WO2020135295A1 - 波长转换装置及其制备方法和发光装置 - Google Patents

波长转换装置及其制备方法和发光装置 Download PDF

Info

Publication number
WO2020135295A1
WO2020135295A1 PCT/CN2019/127274 CN2019127274W WO2020135295A1 WO 2020135295 A1 WO2020135295 A1 WO 2020135295A1 CN 2019127274 W CN2019127274 W CN 2019127274W WO 2020135295 A1 WO2020135295 A1 WO 2020135295A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
layer
silica
wavelength conversion
conversion device
Prior art date
Application number
PCT/CN2019/127274
Other languages
English (en)
French (fr)
Inventor
陈雨叁
段银祥
刘莹莹
李乾
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020135295A1 publication Critical patent/WO2020135295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the invention relates to the technical field of optics, in particular to a wavelength conversion device, a preparation method thereof, and a light-emitting device using the wavelength conversion device.
  • the metal reflective layer provided on the back of the fluorescent ceramic layer needs to take into account both high reflectivity and thin thickness.
  • the usual approach is to directly polish the surface of the fluorescent ceramic layer after plating the metal reflective layer, but due to the difference in physical properties of the two materials There is a problem that the metal reflective layer is easy to fall off and the adhesion is poor; and because the refractive index of the fluorescent ceramic layer is high, the reflectivity at the interface of the metal reflective layer is low.
  • the high thermal conduction channel and the short thermal conduction path between the fluorescent ceramic layer and the thermally conductive substrate require that the material provided between the ceramic and the thermally conductive substrate has high thermal conductivity, and that the number of layers and the thickness are small.
  • the thermal conductivity of the metal reflective layer material is high.
  • the reflectivity at the interface of the metal reflective layer is low.
  • a transition layer is usually prefabricated at the interface between the fluorescent ceramic layer material and the metal reflective layer.
  • the preparation method of the transition layer generally adopts techniques such as magnetron sputtering, vacuum evaporation, chemical vapor deposition or physical vapor deposition.
  • the above technical methods require expensive high-purity targets and equipment, and require high cleanliness and roughness of the ceramic surface.
  • the technology of directly polishing the surface of the fluorescent ceramic layer after plating the metal reflective layer has the problems of poor adhesion of the metal reflective layer and low reflectivity at the interface of the fluorescent ceramic layer and the metal reflective layer ;
  • the use of magnetron sputtering, vacuum evaporation, chemical vapor deposition or physical vapor deposition technology a method of prefabricating a transition layer at the interface between the fluorescent ceramic layer and the metal reflective layer requires expensive high-purity targets and Equipment, high cost.
  • the invention provides a wavelength conversion device, which comprises a substrate, a metal reflection layer, a nano-silica low-refractive-index layer, a fluorescent ceramic layer and a nano-silica antireflection layer which are sequentially stacked, the nano-silica low-refractive index layer
  • the layer and the nano-silica antireflection layer are prepared by a sol-gel method.
  • the invention also provides a light-emitting device, including a light source and the above-mentioned wavelength conversion device.
  • the invention also provides a method for preparing a wavelength conversion device, which includes the following steps:
  • Step S1 providing a fluorescent ceramic layer
  • Step S2 a sol-gel method is used to form a nano-silica low-refractive-index layer and a nano-silica antireflection layer on opposite surfaces of the fluorescent ceramic layer;
  • Step S3 forming a metal reflective layer on the surface of the nano-silica low refractive index layer away from the fluorescent ceramic layer;
  • Step S4 providing a substrate, so that the substrate and the metal reflective layer, the nano-silica low-refractive index layer, the fluorescent ceramic layer, and the nano-silica antireflection layer are sequentially stacked.
  • the wavelength conversion device and its preparation method and light-emitting device adopt a sol-gel method to prepare a low-refractive-index nano-silica layer and a nano-silica antireflection layer at low cost, wherein the low-refractive-index nano-silica layer enhances the metal
  • the adhesion between the reflective layer and the fluorescent ceramic layer enhances the light reflection efficiency of the metal reflective layer and the fluorescent ceramic layer at the interface between the two.
  • the nano-silica antireflection layer can play a role in enhancing the transmission and reducing the reflection, which is beneficial to Improve the light extraction efficiency of the fluorescent ceramic layer surface.
  • FIG. 1 is a schematic cross-sectional view of a wavelength conversion device according to an embodiment of the invention.
  • FIG. 2 is a test chart for the adhesion between a metal reflective layer and a fluorescent ceramic layer in a wavelength conversion device according to an embodiment of the invention.
  • FIG. 3 is a test chart for the adhesion between the metal reflective layer and the fluorescent ceramic layer in the prior art wavelength conversion device.
  • FIG. 4 is a spectrum comparison chart of the luminous efficiency of a wavelength conversion device according to an embodiment of the present invention and a wavelength conversion device in the prior art.
  • FIG. 5 is a schematic cross-sectional view of a wavelength conversion device according to another embodiment of the invention.
  • FIG. 6 is a schematic structural diagram of a light emitting device according to an embodiment of the invention.
  • FIG. 7 is a flowchart of a method for manufacturing a wavelength conversion device according to an embodiment of the present invention.
  • Light emitting device 200 light source 300 Wavelength conversion device 100, 400 Substrate 101 Bonding layer 102 Metal protective layer 103 Metal reflective layer 104 Nano silica low refractive index layer 105 Fluorescent ceramic layer 106 Nano silica antireflection layer 107
  • a wavelength conversion device 100 includes at least a substrate 101, a metal reflective layer 104, a nano-silica low-refractive-index layer 105, a fluorescent ceramic layer 106, and nano-silica layered in this order.
  • Anti-reflection layer 107 The nano-silica low refractive index layer 105 and the nano-silica antireflection layer 107 are prepared by a sol-gel method.
  • the excitation light generated by the light source irradiates the wavelength conversion device 100 from the side of the nano-silica antireflection layer 107 away from the substrate 101, and the fluorescent ceramic layer 106 converts the excitation light into laser light and emits it from the substrate 101 .
  • the nano-silica low-refractive-index layer 105 and the nano-silica antireflection layer 107 are basically composed of nano-silica particles.
  • nano-silica particles means that in three-dimensional space, at least one dimension of the silica particles is in the range of nanometers, that is, the silica particles have at least one dimension in the range of 1 nanometer to 100 nanometers. range.
  • the sol-gel method is used to realize the low-cost preparation of the nano-silica low-refractive index layer 105 and the nano-silica antireflection layer 107 on the opposite surfaces of the fluorescent ceramic layer 106, and the sol is used -In the process of preparing the nano-silica low-refractive-index layer 105 and the nano-silica antireflection layer 107 by the gel method, the nano-silica low-refractive-index layer 105 and the nano The refractive index of the silica antireflection layer 107 can be controlled between 1.30 and 1.43.
  • the thickness of the metal reflective layer 104 is about 100 nm to 300 nm
  • the thickness of the nano-silica low refractive index layer 105 is about 100 nm to 300 nm
  • the thickness of the fluorescent ceramic layer 106 is about 100 ⁇ m to 300 ⁇ m. In this way, costs can be saved while ensuring that the nano-silica low-refractive index layer 105 has sufficient reflectivity.
  • the nano-silica low-refractive-index layer 105 mainly has two functions. On the one hand, as shown in FIGS. 2 and 3, after forming the nano-silica low-refractive-index layer 105 on the surface of the fluorescent ceramic layer 106, the metal reflection is enhanced The adhesion between the layer 104 and the fluorescent ceramic layer 106; on the other hand, the nano-silica low refractive index layer 105 provides a low refractive index material layer between the fluorescent ceramic layer 106 and the metal reflective layer 104, which enhances the metal The light reflection efficiency of the reflective layer 104 and the fluorescent ceramic layer 106 at the interface between them increases the luminous efficiency of the wavelength conversion device 100. As shown in FIG. 4, its lumen efficiency increases by about 5%.
  • the thickness of the nano-silica antireflection layer 107 depends on the wavelength of transmitted light. Preferably, the thickness of the nano-silica antireflection layer 107 is a quarter of the wavelength of transmitted light. In this embodiment, the thickness of the nano-silica antireflection layer 107 is about 100 nm to 200 nm.
  • the nano-silica antireflection layer 107 is located on the surface of the fluorescent ceramic layer 106 away from the substrate 101 (that is, the excitation light generated by the light source irradiates the fluorescent ceramic layer 106 Side), it can play the role of anti-reflection, that is, the nano-silica anti-reflection layer 107 reduces the reflectance of the excitation light on the surface of the fluorescent ceramic layer 106 and increases the transmission of the excitation light in the fluorescent ceramic layer 106 The rate is helpful to improve the light extraction efficiency of the fluorescent ceramic layer 106 surface.
  • the substrate 101 has a function of supporting each element located thereon and a function of dissipating heat generated in the fluorescent ceramic layer 106 toward the outside.
  • the substrate 101 is a high thermal conductivity substrate, and the material of the high thermal conductivity substrate may be, but not limited to, copper, aluminum alloy, aluminum nitride ceramic, silicon carbide ceramic, and the like.
  • the fluorescent ceramic layer 106 is a ceramic body that can be excited by excitation light to generate laser light.
  • the fluorescent ceramic layer 106 may be, but is not limited to, a pure phase YAG: Ce, YAG: Ce type luminescent glass, and YAG: Ce and alumina composite phase ceramics.
  • the metal reflective layer 104 is a silver layer.
  • the metal reflective layer 104 is prepared by using techniques such as magnetron sputtering or vacuum evaporation.
  • the metal reflective layer 104 is prepared by magnetron sputtering technology.
  • the structure of the wavelength conversion device 400 and the wavelength conversion device 100 are basically the same, the difference is that in the wavelength conversion device 400, the substrate 101 and the metal reflective layer 104 are also provided There is a metal protective layer 103 for protecting the metal reflective layer 104.
  • a metal protective layer 103 is plated on the metal reflective layer 104 by magnetron sputtering technology.
  • the material of the metal protection layer 103 may be, but not limited to, gold, nickel, copper, and the like.
  • an adhesive layer 102 for bonding the metal protective layer 103 and the substrate 101 is also provided between the metal protective layer 103 and the substrate 101.
  • the adhesive layer 102 may be solder or thermally conductive adhesive.
  • the material of the solder may be, but not limited to, tin-silver-copper or tin-gold-copper.
  • the material of the thermal conductive adhesive may be, but not limited to, silica gel or epoxy adhesive mixed with high thermal conductive filler particles, such as silver adhesive.
  • an embodiment of the present invention further provides a light emitting device 200, including a light source 300 for generating excitation light, and the wavelength conversion device 100 or the wavelength conversion device 400 described above.
  • the excitation light generated by the light source 300 irradiates the wavelength conversion device 100 from the side of the fluorescent ceramic layer 106 away from the substrate 101, and the wavelength conversion device 100 converts the excitation light into laser light and emits it.
  • the excitation light generated by the light source 300 irradiates the wavelength conversion device 400 from the side of the fluorescent ceramic layer 106 away from the substrate 101, and the wavelength conversion device 400 converts the excitation light into laser light and emits it.
  • the light source 300 may be a semiconductor laser, a light emitting diode, or the like.
  • the light-emitting device 200 can be used in a projection system.
  • the projection system can use various projection technologies, such as a liquid crystal display (LCD) projection technology and a digital light processor (DLP) projection technology.
  • LCD liquid crystal display
  • DLP digital light processor
  • the above-mentioned light emitting device 200 can also be applied to a lighting system, such as stage lighting.
  • a method for manufacturing the above wavelength conversion device includes the following steps:
  • Step S1 providing a fluorescent ceramic layer
  • Step S2 adopting a sol-gel method to form nano-silica layers on the two opposite surfaces of the fluorescent ceramic layer;
  • Step S3 forming a metal reflective layer on the surface of the nano-silica low refractive index layer away from the fluorescent ceramic layer.
  • Step S4 providing a substrate, and stacking the substrate and the metal reflective layer, the nano-silica low-refractive index layer, the fluorescent ceramic layer, and the nano-silica antireflection layer in this order.
  • the fluorescent ceramic layer may be, but not limited to, a luminescent glass containing pure phase YAG (yttrium aluminum garnet): Ce, YAG: Ce, and a complex phase ceramic composed of YAG: Ce and alumina.
  • the substrate 101 is a high thermal conductivity substrate, and the material of the high thermal conductivity substrate may be, but is not limited to, copper, aluminum alloy, aluminum nitride ceramic, silicon carbide ceramic, and the like.
  • step S1 specifically includes providing a fluorescent ceramic, and subjecting the fluorescent ceramic to double-sided grinding and polishing so that its thickness is in the range of 50 ⁇ m to 300 ⁇ m, and its surface roughness Ra ⁇ 0.050 ⁇ m.
  • step S2 includes:
  • Step S21 Hydrolysis of ethyl orthosilicate as a precursor to prepare a nano-silica sol.
  • the preparation formula of the nano silica sol is as follows: ethyl orthosilicate: 100 parts by mass, deionized water: 50 parts by mass, hydrochloric acid: several (adjust the pH value to the range of 1.5-3.5, preferably the pH value About 2), ethanol: 30 parts by mass, KH560: 3% (within 3% of the total mass).
  • the mixture is refluxed and stirred at a temperature of 60°C for 3 hours, and then aged for 8 hours to 12 hours.
  • An improved nano silica sol can be obtained.
  • the silane coupling agent used may be, but not limited to, KH560 or KH570.
  • the solid content of silica is between 5% and 20% (mass percentage).
  • Step S22 The fluorescent ceramics polished on both sides in step S1 are ultrasonically cleaned by acetone and ethanol for 30 minutes, dried and then vertically immersed in the nano silica sol prepared in steps S21 or S21′, after 1 min to 3 min, The fluorescent ceramic is lifted up at a uniform speed. After the ceramic is completely exposed to the liquid surface of the nano silica sol, it is left to dry naturally.
  • step S23 the above steps of dipping and pulling are repeated until the thickness of the nano silica layer formed on the opposite surfaces of the fluorescent ceramic meets the requirements.
  • step S24 the sample obtained in step S23 is pre-dried in a 45°C oven for 30 minutes, and then placed in a quartz tube furnace in a helium (or argon) atmosphere at a temperature ranging from 500°C to 1200°C Treatment 10min ⁇ 60min.
  • a helium (or argon) atmosphere at a temperature ranging from 500°C to 1200°C Treatment 10min ⁇ 60min.
  • step S2 includes the following step S21' and the above steps S22 to S24, that is, in this other embodiment, step S21' replaces step S21.
  • step S21 is simpler than step S21' process, but in the nano-silica sol prepared in step S21, the solid content of silica is relatively low, which requires repeated coating Film formation; and although the process of step S21' is slightly more complicated than the process of step S21, in the nano-silica sol prepared in step S21', the solid content of silica is higher, and a single film formation is sufficient.
  • the step S21' is: preparing the nano-silica sol by hydrolyzing ethyl orthosilicate and nano-fumed silica together as a precursor.
  • the preparation method of the nano silica sol prepared in the step S21' is as follows: ethyl orthosilicate: 0-20 parts by mass; nano fumed silica: 3-15 mass parts (the BET value of the nano fumed silica) In the range of 200g/m 2 to 380g/m 2 , hydrophilic fumed silica), preferably 10 parts by mass; deionized water: 120 parts by mass; hydrochloric acid: a few (adjust the pH value in the range of 1.5 to 3.5, preferably pH The value is about 2); Ethanol: 30 parts by mass.
  • the mixture is refluxed and stirred for 3 hours at a temperature of 60°C, and then aged 8 From hour to 12 hours, an improved nano silica sol can be obtained.
  • the silane coupling agent used may be, but not limited to, KH560 or KH570.
  • the solid content of silica is between 5% and 20% (mass percentage).
  • step S3 specifically includes using a magnetron sputtering technique or a vacuum evaporation technique to form a metal reflective layer 104 on the surface of the nano-silica low-refractive index layer 105 away from the fluorescent ceramic layer 106 .
  • a magnetron sputtering technique may be used to plate a silver film on the surface of the nano-silica low-refractive index layer 105 away from the fluorescent ceramic layer 106.
  • a metal protective layer 103 is further formed on the surface of the metal reflective layer 104 away from the fluorescent ceramic layer 106.
  • a metal protective layer 103 is formed on the surface of the metal reflective layer 104 away from the fluorescent ceramic layer 106 by using techniques such as magnetron sputtering or vacuum evaporation.
  • magnetron sputtering plating of gold, nickel, copper, etc. is used as the metal protective layer 103.
  • step S4 may specifically include providing solder or providing thermally conductive adhesive, and after step S3, the coating is processed
  • the side of the fluorescent ceramic plated with the metal protective layer 103 is soldered to the substrate 101 by solder or bonded to the substrate 101 by thermally conductive adhesive.
  • the solder or thermal conductive adhesive is used as the adhesive layer 102 to bond the metal protective layer 103 and the Substrate 101.
  • the material of the solder may be, but not limited to, tin-silver-copper or tin-gold-copper.
  • the material of the thermal conductive adhesive may be, but not limited to, silica gel or epoxy adhesive mixed with high thermal conductive filler particles, such as silver adhesive.
  • step S4 may specifically include providing solder or thermally conductive adhesive, and performing a coating process in step S3
  • the surface of the fluorescent ceramic plated with the metal reflective layer 104 is soldered to the substrate 101 by solder or bonded to the substrate 101 by thermally conductive adhesive, so that the substrate 101 and the metal reflective layer 104 and the nano silica
  • the low-refractive index layer 105, the fluorescent ceramic layer 106, and the nano-silica antireflection layer 107 are sequentially stacked.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种波长转换装置(100、400)、其制备方法及应用其的发光装置(200),包括依次层叠的基板(101)、金属反射层(104)、纳米二氧化硅低折射率层(105)、荧光陶瓷层(106)及纳米二氧化硅增透层(107)。该制备方法包括:提供荧光陶瓷层(106);采用溶胶-凝胶方法,于荧光陶瓷层(106)的相对两表面形成纳米二氧化硅低折射率层(105)和纳米二氧化硅增透层(107);于纳米二氧化硅低折射率层(105)远离荧光陶瓷层(106)的表面形成金属反射层(104);提供基板(101),使基板(101)与金属反射层(104)、纳米二氧化硅低折射率层(105)、荧光陶瓷层(106)及纳米二氧化硅增透层(107)依次层叠设置。

Description

波长转换装置及其制备方法和发光装置 技术领域
本发明涉及光学技术领域,尤其涉及一种波长转换装置及其制备方法和应用该波长转换装置的发光装置。
背景技术
现有技术中,固定式波长转换装置封装技术中的主要面临的难点有:
1)荧光陶瓷层背部设置的金属反射层,需要兼顾高的反射率和较薄的厚度,通常的做法是直接将荧光陶瓷层表面抛光后镀金属反射层,但是由于两种材料的物理属性差异,会存在金属反射层易脱落、附着力差的问题;且由于在荧光陶瓷层的折射率较高,使得金属反射层界面处反射率低。
2)荧光陶瓷层与导热基板间的高导热通道和较短的导热路径要求陶瓷和导热基板之间设置的物质热导率高,且设置的层数及厚度较小。
这两点之间存在着一定的内在联系,金属反射层材料的热导率高,层数及厚度越小,界面层的反射率越大越好。
由于在荧光陶瓷层的折射率较高,使得金属反射层界面处反射率低。通常会在荧光陶瓷层材料与金属反射层之间的界面预制一种 过渡层。现有技术中,该过渡层的制备方法一般采用磁控溅射、真空蒸镀、化学气相沉积或物理气相沉积等技术。然而,上述技术方法需要昂贵的高纯靶材和设备,且对陶瓷表面洁净度和粗糙度要求较高。
综上,现有的波长转换装置封装技术中,直接将荧光陶瓷层表面抛光后镀金属反射层的技术,存在金属反射层附着力差及荧光陶瓷层与金属反射层界面处反射率低的问题;而采用磁控溅射、真空蒸镀、化学气相沉积或物理气相沉积等技术,在荧光陶瓷层与金属反射层之间的界面预制一种过渡层的方法,需要昂贵的高纯靶材和设备,成本高。
发明内容
本发明提供一种波长转换装置,包括依次层叠设置的基板、金属反射层、纳米二氧化硅低折射率层、荧光陶瓷层及纳米二氧化硅增透层,所述纳米二氧化硅低折射率层和所述纳米二氧化硅增透层为采用溶胶-凝胶方法制备。
本发明还提供一种发光装置,包括光源以及上述的波长转换装置。
本发明还提供一种波长转换装置的制备方法,其包括如下步骤:
步骤S1:提供荧光陶瓷层;
步骤S2:采用溶胶-凝胶方法,于所述荧光陶瓷层的相对两表面形成纳米二氧化硅低折射率层和纳米二氧化硅增透层;
步骤S3:于所述纳米二氧化硅低折射率层远离所述荧光陶瓷层的表面形成金属反射层;
步骤S4:提供基板,使所述基板与所述金属反射层、所述纳米二氧化硅低折射率层、所述荧光陶瓷层及所述纳米二氧化硅增透层为依次层叠设置。
该波长转换装置及其制备方法及发光装置,采用溶胶-凝胶方法低成本制备纳米二氧化硅低折射率层和纳米二氧化硅增透层,其中纳米二氧化硅低折射率层增强了金属反射层与荧光陶瓷层之间的附着力,增强了金属反射层与荧光陶瓷层在二者界面处的光反射效率,纳米二氧化硅增透层可起到增透减反的作用,有利于提升荧光陶瓷层表面的出光效率。
附图说明
图1为本发明一实施例的波长转换装置的剖面示意图。
图2为本发明一实施例的波长转换装置中,金属反射层与荧光陶瓷层之间的附着力百格测试图。
图3为现有技术的波长转换装置中,金属反射层与荧光陶瓷层之间的附着力百格测试图。
图4为本发明一实施例的波长转换装置和现有技术的波长转换装置的发光效率的光谱对比图。
图5为本发明另一实施例的波长转换装置的剖面示意图。
图6为本发明实施例的发光装置的结构示意图。
图7为本发明实施例的波长转换装置的制备方法的流程图。
主要元件符号说明
发光装置 200
光源 300
波长转换装置 100、400
基板 101
粘结层 102
金属保护层 103
金属反射层 104
纳米二氧化硅低折射率层 105
荧光陶瓷层 106
纳米二氧化硅增透层 107
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,本发明一实施例提供的波长转换装置100,至少包括依次层叠设置的基板101、金属反射层104、纳米二氧化硅低折射率层105、荧光陶瓷层106及纳米二氧化硅增透层107。所述纳米二氧化硅低折射率层105和所述纳米二氧化硅增透层107为采用溶胶-凝胶方法制备。
本实施例中,光源产生的激发光从纳米二氧化硅增透层107远 离基板101的一侧对波长转换装置100进行照射,荧光陶瓷层106将该激发光转换为受激光后从基板101发出。
所述纳米二氧化硅低折射率层105和所述纳米二氧化硅增透层107基本由纳米二氧化硅粒子组成。本文所述的“纳米二氧化硅”是指在三维空间中,二氧化硅粒子至少有一维的尺寸处于纳米尺寸的范围,即该二氧化硅粒子至少有一维的尺寸处于1纳米~100纳米的范围。
本实施例中,采用溶胶-凝胶方法,可实现在荧光陶瓷层106的相对两表面低成本地制备纳米二氧化硅低折射率层105和纳米二氧化硅增透层107,且在采用溶胶-凝胶方法制备纳米二氧化硅低折射率层105和纳米二氧化硅增透层107过程中,通过溶胶的配比和薄层厚度的调配,该纳米二氧化硅低折射率层105和纳米二氧化硅增透层107的折射率可控制在1.30~1.43之间。
本实施例中,金属反射层104的厚度约100nm~300nm,纳米二氧化硅低折射率层105的厚度约100nm~300nm,荧光陶瓷层106的厚度约为100μm~300μm的范围。如此,能够在保证纳米二氧化硅低折射率层105具有足够反射率的情况下,节约成本。
纳米二氧化硅低折射率层105主要有两个作用,一方面,如图2和图3所示,在荧光陶瓷层106的表面形成纳米二氧化硅低折射率层105后,增强了金属反射层104与荧光陶瓷层106之间的附着力;另一方面,该纳米二氧化硅低折射率层105为荧光陶瓷层106与金属反射层104之间提供一个低折射率材料层,增强了金属反射 层104与荧光陶瓷层106在二者界面处的光反射效率,从而使得该波长转换装置100的发光效率提升,如图4所示,其流明效率增加了5%左右。
于一实施例中,纳米二氧化硅增透层107的厚度取决于透射光的波长。优选地,纳米二氧化硅增透层107的厚度为透射光的波长的四分之一。本实施例中,纳米二氧化硅增透层107的厚度约100nm~200nm,纳米二氧化硅增透层107位于荧光陶瓷层106远离基板101的表面(即光源产生的激发光照射荧光陶瓷层106的一侧),可起到增透减反的作用,即,该纳米二氧化硅增透层107减少激发光在荧光陶瓷层106表面的反射率,增加激发光在荧光陶瓷层106的透过率,有利于提升荧光陶瓷层106表面的出光效率。
于一实施例中,基板101具有支撑位于其上的各元件的功能和使荧光陶瓷层106中所产生的热量朝向外部散发的功能。基板101为高导热基板,所述高导热基板的材质可以为,但不限于,铜、铝合金、氮化铝陶瓷及碳化硅陶瓷等。
本实施例中,荧光陶瓷层106为一种可以被激发光激发以产生受激光的陶瓷体。所述荧光陶瓷层106可以为,但不限于,含有纯相YAG:Ce、YAG:Ce类的发光玻璃及YAG:Ce与氧化铝复合的复相陶瓷等。所述金属反射层104为银层。采用磁控溅射技术或真空蒸镀等技术制备所述金属反射层104。优选采用磁控溅射技术制备所述金属反射层104。
请参阅图5,于另一实施例中,波长转换装置400与波长转换 装置100的结构基本相同,区别在于:波长转换装置400中,所述基板101和所述金属反射层104之间还设置有用于保护所述金属反射层104的金属保护层103。优选采用磁控溅射技术在金属反射层104上镀制金属保护层103。金属保护层103的材质可以为,但不限于,金、镍及铜等。
此外,波长转换装置400中,所述金属保护层103和所述基板101之间还设置有用于粘结所述金属保护层103和所述基板101的粘结层102。所述粘结层102可以为焊料或导热胶。焊料的材质可以为,但不限于,锡银铜或者锡金铜等。导热胶的材质可以为,但不限于,硅胶或者环氧胶混合高导热填料颗粒,如银胶等。
如图6所示,本发明实施例还提供一种发光装置200,包括用于产生激发光的光源300以及上述的波长转换装置100或波长转换装置400。结合图1,光源300产生的激发光从荧光陶瓷层106远离基板101的一侧照射波长转换装置100,波长转换装置100将激发光转换为受激光后发出。结合图5,光源300产生的激发光从荧光陶瓷层106远离基板101的一侧照射波长转换装置400,波长转换装置400将激发光转换为受激光后发出。光源300可以为半导体激光器、发光二极管等。
该发光装置200可用于投影系统,该投影系统可以采用各种投影技术,例如液晶显示器(LCD,Liquid Crystal Display)投影技术、数码光路处理器(DLP,Digital Light Processor)投影技术。此外,上述发光装置200也可以应用于照明系统,例如舞台灯照明。
请参阅图7,本发明实施例提供的上述波长转换装置的制备方法,其包括如下步骤:
步骤S1:提供荧光陶瓷层;
步骤S2:采用溶胶-凝胶方法,于所述荧光陶瓷层的相对两表面分别形成纳米二氧化硅层;及
步骤S3:于所述纳米二氧化硅低折射率层远离所述荧光陶瓷层的表面形成金属反射层。
步骤S4:提供一基板,并将所述基板与所述金属反射层、所述纳米二氧化硅低折射率层、所述荧光陶瓷层及所述纳米二氧化硅增透层为依次层叠设置。
所述荧光陶瓷层可以为,但不限于,含有纯相YAG(钇铝石榴石):Ce、YAG:Ce类的发光玻璃及YAG:Ce与氧化铝复合的复相陶瓷等。基板101为高导热基板,所述高导热基板的材质可以为,但不限于,铜、铝合金、氮化铝陶瓷、碳化硅陶瓷等。
于一实施例中,步骤S1具体包括提供一荧光陶瓷,并将该荧光陶瓷进行双面研磨抛光,使得其厚度在50μm~300μm范围内,其表面粗糙度Ra≤0.050μm。
于一实施例中,步骤S2包括:
步骤S21:采用正硅酸乙酯作为前驱体水解制备纳米二氧化硅溶胶。其中,该步骤S21制备纳米二氧化硅溶胶的配比如下:正硅酸乙酯:100质量份,去离子水:50质量份,盐酸:若干(调节pH值为1.5~3.5范围,优选pH值约为2左右),乙醇:30质量份,KH560: 3%(总质量的3%以内)。
具体地,采用正硅酸乙酯、去离子水、盐酸、乙醇及少量的硅烷偶联剂混合后,在60℃温度条件下,回流搅拌3小时,再陈化处理8小时至12小时,即可得到改进型的纳米二氧化硅溶胶。该步骤S21中,采用的硅烷偶联剂可以为,但不限于,KH560或KH570等。该步骤S21中,制备的纳米二氧化硅溶胶中,二氧化硅的固含量在5%~20%(质量百分比)之间。
步骤S22:将步骤S1中双面抛光过的荧光陶瓷,先后经过丙酮和乙醇超声清洗30min,干燥后将其垂直浸渍在步骤S21或S21’制备的纳米二氧化硅溶胶中,1min~3min后,匀速向上提拉荧光陶瓷,待陶瓷完全露出纳米二氧化硅溶胶的液面后,静置自然干燥。
步骤S23,反复上述浸渍、提拉等步骤,直到荧光陶瓷的相对两表面上形成的纳米二氧化硅层的厚度满足需求为止。
步骤S24,将步骤S23中得到的样品,在45℃烘箱中预干燥30min,然后再放入石英管式炉中,在氦气(或氩气)的气氛中,温度为500℃~1200℃范围处理10min~60min。如此,在所述荧光陶瓷层106的相对两表面形成纳米二氧化硅低折射率层105和纳米二氧化硅增透层107。
于另一实施例中,步骤S2包括下述步骤S21’及上述步骤S22~步骤S24,即,在该另一实施例中,步骤S21’取代了步骤S21。其中,两种制备纳米二氧化硅溶胶的方法相比,步骤S21较步骤S21’工艺简单,但是步骤S21中制备的纳米二氧化硅溶胶中,二氧化硅 的固含量较低,需反复涂覆成膜;而步骤S21’虽较步骤S21工艺稍复杂,但是步骤S21’制备的纳米二氧化硅溶胶中,二氧化硅的固含量较高,单次成膜即可。
所述步骤S21’为:采用正硅酸乙酯和纳米气相二氧化硅共同作为前驱体水解制备纳米二氧化硅溶胶。其中,该步骤S21’制备纳米二氧化硅溶胶的配比如下:正硅酸乙酯:0~20质量份;纳米气相二氧化硅:3~15质量份(该纳米气相二氧化硅的BET值在200g/m 2~380g/m 2范围内,亲水型气相二氧化硅),优选10质量份;去离子水:120质量份;盐酸:若干(调节pH值为1.5~3.5范围,优选pH值约为2左右);乙醇:30质量份。
具体地,采用正硅酸乙酯、纳米气相二氧化硅、去离子水、盐酸、乙醇及少量的硅烷偶联剂混合后,在60℃温度条件下,回流搅拌3小时,再陈化处理8小时至12小时,即可得到改进型的纳米二氧化硅溶胶。该步骤S21’中,采用的硅烷偶联剂可以为,但不限于,KH560或KH570等。该步骤S21’中,制备的纳米二氧化硅溶胶中,二氧化硅的固含量在5%~20%(质量百分比)之间。
于一实施例中,步骤S3中具体包括采用磁控溅射技术或真空蒸镀等技术,于所述纳米二氧化硅低折射率层105远离所述荧光陶瓷层106的表面形成金属反射层104。
于一实施例中,可采用磁控溅射技术于所述纳米二氧化硅低折射率层105远离所述荧光陶瓷层106的表面镀制银膜。
于一实施例中,步骤S3之后,还包括于所述金属反射层104 远离所述荧光陶瓷层106的表面形成金属保护层103。于一实施例中,采用磁控溅射技术或真空蒸镀等技术,于所述金属反射层104远离所述荧光陶瓷层106的表面形成金属保护层103。较佳地,采用磁控溅射镀制金、镍、铜等作为金属保护层103。
于一实施例中,若所述金属反射层104远离所述荧光陶瓷层106的表面形成金属保护层103,则步骤S4中可具体包括提供焊料或者提供导热胶,将步骤S3后经过镀膜处理的荧光陶瓷的镀设有金属保护层103的一面通过焊料焊接在基板101上或者通过导热胶粘结在基板101上,焊料或导热胶作为粘结层102粘结所述金属保护层103和所述基板101。焊料的材质可以为,但不限于,锡银铜或者锡金铜等。导热胶的材质可以为,但不限于,硅胶或者环氧胶混合高导热填料颗粒,如银胶等。
于另一实施例中,若所述金属反射层104远离所述荧光陶瓷层106的表面未形成金属保护层103,则步骤S4中可具体包括提供焊料或者导热胶,将步骤S3中经过镀膜处理的荧光陶瓷的镀设有金属反射层104的一面通过焊料焊接在基板101上或者通过导热胶粘结在基板101上,使所述基板101与所述金属反射层104、所述纳米二氧化硅低折射率层105、所述荧光陶瓷层106及所述纳米二氧化硅增透层107为依次层叠设置。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同 替换,而不脱离本发明技术方案的精神和范围。

Claims (11)

  1. 一种波长转换装置,其特征在于,包括:
    依次层叠设置的基板、金属反射层、纳米二氧化硅低折射率层、荧光陶瓷层及纳米二氧化硅增透层;
    所述纳米二氧化硅低折射率层和所述纳米二氧化硅增透层的折射率在1.30~1.43之间。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述纳米二氧化硅低折射率层和所述纳米二氧化硅增透层基本由纳米二氧化硅粒子组成;
    所述纳米二氧化硅粒子至少有一维的尺寸处于1纳米~100纳米的范围。
  3. 如权利要求1所述的波长转换装置,其特征在于,所述金属反射层为银层。
  4. 如权利要求1所述的波长转换装置,其特征在于,所述基板和所述金属反射层之间还设置有用于保护所述金属反射层的金属保护层。
  5. 如权利要求4所述的波长转换装置,其特征在于,所述金属保护层和所述基板之间还设置有用于粘结所述金属保护层和所述基板的粘结层。
  6. 一种发光装置,其特征在于,包括用于产生激发光的光源以及如权利要求1至5中任一项所述的波长转换装置,所述波长转换装置位于所述激发光的光路上以将所述激发光转换为受激光。
  7. 一种波长转换装置的制备方法,其包括如下步骤:
    步骤S1:提供荧光陶瓷层;
    步骤S2:采用溶胶-凝胶方法,于所述荧光陶瓷层的相对两表面形成纳米二氧化硅低折射率层和纳米二氧化硅增透层;
    步骤S3:于所述纳米二氧化硅低折射率层远离所述荧光陶瓷层的表面形成金属反射层;
    步骤S4:提供基板,使所述基板与所述金属反射层、所述纳米二氧化硅低折射率层、所述荧光陶瓷层及所述纳米二氧化硅增透层为依次层叠设置。
  8. 如权利要求7所述的制备方法,其特征在于,步骤S2中包括采用正硅酸乙酯作为前驱体水解制备纳米二氧化硅溶胶的步骤。
  9. 如权利要求8所述的制备方法,其特征在于,采用正硅酸乙酯作为前驱体水解制备纳米二氧化硅溶胶的步骤具体包括采用正硅酸乙酯、去离子水、盐酸、乙醇及硅烷偶联剂混合后,在60℃温度条件下,回流搅拌3小时,再陈化处理8小时至12小时,得到纳米二氧化硅溶胶。
  10. 如权利要求7所述的制备方法,其特征在于,步骤S2中包括采用正硅酸乙酯和纳米气相二氧化硅共同作为前驱体水解制备纳米二氧化硅溶胶的步骤。
  11. 如权利要求10所述的制备方法,其特征在于,采用正硅酸乙酯和纳米气相二氧化硅共同作为前驱体水解制备纳米二氧化硅溶胶的步骤具体包括采用正硅酸乙酯、纳米气相二氧化硅、去离子水、 盐酸、乙醇及硅烷偶联剂混合后,在60℃温度条件下,回流搅拌3小时,再陈化处理8小时至12小时,得到纳米二氧化硅溶胶。
PCT/CN2019/127274 2018-12-27 2019-12-23 波长转换装置及其制备方法和发光装置 WO2020135295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811613926.2A CN111381419A (zh) 2018-12-27 2018-12-27 波长转换装置及其制备方法和发光装置
CN201811613926.2 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020135295A1 true WO2020135295A1 (zh) 2020-07-02

Family

ID=71127606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127274 WO2020135295A1 (zh) 2018-12-27 2019-12-23 波长转换装置及其制备方法和发光装置

Country Status (2)

Country Link
CN (1) CN111381419A (zh)
WO (1) WO2020135295A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965929A (zh) * 2020-09-15 2020-11-20 四川长虹电器股份有限公司 一种新型全反射式荧光轮装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN106374027A (zh) * 2015-07-22 2017-02-01 松下知识产权经营株式会社 光源装置
CN107145029A (zh) * 2017-06-20 2017-09-08 海信集团有限公司 光源装置
CN207396957U (zh) * 2016-09-09 2018-05-22 松下知识产权经营株式会社 波长转换部件、投影仪以及照明装置
US20180158989A1 (en) * 2016-11-25 2018-06-07 Stanley Electric Co., Ltd. Semiconductor light-emitting apparatus having wavelength-converting structure with uneven top surface and its manufacturing method
CN108780168A (zh) * 2016-03-18 2018-11-09 日东电工株式会社 光学构件以及使用该光学构件的背光单元及液晶显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638237B (zh) * 2008-07-28 2012-06-13 广东道氏技术股份有限公司 二氧化硅气凝胶快速制备方法
CN102588752A (zh) * 2011-01-07 2012-07-18 晶元光电股份有限公司 发光装置
JP2015087423A (ja) * 2013-10-28 2015-05-07 セイコーエプソン株式会社 発光素子、照明装置およびプロジェクター
CN106468427A (zh) * 2015-08-21 2017-03-01 台达电子工业股份有限公司 荧光色轮与应用其的波长转换装置
TWI584044B (zh) * 2015-08-21 2017-05-21 台達電子工業股份有限公司 螢光色輪與應用其的波長轉換裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN106374027A (zh) * 2015-07-22 2017-02-01 松下知识产权经营株式会社 光源装置
CN108780168A (zh) * 2016-03-18 2018-11-09 日东电工株式会社 光学构件以及使用该光学构件的背光单元及液晶显示装置
CN207396957U (zh) * 2016-09-09 2018-05-22 松下知识产权经营株式会社 波长转换部件、投影仪以及照明装置
US20180158989A1 (en) * 2016-11-25 2018-06-07 Stanley Electric Co., Ltd. Semiconductor light-emitting apparatus having wavelength-converting structure with uneven top surface and its manufacturing method
CN107145029A (zh) * 2017-06-20 2017-09-08 海信集团有限公司 光源装置

Also Published As

Publication number Publication date
CN111381419A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6348189B2 (ja) 波長変換装置及びその関連発光装置
US20180216800A1 (en) Wavelength conversion element and light emitting device
CN104595852B (zh) 一种波长转换装置、漫反射层、光源系统及投影系统
US8796723B2 (en) Light-emitting device
TWI538259B (zh) 發光二極體組件
JP6580133B2 (ja) パターニングされた薄膜波長変換器の製造方法
TW200835765A (en) Optical bonding composition for LED light source
WO2020015363A1 (zh) 波长转换装置
WO2016023353A1 (zh) 一种透明衬底的四元发光二极管及其制备方法
JP2019105846A (ja) 蛍光体素子および照明装置
US20130043786A1 (en) Wavelength conversion structure, manufacturing method thereof, and light-emitting device comprising the wavelength conversion structure
JP2014194895A (ja) 蛍光光源装置
TW201541669A (zh) 光源系統及其波長轉換裝置
CN102154010A (zh) 光增强光致发光材料及其制备方法和应用
WO2020135295A1 (zh) 波长转换装置及其制备方法和发光装置
JP2013213131A (ja) 色変換用無機成形体及びその製造方法、並びに発光装置
WO2015127742A1 (zh) 一种基于Ce:YAG晶片的复合结构及制作方法
JP2010500747A (ja) ナノ粒子をベースとする無機結合材料
WO2020044426A1 (ja) 蛍光体素子および照明装置
WO2018209925A1 (zh) 波长转换装置及其制备方法
WO2015112946A1 (en) Ceramic wavelength converter having a high reflectivity reflector
WO2020135297A1 (zh) 反射结构、反射结构的制备方法及波长转换装置
CN113544866A (zh) 具有两个接合伙伴之间的透明连接的光电子器件及其制造方法
TWI656231B (zh) Method for preparing polycrystalline aluminum nitride high reflection mirror
CN202030697U (zh) 光增强光致发光片材和光增强发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902633

Country of ref document: EP

Kind code of ref document: A1