WO2020134821A1 - 一种数据传输方法及通信设备 - Google Patents

一种数据传输方法及通信设备 Download PDF

Info

Publication number
WO2020134821A1
WO2020134821A1 PCT/CN2019/121379 CN2019121379W WO2020134821A1 WO 2020134821 A1 WO2020134821 A1 WO 2020134821A1 CN 2019121379 W CN2019121379 W CN 2019121379W WO 2020134821 A1 WO2020134821 A1 WO 2020134821A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
information bits
code
coded bit
bit sequence
Prior art date
Application number
PCT/CN2019/121379
Other languages
English (en)
French (fr)
Inventor
陈莹
余荣道
乔云飞
罗禾佳
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19903375.4A priority Critical patent/EP3886349A4/en
Priority to JP2021537117A priority patent/JP7252344B2/ja
Publication of WO2020134821A1 publication Critical patent/WO2020134821A1/zh
Priority to US17/356,837 priority patent/US11496238B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • the present application relates to the field of wireless communication technology, in particular to a data transmission method and communication equipment.
  • Satellite base stations can provide wider coverage and are not easily damaged by natural disasters or external forces.
  • 5G communication introduces satellite communication, it can provide communication services for areas that cannot be covered by ground communication networks, such as oceans and forests, and enhance the reliability of 5G communication. For example, to ensure that users on airplanes, trains, and these transportation get better communication services. Provide more data transmission resources for 5G communication and increase the speed of the network. Therefore, supporting communication with the ground and satellites at the same time is an inevitable trend of 5G communication in the future. It has relatively large benefits in terms of wide coverage, reliability, multiple connections, and high throughput.
  • the existing long term evolution (LTE) network has a more complex hybrid automatic repeat request (HARQ) mechanism that supports multiple transmissions of signals until the receiving end succeeds Decoding or reaching the maximum number of retransmissions.
  • HARQ hybrid automatic repeat request
  • multiple encoded redundant versions are generated during channel coding, and each retransmission sends a different redundant version from the previous one.
  • the so-called redundant version here is that part of the encoded data is merged at the receiving end to improve Decoding performance. Since the biggest feature of satellite communication is the large transmission distance and large delay, if the HARQ transmission mechanism in LTE continues to be used, the delay caused by the multiplication will increase exponentially, seriously affecting the efficiency of communication.
  • the present application provides a data transmission method and a communication device, which can adaptively select a data transmission mode and have wider applicability, not only for ground base stations but also for satellite communications, and can take into account the reliability of communication and transmission efficiency.
  • an embodiment of the present application provides a data transmission method, which is applied to the first communication device side.
  • the method includes: the first communication device determines a target data transmission mode, and the target data transmission mode is used to instruct the first communication device to transmit the number of code combinations to the second communication device and the code combination for each transmission, and the code combination for each transmission includes One or more coded bit sequences.
  • the coded bit sequence is obtained by coding all or part of the K information bits, where K is a positive integer; the first communication device sends the code to the second communication device according to the target data transmission mode combination.
  • the first communication device sends the code combination to the second communication device according to the target data transmission mode
  • the target data transmission mode may be used to instruct the first communication device to transmit the code combination to the second communication device the number of times and each transmission Coding combination
  • the embodiment of the present application can adaptively select the data transmission mode, and has wider applicability, not only for terrestrial base stations, but also for satellite communications, and can take into account the reliability and transmission efficiency of communications.
  • At least one transmission code combination in each transmission code combination includes at least two coded bit sequences.
  • at least two coded bit sequences can be combined and sent in a single transmission process to improve the success rate of decoding.
  • the encoding combination of each transmission includes multiple encoded bit sequences
  • at least one encoded bit sequence among the multiple encoded bit sequences is obtained by encoding part of the information bits of K information bits.
  • the coded bit sequence is obtained by using Polar code coding; when at least one transmission code combination in each transmission code combination includes at least two coded bit sequences, at least two coded bit sequences include The first coded bit sequence and the second coded bit sequence.
  • the first coded bit sequence is obtained by polar coding the P information bits of the K information bits. The P information bits are mapped onto the P polarized channels.
  • the second coded bit sequence is obtained by polar coding the Q information bits of the K information bits, and the Q information bits are the reliability of the polarized channels mapped in the P information bits The information bits sorted into the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second coded bit sequence, the Q information bits are mapped to the P polarized channels, and the reliability order is the Q number of the first Q bits On a polarized channel, Q is a positive integer less than or equal to P.
  • the above-mentioned reliability sorted information bits with the last Q bits are mapped onto the P polarized channels with the reliability sorted as the first Q bits of the polarized channels, which can achieve an average decoding success rate of each information bit. Get guaranteed.
  • Q information bits are mapped to Q polarized channels from high to low reliability in descending order of reliability; or, Q information bits are sorted from high to low reliability The order from low to low is mapped to Q polarized channels with high to low reliability.
  • the coded bit sequence is obtained by using Polar code coding; when at least one transmission code combination in each transmission code combination includes at least two coded bit sequences, at least two coded bit sequences include The first coded bit sequence and the second coded bit sequence.
  • the first coded bit sequence is obtained by polar coding the P information bits of the K information bits. The P information bits are mapped onto the P polarized channels.
  • the second coded bit sequence is obtained by polar coding the Q information bits of the K information bits, and the Q information bits are the code distances of the polarized channels mapped in the P information bits And the reliability is sorted into the information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second coded bit sequence, the Q information bits are mapped to the P polarized channels in the code distance and reliability On the Q polarization channels sorted into the first Q bits, Q is a positive integer less than or equal to P.
  • the Q information bits are mapped onto the Q polarized channels with the code distance and reliability from high to low in the order of code distance and reliability from low to high; or, Q information bits It is mapped onto the Q polarized channels with the code distance and reliability from high to low in order of the code distance and reliability from high to low.
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is a network device and the second communication device is a terminal; before the first communication device determines the target data transmission mode , Further comprising: the first communication device receives the first index sent by the second communication device, the first index is the second communication device according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device Determined, the attribute information includes one or more of the type of network device, the distance between the first communication device and the second communication device, or the height of the network device from the ground, and the type includes a ground base station or a non-ground base station; the first The communication device determining the target data transmission mode includes: the first communication device determines the target data transmission mode according to the first index and a preset mapping table, and the preset mapping table includes a mapping relationship between at least one index and at least one data transmission mode At least one index includes a first index, and at least one data transmission mode includes a target data transmission
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is a network device and the second communication device is a terminal; the first communication device determines the target data transmission mode, It includes: the first communication device determines the target data transmission mode according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device, and the attribute information includes the type of the network device, the first communication device and the second One or more of the distance between the communication devices or the height of the network device from the ground, the types include ground base stations or non-ground base stations.
  • the implementation of the embodiments of the present application can reduce signaling overhead and improve communication transmission efficiency.
  • the number of transmission code combinations corresponding to non-terrestrial base stations is less than or equal to the number of transmission code combinations corresponding to terrestrial base stations; and/or the codes included in each transmission code combination corresponding to non-terrestrial base stations
  • the number of bit sequences is greater than or equal to the number of coded bit sequences included in each transmission code combination corresponding to the ground base station.
  • At least two coding bit sequences among multiple coding bit sequences included in the same coding combination have different code rates.
  • an embodiment of the present application provides a data transmission method, which is applied to the second communication device side.
  • the method includes: the second communication device receives the code combination sent by the first communication device according to the target data transmission mode, and the target data transmission mode is used to instruct the first communication device to transmit the number of code combinations to the second communication device and the code for each transmission Combination, the code combination for each transmission includes one or more coded bit sequences, the coded bit sequence is obtained by coding all or part of the K information bits, K is a positive integer; the second communication device The encoding combination is decoded to obtain the decoded bit sequence.
  • the data transmission mode can be adaptively selected, and the applicability is wider, which is not only applicable to ground base stations, but also applicable to satellite communications, and can take into account the reliability of communications and transmission efficiency.
  • At least one transmission code combination in each transmission code combination includes at least two coded bit sequences.
  • at least two coded bit sequences can be combined and sent in a single transmission process to improve the success rate of decoding.
  • the encoding combination of each transmission includes multiple encoded bit sequences
  • at least one encoded bit sequence among the multiple encoded bit sequences is obtained by encoding part of the information bits of K information bits.
  • the coded bit sequence is obtained by using Polar code coding; when at least one transmission code combination in each transmission code combination includes at least two coded bit sequences, at least two coded bit sequences include The first coded bit sequence and the second coded bit sequence.
  • the first coded bit sequence is obtained by polar coding the P information bits of the K information bits. The P information bits are mapped onto the P polarized channels.
  • the second coded bit sequence is obtained by polar coding the Q information bits of the K information bits, and the Q information bits are the reliability of the polarized channels mapped in the P information bits
  • the information bits sorted into the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second coded bit sequence, the Q information bits are mapped to the P polarized channels, and the reliability order is the Q number of the first Q bits On a polarized channel, Q is a positive integer less than or equal to P.
  • Q information bits are mapped to Q polarized channels from high to low reliability in descending order of reliability; or, Q information bits are sorted from high to low reliability The order from low to low is mapped to Q polarized channels with high to low reliability.
  • the coded bit sequence is obtained by using Polar code coding; when at least one transmission code combination in each transmission code combination includes at least two coded bit sequences, at least two coded bit sequences include The first coded bit sequence and the second coded bit sequence.
  • the first coded bit sequence is obtained by polar coding the P information bits of the K information bits. The P information bits are mapped onto the P polarized channels.
  • the second coded bit sequence is obtained by polar coding the Q information bits of the K information bits, and the Q information bits are the code distances of the polarized channels mapped in the P information bits And the reliability is sorted into the information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second coded bit sequence, the Q information bits are mapped to the P polarized channels in the code distance and reliability On the Q polarization channels sorted into the first Q bits, Q is a positive integer less than or equal to P.
  • the Q information bits are mapped onto the Q polarized channels with the code distance and reliability from high to low in the order of code distance and reliability from low to high; or, Q information bits It is mapped onto the Q polarized channels with the code distance and reliability from high to low in order of the code distance and reliability from high to low.
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is a network device and the second communication device is a terminal; the second communication device receives the first communication device according to Before the encoding combination sent in the target data transmission mode, the method further includes: the second communication device sends a first index to the first communication device, the first index is used by the first communication device to determine the target data transmission mode, and the first index is the second communication device Determined according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device, the attribute information includes the type of the network device, the distance between the first communication device and the second communication device, or the network device One or more of the heights above ground, including ground base stations or non-ground base stations.
  • the target data transmission mode is determined by the first communication device according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device, and the attribute information includes the type of the network device .
  • the attribute information includes the type of the network device .
  • the number of transmission code combinations corresponding to non-terrestrial base stations is less than or equal to the number of transmission code combinations corresponding to terrestrial base stations; and/or the codes included in each transmission code combination corresponding to non-terrestrial base stations
  • the number of bit sequences is greater than or equal to the number of coded bit sequences included in each transmission code combination corresponding to the ground base station.
  • At least two coding bit sequences among multiple coding bit sequences included in the same coding combination have different code rates.
  • an embodiment of the present application provides a communication device.
  • the communication device is a first communication device.
  • the first communication device may include a plurality of functional modules or units for performing data transmission provided in the first aspect accordingly.
  • the method, or the data transmission method provided in any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides another communication device.
  • the communication device is a second communication device.
  • the second communication device may include multiple functional modules or units for correspondingly executing the data provided in the second aspect.
  • the transmission method, or the data transmission method provided in any one of the possible implementation manners of the second aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the data transmission method described in the first aspect.
  • the communication device is a first communication device.
  • the first communication device may include: a memory and a processor, transmitter, and receiver coupled to the memory.
  • the transmitter is used to support the first communication device to perform the step of sending information by the first communication device in the data transmission method provided in the first aspect.
  • the receiver is used to support the first communication device to perform the step of receiving information by the first communication device in the data transmission method provided in the first aspect.
  • the processor is used to support the first communication device to perform other processing steps of the first communication device except for sending information and receiving information in the data transmission method provided in the first aspect.
  • the transmitter and the receiver in the embodiments of the present application may be integrated together or coupled through a coupler.
  • the memory is used to store the implementation code of the data transmission method described in the first aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the data transmission method provided in the first aspect, or the first aspect may Any one of the data transmission methods provided in the embodiments.
  • the memory and the processor can be integrated together or coupled through a coupler.
  • an embodiment of the present application provides another communication device, which is used to execute the data transmission method described in the second aspect.
  • the communication device is a second communication device, and the second communication device may include: a memory and a processor, transmitter, and receiver coupled to the memory.
  • the transmitter is used to support the second communication device to perform the step of sending information by the second communication device in the data transmission method provided in the second aspect.
  • the receiver is used to support the second communication device to perform the step of receiving information by the second communication device in the data transmission method provided in the second aspect.
  • the processor is used to support the second communication device to perform other processing steps of the second communication device in addition to sending information and receiving information in the data transmission method provided in the second aspect.
  • the transmitter and the receiver in the embodiments of the present application may be integrated together or coupled through a coupler.
  • the memory is used to store the implementation code of the data transmission method described in the second aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the data transmission method provided in the second aspect, or the second aspect may Any one of the data transmission methods provided in the embodiments.
  • the memory and the processor can be integrated together or coupled through a coupler.
  • the communication device may also be referred to as a communication device.
  • an embodiment of the present application provides a communication system, including a first communication device and a second communication device.
  • the first communication device may be the first communication device described in the foregoing third or fifth aspect
  • the second communication device may be the second communication described in the foregoing fourth or sixth aspect equipment.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored thereon, which when executed on a computer, causes the computer to execute the data transmission method described in the first aspect above.
  • an embodiment of the present application provides another computer-readable storage medium, where the readable storage medium stores instructions, which when executed on a computer, causes the computer to perform the data transmission method described in the second aspect above .
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the data transmission method described in the first aspect above.
  • an embodiment of the present application provides another computer program product containing instructions that, when run on a computer, cause the computer to execute the data transmission method described in the second aspect above.
  • an embodiment of the present application provides a communication chip.
  • the communication chip may include: a processor, and one or more interfaces coupled to the processor.
  • the processor may be used to call the data transmission method provided by the first aspect from the memory, or an implementation program of the data transmission method provided by any one of the possible implementation manners of the first aspect, and executing the program includes Instructions.
  • the interface may be used to output the processing result of the processor.
  • an embodiment of the present application provides a communication chip.
  • the communication chip may include: a processor, and one or more interfaces coupled to the processor.
  • the processor may be used to call the data transmission method provided by the second aspect from the memory, or an implementation program of the data transmission method provided by any one of the possible implementation manners of the second aspect, and executing the program includes Instructions.
  • the interface may be used to output the processing result of the processor.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a hardware architecture of a terminal device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware architecture of a network device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of mapping an information bit to a polarized channel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another information bit mapping to a polarized channel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of mapping another information bit to a polarized channel provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first communication device and a second communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include at least one network device 101 (only one is shown) and one or more terminal devices 102 connected to the network device 101.
  • the network device 101 can perform wireless communication with the terminal device 102 through one or more antennas. Each network device 101 can provide communication coverage for its corresponding coverage 103.
  • the coverage 103 corresponding to the network device 101 may be divided into multiple sectors, where one sector corresponds to a part of the coverage (not shown).
  • the network device 101 may be a ground base station or a non-ground base station.
  • non-terrestrial base stations can have different types, including but not limited to: high-altitude base stations (for example: high-altitude platforms such as hot air balloons and drones that can realize the function of base stations), or satellites (including low-orbit satellites, medium-orbit satellites, and high-altitude satellites) Satellites).
  • the network equipment 101 includes, but is not limited to, eNodeB, a base station in the fifth generation (5G) communication system, a base station or network equipment in the future communication system, and a wireless local area network (wireless fidelity, WiFi) system. Access node.
  • 5G fifth generation
  • WiFi wireless local area network
  • the terminal device 102 is a device with wireless transceiver function that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); Deployed in the air (e.g. aircraft, balloons, etc.).
  • the terminal device may be a mobile phone, tablet computer, portable computer, computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal device, Wireless terminals in industrial control (control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart cities, smart cars, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • Terminal equipment may sometimes be called user equipment (UE), terminal, access terminal, UE unit, UE station, mobile device, mobile station, mobile station, mobile terminal, mobile client , Mobile unit (mobile), remote station, remote terminal equipment, remote unit, wireless unit, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • terminal access terminal
  • UE unit UE station
  • mobile device mobile station
  • mobile station mobile terminal
  • mobile client mobile client
  • Mobile unit mobile
  • remote station remote terminal equipment
  • remote unit remote unit
  • wireless unit wireless communication device
  • user agent or user device etc.
  • “Multiple” refers to two or more. In view of this, in the embodiments of the present application, “multiple” may also be understood as “at least two”.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can indicate: there are three cases of A alone, A and B, and B alone. In addition, the character “/”, unless otherwise specified, generally indicates that the related object is a "or" relationship.
  • FIG. 2 shows a terminal device provided by an embodiment of the present application.
  • the terminal device 200 may include: an input and output module (including an audio input and output module 218, a key input module 216, and a display 220, etc.), a user interface 202, one or more processors 204, a transmitter 206, a receiver 208, coupler 210, antenna 214 and memory 212. These components can be connected by a bus or other means.
  • Figure 2 takes the connection by a bus as an example. among them:
  • the antenna 214 may be used to convert electromagnetic energy into electromagnetic waves in free space, or convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the coupler 210 is used to divide the mobile communication signal received by the antenna 214 into multiple channels and distribute them to multiple receivers 208.
  • the transmitter 206 may be used to transmit the signal output by the processor 204.
  • the receiver 208 may be used for receiving and processing the mobile communication signal received by the antenna 214.
  • the transmitter 206 and the receiver 208 can be regarded as a wireless modem.
  • the number of the transmitter 206 and the receiver 208 may be one or more.
  • the terminal device 200 may further include other communication components, such as a GPS module, a Bluetooth module, a wireless fidelity (Wi-Fi) module, and so on. Not limited to the wireless communication signals described above, the terminal device 200 may also support other wireless communication signals, such as satellite signals, short wave signals, and so on. Not limited to wireless communication, the terminal device 200 may also be configured with a wired network interface (such as a LAN interface) 201 to support wired communication.
  • a wired network interface such as a LAN interface
  • the input/output module may be used to implement interaction between the terminal device 200 and the user/external environment, and may mainly include an audio input/output module 218, a key input module 216, a display 220, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and so on. The input and output modules all communicate with the processor 204 through the user interface 202.
  • the memory 212 may be coupled with the processor 204 through a bus or input/output ports.
  • the memory 212 may also be integrated with the processor 204.
  • the memory 212 is used to store various software programs and/or multiple sets of instructions.
  • the memory 212 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 212 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 212 may also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 212 can also store a user interface program, which can display the content of the application program vividly through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and keys. .
  • the memory 212 may be used to store an implementation program of the data transmission method provided by one or more embodiments of the present application on the terminal device 200 side.
  • the implementation of the data transmission method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • the processor 204 may be used to read and execute computer-readable instructions. Specifically, the processor 204 may be used to call a program stored in the memory 212, such as an implementation program of the data transmission method provided by one or more embodiments of the present application on the terminal device 200 side, and execute instructions contained in the program to implement Methods involved in subsequent embodiments.
  • the processor 204 can support: global mobile communication system (global system for mobile communications, GSM) (2G) communication, wideband code division multiple access (wideband code division multiple access, WCDMA) (3G) communication, and long term evolution , One or more of LTE) (4G) communication, 5G communication, future evolution communication, and so on.
  • the processor 204 when the processor 204 sends any message or data, it specifically performs the sending by driving or controlling the transmitter 206.
  • the processor 204 when the processor 204 receives any message or data, it specifically performs the receiving by driving or controlling the receiver 208. Therefore, the processor 204 can be regarded as a control center that performs transmission or reception, and the transmitter 206 and the receiver 208 are specific performers of transmission and reception operations.
  • the terminal device 200 may be the terminal device 102 in the communication system 100 shown in FIG. 1, and may be implemented as a user equipment (UE), terminal, access terminal, UE unit, UE station, Mobile devices, mobile stations, mobile stations, mobile terminals, etc.
  • UE user equipment
  • terminal device 200 shown in FIG. 2 is only an implementation manner of an embodiment of the present application. In actual applications, the terminal device 200 may further include more or fewer components, which is not limited herein.
  • FIG. 3 shows a network device provided by an embodiment of the present application.
  • the network device 300 may include: one or more processors 301, a memory 302, a network interface 303, a transmitter 305, a receiver 306, a coupler 307, and an antenna 308. These components may be connected through the bus 304 or in other ways.
  • FIG. 3 takes the connection through the bus as an example. among them:
  • the network interface 303 may be used for the network device 300 to communicate with other communication devices, such as other network devices.
  • the network interface 303 may be a wired interface.
  • the transmitter 305 may be used to transmit the signal output by the processor 301, such as signal modulation.
  • the receiver 306 may be used to receive and process the mobile communication signal received by the antenna 308. For example, signal demodulation.
  • the transmitter 305 and the receiver 306 may be regarded as a wireless modem.
  • the number of the transmitter 305 and the receiver 306 may be one or more.
  • the antenna 308 may be used to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the coupler 307 can be used to divide the mobile communication signal into multiple channels and distribute it to multiple receivers 306.
  • the memory 302 may be coupled with the processor 301 through a bus 304 or input/output ports, and the memory 302 may also be integrated with the processor 301.
  • the memory 302 is used to store various software programs and/or multiple sets of instructions.
  • the memory 302 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 302 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as uCOS, VxWorks, and RTLinux.
  • the memory 302 may also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the processor 301 may be used to read and execute computer-readable instructions. Specifically, the processor 301 may be used to call a program stored in the memory 302, for example, an implementation program of the data transmission method provided by one or more embodiments of the present application on the network device 300 side, and execute instructions contained in the program.
  • the network device 300 may be the network device 101 in the communication system 100 shown in FIG. 1, and may be implemented as a base station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), gNB, etc. Wait.
  • BSS basic service set
  • ESS extended service set
  • gNB gNode B
  • the network device 300 shown in FIG. 3 is only an implementation manner of the embodiment of the present application. In actual applications, the network device 300 may further include more or fewer components, which is not limited herein.
  • the invention concept of this application is introduced.
  • the biggest feature of satellite communication is the large transmission distance and large delay. If you continue to use the HARQ transmission mechanism in LTE, the delay caused by it will increase exponentially, seriously affecting the efficiency of communication.
  • some satellite communication systems currently do not support HARQ mechanisms to reduce delays, with the integration of satellite communication and terrestrial communication, and the increase of users' reliability requirements for communication data, new transmission mechanisms and corresponding channel coding needs to be considered Encoding.
  • Polar code is introduced into the 5G standard as a new code, and its high reliability feature will surely become one of the preferred channel coding methods for satellite communications in the future. For terrestrial base stations, the use of Polar codes in the control channel does not involve HARQ.
  • Polar code is a linear block code. Its generating matrix is F N , and its encoding process is among them It is a binary line vector with a length of N (that is, code length).
  • F N is an N ⁇ N matrix, and Here Defined as the Kronecker product of log 2 N matrices F 2 .
  • the above-mentioned addition and multiplication operations are all addition and multiplication operations on the binary Galois field.
  • the coded version can be understood as a set of coded bit sequences, which are obtained by performing Polar code coding on all or part of a certain K (K is a positive integer) information bits.
  • the first group of encoded bit sequences may be a bit sequence obtained by encoding the 16 information bits of u1 ⁇ u16 by Polar code
  • the second group of encoded bit sequences may be obtained by performing a polar code encoding of the 8 information bits of u9 ⁇ u16 among them
  • the third set of encoded bit sequences may be obtained by encoding the four information bits u7 to u8 and u15 to u16 in Polar code.
  • the sending device can send the three sets of encoded bit sequences to the receiving device through a single transmission.
  • the first set of encoded bit sequences, the second set of encoded bit sequences, and the third set of encoded bit sequences are a code. combination.
  • the sending end device may send the first set of encoded bit sequences to the receiving end device during the first transmission process, and combine and send the second set of encoding bit sequences and the third group of encoded bits to the receiving end device during the second transmission process .
  • the sending device can also send the first set of encoded bit sequences to the receiving device in the first transmission process, and send the second set of encoding bit sequences to the receiving device in the second transmission process, and transmit it in the third time.
  • the third group of encoded bits is sent to the receiving device.
  • the receiving end device can decode the received three sets of encoded bit sequences, and then recover 16 information bits u1 to u16.
  • the code lengths used in different encodings may be the same or different.
  • the coding rates used for different encodings may be the same or different. This application does not limit this.
  • the first set of encoded bit sequences is a bit sequence obtained by encoding the 16 information bits u1 to u16 by Polar code, and the adopted code rate is 1/2, that is, the number of information bits is 16, and the code length N is 32.
  • the second set of encoded bit sequences is obtained by encoding the 8 information bits u9 to u16 with Polar code, and the adopted code rate is 1/4, that is, the number of information bits is 8, and the code length N is 32.
  • the third set of coded bit sequences is obtained by performing Polar code encoding on the four information bits u7 to u8 and u15 to u16, and the adopted code rate is 1/8, that is, the number of information bits is 4, and the code length N is 32.
  • This example uses the same code length for different encodings and different code rates for different encodings.
  • the first set of encoded bit sequences is a bit sequence obtained by encoding the 16 information bits u1 to u16 by Polar code, and the adopted code rate is 1/2, that is, the number of information bits is 16, and the code length is 32.
  • the second set of encoded bit sequences is obtained by encoding the 8 information bits u9 to u16 with Polar code, and the adopted code rate is 1/2, that is, the number of information bits is 8, and the code length is 16.
  • the third set of coded bit sequences is obtained by performing Polar code encoding on the four information bits u7 to u8 and u15 to u16, and the adopted code rate is 1/2, that is, the number of information bits is 4, and the code length is 8.
  • the code lengths used in different encodings are different, and the code rates used in different encodings are the same.
  • the first set of encoded bit sequences is a bit sequence obtained by encoding the 16 information bits u1 to u16 by Polar code, and the adopted code rate is 1/2, that is, the number of information bits is 16, and the code length is 32.
  • the second set of encoded bit sequences is obtained by encoding the 8 information bits u9 ⁇ u16 with Polar code, and the adopted code rate is 1/6, that is, the number of information bits is 8, and the code length is 48.
  • the third set of coded bit sequences is obtained by performing Polar code encoding on the four information bits u7 to u8 and u15 to u16, and the adopted code rate is 1/18, that is, the number of information bits is 4, and the code length is 72.
  • the code lengths used in different encodings are different, and the code rates used in different encodings are also different.
  • the code rates used in different encodings can be different.
  • the code rates used in different encodings may be the same or different.
  • the code rate can also characterize the relationship between the number of information bits selected in each encoding.
  • the first encoding is to encode the 16 information bits u1 to u16 in Polar code, with a code length of N and a code rate of R.
  • the code length used in the second encoding is also N, and the code rate is R/2, then the number of information bits encoded in the second encoding is 8.
  • the code length used in the third encoding is also N, and the code rate is R/4, then the number of information bits encoded in the third encoding is 4.
  • the code length can also characterize the relationship between the number of information bits selected in each encoding.
  • the first encoding is to encode 16 information bits u1 ⁇ u16 in Polar code, with a code length of N and a code rate of R.
  • the code rate used in the second encoding is also R and the code length is N/2. It can be seen that the number of information bits encoded for the second time is 8.
  • the code rate used in the third encoding is also R, and the code length is N/4, so the number of information bits encoded in the third encoding is 4.
  • the information bits used in different encodings may be the same or different.
  • the present application proposes the following methods for selecting information bits.
  • Method 1 The information bits coded each time are selected according to the reliability of the polarization channel.
  • the Polar code contains N polarized channels, and its reliability is polarized, that is, the reliability of some channels tends to 1, and the reliability of the channel tends to 0. It is necessary to put the information bits in the reliability when coding High position, fixed bits are placed in the remaining position. As shown in Figure 4, the information bits are 16 bits from u1 to u16, and the code length is 32, that is, there are 32 polarized channels. The polarized channels are arranged from left to right in order of reliability from high to low. For reliability, the sender places the 16 information bits u1 to u16 in order on the first 16 polarization channels with high reliability among the 32 polarization channels.
  • the selection of information bits used in each coding can be selected in combination with the reliability of the polarization channel.
  • Polarized channels are arranged from left to right in order of reliability from high to low, and the highest 16 are used as information bits.
  • the reliability of the polarized channel also reflects the error probability of the corresponding information bit during decoding, that is, the lower the reliability of the polarized channel, the easier the corresponding information bit is to make an error during decoding.
  • this application uses the Polar feature to design the encoding method, as shown in Figure 4.
  • Each encoding selects the information bits with lower reliability before transmission or encoding, and places them in the position with higher reliability for encoding.
  • the error-prone information bits in the first encoding are u9 to u16.
  • the information bits with relatively low reliability are u7, u8, u15, u16.
  • these information bits are encoded on the four most reliable polarization channels.
  • the information bits with relatively low reliability are u5, u6, u13, u14.
  • these information bits are encoded on the 4 most reliable polarization channels. Encoding in this way can ensure that all information bits can have higher reliability, and improve the reliability of transmission.
  • the coding method shown in FIG. 4 assumes that the decoding uses a hard substitution method, that is, each decoding of information bits is independent, and the reliability of each decoding of information bits is only related to the reliability of the corresponding polarization channel at the time of coding . If the results of multiple decodings are considered at the same time, the reliability of the information bits can be updated in a combined manner.
  • the first encoding 16 information bits are placed on the 16 most reliable polarization channels.
  • the information bits u9 to u16 with lower reliability are selected and placed on the eight polarization channels with the highest encoding reliability in the order of their reliability from low to high.
  • the second decoding will combine the results of the previous decoding, that is, the reliability of u9 ⁇ u16 during the second decoding is updated to 8+9, 7+10, 6+11, 5+12, 4+13, 3 +14, 2+15, 1+16.
  • Method 2 The information bits coded each time are selected according to the reliability of the polarized channel and the code distance.
  • the code distance and the polarization channel can also be integrated Reliability to determine the information bits selected for each encoding.
  • the code distance of the Polar code is not unique. Referring to FIG. 6, it is assumed that 16 of the 32 polarized channels are selected to carry the information bits u1 to u16 with the highest code distance, and the corresponding code distances are 32, 16, 16, respectively. 16, 16, 16, 8, 8, 8, 8, 8, 8, 8, 8, the corresponding reliability is 32, 25, 26, 24, 30, 31, 6, 11, 13, 21, 14, 22, 27, 29, 16, 28.
  • the second encoding selects the information bit with the lowest 8-bit code distance. Since u7 ⁇ u16 have the same 10-bit code distance, the eight least reliable bits are selected, namely u7, u8, u9, u10, u11, u12, u13, u15 Placed on the 8-bit polarized channel with the highest code distance and highest reliability, the corresponding code distance is updated to 32, 16, 16, 16, 16, 8, 8. The corresponding reliability is updated to 32, 25, 26, 24, 30, 31, 29, 28.
  • the code distance and reliability of u1 ⁇ u16 are 32(32), 16(25), 16(26), 16(24), 16(30), 16(31), 32(32), 16(25) ), 16(26), 16(24), 16(30), 16(31), 8(29), 8(29), 8(28), 8(28).
  • the corresponding code distance is updated to 32, 16, 16, 16 and the reliability of the polarized channel is 32, 26. , 30, 31.
  • the information bits used in each encoding may also be completely the same or partially the same, which is not limited in this application.
  • the reliability of the polarization channel involved in this application may not be the true reliability, but a value obtained by normalizing the true reliability, and this value may represent the relative magnitude of the reliability.
  • the code rates used in different encodings may be the same or different.
  • the code lengths used in different encodings may be the same or different.
  • the relative positions of the information bits in different encodings can be determined by interleaving and mapped to K polarizations with high reliability and/or code distance On the channel.
  • the information bits used in at least two encodings are the same, and the information bits used in at least two encodings are different.
  • the 16 information bits u1 ⁇ u16 are encoded with Polar code, the code length is N, and the code rate is R.
  • the 16 information bits u1 ⁇ u16 are also encoded with Polar code.
  • the code length used is N/2, and the code rate is 2R.
  • the 8 information bits u9 ⁇ u16 are encoded with Polar code, the code length used is N, and the code rate is also R/2.
  • the embodiments of the present application provide a data transmission method.
  • the data transmission method includes but is not limited to the following steps.
  • the first communication device determines a target data transmission mode.
  • the target data transmission mode is used to instruct the first communication device to transmit the number of code combinations and the code combination for each transmission to the second communication device.
  • the code combination for each transmission includes one Or a plurality of coded bit sequences, the coded bit sequence is obtained by coding all or part of the K information bits, and K is a positive integer.
  • S702 The first communication device sends the code combination to the second communication device according to the target data transmission mode, and the second communication device receives the code combination sent by the first communication device according to the target data transmission mode.
  • the first communication device is a terminal device and the second communication device is a network device (for example, a base station), or the first communication device is a network device and the second communication device is a terminal device.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the network device may instruct the terminal which data transmission mode to select.
  • the network device and the terminal may pre-configure the mapping table between the index and the data transmission mode.
  • the data transmission mode can reflect the code combination of each transmission and the maximum number of transmissions.
  • the code lengths used in different encodings are equal (that is, the code rate can characterize the relationship between the number of information bits selected each time) as an example for description.
  • the mapping table of the index and the data transmission mode may be, for example but not limited to, as shown in Table 1 below, where the data transmission mode represented by the index 11 is the maximum number of transmissions is 2, the first transmission includes the code rate R and R If there is no translation pair for the coded bit sequence of /3, the coded bit sequence with the code rate of R/5 is retransmitted for the second time.
  • the data transmission mode represented by index 12 is that the maximum number of transmissions is 2.
  • the first transmission transmits the coded bit sequence including the coding rate of R and R/2. If there is no translation pair, the second transmission code rate R/2 and R/4 coded bit sequences.
  • Figure 8 shows the data transmission mode corresponding to index 12.
  • the number of transmissions can be one time or multiple times, and the number of coded bit sequences for a single transmission can be one or multiple.
  • the network device sends the first index to the terminal device, and the terminal device receives the first index sent by the network device, and searches the data transmission mode corresponding to the first index through Table 1. If the first index sent by the network device to the terminal device is 12, the terminal device can find out that the data transmission mode is the maximum number of transmissions is two through the lookup table 1, and the code combination of the first transmission includes the code rate R The bit sequence and the coded bit sequence with a code rate of R/2. If the network device decodes the code incorrectly, the code combination for the second transmission includes the coded bit sequences with the code rates of R/3 and R/5.
  • the terminal device performs Polar code encoding on the 16 information bits u1 to u16 to obtain a coded bit sequence with a code rate of R, and 16 information bits 8 information bits are selected for Polar code encoding to obtain an encoded bit sequence with a code rate of R/2, and the two sets of encoded bit sequences are combined and sent to the network device. If the network device decodes the error, the network device sends a NACK message to the terminal.
  • the terminal device After receiving the NACK message, the terminal device selects 8 information bits from the 16 information bits for Polar code encoding to obtain coded bits with a code rate of R/2 Sequence, and selecting 4 information bits from the 16 information bits for Polar code encoding to obtain a coded bit sequence with a code rate of R/4, and then the two sets of coded bit sequences are combined and sent to the network device. See Figure 5 for details. Among them, how the terminal device selects 8 information from 16 information bits and how to select 4 information from 16 information bits may be selected according to the reliability of the polarization channel, or according to the reliability of the polarization channel And the code distance is selected, for details, please refer to the related descriptions of the foregoing embodiments, which will not be repeated here.
  • the network device does not need to send a NACK message to the terminal after receiving the encoded bit sequence sent by the terminal.
  • the network device may send the first index to the terminal in the broadcast system message or other signaling. For example, before accessing the network, the terminal needs to monitor the system messages broadcast by the network device, and parse the received broadcast system messages to obtain the first index. Among them, the network device can send the index to the terminal through downlink control information (downlink control iInformation, DCI).
  • DCI downlink control information
  • the way in which the network device determines the data transmission mode may be based on the distance between the terminal and the network device, the height of the network device from the ground, the type of network device (such as a ground base station or a non-ground base station), or the communication link between the terminal and the network device Road quality to determine. For example, if the distance between the terminal and the network device is relatively short, the network device may select a data transmission mode with a larger number of transmissions and a smaller number of encoded bit sequences carried in a single transmission. If the distance between the terminal and the network device is far, the network device may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission.
  • the network device may select a data transmission mode that has more transmission times and a smaller number of encoded bit sequences carried in a single transmission. If the network device is far away from the ground, the network device may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission. Or, if the network device is a terrestrial base station, in order to improve the reliability of the communication, the network device may select a data transmission mode with a larger number of transmissions and a smaller number of encoded bit sequences carried in a single transmission.
  • the network device may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission. Or, if the channel state (or quality) between the terminal and the network device is good, the network device may select a data transmission mode that has more transmission times and a smaller number of encoded bit sequences carried in a single transmission. If the channel state between the terminal and the network device is poor, the network device may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission.
  • the terminal may also determine which data transmission mode to choose. That is, the network device does not need to send the index to the terminal.
  • the terminal accesses the network, it needs to obtain the type of network equipment. If it is a satellite base station, it also needs to obtain the height information of the satellite base station for delay estimation. Therefore, the terminal can determine the corresponding data transmission mode according to the satellite's altitude, channel status, and its current code rate.
  • the advantage of this solution is to further simplify the transmission process of satellite communications, and the foregoing embodiment of determining the target data transmission mode through the network device and then sending the index to the terminal has the advantage of higher flexibility.
  • the manner in which the terminal determines the data transmission mode may be determined based on the distance between the terminal and the network device, the type of network device (such as a ground base station or a non-ground base station), or the quality of the communication link between the terminal and the network device. For example, if the distance between the terminal and the network device is short, the terminal may select a data transmission mode in which the number of transmissions is large and the number of encoded bit sequences carried in a single transmission is small. If the distance between the terminal and the network device is far, the terminal may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission.
  • the terminal may select a data transmission mode with more transmission times and a smaller number of encoded bit sequences carried in a single transmission. If the network device is far away from the ground, the terminal can select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission. Or, if the network device is a terrestrial base station, in order to improve the reliability of communication, the terminal may select a data transmission mode that has more transmission times and a smaller number of coded bit sequences carried in a single transmission.
  • the terminal may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission. Or, if the channel state (or quality) between the terminal and the network device is good, the terminal may select a data transmission mode that has a larger number of transmissions and a smaller number of encoded bit sequences carried in a single transmission. If the channel state between the terminal and the network device is poor, the terminal may select a data transmission mode with fewer transmission times and a larger number of encoded bit sequences carried in a single transmission.
  • satellite base stations differ from ground base stations in that satellite base stations have different heights, and satellite base stations can be further divided into low-orbit satellites, medium-orbit satellites, and high-orbit satellites.
  • the distance can reach more than 3500KM, while low-orbit satellites can be less than 600KM.
  • Some high-altitude platforms high altitude platforms, HAPS (such as hot air balloons, drones, etc.) have a maximum distance from users that is even smaller than the distance between users and ground base stations. Therefore, there are large differences in communication delay between non-terrestrial base stations and terminals at different heights.
  • the same data transmission mode as the ground base station can be adopted, or the number of transmissions can be increased appropriately.
  • the number of transmissions can be reduced or transmitted only once. The advantage of this is that it can synthesize delay and reliability, and the base station can flexibly choose one or more transmissions to ensure the communication efficiency of different users.
  • the above Table 1 can also be divided into multiple tables according to different base station types. Different types of base stations/network devices correspond to different data transmission lists.
  • the terminal determines the type of the base station according to the index sent by the base station or according to other information sent by the base station. Among them, the type of the base station may be a ground base station, a high-altitude platform, a low-orbit satellite, a medium-orbit satellite, or a high-orbit satellite.
  • each type of base station includes at least one data transmission mode, and different indexes are used to indicate this base station type.
  • the types of base stations are not limited to the four in the table, and satellites of high, medium and low orbit types can be further divided.
  • the purpose of a type of satellite corresponding to multiple data transmissions is that for the same satellite, the distance between the different coverage areas and the satellites will be different, and different transmission methods can be used.
  • the terminal code rate when coding Coding parameters can also correspond to different transmission modes at different times, increasing the flexibility of satellite data transmission.
  • the specific transmission method is not limited to the type in the table.
  • one or more coded bit sequences may be included one or more times, and one or more coded bit sequences may be used in a repeated manner, that is, once Or multiple times the encoded bit sequence includes the same encoded bit sequence and so on.
  • the network device may select which data transmission mode to use, and send the index corresponding to the selected data transmission mode to the terminal.
  • the terminal searches the corresponding table to determine the target data transmission mode. For example, the network device notifies the terminal that the network device type is high-orbit satellite through system information, the network device selects the data transmission mode corresponding to index 0, and sends index 0 to the terminal.
  • the terminal After receiving the index 0 sent by the network device, the terminal queries the high-orbit satellite Corresponding to Table 5, it is determined that the data transmission mode corresponding to index 0 is R+R/2+R/4+R/8+R/16, that is, the number of transmissions is once, and the transmission code combination is the code rate of R, R/2, R/4, R/8 and R/16 coded bit sequences.
  • the terminal pre-stores the data transmission lists corresponding to the different types of base stations shown in Tables 2 to 5 above, and determines which data transmission mode to select based on the type of network equipment, the current channel state, or the terminal's own code rate.
  • one or more of the encoded bit sequences is not repeatedly transmitted.
  • the encoding with the code rate of R/2 is repeatedly transmitted.
  • Bit sequence for transmission may include repeated coded bit sequences.
  • 5 encoded bit sequences are transmitted at a time, wherein the encoded bit sequence with a code rate of R/16 is repeatedly transmitted.
  • the tables in the above embodiments are described by taking the same code length used in different encodings (that is, the code rate size can characterize the relationship between the number of information bits selected each time) as an example.
  • the code rate R in the table can be directly replaced by the number of information bits.
  • Table 1 can be changed to Table 6 below.
  • the data transmission mode corresponding to index 11 is that the coding combination for the first transmission includes a coding bit sequence obtained by coding K information bits and coding K/3 information bits out of K information bits
  • the code combination of the second transmission includes the coded bit sequence obtained by coding K/5 information bits out of K information bits.
  • the data transmission mode corresponding to index 12 is that the coding combination for the first transmission includes a coded bit sequence obtained by coding K information bits and a coded bit sequence obtained by coding K/2 information bits out of K information bits ,
  • the coding combination for the second transmission includes a coded bit sequence obtained by coding K/2 information bits out of K information bits and a coded bit sequence obtained by coding K/4 information bits out of K information bits .
  • the code rate used for each encoding may be the same or different.
  • the code length used for each encoding may be the same or different.
  • FIG. 9 shows a functional block diagram of a first communication device and a second communication device provided by an embodiment of the present application.
  • the first communication device may be the network device 101 or the terminal device 102 in the embodiment of FIG. 1.
  • the second communication device may be the terminal device 102 or the network device 101 in the embodiment of FIG. Described separately below.
  • the first communication device 500 may include: a processing unit 501 and a sending unit 502.
  • the processing unit 501 is used to determine a target data transmission mode, and the target data transmission mode is used to instruct the first communication device to transmit the number of encoding combinations to the second communication device and the encoding combination for each transmission.
  • the coding combination of the secondary transmission includes one or more coded bit sequences obtained by coding all or part of the K information bits, where K is a positive integer;
  • the sending unit 502 is configured to send the code combination to the second communication device according to the target data transmission mode.
  • At least one transmitted code combination in each transmitted code combination includes at least two coded bit sequences.
  • the encoding combination for each transmission includes multiple encoded bit sequences
  • at least one encoded bit sequence among the multiple encoded bit sequences is obtained by encoding part of the K information bits of.
  • the coded bit sequence is obtained by using Polar code coding; when at least one of the coded combinations of each transmission includes at least two coded bit sequences, the at least two coded bits The sequence includes a first coded bit sequence and a second coded bit sequence.
  • the first coded bit sequence is obtained by performing polar code coding on P information bits of the K information bits, and the P information bits are mapped to On P polarized channels, P is a positive integer less than or equal to K;
  • the second coded bit sequence is obtained by performing polar code coding on Q information bits of the K information bits, and the Q information bits are The reliability of the polarized channels mapped in the P information bits is ranked as the information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second encoded bit sequence, the Q The information bits are mapped onto the Q polarized channels whose reliability ranks the top Q bits among the P polarized channels, where Q is a positive integer less than or equal to P.
  • the Q information bits are mapped to the Q polarized channels with high reliability from low to high in order of reliability; or, the Q information bits are sorted according to reliability The order from high to low is mapped onto the Q polarized channels with high to low reliability.
  • the coded bit sequence is obtained by using Polar code coding; when at least one of the coded combinations of each transmission includes at least two coded bit sequences, the at least two coded bits The sequence includes a first coded bit sequence and a second coded bit sequence.
  • the first coded bit sequence is obtained by performing polar code coding on P information bits of the K information bits, and the P information bits are mapped to On P polarized channels, P is a positive integer less than or equal to K;
  • the second coded bit sequence is obtained by performing polar code coding on Q information bits of the K information bits, and the Q information bits are
  • the code distance and reliability of the polarized channels mapped in the P information bits are all sorted into information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second encoded bit sequence
  • the Q information bits are mapped to the Q polarized channels in which the code distance and reliability of the P polarized channels are ranked as the first Q bits, and Q is a positive integer less than or equal to P.
  • the Q information bits are mapped onto the Q polarized channels with a code distance and a reliability from high to low in order of code distance and reliability from low to high; or, the Q The information bits are mapped onto the Q polarized channels with the code distance and reliability from high to low in the order of the code distance and reliability from high to low.
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is the network device and the second communication device is the terminal; the The first communication device 500 also includes:
  • a receiving unit configured to receive a first index sent by the second communication device before the processing unit 501 determines the target data transmission mode, the first index is an attribute of the second communication device according to the network device Information and/or channel quality between the first communication device and the second communication device, the attribute information includes the type of the network device, the first communication device and the second communication device One or more of the distance between or the height of the network device from the ground, the type includes a ground base station or a non-ground base station;
  • the processing unit 501 is used to determine the target data transmission mode, including:
  • the target data transmission mode is determined according to the first index and a preset mapping table, where the preset mapping table includes a mapping relationship between at least one index and at least one data transmission mode, and the at least one index includes all In the first index, the at least one data transmission mode includes the target data transmission mode.
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is the network device and the second communication device is the terminal; the The processing unit 501 is used to determine the target data transmission mode, including:
  • the target data transmission mode is determined according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device, and the attribute information includes the type and One or more of the distance between the first communication device and the second communication device or the height of the network device from the ground, the type includes a ground base station or a non-ground base station.
  • the number of transmission code combinations corresponding to the non-terrestrial base station is less than or equal to the number of transmission code combinations corresponding to the terrestrial base station; and/or included in each transmission code combination corresponding to the non-terrestrial base station
  • the number of coded bit sequences is greater than or equal to the number of coded bit sequences included in each transmission code combination corresponding to the ground base station.
  • the second communication device 600 may include a receiving unit 601 and a processing unit 602.
  • the receiving unit 601 is configured to receive the code combination sent by the first communication device according to the target data transmission mode, and the target data transmission mode is used to instruct the first communication device to transmit the code combination to the second communication device the number of times and each time
  • the encoding combination for each transmission, the encoding combination for each transmission includes one or more encoded bit sequences, which are obtained by encoding all or part of the K information bits, where K is a positive integer ;
  • the processing unit 602 is configured to decode the received coding combination to obtain a decoded bit sequence.
  • At least one transmitted code combination in each transmitted code combination includes at least two coded bit sequences.
  • the encoding combination for each transmission includes multiple encoded bit sequences
  • at least one encoded bit sequence among the multiple encoded bit sequences is obtained by encoding part of the K information bits of.
  • the coded bit sequence is obtained by using Polar code coding; when at least one of the coded combinations of each transmission includes at least two coded bit sequences, the at least two coded bits The sequence includes a first coded bit sequence and a second coded bit sequence.
  • the first coded bit sequence is obtained by performing polar code coding on P information bits of the K information bits, and the P information bits are mapped to On P polarized channels, P is a positive integer less than or equal to K;
  • the second coded bit sequence is obtained by performing polar code coding on Q information bits of the K information bits, and the Q information bits are The reliability of the polarized channels mapped in the P information bits is ranked as the information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second encoded bit sequence, the Q The information bits are mapped onto the Q polarized channels whose reliability ranks the top Q bits among the P polarized channels, where Q is a positive integer less than or equal to P.
  • the Q information bits are mapped to the Q polarized channels with high reliability from low to high in order of reliability; or, the Q information bits are sorted according to reliability The order from high to low is mapped onto the Q polarized channels with high to low reliability.
  • the coded bit sequence is obtained by using Polar code coding; when at least one of the coded combinations of each transmission includes at least two coded bit sequences, the at least two coded bits The sequence includes a first coded bit sequence and a second coded bit sequence.
  • the first coded bit sequence is obtained by performing polar code coding on P information bits of the K information bits, and the P information bits are mapped to On P polarized channels, P is a positive integer less than or equal to K;
  • the second coded bit sequence is obtained by performing polar code coding on Q information bits of the K information bits, and the Q information bits are
  • the code distance and reliability of the polarized channels mapped in the P information bits are all sorted into information bits of the last Q bits; when the Q information bits are subjected to Polar code encoding to obtain the second encoded bit sequence
  • the Q information bits are mapped to the Q polarized channels in which the code distance and reliability of the P polarized channels are ranked as the first Q bits, and Q is a positive integer less than or equal to P.
  • the Q information bits are mapped onto the Q polarized channels with a code distance and a reliability from high to low in order of code distance and reliability from low to high; or, the Q The information bits are mapped onto the Q polarized channels with the code distance and reliability from high to low in the order of the code distance and reliability from high to low.
  • the first communication device is a terminal and the second communication device is a network device, or the first communication device is the network device and the second communication device is the terminal; the The second communication device 600 also includes:
  • a sending unit configured to send a first index to the first communication device before the receiving unit 601 receives the code combination sent by the first communication device according to the target data transmission mode, and the first index is used for the first
  • the communication device determines the target data transmission mode, and the first index is the channel between the first communication device and the second communication device according to the attribute information of the network device and/or the second communication device Determined by quality, the attribute information includes one or more of the type of the network device, the distance between the first communication device and the second communication device, or the height of the network device from the ground,
  • the types include terrestrial base stations or non-terrestrial base stations.
  • the target data transmission mode is determined by the first communication device according to the attribute information of the network device and/or the channel quality between the first communication device and the second communication device.
  • the attribute information includes one or more of the type of the network device, the distance between the first communication device and the second communication device, or the height of the network device from the ground, and the type includes the ground Base station or non-terrestrial base station.
  • the number of transmission code combinations corresponding to the non-terrestrial base station is less than or equal to the number of transmission code combinations corresponding to the terrestrial base station; and/or included in each transmission code combination corresponding to the non-terrestrial base station
  • the number of coded bit sequences is greater than or equal to the number of coded bit sequences included in each transmission code combination corresponding to the ground base station.
  • FIG. 10 shows a schematic structural diagram of a communication chip provided by the present application.
  • the communication chip 1000 may include: a processor 1001, and one or more interfaces 1002 coupled to the processor 1001.
  • the processor 1001 can be used to read and execute computer-readable instructions.
  • the processor 1001 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding and issues control signals for the operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations, and can also perform address operations and conversions.
  • the register is mainly responsible for saving the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 1001 may be an application-specific integrated circuit (ASIC) architecture, a microprocessor (without interlocked pipelined staged architecture, MIPS) architecture, and advanced streamlining. Instruction set machine (advanced RISC machines, ARM) architecture or NP architecture, etc.
  • the processor 1001 may be single-core or multi-core.
  • the interface 1002 can be used to input data to be processed to the processor 1001, and can output the processing result of the processor 1001 to the outside.
  • the interface 1002 may be a general purpose input (GPIO) interface, which may be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connection.
  • GPIO general purpose input
  • the interface 1002 is connected to the processor 1001 through a bus 1003.
  • the processor 1001 may be used to call a program for realizing the data transmission method provided by one or more embodiments of the present application on the side of the communication device from the memory, and execute the instructions contained in the program.
  • the memory may be integrated with the processor 1001 or may be coupled with the communication chip 100 through the interface 1002.
  • the interface 1002 may be used to output the execution result of the processor 1001. In this application, the interface 1002 may be specifically used to output the decoding result of the processor 1001.
  • processor 1001 and the interface 1002 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited herein.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请公开了一种数据传输方法及通信设备,其中,该方法包括:第一通信设备确定目标数据传输模式,该目标数据传输模式用于指示第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,其中,每次传输的编码组合可以包括一个或多个编码比特序列,这里所提及的编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;第一通信设备按照目标数据传输模式向第二通信设备发送编码组合,第二通信设备接收第一通信设备发送的编码组合,对编码组合中包括的编码比特序列进行解码。本申请实施例能够自适应的选择数据传输模式,适用性更广,不仅适用于地面基站,也适用于卫星通信,能够兼顾通信的可靠性和传输效率。

Description

一种数据传输方法及通信设备 技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据传输方法及通信设备。
背景技术
卫星基站可以提供更广的覆盖范围,不容易受到自然灾害或者外力的破坏。未来5G通信若引入卫星通信可以为海洋、森林等一些地面通信网络不能覆盖的地区提供通信服务,增强5G通信的可靠性。例如确保飞机、火车以及这些交通上的用户获得更加优质的通信服务。为5G通信提供更多数据传输的资源,提升网络的速率。因此,同时支持与地面与卫星的通信是未来5G通信的必然趋势,它在广覆盖,可靠性,多连接,高吞吐等方面都有比较大的益处。
目前,卫星通信与地面通信在通信协议上有较大的区别,常用的终端设备例如手机,只能支持与地面的基站基线通信,只有专用的卫星手机才能够与卫星通信。在5G通信中,需要重新设计卫星通信过程,使得它能在和现有的地面通信融合,同时不对终端设备引入较多成本和复杂度,终端在通信时,只要根据相应的需求选择合适的基站进行通信。
为了增加通信的可靠度,现有的长期演进(long term evolution,LTE)网络中有一条较为复杂的混合自动重传请求(hybrid automatic repeat request,HARQ)机制支持信号的多次传输直到接收端成功译码或者达到最大的重传次数。具体的,在信道编码的时候产生多个编码的冗余版本,每次重传发送与上一次不同的冗余版本,这里所谓的冗余版本就是编码后的一部分数据在接收端进行合并,提升译码性能。而由于卫星通信的最大特点就传输距离大,延迟大,如果继续沿用LTE当中的HARQ传输机制所带来的延迟会成倍增加,严重影响通信的效率。虽然目前一些卫星通信系统直接采用不支持HARQ机制来减少延迟,但是随着卫星通信与地面通信的融合,以及用户对通信数据可靠性要求的提升,需要考虑新的传输机制以适用于卫星通信。因此,如何设计一种适用于卫星通信的数据传输方法以提高卫星通信的效率是目前需要解决的技术问题。
发明内容
本申请提供了一种数据传输方法及通信设备,能够自适应的选择数据传输模式,适用性更广,不仅适用于地面基站,也适用于卫星通信,能够兼顾通信的可靠性和传输效率。
第一方面,本申请实施例提供了一种数据传输方法,应用于第一通信设备侧。该方法包括:第一通信设备确定目标数据传输模式,目标数据传输模式用于指示第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,每次传输的编码组合包括一个或多个编码比特序列,编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;第一通信设备按照目标数据传输模式向第二通信设备发送编码组合。
实施本申请实施例,第一通信设备按照目标数据传输模式向第二通信设备发送编码组合,目标数据传输模式可以用于指示第一通信设备向第二通信设备传输编码组合的次数以 及每次传输的编码组合,因此本申请实施例能够自适应的选择数据传输模式,适用性更广,不仅适用于地面基站,也适用于卫星通信,能够兼顾通信的可靠性和传输效率。
在一种可能的设计中,每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。实施本申请实施例,可以在单次传输过程中合并发送至少两个编码比特序列,提高译码的成功率。
在一种可能的设计中,当每次传输的编码组合包括多个编码比特序列时,多个编码比特序列中的至少一个编码比特序列是对K个信息比特的部分信息比特进行编码得到的。
在一种可能的设计中,编码比特序列是采用Polar码编码得到的;当每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,第一编码比特序列是对K个信息比特中的P个信息比特进行Polar码编码得到,P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;第二编码比特序列是对K个信息比特中的Q个信息比特进行Polar码编码得到,Q个信息比特为P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对Q个信息比特进行Polar码编码得到第二编码比特序列时,Q个信息比特被映射到P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。实施本申请实施例,上述可靠度排序为后Q位的信息比特被映射到P个极化信道中可靠度排序为前Q位的极化信道上,能够实现各个信息比特的译码成功率均得到保障。
在一种可能的设计中,Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的Q个极化信道上;或者,Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的Q个极化信道上。
在一种可能的设计中,编码比特序列是采用Polar码编码得到的;当每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,第一编码比特序列是对K个信息比特中的P个信息比特进行Polar码编码得到,P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;第二编码比特序列是对K个信息比特中的Q个信息比特进行Polar码编码得到,Q个信息比特为P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对Q个信息比特进行Polar码编码得到第二编码比特序列时,Q个信息比特被映射到P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。实施本申请实施例,能够实现各个信息比特的译码成功率均得到保障。
在一种可能的设计中,Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的Q个极化信道上;或者,Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的Q个极化信道上。
在一种可能的设计中,第一通信设备为终端且第二通信设备为网络设备,或者,第一通信设备为网络设备且第二通信设备为终端;第一通信设备确定目标数据传输模式之前,还包括:第一通信设备接收第二通信设备发送的第一索引,第一索引是第二通信设备根据网络设备的属性信息和/或第一通信设备与第二通信设备之间的信道质量确定的,属性信息包括网络设备的类型、第一通信设备与第二通信设备之间的距离或网络设备距离地面的高度中的一种或多种,类型包括地面基站或者非地面基站;第一通信设备确定目标数据传输 模式,包括:第一通信设备根据第一索引以及预设的映射表确定目标数据传输模式,预设的映射表中包括至少一个索引与至少一种数据传输模式的映射关系,至少一个索引包括第一索引,至少一种数据传输模式包括目标数据传输模式。
在一种可能的设计中,第一通信设备为终端且第二通信设备为网络设备,或者,第一通信设备为网络设备且第二通信设备为终端;第一通信设备确定目标数据传输模式,包括:第一通信设备根据网络设备的属性信息和/或第一通信设备与第二通信设备之间的信道质量确定目标数据传输模式,属性信息包括网络设备的类型、第一通信设备与第二通信设备之间的距离或网络设备距离地面的高度中的一种或多种,类型包括地面基站或者非地面基站。实施本申请实施例,相较于由网络设备确定目标数据传输模式的方式来说,可以减少信令开销,提高了通信的传输效率。
在一种可能的设计中,非地面基站对应的传输编码组合的次数小于等于地面基站对应的传输编码组合的次数;和/或,非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
在一种可能的设计中,同一编码组合中所包括的多个编码比特序列中的至少两个编码比特序列的码率不同。
第二方面,本申请实施例提供了一种数据传输方法,应用于第二通信设备侧。该方法包括:第二通信设备接收第一通信设备按照目标数据传输模式发送的编码组合,目标数据传输模式用于指示第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,每次传输的编码组合包括一个或多个编码比特序列,编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;第二通信设备对接收到的编码组合进行解码得到解码后的比特序列。
实施本申请实施例,能够自适应的选择数据传输模式,适用性更广,不仅适用于地面基站,也适用于卫星通信,能够兼顾通信的可靠性和传输效率。
在一种可能的设计中,每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。实施本申请实施例,可以在单次传输过程中合并发送至少两个编码比特序列,提高译码的成功率。
在一种可能的设计中,当每次传输的编码组合包括多个编码比特序列时,多个编码比特序列中的至少一个编码比特序列是对K个信息比特的部分信息比特进行编码得到的。
在一种可能的设计中,编码比特序列是采用Polar码编码得到的;当每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,第一编码比特序列是对K个信息比特中的P个信息比特进行Polar码编码得到,P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;第二编码比特序列是对K个信息比特中的Q个信息比特进行Polar码编码得到,Q个信息比特为P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对Q个信息比特进行Polar码编码得到第二编码比特序列时,Q个信息比特被映射到P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。实施本申请实施例,能够实现各个信息比特的译码成功率均得到保障。
在一种可能的设计中,Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的Q个极化信道上;或者,Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的Q个极化信道上。
在一种可能的设计中,编码比特序列是采用Polar码编码得到的;当每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,第一编码比特序列是对K个信息比特中的P个信息比特进行Polar码编码得到,P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;第二编码比特序列是对K个信息比特中的Q个信息比特进行Polar码编码得到,Q个信息比特为P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对Q个信息比特进行Polar码编码得到第二编码比特序列时,Q个信息比特被映射到P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
在一种可能的设计中,Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的Q个极化信道上;或者,Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的Q个极化信道上。
在一种可能的设计中,第一通信设备为终端且第二通信设备为网络设备,或者,第一通信设备为网络设备且第二通信设备为终端;第二通信设备接收第一通信设备按照目标数据传输模式发送的编码组合之前,还包括:第二通信设备向第一通信设备发送第一索引,第一索引用于第一通信设备确定目标数据传输模式,第一索引是第二通信设备根据网络设备的属性信息和/或第一通信设备与第二通信设备之间的信道质量确定的,属性信息包括网络设备的类型、第一通信设备与第二通信设备之间的距离或网络设备距离地面的高度中的一种或多种,类型包括地面基站或者非地面基站。
在一种可能的设计中,目标数据传输模式是第一通信设备根据网络设备的属性信息和/或第一通信设备与第二通信设备之间的信道质量确定的,属性信息包括网络设备的类型、第一通信设备与第二通信设备之间的距离或网络设备距离地面的高度中的一种或多种,类型包括地面基站或者非地面基站。
在一种可能的设计中,非地面基站对应的传输编码组合的次数小于等于地面基站对应的传输编码组合的次数;和/或,非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
在一种可能的设计中,同一编码组合中所包括的多个编码比特序列中的至少两个编码比特序列的码率不同。
第三方面,本申请实施例提供了一种通信设备,该通信设备为第一通信设备,第一通信设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的数据传输方法,或者第一方面可能的实施方式中的任意一种所提供的数据传输方法。
第四方面,本申请实施例提供了另一种通信设备,该通信设备为第二通信设备,第二通信设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的数据传输方法,或者第二方面可能的实施方式中的任意一种所提供的数据传输方法。
第五方面,本申请实施例提供了一种通信设备,该用于执行第一方面描述的数据传输方法。该通信设备为第一通信设备,第一通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第一通信设备执行第一方面所提供的数据传输方法中第一通信设备发送信息的步骤。所述接收器用于支持第一通信设备执行第一方面所提供的数据传输方法中第一通信设备接收信息的步骤。处理器用于支持第一通信设备执行第一方面所提供的数据传输方法中第一通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本申请实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第一方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面所提供的数据传输方法,或者第一方面可能的实施方式中的任意一种所提供的数据传输方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
第六方面,本申请实施例提供了另一种通信设备,该用于执行第二方面描述的数据传输方法。该通信设备为第二通信设备,第二通信设备可包括:存储器以及与所述存储器耦合的处理器、发射器、接收器。其中,所述发射器用于支持第二通信设备执行第二方面所提供的数据传输方法中第二通信设备发送信息的步骤。所述接收器用于支持第二通信设备执行第二方面所提供的数据传输方法中第二通信设备接收信息的步骤。处理器用于支持第二通信设备执行第二方面所提供的数据传输方法中第二通信设备除发送信息以及接收信息以外的其他处理步骤。需要说明的是,本申请实施例中的发射器和接收器可以集成在一起,也可以通过耦合器耦合。所述存储器用于存储第二方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面所提供的数据传输方法,或者第二方面可能的实施方式中的任意一种所提供的数据传输方法。存储器和处理器可以集成在一起,也可以通过耦合器耦合。
本申请实施例中,通信设备也可以称为通信装置。
第七方面,本申请实施例提供了一种通信系统,包括第一通信设备和第二通信设备。其中,所述第一通信设备可以是如前述第三方面或第五方面所描述的第一通信设备,所述第二通信设备可以是如前述第四方面或第六方面所描述的第二通信设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的数据传输方法。
第九方面,本申请实施例提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的数据传输方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的数据传输方法。
第十一方面,本申请实施例提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的数据传输方法。
第十二方面,本申请实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第一方面所提供的数据传输方法,或者第一方面可能的实施方式中的任意一种所提供的数据传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
第十三方面,本申请实施例提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第二方面所提供的数据传输方法,或者第二方面可能的实施方式中的任意一种所提供的数据传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的处理结果。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统示意图;
图2是本申请实施例提供的终端设备的硬件架构示意图;
图3是本申请实施例提供的网络设备的硬件架构示意图;
图4是本申请实施例提供的一种信息比特映射到极化信道的示意图;
图5是本申请实施例提供的另一种信息比特映射到极化信道的示意图;
图6是本申请实施例提供的另一种信息比特映射到极化信道的示意图;
图7是本申请实施例提供的一种数据传输方法的流程示意图;
图8是本申请实施例提供的一种数据传输方法的流程示意图;
图9是本申请实施例提供的一种第一通信设备和第二通信设备的结构示意图;
图10是本申请实施例提供的一种通信芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1为本申请实施例提供的一种通信系统示意图。该通信系统100可以包括至少一个网络设备101(仅示出1个)以及与网络设备101连接的一个或多个终端设备102。
网络设备101可以通过一个或多个天线来和终端设备102进行无线通信。各个网络设备101均可以为各自对应的覆盖范围103提供通信覆盖。网络设备101对应的覆盖范围103可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
在本申请实施例中,网络设备101可以为地面基站或非地面基站。其中,非地面基站可具有不同的类型,包括但不限于:高空基站(例如:可实现基站功能的热气球、无人机等高空平台),或者卫星(包括低轨卫星、中轨卫星、高轨卫星)。
网络设备101包括但不限于:演进型基站eNodeB、第五代(the fifth Generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、无线局域网(wireless fidelity,WiFi)系统中的接入节点。
在本申请实施例中,终端设备102是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、便携电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart  grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能汽车、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端、移动客户端、移动单元(mobile unit)、远方站、远程终端设备、远程单元、无线单元、无线通信设备、用户代理或用户装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
参考图2,图2示出了本申请实施例提供的终端设备。如图2所示,终端设备200可包括:输入输出模块(包括音频输入输出模块218、按键输入模块216以及显示器220等)、用户接口202、一个或多个处理器204、发射器206、接收器208、耦合器210、天线214以及存储器212。这些部件可通过总线或者其它方式连接,图2以通过总线连接为例。其中:
天线214可用于将电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器210用于将天线214接收到的移动通信信号分成多路,分配给多个的接收器208。
发射器206可用于对处理器204输出的信号进行发射处理。
接收器208可用于对天线214接收的移动通信信号进行接收处理。
在本申请实施例中,发射器206和接收器208可看作一个无线调制解调器。在终端设备200中,发射器206和接收器208的数量均可以是一个或者多个。
除了图2所示的发射器206和接收器208,终端设备200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(wireless fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端设备200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端设备200还可以配置有有线网络接口(如LAN接口)201来支持有线通信。
所述输入输出模块可用于实现终端设备200和用户/外部环境之间的交互,可主要包括音频输入输出模块218、按键输入模块216以及显示器220等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口202与处理器204进行通信。
存储器212可以和处理器204通过总线或者输入输出端口耦合,存储器212也可以与处理器204集成在一起。存储器212用于存储各种软件程序和/或多组指令。具体的,存储器212可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器212可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器212还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或 多个终端设备,一个或多个网络设备进行通信。存储器212还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请实施例中,存储器212可用于存储本申请的一个或多个实施例提供的数据传输方法在终端设备200侧的实现程序。关于本申请的一个或多个实施例提供的数据传输方法的实现,请参考后续实施例。
处理器204可用于读取和执行计算机可读指令。具体的,处理器204可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的数据传输方法在终端设备200侧的实现程序,并执行该程序包含的指令以实现后续实施例涉及的方法。处理器204可支持:全球移动通信系统(global system for mobile communications,GSM)(2G)通信、宽带码分多址(wideband code division multiple access,WCDMA)(3G)通信,以及长期演进(long term evolution,LTE)(4G)通信、5G通信以及未来演进的通信等等中的一个或多个。可选地,当处理器204发送任何消息或数据时,其具体通过驱动或控制发射器206做所述发送。可选地,当处理器204接收任何消息或数据时,其具体通过驱动或控制接收器208做所述接收。因此,处理器204可以被视为是执行发送或接收的控制中心,发射器206和接收器208是发送和接收操作的具体执行者。
可以理解的,终端设备200可以是图1示出的通信系统100中的终端设备102,可实施为用户设备(user equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端等等。
需要说明的,图2所示的终端设备200仅仅是本申请实施例的一种实现方式,实际应用中,终端设备200还可以包括更多或更少的部件,这里不作限制。
参考图3,图3示出了本申请实施例提供的网络设备。如图3所示,网络设备300可包括:一个或多个处理器301、存储器302、网络接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他方式连接,图3以通过总线连接为例。其中:
网络接口303可用于网络设备300与其他通信设备,例如其他网络设备,进行通信。具体的,网络接口303可以是有线接口。
发射器305可用于对处理器301输出的信号进行发射处理,例如信号调制。接收器306可用于对天线308接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302可以和处理器301通过总线304或者输入输出端口耦合,存储器302也可以与处理器301集成在一起。存储器302用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302还可 以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
本申请实施例中,处理器301可用于读取和执行计算机可读指令。具体的,处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的数据传输方法在网络设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可以是图1示出的通信系统100中的网络设备101,可实施为基站、无线收发器、一个基本服务集(BSS)、一个扩展服务集(ESS)、gNB等等。
需要说明的是,图3所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
首先介绍本申请的发明构思。卫星通信的最大特点就传输距离大、延迟大,如果继续沿用LTE当中的HARQ传输机制所带来的延迟会成倍增加,严重影响通信的效率。虽然目前一些卫星通信系统直接采用不支持HARQ机制来减少延迟,但是随着卫星通信与地面通信的融合,以及用户对通信数据可靠性要求的提升,需要考虑新的传输机制以及相应的信道编码的编码方式。Polar码作为新的码被引入到5G标准中,其可靠性高的特点必将成为未来卫星通信首选的信道编码方式之一。对于地面基站,Polar码用在控制信道并不涉及HARQ,对于传统的HARQ方式,也有相应的编码技术,但是对于卫星通信目前尚未有相关的Polar码编码方式,来权衡延迟和可靠度两种因素。本申请针对卫星通信延迟大的特点,对现有的Polar码编码方式进行改进,提高卫星通信的效率。本申请根据基站类型甚至卫星基站距离地面的距离,将不同的Polar编码版本进行合并发送,其中Polar编码版本的设计和组合可以根据卫星通信的信道质量、基站类型等合理的进行选择和设计。
Polar码是一种线性块码。其生成矩阵为F N,其编码过程为
Figure PCTCN2019121379-appb-000001
其中
Figure PCTCN2019121379-appb-000002
是一个二进制的行矢量,长度为N(即码长)。F N是一个N×N的矩阵,且
Figure PCTCN2019121379-appb-000003
这里
Figure PCTCN2019121379-appb-000004
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。以上涉及的加法、乘法操作均为二进制伽罗华域(Galois Field)上的加法、乘法操作。Polar码的编码过程中,
Figure PCTCN2019121379-appb-000005
中的一部分比特用来携带信息,称为信息比特,这些比特的索引的集合记作I;另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其索引的集合用I的补集I c表示。
本申请中,编码版本可以理解为一组编码比特序列,是对某K(K为正整数)个信息比特中的全部或者部分信息比特进行Polar码编码得到的。编码组合可以理解为一次传输的一个或者多个编码比特序列的集合。例如,K=16,K个信息比特分别为u1~u16。第一组编码比特序列可以是对u1~u16这16个信息比特进行Polar码编码得到的比特序列,第二组编码比特序列可以是对其中的u9~u16这8个信息比特进行Polar码编码得到的,第三组编码比特序列可以是对其中的u7~u8、u15~u16这4个信息比特进行Polar码编码得到的。发送端设备可以通过一次传输将这三组编码比特序列合并发送给接收端设备,这种情况下,第一组编码比特序列、第二组编码比特序列以及第三组编码比特序列即为一编码组合。或者,发送端设备可以在第一次传输过程将第一组编码比特序列发送给接收端设备,在第二次传 输过程将第二组编码比特序列和第三组编码比特合并发送给接收端设备。当然,发送端设备也可以在第一次传输过程将第一组编码比特序列发送给接收端设备,在第二次传输过程将第二组编码比特序列发送给接收端设备,在第三次传输过程中将第三组编码比特发送给接收端设备。接收端设备可以对接收到的三组编码比特序列进行译码,进而恢复出u1~u16这16个信息比特。
需要说明的是,在对K个信息比特中的信息比特进行编码时,不同次的编码各自采用的码长可以相同,也可以不同。不同次的编码各自采用的码率可以相同,也可以不同。本申请对此不进行限定。例如,第一组编码比特序列是对u1~u16这16个信息比特进行Polar码编码得到的比特序列,采用的码率为1/2,即,信息比特数量为16,码长N为32。第二组编码比特序列是对u9~u16这8个信息比特进行Polar码编码得到的,采用的码率为1/4,即信息比特数量为8,码长N为32。第三组编码比特序列是对u7~u8、u15~u16这4个信息比特进行Polar码编码得到的,采用的码率为1/8,即信息比特数量为4,码长N为32。本例是以不同次的编码采用的码长相同,且不同次的编码采用的码率不同为例进行的说明。
又例如,第一组编码比特序列是对u1~u16这16个信息比特进行Polar码编码得到的比特序列,采用的码率为1/2,即,信息比特数量为16,码长为32。第二组编码比特序列是对u9~u16这8个信息比特进行Polar码编码得到的,采用的码率为1/2,即信息比特数量为8,码长为16。第三组编码比特序列是对u7~u8、u15~u16这4个信息比特进行Polar码编码得到的,采用的码率为1/2,即信息比特数量为4,码长为8。本例是以不同次的编码采用的码长不同,且不同次的编码采用的码率相同为例进行的说明。
又例如,第一组编码比特序列是对u1~u16这16个信息比特进行Polar码编码得到的比特序列,采用的码率为1/2,即,信息比特数量为16,码长为32。第二组编码比特序列是对u9~u16这8个信息比特进行Polar码编码得到的,采用的码率为1/6,即信息比特数量为8,码长为48。第三组编码比特序列是对u7~u8、u15~u16这4个信息比特进行Polar码编码得到的,采用的码率为1/18,即信息比特数量为4,码长为72。本例是以不同次的编码采用的码长不同,且不同次的编码采用的码率也不同为例进行的说明。
也即是说,不同次编码采用的码长相同时,不同次编码采用的码率可以不同。当不同次编码采用的码长不同时,不同次编码采用的码率可以相同也可以不同。
可以理解的是,当不同次的编码采用的码长相等时,码率也可以表征出每次编码时选择的信息比特的数量之间的关系。例如,第一次编码是对u1~u16这16个信息比特进行Polar码编码,码长为N,码率为R。第二次编码时采用的码长也是N,码率为R/2,则可知第二次编码的信息比特的数量为8。第三次编码时采用的码长也是N,码率为R/4,则可知第三次编码的信息比特的数量为4。
可以理解的是,当不同次编码各自采用的码率相同时,码长也可以表征出每次编码时选择的信息比特的数量之间的关系。例如,第一次编码是对u1~u16这16个信息比特进行Polar码编码,码长为N,码率为R,第二次编码时采用的码率也是R,码长为N/2,则可知第二次编码的信息比特的数量为8。第三次编码时采用的码率也是R,码长为N/4,则可知第三次编码的信息比特的数量为4。
需要说明的是,在对K个信息比特中的信息比特进行编码时,不同次的编码各自采用 的信息比特可以相同,也可以不同。当不同次的编码各自采用的信息比特不同时,针对如何选择各次编码所采用的信息比特,本申请提出了如下几种选择信息比特的方法。
方式一、按照极化信道的可靠度选择每次编码的信息比特。
Polar码包含N个极化信道,其可靠度呈极化的现象,即一部分信道的可靠度趋于1,另外信道的可靠度趋于0,在编码的时候需要将信息比特放在可靠度较高的位置,剩余位置放置固定比特。如图4所示,信息比特为u1~u16这16个比特,码长为32,即极化信道有32个,极化信道从左到右按照可靠度从高到低排列,为了提高传输的可靠性,发送端将u1~u16这16个信息比特依次放在32个极化信道中可靠度高的前16个极化信道上。若发送端向接收端发送的编码组合包括多个编码比特序列,则每一次编码时所采用的信息比特的选择可以结合极化信道的可靠度来选择。如图4所示,假设一次传输的编码组合为码率为
Figure PCTCN2019121379-appb-000006
码长N=32,信息比特的数量K为16,分别为u1~u16。极化信道从左到右按照可靠度从高到低排列,最高的16个作为信息比特。极化信道的可靠度也反应了相应信息比特在译码时候的出错概率,即极化信道的可靠度越低相应的信息比特在译码的时候越容易出错。因此,本申请利用Polar这种特点来设计编码方式,具体如图4所示。每一次编码选择之前传输或者编码时可靠度较低的信息比特,并将其放在可靠度较高的位置进行编码。例如图4,第一次编码时容易出错的信息比特为u9~u16。在第二次编码的时候,将u9~u16放在可靠度最高的8个极化信道进行编码。在两次译码之后,可靠度相对较低的信息比特为u7、u8、u15、u16。在第三次编码的时候将这些信息比特放在可靠度最高的4个极化信道进行编码。在三次译码之后,可靠度相对较低的信息比特为u5、u6、u13、u14。在第四次编码的时候将这些信息比特放在可靠度最高的4个极化信道进行编码。按照这种方式进行编码可以保证所有的信息比特都能够有较高的可靠度,提升传输的可靠性。
图4所示的编码方法假定译码采用硬替代的方法,即每次译码信息比特都是独立的,每次译码信息比特的可靠度只与当前编码时候对应的极化信道可靠度相关。若同时考虑多次译码的结果可以采用合并的方式更新信息比特的可靠度。结合图5来描述采用合并的方式进行译码的编码方法。如图5所示,假设一次传输的编码组合为码率为
Figure PCTCN2019121379-appb-000007
码长N=32,信息比特的数量K为16,分别为u1~u16。32个极化信道的可靠度由高到低进行排列,假设极化信道的可靠度分别是16、15、14、13、12…1。在第一次编码的时候,16个信息比特被放在可靠度最高的16个极化信道上。在第二次编码的时候,选择可靠度较低的信息比特u9~u16,按照其可靠度从低到高的顺序放在当前编码可靠度从高到低的8个极化信道上。第二次译码将合并前一次译码的结果,即u9~u16第二次译码时的可靠度更新为8+9、7+10、6+11、5+12、4+13、3+14、2+15、1+16。第三次编码的时候,选择可靠度较低的信息比特u5~u8,按照其可靠度从低到高的顺序放在当前编码可靠度从高到低的4个极化信道上, u5~u8的可靠度更新为12+13、11+14、10+15、9+16。
方式二、按照极化信道的可靠度以及码距选择每次编码的信息比特。
Polar码信息比特译码时候的出错概率除了与极化信道的可靠度有关,与其他码一样,码距也会在一定程度上影响译码的性能,因此,也可以综合码距和极化信道的可靠度来确定每一次编码所选择的信息比特。Polar码的码距不具有唯一性,参见图6,假设32个极化信道中选择16个码距最高的信道用于承载信息比特u1~u16,对应的码距分别为32、16、16、16、16、16、8、8、8、8、8、8、8、8、8、8,对应的可靠度分别是32、25、26、24、30、31、6、11、13、21、14、22、27、29、16、28。假设一次传输的编码组合为码率为
Figure PCTCN2019121379-appb-000008
则第二次编码选择8位码距最低的信息比特,由于u7~u16有十位码距相同,选择其中可靠度最低的八位即u7、u8、u9、u10、u11、u12、u13、u15放在码距最高且可靠度最高的8位极化信道,对应的码距更新为32、16、16、16、16、16、8、8。相应的可靠度更新为32、25、26、24、30、31、29、28。即u1~u16的码距和可靠度分别为32(32)、16(25)、16(26)、16(24)、16(30)、16(31)、32(32)、16(25)、16(26)、16(24)、16(30)、16(31)、8(29)、8(29)、8(28)、8(28)。第三次编码选择码距最低的4位u13~u16放在码距最高且可靠度最高的位置,对应的码距更新为32、16、16、16,极化信道的可靠度为32、26、30、31。
当然,每次编码时所采用的信息比特也可以是完全相同或者部分相同,本申请对此不进行限定。
需要说明的是,本申请涉及的极化信道的可靠度可以不是真实的可靠度,而是将真实的可靠度进行归一化后得到的值,该值可以表征可靠度的相对大小。
以上几种编码方式,在各种码率组合下都可按照相同的方式进行,也适用于其余实施例。
需要说明的是,若多次编码时所采用的信息比特相同时,不同次的编码各自所采用的码率可以相同,也可以不同。并且,若多次编码时所采用的信息比特相同时,不同次的编码各自所采用的码长可以相同,也可以不同。
当不同次的编码各自采用的信息比特(例如K个信息比特)相同时,不同次编码时信息比特的相对位置可以采用交织的方式确定并映射到可靠度和/码距高的K个极化信道上。
多次编码中可以至少两次编码时采用的信息比特相同,至少两次编码时采用的信息比特不同。例如,第一次编码是对u1~u16这16个信息比特进行Polar码编码,码长为N,码率为R,第二次编码时也是对u1~u16这16个信息比特进行Polar码编码,采用的码长为N/2,码率是2R。第三次编码时是对u9~u16这8个信息比特进行Polar码编码,采用的码长为N,码率也是R/2。
基于前述通信系统100、终端设备200以及网络设备300分别对应的实施例,本申请实施例提供了一种数据传输方法。参见图7,该数据传输方法包括但不限于如下步骤。
S701:第一通信设备确定目标数据传输模式,该目标数据传输模式用于指示第一通信 设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,每次传输的编码组合包括一个或多个编码比特序列,编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数。
S702:第一通信设备按照目标数据传输模式向第二通信设备发送编码组合,第二通信设备接收第一通信设备按照目标数据传输模式发送的编码组合。
本申请实施例中,第一通信设备为终端设备且第二通信设备为网络设备(例如基站),或者,第一通信设备为网络设备且第二通信设备为终端设备。下述实施例以第一通信设备为终端设备且第二通信设备为网络设备为例进行介绍。
在一种实现方式中,可以由网络设备来指示终端选择哪种数据传输模式。这种情况下,网络设备和终端可以预先配置索引与数据传输模式的映射表。数据传输模式可以反映每次传输的编码组合以及最大传输次数。以不同次的编码采用的码长相等(即码率可以表征每次选择的信息比特的数量之间的关系)为例进行描述。索引与数据传输模式的映射表可以例如但不限于如下表1所示,其中索引11所代表的数据传输模式为最大传输次数为2次,第一次传输的时候发送包含码率为R以及R/3的编码比特序列,若没有译对,则第二次再发送码率为R/5的编码比特序列。索引12代表的数据传输模式为最大传输次数为2次,第一次传输的时候发送包含码率为R以及R/2的编码比特序列,若没有译对,则第二次再发送码率为R/2以及R/4的编码比特序列。图8给出了索引12所对应的数据传输模式。
表1
索引 数据传输模式
0 R
1 R+R/2
2 R+R/3
3 R+R/4
4 R+R/5
5 R+R/2+R/4
6 R+R/2+R/5
7 R+R/3+R/4
8 R+R/3+R/5
9 R+R/2+R/3+R/4
10 R+R/2+R/3+R/5
11 R+R/3,R/5
12 R+R/2,R/2+R/4
由表1可知,传输次数可以是一次,也可以是多次,且单次传输的编码比特序列的数量可以是一个,也可以是多个。
具体实现中,网络设备向终端设备发送第一索引,终端设备接收网络设备发送的第一索引,通过表1查找第一索引对应的数据传输模式。若网络设备发送给终端设备的第一索引为12,则终端设备通过查询表1,可以获知数据传输模式为最大传输次数为两次,且第一次传输的编码组合包括码率为R的编码比特序列以及码率为R/2的编码比特序列,若网络设备译码错误,第二次传输的编码组合包括码率为R/3以及R/5的编码比特序列。则若终端需要传输的信息比特为u1~u16这16个信息比特,则终端设备对u1~u16这16个信息比特进行Polar码编码得到码率为R的编码比特序列,以及从16个信息比特中选择8个信息比特进行Polar码编码得到码率为R/2的编码比特序列,将这两组编码比特序列合并发送给网络设备。若网络设备译码错误,则网络设备向终端发送NACK消息,终端设备在接收到NACK消息后,从16个信息比特中选择8个信息比特进行Polar码编码得到码率为R/2的编码比特序列,以及从16个信息比特中选择4个信息比特进行Polar码编码得到码率为R/4的编码比特序列,之后将这两组编码比特序列合并发送给网络设备。具体参见图5所示。其中,终端设备如何从16个信息比特中选择8个信息以及如何从16个信息比特中选择4个信息的方式可以是按照极化信道的可靠度排列进行选择,或者按照极化信道的可靠度以及码距来选择的,具体可以参考前述实施例的相关描述,此次不再赘述。
需要说明的是,若数据传输模式对应的最大传输次数为一次,则网络设备在接收到终端发送的编码比特序列后,不需向终端发送NACK消息。
其中,网络设备可以在广播的系统消息中或者其他信令中将第一索引发送给终端。例如,终端在接入网络之前,需要监听网络设备广播的系统消息,从接收到的广播系统消息中解析得到第一索引。其中,网络设备可以通过下行控制信息(downlink control iInformation,DCI)将索引发送给终端。
网络设备确定数据传输模式的方式可以是基于终端与网络设备之间的距离、网络设备 距离地面的高度、网络设备的类型(例如地面基站或非地面基站)或者终端与网络设备之间的通信链路质量来确定。例如,如果终端与网络设备之间的距离较近,则网络设备可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果终端与网络设备之间的距离较远,则网络设备可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果网络设备距离地面的距离较近,则网络设备可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果网络设备距离地面的距离较远,则网络设备可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果网络设备为地面基站,则为了提高通信的可靠性,则网络设备可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果网络设备为非地面基站,例如卫星基站,则网络设备可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果终端与网络设备之间的信道状态(或质量)较好,则网络设备可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果终端与网络设备之间的信道状态较差,则网络设备可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。
在实际的应用当中,为了减少信令的开销,也可以由终端来确定选择哪种数据传输模式。即网络设备无需向终端发送索引。终端在接入网络的时候,需要获取网络设备的类型,如果是卫星基站还需要获取卫星基站的高度信息以便进行延迟估计。因此,终端可以根据卫星的高度、信道状态、自己当前的码率等确定相应的数据传输模式。该种方案的好处是进一步简化卫星通信的传输过程,而前述通过网络设备来确定目标数据传输模式,进而将索引发送给终端实施例的好处是灵活度比较高。终端确定数据传输模式的方式可以是基于终端与网络设备之间的距离、网络设备的类型(例如地面基站或非地面基站)或者终端与网络设备之间的通信链路质量来确定。例如,如果终端与网络设备之间的距离较近,则终端可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果终端与网络设备之间的距离较远,则终端可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果网络设备距离地面的距离较近,则终端可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果网络设备距离地面的距离较远,则终端可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果网络设备为地面基站,则为了提高通信的可靠性,则终端可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果网络设备为非地面基站,例如卫星基站,则终端可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。或者,如果终端与网络设备之间的信道状态(或质量)较好,则终端可以选择传输次数较多且单次传输携带的编码比特序列数量较少的数据传输模式。如果终端与网络设备之间的信道状态较差,则终端可以选择传输次数较少且单次传输携带的编码比特序列数量较多的数据传输模式。
其中,卫星基站与地面基站不同的是卫星基站有不同的高度,卫星基站还可以进一步划分为低轨卫星、中轨卫星和高轨卫星。例如,对于高轨卫星,距离可以达到3500KM以上,而低轨卫星可以小于600KM。一些高空平台(high altitude platform station,HAPS)(例如热气球、无人机等)与用户的最大距离甚至小于用户与地面基站的距离。因此,不同高 度的非地面基站与终端之间的通信延迟存在较大的差异。对于HAPS类型或低轨卫星的基站,可以采用与地面基站相同的数据传输模式,或者适当的增加传输的次数。对于高轨卫星,可以降低传输的次数或只传输一次。这样的优点是能综合延迟和可靠度,基站可以灵活选择一次或者多次的传输,保证不同用户的通信效率。
上述表1还可以根据不同的基站类型来划分为多个表格。不同的基站/网络设备的类型对应不同的数据传输列表,终端根据基站发送的索引或者根据基站发送的其他信息确定基站的类型。其中,基站的类型可以是地面基站、高空平台、低轨卫星、中轨卫星或者高轨卫星。
如下表2至表5所示,每一种基站的类型包括至少一种数据传输模式,在该基站类型下采用了不同的索引来指示。另外,基站类型不限于表格中的四种,可以对高中低轨类型的卫星进一步进行划分。一种类型的卫星对应多种数据传输的目的是,对于同一颗卫星,其对应的不同覆盖区域与卫星之间的距离会有区别,可以采用不同的传输方式,另外终端编码时候的码率等编码参数不同时候也可以对应到不同的传输模式,增加卫星数据传输的灵活性。
具体的传输方式不限于表中的类型,例如地轨卫星的多次传输中,可以有一次或者多次包括一个编码比特序列,可以有一次或者多次的编码比特序列采用重复的方式,即一次或者多次的编码比特序列中包括相同的编码比特序列等。
表2
Figure PCTCN2019121379-appb-000009
表3
Figure PCTCN2019121379-appb-000010
表4
Figure PCTCN2019121379-appb-000011
表5
Figure PCTCN2019121379-appb-000012
同样的,终端获知基站的类型后,可以是由网络设备来选择采用哪种数据传输模式,并将选中的数据传输模式对应的索引发送给终端。终端查找相应的表确定目标数据传输模式。例如,网络设备通过系统信息通知终端网络设备类型为高轨卫星,网络设备选择索引0对应的数据传输模式,将索引0发送给终端,终端接收到网络设备发送的索引0后,查询高轨卫星对应的表格5,确定索引0对应的数据传输模式为R+R/2+R/4+R/8+R/16,即传输次数为一次,且传输的编码组合为码率分别为R、R/2、R/4、R/8以及R/16的编码比特序列。
或者,终端预存上述表2至表5所示的不同基站类型对应的数据传输列表,并结合网络设备的类型、当前的信道状态或者终端自身的码率等确定选择哪种数据传输模式。
需要说明的是,不排除其中一份或多份编码比特序列进行重复发送,如表3中的索引0对应的数据传输模式,在第三次编码的时候重复传输码率为R/2的编码比特序列进行传输。并且,不同次传输的编码组合中可以包括重复的编码比特序列。又例如,表5中索引2对应的数据传输模式,一次传输5份编码比特序列,其中重复传输了码率为R/16的编码比特序列。
需要说明的是,上述各实施例中的各个表格均以不同次的编码采用的码长相等(即码率大小可以表征每次选择的信息比特的数量之间的关系)为例进行描述,当不同次的编码采用的码长不同时,表格中的码率R可以直接替代为信息比特的数量。例如,当不同次的编码采用的码长不同时,表1可以变更为如下表6。
表6
索引 数据传输模式
0 K
1 K+K/2
2 K+K/3
3 K+K/4
4 K+K/5
5 K+K/2+K/4
6 K+K/2+K/5
7 K+K/3+K/4
8 K+K/3+K/5
9 K+K/2+K/3+K/4
10 K+K/2+K/3+K/5
11 K+K/3,K/5
12 K+K/2,K/2+K/4
由表6可知,索引11对应的数据传输模式为,第一次传输的编码组合包括对K个信息比特进行编码得到的编码比特序列以及对K个信息比特中的K/3个信息比特进行编码得到的编码比特序列,第二次传输的编码组合包括对K个信息比特中的K/5个信息比特进行编码得到的编码比特序列。索引12对应的数据传输模式为,第一次传输的编码组合包括对K个信息比特进行编码得到的编码比特序列以及对K个信息比特中的K/2个信息比特进行编码得到的编码比特序列,第二次传输的编码组合包括对K个信息比特中的K/2个信息比特进行编码得到的编码比特序列以及对K个信息比特中的K/4个信息比特进行编码得到的编码比特序列。并且,每次编码所采用的码率可以相同,也可以不同。每次编码所采用的码长可以相同,也可以不同。
参见图9,图9示出了本申请实施例提供的第一通信设备和第二通信设备的功能框图。其中,第一通信设备可以为图1实施例中的网络设备101或终端设备102,相应的,第二通信设备可以是图1实施例中的终端设备102或网络设备101。下面分别描述。
如图9所示,第一通信设备500可包括:处理单元501和发送单元502。
其中,处理单元501,用于确定目标数据传输模式,所述目标数据传输模式用于指示所述第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
发送单元502,用于按照所述目标数据传输模式向所述第二通信设备发送所述编码组合。
可选的,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
可选的,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信息比特的部分信息比特进行编码得到的。
可选的,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
可选的,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
可选的,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
可选的,所述Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
可选的,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第一通信设备500还包括:
接收单元,用于在所述处理单元501确定目标数据传输模式之前,接收所述第二通信设备发送的第一索引,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站;
所述处理单元501,用于确定目标数据传输模式,包括:
根据所述第一索引以及预设的映射表确定所述目标数据传输模式,所述预设的映射表中包括至少一个索引与至少一种数据传输模式的映射关系,所述至少一个索引包括所述第一索引,所述至少一种数据传输模式包括所述目标数据传输模式。
可选的,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述处理单元501,用于确定目标数据传输模式,包括:
根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定所述目标数据传输模式,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
可选的,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
第二通信设备600可包括:接收单元601和处理单元602。
接收单元601,用于接收第一通信设备按照目标数据传输模式发送的编码组合,所述目标数据传输模式用于指示所述第一通信设备向所述第二通信设备传输编码组合的次数以及每次传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
处理单元602,用于对接收到的编码组合进行解码得到解码后的比特序列。
可选的,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
可选的,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信息比特的部分信息比特进行编码得到的。
可选的,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
可选的,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
可选的,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包 括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
可选的,所述Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
可选的,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第二通信设备600还包括:
发送单元,用于在所述接收单元601接收第一通信设备按照目标数据传输模式发送的编码组合之前,向所述第一通信设备发送第一索引,所述第一索引用于所述第一通信设备确定所述目标数据传输模式,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
可选的,所述目标数据传输模式是所述第一通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
可选的,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
可以理解的,关于第一通信设备500和第二通信设备600包括的各个功能单元的具体实现,可以参考前述实施例,这里不再赘述。
参见图10,图10示出了本申请提供的一种通信芯片的结构示意图。如图10所示,通信芯片1000可包括:处理器1001,以及耦合于处理器1001的一个或多个接口1002。其中:处理器1001可用于读取和执行计算机可读指令。具体实现中,处理器1001可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1001的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者NP架构等等。处理器1001可以是单核的,也可以是多 核的。
接口1002可用于输入待处理的数据至处理器1001,并且可以向外输出处理器1001的处理结果。具体实现中,接口1002可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口1002通过总线1003与处理器1001相连。
本申请中,处理器1001可用于从存储器中调用本申请的一个或多个实施例提供的数据传输方法在通信设备侧的实现程序,并执行该程序包含的指令。存储器可以和处理器1001集成在一起,也可以通过接口1002与通信芯片100相耦合。接口1002可用于输出处理器1001的执行结果。本申请中,接口1002可具体用于输出处理器1001的译码结果。关于本申请的一个或多个实施例提供的数据传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1001、接口1002各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (45)

  1. 一种数据传输方法,其特征在于,包括:
    第一通信设备确定目标数据传输模式,所述目标数据传输模式用于指示所述第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
    所述第一通信设备按照所述目标数据传输模式向所述第二通信设备发送所述编码组合。
  2. 根据权利要求1所述的方法,其特征在于,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
  3. 根据权利要求1所述的方法,其特征在于,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信息比特的部分信息比特进行编码得到的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息 比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第一通信设备确定目标数据传输模式之前,还包括:
    所述第一通信设备接收所述第二通信设备发送的第一索引,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站;
    所述第一通信设备确定目标数据传输模式,包括:
    所述第一通信设备根据所述第一索引以及预设的映射表确定所述目标数据传输模式,所述预设的映射表中包括至少一个索引与至少一种数据传输模式的映射关系,所述至少一个索引包括所述第一索引,所述至少一种数据传输模式包括所述目标数据传输模式。
  9. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第一通信设备确定目标数据传输模式,包括:
    所述第一通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定所述目标数据传输模式,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  10. 根据权利要求8或9所述的方法,其特征在于,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
  11. 一种数据传输方法,其特征在于,包括:
    第二通信设备接收第一通信设备按照目标数据传输模式发送的编码组合,所述目标数据传输模式用于指示所述第一通信设备向所述第二通信设备传输编码组合的次数以及每次 传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
    所述第二通信设备对接收到的编码组合进行解码得到解码后的比特序列。
  12. 根据权利要求11所述的方法,其特征在于,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
  13. 根据权利要求11所述的方法,其特征在于,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信息比特的部分信息比特进行编码得到的。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
  16. 根据权利要求11至13任一项所述的方法,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  17. 根据权利要求16所述的方法,其特征在于,所述Q个信息比特被按照码距以及 可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第二通信设备接收第一通信设备按照目标数据传输模式发送的编码组合之前,还包括:
    所述第二通信设备向所述第一通信设备发送第一索引,所述第一索引用于所述第一通信设备确定所述目标数据传输模式,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  19. 根据权利要求11至17任一项所述的方法,其特征在于,所述目标数据传输模式是所述第一通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  20. 根据权利要求18或19所述的方法,其特征在于,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
  21. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述第一通信设备包括:
    处理单元,用于确定目标数据传输模式,所述目标数据传输模式用于指示所述第一通信设备向第二通信设备传输编码组合的次数以及每次传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
    发送单元,用于按照所述目标数据传输模式向所述第二通信设备发送所述编码组合。
  22. 根据权利要求21所述的通信设备,其特征在于,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
  23. 根据权利要求21所述的通信设备,其特征在于,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信 息比特的部分信息比特进行编码得到的。
  24. 根据权利要求21至23任一项所述的通信设备,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  25. 根据权利要求24所述的通信设备,其特征在于,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
  26. 根据权利要求21至23任一项所述的通信设备,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  27. 根据权利要求26所述的通信设备,其特征在于,所述Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
  28. 根据权利要求21至27任一项所述的通信设备,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第一通信设备还包括:
    接收单元,用于在所述处理单元确定目标数据传输模式之前,接收所述第二通信设备发送的第一索引,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所 述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站;
    所述处理单元,用于确定目标数据传输模式,包括:
    根据所述第一索引以及预设的映射表确定所述目标数据传输模式,所述预设的映射表中包括至少一个索引与至少一种数据传输模式的映射关系,所述至少一个索引包括所述第一索引,所述至少一种数据传输模式包括所述目标数据传输模式。
  29. 根据权利要求21至27任一项所述的通信设备,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述处理单元,用于确定目标数据传输模式,包括:
    根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定所述目标数据传输模式,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  30. 根据权利要求28或29所述的通信设备,其特征在于,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
  31. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述第二通信设备包括:
    接收单元,用于接收第一通信设备按照目标数据传输模式发送的编码组合,所述目标数据传输模式用于指示所述第一通信设备向所述第二通信设备传输编码组合的次数以及每次传输的编码组合,所述每次传输的编码组合包括一个或多个编码比特序列,所述编码比特序列是对K个信息比特中的全部或部分信息比特进行编码得到的,K为正整数;
    处理单元,用于对接收到的编码组合进行解码得到解码后的比特序列。
  32. 根据权利要求31所述的通信设备,其特征在于,所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列。
  33. 根据权利要求31所述的通信设备,其特征在于,当所述每次传输的编码组合包括多个编码比特序列时,所述多个编码比特序列中的至少一个编码比特序列是对所述K个信息比特的部分信息比特进行编码得到的。
  34. 根据权利要求31至33任一项所述的通信设备,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括 至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的可靠度排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中可靠度排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  35. 根据权利要求34所述的通信设备,其特征在于,所述Q个信息比特被按照可靠度由低到高的顺序映射到可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照可靠度由高到低的顺序映射到可靠度由高到低的所述Q个极化信道上。
  36. 根据权利要求31至33任一项所述的通信设备,其特征在于,所述编码比特序列是采用Polar码编码得到的;当所述每次传输的编码组合中的至少一次传输的编码组合包括至少两个编码比特序列时,所述至少两个编码比特序列包括第一编码比特序列和第二编码比特序列,所述第一编码比特序列是对所述K个信息比特中的P个信息比特进行Polar码编码得到,所述P个信息比特被映射到P个极化信道上,P为小于等于K的正整数;所述第二编码比特序列是对所述K个信息比特中的Q个信息比特进行Polar码编码得到,所述Q个信息比特为所述P个信息比特中所映射的极化信道的码距以及可靠度均排序为后Q位的信息比特;在对所述Q个信息比特进行Polar码编码得到所述第二编码比特序列时,所述Q个信息比特被映射到所述P个极化信道中码距以及可靠度均排序为前Q位的Q个极化信道上,Q为小于等于P的正整数。
  37. 根据权利要求36所述的通信设备,其特征在于,所述Q个信息比特被按照码距以及可靠度由低到高的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上;或者,所述Q个信息比特被按照码距以及可靠度由高到低的顺序映射到码距以及可靠度由高到低的所述Q个极化信道上。
  38. 根据权利要求31至37任一项所述的通信设备,其特征在于,所述第一通信设备为终端且所述第二通信设备为网络设备,或者,所述第一通信设备为所述网络设备且所述第二通信设备为所述终端;所述第二通信设备还包括:
    发送单元,用于在所述接收单元接收第一通信设备按照目标数据传输模式发送的编码组合之前,向所述第一通信设备发送第一索引,所述第一索引用于所述第一通信设备确定所述目标数据传输模式,所述第一索引是所述第二通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  39. 根据权利要求31至37任一项所述的通信设备,其特征在于,所述目标数据传输模式是所述第一通信设备根据所述网络设备的属性信息和/或所述第一通信设备与所述第二通信设备之间的信道质量确定的,所述属性信息包括所述网络设备的类型、所述第一通信设备与所述第二通信设备之间的距离或所述网络设备距离地面的高度中的一种或多种,所述类型包括地面基站或者非地面基站。
  40. 根据权利要求38或39所述的通信设备,其特征在于,所述非地面基站对应的传输编码组合的次数小于等于所述地面基站对应的传输编码组合的次数;和/或,所述非地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量大于等于所述地面基站对应的每次传输的编码组合中所包含的编码比特序列的数量。
  41. 一种通信装置,其特征在于,包括处理器和接口,其中,
    所述接口用于输入待处理的数据;
    所述处理器用于如权利要求1-10或11-20中任意一项所述的方法处理待处理的数据,得到处理结果;以及
    所述接口还用于输出所述处理结果。
  42. 根据权利要求41所述的通信装置,其特征在于,所述装置还包括存储器,所述存储器用于存储指令,所述指令由所述处理器执行,使得如权利要求1-10或11-20中任意一项所述的方法被执行。
  43. 根据权利要求41或42所述的通信装置,其特征在于,所述装置为芯片。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令在通信装置中运行时,使得如权利要求1-10或11-20中任意一项所述的方法被执行。
  45. 一种程序产品,其特征在于,所述程序产品包括指令,当所述指令在通信装置中运行时,使得如权利要求1-10或11-20中任意一项所述的方法被执行。
PCT/CN2019/121379 2018-12-25 2019-11-27 一种数据传输方法及通信设备 WO2020134821A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19903375.4A EP3886349A4 (en) 2018-12-25 2019-11-27 DATA TRANSMISSION METHOD AND COMMUNICATION DEVICE
JP2021537117A JP7252344B2 (ja) 2018-12-25 2019-11-27 データ伝送方式及び通信デバイス
US17/356,837 US11496238B2 (en) 2018-12-25 2021-06-24 Data transmission method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811596384.2 2018-12-25
CN201811596384.2A CN111371527B (zh) 2018-12-25 2018-12-25 一种数据传输方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/356,837 Continuation US11496238B2 (en) 2018-12-25 2021-06-24 Data transmission method and communications device

Publications (1)

Publication Number Publication Date
WO2020134821A1 true WO2020134821A1 (zh) 2020-07-02

Family

ID=71128332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121379 WO2020134821A1 (zh) 2018-12-25 2019-11-27 一种数据传输方法及通信设备

Country Status (5)

Country Link
US (1) US11496238B2 (zh)
EP (1) EP3886349A4 (zh)
JP (1) JP7252344B2 (zh)
CN (2) CN111371527B (zh)
WO (1) WO2020134821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884617A (zh) * 2022-05-07 2022-08-09 杭州复杂美科技有限公司 区块传输方法、计算机设备和存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183589A (zh) 2017-09-29 2020-05-19 中兴通讯股份有限公司 极化码编码的方法和系统
CN112416947B (zh) * 2020-12-09 2023-09-22 吉林师范大学 遥感影像数据库的保存处理方法及装置
CN113115461B (zh) * 2021-04-23 2023-04-07 北京科技大学 一种基于qmix的无线资源分配优化方法及装置
CN114040440B (zh) * 2021-11-09 2022-06-28 北京泰利斯达科技有限公司 无线传输方法、装置、设备以及存储介质
CN114301513B (zh) * 2021-12-20 2024-04-12 哈尔滨工业大学 基于反馈喷泉码的文件传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680987A (zh) * 2012-03-16 2016-06-15 北京新岸线移动多媒体技术有限公司 一种用于实现链路自适应的方法和网络设备
CN107896389A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种用于数据传输的方法和装置
CN108400857A (zh) * 2017-02-06 2018-08-14 华为技术有限公司 一种信号发送方法、相关设备及系统
WO2018228236A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 数据传输方法和装置
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530308A (ja) 1999-08-03 2003-10-14 アーヴェーデー.ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 犬および猫の退行性関節疾患に起因する痛みを軽減するためのフルピルチンの使用
EP1279234B1 (en) 2000-05-05 2005-08-31 Celletra Ltd. System and method for providing polarization matching on a cellular communication forward link
JP2008295070A (ja) 2008-07-03 2008-12-04 Ntt Docomo Inc 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
US8605807B1 (en) 2012-05-22 2013-12-10 Nigel Iain Stuart Macrae Communicating distinct data over a single frequency using multiple linear polarized signals
US9331815B2 (en) 2012-06-04 2016-05-03 Panasonic Intellectual Property Management Co., Ltd. Transmission device, reception device, transmission method, and reception method
CN106899311B (zh) 2012-09-24 2023-11-03 华为技术有限公司 混合极性码的生成方法和生成装置
KR102470913B1 (ko) * 2014-01-29 2022-11-28 인터디지탈 패튼 홀딩스, 인크 커버리지 향상 무선 송신을 위한 액세스 및 링크 적응 방법
JP6251705B2 (ja) 2015-06-18 2017-12-20 ソフトバンク株式会社 通信端末装置及びルータ装置
CN106817195B (zh) * 2015-12-02 2020-04-21 华为技术有限公司 用于极化码的速率匹配的方法和装置
CN109075911B (zh) 2016-05-10 2020-12-08 华为技术有限公司 数据发送方法、数据接收方法及发送设备与接收设备
US20210281359A1 (en) * 2016-07-27 2021-09-09 Qualcomm Incorporated Design of hybrid automatic repeat request (harq) feedback bits for polar codes
CN107666369B (zh) * 2016-07-29 2021-02-12 华为技术有限公司 一种重传极化码的方法及其发送设备、接收设备
CN117240415A (zh) 2016-08-10 2023-12-15 交互数字专利控股公司 Harq及高级信道码
US10333560B2 (en) 2016-08-12 2019-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Soft decoding of rate-compatible polar codes
CN107819545B (zh) 2016-09-12 2020-02-14 华为技术有限公司 极化码的重传方法及装置
US20180198560A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Generalized polar code based on polarization of linear block codes and convolutional codes
CN108429602B (zh) * 2017-02-15 2022-01-28 中兴通讯股份有限公司 一种数据处理方法、装置及发射端
BR112019019804A2 (pt) 2017-03-23 2020-04-22 Fraunhofer Ges Forschung transmissão de pacote de dados confiável entre entidades de uma rede de acesso de rádio de uma rede de comunicação móvel
CN108737021B (zh) * 2017-04-25 2021-12-10 华为技术有限公司 Polar码传输方法及装置
EP3619811A4 (en) * 2017-05-04 2021-01-13 Nokia Technologies Oy DISTRIBUTED CRC POLAR CODES
CN108111252B (zh) * 2017-08-04 2022-03-01 中兴通讯股份有限公司 序列生成、数据解码方法及装置
CN108494526B (zh) * 2018-03-16 2020-01-31 西安电子科技大学 多进制正交扩频信号的极化码编译码方法
WO2019191944A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Polar coded harq scheme over time-varying channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680987A (zh) * 2012-03-16 2016-06-15 北京新岸线移动多媒体技术有限公司 一种用于实现链路自适应的方法和网络设备
CN107896389A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种用于数据传输的方法和装置
CN108400857A (zh) * 2017-02-06 2018-08-14 华为技术有限公司 一种信号发送方法、相关设备及系统
WO2018228236A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 数据传输方法和装置
WO2018228579A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 确定传输块大小的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886349A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884617A (zh) * 2022-05-07 2022-08-09 杭州复杂美科技有限公司 区块传输方法、计算机设备和存储介质
CN114884617B (zh) * 2022-05-07 2023-12-26 深圳北宸博裕科技有限公司 区块传输方法、计算机设备和存储介质

Also Published As

Publication number Publication date
CN113691300A (zh) 2021-11-23
CN111371527B (zh) 2021-08-13
EP3886349A4 (en) 2022-01-12
US11496238B2 (en) 2022-11-08
CN111371527A (zh) 2020-07-03
EP3886349A1 (en) 2021-09-29
JP7252344B2 (ja) 2023-04-04
JP2022515268A (ja) 2022-02-17
US20210320748A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020134821A1 (zh) 一种数据传输方法及通信设备
WO2017101631A1 (zh) 用于处理极化码的方法和通信设备
US10484137B2 (en) Polar code hybrid automatic repeat request method and apparatus
CN106982172B (zh) 确定极化码传输块大小的方法和通信设备
JP2021533616A (ja) 通信方法及び装置
CN109075799A (zh) 极化Polar码的编译码方法及装置
US11728931B2 (en) Communication method, network device, and terminal
WO2018201831A1 (zh) 通信方法和装置
US20220338219A1 (en) Data transmission method and apparatus
WO2018201984A1 (zh) 数据的传输方法和设备
JP7253625B2 (ja) ダウンリンクデータ送信方法、受信方法、装置及び記憶媒体
WO2017193281A1 (zh) 数据发送方法、数据接收方法及发送设备与接收设备
CN109995382B (zh) 一种极化码译码器
WO2022022516A1 (zh) 无线通信的方法和装置
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
RU2782241C1 (ru) Способ передачи данных и устройство связи
WO2020029802A1 (zh) 一种无线通信方法、装置及计算机可读存储介质
JP2023545840A (ja) 通信方法及び装置
WO2018028640A1 (zh) 信息传输的方法、终端设备和网络设备
CN108370559B (zh) 一种传输数据的方法、装置和系统
WO2022268114A1 (zh) 一种调制和编码方案mcs表格确定方法及装置
CN112311402B (zh) 编码方法、装置、设备及计算机可读存储介质
CN116980070A (zh) 一种编码方法和装置
CN113810059A (zh) 一种用于卫星通信的极化编码译码方法及装置
CN118176673A (zh) 一种预编码信息的反馈方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903375

Country of ref document: EP

Effective date: 20210623