WO2020134214A1 - 一种储能系统 - Google Patents

一种储能系统 Download PDF

Info

Publication number
WO2020134214A1
WO2020134214A1 PCT/CN2019/106657 CN2019106657W WO2020134214A1 WO 2020134214 A1 WO2020134214 A1 WO 2020134214A1 CN 2019106657 W CN2019106657 W CN 2019106657W WO 2020134214 A1 WO2020134214 A1 WO 2020134214A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage system
power
cell
backplane
Prior art date
Application number
PCT/CN2019/106657
Other languages
English (en)
French (fr)
Inventor
钟正
马向民
叶万祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19904884.4A priority Critical patent/EP3893289A4/en
Publication of WO2020134214A1 publication Critical patent/WO2020134214A1/zh
Priority to US17/358,907 priority patent/US11581588B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the field of batteries, and in particular to an energy storage system.
  • lithium-ion batteries are becoming more and more widely used in the fields of communication power supply, data center, micro-grid energy storage, and electric vehicles.
  • the capacity of a single cell has gradually increased.
  • large-capacity batteries in the industry have reached about 300 ampere hours (Ah), but compared with lead acid, the capacity is still relatively small, so it is generally necessary to apply multiple strings in parallel.
  • the battery cells are usually connected in series and parallel to form a standard PACK module, and then the standard PACK module is assembled into the installation space such as an energy storage cabinet, rack, electric vehicle chassis, etc., and connected separately Good power and sampling harness to form a backup power system for external power supply.
  • the communication energy storage application after the lithium ion battery has been screened for specifications, it is usually combined in series and parallel to form a 15 to 16 series (lithium iron phosphate) PACK module.
  • the PACK module includes a sampling wiring harness, a power connection row, an insulation sheet, and a fixed Bracket and other components; then the battery management system (BMS) control board (BMS) control panel and PACK module are combined into a 48-volt (V) battery product.
  • BMS battery management system
  • BMS battery management system
  • BMS battery management system
  • V 48-volt
  • the 48V battery product is installed in the cabinet.
  • the communication line and power line are well connected.
  • the battery cells need to be assembled into PACK, and then assembled with BMS to form a battery module.
  • a large number of protection and fixing devices need to be configured to increase the cost and production cycle.
  • Embodiments of the present application provide an energy storage system for simplifying lithium battery pack production, improving lithium battery installation efficiency, reducing costs, and improving system reliability.
  • an embodiment of the present application provides an energy storage system, which specifically includes: a battery cell, a subrack, a backplane, and a battery management system (BMS); wherein, a plurality of batteries are reserved in the subrack Core slot, so that the cell can be connected to the backplane through the cell slot; the backplane is installed in the subrack, and the first position on the backplane corresponding to the cell slot is reserved Power terminal, the second power terminal of the cell forms a plug-in power terminal with the first power terminal through the cell slot; and the backplane integrates a power circuit, a sampling circuit and an equalization circuit, and the second power terminal After being plugged and docked with the first power terminal, the power circuit, the sampling circuit and the equalization circuit are connected; and the BMS is connected to the backplane to manage the energy storage system.
  • BMS battery management system
  • the cell slots reserved in the enclosure of the energy storage system can be determined according to specific application scenarios. For example, if the application scenario of the energy storage system requires the energy storage system to output at a voltage of 48V, then The subrack can be designed to reserve 18 battery cell slots or more battery cell slots.
  • the BMS can also communicate with the host computer.
  • the current generated by the discharge of the battery cell is connected to the positive and negative busbars through the power circuit; the sampling circuit and the equalization circuit collect the parameters of each cell voltage and other parameters, and support the discharge of each cell, not the positive and negative electrodes Busbar connection.
  • the battery core no longer needs to be assembled into a PACK and then fixedly installed, but directly forms a pluggable power terminal with the backplane, thereby realizing the pluggable installation of the battery core, which can be effective Simplify lithium battery pack production, and improve lithium battery installation efficiency and reduce costs.
  • a bypass switch may be added to the power circuit integrated on the backplane (here, the power circuit may be referred to as a cell branch), and then the cell passes through the subrack
  • the reserved battery cell slot is connected to the backplane (that is, when the second power terminal is docked with the first power terminal), the bypass switch is opened (to avoid short circuit), and the battery branch switch is closed, Realize the connection between the battery cell and the power circuit, sampling circuit and equalization circuit; when the battery cell is not connected to the backplane (that is, when the second power terminal and the first power terminal are not docked) or the battery cell fails ,
  • the cell branch switch is opened, and the bypass switch is closed (to achieve circuit conduction, to prevent open circuit).
  • the system automatically bypasses the failed cell and outputs the corresponding power through the BMS boost.
  • the system can work normally, and the maintenance personnel can directly replace the failed cell without power off.
  • the entire battery cell combination is replaced, so as to realize a highly reliable power supply of the system and reduce maintenance costs.
  • the BMS manages the energy storage system in the following specific manner: when the output voltage of the energy storage system is lower than the preset load value, the BMS increases the output voltage of the energy storage system to the preset load value (That is, the BMS boosts the energy storage system); when the output voltage of the energy storage system is higher than the preset load value, the BMS reduces the output voltage of the energy storage system to the preset load value (that is, the BMS Stepping down the energy storage system); when the output voltage of the energy storage system meets the preset load value, the BMS adopts the through mode to support the load. This can ensure that the output voltage of the energy storage system is consistent during the application process, thereby increasing the reliability of the energy storage system.
  • the second power terminal of the cell may be designed as a male plug of the plug-in terminal welded on the cell cover, and the backplane
  • the first power terminal is designed as a plug-in terminal female soldered on the backplane; or, the second power terminal of the cell can be designed as a plug-in terminal male soldered on the pole of the cell, and the backplane
  • the first power terminal is designed as a plug-in terminal female soldered on the backplane; or, the second power terminal of the cell can be designed as a plug-in female terminal soldered on the cell cover, and the back
  • the first power terminal of the board is designed as a male plug connector soldered on the backplane; alternatively, the second power terminal of the cell may be designed as a female plug connector plugged on the pole of the cell, and the back The first power terminal of the board is designed as a male terminal of the plug-in terminal soldered on the back board.
  • connection between the BMS and the backplane can also be hot swapped. This can facilitate maintenance of the BMS.
  • the battery cell may be a combined battery module or a single battery cell, as long as it can support the hot swap function in the above energy storage system.
  • Figure 1 is an assembly diagram of the battery module
  • FIG. 2 is a schematic diagram of an embodiment of an energy storage system in an embodiment of this application.
  • FIG. 3 is a schematic diagram of a backplane integrated circuit in an embodiment of this application.
  • FIG. 4 is a schematic diagram of the bypass switch and the cell branch in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a cell cover plate in an embodiment of the present application.
  • the embodiments of the present application provide an energy storage system, which is used to improve the backup reliability of the energy storage system, the flexibility of installation and configuration, and simplify the production of lithium battery packs, improve the efficiency of lithium battery installation, and reduce costs.
  • lithium-ion batteries are becoming more and more widely used in the fields of communication power supply, data center, micro-grid energy storage, and electric vehicles.
  • the capacity of a single cell has gradually increased.
  • large-capacity batteries in the industry have reached about 300 ampere hours (Ah), but compared with lead acid, the capacity is still relatively small, so it is generally necessary to apply multiple strings in parallel.
  • the current lithium battery usually connects the cells through series and parallel to form a standard PACK module; then the standard PACK module is assembled into the installation space such as an energy storage cabinet, rack, electric vehicle chassis, etc., and connected separately Good power and sampling harness to form a backup power system for external power supply.
  • the lithium ion battery After the lithium ion battery has been screened for specifications, it is usually combined in series and parallel to form a 15 to 16 string PACK module.
  • the PACK module contains sampling wiring harness, power connection bar, insulation sheet, fixed bracket and other parts; Then the battery management system (BMS) control board and PACK module are combined into a 48V battery product.
  • BMS battery management system
  • the 48V battery product is installed in the cabinet and the communication line and power line are connected.
  • the battery cells need to be assembled into PACK, and then assembled into a battery module with BMS, and then assembled into a battery module with BMS.
  • a large number of protection and fixing devices are needed to increase the cost and production cycle.
  • An embodiment of the present application provides the following energy storage system, specifically including: a battery cell, a subrack, a backplane, and a battery management system (BMS); wherein, a plurality of battery cell slots are reserved in the subrack to facilitate the The cell can be connected to the backplane through the cell slot; the backplane is installed in the subrack, and the first power terminal is reserved for the position corresponding to the cell slot on the backplane, the cell The second power terminal forms a plug-in power terminal with the first power terminal through the cell slot; and a power circuit, a sampling circuit and an equalization circuit are integrated on the backplane, and the second power terminal and the first power terminal After plugging and unplugging, the power circuit, the sampling circuit and the equalization circuit are connected; and the BMS is connected to the backplane for managing the energy storage system.
  • BMS battery management system
  • the energy storage system 200 specifically includes: a battery cell 201, a subrack 202, a backplane 203, and a BMS 204; wherein, a plurality of battery cell slots 2021 are reserved on the subrack 202, so that the The cell 201 can be connected to the backplane 203 through the cell slot 2021; the backplane 203 is installed in the subframe 202, and the position on the backplane 203 corresponding to the preset cell slot 2021 is The reserved first power terminal 2031; the second power terminal 2011 of the cell 201 and the first power terminal 2031 form a plug-in power terminal; the backplane 203 also integrates a power circuit, a sampling circuit and an equalization circuit. When the second power terminal 2011 forms a plug connection with the first power terminal 2031, the power circuit, sampling circuit and equalization circuit are connected to form a power supply loop; and the BMS 204 is connected to the backplane 203 and manages the energy storage system 200.
  • an example way of the energization circuit, the sampling circuit and the equalization circuit integrated in the backplane 203 may be as shown in FIG. 3, the cell 201 is connected in series through the power circuit, and is connected to the total positive busbar and the total The negative busbar; and the sampling circuit and the equalization circuit are respectively connected to each cell 201, and the parameters such as the voltage of the cell 201 are collected and sent to the sampling chip circuit of the battery management system BMS, so that the BMS can manage the cell 201 Composed of energy storage systems.
  • the BMS204 manages the energy storage system in the following specific manners: when the output voltage of the energy storage system 200 is lower than the preset load value, the BMS204 increases the output voltage of the energy storage system 200 to the preset load value (ie the BMS204 boosts the energy storage system 200); when the output voltage of the energy storage system is higher than the preset load value, the BM204S reduces the output voltage of the energy storage system 200 to the preset load value (ie the BMS204 Stepping down the energy storage system); when the output voltage of the energy storage system 200 conforms to the preset load value, the BMS 204 adopts the through mode to support the load.
  • the BMS204 and the backplane can also form a hot-swap connection, which can facilitate maintenance of the BMS.
  • a bypass switch is added to each cell (here, the power circuit may be referred to as a cell branch), and then the cell 201 passes through the subrack
  • the reserved cell slot 2021 on 202 is connected to the backplane 203 (that is, when the second power terminal 2011 and the first power terminal 2031 are docked), the bypass switch is opened (to avoid short circuit), the power The core branch switch is closed to realize the communication between the cell and the power circuit, sampling circuit and equalization circuit; the cell 201 is not connected to the backplane 203 (that is, the second power terminal 2011 and the first power terminal 2031 are not implemented When docking) or when the cell 201 fails, the cell branch switch is opened, and the bypass switch is closed (to achieve circuit conduction and prevent open circuit).
  • switch K1 in FIG. 4 is a bypass switch configured for cell 1
  • switch K2 is a bypass switch configured for cell 2
  • switch K3 is a cell branch switch configured for cell 1
  • switch K4 is The cell branch switch configured by cell 2.
  • the switch K1 and the switch K2 are opened, and the switch K3 and the switch K4 Closed; assuming the failure of cell 1 or the short circuit of the cell branch of cell 1 and other faults, and when cell 2 is working normally, the switch K1 is closed, the switch K3 is opened, the switch K2 is opened, and the switch K4 is closed; Suppose that the cell 2 fails or the cell branch of the cell 2 has a short circuit and other faults, and when the cell 1 works normally, the switch K2 is closed, the switch K4 is opened, the switch K1 is opened, and the switch K3 is closed.
  • the second power terminal 2011 of the battery core 201 may be designed to be welded to the cover plate of the battery core 201
  • the male terminal of the plug-in terminal in 2012, and the first power terminal 2031 of the backplane 203 is designed as a female plug-in terminal soldered on the backplane 203; or, the second power terminal 2011 of the cell 201 can be designed as The male terminal of the plug-in terminal welded on the pole of the cell, and the first power terminal 2031 of the back plate 203 is designed as the female terminal of the plug-in terminal welded on the back plate 203; or, the second of the cell 201
  • the power terminal 2011 may be designed as a plug-in terminal female soldered on the cell cover, and the first power terminal 2031 of the backplane 203 is designed as a plug-in terminal male soldered on the backplane 203; or, the electric The second power terminal 2011
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种储能系统,用于简化锂电PACK生产,且提升锂电安装效率、降低成本。该储能系统,包括:电芯(201)、插框(202)、背板(203)和电池管理系统BMS(204);插框(202)预留多个电芯槽位(2021),电芯(201)通过电芯槽位(2021)与背板(203)相连;背板(203)安装在插框(202)之中,背板(203)上与电芯槽位(2021)对应的位置预留第一功率端子(2031),电芯(201)的第二功率端子(2011)与第一功率端子(2031)形成插拔功率端子;背板(203)上集成功率电路、采样电路和均衡电路,第二功率端子(2011)与第一功率端子(2031)插拔对接之后接通功率电路、所述采样电路和均衡电路;BMS(204)与背板(203)相连,用于管理储能系统。

Description

一种储能系统
本申请要求于2018年12月29日提交中国专利局、申请号为201811639775.8、发明名称为“一种储能系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池领域,尤其涉及一种储能系统。
背景技术
随着锂离子电池技术发展,锂离子电池在通信电源、数据中心、微网储能、电动车等领域应用越来越广泛。随着工艺与技术的成熟,单体电芯容量逐步增大。目前行业内大容量电芯已经达到300安培小时(Ah)左右,但与铅酸相比容量依然较小,因此一般需要多串并应用。当前电动车、储能使用锂电时,通常先将电芯通过串并联连接,组合成标准PACK模块,再将标准PACK模块装配到储能机柜、机架、电动车底盘等安装空间内,分别连接好功率、采样线束,形成备电系统对外供电。
以通信储能应用为例,锂离子电池经过规格筛选后,通常进行串并联组合成15至16串(磷酸铁锂)的PACK模块,PACK模块中包含采样线束、功率连接排,绝缘片,固定支架等零部件;再将电池管理系统(battery management system,BMS)控制板与PACK模块组合成一体的48伏(V)电池产品,在实际应用中,将48V电池产品在安装到机柜中,将通信线、功率线连接好。
在此方案中,电芯需要组装成PACK,然后配合BMS组装成电池模组,需要配置大量的防护、固定装置,从而提升成本和生产周期。
发明内容
本申请实施例提供了一种储能系统,用于简化锂电PACK生产,且提升锂电安装效率、降低成本,提升系统可靠性。
第一方面,本申请实施例提供一种储能系统,具体包括:电芯、插框、背板和电池管理系统(battery management system,BMS);其中,该插框中预留了多个电芯槽位,以便该电芯可以通过该电芯槽位与该背板相连;而该背板安装在该插框中,且该背板上与该电芯槽位相对应的位置预留第一功率端子,该电芯的第二功率端子通过该电芯槽位与该第一功率端子形成插拔功率端子;而该背板上集成功率电路、采样电路和均衡电路,在该第二功率端子与该第一功率端子插拔对接之后,该功率电路、该采样电路和该均衡电路连通;而该BMS与该背板相连,用于管理该储能系统。
本实施例中,该储能系统的插框中预留的电芯槽位可以根据具体应用场景来确定,比如,若该储能系统的应用场景要求该储能系统以48V的电压输出,则该插框可以设计为预留18个电芯槽位或者更多电芯槽位。该BMS还可以与上位机进行通信。该电芯放电产生的电流通过功率回路,与正负极母排连接;而采样回路和均衡回路采集每一节电芯的电压等参数,支持对每一节电芯放电,不与正负极母排连接。
本申请实施例提供的技术方案中,该电芯不再需要组装成PACK然后再固定安装,而是直接与背板形成可插拔功率端子,从而实现电芯的可插拔安装,这样可以有效的简化锂电PACK生产,且提升锂电安装效率、降低成本。
可选的,在该储能系统中,该背板上集成的功率电路中可以增加旁路开关(这里可以将该功率电路称为电芯支路),然后在该电芯通过该插框上的预留电芯槽位与该背板实现连接(即该第二功率端子与该第一功率端子实现对接时),该旁路开关断开(避免短路),该电芯支路开关闭合,实现该电芯与功率电路、采样电路和均衡电路的连通;在该电芯未与背板相连(即该第二功率端子与该第一功率端子未实现对接时)或者该电芯出现故障时,该电芯支路开关断开,该旁路开关闭合(实现电路导通,防止断路)。这样可以实现在某一个电芯出现故障时,系统自动旁路故障电芯,并通过BMS升压输出对应的功率,系统可以正常工作,维护人员直接更换出现故障的电芯,而不需要断电将整个电芯组合都进行更换,从而实现系统高可靠供电,并且降低维护成本。
可选的,该BMS管理该储能系统可以采用如下具体方式:在该储能系统的输出电压低于预设负载值时,该BMS增加该储能系统的输出电压至该预设负载值(即该BMS对该储能系统进行升压);在该储能系统的输出电压高于该预设负载值时,该BMS降低该储能系统的输出电压至该预设负载值(即该BMS对该储能系统进行降压);在该储能系统的输出电压符合该预设负载值时,该BMS采用直通模式支持负载。这样可以保证该储能系统在应用过程中保证输出电压一致,从而增加该储能系统的可靠性。
可选的,为了使得该电芯可以与该背板实现热插拔对接功能,该电芯的第二功率端子可以设计为焊接在电芯盖板上的插拔端子公头,而该背板的第一功率端子设计为焊接在背板上的插拔端子母头;或者,该电芯的第二功率端子可以设计为焊接在电芯极柱上的插拔端子公头,而该背板的第一功率端子设计为焊接在该背板上的插拔端子母头;或者,该电芯的第二功率端子可以设计为焊接在电芯盖板上的插拔端子母头,而该背板的第一功率端子设计为焊接在背板上的插拔端子公头;或者,该电芯的第二功率端子可以设计为焊接在电芯极柱上的插拔端子母头,而该背板的第一功率端子设计为焊接在该背板上的插拔端子公头。具体情况此处不做限定。
可选的,该BMS与该背板之间的连接也可以使用热插拔。这样可以方便维护该BMS。
可选的,该电芯可以是组合成的电池模块,也可以是单支的电芯,只要可以支持上述储能系统中的热插拔功能即可。
附图说明
图1为电池模组的组装示意图;
图2为本申请实施例中储能系统的一个实施例示意图;
图3为本申请实施例中背板集成电路的一个示意图;
图4为本申请实施例中旁路开关与电芯支路的一个示意图;
图5为本申请实施例中电芯盖板的一个示意图。
具体实施方式
本申请实施例提供了一种储能系统,用于提升储能系统备电可靠性、安装配置灵活性,并且简化锂电PACK生产,提升锂电安装效率、降低成本。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。 应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着锂离子电池技术发展,锂离子电池在通信电源、数据中心、微网储能、电动车等领域应用越来越广泛。随着工艺与技术的成熟,单体电芯容量逐步增大。目前行业内大容量电芯已经达到300安培小时(Ah)左右,但与铅酸相比容量依然较小,因此一般需要多串并应用。如图1所示,目前的锂电池通常先将电芯通过串并联连接,组合成标准PACK模块;再将标准PACK模块装配到储能机柜、机架、电动车底盘等安装空间内,分别连接好功率、采样线束,形成备电系统对外供电。以通信储能应用为例,锂离子电池经过规格筛选后,通常进行串并联组合成15至16串的PACK模块,PACK模块中包含采样线束、功率连接排,绝缘片,固定支架等零部件;再将电池管理系统(battery management system,BMS)控制板与PACK模块组合成一体的48V电池产品,在实际应用中,将48V电池产品在安装到机柜中,将通信线、功率线连接好。在此方案中,电芯需要组装成PACK,然后配合BMS组装成电池模组,然后配合BMS组装成电池模组,需要配置大量的防护、固定装置,从而提升成本和生产周期。
本申请实施例提供如下储能系统,具体包括:电芯、插框、背板和电池管理系统(battery management system,BMS;其中,该插框中预留了多个电芯槽位,以便该电芯可以通过该电芯槽位与该背板相连;而该背板安装在该插框中,且该背板上与该电芯槽位相对应的位置预留第一功率端子,该电芯的第二功率端子通过该电芯槽位与该第一功率端子形成插拔功率端子;而该背板上集成功率电路、采样电路和均衡电路,在该第二功率端子与该第一功率端子插拔对接之后,该功率电路、该采样电路和该均衡电路连通;而该BMS与该背板相连,用于管理该储能系统。
具体请参阅图2所示,该储能系统200具体包括:电芯201、插框202、背板203以及BMS204;其中,该插框202上预留多个电芯槽位2021,以使得该电芯201可以通过该电芯槽位2021与该背板203相连;该背板203安装在该插框202内,该背板203上与该预设的电芯槽位2021相对应的位置为预留的第一功率端子2031;该电芯201的第二功率端子2011与该第一功率端子2031形成插拔功率端子;该背板203上还集成功率电路、采样电路和均衡电路,在该第二功率端子2011与该第一功率端子2031形成插拔对接时,该功率电路、采样电路和均衡电路接通,形成供电回路;而该BMS204与该背板203相连,并管理该储能系统200。
可以理解的是,该背板203中集成的通电电路、采样电路和均衡电路的的一种示例方式可以如图3所示,电芯201通过功率电路串联,并连接到总正极母排和总负极母排;而采样电路和均衡电路分别与每一个电芯201连通,采集该电芯201的电压等参数发送到电池管理系统BMS的采样芯片电路中,以使得该BMS可以管理由电芯201组成的储能系统。该BMS204管理该储能系统可以采用如下具体方式:在该储能系统200的输出电压低于预设 负载值时,该BMS204增加该储能系统200的输出电压至该预设负载值(即该BMS204对该储能系统200进行升压);在该储能系统的输出电压高于该预设负载值时,该BM204S降低该储能系统200的输出电压至该预设负载值(即该BMS204对该储能系统进行降压);在该储能系统200的输出电压符合该预设负载值时,该BMS204采用直通模式支持负载。这样可以保证该储能系统200在应用过程中保证输出电压一致,从而增加该储能系统200的可靠性。可以理解的是,该BMS204也该背板之间也可以形成热插拔连接,这样可以方便维护该BMS。
可以理解的是,该背板201集成的功率电路中对每一个电芯都增加一个旁路开关(这里可以将该功率电路称为电芯支路),然后在该电芯201通过该插框202上的预留电芯槽位2021与该背板203实现连接(即该第二功率端子2011与该第一功率端子2031实现对接时),该旁路开关断开(避免短路),该电芯支路开关闭合,实现该电芯与功率电路、采样电路和均衡电路的连通;在该电芯201未与背板203相连(即该第二功率端子2011与该第一功率端子2031未实现对接时)或者该电芯201出现故障时,该电芯支路开关断开,该旁路开关闭合(实现电路导通,防止断路)。这样可以实现在某一个电芯出现故障时,系统自动旁路故障电芯,并通过BMS升压输出对应的功率,系统可以正常工作,维护人员直接更换出现故障的电芯,而不需要断电将整个电芯组合都进行更换,从而实现系统高可靠供电,并且降低维护成本。其具体电路的一种示例可以如图4所示。其中,图4中开关K1是为电芯1配置的旁路开关,开关K2是为电芯2配置的旁路开关,开关K3是为电芯1配置的电芯支路开关,开关K4是为电芯2配置的电芯支路开关。在该电芯1和该电芯2均正常工作(即该电芯1和该电芯2均插入电芯槽位,且正常供电)时,开关K1和开关K2断开,开关K3和开关K4闭合;假设电芯1出现故障或者电芯1的电芯支路出现短路等故障,而电芯2正常工作时,则该开关K1闭合,开关K3断开,开关K2断开,开关K4闭合;假设电芯2出现故障或者电芯2的电芯支路出现短路等故障,而电芯1正常工作时,则该开关K2闭合,开关K4断开,开关K1断开,开关K3闭合。
在图2所示的储能系统中,为了使得该电芯201可以与该背板203实现热插拔对接功能,该电芯201的第二功率端子2011可以设计为焊接在电芯201盖板2012上的插拔端子公头,而该背板203的第一功率端子2031设计为焊接在背板203上的插拔端子母头;或者,该电芯201的第二功率端子2011可以设计为焊接在电芯极柱上的插拔端子公头,而该背板203的第一功率端子2031设计为焊接在该背板203上的插拔端子母头;或者,该电芯201的第二功率端子2011可以设计为焊接在电芯盖板上的插拔端子母头,而该背板203的第一功率端子2031设计为焊接在背板203上的插拔端子公头;或者,该电芯201的第二功率端子2011可以设计为焊接在电芯极柱上的插拔端子母头,而该背板203的第一功率端子2031设计为焊接在该背板203上的插拔端子公头。其中,该电芯201的盖板2012可以如图5所示,该盖板2012包括正极极柱2012a和负极极柱2012b,以及防爆阀门2012c。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (6)

  1. 一种储能系统,其特征在于,包括:
    电芯、插框、背板和电池管理系统BMS;
    所述插框预留多个电芯槽位,所述电芯通过所述电芯槽位与所述背板相连;
    所述背板安装在所述插框之中,所述背板上与所述电芯槽位对应的位置预留第一功率端子,所述电芯的第二功率端子与所述第一功率端子形成插拔功率端子;
    所述背板上集成功率电路、采样电路和均衡电路,所述第二功率端子与所述第一功率端子插拔对接之后接通所述功率电路、所述采样电路和均衡电路;
    所述BMS与所述背板相连,用于管理所述储能系统。
  2. 根据权利要求1所述的储能系统,其特征在于,所述功率电路中增加旁路开关;
    在所述第二功率端子与所述第一功率端子插拔对接时,所述旁路开关断开,所述功率电路的开关闭合;
    在所述第二功率端子与所述第一功率端子未插拔对接或者所述电芯故障时,所述旁路开关闭合,所述功率电路的开关断开。
  3. 根据权利要求1所述的储能系统,其特征在于,所述BMS管理所述储能系统具体可以采用如下方式:
    在所述储能系统的输出电压低于预设负载值时,所述BMS增加所述储能系统的输出电压至所述预设负载值;
    在所述储能系统的输出电压高于所述预设负载值时,所述BMS降低所述储能系统的输出电压到所述预设负载值;
    在所述储能系统的输出电压等于所述预设负载值时,所述BMS采用直通模式支持负载。
  4. 根据权利要求1至3中任一项所述的储能系统,其特征在于,所述电芯的第二功率端子为焊接在盖板上的插拔端子公头,所述背板的第一功率端子为焊接的插拔端子母头;
    或,
    所述电芯的第二功率端子为焊接在极柱上的插拔端子公头,所述背板的第一功率端子为焊接的插拔端子母头。
  5. 根据权利要求1至3中任一项所述的储能系统,其特征在于,所述BMS与所述背板通过插拔连接。
  6. 根据权利要求1至3中任一项所述的储能系统,其特征在于,所述电芯为电池模块。
PCT/CN2019/106657 2018-12-29 2019-09-19 一种储能系统 WO2020134214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19904884.4A EP3893289A4 (en) 2018-12-29 2019-09-19 ENERGY STORAGE SYSTEM
US17/358,907 US11581588B2 (en) 2018-12-29 2021-06-25 Energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639775.8A CN109786599B (zh) 2018-12-29 2018-12-29 一种储能系统
CN201811639775.8 2018-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/358,907 Continuation US11581588B2 (en) 2018-12-29 2021-06-25 Energy storage system

Publications (1)

Publication Number Publication Date
WO2020134214A1 true WO2020134214A1 (zh) 2020-07-02

Family

ID=66499106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106657 WO2020134214A1 (zh) 2018-12-29 2019-09-19 一种储能系统

Country Status (4)

Country Link
US (1) US11581588B2 (zh)
EP (1) EP3893289A4 (zh)
CN (1) CN109786599B (zh)
WO (1) WO2020134214A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786599B (zh) 2018-12-29 2021-08-31 华为数字技术(苏州)有限公司 一种储能系统
US20220029431A1 (en) * 2020-07-23 2022-01-27 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Switchable Battery Management System
AT526056B1 (de) * 2022-09-30 2023-11-15 Avl List Gmbh Modulare Speichervorrichtung und Verfahren zur Bestückung derselben
GB2624374A (en) * 2022-11-09 2024-05-22 Power Concepts Nz Ltd Modular power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114275A (zh) * 2016-08-23 2016-11-16 新能瑞驰(北京)能源技术有限公司 一种智能动力电池组及新能源汽车
CN206510769U (zh) * 2016-08-23 2017-09-22 新能瑞驰(北京)能源技术有限公司 一种智能动力电池组及新能源汽车
CN107742914A (zh) * 2017-11-15 2018-02-27 王晓秋 控制器与锂电池模块bms之间的一线通讯技术
WO2018222546A2 (en) * 2017-05-30 2018-12-06 Artisan Vehicle Systems Inc. Multi-modular battery system
CN109786599A (zh) * 2018-12-29 2019-05-21 华为数字技术(苏州)有限公司 一种储能系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516649B2 (ja) 2000-10-04 2004-04-05 日本電信電話株式会社 蓄電池収納キャビネット及び蓄電池収納接続方法
US7126378B2 (en) * 2003-12-17 2006-10-24 Rambus, Inc. High speed signaling system with adaptive transmit pre-emphasis
TW200913433A (en) * 2007-09-10 2009-03-16 J Tek Inc Scattered energy storage control system
WO2011025937A2 (en) 2009-08-28 2011-03-03 The Charles Stark Draper Laboratory, Inc. High-efficiency battery equalization for charging and discharging
JP2013126343A (ja) * 2011-12-16 2013-06-24 Hitachi Ltd 蓄電デバイスを備えた電力蓄積システム
CN102610776B (zh) * 2012-03-13 2015-01-21 华为技术有限公司 一种锂电池连接结构
US10193357B2 (en) * 2013-06-26 2019-01-29 Tws (Macau Commercial Offshore) Limited Energy storage system
KR102284483B1 (ko) * 2014-12-02 2021-08-02 삼성에스디아이 주식회사 배터리 모듈 및 그의 구동방법
US10153658B2 (en) * 2015-01-21 2018-12-11 Eaton Intelligent Power Limited Battery modules having detection connectors and related systems
US10749430B2 (en) * 2015-03-13 2020-08-18 Positec Power Tools (Suzhou) Co., Ltd. Power transmission apparatus and control method therefor, and power supply system
CN106100068B (zh) * 2016-08-10 2018-09-14 青海绿草地新能源科技有限公司 一种电池组可拆卸式移动电源
CN106356927B (zh) * 2016-09-19 2018-11-30 华中科技大学 一种锂电池组soc均衡系统及方法
KR102599399B1 (ko) * 2016-11-04 2023-11-08 한국전력공사 배터리 시스템 관리 장치 및 이의 동작 방법
CN106740228B (zh) 2017-01-13 2019-06-04 宁德时代新能源科技股份有限公司 电压一致性检测方法及装置、电压均衡方法及装置
CN206759134U (zh) * 2017-04-27 2017-12-15 北京新能源汽车股份有限公司 动力电池及电动汽车
US10697417B2 (en) * 2017-10-06 2020-06-30 Briggs & Stratton Corporation Battery connections for battery start of internal combustion engines
CN107878239A (zh) * 2017-11-22 2018-04-06 安徽零度新能源科技有限公司 一种动力锂电池管理系统
CN108482149A (zh) * 2018-03-22 2018-09-04 普汽新能(北京)科技有限公司 一种用高低压集成电路板组装电动汽车电池组的方法
JP7003855B2 (ja) * 2018-07-05 2022-01-21 株式会社オートネットワーク技術研究所 電源システム
EP3657571A1 (de) * 2018-11-26 2020-05-27 Aptiv Technologies Limited Batteriemodul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114275A (zh) * 2016-08-23 2016-11-16 新能瑞驰(北京)能源技术有限公司 一种智能动力电池组及新能源汽车
CN206510769U (zh) * 2016-08-23 2017-09-22 新能瑞驰(北京)能源技术有限公司 一种智能动力电池组及新能源汽车
WO2018222546A2 (en) * 2017-05-30 2018-12-06 Artisan Vehicle Systems Inc. Multi-modular battery system
CN107742914A (zh) * 2017-11-15 2018-02-27 王晓秋 控制器与锂电池模块bms之间的一线通讯技术
CN109786599A (zh) * 2018-12-29 2019-05-21 华为数字技术(苏州)有限公司 一种储能系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893289A4

Also Published As

Publication number Publication date
CN109786599A (zh) 2019-05-21
EP3893289A4 (en) 2022-04-06
US20210328276A1 (en) 2021-10-21
CN109786599B (zh) 2021-08-31
US11581588B2 (en) 2023-02-14
EP3893289A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2020134214A1 (zh) 一种储能系统
WO2021190196A1 (zh) 并联电池组充放电管理方法、电子装置及电气系统
CN106774771B (zh) 供电系统及其供电控制方法
US20190356159A1 (en) Rack-mounted ups device for data centers
CN111509317B (zh) 一种用于蓄电池的储能管理方法、系统和电子设备
US20110316336A1 (en) Device mounted uninterruptable power supply system and method
WO2021082927A1 (zh) 一种电源模组及整机柜
CN102394510A (zh) 一种高效可靠的数据中心it设备供电架构
CN105048607A (zh) 一种新型多输出锂电池电源装置及其控制方法
CN112600264A (zh) 并联电池包的控制方法、系统、电子设备及车辆
CN104808763A (zh) 一种机柜式服务器的供电方法及供电装置
CN202353297U (zh) 一种数据中心it设备供电系统和后备式高压直流电源
CN108599353A (zh) 一种高压锂电池储能柜并联扩容系统
CN111873844A (zh) 一种换电站的网络拓扑结构、电动汽车换电方法及换电站
CN106026356A (zh) 一种实现电池扩容的方法
CN102130360A (zh) 锂电模块
CN111326804A (zh) 一种锂电池bms安全链控制系统
CN104753099A (zh) 一种供电系统及供电控制方法
CN216412097U (zh) 一种服务器供电系统
CN208971237U (zh) 一种整机柜供电装置
KR100954944B1 (ko) 리튬폴리머 배터리를 이용한 무정전시스템
CN108407658A (zh) 一种混合动力汽车电池管理系统
CN219843613U (zh) 一种供电交换机
CN218888437U (zh) 一种便携式野战光储充电电源箱
CN113507147B (zh) 一种pcu-ng及其与锂离子蓄电池组连接的预充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904884

Country of ref document: EP

Effective date: 20210708