high-pressure heater, and so on.
  • the high-pressure heater start request includes a target heating temperature, such as a target heating temperature selected by a user or a target heating temperature determined adaptively, etc.
  • the judgment process for whether the vehicle power condition is met may be through Determine according to the flow shown in FIG.
  • the table data table corresponding to different high-pressure heaters can also be different, and the table data table can be provided by the heater manufacturer Or the car manufacturer calibrated by itself, the required heating power that can be matched with different heating temperatures can be obtained through the bench data table.
  • other data parameters can also be added to the gantry data table, for example, corresponding voltage parameters can be added to the gantry data table, so as to make it easier for the vehicle controller to accurately perform power distribution.
  • the judgment result indicates that the vehicle power is not satisfied, it may be directly controlled to stop responding to the start-stop operation regarding the high-pressure heater relay.
  • the vehicle controller may first determine whether the power condition of the vehicle is satisfied, and only send the enable for starting the high-pressure heater after the vehicle power is satisfied. Allow the instruction to avoid the high-voltage undervoltage of the whole vehicle caused by the high-pressure heater connected; then, after receiving the closed state information indicating that the high-pressure heater relay is closed, the target required heating power is allocated to the high-pressure heater , To ensure the effective distribution of vehicle power and also improve the safety performance of the high-pressure heater driving process.
  • the vehicle when the vehicle receives a heating stop command from the on-board air-conditioning controller, and based on the heating stop command, it stops allocating power to the high-pressure heater or the target required heating power.
  • the heating stop command may be triggered by user operation or automatically generated by the high-pressure heater due to over-temperature protection. Therefore, the vehicle controller stops allocating power to the high-pressure heater based on the heating stop command. The vehicle controller quickly stops allocating power to the high-pressure heater based on the heating stop command to efficiently save vehicle power consumption.
  • the principle flow of a method for driving a high-pressure heater of an electric vehicle includes a data interaction execution process between the vehicle air conditioning controller 10 and the vehicle controller 20:
  • the vehicle-mounted air-conditioning controller 10 receives the user's heating operation, generates an HVH start request according to the user's heating operation, and pre-configures the HVH bench data on the vehicle controller 20;
  • the vehicle air conditioning controller 10 sends an HVH start request to the vehicle controller 20;
  • the vehicle controller 20 judges whether the vehicle power condition is satisfied, and sends a permission enabling instruction to the vehicle air conditioning controller 10 when it is determined that the vehicle power condition is satisfied;
  • the vehicle air conditioner controller 10 controls the HVH relay to close based on the permission enable command
  • the vehicle air conditioning controller 10 detects the switching state of the high-pressure heater relay, and when the relay is in the closed state, sends the closed state information indicating that the relay is in the closed state to the vehicle controller 20;
  • the vehicle controller 20 allocates power or target required heating power based on the closed state information
  • the on-board air-conditioning controller 10 can generate a heating stop command and send the heating stop command to the vehicle controller 20;
  • the in-vehicle air-conditioning controller 10 triggers the opening of the HVH relay based on the heating stop command, and the vehicle controller 20 stops the power distribution to the high-pressure heater based on the heating stop command.
  • the actual working state of the HVH, the HVH start request, and the VCU to allow the HVH to enable three signals in addition to the actual HVH bench data to formulate a communication control strategy at the power usage timing.
  • the actual HVH bench data can be provided by the HVH manufacturer; (1)
  • the HVH start request is the HVH start request signal sent by the AC to the VCU after the driver presses the heating button on the air conditioning panel.
  • the AC receives the permission from the VCU After the enable command, control the HVH relay to close; (2)
  • the VCU allows the HVH to be enabled, which is the allowable enable command sent to the AC after the VCU receives the HVH start request and judges that the vehicle conditions are met; (3)
  • the actual working state of HVH is that the HVH relay is closed and reported by the AC to the VCU.
  • the control method without the HVH controller is formulated on the timing of power usage to avoid power over-discharge and power after the HVH is turned on and off during driving due to the lack of knowledge of the actual power consumption of the HVH Underutilized problems. As shown in FIG.
  • FIG. 5 shows a timing signal control diagram for driving the opening relay by applying the driving method of the high-pressure heater of an electric vehicle according to an embodiment of the present invention; where, for the introduction timing of the actual power of HVH, the VCU allowed HVH enable signal and HVH should be considered The actual working status signal, these two signals should take the rising edge of the detection signal as input, and the rising edge of any signal should be taken into account the actual power learned by the HVH bench for power distribution.
  • the AC sends the HVH turn-on request to the VCU at t1.
  • the VCU sends the HVH enable signal to the AC at t2.
  • the AC controls the HVH relay to close, and sends the relay closed state to the AC after the HVH relay is closed, and then needs to consider the power generated by the HVH at time T1.
  • the HVH stops working due to self-overtemperature protection during operation, and at the same time opens the HVH relay.
  • the HVH will automatically close the relay when the overtemperature protection is released.
  • the power generated by HVH also needs to be considered.
  • FIG. 6 shows a timing signal control diagram for driving and closing the relay using the driving method of the high-pressure heater of an electric vehicle according to an embodiment of the present invention
  • the actual working state signal of the HVH should be considered.
  • the actual power consumption of HVH is treated as 0kw by default.
  • the HVH is actually operated at t2.
  • the status is updated.
  • the VCU sends a command that does not allow the HVH to be enabled to the AC, thereby first opening the relay to update the HVH opening and closing state.
  • FIGS 5-6 above show the implementation effect of the method of the embodiment of the present invention.
  • the following will describe the progress of the embodiment of the present invention from the reverse side with reference to the comparative example: If the HVH start request signal is used as the actual power consumption introduction time for HVH, It will lead to the situation that the HVH relay in the driving has not been disconnected and there is still power, but the VCU thinks that the HVH power is 0, which in turn leads to the problem of power over-discharge; and, if the VCU allows the HVH enable signal as the actual power consumption of the HVH, the opportunity will be introduced. There is a problem that the actual power consumption of the HVH has become 0kw, but the VCU still believes that the HVH is consuming power, which in turn leads to the problem of insufficient power utilization.
  • the timing of power introduction after the HVH is turned on and off is controlled, which can overcome the above-mentioned problems, and can be driven from the power when driving in the control mode without the HVH controller.
  • the strategy formulation can achieve the same effect as the control mode of the HVH controller, thereby saving R&D and production costs.
  • a vehicle-mounted air-conditioning controller 10 includes: a heating request sending unit 701 for receiving a heating start command and sending high voltage to the vehicle controller based on the heating start command Heater turn-on request; enable command receiving unit 702 for receiving an enable permission command in response to the high-pressure heater turn-on request from the vehicle controller; relay closing trigger unit 703 for controlling based on the enable It can allow instructions to trigger the closing of the high-pressure heater relay; the closed state sending unit 704 is used to detect the switching state of the high-pressure heater relay and send the closed state information corresponding to the closed state of the high-pressure heater relay to the vehicle A controller to enable the vehicle controller to allocate power to the high-pressure heater based on the closed state information.
  • the in-vehicle air-conditioning controller 10 further includes: a heating shutdown request unit 705 for acquiring a heating stop instruction, and disconnecting the high-pressure heater relay based on the heating stop instruction;
  • the instruction sending unit 706 is used to send the off-state information indicating that the high-pressure heater relay is in the off state to the vehicle controller, so that the vehicle controller stops based on the off-state information.
  • the high-pressure heater distributes power.
  • the vehicle controller 20 includes: a heating request receiving unit 801 for receiving a high-pressure heater turn-on request from a vehicle-mounted air-conditioning controller; and a condition judging unit 802 for The high-pressure heater start request is used to determine whether the vehicle power condition is met; the enable command sending unit 803 is used to send an enable permission instruction to the vehicle air conditioning controller for triggering when the judgment result indicates that the vehicle power condition is met Close the high-voltage heater relay; a power distribution unit 804 for receiving closed-state information indicating that the high-pressure heater relay is in a closed state from the in-vehicle air-conditioning controller, and heating the high-pressure heater based on the closed-state information The device distributes power.
  • the vehicle controller 20 further includes: a power distribution stop unit 805 for receiving a heating stop instruction from the in-vehicle air-conditioning controller, and stopping the high voltage based on the heating stop instruction The heater distributes power.
  • an embodiment of the present invention further provides a machine-readable storage medium, the machine-readable storage medium includes a memory, and the memory stores instructions, the instructions are used to enable the machine to perform the above-mentioned high-pressure heating of an electric vehicle Drive method.
  • the machine-readable storage medium includes but is not limited to phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), only Read memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (Flash) or other memory technologies, read-only disc read-only memory (CD-ROM), digital versatile disc (DVD) ) Or other optical storage, magnetic cassette tape, magnetic tape storage or other magnetic storage devices and other media that can store program codes.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM only Read memory
  • EEPROM electrically erasable programmable read-only memory
  • flash flash memory
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • optical storage magnetic cassette tape, magnetic tape storage or other magnetic storage devices and other media that can store program codes.

Abstract

一种电动汽车HVH驱动方法,包括:接收制热启动指令,并基于制热启动指令向整车控制器(20)发送高压加热器开启请求;从整车控制器(20)接收响应于高压加热器开启请求的使能允许指令;基于使能允许指令,触发闭合高压加热器继电器;检测高压加热器继电器的开关状态,并将对应高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器(20)。由此,避免了HVH继电器未响应使能允许信号闭合时所导致的能量浪费的问题,还提高了高压加热器驱动过程中的安全性能。还提供了一种车载空调控制器及一种整车控制器。

Description

电动汽车HVH驱动方法、车载空调控制器及整车控制器 技术领域
本发明涉及新能源汽车控制技术领域,特别涉及一种电动汽车HVH驱动方法、车载空调控制器及整车控制器。
背景技术
不同于燃油车可以通过内燃机余热进行驾驶舱的制热,纯电动汽车一般是通过HVH(High Voltage Heater,高压电加热器)对驾驶舱进行加热的。
目前针对HVH的控制,一般可以是由HVH控制器来控制的。其中,HVH控制器可以监控HVH实际工作状态、HVH实际消耗功率,在功率使用上根据HVH上传的功率信号,进行驱动时的功率使用;另外,目前也存在一些车型是基于无HVH控制器来驱动HVH的,但也只是利用HVH单挡继电器进行控制的,其只能基于用户操作而直接进行相应的开闭操作。
本申请的发明人在实践本申请的过程中发现目前相关技术中至少存在如下的问题:一方面,设置HVH控制器来专门管理高压电加热器会增大成本且还需要对HVH控制器做出适配性开发;另一方面,针对无HVH控制器的控制方式,在用户触发启动空调界面的HVH制热按键时,AC(Air Conditioner,空调)控制器会从VCU(Vehicle Control Unit,整车控制器)接收制热启动信号,进而正常状态下基于启动信号而闭合HVH继电器,并相应地VCU会为其分配功率,但当HVH继电器存在故障而未闭合的情况,此时VCU还会继续为HVH分配加热功率,而导致功率浪费和安全的问题。
需说明的是,以上针对相关技术的描述的目的,只在于令公众更清楚地了解本发明,且并不代表申请人承认上述相关技术为现有技术,并且其也还可以是处于研发阶段而暂未被公开的技术方案。
发明内容
有鉴于此,本发明旨在提出一种电动汽车高压加热器驱动方法,以至少解 决目前相关技术中HVH控制器增加生产和研发成本,以及无HVH控制器时无法良好地控制加热功率分配,并可能导致的功率浪费和安全的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种电动汽车高压加热器驱动方法,应用于车载空调控制器,其中所述电动汽车高压加热器驱动方法包括:接收制热启动指令,并基于所述制热启动指令向整车控制器发送高压加热器开启请求;从所述整车控制器接收响应于所述高压加热器开启请求的使能允许指令;基于所述使能允许指令,触发闭合高压加热器继电器;检测所述高压加热器继电器的开关状态,并将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得所述整车控制器能够基于所述闭合状态信息为所述高压加热器分配功率。
进一步的,在将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器之后,所述电动汽车高压加热器驱动方法还包括:获取制热停止指令,并基于所述制热停止指令断开所述高压加热器继电器;将所述制热停止指令发送至整车控制器,以使得所述整车控制器基于所述制热停止指令而停止为所述高压加热器分配功率。
进一步的,所述制热停止指令是所述高压加热器因过温保护而自动生成。
相对于现有技术,本发明所述的电动汽车高压加热器驱动方法具有以下优势:
本发明所述的电动汽车高压加热器驱动方法,在响应使能允许指令而操作闭合高压加热器继电器之后,还会检测高压加热器继电器的开关状态,并在高压加热器继电器处于闭合状态时将闭合状态信息发送至整车控制器,保障了整车控制器在确定高压加热器继电器处于闭合状态时才分配功率,避免了HVH继电器未响应使能允许信号闭合时所导致的能量浪费的问题,由此还保障了高压加热器所处线路在故障断开状态下也不会存在功率分配而过高压,提高了高压加热器驱动过程中的安全性能。
本发明的另一目的在于提出一种电动汽车高压加热器驱动方法,以至少解决目前相关技术中HVH控制器增加生产和研发成本,以及无HVH控制器时无法良好地控制加热功率分配,并可能导致的功率浪费和安全的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种电动汽车高压加热器驱动方法,应用于整车控制器,所述电动汽车高压加热器驱动方法包括:从车载空调控制器接收高压加热器开启请求;基于所述高压加热器开启请求,判断整车功率条件是否满足;当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器;从所述车载空调控制器接收用于指示所述高压加热器继电器处于闭合状态的闭合状态信息,并基于所述闭合状态信息为所述高压加热器分配功率。
进一步的,所述高压加热器开启请求包括目标制热温度,其中所述判断整车功率条件是否满足包括:解析所述高压加热器开启请求中所包含的目标制热温度;基于预配置的针对所述高压加热器的台架数据表,确定所述目标制热温度所对应的目标需求加热功率,其中所述目标需求加热功率为待分配至所述高压加热器的功率,且所述台架数据表中包括多个制热温度和对应的多个需求加热功率;根据当前整车功率和所述目标需求加热功率,判断当前整车功率条件是否满足。
进一步的,在基于所述开关状态信息为所述高压加热器分配功率之后,所述电动汽车高压加热器驱动方法还包括:从所述车载空调控制器接收制热停止指令,并基于所述制热停止指令停止为所述高压加热器分配功率。
相对于现有技术,本发明所述的电动汽车高压加热器驱动方法具有以下优势:
本发明所述的电动汽车高压加热器驱动方法中,整车控制器在接收到高压加热器开启请求之后,可以是首先判断整车功率条件是否满足,并在整车功率满足之后才发送用于启动高压加热器的使能允许指令,避免了高压加热器接入后所导致的整车高压欠压的情况;然后,在收到指示高压加热器继电器处于闭合状态的闭合状态信息之后才为高压加热器分配功率,保障了整车功率的有效分配并还提高了高压加热器驱动过程中的安全性能。
本发明的一目的在于提出一种车载空调控制器,以至少解决目前相关技术中HVH控制器增加生产和研发成本,以及无HVH控制器时无法良好地控制加热功率分配,并可能导致的功率浪费和安全的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车载空调控制器,所述车载空调控制器包括:制热请求发送单元,用于接收制热启动指令,并基于所述制热启动指令向整车控制器发送高压加热器开 启请求;使能指令接收单元,用于从所述整车控制器接收响应于所述高压加热器开启请求的使能允许指令;继电闭合触发单元,用于基于所述使能允许指令,触发闭合高压加热器继电器;闭合状态发送单元,用于检测所述高压加热器继电器的开关状态,并将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得所述整车控制器能够基于所述闭合状态信息为所述高压加热器分配功率。
进一步的,所述车载空调控制器还包括:制热关闭请求单元,用于获取制热停止指令,并基于所述制热停止指令断开所述高压加热器继电器;停热指令发送单元,用于将指示所述高压加热器继电器处于断开状态的断开状态信息发送至整车控制器,以使得所述整车控制器基于所述断开状态信息而停止为所述高压加热器分配功率。
本发明的另一目的在于提出一种整车控制器,以至少解决目前相关技术中HVH控制器增加生产和研发成本,以及无HVH控制器时无法良好地控制加热功率分配,并可能导致的功率浪费和安全的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种整车控制器,所述整车控制器包括:制热请求接收单元,用于从车载空调控制器接收高压加热器开启请求;条件判断单元,用于基于所述高压加热器开启请求,判断整车功率条件是否满足;使能指令发送单元,用于当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器;功率分配单元,用于从所述车载空调控制器接收用于指示所述高压加热器继电器处于闭合状态的闭合状态信息,并基于所述闭合状态信息为所述高压加热器分配功率。
进一步的,所述整车控制器还包括:功率分配停止单元,用于从所述车载空调控制器接收制热停止指令,并基于所述制热停止指令停止为所述高压加热器分配功率。
所述车载空调控制器和所述整车控制器与上述电动汽车高压加热器驱动方法相对于现有技术所具有的优势相同,在此不再赘述。
相应的,本发明实施例还提供一种机器可读存储介质,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行上 述的电动汽车高压加热器驱动方法。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明一实施例的应用于车载空调控制器的电动汽车高压加热器驱动方法的流程图;
图2为本发明另一实施例的应用于整车控制器的电动汽车高压加热器驱动方法的流程图;
图3为图2中电动汽车高压加热器驱动方法中S22的一示例的执行原理流程图;
图4为本发明一实施例的电动汽车高压加热器驱动方法的原理流程图;
图5示出的是应用本发明实施例的电动汽车高压加热器驱动方法驱动开启继电器的时序信号控制图;
图6示出的是应用本发明实施例的电动汽车高压加热器驱动方法驱动关闭继电器的时序信号控制图;
图7是本发明一实施例的车载空调控制器的结构框图;
图8是本发明一实施例的整车控制器的结构框图。
附图标记说明:
10     车载空调控制器         701     制热请求发送单元
702      使能指令接收单元       703     继电器闭合触发单元
704      闭合状态发送单元       705     制热关闭请求单元
706      停热指令发送单元       20      整车控制器
801      制热请求接收单元       802     条件判断单元
803      使能指令发送单元       804     功率分配单元
805      功率分配停止单元
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本发明。
如图1所示,本发明一实施例的应用于车载空调控制器的电动汽车高压加热器驱动方法,包括:
S11、接收制热启动指令,并基于用户制热启动指令向整车控制器发送高压加热器开启请求。
本发明实施例方法的执行主体,其可以是车载空调控制器,具体的,该车载空调控制器能够实现对车辆的制热和制冷的控制,例如通过对车载空调内的高压加热器HVH的控制以实现制热功能,通过对车载空调内的压缩机的控制以实现制冷功能。相应地,在本发明实施例中,主要涉及对高压加热器的启停控制,尤其是用于实现在无HVH控制器的情况下对高压加热器HVH的启停控制过程的优化。
在本发明实施例中,通过车载空调控制器与整车控制器之间的数据通信交互,使得整车控制器能够协助车载空调控制器管理高压加热器的开启与关闭。关于制热启动指令,其可以是用户通过触摸车辆的空调面板上的制热按钮所触发的,在车载空调控制器收到了该制热启动指令之后不会直接闭合高压加热器继电器,而是向整车控制器发送高压加热器开启请求,以令整车控制器为启动高压加热器做准备,例如计算待为高压加热器分配的目标需求加热功率。
另外,制热启动指令中还可以是包括用户所请求的目标制热温度,由此使得整车控制器能够确定出对应于目标制热温度的加热功率。
S12、从整车控制器接收响应于高压加热器开启请求的使能允许指令。
作为示例,其可以是在整车控制器判断高压加热器启动条件允许的情况下生成使能允许指令,进而将该使能允许指令发送至车载空调控制器。
S13、基于使能允许指令,触发闭合高压加热器继电器。
其中,在车载空调控制器接收到该使能允许指令之后,能够触发闭合高压加热器继电器。但是,在一些工况下,例如故障工况下,基于使能允许指令车载空调控制器可能并没有控制高压加热器继电器闭合,此时目前相关技术中的整车 控制器是并不知道高压加热器继电器是否已闭合的,所以其还是会继续为HVH分配功率;这样,就导致目前相关技术中存在因高压加热器继电器处于断开状态而整车控制器还会为高压加热器分配功率的情况,导致功率浪费和安全问题。
S14、检测高压加热器继电器的开关状态,并将对应高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得整车控制器能够基于闭合状态信息为高压加热器分配功率或目标需求加热功率。
关于高压加热器继电器的开关状态检测,其可以是借助各种方式来实现的,例如可以是基于开关状态检测器进行检测等等。
在本发明实施例中,在响应使能允许指令而操作闭合高压加热器继电器之后,还会检测高压加热器继电器的开关状态,并在高压加热器继电器处于闭合状态时将闭合状态信息发送至整车控制器,保障了整车控制器在确定高压加热器继电器处于闭合状态时才分配功率,避免了HVH继电器未响应使能允许信号闭合时所导致的能量浪费的问题,并还保障了高压加热器所处线路在故障断开状态下也不会存在功率分配而过高压,提高了高压加热器驱动过程中的安全性能。
在一些实施方式中,在高压加热器被启动了之后,需要对高压加热器进行关闭,可以是推荐使用以下方式来关闭或停止高压加热器的运行操作:首先,获取制热停止指令,并基于制热停止指令断开高压加热器继电器;然后,将制热停止指令发送至整车控制器,以使得整车控制器基于制热停止指令而停止为高压加热器分配功率。
需说明的是,制热停止指令一方面可以是由于用户对车辆空调面板的制热停止控件的交互操作而发出的,制热停止指令另一方面还可以是高压加热器因过温保护而自动生成。例如,高压加热器具有PTC(Positive Temperature Coefficient,正温度系数)特性,当高压加热器HVH的温度超过热保护温度阈值时,自动生成该制热停止指令。
相应地,在高压加热器的启动阶段,使用闭合状态信息触发整车控制器来进行功率分配,以保障继电器处于闭合状态时才为高压加热器分配功率,避免能量浪费和安全隐患;在高压加热器的关停阶段,直接使用制热停止指令来断开继电器,此阶段不需要再检测继电器的状态并上报整车控制器处理,而是直接根据制热停止指令而断开高压加热器继电器,由此实现了快速关断高压加热器,避免 了高压加热器过热烧坏;进一步的,车载空调控制器还可以是将制热停止指令发送至整车控制器,以使得整车控制器基于制热停止指令而快速停止为高压加热器分配功率,以高效地节约整车功率消耗。
如图2所示,本发明一实施例的应用于整车控制器的电动汽车高压加热器驱动方法,包括:
S21、从车载空调控制器接收高压加热器开启请求。
S22、基于高压加热器开启请求,判断整车功率条件是否满足。
其中,关于整车功率条件是否满足的判定条件可以是整车是否处于高压上电状态,也还可以是其他的条件,例如还可以是整车功率是否足够用来分配给高压加热器等等。
在一些实施方式中,高压加热器开启请求包括目标制热温度,例如用户选择的目标制热温度或自适应所确定的目标制热温度等,针对整车功率条件是否满足的判断过程可以是通过如图3所示的流程来确定:S221、解析高压加热器开启请求中所包含的目标制热温度;S222、基于预配置的针对高压加热器的台架数据表,确定目标制热温度所对应的目标需求加热功率,其中目标需求加热功率为待分配至高压加热器的功率,且该台架数据表中包括多个制热温度和对应的多个需求加热功率;S223、根据当前整车功率和目标需求加热功率,判断当前整车功率条件是否满足;示例性地,当整车功率大于目标需求加热功率,或者所分配的目标需求加热功率不会影响到整车功率满足车辆其他部件的正常运行的情况下,确定电动汽车的当前整车功率条件为满足,并允许目标需求加热功率待分配至高压加热器。
需说明的是,因不同高压加热器的加热特性是不同的,使得不同高压加热器所对应的台架数据表也可以是不同的,并且该台架数据表可以是由加热器厂商所提供的或车企自行标定的,通过该台架数据表能够得出与不同的制热温度分别相匹配的需求加热功率。另外,在该台架数据表中也还可以附加其他数据参数,例如可以是在台架数据表中附加对应的电压参数等等,以更加便于整车控制器精确地进行功率分配。
S23、当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器。
另外,当判断结果指示整车功率不满足时候,可以是直接控制停止响应关于高压加热器继电器的启停操作。
S24、从车载空调控制器接收用于指示高压加热器继电器处于闭合状态的闭合状态信息,并基于闭合状态信息为高压加热器分配功率或目标需求加热功率。
在本发明实施例中,整车控制器在接收到高压加热器开启请求之后,可以是首先判断整车功率条件是否满足,并在整车功率满足之后才发送用于启动高压加热器的使能允许指令,避免了高压加热器接入后所导致的整车高压欠压的情况;然后,在收到指示高压加热器继电器处于闭合状态的闭合状态信息之后才为高压加热器分配目标需求加热功率,保障了整车功率的有效分配并还提高了高压加热器驱动过程中的安全性能。
进一步地,在高压加热器的关断过程中,当车辆从车载空调控制器接收制热停止指令,并基于制热停止指令停止为高压加热器分配功率或目标需求加热功率。其中,该制热停止指令可以是由用户操作所触发或由高压加热器因过温保护而自动生成的,由此整车控制器基于制热停止指令而停止为高压加热器分配功率,实现了整车控制器基于制热停止指令而快速停止为高压加热器分配功率,以高效地节约整车功率消耗。
如图4所示,本发明一实施例的电动汽车高压加热器驱动方法的原理流程,其包括在车载空调控制器10与整车控制器20之间的数据交互执行过程:
1)车载空调控制器10接收用户制热操作,并根据用户制热操作生成HVH开启请求,在整车控制器20出预先配置有HVH台架数据;
2)车载空调控制器10发送HVH开启请求至整车控制器20;
3)整车控制器20判断整车功率条件是否满足,并在确定整车功率条件满足时发送允许使能指令至车载空调控制器10;
4)车载空调控制器10基于允许使能指令控制HVH继电器闭合;
5)车载空调控制器10检测高压加热器继电器的开关状态,并在继电器处于闭合状态时,发送指示继电器处于闭合状态的闭合状态信息至整车控制器20;
6)整车控制器20基于闭合状态信息而进行分配功率或目标需求加热功率;
7)在HVH因过温自保护时,车载空调控制器10可以生成制热停止指令,并发送制热停止指令至整车控制器20;
8)车载空调控制器10基于制热停止指令触发断开HVH继电器,并且,整车控制器20基于制热停止指令停止为高压加热器分配功率。
针对无HVH控制器的控制方式,在HVH开启和关闭后,若HVH功率使用时机不当,会导致驱动时整车功率过放或功率利用不充分的问题。在本发明实施例中提出了,在功率使用时机上结合HVH实际工作状态、HVH开启请求和VCU允许HVH使能三个信号外加HVH实际台架数据进行通信控制策略制定。其中,HVH实际台架数据可以是HVH厂家提供的;(1)HVH开启请求是驾驶员按下空调面板上加热按钮后,AC向VCU发送的HVH开启请求信号,AC在收到VCU发送的允许使能指令后,控制HVH继电器闭合;(2)VCU允许HVH使能,是VCU收到HVH开启请求后,在判断整车条件满足的前提下,向AC发送的允许使能指令;(3)HVH实际工作状态是HVH继电器闭合后由AC上报给VCU。
通过本发明实施例的技术方案,对无HVH控制器的控制方式,在功率使用时机上进行策略制定,避免因获悉不到HVH实际消耗功率而导致行车中开、关HVH后功率过放和功率利用不充分的问题。如图5,其示出了应用本发明实施例的电动汽车高压加热器驱动方法驱动开启继电器的时序信号控制图;其中,对于HVH实际功率的引入时机,应考虑VCU允许HVH使能信号和HVH实际工作状态信号,这两个信号应以检测信号上升沿为输入,检测到任一信号的上升沿都应将HVH台架获悉的实际功率考虑进来,用于功率分配。具体的,当驾驶员按下空调面板上HVH制热按键,t1时刻AC将HVH开启请求发送给VCU,VCU在判断整车满足HVH开启条件后,t2时刻VCU向AC发送允许HVH使能信号,AC控制HVH继电器闭合,并在HVH继电器闭合之后向AC发送继电器闭合状态,进而在T1时刻需要考虑HVH产生的功率。
相应地,在t3时刻HVH在工作过程中因自我过温保护而停止工作,同时断开HVH继电器,t4时刻当过温保护解除后HVH会自动闭合继电器,T2时刻也需要考虑HVH产生的功率。
如图6,其示出了应用本发明实施例的电动汽车高压加热器驱动方法驱动关闭继电器的时序信号控制图;对于HVH功率的引入时机,应考虑HVH实际工作状态信号,检测到该信号的下降沿后将HVH实际消耗功率默认按0kw处理。 具体的,驾驶员按下空调面板上的关闭HVH制热按键,t1时刻AC向VCU发送HVH不开启请求的同时执行HVH继电器的断开动作,检测到HVH继电器断开后t2时刻将HVH实际工作状态进行更新,t3时刻VCU向AC发送不允许HVH使能指令,由此实现了先断开继电器更新HVH开闭状态。
以上图5-6是执行本发明实施例方法的实施效果的展示,以下将结合对比例来从反面来描述本发明实施例的进步性:若以HVH开启请求信号作为HVH实际消耗功率引入时机,会导致行车中HVH继电器尚未断开仍有功率的情况,VCU却认为HVH功率为0,继而导致功率过放的问题;以及,若以VCU允许HVH使能信号作为HVH实际消耗功率引入时机,会存在HVH实际消耗功率已变为0kw,但VCU仍认为HVH在消耗功率,继而导致功率利用不充分的问题。
在本发明实施例驱动HVH的过程中,对HVH开启和关闭后功率引入时机进行了控制,能够克服上述问题,并能够在进行无HVH控制器的控制方式下的驱动时,通过从功率引入时机上进行策略制定,可以达到和有HVH控制器控制方式相等同的效果,从而节约了研发和生产成本。
如图7所示,本发明一实施例的车载空调控制器10,包括:制热请求发送单元701,用于接收制热启动指令,并基于所述制热启动指令向整车控制器发送高压加热器开启请求;使能指令接收单元702,用于从所述整车控制器接收响应于所述高压加热器开启请求的使能允许指令;继电闭合触发单元703,用于基于所述使能允许指令,触发闭合高压加热器继电器;闭合状态发送单元704,用于检测所述高压加热器继电器的开关状态,并将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得所述整车控制器能够基于所述闭合状态信息为所述高压加热器分配功率。
在一些实施方式中,所述车载空调控制器10还包括:制热关闭请求单元705,用于获取制热停止指令,并基于所述制热停止指令断开所述高压加热器继电器;停热指令发送单元706,用于将指示所述高压加热器继电器处于断开状态的断开状态信息发送至整车控制器,以使得所述整车控制器基于所述断开状态信息而停止为所述高压加热器分配功率。
如图8所示,本发明一实施例的整车控制器20,包括:制热请求接收单元801,用于从车载空调控制器接收高压加热器开启请求;条件判断单元802,用 于基于所述高压加热器开启请求,判断整车功率条件是否满足;使能指令发送单元803,用于当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器;功率分配单元804,用于从所述车载空调控制器接收用于指示所述高压加热器继电器处于闭合状态的闭合状态信息,并基于所述闭合状态信息为所述高压加热器分配功率。
在一些实施方式中,所述整车控制器20还包括:功率分配停止单元805,用于从所述车载空调控制器接收制热停止指令,并基于所述制热停止指令停止为所述高压加热器分配功率。
关于本发明实施例的车载空调控制器及整车控制器的更具体的细节,可以参照上文关于电动汽车高压加热器驱动方法的描述,且可以取得与上述的电动汽车高压加热器驱动方法相同或相应的技术效果,故在此便不赘述。
相应的,本发明实施例还提供一种机器可读存储介质,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行上述的电动汽车高压加热器驱动方法。其中,所述机器可读存储介质包括但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体(Flash Memory)或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种电动汽车高压加热器驱动方法,其特征在于,应用于车载空调控制器,其中所述电动汽车高压加热器驱动方法包括:
    接收制热启动指令,并基于所述制热启动指令向整车控制器发送高压加热器开启请求;
    从所述整车控制器接收响应于所述高压加热器开启请求的使能允许指令;
    基于所述使能允许指令,触发闭合高压加热器继电器;
    检测所述高压加热器继电器的开关状态,并将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得所述整车控制器能够基于所述闭合状态信息为所述高压加热器分配功率。
  2. 根据权利要求1所述的电动汽车高压加热器驱动方法,其特征在于,在将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器之后,所述电动汽车高压加热器驱动方法还包括:
    获取制热停止指令,并基于所述制热停止指令断开所述高压加热器继电器;
    将所述制热停止指令发送至整车控制器,以使得所述整车控制器基于所述制热停止指令而停止为所述高压加热器分配功率。
  3. 根据权利要求1所述的电动汽车高压加热器驱动方法,其特征在于,所述制热停止指令是所述高压加热器因过温保护而自动生成。
  4. 一种电动汽车高压加热器驱动方法,其特征在于,应用于整车控制器,所述电动汽车高压加热器驱动方法包括:
    从车载空调控制器接收高压加热器开启请求;
    基于所述高压加热器开启请求,判断整车功率条件是否满足;
    当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器;
    从所述车载空调控制器接收用于指示所述高压加热器继电器处于闭合状态的闭合状态信息,并基于所述闭合状态信息为所述高压加热器分配功率。
  5. 根据权利要求4所述的电动汽车高压加热器驱动方法,其特征在于,所述高压加热器开启请求包括目标制热温度,其中所述判断整车功率条件是否满足包括:
    解析所述高压加热器开启请求中所包含的目标制热温度;
    基于预配置的针对所述高压加热器的台架数据表,确定所述目标制热温度所对应的目标需求加热功率,其中所述目标需求加热功率为待分配至所述高压加热器的功率,且所述台架数据表中包括多个制热温度和对应的多个需求加热功率;
    根据当前整车功率和所述目标需求加热功率,判断当前整车功率条件是否满足。
  6. 根据权利要求4所述的电动汽车高压加热器驱动方法,其特征在于,在基于所述开关状态信息为所述高压加热器分配功率之后,所述电动汽车高压加热器驱动方法还包括:
    从所述车载空调控制器接收制热停止指令,并基于所述制热停止指令停止为所述高压加热器分配功率。
  7. 一种车载空调控制器,其特征在于,所述车载空调控制器包括:
    制热请求发送单元,用于接收制热启动指令,并基于所述制热启动指令向整车控制器发送高压加热器开启请求;
    使能指令接收单元,用于从所述整车控制器接收响应于所述高压加热器开启请求的使能允许指令;
    继电闭合触发单元,用于基于所述使能允许指令,触发闭合高压加热器继电器;
    闭合状态发送单元,用于检测所述高压加热器继电器的开关状态,并将对应所述高压加热器继电器处于闭合状态的闭合状态信息发送至整车控制器,以使得所述整车控制器能够基于所述闭合状态信息为所述高压加热器分配功率。
  8. 根据权利要求7所述的车载空调控制器,其特征在于,所述车载空调控 制器还包括:
    制热关闭请求单元,用于获取制热停止指令,并基于所述制热停止指令断开所述高压加热器继电器;
    停热指令发送单元,用于将指示所述高压加热器继电器处于断开状态的断开状态信息发送至整车控制器,以使得所述整车控制器基于所述断开状态信息而停止为所述高压加热器分配功率。
  9. 一种整车控制器,其特征在于,所述整车控制器包括:
    制热请求接收单元,用于从车载空调控制器接收高压加热器开启请求;
    条件判断单元,用于基于所述高压加热器开启请求,判断整车功率条件是否满足;
    使能指令发送单元,用于当判断结果指示整车功率条件满足时,发送使能允许指令至车载空调控制器,以用于触发闭合高压加热器继电器;
    功率分配单元,用于从所述车载空调控制器接收用于指示所述高压加热器继电器处于闭合状态的闭合状态信息,并基于所述闭合状态信息为所述高压加热器分配功率。
  10. 根据权利要求9所述的整车控制器,其特征在于,所述整车控制器还包括:
    功率分配停止单元,用于从所述车载空调控制器接收制热停止指令,并基于所述制热停止指令停止为所述高压加热器分配功率。
  11. 一种机器可读存储介质,其特征在于,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行:根据权利要求1至3中任一项所述的电动汽车高压加热器驱动方法;和/或根据权利要求4至6中任一项所述的电动汽车高压加热器驱动方法。
PCT/CN2019/128365 2018-12-29 2019-12-25 电动汽车hvh驱动方法、车载空调控制器及整车控制器 WO2020135521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811642406.4A CN110696584A (zh) 2018-12-29 2018-12-29 电动汽车hvh驱动方法、车载空调控制器及整车控制器
CN201811642406.4 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135521A1 true WO2020135521A1 (zh) 2020-07-02

Family

ID=69192992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128365 WO2020135521A1 (zh) 2018-12-29 2019-12-25 电动汽车hvh驱动方法、车载空调控制器及整车控制器

Country Status (2)

Country Link
CN (1) CN110696584A (zh)
WO (1) WO2020135521A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111845702A (zh) * 2020-08-10 2020-10-30 北京理工大学 一种插电式混合动力汽车能量管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968466B2 (ja) * 2007-09-10 2012-07-04 株式会社デンソー 車両用シート空調装置
CN102729767A (zh) * 2011-04-16 2012-10-17 福瑞德科技有限公司 一种电动汽车空调及暖风集成控制系统
CN103158495A (zh) * 2013-03-04 2013-06-19 浙江吉利汽车研究院有限公司杭州分公司 混合动力车辆用空调系统
CN106004331A (zh) * 2016-06-23 2016-10-12 浙江合众新能源汽车有限公司 一种电动汽车空调控制系统及控制方法
CN106921003A (zh) * 2016-10-25 2017-07-04 蔚来汽车有限公司 电动汽车电池包温度的智能控制系统和方法
US20170305234A1 (en) * 2014-08-20 2017-10-26 Idlesaver Llc Idle reduction system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238246A (ja) * 1992-02-26 1993-09-17 Matsushita Electric Ind Co Ltd 電気駆動自動車用空気調和装置
FR2697211B1 (fr) * 1992-10-26 1994-12-09 Valeo Thermique Habitacle Dispositif de refroidissement et de climatisation pour véhicule électrique.
JP4735198B2 (ja) * 2005-11-09 2011-07-27 パナソニック株式会社 リレー駆動装置
CN203739580U (zh) * 2013-12-25 2014-07-30 重庆长安铃木汽车有限公司 一种电动车暖风加热系统
CN104019527B (zh) * 2014-06-25 2016-06-08 安徽江淮汽车股份有限公司 一种电动汽车空调系统
CN104260616B (zh) * 2014-10-24 2016-12-07 北京长安汽车工程技术研究有限责任公司 一种电动汽车加热系统及方法
CN106427475A (zh) * 2016-11-24 2017-02-22 郑州比克新能源汽车有限公司 电动汽车ptc加热器双重保护装置及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968466B2 (ja) * 2007-09-10 2012-07-04 株式会社デンソー 車両用シート空調装置
CN102729767A (zh) * 2011-04-16 2012-10-17 福瑞德科技有限公司 一种电动汽车空调及暖风集成控制系统
CN103158495A (zh) * 2013-03-04 2013-06-19 浙江吉利汽车研究院有限公司杭州分公司 混合动力车辆用空调系统
US20170305234A1 (en) * 2014-08-20 2017-10-26 Idlesaver Llc Idle reduction system
CN106004331A (zh) * 2016-06-23 2016-10-12 浙江合众新能源汽车有限公司 一种电动汽车空调控制系统及控制方法
CN106921003A (zh) * 2016-10-25 2017-07-04 蔚来汽车有限公司 电动汽车电池包温度的智能控制系统和方法

Also Published As

Publication number Publication date
CN110696584A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US10059172B2 (en) Air conditioning system, method for controlling the same and hybrid vehicle
JP6184481B2 (ja) 車両のアイドルストップ及びヒータを制御するシステム及び方法
CN107031346B (zh) 车辆热管理系统和方法
KR102000771B1 (ko) 운송 수단 내연 기관의 자동 재시동 중 적어도 하나의 기기의 전력 공급을 관리하기 위한 시스템 및 방법
CN102205843B (zh) 用于控制混合动力车电水泵的装置及其方法
CN102878646B (zh) 电动汽车的空调控制系统及方法
KR101210097B1 (ko) 공조 장치의 제어 방법
CN101479132A (zh) 车辆用电源控制设备
CN101626911A (zh) 用于对一辆在停车状态的汽车进行预先空气调节的方法
CN105082926A (zh) 汽车空调启停控制系统及其控制方法
CN103863300A (zh) 一种增程式电动车的控制方法
WO2020135521A1 (zh) 电动汽车hvh驱动方法、车载空调控制器及整车控制器
KR102386115B1 (ko) 상용차용 냉난방 겸용 무시동 에어컨
JP2018042452A (ja) 電動車両の充電制御装置及び充電制御方法
JP6239912B2 (ja) 温度制御装置、温度制御方法
KR20190079197A (ko) Phev 차량의 cd 모드 난방시 엔진 파워 제어 방법
CN110901342A (zh) 车内的制热方法和装置、存储介质及处理器
CN111483287A (zh) 电动汽车hvh的回收能量控制方法及装置
KR20240032750A (ko) 차량 히팅 제어 방법, 장치, 기기, 매체 및 프로그램 제품
US9145057B2 (en) Control method for shortening start time of electric vehicle
KR20230027546A (ko) 친환경 자동차 및 그를 위한 공조 제어 방법
KR101601479B1 (ko) 디젤 하이브리드 차량의 냉시동 시 ptc 히터 제어 방법
KR102474796B1 (ko) 축전기를 이용한 aaf 자동 폐쇄 방법
CN211468113U (zh) 一种汽车空调蒸发器的干燥装置
CN102588170A (zh) 一种电动燃油泵控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906327

Country of ref document: EP

Kind code of ref document: A1