WO2020134402A1 - 一种型钢、型钢-uhpc组合板及桥面板 - Google Patents

一种型钢、型钢-uhpc组合板及桥面板 Download PDF

Info

Publication number
WO2020134402A1
WO2020134402A1 PCT/CN2019/111942 CN2019111942W WO2020134402A1 WO 2020134402 A1 WO2020134402 A1 WO 2020134402A1 CN 2019111942 W CN2019111942 W CN 2019111942W WO 2020134402 A1 WO2020134402 A1 WO 2020134402A1
Authority
WO
WIPO (PCT)
Prior art keywords
uhpc
steel
section
extension
upper flange
Prior art date
Application number
PCT/CN2019/111942
Other languages
English (en)
French (fr)
Inventor
邵旭东
赵旭东
李玉祺
曹君辉
刘琼
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811604946.3A external-priority patent/CN109610313B/zh
Priority claimed from CN201822202999.4U external-priority patent/CN209619850U/zh
Priority claimed from CN201910239902.3A external-priority patent/CN109972511A/zh
Priority claimed from CN201920401091.8U external-priority patent/CN209923769U/zh
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2020134402A1 publication Critical patent/WO2020134402A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the invention belongs to the field of bridge engineering, and in particular relates to a section steel, a composite slab and a bridge deck used for composing a bridge deck.
  • the continuous system beam bridge is under the weight of the structure and the live load of the car.
  • the internal fulcrum will produce a huge negative bending moment, and the large-span continuous beam bridge is very sensitive to its own weight.
  • the increase of the structural self-weight will cause the negative bending moment of the internal fulcrum of the continuous beam bridge to increase further, which will result in the fulcrum area of the continuous beam bridge.
  • the tensile stress on the bridge deck is much greater than the other parts, which makes the bridge deck in the inner fulcrum area have the risk of cracking. This is the main reason for limiting the span of the steel-concrete continuous system beam bridge to more than 150 meters.
  • the concrete bridge deck has to bear the horizontal component force from the cable-stayed bridge, so its average thickness is thicker, generally greater than 26cm, which will cause the bridge deck to occupy the main beam
  • the proportion of the total weight is large, often more than 70%, and the main beam's own weight will also be increased.
  • the overweight main beam is the main factor limiting the upper limit of the bridge's span.
  • the beam section of the mid-span cable-free zone will bear a lot The tensile force makes the joint between the main girder bridge decks in this area a risk of cracking.
  • Ultra-High Performance Concrete has excellent mechanical properties, and its appearance makes the development of bridge building structures tend to be large-span and light-weight.
  • UHPC Ultra-High Performance Concrete
  • the bridge deck uses steel-UHPC composite slabs and appropriate construction techniques are used, the internal fulcrum will still produce a large negative bending moment under the weight of the structure and the live load of the car, which will The bridge deck in the area of the inner fulcrum bears a huge tensile force, and the bridge deck in the area of the inner fulcrum still has the risk of cracking.
  • the steel-UHPC composite slab can be used to reduce the self-weight of the main beam and further increase the span of the composite beam cable-stayed bridge.
  • the beam will still bear the tensile force.
  • the transverse joint between the main beam bridge decks is a weak section, and there is still a risk of cracking at the bridge decks.
  • the technical problem to be solved by the present invention is to overcome the deficiencies and defects mentioned in the background art above, and to provide a section steel, a section steel-UHPC composite board and a bridge deck, the section steel-UHPC combination board and the bridge deck solve the fulcrum of the continuous beam bridge
  • the bridge slabs in the negative bending moment zone at the transverse joints are easy to crack and the transverse joints between the main beam bridge decks in the mid-span of the cable-stayed bridge are easy to crack.
  • the technical solutions proposed by the present invention are:
  • a section steel includes an upper flange and a web, and at least one end of the upper flange and the web is provided with an outwardly extending section.
  • the above-mentioned section steel is used in combination with UHPC board to obtain the section steel-UHPC combination board.
  • the types of the above-mentioned section steel include angle steel, T-section steel, and ball flat steel.
  • an end of the upper flange is provided with an outwardly extending upper flange extending section, and the upper flange extending section is a plurality of long straight bars arranged at intervals.
  • the structure of the long straight bar is simple.
  • the extension of the upper flange is a long straight bar.
  • the mechanical performance of the long straight bar is similar to that of the steel bar.
  • the contact area of the UHPC at the seam improves the adhesion between the two and improves the tensile strength of the UHPC at the seam, thereby ensuring the mechanical properties of the seam.
  • the present invention also provides a section steel-UHPC combination board
  • the section steel-UHPC combination board includes a UHPC board and the above-mentioned section steel, the UHPC board is fixedly connected to the section steel, and the section steel is along the longitudinal bridge Directional arrangement (multiple section steels are preferably arranged in parallel).
  • the present invention also provides a bridge deck, which is mainly formed by longitudinally connecting a plurality of the above-mentioned section steel-UHPC composite plates, and the adjacent Cast-in-place connection.
  • the end of the steel section is provided with a UHPC transverse stiffening plate, and an end surface of the UHPC transverse stiffening plate is provided with a protrusion extending into the cast-in-place connection portion (the protrusion is shaped like a wedge shape) , Can be changed according to the demand of force);
  • the UHPC lateral stiffening plate is provided with a through hole in the direction of a transverse bridge, and a through steel bar is provided in the through hole.
  • the function of penetrating reinforcement is used to improve the lateral force of UHPC lateral stiffener.
  • UHPC transverse stiffening plate and UHPC board can be prefabricated together, and UHPC transverse stiffening plate can improve the stress performance of the joint section.
  • prefabricating UHPC transverse stiffeners it is preferable to arrange multiple stud connectors at the corresponding positions of the web.
  • make UHPC wrap the stud connectors and penetrating steel bars, which can make UHPC transverse stiffeners and section steel better. Connect into a whole.
  • the ends of the upper flange and the web are respectively provided with an outwardly extending upper flange extension section and a web extension section, and the upper flange extension section is more than Long straight bars arranged at intervals.
  • the sections in the adjacent section-UHPC composite plates are arranged one-to-one, and the upper flange extensions in the same section are arranged symmetrically along the web extensions, and are not
  • the ends of the upper flange extensions directly connected to the extensions cross the cross-bridge of the cast-in-place connection to the central axis, and the upper flange extensions of the steel sections corresponding to each other are arranged in a staggered arrangement (excluding direct contact with the web extensions The connected upper flange extension).
  • the ends of the overhanging section of the upper flange all cross the cross-bridge to the central axis of the cast-in-place connection, so that the concrete between adjacent long straight bars is under compression, thereby improving the stress performance of the cast-in-place connection.
  • the steel sections in the adjacent section steel-UHPC composite plates are arranged alternately with each other, and the upper flange extension sections in the same section steel are symmetrically arranged along the web extension section, and the upper flange extension section
  • the end of the and the end of the web overhang section both cross the cross bridge of the cast-in-place connection to the central axis.
  • the end of the upper flange extension and the end of the web extension cross the transverse bridge to the central axis of the cast-in-place connection part to ensure that the center of the cast-in-place connection part is also provided with an extension section to further increase the joint structure. Force performance.
  • a profile steel includes an upper flange, a web, and a lower flange. At least one of the upper flange, the web, and the lower flange is provided with an outwardly extending section.
  • the above-mentioned section steel is used in combination with UHPC board to obtain the section steel-UHPC combination board.
  • the types of the above-mentioned section steel include I-beam, channel steel, U-shaped steel and so on.
  • an end of the lower flange is provided with an outwardly extending lower flange extension section, and the lower flange extension section is a plurality of long straight bars arranged at intervals.
  • the structure of the long straight bar is simple.
  • the extension of the upper flange is a long straight bar.
  • the mechanical performance of the long straight bar is similar to that of the steel bar.
  • the contact area of the UHPC at the seam improves the adhesion between the two and improves the tensile strength of the UHPC at the seam, thereby ensuring the mechanical properties of the seam.
  • At least one of the lower flange extensions is a long straight bar inclined upward, and the inclination angle ⁇ is between 10-60°. More preferably, all the lower flange extensions are upwardly inclined long straight bars (except for the lower flange extensions directly connected to the web extensions).
  • the use of long straight bars in the extension of the lower flange facilitates the subsequent pouring of UHPC in the joints, which facilitates the pouring of UHPC into the gap between the steel-UHPC composite plate and the main beam cross diaphragm or the upper wing plate of the beam.
  • the mechanical properties of long straight bars are similar to steel bars, which can ensure the mechanical properties of the joints.
  • the inclination angle ⁇ of the extended section of the lower flange is too small, which is close to the structural effect of the horizontal long straight bar, and the tensile strength effect of the horizontal connection structure is improved only by the bonding force between the long straight bar and the UHPC Poor, and can not well improve the problem of pouring compaction when pouring the in-situ connection UHPC;
  • the inclination angle ⁇ of the lower flange extension is too large, the interaction between the long straight bar and the lateral in-situ connection UHPC is greater than the inclination
  • the interaction under the condition of small angle can also better improve the problem of the UHPC compaction of the lateral cast-in-place connection.
  • the present invention also provides a section steel-UHPC combination board
  • the section steel-UHPC combination board includes a UHPC board and the above-mentioned section steel, the UHPC board is fixedly connected to the section steel, and the section steel is along the longitudinal bridge Directional arrangement (multiple section steels are preferably arranged in parallel).
  • the present invention also provides a bridge deck, which is mainly formed by longitudinally connecting a plurality of the above-mentioned section steel-UHPC composite plates, and the adjacent Cast-in-place connection.
  • the end of the steel section is provided with a UHPC transverse stiffening plate, and an end surface of the UHPC transverse stiffening plate is provided with a protrusion extending into the cast-in-place connection portion (the protrusion is shaped like a wedge shape) , Can be changed according to the demand of force);
  • the UHPC lateral stiffening plate is provided with a through hole in the direction of a transverse bridge, and a through steel bar is provided in the through hole.
  • the function of penetrating reinforcement is used to improve the lateral force of UHPC lateral stiffener.
  • UHPC transverse stiffening plate and UHPC board can be prefabricated together, and UHPC transverse stiffening plate can improve the stress performance of the joint section.
  • prefabricating UHPC transverse stiffeners it is preferable to arrange multiple stud connectors at the corresponding positions of the web.
  • make UHPC wrap the stud connectors and penetrating steel bars, which can make UHPC transverse stiffeners and section steel better. Connect into a whole.
  • the ends of the upper flange, the web and the lower flange are respectively provided with an outwardly extending upper flange extension section, a web extension section and a lower flange extension section ,
  • the upper flange extension section is a plurality of long straight bars arranged at intervals
  • the lower flange extension section is a plurality of long straight bars arranged at intervals.
  • the sections in the adjacent section-UHPC composite plates are arranged one-to-one, and the upper flange extensions in the same section are arranged symmetrically along the web extensions, and are not
  • the ends of the upper flange extensions directly connected to the extensions cross the cross-bridge of the cast-in-place connection to the central axis, and the upper flange extensions of the steel sections corresponding to each other are arranged in a staggered arrangement (excluding direct contact with the web extensions Connected upper flange extension);
  • the lower flange extension in the same profile is symmetrically arranged along the web extension, and the end of the lower flange extension that is not directly connected to the web extension extends past the cast-in-place
  • the transverse bridge of the connecting part is staggered to the central axis, and the lower flange extensions of the section steel are arranged one by one (excluding the lower flange extensions directly connected to the web extensions).
  • the steel sections in the adjacent steel section-UHPC composite plates are arranged alternately with each other, and the upper flange extensions in the same section are symmetrically arranged along the web extension section, and the lower wings in the same section
  • the flange extensions are arranged symmetrically along the web extensions, the ends of the upper flange extensions, the web extensions and the lower flange extensions all cross the cross bridge to the central axis of the cast-in-place connection .
  • the end of the upper flange extension, the end of the web extension, and the end of the lower flange extension cross the cross bridge of the cast-in-place connection to the central axis to ensure that the center of the cast-in connection is also provided with an extension Section to further increase the mechanical performance of the joint structure.
  • the section steel and the UHPC board are connected by a stud connector, a section steel connector, a bent reinforcement connector, a high-strength bolt connector or an open-hole steel plate connector. It is preferably connected by a stud connector.
  • the diameter of the stud connector is 9-25mm, and the height is 25-80mm.
  • 2-4 rows of studs are arranged horizontally above each section, with a horizontal spacing of 50-200mm and a longitudinal spacing of 100. -300mm.
  • the lateral spacing between the multiple steel profiles is 300-1000mm
  • the width of the profile steel is generally 100-400mm
  • the height is relatively small, generally not exceeding 400mm.
  • the UHPC board is a flat board, a thickened board at the joint with the section steel or a thickened board at the longitudinal joint between two adjacent flat boards.
  • the section steel is used as a part of the section steel-UHPC composite plate.
  • the section steel includes the upper flange and the web, any one of the upper flange and the web has an extended section, which can meet the requirements of the present invention.
  • the section steel includes an upper flange, a web, and a lower flange, any one of the upper flange, the web, and the lower flange has an extended section, which can meet the requirements of the present invention.
  • the invention also provides a construction method of the above bridge deck, the lower main beam and the upper section steel-UHPC composite board are separately prefabricated, and then spliced on site, including the following steps:
  • the present invention also provides another construction method of the above bridge deck, the lower main beam and the upper section steel-UHPC composite board are prefabricated as a whole, and then spliced on site, including the following steps:
  • S1 the steel-UHPC composite plate and the main beam are prefabricated as a whole, the steel-UHPC composite plate and the main beam form a segmented composite beam, and the position of the transverse joint between the segments is reserved;
  • the upper wing plate is provided with a plurality of stud connectors for resisting the shear force between the steel-UHPC composite board and the upper wing.
  • the diameter of the stud connector is 9-25 mm, and the height is 40-150mm, horizontal spacing is 50-200mm, longitudinal spacing is 100-200mm; there are multiple stud connectors on the web extensions, the stud connectors have a diameter of 9-25mm and a height of 5 -80mm, with 2-4 rows of stud connectors on each web extension, the horizontal spacing between each row is 50-200mm, and the vertical spacing is 50-200mm.
  • one, two or more layers of reinforcement mesh are arranged in the UHPC board.
  • the bottom horizontal reinforcement and the top horizontal reinforcement are alternately arranged, and longitudinal reinforcement can be arranged between the two layers of horizontal reinforcement.
  • the diameter of the transverse reinforcement is 10-20mm, and the spacing of the reinforcement is 70-300mm.
  • the main beam is a PK beam, a steel box beam, a steel plate beam, a steel truss beam or an I-beam without an orthotropic steel bridge deck, and an upper wing of a certain width is arranged above the main beam cross diaphragm or cross beam
  • the board is used to connect the steel-UHPC combination board, and the rubber rubber strip is reserved on the upper wing plate.
  • the rubber rubber strip only plays a sealing role and does not participate in the force.
  • the present invention provides a section steel and a section steel-UHPC composite board suitable for the field of bridges.
  • a construction method in which the section steel in the section steel-UHPC composite board is provided with an overhanging section at a lateral cast-in-place connection portion is proposed.
  • the longitudinal connection between the bridge decks at the inner fulcrum adopts the structure of the present invention.
  • the arrangement of the prestressed beams on the top of the pier can be further optimized or even eliminated.
  • the construction is simple and economical, and the span of the continuous beam bridge can be further increased.
  • the structure of the present invention is adopted for the traditional composite girder cable-stayed bridge. The bonding force and squeezing action between the outstretched section of the section steel and the UHPC of the transverse cast-in-place connection will resist the tensile force borne by the section, and the UHPC is under compression, which will also improve the tensile strength of the section.
  • the bridge deck of the present invention is mainly composed of a section steel-UHPC composite board.
  • the material consumption is small and the bending rigidity is large, which satisfies the longitudinal and lateral stress requirements of the bridge deck, and significantly reduces the dead weight of the bridge deck, making the main beam structure.
  • the self-weight is significantly reduced, increasing the spanning capacity of the composite beam.
  • the weight of the main beam can be reduced by 40-50%.
  • the weight of the main beam can be increased by 10-20%, and the span can reach 2000 meters.
  • the medium-steel-UHPC composite board of the present invention can easily match the longitudinal and lateral rigidity of the bridge deck by adjusting the size of the bridge deck, the section steel and the horizontal spacing of the section steel.
  • the bridge deck of the present invention can be prefabricated in the factory, and only the vertical and horizontal wet joints need to be cast on site. The amount of cast on site is small and the workload is small.
  • the reinforcing steel at the joints does not need to be bent and tied, nor need to overlap or Welding, simple construction, less equipment investment, lower labor quality and process requirements.
  • FIG. 1 is a schematic structural diagram of a medium-sized steel-UHPC composite board in Example 1.
  • FIG. 1 is a schematic structural diagram of a medium-sized steel-UHPC composite board in Example 1.
  • FIG. 2 is a schematic structural view of the medium-sized steel in Example 1.
  • FIG. 3 is a schematic structural view of the bridge deck in Embodiment 1.
  • FIG. 3 is a schematic structural view of the bridge deck in Embodiment 1.
  • FIG. 4 is a schematic view of the structure of the connection point of the bridge deck in the embodiment 1 (the reinforcing steel in the UHPC board and the cast-in-place connection are not shown in the figure).
  • Fig. 5 is a plan view of Fig. 4.
  • Fig. 6 is a cross-sectional view taken along the line A-A in Fig. 5.
  • FIG. 7 is a cross-sectional view taken along the line B-B in FIG. 5.
  • FIG. 8 is a cross-sectional view taken along line C-C in FIG. 5.
  • FIG. 9 is a plan view of FIG. 4 (UHPC board is not shown in the figure).
  • FIG. 10 is a cross-sectional view taken along the line D-D in FIG. 9.
  • Fig. 11 is a cross-sectional view taken along the line E-E in Fig. 9.
  • Fig. 12 is a sectional view taken along the line F-F in Fig. 9.
  • FIG. 13 is a schematic structural diagram of another bridge deck connection point in Embodiment 1 (rebar and in-situ connection part in UHPC board are not shown in the figure).
  • Fig. 14 is a plan view of Fig. 13.
  • FIG. 15 is a cross-sectional view taken along the line G-G in FIG. 14.
  • FIG. 16 is a cross-sectional view taken along the line H-H in FIG. 14.
  • FIG. 17 is a plan view of FIG. 13 (UHPC board is not shown in the figure).
  • FIG. 19 is a sectional view taken along the line J-J in FIG. 17.
  • FIG. 20 is a schematic structural view of a medium-sized steel-UHPC composite board in Example 2.
  • FIG. 20 is a schematic structural view of a medium-sized steel-UHPC composite board in Example 2.
  • FIG. 21 is a schematic structural view of a medium-sized steel in Example 2.
  • FIG. 22 is a schematic structural diagram of a bridge deck in Example 2.
  • FIG. 22 is a schematic structural diagram of a bridge deck in Example 2.
  • Example 23 is a schematic view of the structure of the connection point of the bridge deck in Example 2 (not shown in the figure UHPC board reinforcement and cast-in-place connection).
  • FIG. 24 is a schematic structural view of another bridge deck connection point in Embodiment 2 (reinforcement and cast-in-place connection part in UHPC board are not shown in the figure).
  • Section steel 101, upper flange; 102, web; 103, lower flange; 1001, upper flange extension section; 1002, web extension section; 1003, lower flange extension section; 2, UHPC Plate; 3, UHPC transverse stiffening plate; 4, through hole; 5, penetrating reinforcement; 6, upper wing plate; 7, stud connector; 8, rubber strip; 9, protrusion; 10, bottom horizontal reinforcement; 11 1. Middle longitudinal reinforcement; 12. Top horizontal reinforcement; 13. Cast-in-place connection.
  • the section steel (as shown in FIG. 2) and the section steel-UHPC combination board of this embodiment include a plurality of section steel 1 and a UHPC board 2 fixedly connected to the section steel 1,
  • the profiled steel 1 is arranged in parallel along the longitudinal bridge.
  • the profiled steel 1 includes an upper flange 101, a web 102 and a lower flange 103 (types of profiled steel 1 such as I-beam, channel steel, U-shaped steel, etc.), and the UHPC plate 2 is fixed to the upper wing
  • the ends of the upper flange 101, the web 102 and the lower flange 103 of the section steel 1 are provided with an outwardly extending upper flange extending section 1001, a web extending section 1002 and a lower flange extending section 1003.
  • the upper flange extension 1001 is a plurality of long straight strips arranged at intervals
  • the lower flange extension 1003 is a plurality of intervals arranged at an interval and inclined upward (the inclination angle is between 10-60° Yes) long straight bar (the lower flange extension 1003 directly connected to the web extension 1002 is still directly provided at the bottom of the web extension 1002).
  • the bridge deck is mainly formed by connecting a plurality of longitudinal sections of the above-mentioned shaped steel-UHPC composite board, and adjacent bridge decks are connected by a cast-in-place connection 13.
  • the end of the section steel 1 is provided with a UHPC lateral stiffening plate 3, and the end surface of the UHPC lateral stiffening plate 3 is provided with a wedge-shaped protrusion 9 extending into the cast-in-place connection portion 13 (as shown in FIGS. 4 and 5);
  • the UHPC lateral stiffening plate 3 is provided with a through hole 4 in the direction of a transverse bridge, and a through reinforcing bar 5 is penetrated through the through hole 4 (as shown in FIGS. 8 and 10 ).
  • the arrangement of the section steels 1 in the two adjacent section steel-UHPC composite plates can be any of the following structures, as shown in Figure 4-12, the adjacent section steel-UHPC composite plates The section steel 1 in the one-to-one arrangement. As shown in Figs. 13-19, the section steels 1 in the adjacent section steel-UHPC composite plates are alternately arranged. details as follows:
  • the section steels 1 in the adjacent section steel-UHPC composite plates are arranged one by one, and the upper flange extension section 1001 in the same section steel 1 is along the web extension section 1002 is symmetrically arranged, and the end of the upper flange extension 1001 that is not directly connected to the web extension 1002 crosses the transverse bridge of the cast-in-place connection 13 to the central axis, and the upper flanges of the section steel 1 arranged one-to-one correspond to the extension
  • the segments 1001 are staggered; the lower flange extensions 1003 in the same steel 1 are symmetrically arranged along the web extensions 1002, and the ends of the lower flange extensions 1003, which are not directly connected to the web extensions 1002, cross the cast-in-place
  • the transverse bridges of the connecting portion 13 are staggered toward the central axis, and the lower flange extensions 1003 of the section steel 1 are arranged in a one-to-one correspondence.
  • the section steels 1 in the adjacent section steel-UHPC composite plates are staggered with each other, and the upper flange extension section 1001 in the same section steel 1 is along the web extension section 1002 Symmetrical setting, the lower flange extension 1003 in the same profile 1 is symmetrically arranged along the web extension 1002, the end of the upper flange extension 1001, the end of the web extension 1002 and the lower flange extension The ends of 1003 all cross the cross bridge of the cast-in-place connection 13 toward the central axis.
  • the section steel 1 and the UHPC board 2 are connected by a stud connector 7 (in this embodiment, each stud connector 7 has the same symbol, but the function and position may be different, the same below), the stud connection
  • the diameter of the piece 7 is 9-25mm, and the height is 25-80mm.
  • 2-4 rows of pegs are arranged horizontally above each steel bar 1, with a horizontal spacing of 50-200mm and a longitudinal spacing of 100-300mm.
  • the horizontal spacing between the multiple steel bars 1 is 300-1000mm
  • the width of the steel bar 1 is generally 100-400mm
  • the height is small, generally not exceeding 400mm.
  • the UHPC board 2 is a flat board, a thickened board at the joint with the steel section 1, or a thickened board at the longitudinal joint between two adjacent flat boards.
  • the upper wing plate 6 is provided with a plurality of peg connectors 7 for resisting the shear force between the steel-UHPC composite plate and the upper wing plate 6.
  • the diameter of the peg connector 7 is 9-25 mm, and the height It is 40-150mm, the horizontal spacing is 50-200mm, and the vertical spacing is 100-200mm.
  • a plurality of peg connectors 7 are provided on the web extension section 1002.
  • the peg connection members 7 have a diameter of 9-25 mm and a height of 5-80 mm.
  • Each web extension section 1002 is provided with 2-4 rows of pegs For the connecting member 7, the horizontal spacing between the rows is 50-200mm, and the vertical spacing is 50-200mm.
  • one, two or more layers of reinforcement mesh are arranged in the UHPC board (three layers as shown in FIG. 10).
  • the bottom horizontal reinforcement 10 and the top horizontal reinforcement 12 are alternately arranged, two layers
  • the middle longitudinal bars 11 can be arranged between the transverse bars, the diameter of the longitudinal and transverse bars is 10-20mm, and the spacing between the bars is 70-300mm.
  • the lower flange overhanging section 1003 may not be provided under the web overhanging section 1002.
  • the number of long straight upper flange overhanging sections 1001 and the lower flange overhanging section 1003 may be determined according to requirements.
  • the number of inclined lower flange extensions 1003 may also be determined according to requirements, and is not limited to the number shown in the drawings of this embodiment.
  • This embodiment also provides a construction method of the above bridge deck, including the following steps:
  • This embodiment also provides another construction method of the above bridge deck, including the following steps:
  • S1 the steel-UHPC composite plate and the main beam are prefabricated as a whole, the steel-UHPC composite plate and the main beam form a segmented composite beam, and the position of the transverse joint between the segments is reserved;
  • the main beams are PK beams, steel box beams, steel plate beams, steel truss beams or I-beams without orthotropic steel bridge decks, and a certain width of upper beams is arranged above the main beam crossbeams or beams
  • the wing plate 6 is used to connect the steel-UHPC combination plate, and the sealing rubber strip 8 is reserved on the upper wing plate 6.
  • the rubber strip 8 only plays a sealing role and does not participate in the force.
  • the section steel (as shown in FIG. 21) and the section steel-UHPC composite plate of this embodiment are different from the embodiment 1 in that there is no lower flange 103 (section steel 1) in the section steel 1
  • the type can be angle steel, T-shaped steel, ball flat steel, etc.).
  • the bridge deck is mainly formed by connecting a plurality of longitudinal sections of the above-mentioned steel-UHPC composite board, and adjacent bridge decks are connected by a cast-in-place connection portion 13.
  • the arrangement of the section steel 1 in the two adjacently arranged section steel-UHPC composite boards may be any of the following structures.
  • the adjacent section of the section steel-UHPC composite boards The steel profiles 1 are arranged one by one.
  • the section steels 1 in the adjacent section steel-UHPC composite plates are alternately arranged. details as follows:
  • the section steels 1 in the adjacent section steel-UHPC composite plates are arranged one by one, and the upper flange extension 1001 in the same section 1 is symmetrical along the web extension 1002
  • the upper flange extension section 1001 which is not directly connected to the web extension section 1002, crosses the transverse bridge of the cast-in-place connection portion 13 toward the central axis, and the upper flange extension section 1001 of the section steel 1 is arranged one by one. Staggered arrangement.
  • the section steels 1 in the adjacent section steel-UHPC composite plates are arranged alternately with each other, and the upper flange extension 1001 in the same section 1 is symmetrically arranged along the web extension 1002
  • the end of the upper flange extension 1001 and the end of the web extension 1002 both cross the transverse bridge of the cast-in-place connection 13 toward the central axis.
  • Example 1 Other structures in this embodiment, such as the UHPC lateral stiffener 3, the section steel 1 and the UHPC plate 2 are connected by the stud connector 7, other arrangements of the stud connector 7 and the construction method of the above horizontal connection structure It remains the same as in Example 1, and specific reference can be made to Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种型钢,包括上翼缘与腹板,所述上翼缘与腹板中至少一个的端部设有向外延伸的外伸段。本发明还公开了一种型钢-UHPC组合板,所述型钢-UHPC组合板包括UHPC板和上述的型钢,所述UHPC板固接于型钢上,所述型钢沿纵桥向布置。本发明还公开了一种桥面板,所述桥面板主要由多个上述的型钢-UHPC组合板纵桥向连接而成,相邻所述型钢-UHPC组合板之间通过现浇连接部连接。同时,本发明还公开了另一种结构形式的型钢、型钢-UHPC组合板和桥面板。本发明的型钢、型钢-UHPC组合板及桥面板解决了连续梁桥内支点横向接缝处负弯矩区桥面板易开裂和斜拉桥中跨跨中主梁桥面板之间横向接缝处易开裂问题。

Description

一种型钢、型钢-UHPC组合板及桥面板 技术领域
本发明属于桥梁工程领域,尤其涉及一种用于组成桥面板的型钢、组合板及桥面板。
背景技术
对于钢-混凝土连续体系梁桥,因其受力性能好、伸缩缝少、行车舒适、经济性好、施工方便等优点得到了广泛的应用,连续体系梁桥在结构自重和汽车活载作用下内支点将产生巨大的负弯矩,且大跨径连续梁桥对自重很敏感,结构自重的增加将使得连续梁桥内支点负弯矩进一步增大,这将导致连续梁桥内支点区域的桥面板承受的拉应力远大于其他部位,使内支点区域桥面板存在开裂风险,这是限制钢-混凝土连续体系梁桥跨径超过150米的主要原因。
传统组合梁斜拉桥中,由于斜拉桥的受力特点,混凝土桥面板要承担来自斜拉桥的水平分力,故其平均厚度较厚,一般大于26cm,这将导致桥面板占主梁总重量的比例较大,往往在70%以上,同时也会增加主梁自重,而过重的主梁是限制桥梁跨径上限的主要因素,此外中跨无索区的梁段将承受很大的拉力,使得该区域主梁桥面板之间的接缝存在开裂风险。
超高性能混凝土(Ultra-High Performance Concrete,以下简称UHPC)具有优异的力学性能,它的出现使桥梁建筑结构的发展趋向于大跨化、轻型化。对于钢-混凝土连续体系梁桥,若桥面板采用钢-UHPC组合板,同时采用恰当的施工工艺,内支点在结构自重和汽车活载作用下,依旧会产生很大的负弯矩,这将引起内支点区域的桥面板承受巨大的拉力,内支点区域桥面板依然存在开裂的风险。对于传统组合梁斜拉桥,桥面板采用钢-UHPC组合板后,可以降低主梁自重,进一步增大组合梁斜拉桥的跨径,但组合梁斜拉桥中跨跨中无索区主梁依旧会承担拉力,主梁桥面板之间横向接缝处是薄弱截面,该处桥面板仍存在开裂风险。
发明内容
本发明所要解决的技术问题是克服以上背景技术中提到的不足和缺陷,提供一种型钢、型钢-UHPC组合板及桥面板,该型钢-UHPC组合板及桥面板解决了连续梁桥内支点横向接缝处负弯矩区桥面板易开裂和斜拉桥中跨跨中主梁桥面板之间横向接缝处易开裂问题。为解决上述技术问题,本发明提出的技术方案为:
一种型钢,包括上翼缘与腹板,所述上翼缘与腹板中至少一个的端部设有向外延伸的外伸段。上述型钢用于与UHPC板组合得到型钢-UHPC组合板。上述型钢的种类包括角钢、T型钢、球扁钢等。
上述型钢中,优选的,所述上翼缘的端部设有向外延伸的上翼缘外伸段,且所述上翼缘外伸段为多根间隔排布的长直条。长直条结构简单,上翼缘外伸段为长直条一方面方便施工,利于后续接缝处的UHPC浇筑密实;另一方面长直条的受力性能与钢筋类似,可增加型钢与 接缝处UHPC的接触面积,提高二者间的粘结力,改善接缝处UHPC的抗拉能力,从而保证接缝处的力学性能。
作为一个总的技术构思,本发明还提供一种型钢-UHPC组合板,所述型钢-UHPC组合板包括UHPC板和上述的型钢,所述UHPC板固接于型钢上,所述型钢沿纵桥向布置(多根型钢优选平行布置)。
作为一个总的技术构思,本发明还提供一种桥面板,所述桥面板主要由多个上述的型钢-UHPC组合板纵桥向连接而成,相邻所述型钢-UHPC组合板之间通过现浇连接部连接。
上述桥面板中,优选的,所述型钢的端部设有UHPC横向加劲板,所述UHPC横向加劲板的端面设有一向现浇连接部内延伸的凸起(凸起为异形形状,如为楔形,可根据受力需求改变);所述UHPC横向加劲板上开设有横桥向的通孔,所述通孔中贯穿设有贯穿钢筋。贯穿钢筋的作用用于改善UHPC横向加劲板横向受力。UHPC横向加劲板与UHPC板可以一起预制,UHPC横向加劲板可提高接缝处截面的受力性能。在预制UHPC横向加劲板时,优选在腹板相应位置处布置多个栓钉连接件,浇筑UHPC时,使UHPC包裹住栓钉连接件与贯穿钢筋,可以使UHPC横向加劲板与型钢更好的连接成一个整体。
上述桥面板中,优选的,所述上翼缘和腹板的端部均分别设有向外延伸的上翼缘外伸段和腹板外伸段,所述上翼缘外伸段为多根间隔排布的长直条。
上述桥面板中,优选的,相邻设置的型钢-UHPC组合板中的型钢一一对应布置,且同一型钢中的上翼缘外伸段沿腹板外伸段对称设置,未与腹板外伸段直接相连的上翼缘外伸段的末端越过现浇连接部的横桥向中心轴线,一一对应布置的型钢的上翼缘外伸段交错布置(不包括与腹板外伸段直接相连的上翼缘外伸段)。上翼缘外伸段的末端均越过现浇连接部的横桥向中心轴线,使相邻长直条间的混凝土处于受压状态,以此改善现浇连接部的受力性能。
上述桥面板中,优选的,相邻设置的型钢-UHPC组合板中的型钢相互交错布置,且同一型钢中的上翼缘外伸段沿腹板外伸段对称设置,上翼缘外伸段的末端与腹板外伸段的末端均越过现浇连接部的横桥向中心轴线。上翼缘外伸段的末端与腹板外伸段的末端越过现浇连接部的横桥向中心轴线可以保证现在浇连接部的中心也布设有外伸段,以进一步增加接缝结构的受力性能。
一种型钢,包括上翼缘、腹板与下翼缘,所述上翼缘、腹板与下翼缘中至少一个的端部设有向外延伸的外伸段。上述型钢用于与UHPC板组合得到型钢-UHPC组合板。上述型钢的种类包括工字钢、槽钢、U型钢等。
上述型钢中,优选的,所述下翼缘的端部设有向外延伸的下翼缘外伸段,且所述下翼缘外伸段为多根间隔排布的长直条。长直条结构简单,上翼缘外伸段为长直条一方面方便施工, 利于后续接缝处的UHPC浇筑密实;另一方面长直条的受力性能与钢筋类似,可增加型钢与接缝处UHPC的接触面积,提高二者间的粘结力,改善接缝处UHPC的抗拉能力,从而保证接缝处的力学性能。
上述型钢中,优选的,至少一根所述下翼缘外伸段为向上倾斜的长直条,且倾斜角度θ在10-60°之间。更优选的,所有下翼缘外伸段均为向上倾斜的长直条(除开与腹板外伸段直接连接的下翼缘外伸段)。下翼缘外伸段采用长直条一方面利于后续在接缝中浇筑UHPC,便于浇筑的UHPC流入型钢-UHPC组合板与主梁横隔板或横梁上翼板之间的缝隙中,另一方面长直条的受力性能与钢筋类似,可以保证接缝处的力学性能。另外,研究表明,采用倾斜的长直条,一方面可增加型钢与现浇连接部UHPC之间的粘结力,使下翼缘外伸段可以更好地参与受力,另一方面也可使横向相邻两倾斜的长直条所包裹范围内UHPC处于受压状态,故而可使接缝处的力学性能更优。并且,下翼缘外伸段倾斜角θ过小,与水平长直条的构造效果接近,仅通过长直条与横向现浇连接部UHPC的粘结力来提高横向连接结构的抗拉能力效果较差,且不能很好地改善在浇筑现浇连接部UHPC时浇筑密实的问题;下翼缘外伸段倾斜角θ过大时,长直条与横向现浇连接部UHPC的相互作用大于倾斜角较小情况下的相互作用,也能较好地改善横向现浇连接部UHPC浇筑密实的问题,但倾斜角过大时,在外界荷载作用下,下翼缘外伸段长直条与横向现浇连接部UHPC间会产生很大的作用力,这样使得长直条起弯处承受很大的作用力,对外伸段长直条受力不利,除此之外,长直条倾斜角过大会使得其在横向现浇连接部处的覆盖范围减小,仅能提高部分截面的抗拉性能,所以长直条的倾斜角宜在10-60°之间。
作为一个总的技术构思,本发明还提供一种型钢-UHPC组合板,所述型钢-UHPC组合板包括UHPC板和上述的型钢,所述UHPC板固接于型钢上,所述型钢沿纵桥向布置(多根型钢优选平行布置)。
作为一个总的技术构思,本发明还提供一种桥面板,所述桥面板主要由多个上述的型钢-UHPC组合板纵桥向连接而成,相邻所述型钢-UHPC组合板之间通过现浇连接部连接。
上述桥面板中,优选的,所述型钢的端部设有UHPC横向加劲板,所述UHPC横向加劲板的端面设有一向现浇连接部内延伸的凸起(凸起为异形形状,如为楔形,可根据受力需求改变);所述UHPC横向加劲板上开设有横桥向的通孔,所述通孔中贯穿设有贯穿钢筋。贯穿钢筋的作用用于改善UHPC横向加劲板横向受力。UHPC横向加劲板与UHPC板可以一起预制,UHPC横向加劲板可提高接缝处截面的受力性能。在预制UHPC横向加劲板时,优选在腹板相应位置处布置多个栓钉连接件,浇筑UHPC时,使UHPC包裹住栓钉连接件与贯穿钢筋,可以使UHPC横向加劲板与型钢更好的连接成一个整体。
上述桥面板中,优选的,所述上翼缘、腹板和下翼缘的端部均分别设有向外延伸的上翼缘外伸段、腹板外伸段和下翼缘外伸段,所述上翼缘外伸段为多根间隔排布的长直条,所述下翼缘外伸段为多根间隔排布的长直条。
上述桥面板中,优选的,相邻设置的型钢-UHPC组合板中的型钢一一对应布置,且同一型钢中的上翼缘外伸段沿腹板外伸段对称设置,未与腹板外伸段直接相连的上翼缘外伸段的末端越过现浇连接部的横桥向中心轴线,一一对应布置的型钢的上翼缘外伸段交错布置(不包括与腹板外伸段直接相连的上翼缘外伸段);同一型钢中的下翼缘外伸段沿腹板外伸段对称设置,未与腹板外伸段直接相连的下翼缘外伸段的末端越过现浇连接部的横桥向中心轴线,一一对应布置的型钢的下翼缘外伸段交错布置(不包括与腹板外伸段直接相连的下翼缘外伸段)。上述上翼缘外伸段的末端与下翼缘外伸段的末端均可越过现浇连接部的横桥向中心轴线,可以改善现浇连接部的受力性能。
上述桥面板中,优选的,相邻设置的型钢-UHPC组合板中的型钢相互交错布置,且同一型钢中的上翼缘外伸段沿腹板外伸段对称设置,同一型钢中的下翼缘外伸段沿腹板外伸段对称设置,上翼缘外伸段的末端、腹板外伸段的末端与下翼缘外伸段的末端均越过现浇连接部的横桥向中心轴线。上翼缘外伸段的末端、腹板外伸段的末端与下翼缘外伸段的末端均越过现浇连接部的横桥向中心轴线可以保证现在浇连接部的中心也布设有外伸段,以进一步增加接缝结构的受力性能。
本发明中,型钢与UHPC板之间通过栓钉连接件、型钢连接件、弯筋连接件、高强螺栓连接件或开孔钢板连接件连接。优选采用栓钉连接件连接,栓钉连接件的直径为9-25mm,高度为25-80mm,每个型钢上方横向一般布置2-4排栓钉,横向间距为50-200mm,纵向间距为100-300mm。
本发明中,多根型钢之间横向间距为300-1000mm,型钢的宽度一般为100-400mm,高度较小,一般不超过400mm。UHPC板为平板、在与型钢连接处作加厚处理的平板或在两相邻平板纵向接缝处作加厚处理的平板。
本发明中,型钢作为型钢-UHPC组合板中的一部分,当型钢包括上翼缘与腹板时,上翼缘与腹板中的任一个具有外伸段,即可满足本发明的需求,当型钢包括上翼缘、腹板和下翼缘时,上翼缘、腹板和下翼缘中的任一个具有外伸段,即可满足本发明的需求。
本发明还提供一种上述桥面板的施工方法,下部主梁和上部型钢-UHPC组合板分开预制,再在现场拼接,包括以下步骤:
S1:分别完成型钢-UHPC组合板和主梁的预制;
S2:在主梁上布置用于连接型钢-UHPC组合板的上翼板,在上翼板上装设栓钉连接件, 并在上翼板纵桥向两侧布置密封用的橡胶胶条;
S3:将两个相对设置的型钢-UHPC组合板搁置在橡胶胶条上,然后在两个相对设置的UHPC板之间沿横桥向摆放纵向加强钢筋;
S4:在两个相对设置的型钢-UHPC组合板与上翼板形成的空间中浇筑超高性能混凝土使型钢端部的外伸段、纵向加强钢筋与UHPC板中的预留钢筋均包埋于超高性能混凝土中,使两个相对设置的型钢-UHPC组合板之间结合为一个整体,即完成施工。
本发明还提供另一种上述桥面板的施工方法,下部主梁和上部型钢-UHPC组合板整体预制,再在现场拼接,包括以下步骤:
S1:将型钢-UHPC组合板和主梁整体预制,型钢-UHPC组合板与主梁形成一个节段的组合梁,并预留出节段间横向接缝的位置;
S2:安装组合梁的节段,然后在预留的横向接缝内沿横桥向摆放纵向加强钢筋;
S3:在横向接缝内浇筑超高性能混凝土使型钢端部的外伸段、纵向加强钢筋与UHPC板中的预留钢筋均包埋于超高性能混凝土中,使得组合梁的节段之间结合为一个整体,即完成施工。
本发明中,所述上翼板上设有多个用于抵抗型钢-UHPC组合板与上翼板间剪力的栓钉连接件,所述栓钉连接件的直径为9-25mm,高度为40-150mm,横向间距为50-200mm,纵向间距为100-200mm;所述腹板外伸段上设有多个栓钉连接件,所述栓钉连接件直径为9-25mm,高度为5-80mm,每个腹板外伸段上设置2-4排栓钉连接件,各排之间的横向间距为50-200mm,竖向间距为50-200mm。在接缝中浇筑完UHPC后,上述栓钉连接件将两相对布置的型钢-UHPC组合板与上翼板连接成一整体。
本发明中,所述UHPC板内布置一层、两层或多层钢筋网,采用多层钢筋网时,底层横向钢筋与顶层横向钢筋交错布置,两层横向钢筋间可布置纵向钢筋,纵、横向钢筋直径为10-20mm,钢筋间距为70-300mm。
本发明中,主梁为未布置正交异性钢桥面板的PK梁、钢箱梁、钢板梁、钢桁梁或工字梁,在主梁横隔板或横梁的上方布置一定宽度的上翼板用于连接型钢-UHPC组合板,上翼板上的预留密封橡胶胶条,橡胶胶条仅起密封作用,不参与受力。
与现有技术相比,本发明的优点在于:
1、本发明提供了一种适用于桥梁领域的型钢和型钢-UHPC组合板,首次提出型钢-UHPC组合板中的型钢在横向现浇连接部处设置外伸段的构造方式。对于连续体系梁桥,内支点处桥面板之间的纵向连接采用本发明的结构,在满足浇筑横向现浇连接部UHPC浇筑密实的要求下,当连续梁桥内支点桥面板承受轴向拉力时,型钢的外伸段与现浇连接部UHPC的粘结 力和挤压作用对截面的抗拉能力有很大贡献,将进一步增强截面的抗拉能力,改善内支点处纵向连接的受力性能,提高纵向连接处截面的抗拉能力,从而解决连续体系梁桥内支点上方桥面板拉力过大、桥面板易开裂的问题。同时,还可进一步优化墩顶预应力束的布置甚至取消墩顶预应力束,施工简单,经济性好,也可进一步增大连续体系梁桥的跨径。对于传统组合梁斜拉桥,采用本发明的结构,型钢的外伸段与横向现浇连接部UHPC间的粘结力和挤压作用将会抵抗截面所承受的拉力,且外伸段间的UHPC处于受压状态,这也会提高截面的抗拉能力,上述作用会改善斜拉桥中跨跨中无索区梁段桥面板之间横向接缝处的受力性能,提高桥面板的抗拉能力,进而解决组合梁斜拉桥中跨跨中无索区梁段轴力过大的问题,降低无索区梁段桥面板之间横向接缝处的开裂风险。同时,也可进一步拓宽斜拉桥的跨径。
2、本发明的桥面板主要由型钢-UHPC组合板组成,材料用量少且抗弯刚度大,满足桥面板纵、横向受力的要求,并显著降低了桥面板的自重,使得主梁结构自重显著降低,增大了组合梁的跨越能力。与传统钢-混凝土组合梁相比,主梁自重可降低40-50%,与纯钢梁相比,主梁自重增加10-20%,跨度可以达到2000米。
3、本发明中型钢-UHPC组合板,通过调整桥面板、型钢的尺寸以及型钢的横向间距,可方便匹配桥面板的纵、横向刚度。
4、本发明的桥面板可在工厂预制,现场只需要对纵、横向湿接缝进行浇筑,现场浇筑量小,工作量少,接缝处钢筋无需弯折和绑扎,也不需要搭接或焊接,施工简单,设备投入少、对劳动力素质和工艺要求较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中型钢-UHPC组合板的结构示意图。
图2为实施例1中型钢的结构示意图。
图3为实施例1中桥面板的结构示意图。
图4为实施例1中桥面板连接处的结构示意图(图中未示出UHPC板内钢筋和现浇连接部)。
图5为图4的平面图。
图6为图5中A-A截面剖视图。
图7为图5中B-B截面剖视图。
图8为图5中C-C截面剖视图。
图9为图4的平面图(图中未示出UHPC板)。
图10为图9中D-D截面剖视图。
图11为图9中E-E截面剖视图。
图12为图9中F-F截面剖视图。
图13为实施例1中另一种桥面板连接处的结构示意图(图中未示出UHPC板内钢筋和现浇连接部)。
图14为图13的平面图。
图15为图14中G-G截面剖视图。
图16为图14中H-H截面剖视图。
图17为图13的平面图(图中未示出UHPC板)。
图18为图17中I-I截面剖视图。
图19为图17中J-J截面剖视图。
图20为实施例2中型钢-UHPC组合板的结构示意图。
图21为实施例2中型钢的结构示意图。
图22为实施例2中桥面板的结构示意图。
图23为实施例2中桥面板连接处的结构示意图(图中未示出UHPC板内钢筋和现浇连接部)。
图24为实施例2中另一种桥面板连接处的结构示意图(图中未示出UHPC板内钢筋和现浇连接部)。
图例说明:
1、型钢;101、上翼缘;102、腹板;103、下翼缘;1001、上翼缘外伸段;1002、腹板外伸段;1003、下翼缘外伸段;2、UHPC板;3、UHPC横向加劲板;4、通孔;5、贯穿钢筋;6、上翼板;7、栓钉连接件;8、橡胶胶条;9、凸起;10、底层横向钢筋;11、中间纵向钢筋;12、顶层横向钢筋;13、现浇连接部。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
如图1、图2所示,本实施例的型钢(如图2所示)和型钢-UHPC组合板,型钢-UHPC组合板包括多根型钢1和固接于型钢1上的UHPC板2,型钢1沿纵桥向平行布置,型钢1包括上翼缘101、腹板102和下翼缘103(型钢1种类如工字钢、槽钢、U型钢等),UHPC板2固接于上翼缘101上,型钢1的上翼缘101、腹板102和下翼缘103的端部设有向外延伸的上翼缘外伸段1001、腹板外伸段1002和下翼缘外伸段1003。
本实施例中,上翼缘外伸段1001为多根间隔排布的长直条,下翼缘外伸段1003为多根间隔排布、向上倾斜(倾斜角度为10-60°之间均可)的长直条(与腹板外伸段1002直接相连的下翼缘外伸段1003仍然直接设于腹板外伸段1002底部)。
如图3-19所示,本实施例中的桥面板,桥面板主要由多个上述型钢-UHPC组合板纵桥向连接而成,相邻桥面板之间通过现浇连接部13连接。
本实施例中,型钢1的端部设有UHPC横向加劲板3,UHPC横向加劲板3的端面设有一向现浇连接部13内延伸的楔形凸起9(如图4、5所示);UHPC横向加劲板3上开设有横桥向的通孔4,通孔4中贯穿设有贯穿钢筋5(如图8、图10所示)。
本实施例中,两相邻设置的型钢-UHPC组合板中的型钢1的排布方式可为以下结构中的任一种,如图4-12所示,相邻设置的型钢-UHPC组合板中的型钢1一一对应布置。如图13-19所示,相邻设置的型钢-UHPC组合板中的型钢1相互交错布置。具体如下:
如图4-12所示,本实施例中,相邻设置的型钢-UHPC组合板中的型钢1一一对应布置,且同一型钢1中的上翼缘外伸段1001沿腹板外伸段1002对称设置,未与腹板外伸段1002直接相连的上翼缘外伸段1001的末端越过现浇连接部13的横桥向中心轴线,一一对应布置的型钢1的上翼缘外伸段1001交错布置;同一型钢1中的下翼缘外伸段1003沿腹板外伸段1002对称设置,未与腹板外伸段1002直接相连的下翼缘外伸段1003的末端越过现浇连接部13的横桥向中心轴线,一一对应布置的型钢1的下翼缘外伸段1003交错布置。
如图13-19所示,本实施例中,相邻设置的型钢-UHPC组合板中的型钢1相互交错布置,且同一型钢1中的上翼缘外伸段1001沿腹板外伸段1002对称设置,同一型钢1中的下翼缘外伸段1003沿腹板外伸段1002对称设置,上翼缘外伸段1001的末端、腹板外伸段1002的末端与下翼缘外伸段1003的末端均越过现浇连接部13的横桥向中心轴线。
本实施例中,型钢1与UHPC板2之间通过栓钉连接件7(本实施例中,各栓钉连接件7的标号相同,但功能、位置可能不同,下同)连接,栓钉连接件7的直径为9-25mm,高度 为25-80mm,每个型钢1上方横向一般布置2-4排栓钉,横向间距为50-200mm,纵向间距为100-300mm。多根型钢1之间横向间距为300-1000mm,型钢1的宽度一般为100-400mm,高度较小,一般不超过400mm。UHPC板2为平板、在与型钢1连接处作加厚处理的平板或在两相邻平板纵向接缝处作加厚处理的平板。
本实施例中,上翼板6上设有多个用于抵抗型钢-UHPC组合板与上翼板6间剪力的栓钉连接件7,栓钉连接件7的直径为9-25mm,高度为40-150mm,横向间距为50-200mm,纵向间距为100-200mm。腹板外伸段1002上设有多个栓钉连接件7,栓钉连接件7直径为9-25mm,高度为5-80mm,每个腹板外伸段1002上设置2-4排栓钉连接件7,各排之间的横向间距为50-200mm,竖向间距为50-200mm。
本实施例中,UHPC板内布置一层、两层或多层钢筋网(如图10中为三层),采用三层钢筋网时,底层横向钢筋10与顶层横向钢筋12交错布置,两层横向钢筋间可布置中间纵向钢筋11,纵、横向钢筋直径为10-20mm,钢筋间距为70-300mm。
本实施例中,腹板外伸段1002下可以不设置下翼缘外伸段1003,长直条的上翼缘外伸段1001、下翼缘外伸段1003的数量可根据需求而定,倾斜的下翼缘外伸段1003的数量也可以根据需求而定,并不局限于本实施例附图中所示的数量。
本实施例还提供一种上述桥面板的施工方法,包括以下步骤:
S1:分别完成型钢-UHPC组合板和主梁的预制;
S2:在主梁上装设用于连接型钢-UHPC组合板的上翼板6,在上翼板6上焊接栓钉连接件7,并在上翼板6纵桥向两侧布置密封用的橡胶胶条8;
S3:将两个相对设置的型钢-UHPC组合板搁置在橡胶胶条8上,然后在两个相对设置的UHPC板2之间沿横桥向摆放纵向加强钢筋;
S4:在两个相对设置的型钢-UHPC组合板与上翼板6形成的空间中浇筑超高性能混凝土使型钢1端部的外伸段、纵向加强钢筋与UHPC板2中的预留钢筋均包埋于超高性能混凝土中,使两个相对设置的型钢-UHPC组合板之间结合为一个整体,即完成施工。
本实施例还提供一种上述桥面板的另一种施工方法,包括以下步骤:
S1:将型钢-UHPC组合板和主梁整体预制,型钢-UHPC组合板与主梁形成一个节段的组合梁,并预留出节段间横向接缝的位置;
S2:安装组合梁的节段,然后在预留的横向接缝内沿横桥向摆放纵向加强钢筋;
S3:在横向接缝内浇筑超高性能混凝土使型钢1端部的外伸段、纵向加强钢筋与UHPC板2中的预留钢筋均包埋于超高性能混凝土中,使得组合梁的节段之间结合为一个整体,即完成施工。
本实施例中,主梁为未布置正交异性钢桥面板的PK梁、钢箱梁、钢板梁、钢桁梁或工字梁,在主梁横隔板或横梁的上方布置一定宽度的上翼板6用于连接型钢-UHPC组合板,上翼板6上的预留密封橡胶胶条8,橡胶胶条8仅起密封作用,不参与受力。
实施例2:
如图20、图21所示,本实施例的型钢(如图21所示)和型钢-UHPC组合板,与实施例1相比,不同之处在于型钢1中没有下翼缘103(型钢1的种类可为角钢、T型钢、球扁钢等)。
如图22所示,本实施例中的桥面板,桥面板主要由多个上述型钢-UHPC组合板纵桥向连接而成,相邻桥面板之间通过现浇连接部13连接。
本实施例中,两相邻设置的型钢-UHPC组合板中的型钢1的排布方式可为以下结构中的任一种,如图23所示,相邻设置的型钢-UHPC组合板中的型钢1一一对应布置。如图24所示,相邻设置的型钢-UHPC组合板中的型钢1相互交错布置。具体如下:
如图23所示,本实施例中,相邻设置的型钢-UHPC组合板中的型钢1一一对应布置,且同一型钢1中的上翼缘外伸段1001沿腹板外伸段1002对称设置,未与腹板外伸段1002直接相连的上翼缘外伸段1001的末端越过现浇连接部13的横桥向中心轴线,一一对应布置的型钢1的上翼缘外伸段1001交错布置。
如图24所示,本实施例中,相邻设置的型钢-UHPC组合板中的型钢1相互交错布置,且同一型钢1中的上翼缘外伸段1001沿腹板外伸段1002对称设置,上翼缘外伸段1001的末端与腹板外伸段1002的末端均越过现浇连接部13的横桥向中心轴线。
本实施例中的其他结构,如UHPC横向加劲板3、型钢1与UHPC板2之间通过栓钉连接件7连接、栓钉连接件7的其他布置方式以及上述横向连接结构的施工方法均可与实施例1中保持相同,具体可参照实施例1。

Claims (18)

  1. 一种型钢,其特征在于,包括上翼缘(101)与腹板(102),所述上翼缘(101)与腹板(102)中至少一个的端部设有向外延伸的外伸段。
  2. 根据权利要求1所述的型钢,其特征在于,所述上翼缘(101)的端部设有向外延伸的上翼缘外伸段(1001),且所述上翼缘外伸段(1001)为多根间隔排布的长直条。
  3. 一种型钢,其特征在于,包括上翼缘(101)、腹板(102)与下翼缘(103),所述上翼缘(101)、腹板(102)与下翼缘(103)中至少一个的端部设有向外延伸的外伸段。
  4. 根据权利要求3所述的型钢,其特征在于,所述上翼缘(101)的端部设有向外延伸的上翼缘外伸段(1001),且所述上翼缘外伸段(1001)为多根间隔排布的长直条。
  5. 根据权利要求3或4所述的型钢,其特征在于,所述下翼缘(103)的端部设有向外延伸的下翼缘外伸段(1003),且所述下翼缘外伸段(1003)为多根间隔排布的长直条。
  6. 根据权利要求5所述的型钢,其特征在于,至少一根所述下翼缘外伸段(1003)为向上倾斜的长直条,且倾斜角度θ在10-60°之间。
  7. 一种型钢-UHPC组合板,其特征在于,所述型钢-UHPC组合板包括UHPC板(2)和权利要求1或2所述的型钢(1),所述UHPC板(2)固接于型钢(1)上,所述型钢(1)沿纵桥向布置。
  8. 一种桥面板,其特征在于,所述桥面板主要由多个权利要求7中所述的型钢-UHPC组合板纵桥向连接而成,相邻所述型钢-UHPC组合板之间通过现浇连接部(13)连接。
  9. 根据权利要求8所述的桥面板,其特征在于,所述型钢(1)的端部设有UHPC横向加劲板(3),所述UHPC横向加劲板(3)的端面设有一向现浇连接部(13)内延伸的凸起(9);所述UHPC横向加劲板(3)上开设有横桥向的通孔(4),所述通孔(4)中贯穿设有贯穿钢筋(5)。
  10. 根据权利要求8或9所述的桥面板,其特征在于,所述上翼缘(101)和腹板(102)的端部均分别设有向外延伸的上翼缘外伸段(1001)和腹板外伸段(1002),所述上翼缘外伸段(1001)为多根间隔排布的长直条。
  11. 根据权利要求10所述的桥面板,其特征在于,相邻设置的型钢-UHPC组合板中的型钢(1)一一对应布置,且同一型钢(1)中的上翼缘外伸段(1001)沿腹板外伸段(1002)对称设置,未与腹板外伸段(1002)直接相连的上翼缘外伸段(1001)的末端越过现浇连接部(13)的横桥向中心轴线。
  12. 根据权利要求10所述的桥面板,其特征在于,相邻设置的型钢-UHPC组合板中的型钢(1)相互交错布置,且同一型钢(1)中的上翼缘外伸段(1001)沿腹板外伸段(1002)对称设置,上翼缘外伸段(1001)的末端与腹板外伸段(1002)的末端均越过现浇连接部(13) 的横桥向中心轴线。
  13. 一种型钢-UHPC组合板,其特征在于,所述型钢-UHPC组合板包括UHPC板(2)和权利要求3-6中任一项所述的型钢(1),所述UHPC板(2)固接于型钢(1)上,所述型钢(1)沿纵桥向布置。
  14. 一种桥面板,其特征在于,所述桥面板主要由多个权利要求13中所述的型钢-UHPC组合板纵桥向连接而成,相邻所述型钢-UHPC组合板之间通过现浇连接部(13)连接。
  15. 根据权利要求14所述的桥面板,其特征在于,所述型钢(1)的端部设有UHPC横向加劲板(3),所述UHPC横向加劲板(3)的端面设有一向现浇连接部(13)内延伸的凸起(9);所述UHPC横向加劲板(3)上开设有横桥向的通孔(4),所述通孔(4)中贯穿设有贯穿钢筋(5)。
  16. 根据权利要求14或15所述的桥面板,其特征在于,所述上翼缘(101)、腹板(102)和下翼缘(103)的端部均分别设有向外延伸的上翼缘外伸段(1001)、腹板外伸段(1002)和下翼缘外伸段(1003),所述上翼缘外伸段(1001)为多根间隔排布的长直条,所述下翼缘外伸段(1003)为多根间隔排布的长直条。
  17. 根据权利要求16所述的桥面板,其特征在于,相邻设置的型钢-UHPC组合板中的型钢(1)一一对应布置,且同一型钢(1)中的上翼缘外伸段(1001)沿腹板外伸段(1002)对称设置,未与腹板外伸段(1002)直接相连的上翼缘外伸段(1001)的末端越过现浇连接部(13)的横桥向中心轴线;同一型钢(1)中的下翼缘外伸段(1003)沿腹板外伸段(1002)对称设置,未与腹板外伸段(1002)直接相连的下翼缘外伸段(1003)的末端越过现浇连接部(13)的横桥向中心轴线。
  18. 根据权利要求16所述的桥面板,其特征在于,相邻设置的型钢-UHPC组合板中的型钢(1)相互交错布置,且同一型钢(1)中的上翼缘外伸段(1001)沿腹板外伸段(1002)对称设置,同一型钢(1)中的下翼缘外伸段(1003)沿腹板外伸段(1002)对称设置,上翼缘外伸段(1001)的末端、腹板外伸段(1002)的末端与下翼缘外伸段(1003)的末端均越过现浇连接部(13)的横桥向中心轴线。
PCT/CN2019/111942 2018-12-26 2019-10-18 一种型钢、型钢-uhpc组合板及桥面板 WO2020134402A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811604946.3A CN109610313B (zh) 2018-12-26 2018-12-26 一种型钢-uhpc组合板纵肋交错布置构造及其施工方法
CN201811604946.3 2018-12-26
CN201822202999.4U CN209619850U (zh) 2018-12-26 2018-12-26 一种型钢-uhpc组合板纵肋交错布置构造
CN201822202999.4 2018-12-26
CN201920401091.8 2019-03-27
CN201910239902.3A CN109972511A (zh) 2019-03-27 2019-03-27 一种型钢-uhpc组合板及桥面板
CN201920401091.8U CN209923769U (zh) 2019-03-27 2019-03-27 一种型钢-uhpc组合板及桥面板
CN201910239902.3 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020134402A1 true WO2020134402A1 (zh) 2020-07-02

Family

ID=71126873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111942 WO2020134402A1 (zh) 2018-12-26 2019-10-18 一种型钢、型钢-uhpc组合板及桥面板

Country Status (1)

Country Link
WO (1) WO2020134402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127263A (zh) * 2020-08-24 2020-12-25 山东省交通规划设计院有限公司 一种预制桥面板湿接缝连接构造、预制桥梁及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106049255A (zh) * 2016-07-22 2016-10-26 邵旭东 钢‑超高性能混凝土轻型组合梁简支变连续结构构造及其施工方法
CN106320607A (zh) * 2016-08-10 2017-01-11 天津大学建筑设计研究院 一种带有钢结构连接节点的装配式预制叠合梁制作方法
JP2017110394A (ja) * 2015-12-16 2017-06-22 日本鉄塔工業株式会社 鉄骨床版橋
CN108396647A (zh) * 2018-03-26 2018-08-14 湖南大学 一种钢-超高性能混凝土组合桥面连接结构及其施工方法
CN109610313A (zh) * 2018-12-26 2019-04-12 湖南大学 一种型钢-uhpc组合板纵肋交错布置构造及其施工方法
CN109972511A (zh) * 2019-03-27 2019-07-05 湖南大学 一种型钢-uhpc组合板及桥面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110394A (ja) * 2015-12-16 2017-06-22 日本鉄塔工業株式会社 鉄骨床版橋
CN106049255A (zh) * 2016-07-22 2016-10-26 邵旭东 钢‑超高性能混凝土轻型组合梁简支变连续结构构造及其施工方法
CN106320607A (zh) * 2016-08-10 2017-01-11 天津大学建筑设计研究院 一种带有钢结构连接节点的装配式预制叠合梁制作方法
CN108396647A (zh) * 2018-03-26 2018-08-14 湖南大学 一种钢-超高性能混凝土组合桥面连接结构及其施工方法
CN109610313A (zh) * 2018-12-26 2019-04-12 湖南大学 一种型钢-uhpc组合板纵肋交错布置构造及其施工方法
CN109972511A (zh) * 2019-03-27 2019-07-05 湖南大学 一种型钢-uhpc组合板及桥面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127263A (zh) * 2020-08-24 2020-12-25 山东省交通规划设计院有限公司 一种预制桥面板湿接缝连接构造、预制桥梁及方法

Similar Documents

Publication Publication Date Title
CN109338866B (zh) 一种适用于大跨径桥梁的超轻型组合梁结构及其施工方法
CN103696355B (zh) 一种超高韧性混凝土板-钢梁轻型组合桥梁结构
CN109610310B (zh) 适用于悬臂状态的型钢-uhpc组合桥面结构及其施工方法
CN208917657U (zh) 预制装配式超高性能混凝土预应力工字型梁
CN108824162A (zh) 一种采用平钢板与波形钢板混合腹板的钢-混凝土组合连续梁及其施工方法
CN108385503A (zh) 一种装配式轻型组合梁简支变结构连续构造及其施工方法
CN109610313B (zh) 一种型钢-uhpc组合板纵肋交错布置构造及其施工方法
CN210117637U (zh) 装配化工字组合梁桥
CN110846996A (zh) 一种连续组合梁桥的施工方法及连续组合梁桥
CN110700103B (zh) 一种连续性组合梁施工方法
CN109112961B (zh) 一种超薄桥面结构、桁架桥及桁架桥的构建方法
CN106758813A (zh) 用于钢混组合梁桥的uhpc井式肋桥面板及其施工方法
CN109024219B (zh) 预制超高性能混凝土-普通混凝土组合梁桥梁结构及施工方法
CN216339028U (zh) 一种π型预制钢-UHPC组合梁的桥面板纵向接缝
CN212128810U (zh) 一种uhpc波折钢腹板窄幅钢箱型组合梁
CN208717744U (zh) 一种装配式钢混组合预制桥面板
CN109972511A (zh) 一种型钢-uhpc组合板及桥面板
CN207878254U (zh) 一种装配式轻型组合梁简支变结构连续构造
CN209923769U (zh) 一种型钢-uhpc组合板及桥面板
CN212404773U (zh) 一种uhpc-nc混合箱梁和大跨刚构桥
CN113356052A (zh) 一种新型钢筋桁架叠合桥面板及生产方法
WO2020134402A1 (zh) 一种型钢、型钢-uhpc组合板及桥面板
CN113106845A (zh) 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法
CN107988858A (zh) 一种悬挂式底板开口组合箱型标准轨道梁系统
CN111979893A (zh) 一种铁路大跨斜拉桥箱型组合梁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903806

Country of ref document: EP

Kind code of ref document: A1